
COMPLEX VALUES IN DATABASES

J.H. ter Bekke

Delft University of Technology
Department of Information Systems

P.O. Box 356, 2600 AJ Delft, The Netherlands
e-mail: j.h.terbekke@is.twi.tudelft.nl

Abstract

Shortcomings of the relational data model have led to
two different approaches for supporting complex values:
the object oriented approach, in which they are modeled
as a unit and represented as such in the database, and
the semantic approach, in which complex values are
derived from a simple conceptual structure. This paper
contains an overview of the pros and cons of both
approaches. An analysis indicates that generally
derivation of complex values is superior to modeling
and representation of complex values.

Keywords: data modeling, object oriented databases,
semantic databases, user interfaces, view independence,
data independence, knowledge representation.

1 Introduction

Classical computer programs use their own data
structures. These structures are completely tailored for
the program in question; they contain in fact the view
required by the program. The approach offers certain
advantages because representation and usage of data
form a solid unit. This architecture has made it possible
in the early days of computer science to develop several
applications for large collections of data using limited
hardware configurations. The disadvantages of
structuring a particular view became clear when new
applications needed new views on the same data.
Existing tailored data structures were then felt as a
disadvantage in stead of an advantage. The relational
data model was the first to meet the new requirements
by allowing only simple data structures suitable for
many applications.

The relational data model has been introduced as a
model based on simple mathematical concepts. These
concepts make it possible to define application
independent structures: tables or normalized relations.
An advantage is that different views can be derived
from the same data. Data must be gathered only once
to use them subsequently for different applications. In
spite of this, a number of disadvantages is adhered to
the relational approach:
• the relational theory does not allow derivation of

complex values, the model does not include
operations for this purpose;

• the derivation of a different view is expensive
which is caused by the necessary joins of tables.

These disadvantages are mainly felt in new application
domains (often CAD/CAM, office automation, etc. are
referred). Here, a tendency exists (partly for perform-
ance reasons) to restrict modeling to one particular view
in which complex values may occur. Besides that, it
seems appropriate to include modeling of behavior [1].
The relevant question is whether or not the existing
disadvantages from the classical approaches are intro-
duced again.

This paper presents an overview of the problems
related to complex values in databases and contains an
analysis of two alternatives:
• modeling of complex values

Complex values are modeled and represented as
such in the database. This is applied in the object
oriented approach.

• derivation of complex values
Complex values can be derived from the database
which contains only simple data values. This is
applied in the semantic approach.

The paper presents for both alternatives consequences
concerning: conceptual modeling, user views, operations
and integrity. It shows that modeling and representing
complex values has certain disadvantages. Among
them: limited structuring capabilities, loss of
information and semantics, limited user interfaces and
transitive dependencies. Advantages of deriving
complex values are contrary to these disadvantages.
They include: no logical restrictions in the derivation of
views, no ambiguities, no loss of information and
semantics, no transitive dependencies, updatable user
views and intelligent user interfaces. A separation
between access and storage of data makes the latter
alternative also attractive when the aspect of perform-
ance is considered. This has been demonstrated by two
implementations of these semantic concepts in a Unix
environment [13, 20].

2 Modeling approaches

Early database approaches were based on hierarchies
and networks. These approaches favored certain
applications above others. Databases and their applica-
tions were strongly coupled. The relational data model
caused a major change. Application and database were
decoupled: a relational database is not limited useful for
one single application, but can be used for a broad class
of applications instead.

J.H. ter Bekke, Complex values in databases, Proceedings DKSME’94 449

Relational databases use mathematical concepts:
relations as subsets of Cartesian products. Relations
support sets of similar elements; these elements are
called tuples. The values occurring in tuples are always
simple. Operations enable users to derive new relations
from existing (stored) relations. Relational structures
and operations lead to a closed system: derived rela-
tions satisfy the same requirements as existing relations.
An advantage is that a user does not see any difference
between original and derived relations. On the other
hand, a disadvantage is that derived relations cannot
contain complex values.

The absence of operations by which complex
values can be derived has contributed to the impedance
mismatch [3]. This has gained a lot of attention for the
object oriented database approach in literature. Data
structures do not necessarily contain only simple values.
A value can be built up from a variable collection of
simple data values. This enables us to create complex
values.

Another approach is used in the semantic data
model Xplain. Here type is the fundamental notion. A
type is conceived as an aggregation of properties [13,
14]. A type can be considered as a property and offers
capabilities of considering complex values. However, a
complex value is in this approach still consisting of a
definite number of (possibly large) components and not
a variable number as offered by the object oriented
approach.

Several studies have confirmed that the positive
results of deriving complex values can be obtained in
technical applications in which complex data structures
play a role. Among these are models for: flexible
production automation control systems [18], CAD
frameworks [17], robotics [5], VLSI data management
[19], user interfaces [22], product modeling for
CAD/CAM [8] and application reuse-in-the-large [7].
Besides that at least two implementations of the
semantic concepts (including the Nelsis framework [19,
20, 21] and the Xplain DBMS [13, 14]) have demon-
strated the performance and flexibility of the proposed
approach.

This paper presents an analysis of benefits and
limitations of both alternatives for handling complex
values. The analysis will be carried out using a simple
example. The example has been deliberately selected to
illustrate different aspects occurring often in complex
practical situations. In an earlier paper [16] the same
example has been used for a study on the flexibility of
data models.

3 Design case

This paper uses a simple example about a club of
compact disk player owners in which members can
borrow compact disks from each other. We assume
relevancy of the registration of ownerships, reservations
and borrowings.

For registration purposes some data structures must
be designed to fulfill the requirements. In the design

will occur: compact disk title CD (for reservations),
compact disk copy (for borrowings), member, owner,
borrower, borrowing and reservation (possibly as part
of a complex structure). Several views can be relevant
for registration and retrieval purposes. These views
must be allowed in accordance with the requirements.
No logical restrictions may be imposed on data manip-
ulation operations. In other words all operations,
retrieve, insert, delete and update must be allowed on
modeled/derived complex values. It is evident that
under all circumstances the integrity of the database
must be guaranteed.

4 Modeling complex values

Conceptual modeling
The objects: CD, copy, member, owner, borrower,
borrowing and reservation play a dominant role in this
case. There exists a single inheritance relationship
between these user defined objects; both owner and
borrower can be considered as subclasses of the
member class. The inheritance graph looks at first
instance as given in figure 1. All objects have here their
own object identifier (OID denoted by).

object

CD copy

borrowing member reservation

owner borrower

Figure 1: Class hierarchy

This hierarchy does not contain the relationship
between CD and copy and the relationships between
member, reservation and borrowing. Considering the
latter, a 1:n relationship can be recognized between
member and reservation and between member and
borrowing. These relationships can be included by the
introduction of complex values as presented in figure 2.
From the structure can be concluded that the borrower
class and the owner class do not play a role anymore.
Reservations and borrowings are both part of the
member class and do not have their own OID.

It is clear that complex values can handle only a
limited number of 1:n relationships. The remaining
objects are now: member, CD and copy. Two hierar-
chical relationships cannot be modeled using complex
values, as will be explained in the following.

CD and copy have a 1:n relationship (because
several copies can occur of a certain CD). In spite of
this, it turns out to be impossible to represent this
relationship using a complex value. The relationship
interferes with the existing hierarchy in the member

J.H. ter Bekke, Complex values in databases, Proceedings DKSME’94 450

object

system data

member CD copy

name title CD
address performer member

reservations

CD
period

borrowings

copy
from_date
to_date

Figure 2: Modeling of complex values

class. It requires a cross-link between elements of the
complex values for reservations and borrowings. The
objects CD and copy must therefore be modeled as two
independent classes; that is the only way to make both
direct accessible from borrowings and reservations
elements. This has consequences for the modeling of
the second hierarchical relationship between copy and
owner. It is evident that the owner class must be
dropped to obtain a non-redundant representation.

Modeling of user views
A user view comparable with the complex structure is
easy to realize. All other views will require much
programming efforts. For instance, it is difficult to
derive from this complex structure a view containing
reservations per CD. This view requires for each
individual CD access to all reservations from all
members. The processing scheme does not correspond
to the previously defined structure and will therefore
lead to a complex algorithm that requires considerable
processing time.

Operations
From the foregoing discussion it has become clear that
complex values enable us to solve only a limited
number of practical problems. For example to find an
answer on ’who borrowed a certain copy?’ is a hard
problem under the given circumstances.

It is clear that all operations (in object oriented
terminology: methods) are ’one record at a time’. The
complex structure does not allow an associative query
language with generic solutions. These low level
operations can hardly be optimized because of their
sequential nature. The programmer has to find his own
way through the database (cf. [2]).

Integrity
Reservations and borrowings must be related to existing
members. This requirement is automatically enforced by
the complex structure. However, the constraint that
borrowings must be related to existing copies from
existing members (and not from the member in
question) must be enforced in another way using
methods [6]. These exceptions make the collection of
integrity procedures difficult to handle.

It is clear that each (title, performer)-combination
of CD occurs only once in the database. This is not true
for complex values in the database. A complex value
may lead to contradictions as will be shown in the
following.

The current example allows identical collections of
reservations to occur together with different members.
Both identical complex values carry different semantics.
So, they should not be considered as identical here. The
same phenomenon occurs in Codasyl databases. It is
known there under the term ’information bearing set’.
This phenomenon received much attention in literature
during the seventies.

5 Deriving complex values

Conceptual modeling
The semantic data model Xplain is based on three
abstractions: classification, aggregation and generali-
zation. They make use of the fundamental type-attribute
relationship.

These abstractions are introduced informally in the
following. An extensive treatment is given in [13, 14,
15]. The concepts may be considered as a further
evolution of abstractions introduced by Smith and
Smith [10, 11].

Classification
The real world is described by considering the proper-
ties of relevant objects, a property being defined as a
fundamental notion, without assigning a value to it.

The abstraction leading to a property is called
classification. The examples required for the recognition
of a property are purely meant as an illustration. The
property is not being defined hereby. Properties are
represented by rectangles in diagrams, see figure 3. The
counterpart of classification is called instantiation.

member

Figure 3: Classification

Aggregation
Aggregation is defined as the collection of a certain
number of properties in a type, which in itself can be
regarded as a new property (note the analogy with the
mathematical set concept). A property from an aggre-
gation is called an attribute of the type. The type should
be named clearly and meaningfully.

J.H. ter Bekke, Complex values in databases, Proceedings DKSME’94 451

Aggregation allows view independence: we can
discuss the obtained type (possibly as a property)
without referring to the underlying attributes. By
applying this principle repeatedly, a hierarchy (in the
sense of an acyclic network) of properties can be set
up. An example is given in figure 4. Normally the
hierarchy contains only aggregated types.

Aggregation is indicated by a line connecting the
centers of two facing rectangle sides, while the
aggregated type is placed above its attributes. Of
course, aggregation also has its counterpart: the
description of a type as a set of certain attributes is
called decomposition. A type is defined by listing its
attributes, so we can consider the following type
definitions in our example:

type copy = CD, member.
type member = name, address.
type CD = title, performer.

copy

CD member

Figure 4: Aggregation hierarchy

Aggregation can be described using the verb to have.
According to the above type definitions, a member has
a name and an address. Identifications are denoted by
the type names. This interpretation implies singular
identifications.

Generalization
The third type of abstraction, important to conceptual
models, is generalization; it is defined here as the
recognition of similar attributes from various types and
combining these in a new type (note the analogy with
the intersection operation from mathematical set
theory). The new type should, again, be named clearly
and meaningfully. We can equally discuss the new type
without mentioning underlying attributes, and it can in
itself again serve as a property (i.e. allows view
independence). Generalization’s counterpart (i.e. the
union of attributes from different types) is called
specialization. Specializations are commonly associated
with the verb to be. Several examples of generalization
and specialization occur in [14].

These foregoing semantic concepts lead to the follow-
ing uniform solution for the CD-club example (see also
figure 5). All database objects have here their own
singular identification:

type CD = title, performer.
type member = name, address.
type reservation = CD, member, period.
type copy = CD, member.
type borrowing = copy, member, from_date, to_date.

borrowing

copy

reservation

CD member

Figure 5: Uniform semantic solution

Modeling of user views
It is possible to derive numerous views from the
foregoing simple conceptual structure. Figure 6 gives an
example with corresponding operations as generated by
the Xplain DBMS.

Different user views can be created easily in a
declarative way (using the contents of a data dictionary)
without programming efforts. These views are always
updatable: operations that can be performed on a
derived view are completely determined by rela-
tionships expressed in the user view. When these
relationships can be mapped unambiguously on the
conceptual structure, all modification operations are
allowed (an example is the view in figure 6). Derived
attribute values (e.g. ’reservation its member’ and
’borrowing its member’) can be added by the DBMS
itself to obtain a valid database. Besides that, one may
use certain simple views containing relevant details (for
example a view for CD attributes in the view above).
These simple views can be defined by a user or
generated dynamically by the DBMS using the contents
of a data dictionary.

Derivation of user views can be defined as above
using a WYSIWYG interface but could also be
formulated using operations from a data language. The
view above would need specifications for two complex
values; they can be derived from the conceptual
structure by two extensions containing the necessary
complex values (as a result of the list function [12]):

• derivation of reservations per member:
extend member with reservations =

list reservation its CD, period
per member.

• derivation of borrowings per member:
extend member with borrowings =

list borrowing its copy, copy its CD its title,
copy its member, from_date, to_date

per member.

J.H. ter Bekke, Complex values in databases, Proceedings DKSME’94 452

MEMBER ID:
name:

address:

RESERVATION ID CD period

BORROWINGID copy [CD-title , owner] from to

[,]
[,]
[,]
[,]
[,]
[,]

EXIT < FILTER > PRV INST INSERT UPDATE HELP
CASCADE << TOP >> >> NXT INST CLEAR DELETE PRINT

Figure 6: Derived application view

• retrieval of the desired information:
get member its name, address, reservations,

borrowings.

Other views can be derived similarly without any
restrictions imposed on it. All views may contain
several complex values derivable from the given
conceptual structure. For example at least the following
16 composite views (including view 13 from figure 6)
could be derived with comparable efforts:

1 borrowings per borrower;
2 borrowings per owner;
3 borrowings per CD;
4 borrowings per copy;
5 reservations per CD;
6 reservations per member;
7 copies per owner;
8 copies per CD;
9 borrowings and copies per borrower;

10 borrowings and copies per owner;
11 borrowings and copies per CD;
12 reservations and borrowings per CD;
13 reservations and borrowings per member;
14 copies and reservations per member;
15 copies, reservations and borrowings per member;
16 copies, reservations and borrowings per CD.

This example has shown that modeling and represen-
tation of only one particular view (as shown in the
previous section) causes severe restrictions in practice.
It creates enormous difficulties in deriving other
equivalent user views.

The declarative knowledge representation from the
semantic approach enables the DBMS to derive and add
information whenever necessary to support complex
user views. It results in an intelligent and flexible user

interface. User views are not limited to only textual
views; friendly graphical views are derivable with
comparable efforts. This has been demonstrated with
two implementations of the semantic concepts (i.e. the
Nelsis framework [19, 20, 21] and the Xplain DBMS
[13, 14]).

Operations
Extensions can be fruitful for query purposes. For
querying they are generally combined with other set
functions (for example: count, total, max, min, etc.). It
enables us to derive allowable views and offers certain
perspectives (they are illustrated with numerous
examples in [14]):
• generic query formulations

Extensions can be used for different purposes. An
extension offers the user in fact a facility to use a
certain derivation for several problems. It is
particularly true when extensions are combined
with terminology from the application domain.

• reduction of complexity
Extensions reduce the complexity of a query signif-
icantly. An additional advantage is caused by the
fact that all required extensions are completely
determined by the conceptual structure. It leads to
uniform query specifications. The query language
contains therefore orthogonal components.

• simple query optimization
It is evident that the proposed generic operations do
not assume a particular processing sequence and
could be executed in parallel. This facilitates
optimization. An advantage is that query specifi-
cations never contain aliases (as known from SQL).
Processing strategies are therefore not artificially
limited. This aspect has been demonstrated with the
efficiency of the Xplain system.

J.H. ter Bekke, Complex values in databases, Proceedings DKSME’94 453

Integrity
A major advantage of the proposed semantic solution is
the uniform specification of all integrity aspects.
Relationships between objects require an inherent (i.e.
structural) specification facility. Besides that, all
explicitly defined static and dynamic constraints are
equivalent to query language operations (see [14]).

6 Other considerations

There is a limited choice for the implementation of a
data structure containing complex values. An existing
file organization technique can only be useful at the
highest level of an object; the resulting overhead is not
acceptable for lower levels in the hierarchy (so not for
individual complex values). Therefore elements from a
complex value can only be accessed using (possibly
linked) lists. Access to these elements is therefore
sequential. It implies abundance of several efficient file
organization techniques. Access and storage are
strongly connected; there is unfortunately no data
independence (see figure 7). Processing can only be
efficient when the structure of the stored data agrees the
structure of the view.

access and storage access storage

OBJECT ORIENTED SEMANTIC

Figure 7: Storage and access strategies

Derivation of complex values offers the opportunity to
use several modern file management techniques.
Associative queries do not dictate processing to take
place in a particular order, so processing structure and
storage structure can be different in the semantic
approach. The need for a certain data structure does not
necessarily require the use of other related data
structures. Transitivity is therefore prevented. However,
the implementation based on the use of (visible)
pointers, as follows from the object oriented approach,
will not prevent transitivity [4, 9].

Conclusion

This paper has presented and compared two approaches
for handling complex values in databases: the object
oriented approach and the semantic approach. Both
approaches offer different facilities; the object oriented
approach by modeling and representing complex values,
while the semantic approach by deriving complex
values from a simple conceptual structure.

From the analysis can be concluded that both alter-

natives offer different perspectives. The object oriented
approach offers only a limited number of structuring
alternatives, the consequences are: loss of structural
semantics, limited and non-intelligent user interfaces.
The approach is only useful in combination with at
most one user view. The semantic approach offers: a
uniform conceptual model, extensive structuring facili-
ties for user views, intelligent/flexible user interfaces
with updatable views, uniform view definition facilities
and generic queries. The analysis has made it clear that
the collection of meaningful user views is only restrict-
ed by the inherent conceptual structure of a database.
This implies that generally the derivation of complex
values is preferable. One of the major motivations for
object oriented databases, as expressed in the first
’commandment’ of the object oriented database system
manifesto, is not always justified.

Acknowledgments
I wish to thank the many students at Delft University of
Technology who graduated on subjects related to the
Xplain project. My colleagues Bert Bakker and Dolf
van der Ende are acknowledged for the frequent
discussions on meta modeling and the support for user
views.

References

[1] M.P. Atkinson, F. Bancilhon, D. DeWitt, K.
Dittrich, D. Maier and S. Zdonik, "The object
oriented database system manifesto", Proceedings
First Int. Conf. on Deductive and Object-Oriented
Databases, (W. Kim, J-M. Nicolas and S. Nishio
eds.), Elsevier, Amsterdam (1990), pp. 223-240.

[2] C.W. Bachman, "The programmer as navigator",
Communications of the ACM 16 (1973) 1, pp.
653-658.

[3] F. Bancilhon and D. Maier, "Multilanguage
object-oriented systems: new answer to old
database problems?", Report Technique Altair 21-
88.

[4] E. Bertino and L. Martino, "Object-oriented data-
base management systems: concepts and issues",
IEEE Computer 24 (1991) 4, pp. 33-47.

[5] N. Boneschanscher, Plan generation for flexible
assembly systems, Dissertation Delft University of
Technology, Delft (1993).

[6] The committee for advanced DBMS function,
"Third generation database system manifesto",
ACM SIGMOD Record 19 (1990) 3, pp. 31-44.

[7] H. Li, RITL: an information system for
application reuse-in-the-large, Dissertation Delft
University of Technology, Delft (1993).

[8] P. Martens, CAD/CAM for assembly planning,
Dissertation Delft University of Technology, Delft
(1993).

[9] J.P. Rosen, "What orientation should Ada objects
take?", Communications of the ACM 35 (1992)
11, pp. 71-76.

J.H. ter Bekke, Complex values in databases, Proceedings DKSME’94 454

[10] J.M. Smith and D.C.P. Smith, "Database
abstractions: aggregation", Communications of the
ACM 20 (1977) 6, pp. 405-413.

[11] J.M. Smith and D.C.P. Smith, "Database
abstractions: aggregation and generalization",
ACM Transactions on Database Systems 2 (1977)
2, pp. 105-133.

[12] J.H. ter Bekke, "A data manipulation language for
relational data structures", Systems for large data
bases, Proceedings 2nd Int. Conf. Very Large
Data Bases (eds. P.C. Lockemann and E.J.
Neuhold), North-Holland, Amsterdam (1976), pp.
159-168.

[13] J.H. ter Bekke, Semantic data modeling in
relational environments, Dissertation Delft Uni-
versity of Technology, Delft (1991).

[14] J.H. ter Bekke, Semantic data modeling, Prentice
Hall, Hemel Hempstead (1992).

[15] J.H. ter Bekke, Database design (3rd edition),
Kluwer, Deventer (1993) (in Dutch).

[16] J.H. ter Bekke, "Object databases: structure and
behavior", Delft University of Technology, Delft,
Faculty of Technical Mathematics and Informatics
(1993), Report 93-58.

[17] P. van den Hamer and M.A. Treffers, "A data
flow based architecture for CAD frameworks",
Proceedings ICCAD-90, IEEE (1990), pp. 482-
485.

[18] P.R. van der Weerd, Unified design and imple-
mentation of flexible production automation
control systems, Dissertation Delft University of
Technology, Delft (1992).

[19] P. van der Wolf and T.G.R.M. van Leuken,
"Object type oriented data modeling for VLSI
data management", Proceedings 25th ACM/IEEE
Design Automation Conference, ACM/IEEE
(1988), pp. 351-356.

[20] P. van der Wolf, Architecture of an open and
efficient CAD framework, Dissertation Delft
University of Technology, Delft (1993).

[21] T.G.R.M. van Leuken, Data management for
VLSI design in an open and distributed
environment, Dissertation Delft University of
Technology, Delft (1988).

[22] J.M. Versendaal, Separation of user interface and
application, Dissertation Delft University of
Technology, Delft (1991).

J.H. ter Bekke, Complex values in databases, Proceedings DKSME’94 455

