BASIC NOTIONS an overview

- **DEFINITION**
- NAME
- ABSTRACTION
- SET
- TYPE

BASIC NOTIONS introduction

DEFINITION:

DESCRIPTION OF A NEW CONCEPT IN TERMS OF EXISTING CONCEPTS.

EFFECTIVE DEFINITION:

• COMPLETE

meaning of a new concept is given by its definition, and only that.

• UNAMBIGUOUS

an obvious requirement for definitions.

BASIC NOTIONS introduction

NAME:

TERM IDENTIFYING AN OBJECT IN A CERTAIN ENVIRONMENT.

EFFECTIVE NAME:

- REPRESENTS ACCUMULATED KNOWLEDGE correspond to conceptual categories.
- NOT FOR UNIVERSAL IDENTIFICATION

type identification is unique within a data model, instance is unique within a type.

NAMES GENERALLY ORIGINATE FROM A DESCRIPTION:

EXAMPLE:

electronic calculator ↓ digital computing machine ↓ digital computer ↓ computer

BASIC NOTIONS sets

ABSTRACTION:

- DESCRIPTION OF THE REALITY
- CONTAINS ONLY INVARIANTS

EXAMPLE: AXIOM OF EXTENSIONALITY

A SET IS THE COLLECTION INTO A SINGLE UNIT OF DEFINITE, DISTINCT OBJECTS OF OUR INTUITION OR THOUGHT.

THE WHOLE IS CALLED A SET AND THE COLLECTED OBJECTS ARE THE ELEMENTS IN IT.

SUPPOSE OBJECTS A, B AND C IN SET S: MATHEMATICAL NOTATION: S = {A, B, C}

HERE:

set S = A, B, C.

EVIDENT THAT

- B IS AN ELEMENT OF SET S AND
- X IS NOT AN ELEMENT OF SET S.

BASIC NOTIONS justification of types

A SET IS A COLLECTION OF DEFINITE, DISTINCT OBJECTS, SO:

IT MUST BE POSSIBLE TO DECIDE UNAMBIGUOUSLY FOR EACH OBJECT WHETHER OR NOT IT IS CONTAINED IN THE SET !!

CONSIDER: G = {A, B, {D}}

1 THIS SET MAY CONTAIN THREE ELEMENTS:

```
set A = ...
set B = ...
set ... = D
```

BUT, THIS SETS CONTAINS TWO ELEMENTS IF:

set B = D

2 IS C ELEMENT OF THIS SET G ?

```
YES IF set C = D
UNDECIDABLE IF set C = ...
```

G RESULTS IN COMPLETE DESCRIPTIONS !!

CONCLUSION:

```
THE COLLECTION OF TYPES INTO A UNIT IS A TYPE.MATHEMATICAL NOTATION:\{T\} = \{\{X\}, \{Y\}, \{Z\}\}\}HERE WE USE:type T = X, Y, Z.
```

BASIC NOTIONS sets and types

DATA OBJECTS HAVE:

1 IDENTIFICATIONS

COLLECTING IDENTIFICATIONS RESULTS IN SET. A SET HAS:

- N INTENTIONS (description using predicate)
- **1 EXTENSION (definition using elements)**

EXTENSION: set S = A, B, C.

2 **PROPERTIES**

COLLECTING PROPERTIES RESULTS IN TYPE. A TYPE HAS:

- 1 INTENTION (definition using properties)
- N DENOTATIONS (description using instances)

INTENSION: type T = X, Y, Z.

RESULT DISJOINT CLASSES: set AND type

TWO SETS OF OPERATIONS:

- 1 FOR SETS: $set \Rightarrow set$ UNION, INTERSECTION, DIFFERENCE
- 2 FOR TYPES: $type \Rightarrow type$ SPECIALIZATION, GENERALIZATION, DIFFERENTIATION

BASIC NOTIONS sets and types

		← <i>type</i> employee →				
		name	address	town	department	salary
set staff	501	Brewer	6, Knot	Shingles	stores	12,500
	502	Fisher	23, Stream	Selling	manufacturing	13,500
	503	Taylor	12, Lane	Guilding	manufacturing	14,000
	504	Stewart	3, Bush	Wimblon	sales	13,500
	505	Potter	67, Market	Washing	accounting	11,500
	506	Butcher	2, Place	Selling	manufacturing	15,000
	507	Brewer	7, Crescent	Guilding	purchase	13,500

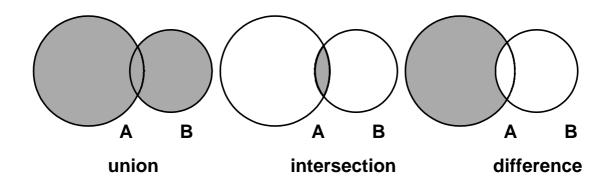
INVARIANT:

•

- PROPERTIES ⇒ TYPE *type* employee = name, address, town, department, salary.
- ELEMENTS \Rightarrow SET

set staff = 501, 502, 503, 504, 505, 506, 507.

BASIC NOTIONS sets


DEFINITION:

• A set is a definite collection into a single unit of distinct objects. An object from the collection is called an element of the set.

SET ALGEBRA:

- The *union* of sets A and B is the set of elements contained in A or B.
- The *intersection* of sets A and B is the set of elements contained in both A and B.
- The *difference* of sets A and B is the set of elements contained in A and not in B.

VENN DIAGRAMS:

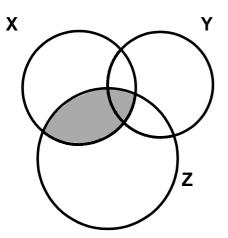
BASIC NOTIONS types

DEFINITION:

• A *type* is a definite aggregation of distinct properties. Properties from the aggregation are called attributes. An object having properties of the type is called an instance of this type.

TYPE ALGEBRA:

- The *specialization* of types A and B is the type consisting of properties in A or B.
- The *generalization* of types A and B is the type consisting of properties in both A and B.
- The *differentiation* of types A and B is the type consisting of the properties in A and not in B.

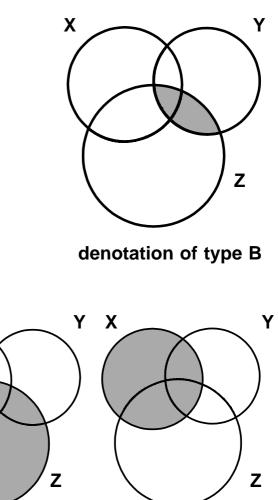

BASIC NOTIONS types (continued)

TYPE DEFINITIONS:

type A = X, Z

type B = Y, Z.

VENN DIAGRAMS:


denotation of type A

OPERATIONS:

denotation of

specialization S

Χ

denotation of generalization G

type S = X, Y, Z type G = Z

*typ*e D = X

denotation of

differentiation **D**

©1999 J.H. ter Bekke, Semantic data modeling - basic notions

Υ

Ż

Х