
A QUERY LANGUAGE SOLUTION FOR FASTEST FLIGHT CONNECTIONS

J.A. Bakker and J.H. ter Bekke
Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
E-mail: {J.A.Bakker, J.H.terBekke}@ewi.tudelft.nl

ABSTRACT
This paper discusses how to extend the applicability of the
recursive cascade update command of the Xplain query
language. This command guarantees termination because
cycle detection is included, which is in favor of end user
computing. The execution of this command is based on
graph reduction; therefore it can only be applied to acyclic
graphs. Because flights constitute cycles between airports,
it seemed impossible to specify a query language solution
for shortest flight connections between two arbitrary
airports. However, on a time scale cyclic connections
between successive flights cannot exist at all. Therefore
we designed an appropriate semantic data model for
feasible connections between successive flights. Using
this extended data model, the cascade command still
enables end users to specify recursive queries for the
fastest series of flights between any pair of airports.

KEY WORDS
shortest path, recursive query, semantic model, transitive
closure

1. Introduction

Earlier solutions for recursive problems such as transitive
closure are described in papers and textbooks [1, 2, 7, 8,
14, 22]. They often create successor lists much larger than
the original data set, which leads to time-consuming
duplicate elimination and cycle detection [9]. Moreover,
these solutions are specified in languages (often using
nested control statements) that are difficult to understand by
end users. Another problem is associated with recursive
views in SQL3. The syntax of this language [22] still
allows for procedural operations as the join operation.
Therefore SQL3 cannot guarantee termination [3].
 Contrary to these earlier approaches, we designed an
algorithm using graph reduction [3, 19], thus avoiding
data expansion. It is the basis for recursive data
processing as can be specified by the cascade update
command in the language of the Xplain-DBMS [12, 15].
As far as we know this is a new approach with some
important consequences for end user computing:
1. Irrespective the problem at hand, graph reduction

processes all data defining a directed graph, even in
the case of finding a shortest path, where normally
not all node and arc data are involved. This seems to
be inefficient, but it also offers an analogue solution

 for critical path problems. In procedural approaches

to these problems a programmer must choose start
and finish nodes, which is not always possible
because there can be many candidates for start and
finish. Xplain releases end users of this problem by
determining start and finish itself.

2. Graph reduction either ends with an empty graph or
with a graph containing one or more cycles [5]. Only
for a directed acyclic graph, reduction produces a
well-ordered list of arc data, suitable for further serial
calculations.

3. The algorithm guarantees termination because cycle
detection is part of the arc ordering process. This is
essential for open systems - accessible to millions of
unknown users - that cannot be protected by
authorization tables [6].

4. The worst case complexity of the arc ordering
process is O(N2), where N is the number of arcs. This
ordering avoids the data expansion associated with
other approaches [4, 10, 13, 14]. Using the list of
ordered arc data, further calculations take O(N) time.

The applicability of the new query language approach to
recursive operations in databases has been demonstrated
for acyclic directed graphs related to project planning [17]
and production planning [18], but also for operations in
recursive structures such as finding the ancestors of a
person in a family tree [20, 21]. This approach requires
that the involved data set does not constitute a cyclic
graph. Because series of flights can follow geometric
cycles, the initial feeling was that graph reduction could
not be used for finding fastest air connections.
 Section 2 presents a further discussion on this subject
and offers an appropriate data structure supporting
directed time graphs not containing any cycle between
flights. Using this data model, section 3 describes a query
for the fastest series of flights between two airports,
adjacent or not.

2. Data definition

If we want to apply the cascade update command to
fastest flight connection problems, then we have to design
such a data model that the essential data define a directed
acyclic graph. Therefore we designed a more appropriate
data model, which allows us to consider flight as nodes,
whereas the possible connections between successive

197419-083

debbie

flights can be presented as arcs. In figure 1, capitals
indicate airports: the flights f3 (BC) and f2 (BC) start after
the arrival of flight f1 (AB). This figure ignores the
duration of flights: only their time ordering is important.
Each arc represents the possible connection between an
arriving and a departing flight. Capital letters indicate
airports. In a geographical sense the flights f1 and f6
constitute a cycle (AB; BA), but on a time scale they
cannot constitute a cycle. Another geographical cycle is
(BC; CE; EB), made by the flights f2; f4; f7 and also by
the flights f3; f4; f7.

 (BA) f6
 time
 (BC)
 c3 f3 c7
 c2 c6 (CD) f5
 c8

 (AB) (BC) (CE) (EB)
 f1 c1 f2 c4 f4 c5 f7

Figure 1. Some connections between flights

Because a connecting flight must start after an arrival,
cycles between flights via connections (arcs) cannot occur
on a time scale. The semantic data model in figure 2
together with some rules support a correct registration of
data on flight connections not having any cycle. We
assume that each airport has a certain maximal transfer
time for passengers between arrival and departure
terminals. Using data on flights and airport transfer times,
it is easy to derive the correct instances of ‘connection’
defining the possible connections between arriving and
departing flights.

 type connection (i4) = previous_flight (i4),
 next_flight (i4), /between_days/ (i2),
 /between_time/ (i4), /correct/ (b).
 type flight (i4) = carrier (a20), from_airport (a3),
 to_airport (a3), duration (i4), arrival_date (d),
 arrival_time (i4), departure_date (d),
 departure_time (i4).
 type airport (a3) = name (a10), transfer_time (i3).

Figure 2. A data model for flights and connections

In the data model ‘i4’ defines integers of at most 4 digits,
‘a3’ means a string of at most 3 alphanumeric characters
and ‘b’ indicates the Boolean domain. Time can be
expressed through integers of four digits, of which the
two most significant digits indicate the hour (0-23); the
other two digits indicate minutes (00-59): hhmm. Dates
are defined in the domain ‘d’: yyyymmdd. Arrival time
and departure time are expressed in local time. Flight
duration and the between time (available transfer time) of
connections is expressed in minutes.
 We also have to specify rules, sometimes including a
value restriction not expressible in data structure alone. In
Xplain they are expressed by assertions specifying a
derivable variable. Derived attributes are presented
between slashes, but not all of the following derived
attributes are shown in figure 2. We assume that a
connecting flight departs not later than two days after an
arriving flight, which limits the number of connections to
be registered.

assert connection its between_days (0..2) =
 timedif (next_flight its departure_date,

previous_flight its arrival_date).

The calculation of the time interval between an arrival and
a connecting departure requires some preparative
calculations:

assert flight its departure_hour = departure_time div 100.
assert flight its departure_minute =
 60 * departure_hour + departure_time mod 100.
assert flight its arrival_hour = arrival_time div 100.
assert flight its arrival_minute =
 60 * arrival_hour + arrival_time mod 100.

Now the between time of connections (in minutes) can be
calculated:

assert connection its between_time =
 between_days * 24 * 60 + next_flight its
 departure_minute – previous_flight its
 arrival_minute .

Instances of ‘connection’ must be registered correctly.
The following rule assumes that each airport has a certain
maximal transfer time for moving passengers between
terminals :

assert connection its correct (true) =
 (between_time >= previous_flight its
 to_airport its transfer_time and previous_flight its
 to_airport = next_flight its from_airport).

A restriction on the number of days between connecting
flights has already been expressed through ‘connection its
between_days (0..2)’. Applying these rules, incorrect
connections defining a time cycle of flights cannot be
registered.

connection

flight

airport

198

After designing the data structure (figure 2) and the static
restrictions, section 3 proposes a declarative solution for
the fastest series of flights between two airports.

3. Finding a fastest connection

As an example we show how the fastest series of flights
between two selected airports, starting on a selected date
after a selected time, can be determined. Using the desired
data on start and finish airport, departure date and time,
we can determine the earliest starting time ‘est’ (in
minutes) for each flight having a connection (direct or via
other flights) with a suitable flight starting on a selected
date and time from the selected airport. This interaction
with a user is defined by a series of input statements.
After that we start with the initialization of the earliest
starting time ‘est’ for all flights to an unreachable value
‘inf’. We may assume that ‘est’ is smaller than ‘inf’:

value start = input (a1) “Enter the start airport: ”.
value selectdate = input (d)
 “Enter departure date (yyyymmdd):”.
value selecttime = input (i4)
 “Enter earliest departure time (hhmm): ”.
value finish = input (a1) “Enter the destination airport: ”.
value inf = total flight its duration.
extend flight with est = inf. /* initialization */
update flight its est = 0
 where from_airport = start
 and departure_date = datef (selectdate)
 and departure_time >= selecttime.
cascade flight its est =
 min connection its previous_flight its est +

previous_flight its duration + between_time
 per next_flight.

Data on connections is processed in an order derived by
the query interpreter from the query specification [19]. In
the previous cascading update the order of assignments is
from ‘connection its previous_flight’ to ‘connection its
next_flight’. End users must be aware of this order, but
they do not have to specify the ordering process itself,
which avoids the risk of specifying an infinite process.
Xplain always requires that specifications respect the
inherently (through attributes) specified data structure. An
example of a correctly specified attribute path is
‘connection its next_flight its from_airport’.
 In a similar way we calculate for each flight the
earliest arrival time ‘eat’ possible in a chain of flights
between that flight and a flight ending in the destination
airport. We assume that the flight arriving at the
destination airport may not depart later than two days
after the selected starting day:

extend flight with eat = inf.
update flight its eat = 0
 where to_airport = finish
 and departure_date >= datef (selectdate)
 and arrival_date <= newdate (selectdate, 2).

cascade flight its eat =
 min connection its next_flight its eat +

next_flight its duration + between_time
 per previous_flight.

Here the destination of assignments by recursive updates
is reversed from ‘connection its next_flight’ to
‘connection its previous_flight’. Now we calculate for
each flight the total duration of a series of flights
connecting the selected start and finish airport. Then we
calculate the minimal value of this chain duration ‘cdur’:

extend flight with cdur = est + eat + duration.
value minimum = min flight its cdur.

Not always a series of flights is available between the two
selected airports on the selected day. Therefore the
following count operation determines the number of
flights with a usable minimal value for ‘flight its cdur’.
The condition ‘est < inf and eat < inf’ deals with the
possibility of a non-connected graph. For example, flights
in a chain of connected flights starting in the start airport,
but not ending in the finish airport have the property that
‘eat = inf’. Similarly, flights in a chain of connected
flights ending in the finish airport, but not starting in the
start airport have the property: ‘est = inf’. The third
possibility is that flights belong to a chain neither
connected with the start airport nor the finish airport.

extend flight with suitable =
 (cdur = minimum and est < inf and eat < inf).
value suitablenumber = count flight where suitable.
value suitablenumber. /* a print command*/
value explanation =

“If suitable number = 0, then there is not any
 suitable connection between the selected
 airports on the chosen day and time: ”.

value explanation.
newline . /* print commands */

More than one chain of connected flights can have the
minimum chain duration. Then more than one suitable
flight has the same earliest starting time ‘est’. A solution
for presenting the query results is to calculate the relative
position of flights participating in a suitable series of
flights starting with the earliest departure time. Then the
results can be presented in an order complying with this
position:

extend flight with position = inf.
update flight its position = 1
 where suitable and est = 0.
cascade flight its position =
 min connection its previous_flight its position + 1
 where previous_flight its suitable
 per next_flight.
value comment =

/“If more than one flight has a same position,
 then there is more than one connection.”.

199

get flight its position, from_airport, to_airport,
 departure_date, departure_time,
 arrival_date, arrival_time, est, eat, duration, cdur
where suitable
per position. /* presentation order */
newline . value comment. /*print commands */

4. Test results

For a test the following less interactive initialization is
applied to all connections XY: both X and Y can have a
value A, B, C, D or E (see figure 1, presenting the items
of our test database). So, 25 connections have to be
checked:

value start = input (a1) “Enter the start airport: “.
value selectdate = datef (20040917).
value selecttime = 1015.
value finish = input (a1) “Enter the finish airport: “.
value inf = total flight its duration.

The remaining query is the same as in section 3. The test
data are complying with figure 1. Some data such as the
flights f2 and f3 seem to be incorrect, but are still correct
because they pass different time zones. We assumed that
all airports have a maximal transfer time between

terminals of 100 minutes. Connections are complying
with this maximal transfer time.

fli fr to dep_
date

dep_
time

arr_
date

arr_
time

dur

1 A B 20040917 1020 20040917 1220 120
2 B C 20040917 1400 20040917 1700 300
3 B C 20040917 1500 20040917 1805 305
4 C E 20040917 2000 20040918 0215 615
5 C D 20040917 1950 20040917 2220 150
6 B A 20040917 1400 20040917 1550 110
7 E B 20040918 1100 20040919 0800 900

Table 1. Test data on flights

connection previous_
flight

next_
flight

between_
time

1 1 2 100
2 1 3 160
3 1 6 100
4 2 4 180
5 4 7 525
6 3 4 115
7 3 5 105
8 2 5 170

Table 2. Test data on connections between flights

Table 3 shows the result of different selections of start
and destination airport.

start

airport
finish
airport

suitable
number

flight

position departure
date

dep.
time

arrival
date

arrival
time

est

eat

dur

cdur

A A 2 1{AB}
6{BA}

1
2

20040917
20040917

1020
1400

20040917
20040917

1220
1550

0
220

210
0

120
110

330
330

A B 1 1{AB} 1 20040917 1020 20040917 1220 0 0 120 120
A C 2 1{AB}

2{BC}
1
2

20040917
20040917

1020
1400

20040917
20040917

1220
1700

0
220

400
0

120
300

520
520

A D 4 1{AB}
2{BC}
3{BC}
5{CD}

1
2
2
3

20040917
20040917
20040917
20040917

1020
1400
1500
1950

20040917
20040917
20040917
20040917

1220
1700
1805
2220

0
220
280
690

720
320
255

0

120
300
305
150

840
840
840
840

A E 4 1{AB}
2{BC}
3{BC}
4{CE}

1
2
2
3

20040917
20040917
20040917
20040917

1020
1400
1500
2000

20040917
20040917
20040917
20040918

1220
1700
1805
0215

0
220
280
700

1195
795
730

0

120
300
305
615

1315
1315
1315
1315

B A 1 6{BA} 1 20040917 1400 20040917 1550 0 0 110 110
B B 3 3{BC}

4{CE}
7{EB}

1
2
3

20040917
20040917
20040918

1500
2000
1100

20040917
20040918
20040919

1805
0215
0800

0
420

1560

2155
1425

0

305
615
900

2460
2460
2460

B C 1 2{BC} 1 20040917 1400 20040917 1700 0 0 300 300
B D 2 3{BC}

5{CD}
1
2

20040917
20040917

1500
1950

20040917
20040917

1805
2220

0
410

255
0

305
150

560
560

B E 2 3{BC}
4{CE}

1
2

20040917
20040917

1500
2000

20040917
20040918

1805
0215

0
420

730
0

305
615

1035
1035

C A 0
C B 2 4{CE}

7{EB}
1
2

20040917
20040918

2000
1100

20040918
20040919

0215
0800

0
1140

1425
0

615
900

2040
2040

C D 1 5{CD} 1 20040917 1950 20040917 2220 0 0 150 150
C E 1 4{CE} 1 20040917 2000 20040918 0215 0 0 615 615

Table 3. Test results

200

The test results demonstrate that the proposed solution is
correct and the found flights satisfy the relationship ‘est +
eat + duration = cdur’. According to figure 1, the
following connections are not available: CA (in table 3)
and CC, DA, DB, DC, DD, DE, EA, EC, ED and EE (not
shown in table 3). Connection EB is available, but not on
the date chosen in the test. In the database there are two
return connections B to B, but the query only produces the
result f3; f4; f7 because this series is faster than f2; f4; f7.
In order to evaluate the usability of the proposed solution,
section 5 presents an estimation of its costs in terms of
disk-access and time consumption on the basis of some
reasonable assumptions.

5. Cost estimations

We assume that flight data is available from all airports
over the world because airports need such data for daily
operations. Of course each airport database contains data
on flights arriving or leaving that airport. Our approach
requires that also data on the possible connections
(transfers) is stored, but these data can be derived from
the local flight data.
 We have to transfer these local data to a central flight
information system. We assume that for each individual
fastest connection problem, we only have to import flight
data related to a selected period of three days. Using these
assumptions we can calculate the number of flight and
connection data for the calculation of a fastest series of
flights between a start and finish airport on a selected date
and time.
 We estimate the number of major civil airports all
over the world is 1000. We assume an average of 30
arrivals and also 30 departures per hour at each airport
during 10 hours per day. This means 300 arrivals and 300
departures per day on each airport, so the number of flight
records that has to be imported over a period of three days
is approximately 1800 per airport, thus 1.800.000 over the
world in three days. However, a starting flight is also an
arrival for the destination airport, so the number of flight
data in three days is 900.000. If the format of each flight
record is 200 bytes, then approximately 180 Mbytes of
data has to be sent to the flight information system.
 We assume that the number of possible connections
after each arrival flight is 100 per day, thus 300 per three
days per airport. In the case of 300 arrivals per day we
have to register 300 * 100 = 30.000 connections for each
airport: 1000 * 30.000 = 30.000.000 connections over the
world in three days. If a connection record takes 100
bytes, this means that an additional 3000 Mbytes must be
transported. Including flight records a total of 3180
Mbytes must be sent to the flight information system. If
the transfer rate is 1 Mbytes/s, this means a total transfer
time of 53 minutes.
 However, it is not necessary to transfer all data on
connections; they can be derived from data on flights and
the transfer time within airports. Probably, depending on
the chosen file organization (applying hashing or indices),
this is less time consuming.

Another problem is the number of disk-accesses required
to store 30.000.000 connection records and 900.000 flight
records. Each connection record has a format of 100
bytes, so we need minimally one disk-access per ten
records: in total 3000.000 disk-accesses. If a disk-access
takes 10 ms, this means a total of 30.000 seconds or 500
minutes for storing connection records. Similarly we can
estimate that storing the flight records takes 180.000 disk-
accesses or 30 minutes. Then storing all these data takes
530 minutes or almost 9 hours. Data can be imported
during nightly hours and because of the many information
requests, all data on future flights and connections must
be locally stored for a period of several months.
 The time complexity of the graph reduction
algorithm is O(dN), where N is the number of arcs
(connections) and d is the depth of the graph (probably
smaller than N). Considering the large number of
connection and flight records needed for processing one
information request using the cascade command, it would
take 53 minutes (3180 Mbytes, 1 Mbytes per sec.) to read
the disk data needed to answer a request about a fastest
connection within three days. A solution is to store all
data permanently in main memory. This would reduce the
time duration with at least a factor 5000 to approximately
0.7 second.

6. Discussion and conclusion

The present paper shows some important results:

• The declarative Xplain language enables end users to

specify recursive operations. We think that earlier
procedural solutions, such as Dijkstra’s shortest path
algorithm [1], are less suitable for end user
programming because they require the application of
control statements with nested loops.

• The underlying algorithm itself is fast and guarantees
termination, which is essential in open systems with
many unknown users: it is not possible to protect such
systems by authorization tables. This contrasts with
the application of recursive views in SQL3 [22], a
language with a syntax that cannot guarantee
termination [3]. Relational languages allow us to
specify procedural operations such as Cartesian
product and join that do not require respecting
referential integrity. In Xplain only the attribute
path’s existing in a data model may be used.

• The proposed semantic data model enables us to
transform a cyclic geometric directed graph for
airports and flights into an acyclic directed graph for
flights and connections. Data on feasible connections
can be derived from flight and airport data.

• The time complexity of the described solution is high
because of the large size of the required data set; still
it can be executed in polynomial time.

Future work has to reveal whether the proposed solution
can also be applied to more complex transitive closure
problems.

201

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and

Analysis of Computer Algorithms, Addison-Wesley
Publishing Company, Reading (MA), p. 208 (1974).

[2] D.A. Bailey, Java structures: Data structures in JAVA
for the principled programmer, MacGraw-Hill, Boston,
USA (1999).

[3] J.A. Bakker and J.H. ter Bekke, A Query Language
Solution for Shortest Path Problems in Cyclic
Geometries, Proceedings International Conference on
Database Applications (DBA 2004) , Innsbruck, Austria
2004, ACTA Press, Calgary (2004).

[4] F. Bancilhon and R. Ramakrishnan, An amateur’s
introduction to recursive query processing strategies,
Proceedings 1986 ACM SIGMOD International
Conference on Management of Data, Washington D.C.,
USA (1986), pp. 16-52.

[5] J. Bang-Jensen and G. Gutin, Digraphs: Theory,
Algorithms and Applications, Springer-Verlag, London,
UK (2001).

[6] Bert Bakker and Johan ter Bekke, Fool Proof Query
Access to Search Engines, Proceedings Third
International Conference on Information Integration
and Web-based Applications & Services (IIWAS 2001) ,
Linz, Austria, W. Winiwarter, S. Bressan and I. K.
Ibrahim (Eds.), Österreichisches Computer
Gesellschaft (2001), pp. 389-394.

[7] T. Conally, C. Begg, A. Strachan, Database systems: A
practical approach to design, implementation and
management, Addison-Wesley, Reading (MA) (1995).

[8] S. Dar, R. Ramakrishnan, A performance study of
transitive closure algorithms, ACM SIGMOD Record,
23 (1994), pp. 454-465.

[9] A. Karayiannis and G. Loizou, Cycle detection in
critical path networks, Information Processing Letters, 7
(1978), pp. 15-19.

[10] J.C. Molluzzo, A first course in discrete mathematics,
Wadsforth, Belmont CA, (1986).

[11] C.H. Papadimitriou, Database Metatheory: Asking the
Big Queries, Proceedings ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database
Systems, San Jose, CA, USA (1995), pp. 1-10.

[12] F. Rolland, The essence of databases, Prentice Hall,
Hemel Hempstead (1998).

[13] A. Rosenthal, S. Heder, U. Dayal and F. Manola,
Traversal Recursion: A Practical Approach to
Supporting Recursive Applications, Proceedings ACM
SIGMOD International Conference on Management
of Data, Washington D.C., USA (1986), pp. 166-176.

[14] D. Suciu and J. Paredaens, Any algorithm in the
complex object algebra with powerset needs
exponential space to compute transitive closure,
Proceedings ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems,
Minneapolis, Minnesota, USA (1994), pp. 201-209.

[15] J.H. ter Bekke, Semantic Data Modeling, Prentice
Hall, Hemel Hempstead (1992).

[16] J.H. ter Bekke, Advantages of a compact semantic
meta model, Proceedings 2nd IEEE Metadata
Conference, Silver Spring, USA (1997),

 http://www.computer.org/conferen/proceed/
meta97/papers/jterbekke/jterbekke.html.

[17] J.H. ter Bekke and J.A. Bakker, Content-driven
specifications for recursive project planning
applications, Proceedings International Conference
on Applied Informatics (AI 2002) , Innsbruck, Austria,
M.H. Hamza (Ed.), ACTA Press, Calgary (2002), pp.
448-452.

[18] J.H. ter Bekke and J.A. Bakker, Recursive queries in
product databases, Proceedings 5th International
Conference on Flexible Query Answering Systems
(FQAS 2002) , Copenhagen, Denmark (2002), Lecture
Notes in Computer Science (Subseries LNAI) Volume
2522, T. Andreasen, A. Motro, H. Christiansen and H.
Legind Larsen (Eds.), Springer-Verlag, Berlin (2002),
pp. 44-55.

[19] J.H. ter Bekke and J.A. Bakker, Fast Recursive Data
Processing in Graphs Using Reduction, Proceedings
International Conference on Applied Informatics (AI
2003), Innsbruck, Austria, M.H. Hamza (Ed.), ACTA
Press, Calgary (2003), pp. 490-494.

[20] J.H ter Bekke and J.A. Bakker, Modeling and
Querying Recursive Data Structures I: Introduction,
Proceedings International Conference on Artificial
Intelligence and Soft Computing (ASC 2003) , Banff,
Canada, H. Leung (Ed.), ACTA Press, Calgary
(2003), pp. 278-282.

[21] J.H ter Bekke and J.A. Bakker, Modeling and
Querying Recursive Data Structures II: A Semantic
Approach, Proceedings International Conference on
Artificial Intelligence and Soft Computing (ASC
2003), Banff, Canada, H. Leung (Ed.), ACTA Press,
Calgary (2003), pp. 283-289.

[22] J.D. Ullman and J. Widom, A First Course in
Database Systems, Prentice Hall, Hemel Hempstead
(1997).

202

