
A QUERY LANGUAGE SOLUTION FOR FASTEST FLIGHT CONNECTIONS 
 

J.A. Bakker and J.H. ter Bekke 
Delft University of Technology 

Faculty of Electrical Engineering, Mathematics and Computer Science 
E-mail: {J.A.Bakker, J.H.terBekke}@ewi.tudelft.nl 

 
 
ABSTRACT 
This paper discusses how to extend the applicability of the 
recursive cascade update command of the Xplain query 
language. This command guarantees termination because 
cycle detection is included, which is in favor of end user 
computing. The execution of this command is based on 
graph reduction; therefore it can only be applied to acyclic 
graphs. Because flights constitute cycles between airports, 
it seemed impossible to specify a query language solution 
for shortest flight connections between two arbitrary 
airports. However, on a time scale cyclic connections 
between successive flights cannot exist at all. Therefore 
we designed an appropriate semantic data model for 
feasible connections between successive flights. Using 
this extended data model, the cascade  command still 
enables end users to specify recursive queries for the 
fastest series of flights between any pair of airports.  
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1. Introduction 
 
Earlier solutions for recursive problems such as transitive 
closure are described in papers and textbooks [1, 2, 7, 8, 
14, 22]. They often create successor lists much larger than 
the original data set, which leads to time-consuming 
duplicate elimination and cycle detection [9]. Moreover, 
these solutions are specified in languages (often using 
nested control statements) that are difficult to understand by 
end users. Another problem is associated with recursive 
views in SQL3. The syntax of this language [22] still 
allows for procedural operations as the join operation. 
Therefore SQL3 cannot guarantee termination [3].  
 Contrary to these earlier approaches, we designed an 
algorithm using graph reduction [3, 19], thus avoiding 
data expansion. It is  the basis for recursive data 
processing as can be specified by the cascade update 
command in the language of the Xplain-DBMS [12, 15]. 
As far as we know this is a new approach with some 
important consequences for end user computing: 
1. Irrespective the problem at hand, graph reduction 

processes all data defining a directed graph, even in 
the case of finding a shortest path, where normally 
not all node and arc data are involved. This seems to 
be  inefficient, but it also offers an analogue solution  

 
 
 for critical path problems. In procedural approaches 

to these problems a programmer must choose start 
and finish nodes, which is not always possible 
because there can be many candidates for start and 
finish. Xplain releases end users of this problem by 
determining start and finish itself.  

2. Graph reduction either ends with an empty graph or 
with a graph containing one or more cycles [5]. Only 
for a directed acyclic graph, reduction produces a 
well-ordered list of arc data, suitable for further serial 
calculations.  

3. The algorithm guarantees termination because cycle 
detection is part of the arc ordering process. This is 
essential for open systems - accessible to millions of 
unknown users - that cannot be protected by 
authorization tables [6]. 

4. The worst case complexity of the arc ordering 
process is O(N2), where N is the number of arcs. This 
ordering avoids the data expansion associated with 
other approaches [4, 10, 13, 14]. Using the list of 
ordered arc data, further calculations take O(N) time.   

 
The applicability of the new query language approach to 
recursive operations in databases has been demonstrated 
for acyclic directed graphs related to project planning [17] 
and production planning [18], but also for operations in 
recursive structures such as finding the ancestors of a 
person in a family tree [20, 21]. This approach requires 
that the involved data set does not constitute a cyclic 
graph. Because series of flights can follow geometric 
cycles, the initial feeling was that graph reduction could 
not be used for finding fastest air connections.  
 Section 2 presents a further discussion on this subject 
and offers an appropriate data structure supporting 
directed time graphs not containing any cycle between 
flights. Using this data model, section 3 describes a query 
for the fastest series of flights between two airports, 
adjacent or not. 
 
2. Data definition 
 
If we want to apply the cascade update command to 
fastest flight connection problems, then we have to design 
such a data model that the essential data define a directed 
acyclic graph. Therefore we designed a more appropriate 
data model, which allows us to consider flight as nodes, 
whereas the possible connections between successive 
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flights can be presented as arcs. In figure 1, capitals 
indicate airports: the flights f3 (BC) and f2  (BC) start after 
the arrival of flight f1 (AB). This figure ignores the 
duration of flights: only their time ordering is important. 
Each arc represents the possible connection between an 
arriving and a departing flight. Capital letters indicate 
airports.  In a geographical sense the flights f1 and f6 
constitute a cycle (AB; BA), but on a time scale they 
cannot constitute a cycle. Another geographical cycle is 
(BC; CE; EB), made by the flights f2; f4; f7 and also by 
the flights f3; f4; f7.  
  
                         (BA) f6 
                                                            time 
       (BC) 
               c3                  f3                 c7 
                    c2                           c6          (CD)  f5 
                                           c8                                         
                                                                                    
    (AB)              (BC)             (CE)          (EB) 
        f1          c1          f2        c4          f4       c5       f7 
 

Figure 1. Some connections between flights 
 
Because a connecting flight must start after an arrival, 
cycles between flights via connections (arcs) cannot occur 
on a time scale. The semantic data model in figure 2 
together with some rules support a correct registration of 
data on flight connections not having any cycle. We 
assume that each airport has a certain maximal transfer 
time for passengers between arrival and departure 
terminals. Using data on flights and airport transfer times, 
it is easy to derive the correct instances of ‘connection’ 
defining the possible connections between arriving and 
departing flights. 
 

 
 

 
                               

 
    

 
 

 
     
 

 
 type connection (i4) =  previous_flight (i4),  
  next_flight (i4), /between_days/ (i2), 
  /between_time/ (i4), /correct/ (b). 
 type flight (i4) = carrier (a20), from_airport (a3), 
  to_airport (a3), duration (i4), arrival_date (d), 
  arrival_time (i4), departure_date (d), 
  departure_time (i4). 
 type airport (a3) =  name (a10), transfer_time (i3).      
 

Figure 2. A data model for flights and connections 

In the data model ‘i4’ defines integers of at most 4 digits, 
‘a3’ means a string of at most 3 alphanumeric characters 
and ‘b’ indicates the Boolean domain. Time can be 
expressed through integers of four digits, of which the 
two most significant digits indicate the hour (0-23); the 
other two digits indicate minutes (00-59): hhmm. Dates 
are defined in the domain ‘d’: yyyymmdd. Arrival time 
and departure time are expressed in local time. Flight 
duration and the between time (available transfer time) of 
connections is expressed in minutes. 
 We also have to specify rules, sometimes including a 
value restriction not expressible in data structure alone. In 
Xplain they are expressed by assertions specifying a 
derivable variable. Derived attributes are presented 
between slashes, but not all of the following derived 
attributes are shown in figure 2. We assume that a 
connecting flight departs not later than two days after an 
arriving flight, which limits the number of connections to 
be registered.  
 
assert connection its between_days (0..2) =  
 timedif (next_flight its departure_date, 

previous_flight its arrival_date). 
 
The calculation of the time interval between an arrival and 
a connecting departure requires some preparative 
calculations:  
 
assert flight its departure_hour =  departure_time div 100. 
assert flight its departure_minute =  
 60 * departure_hour + departure_time mod 100. 
assert flight its arrival_hour = arrival_time div 100. 
assert flight its arrival_minute =  
 60 * arrival_hour + arrival_time mod 100. 
 
Now the between time of connections (in minutes) can be 
calculated: 
 
assert connection its between_time = 
 between_days * 24 * 60 + next_flight its 
  departure_minute – previous_flight its 
              arrival_minute . 
 
Instances of ‘connection’ must be registered correctly. 
The following rule assumes that each airport has a certain 
maximal transfer time for moving passengers between 
terminals : 
 
assert connection its correct (true) =  
 (between_time >=  previous_flight its  
  to_airport its transfer_time and previous_flight its 
  to_airport = next_flight its from_airport). 
 
A restriction on the number of days between connecting 
flights has already been expressed through ‘connection its 
between_days (0..2)’. Applying these rules, incorrect 
connections defining a time cycle of flights cannot be 
registered.  

connection 

flight 

airport 
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After designing the data structure (figure 2) and the static 
restrictions, section 3 proposes a declarative solution for 
the fastest series of flights between two airports. 
 
3. Finding a fastest connection 
 
As an example we show how the fastest series of flights 
between two selected airports, starting on a selected date 
after a selected time, can be determined. Using the desired 
data on start and finish airport, departure date and time, 
we can determine the earliest starting time ‘est’ (in 
minutes) for each flight having a connection (direct or via 
other flights) with a suitable flight starting on a selected 
date and time from the selected airport. This interaction 
with a user is defined by a series of input statements. 
After that we start with the initialization of the earliest 
starting time ‘est’ for all flights to an unreachable value 
‘inf’. We may assume that ‘est’ is smaller than ‘inf’: 
 
value start = input (a1)   “Enter the start airport: ”. 
value selectdate = input (d)     
  “Enter departure date (yyyymmdd):”. 
value selecttime =  input (i4)    
  “Enter earliest departure time (hhmm): ”. 
value finish = input (a1)  “Enter the destination airport: ”. 
value inf = total flight its duration.         
extend flight with est = inf.        /* initialization */ 
update flight its est = 0 
 where from_airport = start  
 and departure_date = datef (selectdate) 
 and departure_time >= selecttime. 
cascade flight its est = 
       min connection its previous_flight its est + 

previous_flight its duration + between_time 
       per next_flight. 
 
Data on connections is processed in an order derived by 
the query interpreter from the query specification [19]. In 
the previous cascading update the order of assignments is 
from ‘connection its previous_flight’ to ‘connection its 
next_flight’.  End users must be aware of this order, but 
they do not have to specify the ordering process itself, 
which avoids the risk of specifying an infinite process. 
Xplain always requires that specifications respect the 
inherently (through attributes) specified data structure. An 
example of a correctly specified attribute path is  
‘connection its next_flight its from_airport’. 
 In a similar way we calculate for each flight the 
earliest arrival time ‘eat’ possible in a chain of flights 
between that flight and a flight ending in the destination 
airport. We assume that the flight arriving at the 
destination airport may not depart later than two days 
after the selected starting day: 
 
extend flight with eat = inf. 
update flight its eat = 0 
  where to_airport = finish  
  and departure_date >= datef (selectdate) 
  and arrival_date <= newdate (selectdate, 2). 

cascade flight its eat = 
      min connection its next_flight its eat + 

next_flight its duration + between_time 
      per previous_flight. 

 
Here the destination of assignments by recursive updates 
is reversed from ‘connection its next_flight’ to 
‘connection its previous_flight’. Now we calculate for 
each flight the total duration of a series of flights 
connecting the selected start and finish airport. Then we 
calculate the minimal value of this chain duration ‘cdur’: 
 
extend flight with cdur = est + eat + duration. 
value minimum = min flight its cdur. 
 
Not always a series of flights is available between the two 
selected airports on the selected day. Therefore the 
following count operation determines the number of 
flights with a usable minimal value for ‘flight its cdur’. 
The condition ‘est < inf and eat < inf’ deals with the 
possibility of a non-connected graph. For example, flights 
in a chain of connected flights starting in the start airport, 
but not ending in the finish airport have the property that  
‘eat =  inf’. Similarly, flights in a chain of connected 
flights ending in the finish airport, but not starting in the 
start airport have the property: ‘est =  inf’. The third 
possibility is that flights belong to a chain neither 
connected with the start airport nor the finish airport.  
 
extend flight with suitable =  
  (cdur = minimum and est < inf and eat < inf). 
value suitablenumber =  count flight where suitable.  
value suitablenumber.        /* a print command*/ 
value explanation =  

“If suitable number = 0, then there is not any 
  suitable connection between the selected  
  airports on the chosen day and time:  ”. 

value explanation.  
newline .           /* print commands */ 
 
More than one chain of connected flights can have the 
minimum chain duration. Then more than one suitable 
flight has the same earliest starting time ‘est’. A solution 
for presenting the query results is to calculate the relative 
position of flights participating in a suitable series of 
flights starting with the earliest departure time. Then the 
results can be presented in an order complying with this 
position: 
 
extend flight with position = inf. 
update flight its position = 1  
  where suitable and est = 0. 
cascade flight its position = 
 min connection its previous_flight its position + 1 
 where previous_flight its suitable 
 per next_flight. 
value comment =  

/“If more than one flight has a same position, 
 then there is more than one connection.”. 
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get flight its position, from_airport, to_airport,  
 departure_date, departure_time,   
 arrival_date, arrival_time, est, eat, duration, cdur 
where suitable 
per position.         /* presentation order */ 
newline .  value comment.         /*print commands */ 
 
4. Test results 
 
For a test the following less interactive initialization is 
applied to all connections XY: both X and Y can have a 
value A, B, C, D or E (see figure 1, presenting the items 
of our test database). So, 25 connections have to be 
checked: 
 
value start = input (a1) “Enter the start airport: “. 
value selectdate = datef (20040917). 
value selecttime = 1015. 
value finish = input (a1) “Enter the finish airport: “. 
value inf = total flight its duration.   
 
The remaining query is the same as in section 3. The test 
data are complying with figure 1. Some data such as the 
flights f2 and f3 seem to be incorrect, but are still correct 
because they pass different time zones. We assumed that 
all airports have a maximal transfer time between 

terminals of 100 minutes. Connections are complying 
with this maximal transfer time. 
 

fli fr to dep_  
date  

dep_  
time 

arr_ 
date  

arr_ 
time 

dur 

1 A B 20040917 1020 20040917 1220 120 
2 B C 20040917 1400 20040917 1700 300 
3 B C 20040917 1500 20040917 1805 305 
4 C E 20040917 2000 20040918 0215 615 
5 C D 20040917 1950 20040917 2220 150 
6 B A 20040917 1400 20040917 1550 110 
7 E B 20040918 1100 20040919 0800 900 

Table 1. Test data on flights  
 
 

connection previous_ 
flight 

next_ 
flight 

between_ 
time 

1 1 2  100          
2 1 3  160 
3 1 6  100 
4 2 4  180 
5 4 7  525 
6 3 4  115 
7 3 5  105 
8 2 5  170 

Table 2. Test data on connections between flights 
 
Table 3 shows the result of different selections of start 
and destination airport.  

 
start 

airport 
finish 
airport 

suitable 
number 

flight 
 

position departure 
date 

dep. 
time 

arrival 
date 

arrival 
time 

est 
 

eat 
 

dur 
 

cdur 
 

A A 2 1{AB} 
6{BA} 

1 
2 

20040917 
20040917 

1020 
1400 

20040917 
20040917 

1220 
1550 

0 
220 

210 
0 

120 
110 

330 
330 

A B 1 1{AB} 1 20040917 1020 20040917 1220 0 0 120 120 
A C 2 1{AB} 

2{BC} 
1 
2 

20040917 
20040917 

1020 
1400 

20040917 
20040917 

1220 
1700 

0 
220 

400 
0 

120 
300 

520 
520 

A D 4 1{AB} 
2{BC} 
3{BC} 
5{CD} 

1 
2 
2 
3 

20040917 
20040917 
20040917 
20040917 

1020 
1400 
1500 
1950 

20040917 
20040917 
20040917 
20040917 

1220 
1700 
1805 
2220 

0 
220 
280 
690 

720 
320 
255 

0 

120 
300 
305 
150 

840 
840 
840 
840 

A E 4 1{AB} 
2{BC} 
3{BC} 
4{CE} 

1 
2 
2 
3 

20040917 
20040917 
20040917 
20040917 

1020 
1400 
1500 
2000 

20040917 
20040917 
20040917 
20040918 

1220 
1700 
1805 
0215 

0 
220 
280 
700 

1195 
795 
730 

0 

120 
300 
305 
615 

1315 
1315 
1315 
1315 

B A 1 6{BA} 1 20040917 1400 20040917 1550 0 0 110 110 
B B 3 3{BC} 

4{CE} 
7{EB} 

1 
2 
3 

20040917 
20040917 
20040918 

1500 
2000 
1100 

20040917 
20040918 
20040919 

1805 
0215 
0800 

0 
420 

1560 

2155 
1425 

0 

305 
615 
900 

2460 
2460 
2460 

B C 1 2{BC} 1 20040917 1400 20040917 1700 0 0 300 300 
B D 2 3{BC} 

5{CD} 
1 
2 

20040917 
20040917 

1500 
1950 

20040917 
20040917 

1805 
2220 

0 
410 

255 
0 

305 
150 

560 
560 

B E 2 3{BC} 
4{CE} 

1 
2 

20040917 
20040917 

1500 
2000 

20040917 
20040918 

1805 
0215 

0 
420 

730 
0 

305 
615 

1035 
1035 

C A 0           
C B 2 4{CE} 

7{EB} 
1 
2 

20040917 
20040918 

2000 
1100 

20040918 
20040919 

0215 
0800 

0 
1140 

1425 
0 

615 
900 

2040 
2040 

C D 1 5{CD} 1 20040917 1950 20040917 2220 0 0 150 150 
C E 1 4{CE} 1 20040917 2000 20040918 0215 0 0 615 615 

Table 3. Test results  
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The test results demonstrate that the proposed solution is 
correct and the found flights satisfy the relationship  ‘est + 
eat + duration = cdur’. According to figure 1, the 
following connections are not available: CA (in table 3) 
and CC, DA, DB, DC, DD, DE, EA, EC, ED and EE (not 
shown in table 3). Connection EB is available, but not on 
the date chosen in the test. In the database there are two 
return connections B to B, but the query only produces the 
result f3; f4; f7 because this series is faster than f2; f4; f7.  
In order to evaluate the usability of the proposed solution, 
section 5 presents an estimation of its costs in terms of 
disk-access and time consumption on the basis of some 
reasonable assumptions.  
 
5. Cost estimations  
 
We assume that flight data is available from all airports 
over the world because airports need such data for daily 
operations. Of course each airport database contains data 
on flights arriving or leaving that airport. Our approach 
requires that also data on the possible connections 
(transfers) is stored, but these data can be derived from 
the local flight data.  
 We have to transfer these local data to a central flight 
information system. We assume that for each individual 
fastest connection problem, we only have to import flight 
data related to a selected period of three days. Using these 
assumptions we can calculate the number of flight and 
connection data for the calculation of a fastest series of 
flights between a start and finish airport on a selected date 
and time.  
 We estimate the number of major civil airports all 
over the world is 1000. We assume an average of 30 
arrivals and also 30 departures per hour at each airport 
during 10 hours per day. This means 300 arrivals and 300 
departures per day on each airport, so the number of flight 
records that has to be imported over a period of three days 
is approximately 1800 per airport, thus 1.800.000 over the 
world in three days. However, a starting flight is also an 
arrival for the destination airport, so the number of flight 
data in three days is 900.000. If the format of each flight 
record is 200 bytes, then approximately 180 Mbytes of 
data has to be sent to the flight information system.  
 We assume that the number of possible connections 
after each arrival flight is 100 per day, thus 300 per three 
days per airport. In the case of 300 arrivals per day we 
have to register 300 * 100 = 30.000 connections for each 
airport: 1000 * 30.000 = 30.000.000 connections over the 
world in three days. If a connection record takes 100 
bytes, this means that an additional 3000 Mbytes must be 
transported. Including flight records a total of 3180 
Mbytes must be sent to the flight information system. If 
the transfer rate is 1 Mbytes/s, this means a total transfer 
time of 53 minutes.  
 However, it is not necessary to transfer all data on 
connections; they can be derived from data on flights and 
the transfer time within airports. Probably, depending on 
the chosen file organization (applying hashing or indices), 
this is less time consuming. 

Another problem is the number of disk-accesses required 
to store 30.000.000 connection records and 900.000 flight 
records. Each connection record has a format of 100 
bytes, so we need minimally one disk-access per ten 
records: in total 3000.000 disk-accesses. If a disk-access 
takes 10 ms, this means a total of 30.000 seconds or 500 
minutes for storing connection records. Similarly we can 
estimate that storing the flight records takes 180.000 disk-
accesses or 30 minutes. Then storing all these data takes 
530 minutes or almost 9 hours. Data can be imported 
during nightly hours and because of the many information 
requests, all data on future flights and connections must 
be locally stored for a period of several months. 
 The time complexity of the graph reduction 
algorithm is O(dN), where N is the number of arcs 
(connections) and d is the depth of the graph (probably 
smaller than N). Considering the large number of 
connection and flight records needed for processing one 
information request using the cascade command, it would 
take 53 minutes (3180 Mbytes, 1 Mbytes per sec.) to read 
the disk data needed to answer a request about a fastest 
connection within three days. A solution is to store all 
data permanently in main memory. This would reduce the 
time duration with at least a factor 5000 to approximately 
0.7 second.  
 
6. Discussion and conclusion 
 
The present paper shows some important results: 
 
• The declarative Xplain language enables end users to 

specify recursive operations. We think that earlier 
procedural solutions, such as Dijkstra’s shortest path 
algorithm [1], are less suitable for end user 
programming because they require the application of 
control statements with nested loops.  

• The underlying algorithm itself is fast and guarantees 
termination, which is essential in open systems with 
many unknown users: it is not possible to protect such 
systems by authorization tables. This contrasts with 
the application of recursive views in SQL3 [22], a 
language with a syntax that cannot guarantee 
termination [3]. Relational languages allow us to 
specify procedural operations such as Cartesian 
product and join that do not require respecting 
referential integrity. In Xplain only the attribute 
path’s existing in a data model may be used.  

• The proposed semantic data model enables us to 
transform a cyclic geometric directed graph for 
airports and flights into an acyclic directed graph for 
flights and connections. Data on feasible connections 
can be derived from flight and airport data. 

• The time complexity of the described solution is high 
because of the large size of the required data set; still 
it can be executed in polynomial time. 

 
Future work has to reveal whether the proposed solution 
can also be applied to more complex transitive closure 
problems. 
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