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ABSTRACT 
This paper presents a recursive query language solution 
for the shortest path problem based on the transformation 
of a cyclic geometric graph into an acyclic time graph, i.e. 
an acyclic Petri Net specifying the possible transitions 
(turns) between successive rides on different roads. Using 
this transformation, the shortest path problem is 
transformed into a fastest tour problem. The time 
complexity of the proposed solution is O(N5), where N is 
the number of towns in the underlying geometry. The 
underlying algorithm guarantees termination.   
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1. Introduction 
 
We previously described the application of the recursive 
cascade update operation of the Xplain language [6, 7] to 
several data structures corresponding with a weighted 
directed acyclic graph [1]. Examples using non-recursive 
data structures are project planning [9] and product 
planning [10]. We have also demonstrated the usability of 
this approach to problems related to recursive 
(hierarchical) data structures as the family tree [12, 13].  
 The algorithm [11] interpreting the cascade command 
applies graph reduction as a preparation to a well ordered 
serial processing. As an example we describe the 
reduction of the graph in figure 1 showing data based on 
the following data model: 
 
type node = name. 
type arc =  from_node, to_node, length. 
 
We identify nodes by a capital letter and arcs by a small 
letter. The purpose is to determine the shortest route from 
S to F. First, we determine the distance ‘sdist’ of each 
node to the starting node S: 
 
 
value inf = total arc its length.   
extend node with sdist = inf. /* initialization */ 
update node “S” its sdist = 0. 

Then we apply the recursive cascade update operation in 
order to calculate the correct distances to S. The result is 
that in a number of steps the minimal distance of each 
node to S is assigned to the destination of an arc: 
 
cascade node its sdist = 
  min arc its length + from_node its sdist 
  per to_node. 
 
                           Q        d             R 
                     a                                                                                                  
            S                         e                  f                                                                           
                           c                                                                             
                   b                                                    F                                
                      P                      g 
                          

Figure 1. Example of an acyclic graph 
 
The order of the steps is determined by graph reduction. 
This reduction is always the same, irrespective the set 
function applied. First the algorithm determines which 
nodes do not have any incoming arc; here it is S. The data 
representing the arcs starting in S (including the length of 
arcs) are placed in a list with groups of removed arcs. The 
first group is [a, b]. Figure 2 shows the result of the first 
reduction step.  
 
                         Q          d            R 
                                                                                                                       
          [a, b]                    e                  f                                                                           
                           c                                                                             
                                                                      F                                
                     P                       g 

 
Figure 2. Result of the first reduction step 

 
In a similar way the second reduction step is executed. 
Now the list is extended with the group [c, e, g]: figure 3. 
 
                         Q          d            R 
                                                                                                                       
          [a, b], [c, e, g]                          f                                                                           
                                                                                                        
                                                                        F                                
                                             

Figure 3. Result of the second reduction step 
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The result of the third step is shown in figure 4. 
 
                                                     R 
                                                                                                                        
 [a, b], [c, e, g], [d]               f    
                                              

                                                   F 
 

Figure 4. Result of the third reduction step 
 
The result of the last reduction step is an empty graph and 
a list of four groups: [a, b], [c, e, g], [d] and [f]. After this 
ordering, the data of the arcs in the first group are 
processed: for each of these arcs the minimum of ‘arc its 
length + arc its from_node its sdist’ is assigned to the 
destination: ‘arc its to_node’ and this node gets a new 
value for ‘node its sdist’. In this way, group by group of 
arcs, the value of ‘node its sdist’ is recalculated for the 
destination nodes of the arcs in each group. 
 In a similar way graph reduction and data processing 
is executed in a reverse order (starting in F) in order to 
calculate all instances of ‘node its fdist’, the shortest 
distance of a node to F.  
 
extend node with fdist = inf. 
update node “F” its fdist = 0. 
cascade node its fdist = 
  min arc its length + to_node its fdist 
  per next_node. 
 
Then for each node the sum of the distances to S and F, 
‘node its sdist + node its fdist’, is calculated; the minimal 
value of sum is calculated and the nodes  having this 
minimum value are the nodes on the shortest route from S 
to F: S, P and F. 
 
extend node with totaldist = sdist + fdist. 
value minimum = min node its totaldist. 
get node its name where totaldist = minimum. 
 
A weakness inherent in graph reduction is that it cannot 
be applied to cyclic graphs; for further details we refer to 
[11]. However, we have recently demonstrated that a 
cyclic geometric graph for flights can be transformed into 
an acyclic time graph for flight connections [3], which is 
the basis for finding the fastest series of flights between 
two airports. A first idea was to apply the following 
semantic data model, which allows us to specify the 
connections between roads.  
 
type town = name. 
type road =   from_town, to_town, distance. 
type connection = from_road, to_road. 
 
As an example, figure 5 shows an example of a geometric 
graph in which the nodes A, B, C, D and E are 
representing towns and the arcs are representing single 
direction roads. 
 

                          D 
                                        14      C     23           E                                            
                         15                                                                                                      
          A                            24            24                                                                      
                25                                                                          
                               B 

Figure 5. Example of a road network with a cycle 
 
However, this data model still allows for graphs with 
cycles of connections between roads as shown in figure 6, 
where XY indicates a road from X to Y. This graph shows 
six roads (nodes) and eight possible connections (arcs) 
between roads. 
  
                                      DB               CE 
 
 
         AB                BC                    CD                   EC 
 

 
Figure 6. Roads (nodes) and connections (arcs) 

 
Section 2 describes a more usable model supporting the 
construction of an acyclic time graph.  
 
2. An appropriate data model 
 
The data models in section 1 ignore the time dimension of 
the shortest path problem. A better solution is to introduce 
the notions of rides and turns as modeled in figure 7: a 
ride has both geometric dimensions and a time dimension 
(time level); a turn indicates which rides may follow after 
a ride. This model should enable us to deal with the 
correct time ordering of rides. 
 
 
 
 
 
 
     
 
 
 

  
 

      type turn (i7) = previous_ride (a3), next_ride (a3). 
      type ride (a3) = road (a2), time_level (i3). 
      type road (a2) = from_town (a2), to_town (a2), 

  distance(i4).  
  
      assert turn its correctness (true) =  
          (next_ride its time_level = 

   previous_ride its time_level + 1 
           and previous_ride its road <> next_ride its road 
           and previous_ride its road its to_town =  
                             next_ride its road its from_town). 
 

Figure 7. Data definitions for rides and turns 

turn 

road 

ride 
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Types have a value domain; for example ‘i7’ denotes an 
integer with 7 decimal digits and ‘a2’ denotes an alpha-
numeric string of 2 characters. Data on turns must be 
correct, which we express by an assertion specifying the 
calculation of a derivable Boolean property ‘turn its 
correctness’ that must be true for all turns. Other included 
restrictions must be applied by software deriving the 
instances of  ‘ride’ and ‘turn’ that must be added to the 
geometric road data in order to create a database suitable 
for a solution of path problems based on graph reduction. 
 The data definitions in figure 7 enable us to present 
the required data as a directed acyclic graph: each turn 
(arc) always connects two rides (nodes) having successive 
time levels. We illustrate this by transforming the cyclic 
geo-metric graph of figure 5 into the acyclic time graph of 
figure 8 showing the possible transitions (turns) between 
successive rides. Therefore this graph can be considered 
as an acyclic Petri Net [5].  
 

 
          AB4      BC4      DB4       CD4       CE4      EC4 
 
 
 
          AB3      BC3      DB3       CD3       CE3      EC3 
 
 
 
          AB2      BC2      DB2       CD2       CE2      EC2 
 
 
 
          AB1      BC1      DB1       CD1       CE1      EC1      
 

Figure 8. Tours as rides (nodes) and turns (arcs) 
 
A shortest tour from A to D can be found by the three 
successive rides AB1, BC2 and CD3 (three nodes) and 
requires two turns (two arcs). Another suitable series of 
rides is: (AB2, BC3, CD4). If we want to get only the first 
series, then we have to select the chain starting at time 
level 1. The number of rides (ride: between adjacent 
towns) needed for a shortest trip between two towns is at 
most:  N-1, if N towns are represented in a geometric 
database. This worst case also determines the required 
number of time levels (depth of the time graph) that we 
have to register: N-1.  
 We suppose that each town has single-direction roads 
to a fraction f (f < 1) of the other (N-1) other towns. Then 
the total number of roads is: fN(N-1) and the total 
required number of rides is fN(N-1)2. Further, each ride 
can be followed by f(N-1 ) other rides, so f2N(N-1)3 

possible turns (arcs) must be registered. The time 
complexity of the graph reduction algorithm is O(dP), 
where d is the depth of the graph and P is the number of 
arcs. Therefore the time complexity of reducing the time 
graph is O(N5). Graph reduction produces a well-ordered 
list of arcs. Processing this list has a time complexity 
O(P) = O(N4). In order to demonstrate the usability of the 
proposed approach, section 3 specifies a query language 
solution for the shortest path between two towns.  

3. Shortest path calculation 
 
First, we specify the interactive part of the query, 
enabling a user to choose start and finish town:  
 
value start =  input(a2)   “Enter the start town: “. 
value finish = input(a2)  “Enter the finish town: “. 
 
The following specifications derive for each ride the 
distance (sdistance) to the start town: 
 
value inf = total road its distance.   

/* a shortest path is not longer than ‘inf’ */ 
extend ride with distance = road its distance.  

/* simplifies the following specifications */ 
 
The rides starting in the start town have a time level of 1: 
 
extend ride with sdistance = inf. /* initialization */ 
update ride its sdistance = 0  
 where road its from_town = start  
 and time_level = 1. 
 
Then we apply the recursive cascade update operation: 
 
cascade ride its sdistance = 
  min turn  its previous_ride its sdistance + 
                       previous_ride its distance 
  per next_ride. 
 
In a similar way we determine for each ride its distance to 
the finish town, but now we do not know a priori the time 
level of the ride ending in that town. This time level 
depends on the selected towns and the structure of the 
road network. 
 
extend ride with fdistance = inf. /* initialization  */ 
update ride its fdistance = 0  
  where road its to_town = finish. 
cascade ride its fdistance = 
  min turn  its next_ride its fdistance + 

        next_ride its distance 
  per previous_ride. 
 
Now we determine for each ride the total chain length of 
the tour from start to finish it belongs to: 
 
extend ride with chainlength =  
  sdistance + distance + fdistance. 
value minimum = min ride its chainlength. 
 
It is possible that all rides found by the previous 
operations have a total chain length larger than ‘inf’. This 
occurs if we try to determine the shortest walk between 
two towns without any connection. For example, there is 
not any route from D to A (figure 2, figure 5). Therefore 
we have to deal with unusable rides with ‘fdistance = inf’ 
or ‘sdistance = inf’: 
 
extend ride with suitable =  (chainlength = minimum  
  and fdistance < inf and sdistance < inf). 
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extend turn with suitable  =  
 (previous_ride its suitable  
  and next_ride its suitable). 
value suitablenumber = count ride where suitable. 
value comment =  “If suitablenumber = 0, then there is no 
                         connection from start to finish town: ” 
value suitablenumber. newline.   
value comment. newline.            /* print commands */ 
  
It is also possible that we find more than one shortest trip 
between start and finish. Although not present in figure 2, 
it is possible that A and D also have other connections in 
addition to the roads AB, BC and CD. Consequently, 
there can be many suitable rides (on different roads) 
starting at the same time in the same town. Then a 
presentation of suitable rides ordered by time level is not 
suitable. Analogous to our solution for fastest air 
connections [4], a better presentation of results can be 
obtained by deriving the position of suitable rides. If more 
than one suitable ride has a same position then the user 
knows that there are alternative routes.  
 
value maxposition = count flight.            /* initialization */ 
extend ride with position = maxposition. 
update ride its position = 1  
 where suitable  
 and road its from_town = start.        /* the first ride */ 
cascade ride its position =  
 min turn its previous_ride its position + 1  
  where suitable 
 per next_ride.  
 
The following retrieval presents the desired results, 
ordered by the position of suitable rides. The result of this 
retrieval is empty if there is not any path from start to 
finish town: 
 
get ride its position, road, sdistance, distance, fdistance, 

chainlength where suitable   
 per position. 
 
Section 4 shows the obtained results. 
 
4. Results 
 
Using the data in the tables 1-3, which are related to 
figure 2, we examined whether the proposed query 
produced correct results.  
 
 
 

road from_ 
town  

to_ 
town  

distance 

AB A B 25 
BC B C 24 
CE C E 24 
CD C D 14 
DB D B 15 
EC E C 23 

Table 1. Road data 
 

 
ride road time_level 
AB1 AB 1 
AB2 AB 2 
AB3 AB 3 
BC1 BC 1 
BC2 BC 2 
BC3 BC 3 
CE1 CE 1 
CE2 CE 2 
CE3 CE 3 
CD1 CD 1 
CD2 CD 2 
CD3 CD 3 
DB1 DB 1 
DB2 DB 2 
DB3 DB 3 
EC1 EC 1 
EC2 EC 2 
ED3 EC 3 

Table2. Some possible rides 
 
 

turn  previous_ 
ride 

next_ 
ride 

1 AB1 BC2 
2 AB2 BC3 
5 BC1 CD2 
6 BC2 CD3 
9 BC1 CE2 

10 BC2 CE3 
13 CD1 DB2 
14 CD2 DB3 
17 CE1 EC2 
18 CE2 EC3 
21 EC1 CE2 
22 EC2 CE3 
25 EC1 CD2 
26 EC2 CD3 
29 DB1 BC2 
30 DB2 BC3 
Table 3. Some possible turns 

 
 
Some results for different pairs of start and finish towns 
are presented in table 4. 
 

trip 
 

suit 
num 

ride pos s 
dist 

dist f 
dist 

chain 
length 

AA 0       
AB 1 AB1 1 0 25 0 25 
AC 

 
2 
 

AB1 
BC2 

1 
2 

0 
25 

25 
24 

24 
0 

49 
49 

AD 
 

3 AB1 
BC2 
CD3 

1 
2 
3 

0 
25 
49 

25 
24 
14 

38 
14 

0 

63 
63 
63 

AE 3 AB1 
BC2 
CE3 

1 
2 
3 

0 
25 
49 

25 
24 
24 

48 
24 

0 

73 
73 
73 

BA 0       
BB 3 BC1 

CD2 
DB3 

1 
2 
3 

0 
24 
38 

24 
14 
15 

29 
15 

0 

53 
53 
53 

Table 4. Results of shortest path calculations 
 
All rides constituting a desired trip satisfy the following 
rule:  sdistance + distance + fdistance = chainlength.  
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5. Discussion 
 
Because of the required construction of an acyclic time 
graph, our solution for the shortest path in a cyclic 
network is not the fastest one, but faster solutions in 
O(N2) [1] have a procedural character; they require to 
specify (nested) control statements, which is a dis -
advantage for end users. Another advantage of the 
semantic solution is that termination is guaranteed, which 
is very important in open systems that cannot be protected 
by authorization tables [4].  
 Contrary to the semantic approach, the application of 
SQL in open environments can lead to denial of service 
because the deliberate or accidental specification of 
Cartesian products or complex joins can produce more 
data than present in the database [4]. In SQL3 recursion 
can be specified by recursive views [14]. Using SQL3 it is 
possible to specify endless processing that only stops if a 
run-time error occurs. An example is the calculation of a 
series of positive integers; it starts with only one tuple 
with value ‘0’ in the table ‘integer’, informally specified 
as: RELATION integer (number); 
 
Recursive calculation: 
 
 WITH RECURSIVE calculated (number) AS 
  (SELECT number  
    FROM integer) 
  UNION 
  (SELECT (number + 1) 
    FROM calculated 
    WHERE number IN (SELECT MAX (number)  
            FROM calculated));  
SELECT number 
FROM calculated; 
 
We produced the test results using a notebook with an 
Intel Celeron TM 1.7 GHz processor and the processing 
time (30 rides and 32 turns) was 0.04 seconds. In the case 
of another cyclic geometry with 20 roads, converted into 
an acyclic time graph with 184 rides and 480 turns, the 
calculation of the shortest route between two towns toke 
0.07 seconds. Future research, using large, more realistic 
data sets, has to reveal whether the measured processing 
time remains acceptable and complies with the theoretical 
time complexity.  
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