

MODELING AND QUERYING RECURSIVE DATA STRUCTURES
II: A SEMANTIC APPROACH

J.H. ter Bekke and J.A. Bakker

Delft University of Technology
Faculty of Information Technology and Systems
e-mail: {J.H.terBekke, J.A.Bakker}@its.tudelft.nl

ABSTRACT

As shown in the introductory paper [7], the semantic
modeling approach enables us to specify relationships in
an inherent way. Consequently, designers can specify
recursive structures in a way complying with the recursive
mathematical definition of a series of variables. For end
users this has the advantage that they can ignore
procedural aspects in query specifications for recursion;
the required processing details are derived by intelligent
software able to interpret the underlying inherently
structured metadata, which results in a reliable (finite) and
efficient processing. We demonstrate this by examples of
recursive and non-recursive queries using a recursive data
model for family trees, which is implemented in a working
database management system.

KEYWORDS
Query language, recursive query processing, semantic
data modeling, metadata, end user computing, reachability,
transitive closure, expressive power.

1. Introduction

As stated in the preceding paper [7], the definition of a
collection of objects O1, O2, ... is recursive when O1 is
defined on known concepts and the definition of On+1 is
based on the definition of On for positive n: the
predecessor occurs as a property (or attribute) in the
definition of each successor. The semantic approach to
data modeling complies with this definition of recursion:
depending on the context, also in the case of recursive
data models, objects can be interpreted either as ‘type’ or
as ‘attribute’. This is essential for the specification of
recursive queries by end users; they still can apply the its
construct. We confine the discussion to applications for
recursive data structures and require that both recursive
and non-recursive applications are specified declaratively,
thus the application of a declarative language without
explicit recursion, nesting, iteration and navigation. This
absence of procedural details is crucial for end user
computing. Such an approach requires that the software of
a database management system is able to determine the

required processing details from the given query
specification in a reliable and efficient way.
 After a short introduction to the required semantic
concepts in section 2, some queries will be specified using
the recursive data model for family trees in section 3. All
used semantic concepts [1, 2] have been implemented and
extensively tested using the Xplain DBMS, version 5.7 [3].
Therefore section 5 contains some implementation
considerations.

2. Semantic Concepts

Each object in a semantic model is visualized explicitly by
clearly distinguishing between identification and
descriptive properties, which avoids ambiguities and
contradictions in specifications. Only three fundamental
abstractions with clear graphical equivalencies in the
structural diagrams are required to specify semantic
integrity in an inherent way. These abstractions apply the
fundamental type-attribute relationship. A first abstraction
is classification: to categorize objects perceived in some
relevant world into types. A type (identified by a name) is
a fundamental concept; it can be represented by a rectan-
gle in diagrams as in figure 1.

 type person = from_year, to_year,
 mother_person, father_person.

Figure 1. Recursive aggregation

A second abstraction is aggregation: this is defined as the
collection of a certain number of types in a unit, which in
itself can be regarded as a new type. A type occurring in
an aggregation is called an attribute of the new type. Note
the analogy with the mathematical set concept: attributes
are considered as the ’elements’ of a type. Aggregation
allows view independence: we can discuss the obtained

person

type (possibly as a property) without referring to the
underlying attributes. By applying this principle
repeatedly, a hierarchy of types can be set up, for example
the recursive hierarchy for a family tree in figure 1.
Normally such a diagram only shows composite types;
types constructed by aggregation. Base types are not
based on aggregation and are not shown in such a
diagram. A line connecting two facing rectangle sides,
while the aggregate type is placed above its attributes,
indicates aggregation. Aggregation has its counterpart:
the description of a type as a set of attributes is called
decomposition. Because of its definition aggregation does
not require a directed arc in the diagram. As will be
illustrated later, the aggregation relationship can be
applied different directions. A type is completely defined
by listing its attributes, so we could define the type
‘person’ as in figure 1, which is the basis for the
registration of family trees. This definition is in
the earlier given general sense of recursion a proper
recursive definition because a person is defined in terms
of its two predecessors, viz. ‘father_person’ and
‘mother_person’. Both attributes refer to the type
‘person’; the type definition contains therefore an
illustration of the concept of object relativity, saying that
type and attribute are different interpretations of the same
object. The interpretation is determined by the context. For
example with ‘get person’ we retrieve all instances of
‘person’, whereas with ‘get person “Jan” its
mother_person’ we select a specific attribute value. A part
of the family database is given in table 1.

person from_
year

to_
year

father_
person

mother_
person

?

? ? ? ?

..

..

Karen

1809 1892 William Ellen

Joseph

1811 1892 ? Anne

Petra

1838 1912 Joseph Karen

Irene

1839 1899 Joseph Karen

Margaret

1843 1923 Joseph Karen

..

..

Table 1. Part of a family tree database

Type definitions carry semantics; they contain the
essential properties (e.g. uniqueness of the identifications
‘Karen’, ‘Joseph’, etc. and essential relationships (e.g.

related persons ‘William’, ‘Bernhard’, ‘Ellen’, etc. must
occur in the related person instances). Aggregation can be
described using the verb to have. For example, each
instance of ‘person’ has a ‘from_year’, a ‘to_year’, a
‘father_person’ and a ‘mother_person’. Identifications are
properties denoted by type names (see table 1 above).
This interpretation implies singular identifications for
instances (implementation level) and types (conceptual
level). Attributes (not types!) may contain roles; examples
are ‘from_year’ and ‘to_year’, related to base type ‘year’.
The attributes ‘father_person’ and ‘mother_person’ are
related to the type ‘person’. Roles are separated from the
type by an underscore. The expression ’A its B’ denotes
the attribute B of type A.
 Because the recursive data model in figure 1 consists
of only one composite type, the starting point for
recursion (the root in the earlier definition of recursion)
must be given first. In this example we use the default
value “?” for this purpose. Applied to a person this root
instance has itself as father and as mother. As instance
identification this value occurs only once. As attribute
value this value may occur several times (also as a domain
value for other unrelated attributes). This default value
solution allows us to use two-valued logic in query
language statements. The value “..” is used because only
a part of the family tree is given in table 1. It is used to
denote places where defined instance values occur. As a
result all earlier shortcoming of a nested structure are
disappeared:
• All persons (both parent and child) are modeled in the

same way. The desired properties (e.g. being parent or
child) can be derived easily.

• Completeness and consistency is no issue anymore.
Each person has exactly two parents. When a parent
is unknown, this is derivable from the presence of a
certain attribute value as “?”, but not from the
absence of a value.

• The structure contains no undesirable asymmetry. It
is simple to determine the children of a certain person.
It is also simple to determine the parents of a certain
person.

• The essential relationship between persons is
present: from the inherently defined structure it is
clear that a person always has two parents.

• Simple update properties: The fact that a person
becomes parent must be recorded only once. Children
with the same parent are easily to derive.

• The structure contains no redundancy: each fact is
recorded exactly once.

3. Applications

Applications on a recursive data structure can have a
recursive or a non-recursive character. This section
presents a number of examples to illustrate different

interpretations of the same semantic relationship. These
interpretations require different language elements. The
elements are fixed in the Xplain data model; they are
derived from the inherent constraints in a semantic data
model. They prevent pitfalls and misinterpretations and
result also in unique query specifications. A query
consists always of a limited number of semantic
definitions (derivations) and a selection. The first query is
an example of the extend command. This command does
not require any processing order.

Query 1: Determine children

extend person with father = (1.1)
 any person (1.2)
 per father_person. (1.3)
extend person with mother = (1.4)
 any person (1.5)
 per mother_person. (1.6)
get person (1.7)
 where not father and not mother. (1.8)

Brief explanation:
(1.1)..(1.3) We start the query specification with a
definition of a father. A father is a person occurring in at
least one instance as ‘father_person’; this new property is
recorded as a Boolean attribute. A defined extension can
be conceived as a normal attribute, but disappears after
query execution.
(1.4)..(1.6) Analogously the property mother is defined as
a Boolean attribute.
(1.7)..(1.8) Child is a person not being a father and not
being a mother.

Prelude to related persons
Following queries 2 to 6 have to do with persons related in
one or another way to a particular person. For example, we
are interested in brothers and sisters, cousins,
descendants and ancestors of a particular person. In all
cases the user determines the relevant person. For this the
following fixed construct is used in the query
specification:

value name = input(a15) ‘Enter name:’. (0.1)
extend person with himself = (false). (0.2)
update person name its himself = (true). (0.3)

Brief explanation:
(0.1) User is asked to give the name of the relevant person.
The prompt consists of the text ’Enter name:’. A name may
contain at most 15 alphanumeric characters.
(0.2) Initially for all persons a new attribute ‘himself’ is
defined. This attribute is given the value false, denoting
that the person is not the relevant person in question.
(0.3) Only the person with the given name receives a true
value. This update command enables us to select the

person identified with name from the collection of persons.
The update command is also used in the following queries
in order to exclude the root of the family tree.
 The value for the extended attribute ‘himself’ is
determined in all queries in the same way. That is the
reason why the steps (0.1)..(0.3) are not repeated in the
following queries. We start with some non-recursive
applications. The required information can be derived from
the database by using extend commands. These simple
applications are dealing with a fixed number of levels in
the family tree. Examples are:

• Determine the brothers and sisters of a person.
• Determine the cousins of a person.

Brothers and sisters have the same father. Cousins have
the same grandfather, but not the same father. The first
queries require first definitions of persons with these
properties. Then, persons with a special relationship can
be selected from the collection of persons.

Query 2: Determine brothers and sisters

extend person with ownfather = (2.1)
 any person where himself (2.2)
 per father_person. (2.3)
update person ”?” its ownfather = (false). (2.4)
get person (2.5)
 where not himself
 and father_person its ownfather. (2.6)

Brief explanation:
(2.1) The type ‘person’ is extended with attribute
‘ownfather’ denoting whether the person is father of
‘himself’.
(2.2) Function any results in a logical value. The
‘ownfather’ has value true; others have value false.
(2.3) The ‘ownfather’ has a relationship with the relevant
person. Grouping is done on the basis of attribute
‘father_person’. Persons who are not father will have the
value false.
(2.4) The root of the family tree must be excluded. When
the root is not excluded, all persons with unknown father
will be selected.
(2.5) Because no attributes are specified, by default all
attributes of a person are selected.
(2.6) Select persons who satisfy the condition that the
person has the same father, ‘himself’ excluded. Join terms
are not needed because necessary metadata is available.

Query 3: Determine cousins

Cousins of a certain person are those persons having the
same grandfather but not the same father. Each person has
two grandfathers, one via the mother and the other via the
father. We need two similar extends:

extend person with grandfather1 = (3.1)
 any person where himself (3.2)
 per father_person its father_person. (3.3)
update person “?” its grandfather1 = (false) (3.4)
extend person with grandfather2 = (3.5)
any person where himself (3.6)
 per mother_person its father_person. (3.7)
update person “?” its grandfather2 = (false) (3.8)
extend person with ownfather = (3.9)
 any person where himself (3.10)
 per father_person. (3.11)
update person “?” its ownfather = (false) (3.12)
get person (3.13)
 where not father_person its ownfather (3.14)
 and (father_person its father_person
 its grandfather1 (3.15)
 or mother_person its father_person
 its grandfather2). (3.16)

Brief explanation:
(3.1)..(3.4) We determine the first grandfather via the
person’s father.
(3.5)..(3.8) The second grandfather is determined.
(3.9)..(3.12) The father is determined to be able to exclude
brothers, sisters and ‘himself’.
(3.13)..(3.16) Cousins do not have the same father and
have one of the two grandfathers.

Foregoing solutions have all the same structure: a number
of derivations followed by a selection. Recursive queries
consist (according the definition of recursion) always of at
least two steps: initialization and cascade (the recurrent
term). The recurrent term is completely driven by the
database contents. The value of a recurrent term can
change during execution. An extend-command can
therefore not be applied: it is not possible to use a value
for modification while its definition is not completed (or
even not exists). That is the reason why all recursive
queries contain the cascade update command. In this
command both directions present in a relationship can be
used.
 The definite relationship requires the its construct (for
example: ‘get person its mother_person’), whereas the
variable relationship (for example: ‘count person per
mother_person’) requires a set function and the per
construct.

Query 4: Determine descendants

Descendants of a certain person have a father or mother
who is also a descendant. The start of the recursion is the
person ‘himself’. Next the cascade is executed. A person
is a descendant if it concerns ‘himself’ or if father or
mother is already a descendant. The necessary ordering
(first father and mother) is determined during query
parsing and is immediately used in query execution. This
ordering is determined by the software system (in our case

Lex and Yacc) using the metadata.

extend person with descendant = (false). (4.1)
update person name its descendant = (true). (4.2)
cascade person its descendant = (4.3)
 (descendant (4.4)
 or father_person its descendant (4.5)
 or mother_person its descendant). (4.6)
get person its from_year (4.7)
 where not himself and descendant (4.8)
 per from_year. (4.9)

Brief explanation:
(4.1)..(4.2) Person ‘himself’ is the starting point for the
recursive process.
(4.3)..(4.6) The cascade command contains the recurrent
term. It is important that father and mother are marked as a
descendant before the person can be marked as a
descendant. The root cannot be a descendant.
(4.7)..(4.9) Descendants, ‘himself’ excluded, are selected.
The result is given in ascending ‘from_year’ order.

The definite relationship can also be used in the reverse
direction. In that case a set function is needed together
with the per construct. Example queries concern the
determination of ancestors and forefathers. Again a
cascade follows the initialization. Different grouping
criteria can be used.

Query 5: Determine ancestors

extend person with ancestor = (false). (5.1)
update person name its ancestor = (true). (5.2)
cascade person its ancestor = (5.3)
 any person where ancestor (5.4)
 per father_person, mother_person. (5.5)
update person “?” its ancestor = (false). (5.6)
get person its from_year (5.7)
 where not himself and ancestor (5.8)
 per from_year. (5.9)

Brief explanation:
(5.1)..(5.2) The person with the given name is starting
point for the cascade command.
(5.3)..(5.5) In the recurrent term for the determination of
ancestors, fathers and mothers do play a role. When a
person is already ancestor, then father and mother is also
ancestor.
(5.6)..(5.9) The root of the family tree is excluded. Select all
ancestors and exclude the person ‘himself’. The result is
given in ascending order of ‘from_year’ (‘per from_year’).

Query 6: Determine forefathers.

In this query we are interested in the direct ancestor line in
the family tree, that is the line: person ‘himself’, father
(person’s father), grandfather (father’s father), etc.

extend person with forefather = (false). (6.1)
update person name its forefather = (true). (6.2)
cascade person its forefather = (6.3)
 any person where forefather (6.4)
 per father_person. (6.5)
update person “?” its forefather = (false). (6.6)
get person its from_year (6.7)
 where not himself and forefather (6.8)
 per from_year. (6.9)

Brief explanation:
(6.1)..(6.2) The starting point for recursion is given.
(6.3)..(6.5) The father plays a role in the recurrent term.
(6.6)..(6.9) The root of the family tree is excluded. Select all
forefathers, the root excluded. The result is given in
ascending order of ‘from_year’ (‘per from_year’).

Query 7: Determine number of generations.

extend person with generation = -1. (7.1)
cascade person its generation = (7.2)
max (father_person its generation,
 mother_person its generation) + 1 (7.3)
get max person its generation. (7.4)

Brief explanation:
(7.1) The root of the family tree has ‘himself’ as a father
and mother: the generation should initially start with -1.
The cascade command will set this value to 0.
(7.2)..(7.3) A child from a father and/or a mother will be a
person of the next generation. If only the direct
descendants line is needed the maximum of father’s and
mother’s generation should be replaced by the attribute:
‘father_person its generation’.
(7.4) The maximum value for generation is selected.

The last example illustrates that not only logical
operations but also computations can be specified by
cascade commands.

4. Consequences

In the presented unique approach both designer and end
user do not specify nor use navigation through data; they
only follow path’s existing in the model. This absence of
procedural details in their specifications requires that the
responsibility for process ordering be delegated solely to
the software system.

Because only definite relationships may be used, the
system must take this responsibility using the underlying
data model. This separation of concerns has been
implemented in the Xplain software system version 5.7 and
has two important consequences:

• Ordering is not specified
Designers don’t have to tune their design to the
processing order desired by end users: ordering can
be used on the fly without any warning.

• Errors are reduced
Incorrect or incomplete process specification is not an
issue anymore, which is important for both designer
and user. The software guarantees finiteness of
processing.

It took us much time before we clearly understood that the
required procedural details (ordering, guaranteeing
termination) for recursive processing could be inferred
from declarative query specifications. Although this was
already realized for non-recursive queries (also in
relational systems), the Xplain approach has given a
fundamental extension to the expressive power of a
declarative query language. Advantages of this new
approach are gigantic:

• A possible recursive ordering has no consequences

for storage and access to data. Recursive processes
can be specified on the fly, without procedural details.

• The correct and optimal processing is in all cases
determined by software. This implies a gain of time for
all database users.

• Processes are reliable because of a minor dependency
of user and designer. Only the software guarantees
the finiteness of applications. This is important in
environments where several users are using the same
database. This becomes even more important when
databases are accessible by an enormous number of
unknown users through the Internet; then it is
impossible to protect systems by authorization tables.

5. Implementation

We can distinguish two forms of the cascade update
command: the first form is based the use of on a set
function and the other form without set function. The first
form uses the variable (derivable) relationship and the
second form uses the specified definite relationship. The
general structure of these commands is as follows:

1. cascade <subtype> its <cascade attribute>
 = <function> <maintype> its <expression>
 per <group>.

2. cascade <subtype> its <cascade attribute>
 = <expression>.

In case of a recursive data structure both <subtype> and
<maintype> indicate the same type from the data model.
The other difference is that <group> may consist of two
attributes (‘per father_person, mother_person’) instead of

only one attribute. The <group> attributes must be related
to <subtype>. Also this is easily determined during query
parsing.
 The required ordering is defined by the instance
related to the <cascade attribute> in <expression> and the
<cascade attribute> in the instance of <maintype> related
to <group>. There is only a recursive process if both
<expression> and <group> are related to different roles of
the type with the <cascade attribute> of <maintype>. A
processing order is determined such that <expression> of
an instance is known before the value of <cascade
attribute> is assigned. During query preparation the
recursive ordering of instances in <maintype> is
determined using the different roles.
 The second form of the cascade command is unique
for recursive data structures. There is only a recursive
process if <expression> contains the <cascade attribute>.
The related instance is determined by using the different
roles. Query processing is such that the values in
<expression> are known before the result is assigned to
<cascade attribute>.

An overview of the foregoing recursive queries is given in
table 2; each step in a recursive process uses the value of
a cascade attribute belonging to an originating instance
(of ‘person’) and assigns a calculated value to a destined
instance (of ‘person’).
 The ordering of these successive assignments
(source and destination) is inferred from the query
specification. The query language processor determines
all metadata required for query execution. This is done
during parsing time of the query. In our case Lex and Yacc
determine the required recursive ordering.

query cascade
attribute

source destination

4 person its
descendant

father_person,
mother_person

person

5 person its
ancester

person father_person,
mother_person

6 person its
forefather

person father_person

7 person its
generation

father_person,
mother_person

person

Table 2. Cascade attributes and direction
 of recursive operations

Query execution consists of the following steps:

1. Determine the recursive ordering for the processing of
instances of <maintype>. Present a clear error
message if this ordering cannot be determined.

2. Execute the command as an update command
according the ordering from step 1.

A description of the implementation of step 1 in Xplain
DBMS (including error handling) has been given in [6].
Normally the processing of a query command consists
only of step 2, in which a system defined ordering is used.
This is also the ordering for the update command in case
the cascade command is used without fulfilling the
required preconditions.
 The performance of this declarative solution for
recursive queries is extremely high. Processing of
recursive queries (including parsing, execution and
presentation of the result) is within almost linear
processing time. This was already confirmed by extensive
tests on small, medium and large databases [4, 5]. The
queries in this paper have only been tested on a small
database concerning the family tree of a royal family as
found in literature consisting of 80 persons and 10
generations. The elapsed time for previous queries was
always within 0.06 sec. on a Pentium II notebook under
standard Linux.

6. Conclusion

The semantic model can be used to represent important
mathematical structures as graphs and recursive data
structures. The consequence of inherent representation of
definite relationships is that both recursive and non-
recursive applications can be described using a
declarative query language. This means that the semantic
model is more than relational complete.
Designers and users don’t have to specify procedural
details; all required semantic information is derived on the
fly from inherently structured data by a query language
processor.
 The emphasis of other approaches on variable
relationships has caused blockades on several fronts.
View modeling (modeling a singular application) instead of
conceptual modeling makes it difficult to derive other
views. Furthermore, recursive applications must be
specified in complex computer programs (including
recursion, nesting, navigation and iteration) instead of
declarative queries. These shortcomings hold for
hierarchical, network and object-oriented models.
 Exceptions are the relational and the semantic model.
Both emphasize definite relationships, but only the
semantic model endorses an inherent specification of
definite relationships. The resulting exchangeability of
type and attribute enables us to use the semantic model
for declarative specifications of recursive queries, also on
recursive data structures.

References

[1] F. Rolland, The essence of databases, Prentice Hall,

Hemel Hempstead, 1998.
[2] J.H. ter Bekke, Semantic Data Modeling, Prentice

Hall, Hemel Hempstead, 1992.
[3] J.H. ter Bekke, Advantages of a compact semantic

meta model, Proceedings 2nd IEEE Metadata
Conference, Silver Spring (1997).
http://www.computer.org/conferen/proceed/meta97/p
apers/jterbekke/jterbekke.html.

[4] J.H. ter Bekke and J.A. Bakker, Recursive queries in
product databases, Proceedings 5th International
Conference on Flexible Query Answering Systems
(FQAS 2002), Copenhagen, Denmark, October 27-29,
2002, Lecture Notes in Computer Science (Subseries
LNAI) Vol. 2522, T. Andreasen, A. Motro, H.
Christiansen, H. Legind Larsen (Eds.),
Springer-Verlag, Berlin-Heidelberg (2002), pp. 44-55.

[5] J.H. ter Bekke and J.A. Bakker, Content-driven

specifications for recursive project planning
applications, Proceedings International Conference
on Applied Informatics (AI 2002), Innsbruck, Austria
(2002), ed. M.H. Hamza, pp. 448 - 452.

[6] J.H. ter Bekke and J.A. Bakker, Fast Recursive Data
Processing in Graphs Using Reduction, Proceedings
International Conference on Applied Informatics (AI
2003), Innsbruck, Austria (2003).

[7] J.H. ter Bekke and J.A. Bakker, Modeling and Querying
Recursive Data Structures I: Introduction,
Proceedings International Conference on Artificial
Intelligence and Soft Computing (ASC 2003), Banff,
Canada (2003).

