
Meta Modeling for End User Computing

J.H. ter Bekke
Department of Information Systems

Delft University of Technology
P.O. Box 356, 2600 AJ Delft, The Netherlands

E-mail: j.h.terbekke@is.twi.tudelft.nl

Abstract

Inherent constraints play an important role in the semantic
Xplain model. These constraints enable us to represent
certain real world knowledge once for subsequent use in
several applications. The Xplain DBMS has demonstrated
that a broad class of applications can be developed by only
defining structural properties of the data required by the
applications. This results in a concentration of all software
in the DBMS and makes often specific application software
superfluous. Advantages of this semantic approach are
amongst others: reliable data processing, simple and rapid
application development and a significant reduction of
maintenance costs. It makes databases also attainable for a
broad, new class of end users.

Keywords: semantics, semantic data modeling, meta
modeling, design tools, automatic application generation,
end user computing, declarative knowledge.

1: Introduction

Inherent constraints are determined by the structural
properties of a data model [7]. They have always played a
role in databases. For example, the first database systems
supported hierarchical structures (including inherent parent-
child relationships) or network structures (including inherent
owner-member relationships). However, implementations of
these constraints resulted in complex navigational appli-
cation programs. This was caused by the missing data inde-
pendence. Inherent constraints were considered therefore as
a disadvantage instead of an advantage of a data model.

The disadvantages of the implementations of inherent
constraints in hierarchical and network databases resulted in
data models in which inherent constraints played only a
subordinate role. The original relational model for example,

contains only one inherent constraint: the relationship
between the attributes of a relation. However, the absence
of other inherent constraints led to multiple specification and
enforcement of semantic relationships through software.
This is demonstrated in relational languages (as SQL) by the
use of triggers and join-operations; these operations contain
the software specification of the required connection.

This lack of inherent constraints in the relational model
has resulted in new models containing more semantics.
Object oriented approaches are examples. However,
gradually it becomes more and more clear that, by modeling
complex values, disadvantages of the original hierarchical
and network structures are introduced again [8].

All foregoing approaches make implicit or explicit the
assumption that applications require software to be
developed (for example in 3GL, 4GL or SQL). A
consequence of this assumption is that similar software is
developed several times (namely in each application). It
results in a resource devouring application maintenance.
This assumption is not made in the Xplain approach.
Starting point here is the development of a rich structure,
understood and maintained by the DBMS. This semantic
structure enables the DBMS to make existing software
available for a broad class of applications. This is a
confirmation of the advantages of a declarative knowledge
representation approach [3]. Specific application software
becomes out of date. Advantages of the approach are
numerous:
• Applications use a predefined, consistent semantic data

structure, understood and maintained by the DBMS.
Applications can be developed very rapidly without
programming efforts, if desired even dynamically at
run time.

• Application correctness is determined during the
development phase of an application with the help of
the contents of the semantic data dictionary. Debugging
of application software is not necessary.

• Meaning of an application is known to the DBMS.

J.H. ter Bekke, Meta Modeling for End user computing, Proccedings DEXA’95 267

This meaning is determined by the software for inter-
pretation of the semantic data dictionary.

• Application development and maintenance are easier to
perform (even at run time). The DBMS is continuously
guarding application consistency.

• Changes to the semantic data structure are easier to
make. Consequences for applications are determined by
the DBMS.

• Application software is already available in the DBMS.
Software is therefore developed only once. Develop-
ment and maintenance costs are therefore reduced
significantly.

• End users are not forced to follow the logic of an
application program. End users may self determine
their sequence of actions (with support of the DBMS).
Applications therefore better agree with the intuition of
the end user.

• Applications are not used for one single mode (search,
modify, etc.); although the user’s manipulation rights
can be subjected to authorization rules. The collection
of applications is significantly reduced and therefore
better manageable.

This paper presents an overview of concepts required
for meta modeling to reach this goal. Subsequently, some
examples are given to illustrate applications which can be
realized using the Xplain DBMS without the development
of specific application software. At Delft University of
Technology we have gained experience with this approach
in various application domains. This experience has led to
the conviction that this approach makes DBMSs suitable for
a large application domain for a broad, new class of end
users because it does not require knowledge of database
languages.

2: Meta modeling in Xplain

Essential for a data model are the supported abstrac-
tions. The semantic data model Xplain is based on three
abstractions: classification, aggregation and generalization.
They are based on the fundamental type-attribute
relationship. These abstractions are introduced informally in
the following. The examples have been selected to illustrate
their use for the purpose of this paper: meta modeling i.e.
modeling of data dictionaries. An extensive treatment of
these abstractions is given in [7]. The concepts may be
considered as a further evolution of abstractions introduced
by Smith and Smith [5, 6].

Classification
The abstraction leading to a property is called classification.
The examples required for the recognition of a property (i.e.

the instances) are purely meant as an illustration. The
property is not being defined hereby. Properties are
represented by rectangles in diagrams. The counterpart of
classification is called instantiation. Fundamental to the
semantic meta model is the notion of ’type’ (see figure 1).
Instances of this meta concept could be ’member’, ’name ’,
’copy’ etc. occurring in a conceptual database model.

type

Figure 1: Classification

Aggregation
Aggregation is defined as the collection of a certain number
of properties in a type, which in itself can be regarded as a
new property (note the analogy with the mathematical set
concept). A property from an aggregation is called an
attribute of the type.

Aggregation allows view independence: we can discuss
the obtained type (possibly as a property) without referring
to the underlying attributes; it makes meta models exten-
sible. By applying this principle repeatedly, a hierarchy of
properties can be set up. An example for meta modeling is
given in figure 2. Normally the hierarchy contains only
aggregated types.

attribute

type

Figure 2: Aggregation hierarchy

Aggregation is indicated by a line connecting (the
centers of) two facing rectangle sides, while the aggregate
type is placed above its attributes. Of course, aggregation
also has its counterpart: the description of a type as a set of
certain attributes is called decomposition. An example of
aggregation in a conceptual database model could be the
following:

type member = name, address, zipcode, city.

In this definition, ’city’ is considered as an attribute of
’member’; it represents a relationship between the ’member’
type and the ’city’ type. The first type is composite, the
latter can be composite or base.

So, in the semantic meta model, attribute is considered
as a relationship (a so-called membership relationship)
between two types: one type is by definition composite (the
type of which it is the attribute), the other related type can

J.H. ter Bekke, Meta Modeling for End user computing, Proccedings DEXA’95 268

be composite or base. Besides that, attributes are of a
certain kind; they specify a generalization or an aggregation
abstraction. So we can consider the following type
definitions in the meta model:

type attribute = composite_type, type, kind.
type type = name, representation.

These meta model definitions contain the relevant inherent
constraints, for example: ’attribute its composite_type’
defines a relationship between the ’attribute’ and the
underlying ’composite_type’. The prefix ’composite’ in the
attribute ’composite_type’ is called a role.

Aggregation can be described using the verb to have.
According to the above type definition, an attribute has a
composite type, a type and a kind. Identifications are
properties denoted by type names. This interpretation
implies singular identifications; it precludes connection
traps.

role attribute

attribute

Generalization
The third type of abstraction, important to conceptual
database models, is generalization; it is defined here as the
recognition of similar attributes from various types and
combining these in a new type (note the analogy with the
intersection operation from mathematical set theory). We
can equally discuss the new type without mentioning
underlying attributes, and it can in itself again serve as a
property (i.e. allows view independence). Generalization’s
counterpart (i.e. the union of attributes from different types)
is called specialization.

An example of generalization occurs in meta modeling.
For example: consider the properties ’composite_type’,
’type’ and ’kind’. The corresponding type is ’attribute’ as
defined earlier. Consider, in addition, ’composite_type’,
’type’, ’kind’ and ’role’, where the corresponding type
might be ’role attribute’. The common attributes of the two
types are ’composite_type’, ’type’ and ’kind’. This is the
type ’attribute’, which may be regarded as the generalization
of ’attribute’ and ’role attribute’. The union of attributes is
found in the type ’role attribute’. This is considered as the
specialization of the two. Generalizations can be represented
in abstraction hierarchies, as we have seen in the case of
aggregation. The above generalization is shown in figure 3.

Figure 3: Generalization hierarchy

In abstraction hierarchies, generalizations are schematically
represented by a line connecting facing corners of
rectangles, the generalized types being placed below the
specialized ones. The generalization, together with the
attributes to be added to it, is described in the definition of
the specialization. So the corresponding meta model
definitions are:

type attribute = composite_type, type, kind.
type role attribute = [attribute], role.

Specializations are commonly associated with the verb to
be. According to the above type definitions, a role attribute
is an attribute with a role. The introduction of new
identifications for specializations makes generalization
hierarchies nontransitive [4] and extensible [7].

Inherent constraints
The following two inherent integrity constraints are
recognized for the types in a conceptual database model
(they are also relevant for the types in the meta model):
• relatability

Each property in a type definition is related to one and
only one equally named type, while every type may
correspond to various attributes.

• convertibility
Each type definition is unique: there are no type
definitions carrying the same name or the same set of
attributes.

It is important to realize that these two integrity constraints
require neither additional specification nor declaration by
procedures - they are inherent to the given type definitions
proper. The DBMS contains software for enforcement and
the DBMS is completely responsible for the integrity of the
contents of the data dictionary and the corresponding
database. User operations may ignore the aspect.

The two inherent constraints do not imply physical
connections as known from implementations of hierarchical
and network models. Types can be viewed as simple
interrelated tables; the relationships being maintained by the
DBMS itself and user operations have no influence on the
integrity of these tables.

3: The contents of a semantic data dictionary

The contents of a semantic data dictionary (including
all inherent constraints) is illustrated by using a simple
example about a club of compact disk player owners in
which members can borrow compact disks from each other
(see also [8]). We assume relevancy of the registration of

J.H. ter Bekke, Meta Modeling for End user computing, Proccedings DEXA’95 269

ownerships, reservations and borrowings. In the design
occur: compact disk title CD (for reservations), compact
disk copy (for borrowings), member, owner, borrower,
borrowing and reservation. Therefore the conceptual
database model looks as follows. For convenience, roles
have been added to some of the attributes:

type CD = title, performer.
type member = name, address, zipcode, city.
type reservation = CD, borrower_member, period.
type copy = CD, owner_member.
type borrowing = copy, borrower_member,

from_date, to_date.

The corresponding abstraction hierarchy is given in figure
4.

borrowing

copy

reservation

CD member

Figure 4: Conceptual database model

It is important to realize that meta data enables the DBMS
to derive the attributes of a type and the semantic
relationships between types. So, all necessary information
can be derived during database use. As a result, the DBMS
can support:
• query formulations without explicit joins;
• generic modification operations i.e. operations for all

database types in which the aspect of semantic integrity
is handled by the DBMS;

• application generation with complex updatable views.

4: Constraints in semantic systems

Essential for semantic query formulation is the use of
the so-called its-construct. This construct is allowed because
of the relationships expressed by the foregoing inherent
constraints of relatability and convertibility. Related types

(also related instances) are therefore uniquely present in a
semantic database. The consequences of these inherent
constraints can be perceived in operations on a semantic
database. The advantages for application view development
are illustrated below.

Application view development
Application views are developed in continuous interaction
with the DBMS (i.e. using a WYSIWYG interface). To be
able to present end users a facility in which only the
location of fields in an application view has to be specified,
an extension (not a modification) to the foregoing basic
structure of the meta model is needed. Here the following
concepts occur (see figure 5): panel (i.e. the application
view), included type (conceptual type occurring in the
application view), included attribute (i.e. the field), path
element (to specify the path between the included attribute
and the conceptual attributes, as in: copy its owner_member
its city).

path
element

included
attribute

included
type

role attribute

attribute

panel

type

Figure 5: Abstraction hierarchy for view support

Following extensions are needed to support application
views:

type panel = panel name, text, creator.
type included type = panel, type,

parent_included type,
coupling_attribute, start_row,
rows_number, instance_number,
level.

type included attribute = included type, attribute,
row_position, col_position, path.

type path element = included attribute, attribute,
next_path element.

Meta data enable the DBMS to support users in various
stages:

J.H. ter Bekke, Meta Modeling for End user computing, Proccedings DEXA’95 270

MEMBER ID:
name:

address:

RESERVATION ID: CD period

BORROWING ID: copy [CD-title , owner] from to

[,]
[,]
[,]
[,]
[,]
[,]

PF1=EXIT PF2=DEFINE PF3=INS/DEL LINE PF4=HELP Enter=Ins/Typeover Insert

1.ID
1.name
1.address 1.zipc 1.city

2.ID 2.CD 2.period
2.ID 2.CD 2.period
2.ID 2.CD 2.period
2.ID 2.CD 2.period

3.ID 3.co 3.title 3.ow 3.from 3.to_d
3.ID 3.co 3.title 3.ow 3.from 3.to_d
3.ID 3.co 3.title 3.ow 3.from 3.to_d
3.ID 3.co 3.title 3.ow 3.from 3.to_d
3.ID 3.co 3.title 3.ow 3.from 3.to_d
3.ID 3.co 3.title 3.ow 3.from 3.to_d

Figure 6: Development of an application view

• during panel development
The relationships stored in the semantic data dictionary
enable the DBMS to determine which relationships are
useful to be incorporated in an application view. This
makes it possible for the DBMS to offer only useful
relationships.

• during panel use
The DBMS is able to determine for a database which
relationships can be inserted through user operations
and which relationships can be deleted. The DBMS is
also able to decide which modification operations are
allowed in an application view (in other words: to
determine the updatable application views).

In the application view missing chains (for example: copy
its CD its title) can be added by the DBMS. The same is
true for certain IDs (for example: memberID in reservation).
Application views are defined using a WYSIWYG interface
(as in figure 6). Definition of the application view consists
of filling the semantic data dictionary of figure 5.

The application view above looks similar for the end
user (see figure 8). The behavior (retrieval, insert, delete,
update) of application views is completely determined by
the contents of the semantic data dictionary. Operations are
allowed if the user has the required authorization (according
the authorization dictionary) and if the application view can
be mapped unambiguously on the conceptual structure of the
database (figure 7).

1 1
2 1 1 Included Type
3 2 1=member
4 3 2=reservation
5 4 3=borrowing
6 5
7 6
8 1 2
9 1 2
10 1 2
11 1 2
12 11
13 12
14 13
15 1 3
16 1 3
17 1 3
18 1 3
19 1 3
20 1 3
21 21

row off 1 2 3 4 5 6 <RETURN>
set level >

Figure 7: Structure of an application view

Operations on application views
The panel user may use application views for different
database operations depending on the user’s authorization

J.H. ter Bekke, Meta Modeling for End user computing, Proccedings DEXA’95 271

MEMBER ID:
name:

address:

RESERVATION ID: CD period

BORROWING ID: copy [CD-title , owner] from to

[,]
[,]
[,]
[,]
[,]
[,]

EXIT < FILTER > PRV INST INSERT UPDATE HELP
CASCADE << TOP >> >> NXT INST CLEAR DELETE PRINT

Figure 8: Using an application view

profile, the cursor position (denoted by in figure 8), the
conceptual structure and the view structure. Search
conditions containing AND/OR (so called: filters) can be
placed on all fields, search processes can be cascaded/
restricted and inherent constraints are automatically
enforced. Extensions to the given structure of the meta
model can be used for additional behavior (for example:
static constraints, dynamic constraints, etc.) and look and
feel of application views (e.g.: highlighting, colors, lookup
panels, etc.).

Conclusion

This paper has demonstrated the importance of two
inherent constraints for use in a database environment.
These constraints do not contain any implementation aspect
and are close to the intuition of a database user. Both
queries and application views benefit from these constraints.
Knowledge represented by means of inherent constraints is
available for several applications. The DBMS uses this
knowledge for all applications. A broad class of applications
can be developed without any special programming
knowledge. The advantages have been demonstrated:
reliable data processing, simple and rapid application
development and a significant reduction in software
maintenance costs. Databases become available for a broad,
new class of end users.

The semantic approach has shown that only one

fundamental relationship is essential for the derivation of
information from a database, namely the type-attribute
relationship. The use of this relationship has made it clear
that other relationships (such as the n:m relationship in the
entity-relationship approach and object oriented approaches)
can be conceived as consequences of the type-attribute
relationship.

Acknowledgments

I wish to thank all persons who contributed to the
presented parts of the Xplain DBMS: Rien Bos as software
manager; Joep Hompus and Huub Goossens who defined
and implemented the basic structure of the semantic data
dictionary; Jan Bron, Martin van Dinther, Ton van Wijk and
Ronald Krijgsheld who contributed to the application
generator of the Xplain DBMS. My colleagues Dolf van der
Ende and Bert Bakker are acknowledged for frequent
discussions on semantic data modeling and meta modeling.

References

[1] J.A. Bakker, A semantic approach to enforce correctness of
data distribution schemes, The Computer Journal 37 (1994)
7, pp. 361-375.

[2] F.J. Corbato, On building systems that will fail,
Communications of the ACM 34 (1991), pp. 73-81 and
Interview with K.A. Frenkel pp. 83-90.

J.H. ter Bekke, Meta Modeling for End user computing, Proccedings DEXA’95 272

[3] Y. Freundlich, Knowledge bases and databases: converging
technologies, diverging interests, IEEE Computer, 23 (1990)
11, pp. 51-57.

[4] J.P. Rosen, What orientation should Ada objects take?,
Communications of the ACM 35 (1992) 11, pp. 71-76.

[5] J.M. Smith and D.C.P. Smith, Database abstractions:
aggregation, Communications of the ACM 20 (1977) 6, pp.
405-413.

[6] J.M. Smith and D.C.P. Smith, Database abstractions:
aggregation and generalization, ACM Transactions on
Database Systems 2 (1977) 2, pp. 105-133.

[7] J.H. ter Bekke, Semantic data modeling, Prentice Hall,
Hemel Hempstead (1992).

[8] J.H. ter Bekke, Complex values in databases, Proceedings
Int. Conf. on Data and Knowledge Systems for Manufactur-
ing and Engineering, Hong Kong (1994), pp. 449-455.

J.H. ter Bekke, Meta Modeling for End user computing, Proccedings DEXA’95 273

