
Proceedings of the IASTED International Conference
INTELLIGENT SYSTEMS AND CONTROL
November 19-22, 2001, Clearwater (Tampa), Florida, USA

LIMITATIONS OF RELATIONSHIPS CONSTRUCTED FROM
COINCIDING DATA

J.H. TER BEKKE and J.A. BAKKER
Faculty of Information Technology and Systems, Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The Netherlands, {j.h.terbekke,j.a.bakker}@its.tudelft.nl

ABSTRACT

Partitioning of data with the group by clause is in SQL
defined by one or more attributes from a single, possibly
derived relation. The language therefore allows groupings
defined by compositions of basic and/or referential
attributes, i.e. foreign key attributes. However, partitioning
applied to a view derived from more than one relation can
lead to misinterpretation, ambiguity and/or incomplete
results of which examples are shown. We argue that the
specification of data aggregated from different tables must
solely be based on referential attributes. Consequently, if
such attributes are absent, the only way to partition the
data reliably is to improve the underlying data model by
adding structural aggregation. We illustrate this by simple
examples where a semantic framework is used for data-
base design and data manipulation.

Keywords: intelligent databases, SQL, semantic modeling,
aggregate query.

1. INTRODUCTION

In relational databases a compound key (a1, a2, ...) is
normally used to indicate a relationship between the
participating component relations R1(a1, ...), R2(a2, ...) etc.
These referential attributes can be used in SQL’s group by
clause; this way of grouping is called referential
partitioning. An example can already be found in E.F.
Codd’s first seminal paper [2], containing the three-
attribute compound key relation ’supply’ with references
to ’supplier’, ’project’ and ’part’ (see also [3]). The
reverse situation can also occur. An example is given in
this paper: points (indicated by one simple key attribute)
are linked to intervals (indicated by a compound key
consisting of two simple attributes). Such a reverse
coupling of relations requires special consideration of
value-based relationships as expressed in SQL’s group by
clause. The following examples are drawn from the area
of temporal databases although the general problem of
aggregate queries can also be found elsewhere, in the area
of data warehouses (see [11]).

There are many examples of temporal aspects in
database applications. Often a distinction is made between
applications in which absolute values are assigned to the
aspect of time (for example actual data in a reservation

system) and applications in which the aspect of time has
a more relative character (for example historical data in a
health care database). In the last mentioned relative
approach, the events are often ordered or sequenced.

In temporal databases, the concept of time is con-
ceived of as an ordered sequence of points of a certain
granularity suitable for the requirements of the application
[7]. A unique point of reference is required in case of
absolute time values. This can be a value from a particular
calendar connected with an application or something that
is culturally related. Within such a calendar another time
calendar is needed. This can be based on position-related
values.

Often a distinction is made between ’point events’
(corresponding to time stamps) and ’duration events’
(corresponding to intervals). Special problems can occur
when both interpretations of time are used in the same
application or query. Sometimes also different granularities
play a role. In order to avoid compatibility problems, the
system designer often chooses a solution in which the
minimal time granularity is selected. Even the selected
minimal granularity does not always guarantee a correct
solution under all circumstances, however.

In order to illustrate these problems this paper
contains a characteristic example and also presents a
simple effective solution for the problem using aggregation
abstractions. In an earlier paper we already indicated that
the generalization and specialization abstractions could
play an indispensable role in the registration of historical
relationships as those occurring in work flow management
and in version/configuration management applications
[10].

In the past, much attention was paid to the algebraic
aspects of temporal databases (see among others
McKenzie and Snodgrass [5]). The present paper considers
temporal aspects from another point of view. Special
attention is given to the structural aspects of temporal
databases. We describe a simple modeling method that can
be used to implement temporal aspects reliably (see the
semantic concepts in [8] or the overview in [6]). The
power of the proposed generic method lies in the fact that
it can be applied in each data model that supports
aggregation (for example: relational, Entity-Relationship
and semantic, etc.). The origin of the solution lies in the
application of aggregation-based relationships instead of

345-038 247



relationships constructed from coinciding temporal data.

2. AN ILLUSTRATIVE RELATION

Consider figure 1, which contains a relation that is
comparable to an example from literature (see Bettini,
Wang, Bertino and Jajodia [1]). The relation could play a
role in a hospital database and could be used for patient
admissions and patient treatments by medical doctors.

pat# patient doc# start time end time

1 J. Smith 12 4/2/2001:08:30 4/2/2001:08:40

1 J. Smith 12 4/2/2001:09:01 4/2/2001:09:16

2 A. Brady 14 4/1/2001:23:30 4/1/2001:23:35

2 A. Brady 13 4/2/2001:10:01 4/2/2001:10:21

2 A. Brady 14 4/4/2001:12:35 4/4/2001:12:45

2 A. Brady 15 4/4/2001:13:30 4/4/2001:13:55

2 A. Brady 15 4/5/2001:17:05 4/5/2001:17:20

Figure 1: Patient treatments

Duration events are indicated by two time stamps
(month/day/year:hour:minute). This table allows simple
relational queries such as single table queries specifying
groupings to determine patient’s total treatment duration.
However, more complex queries, require an extended data
structure, which will be shown in section 5. That is the
reason why in section 3 we introduce some semantic
modeling concepts from the Xplain approach [8]. Section
4 contains a more generic and realistic example of the
temporal problem. It describes situations occurring in
hospital registrations.

3. SEMANTIC MODELING CONCEPTS

Databases can be based on data models in which three
types of abstractions are applied:
• classification

The real world can be described by considering the
properties of relevant objects, where a property is
defined as a fundamental notion. The abstraction
leading to a property (or type) is called classification.
Examples of properties are ’name’, ’address’ and
’city’.

• aggregation
Aggregation is defined as the collection of a certain
number of properties into a type, which in itself can
be regarded as a new property (note the analogy with
the mathematical set concept). A property occurring
in an aggregation is called an attribute of the type. A
type without properties is called base. Aggregation
allows view independence: we can discuss the
obtained type (possibly as a property) without
referring to the underlying attributes. For example, the

properties ’name’, ’address’ and ’city’ can be
aggregated into the type ’patient’, whereas ’patient’
can also be a property of ’treatment’.
In abstraction hierarchies, aggregation is indicated by
a line connecting the centers of two facing rectangle
sides, where the aggregate type is placed above its
attributes, indicates aggregation. Other examples of
aggregation can be found in figures 2 and 5.

• generalization
The third type of abstraction is generalization: it is
defined here as recognizing similar attributes from
various but related types and combining these into a
new type (note the analogy with the intersection
operation from set theory).

4. A CHARACTERISTIC EXAMPLE

Consider a relational database containing patient admis-
sions and treatments by physicians in a hospital. In the
database the following tables occur:
• doctor

A distinction must be made between the doctor who
is responsible for a patient’s admission to hospital and
the doctors who treat the patient. It is obvious that the
doctor responsible for admission can be one of the
doctors who provide medical treatments.

• patient
Patients can be hospitalized to undergo certain
medical treatments. Several applications require
determination of information per patient. That is why
a separate patient table is introduced in the database.
This table contains patient data independently of their
medical records.

• treatment
For several (medical and financial) reasons it is
necessary to register certain treatment details. It is
assumed that a treatment takes some time, hence the
duration attribute in the data model. The duration of
the treatment determines the patient costs. This
relation references patient and doctor.

• admission
Patients can be admitted to hospital for a number of
treatments. This makes it necessary to introduce a
hospital admissions registration as well. Here the
physician responsible for admission is found. This
relation also references patient and doctor.

This results in the following global relational model for
hospital applications:

relation doctor (doctor_id, name, telephone, department)
relation patient (patient_id, name, address, city)
relation treatment (patient_id, doctor_id, date, duration)
relation admission (patient_id, doctor_id, admission_date,

release_date)

Converting the relational definitions above into semantic
model equivalents is straightforward as only aggregation

345-038 248



relationships occur. Aggregation occurs in the relational
model when referential integrity is expressed by means of
foreign and primary keys. In the semantic model
aggregation occurs whenever a type acts as an attribute.
The foregoing relational model (including base domains
such as ’name’) is therefore expressed as follows:

type doctor = name, telephone, department.
type patient = name, address, city.
type treatment = patient, doctor, date, duration.
type admission = patient, doctor, admission_date,

release_date.

The aggregation relationships between the types of this
semantic model can also be expressed in an abstraction-
hierarchy (see figure 2).

treatment

admission

patient doctor

Figure 2: Treatment and admission as independent
aggregations

This model allows certain derivations of aggregated infor-
mation using data partitioning.

Query 1: Determine total treatment time per patient. This
information is required including the patient’s personal
data.

In SQL the required query has the following structure:

select <target>
from <relations>
where <condition>
group by <attributes>;

The <target> of this query consists of attributes and set
operations, applied to data from <relations> in the
database. A <condition> may be applied to the selected
data. When data must first be partitioned to obtain the
derivation, this grouping can be given in <attributes>.
Groupings are completely based on <attributes>-values;
this implies that only non-empty groups can be considered.
This comprehensive explanation leads to the following
query in SQL:

select p.patient_id, name, address, city, sum (duration)
from treatment t, patient p
where t.patient_id = p.patient_id
group by p.patient_id, name, address, city;

From a join of patients and treatments from the respective
tables we can derive the required information. The result
of this join is comparable to the table in figure 1. The
total duration is expressed by sum (duration). This query
can also be formulated in a semantic query language. Here
it has a completely different structure because different
language constructs are used for derivation and selection.
For derivation the extend command adds a new temporary
column to a table. This column is used for intermediate
results in complex derivations. The general syntax of the
relevant extend command is as follows:

extend <subtype> with <extension> =
<function> <maintype> [its <simple expression>]
[where <simple condition>]
per <subtype>.

For selection, the get command is used. It is similar to a
simple select statement in SQL. The general syntax of the
get command is as follows:

get <maintype> its <simple expression>
[where <simple condition>].

The query is now expressed as follows:

extend patient with totality =
total treatment its duration
per patient.

get patient its name, address, city, totality.

The following reliable SQL-expression is equivalent to the
semantic expression above.

create view treatment_time (patient_id, totality) as
select patient_id, sum (duration)
from treatment
group by patient_id
union
select patient_id, 0
from patient
where patient_id not in

(select patient_id
from treatment);

select p.patient_id, name, address, city, totality
from patient p, treatment_time tt
where p.patient_id = tt.patient_id;

There is a remarkable difference exists between the first
and second SQL query formulation. The first formulation
(without union) is weak in the sense that the resulting list
does not contain the patients who did not undergo any
medical treatment, while the second formulation (with
union) does. This makes the last one reliable under all
circumstances, i.e. it also gives the correct result if
conditions are added to the selection criterion (see also
[9]). The last query contains a correct referential parti-
tioning.

After this introduction we consider the following query:

345-038 249



Query 2: Determine the total treatment duration per
admission.

SQL enables us to join the tables admission and treatment.
In this join the following conditions should play a role:

admission_date ≤ treatment_date ≤ release_date.

This approach results in the following data grouping
statement in SQL:

select a.patient_id, admission_date, release_date,
sum (duration)

from admission a, treatment t
where a.patient_id = t.patient_id

and t.date >= a.admission_date
and t.date <= a.release_date

group by a.patient_id, admission_date, release_date;

In the semantic language of Xplain [8] this problem
cannot be solved, simply because the structural aggrega-
tion relationship between treatment and admission is
missing. This brings us to a further investigation of the
proposed SQL solution. Does SQL really present a
solution or is a reliable solution only suggested? There-
fore, let’s investigate the following tables in figure 3
containing data according the first data model shown in
figure 2.

treatment

treatment_id patient_id doctor_id date duration

1 1 12 4/2/2001 15

2 2 13 4/2/2001 20

3 2 14 4/4/2001 10

4 2 15 4/5/2001 15

5 3 13 4/7/2001 10

admission

patient_id doctor_id admission_date release_date

1 12 4/2/2001 4/4/2001

2 14 4/1/2001 4/4/2001

2 15 4/4/2001 4/8/2001

Figure 3: Database contents based on the first model

The following remarks can be made about these database
contents:
1 It is not possible to group all treatments unambigu-

ously. For example it is unclear to which admission
treatment 3 belongs (to admission 2 or admission 3?).
From the admission table it is clear that patient 2 was
released on the 4th of April and hospitalized again on
the same day.

2 Not all treatments are related to admissions. For

example treatment 5 is apparently a treatment in an
outpatients’ department (i.e. concerning an outpatient)
for which no admission was required. The model of
figure 2 allows this because it does not require any
relationship between admission and treatment.

5. DATA MODEL REVISION

The desired information cannot be derived correctly using
the above query, in spite of the SQL solution. A finer
granularity of time stamps (viz. addition of hours, minutes,
seconds, ..) is not practical and does not really solve the
problem. A better strategy would be to adapt the model
with a structural aggregation relationship between
treatment and admission. This solution does not require
any synchronization based on arbitrary time stamps and
avoids granularity choices; the model becomes in fact time
independent and therefore also suitable for a multi-
temporal environment such as the Internet. This structural
solution is expressed with the following data model:

type doctor = name, telephone, department.
type patient = name, address, city.
type admission = patient, doctor, admission_date,

release_date.
type treatment = admission, doctor, date, duration.

This can simply be converted into the following relational
definitions:

relation doctor (doctor_id, name, telephone,
department)

relation patient (patient_id, name, address, city)
relation admission (admission_id, patient_id, doctor_id,

admission_date, release_date)
relation treatment (treatment_id, admission_id,

doctor_id, date, duration)

This database could contain the following data (figure 4).

treatment

treatment_id adm_id doctor_id date duration

1 1 12 4/2/2001 15

2 2 13 4/2/2001 20

3 3 14 4/4/2001 10

4 3 15 4/5/2001 15

admission

adm_id patient_id doctor_id adm_date rel_date

1 1 12 4/2/2001 4/4/2001

2 2 14 4/1/2001 4/4/2001

3 2 15 4/4/2001 4/8/2001

Figure 4: Database contents based on the improved
data model

345-038 250



Be aware that data about polyclinic treatment 5 must be
stored in a separate table containing only treatments in the
outpatients’ department.

The abstraction hierarchy of figure 5 corresponds to
these definitions. This structure creates a registration
without anomalies: treatments cannot be assigned to an
unknown admission or to more than one admission. The
dotted line between treatment and patient can now be
derived from the given connections between treatment and
admission and the connection between admission and
patient (i.e. treatment its admission its patient).

The query to determine total treatment duration per
admission can now be formulated in Xplain as follows:

extend admission with totality =
total treatment its duration
per admission.

Now, intrinsic and derived data about admissions can be
retrieved:

get admission its patient, doctor, admission_date,
release_date, totality.

treatment

admission

patient doctor

Figure 5. Treatment and admission as dependent
aggregations

Conversion of this query expression now results in the
following reliable SQL formulation.

create view treatment_time (admission_id, totality) as
select a.admission_id, sum (duration)
from treatment t, admission a
where t.admission_id = a.admission_id
group by a.admission_id
union
select admission_id, 0
from admission
where admission_id not in

(select admission_id
from treatment);

select patient_id, doctor_id, admission_date, release_date,
totality

from admission a, treatment_time tt
where a.admission_id = tt.admission.id;

6. PRACTICAL GUIDELINES

The described problem is caused by the procedural join
specification of SQL. Users become uncertain about the
correctness and performance of the specific solution. This
problem has been tackled here by introducing the
orthogonal semantic concepts from the Xplain data
language in the development phase of the relational
database. The conversion into relational concepts results in
unique, consistent, well-performing and portable SQL
definitions and SQL queries.
The basic constructs of SQL are easy to learn. However,
as users move on to more complex queries like joins or
correlated sub-queries, the lack of orthogonality and the
abundance of pitfalls can cause confusion about the
semantics of SQL specifications. A practical alternative
has been developed for this problem. This solution
consists of open software which is freely downloadable
from the Internet [4] and can even be used in more phases
of information systems development.

Xplain does not offer the multiplicity of relationships
found in some information modeling literature, but it
supports all possible cases with only two relationships:
aggregation and specialization (including multiple inheri-
tance). Its visual side does not strain people’s cognitive
abilities. It just offers easy drawing and a distinction
between aggregation and inheritance. Therefore, it is
practical to use Xplain when certain exactness has to be
introduced during the design phase or the requirements
analysis phase. The visual model can be refined from
high-level business semantics to the semantic detail
necessary for information systems.

CONCLUSION

It has been shown that time-dependent data aggregation in
SQL can best be specified using time-independent referen-
tial attributes. This means that temporal properties can best
be interpreted as basic attributes. One should not use them
in join conditions in order to prevent misinterpretations
and ambiguities. The consequence is that in absence of the
necessary referential attributes, one must add aggregations
to the data model in order to achieve correct data
aggregation.

REFERENCES
[1] C. Bettini, X. Sean Wang, E. Bertino and S. Jajodia,

Semantic assumptions and query evaluation in tem-
poral databases, Proc. ACM SIGMOD ’95, 257-268.

[2] E.F. Codd, A relational model of data for large
shared data banks, CACM 13, 6 (1970), 377-387.

[3] C.J. Date, An introduction to database systems, 7th
edition, Addison-Wesley (2000).

[4] B. de Boer and J.H. ter Bekke, Applying semantic
database principles in a relational environment, Proc.
IASTED Int. Symp. Applied Informatics (AI2001),
Innsbruck (2001), ed. M.H. Hanza, 400-405.

345-038 251



[5] L.E. McKenzie and R.T. Snodgrass, Evaluation of
relational algebras incorporating the time dimension
in databases, ACM Comp. Surv. 23, 4 (1991), 501-
543.

[6] F.D. Rolland, The essence of databases, Prentice
Hall (1998).

[7] X. Sean Wang, C. Bettini, A. Brodsky and S.
Jajodia, Logical design for temporal databases with
multiple granularities, ACM TODS, 22, 2 (1997),
115-170.

[8] J.H. ter Bekke, Semantic data modeling, Prentice
Hall (1992).

[9] J.H. ter Bekke, Can we rely on SQL?, Proc. 8th Int.
DEXA Workshop ’97, Toulouse, France, ed. R.R.
Wagner, IEEE Computer Society (1997), 378-383.

[10] J.H. ter Bekke, Semantic modeling of successive
events applied to version management, Proc. Int.
Symp. on Cooperative Database Systems for
Advanced Applications (CODAS ’96), Kyoto (1996),
32-39.

[11] J. Yang and J. Widom, Incremental computation and
maintenance of temporal aggregates, Proc. 17th Int.
Conf. on Data Engineering (2001), 51-60.

345-038 252


