

A QUERY LANGUAGE SOLUTION FOR SHORTEST PATH PROBLEMS
IN CYCLIC GEOMETRIES

J.A. Bakker and J.H. ter Bekke
Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
E-mail: {J.A.Bakker, J.H.terBekke}@ewi.tudelft.nl

ABSTRACT
This paper presents a recursive query language solution
for the shortest path problem based on the transformation
of a cyclic geometric graph into an acyclic time graph, i.e.
an acyclic Petri Net specifying the possible transitions
(turns) between successive rides on different roads. Using
this transformation, the shortest path problem is
transformed into a fastest tour problem. The time
complexity of the proposed solution is O(N5), where N is
the number of towns in the underlying geometry. The
underlying algorithm guarantees termination.

KEY WORDS
Petri Net, recursive query, semantic model, shortest path,
time complexity

1. Introduction

We previously described the application of the recursive
cascade update operation of the Xplain language [6, 7] to
several data structures corresponding with a weighted
directed acyclic graph [1]. Examples using non-recursive
data structures are project planning [9] and product
planning [10]. We have also demonstrated the usability of
this approach to problems related to recursive
(hierarchical) data structures as the family tree [12, 13].
 The algorithm [11] interpreting the cascade command
applies graph reduction as a preparation to a well ordered
serial processing. As an example we describe the
reduction of the graph in figure 1 showing data based on
the following data model:

type node = name.
type arc = from_node, to_node, length.

We identify nodes by a capital letter and arcs by a small
letter. The purpose is to determine the shortest route from
S to F. First, we determine the distance ‘sdist’ of each
node to the starting node S:

value inf = total arc its length.
extend node with sdist = inf. /* initialization */
update node “S” its sdist = 0.

Then we apply the recursive cascade update operation in
order to calculate the correct distances to S. The result is
that in a number of steps the minimal distance of each
node to S is assigned to the destination of an arc:

cascade node its sdist =
 min arc its length + from_node its sdist
 per to_node.

 Q d R
 a
 S e f
 c
 b F
 P g

Figure 1. Example of an acyclic graph

The order of the steps is determined by graph reduction.
This reduction is always the same, irrespective the set
function applied. First the algorithm determines which
nodes do not have any incoming arc; here it is S. The data
representing the arcs starting in S (including the length of
arcs) are placed in a list with groups of removed arcs. The
first group is [a, b]. Figure 2 shows the result of the first
reduction step.

 Q d R

 [a, b] e f
 c
 F
 P g

Figure 2. Result of the first reduction step

In a similar way the second reduction step is executed.
Now the list is extended with the group [c, e, g]: figure 3.

 Q d R

 [a, b], [c, e, g] f

 F

Figure 3. Result of the second reduction step

419-084 203

debbie

The result of the third step is shown in figure 4.

 R

 [a, b], [c, e, g], [d] f

 F

Figure 4. Result of the third reduction step

The result of the last reduction step is an empty graph and
a list of four groups: [a, b], [c, e, g], [d] and [f]. After this
ordering, the data of the arcs in the first group are
processed: for each of these arcs the minimum of ‘arc its
length + arc its from_node its sdist’ is assigned to the
destination: ‘arc its to_node’ and this node gets a new
value for ‘node its sdist’. In this way, group by group of
arcs, the value of ‘node its sdist’ is recalculated for the
destination nodes of the arcs in each group.
 In a similar way graph reduction and data processing
is executed in a reverse order (starting in F) in order to
calculate all instances of ‘node its fdist’, the shortest
distance of a node to F.

extend node with fdist = inf.
update node “F” its fdist = 0.
cascade node its fdist =
 min arc its length + to_node its fdist
 per next_node.

Then for each node the sum of the distances to S and F,
‘node its sdist + node its fdist’, is calculated; the minimal
value of sum is calculated and the nodes having this
minimum value are the nodes on the shortest route from S
to F: S, P and F.

extend node with totaldist = sdist + fdist.
value minimum = min node its totaldist.
get node its name where totaldist = minimum.

A weakness inherent in graph reduction is that it cannot
be applied to cyclic graphs; for further details we refer to
[11]. However, we have recently demonstrated that a
cyclic geometric graph for flights can be transformed into
an acyclic time graph for flight connections [3], which is
the basis for finding the fastest series of flights between
two airports. A first idea was to apply the following
semantic data model, which allows us to specify the
connections between roads.

type town = name.
type road = from_town, to_town, distance.
type connection = from_road, to_road.

As an example, figure 5 shows an example of a geometric
graph in which the nodes A, B, C, D and E are
representing towns and the arcs are representing single
direction roads.

 D
 14 C 23 E
 15
 A 24 24
 25
 B

Figure 5. Example of a road network with a cycle

However, this data model still allows for graphs with
cycles of connections between roads as shown in figure 6,
where XY indicates a road from X to Y. This graph shows
six roads (nodes) and eight possible connections (arcs)
between roads.

 DB CE

 AB BC CD EC

Figure 6. Roads (nodes) and connections (arcs)

Section 2 describes a more usable model supporting the
construction of an acyclic time graph.

2. An appropriate data model

The data models in section 1 ignore the time dimension of
the shortest path problem. A better solution is to introduce
the notions of rides and turns as modeled in figure 7: a
ride has both geometric dimensions and a time dimension
(time level); a turn indicates which rides may follow after
a ride. This model should enable us to deal with the
correct time ordering of rides.

 type turn (i7) = previous_ride (a3), next_ride (a3).
 type ride (a3) = road (a2), time_level (i3).
 type road (a2) = from_town (a2), to_town (a2),

 distance(i4).

 assert turn its correctness (true) =
 (next_ride its time_level =

 previous_ride its time_level + 1
 and previous_ride its road <> next_ride its road
 and previous_ride its road its to_town =
 next_ride its road its from_town).

Figure 7. Data definitions for rides and turns

turn

road

ride

204

Types have a value domain; for example ‘i7’ denotes an
integer with 7 decimal digits and ‘a2’ denotes an alpha-
numeric string of 2 characters. Data on turns must be
correct, which we express by an assertion specifying the
calculation of a derivable Boolean property ‘turn its
correctness’ that must be true for all turns. Other included
restrictions must be applied by software deriving the
instances of ‘ride’ and ‘turn’ that must be added to the
geometric road data in order to create a database suitable
for a solution of path problems based on graph reduction.
 The data definitions in figure 7 enable us to present
the required data as a directed acyclic graph: each turn
(arc) always connects two rides (nodes) having successive
time levels. We illustrate this by transforming the cyclic
geo-metric graph of figure 5 into the acyclic time graph of
figure 8 showing the possible transitions (turns) between
successive rides. Therefore this graph can be considered
as an acyclic Petri Net [5].

 AB4 BC4 DB4 CD4 CE4 EC4

 AB3 BC3 DB3 CD3 CE3 EC3

 AB2 BC2 DB2 CD2 CE2 EC2

 AB1 BC1 DB1 CD1 CE1 EC1

Figure 8. Tours as rides (nodes) and turns (arcs)

A shortest tour from A to D can be found by the three
successive rides AB1, BC2 and CD3 (three nodes) and
requires two turns (two arcs). Another suitable series of
rides is: (AB2, BC3, CD4). If we want to get only the first
series, then we have to select the chain starting at time
level 1. The number of rides (ride: between adjacent
towns) needed for a shortest trip between two towns is at
most: N-1, if N towns are represented in a geometric
database. This worst case also determines the required
number of time levels (depth of the time graph) that we
have to register: N-1.
 We suppose that each town has single-direction roads
to a fraction f (f < 1) of the other (N-1) other towns. Then
the total number of roads is: fN(N-1) and the total
required number of rides is fN(N-1)2. Further, each ride
can be followed by f(N-1) other rides, so f2N(N-1)3

possible turns (arcs) must be registered. The time
complexity of the graph reduction algorithm is O(dP),
where d is the depth of the graph and P is the number of
arcs. Therefore the time complexity of reducing the time
graph is O(N5). Graph reduction produces a well-ordered
list of arcs. Processing this list has a time complexity
O(P) = O(N4). In order to demonstrate the usability of the
proposed approach, section 3 specifies a query language
solution for the shortest path between two towns.

3. Shortest path calculation

First, we specify the interactive part of the query,
enabling a user to choose start and finish town:

value start = input(a2) “Enter the start town: “.
value finish = input(a2) “Enter the finish town: “.

The following specifications derive for each ride the
distance (sdistance) to the start town:

value inf = total road its distance.

/* a shortest path is not longer than ‘inf’ */
extend ride with distance = road its distance.

/* simplifies the following specifications */

The rides starting in the start town have a time level of 1:

extend ride with sdistance = inf. /* initialization */
update ride its sdistance = 0
 where road its from_town = start
 and time_level = 1.

Then we apply the recursive cascade update operation:

cascade ride its sdistance =
 min turn its previous_ride its sdistance +
 previous_ride its distance
 per next_ride.

In a similar way we determine for each ride its distance to
the finish town, but now we do not know a priori the time
level of the ride ending in that town. This time level
depends on the selected towns and the structure of the
road network.

extend ride with fdistance = inf. /* initialization */
update ride its fdistance = 0
 where road its to_town = finish.
cascade ride its fdistance =
 min turn its next_ride its fdistance +

 next_ride its distance
 per previous_ride.

Now we determine for each ride the total chain length of
the tour from start to finish it belongs to:

extend ride with chainlength =
 sdistance + distance + fdistance.
value minimum = min ride its chainlength.

It is possible that all rides found by the previous
operations have a total chain length larger than ‘inf’. This
occurs if we try to determine the shortest walk between
two towns without any connection. For example, there is
not any route from D to A (figure 2, figure 5). Therefore
we have to deal with unusable rides with ‘fdistance = inf’
or ‘sdistance = inf’:

extend ride with suitable = (chainlength = minimum
 and fdistance < inf and sdistance < inf).

205

extend turn with suitable =
 (previous_ride its suitable
 and next_ride its suitable).
value suitablenumber = count ride where suitable.
value comment = “If suitablenumber = 0, then there is no
 connection from start to finish town: ”
value suitablenumber. newline.
value comment. newline. /* print commands */

It is also possible that we find more than one shortest trip
between start and finish. Although not present in figure 2,
it is possible that A and D also have other connections in
addition to the roads AB, BC and CD. Consequently,
there can be many suitable rides (on different roads)
starting at the same time in the same town. Then a
presentation of suitable rides ordered by time level is not
suitable. Analogous to our solution for fastest air
connections [4], a better presentation of results can be
obtained by deriving the position of suitable rides. If more
than one suitable ride has a same position then the user
knows that there are alternative routes.

value maxposition = count flight. /* initialization */
extend ride with position = maxposition.
update ride its position = 1
 where suitable
 and road its from_town = start. /* the first ride */
cascade ride its position =
 min turn its previous_ride its position + 1
 where suitable
 per next_ride.

The following retrieval presents the desired results,
ordered by the position of suitable rides. The result of this
retrieval is empty if there is not any path from start to
finish town:

get ride its position, road, sdistance, distance, fdistance,

chainlength where suitable
 per position.

Section 4 shows the obtained results.

4. Results

Using the data in the tables 1-3, which are related to
figure 2, we examined whether the proposed query
produced correct results.

road from_
town

to_
town

distance

AB A B 25
BC B C 24
CE C E 24
CD C D 14
DB D B 15
EC E C 23

Table 1. Road data

ride road time_level
AB1 AB 1
AB2 AB 2
AB3 AB 3
BC1 BC 1
BC2 BC 2
BC3 BC 3
CE1 CE 1
CE2 CE 2
CE3 CE 3
CD1 CD 1
CD2 CD 2
CD3 CD 3
DB1 DB 1
DB2 DB 2
DB3 DB 3
EC1 EC 1
EC2 EC 2
ED3 EC 3

Table2. Some possible rides

turn previous_
ride

next_
ride

1 AB1 BC2
2 AB2 BC3
5 BC1 CD2
6 BC2 CD3
9 BC1 CE2

10 BC2 CE3
13 CD1 DB2
14 CD2 DB3
17 CE1 EC2
18 CE2 EC3
21 EC1 CE2
22 EC2 CE3
25 EC1 CD2
26 EC2 CD3
29 DB1 BC2
30 DB2 BC3
Table 3. Some possible turns

Some results for different pairs of start and finish towns
are presented in table 4.

trip

suit
num

ride pos s
dist

dist f
dist

chain
length

AA 0
AB 1 AB1 1 0 25 0 25
AC

2

AB1
BC2

1
2

0
25

25
24

24
0

49
49

AD

3 AB1
BC2
CD3

1
2
3

0
25
49

25
24
14

38
14

0

63
63
63

AE 3 AB1
BC2
CE3

1
2
3

0
25
49

25
24
24

48
24

0

73
73
73

BA 0
BB 3 BC1

CD2
DB3

1
2
3

0
24
38

24
14
15

29
15

0

53
53
53

Table 4. Results of shortest path calculations

All rides constituting a desired trip satisfy the following
rule: sdistance + distance + fdistance = chainlength.

206

5. Discussion

Because of the required construction of an acyclic time
graph, our solution for the shortest path in a cyclic
network is not the fastest one, but faster solutions in
O(N2) [1] have a procedural character; they require to
specify (nested) control statements, which is a dis -
advantage for end users. Another advantage of the
semantic solution is that termination is guaranteed, which
is very important in open systems that cannot be protected
by authorization tables [4].
 Contrary to the semantic approach, the application of
SQL in open environments can lead to denial of service
because the deliberate or accidental specification of
Cartesian products or complex joins can produce more
data than present in the database [4]. In SQL3 recursion
can be specified by recursive views [14]. Using SQL3 it is
possible to specify endless processing that only stops if a
run-time error occurs. An example is the calculation of a
series of positive integers; it starts with only one tuple
with value ‘0’ in the table ‘integer’, informally specified
as: RELATION integer (number);

Recursive calculation:

 WITH RECURSIVE calculated (number) AS
 (SELECT number
 FROM integer)
 UNION
 (SELECT (number + 1)
 FROM calculated
 WHERE number IN (SELECT MAX (number)
 FROM calculated));
SELECT number
FROM calculated;

We produced the test results using a notebook with an
Intel Celeron TM 1.7 GHz processor and the processing
time (30 rides and 32 turns) was 0.04 seconds. In the case
of another cyclic geometry with 20 roads, converted into
an acyclic time graph with 184 rides and 480 turns, the
calculation of the shortest route between two towns toke
0.07 seconds. Future research, using large, more realistic
data sets, has to reveal whether the measured processing
time remains acceptable and complies with the theoretical
time complexity.

References

[1] J.M. Aldous and R.J. Wilson, Graphs and

Applications, an Introductory Approach, Springer-
Verlag, London (2000).

[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory,
Algorithms and Applications, Springer-Verlag, London
(2001).

[3] J.A. Bakker and J.H. ter Bekke, A Query Language
Solution for Fastest Flight Connections, Proceedings

 International Conference on Database Applications
(DBA 2004) , Innsbruck, Austria 2004, ACTA Press,
Calgary (2004).

[4] Bert Bakker and Johan ter Bekke, Fool Proof Query
Access to Search Engines, Proceedings Third
International Conference on Information Integration
and Web-based Applications & Services (IIWAS 2001) ,
Linz, Austria, W. Winiwarter, S. Bressan and I. K.
Ibrahim (Eds.), Österreichisches Computer
Gesellschaft (2001), pp. 389-394.

[5] A.A.S. Danthine, Protocol Representation with
Finite-State Models, IEEE Transactions on
Communication, Vol. COM-20 (1980), pp. 632-643.

[6] F. Rolland, The essence of databases, Prentice Hall,
Hemel Hempstead (1998).

[7] J.H. ter Bekke, Semantic Data Modeling, Prentice
Hall, Hemel Hempstead (1992).

[8] J.H. ter Bekke, Advantages of a compact semantic
meta model, Proceedings 2nd IEEE Metadata
Conference, Silver Spring, USA (1997),
http://www.computer.org/conferen/proceed/
meta97/papers/jterbekke/jterbekke.html.

[9] J.H. ter Bekke and J.A. Bakker, Content-driven
specifications for recursive project planning
applications, Proceedings International Conference on
Applied Informatics (AI 2002), Innsbruck, Austria,
M.H. Hamza (Ed.), ACTA Press, Calgary (2002), pp.
448-452.

[10] J.H. ter Bekke and J.A. Bakker, Recursive queries in
product databases, Flexible Query Answering Systems,
Proceedings 5th International Conference (FQAS
2002), Copenhagen, Denmark, October 27-29, 2002,
Lecture Notes in Computer Science (subseries LNAI)
Volume 2522, T. Andreasen, A. Motro, H.
Christiansen and H. Legind Larsen (Eds.),
Springer-Verlag, Berlin (2002), pp. 44-55.

[11] J.H. ter Bekke and J.A. Bakker, Fast Recursive Data
Processing in Graphs Using Reduction, Proceedings
International Conference on Applied Informatics (AI
2003), Innsbruck, Austria, M.H. Hamza (Ed.), ACTA
Press, Calgary (2003), pp. 490-494.

[12] J.H ter Bekke and J.A. Bakker, Modeling and
Querying Recursive Data Structures I: Introduction,
Proceedings International. Conference on Artificial
Intelligence and Soft Computing (ASC 2003) , Banff,
Canada, H. Leung (Ed.), ACTA Press, Calgary (2003),
pp. 278-282.

[13] J.H ter Bekke and J.A. Bakker, Modeling and
Querying Recursive Data Structures II: A Semantic
Approach, Proceedings International Conference on
Artificial Intelligence and Soft Computing (ASC 2003) ,
Banff, Canada, H. Leung (Ed.), ACTA Press, Calgary
(2003), pp. 283-289.

[14] J.D. Ullman and J. Widom, A First Course in Database
Systems, Prentice Hall, Hemel Hempstead (1997).

207

