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ABSTRACT 
 
As shown in the introductory paper [7], the semantic 
modeling approach enables us to specify relationships in 
an inherent way. Consequently, designers can specify 
recursive structures in a way complying with the recursive 
mathematical definition of a series of variables. For end 
users this has the advantage that they can ignore 
procedural aspects in query specifications for recursion; 
the required processing details are derived by intelligent 
software able to interpret the underlying inherently 
structured metadata, which results in a reliable (finite) and 
efficient processing. We demonstrate this by examples of 
recursive and non-recursive queries using a recursive data 
model for family trees, which is implemented in a working 
database management system. 
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1. Introduction 
 
As stated in the preceding paper [7], the definition of a 
collection of objects O1, O2, ... is recursive when O1 is 
defined on known concepts and the definition of On+1 is 
based on the definition of On for positive n: the 
predecessor occurs as a property (or attribute) in the 
definition of each successor. The semantic approach to 
data modeling complies with this definition of recursion: 
depending on the context, also in the case of recursive 
data models, objects can be interpreted either as ‘type’ or 
as ‘attribute’. This is essential for the specification of 
recursive queries by end users; they still can apply the its 
construct. We confine the discussion to applications for 
recursive data structures and require that both recursive 
and non-recursive applications are specified declaratively, 
thus the application of a declarative language without 
explicit recursion, nesting, iteration and navigation. This 
absence of procedural details is crucial for end user 
computing. Such an approach requires that the software of 
a database management system is able to determine the 

required processing details from the given query 
specification in a reliable and efficient way.  
 After a short introduction to the required semantic 
concepts in section 2, some queries will be specified using 
the recursive data model for family trees in section 3. All 
used semantic concepts [1, 2] have been implemented and 
extensively tested using the Xplain DBMS, version 5.7 [3]. 
Therefore section 5 contains some implementation 
considerations. 
 
 
2. Semantic Concepts 
 
Each object in a semantic model is visualized explicitly by 
clearly distinguishing between identification and 
descriptive properties, which avoids ambiguities and 
contradictions in specifications. Only three fundamental 
abstractions with clear graphical equivalencies in the 
structural diagrams are required to specify semantic 
integrity in an inherent way. These abstractions apply the 
fundamental type-attribute relationship. A first abstraction 
is classification: to categorize objects perceived in some 
relevant world into types. A type (identified by a name) is 
a fundamental concept; it can be represented by a rectan-
gle in diagrams as in figure 1.  
 
 
 
 
 
 
 
 
 

       type person =  from_year, to_year,  
   mother_person, father_person. 
 

Figure 1. Recursive aggregation 
 
A second abstraction is aggregation: this is defined as the 
collection of a certain number of types in a unit, which in 
itself can be regarded as a new type. A type occurring in 
an aggregation is called an attribute of the new type. Note 
the analogy with the mathematical set concept: attributes 
are considered as the ’elements’ of a type. Aggregation 
allows view independence: we can discuss the obtained 

person 



 

 

type (possibly as a property) without referring to the 
underlying attributes. By applying this principle 
repeatedly, a hierarchy of types can be set up, for example 
the recursive hierarchy for a family tree in figure 1. 
Normally such a diagram only shows composite types; 
types constructed by aggregation. Base types are not 
based on aggregation and are not shown in such a 
diagram. A line connecting two facing rectangle sides, 
while the aggregate type is placed above its attributes, 
indicates aggregation. Aggregation has its counterpart: 
the description of a type as a set of attributes is called 
decomposition. Because of its definition aggregation does 
not require a directed arc in the diagram. As will be 
illustrated later, the aggregation relationship can be 
applied different directions. A type is completely defined 
by listing its attributes, so we could define the type 
‘person’ as in figure 1, which is the basis for the 
registration of family trees.  This definition is in 
the earlier given general sense of recursion a proper 
recursive definition because a person is defined in terms 
of its two predecessors, viz. ‘father_person’ and 
‘mother_person’. Both attributes refer to the type 
‘person’; the type definition contains therefore an 
illustration of the concept of object relativity, saying that 
type and attribute are different interpretations of the same 
object. The interpretation is determined by the context. For 
example with ‘get person’ we retrieve all instances of 
‘person’, whereas with ‘get person “Jan” its 
mother_person’ we select a specific attribute value. A part 
of the family database is given in table 1. 
 

person from_ 
year 

to_ 
year 

father_ 
person 

mother_ 
person 

? 
 

? ? ? ? 

.. 
 

.. .. .. .. 

Karen 
 

1809 1892 William Ellen 

Joseph 
 

1811 1892 ? Anne 

Petra 
 

1838 1912 Joseph Karen 

Irene 
 

1839 1899 Joseph Karen 

Margaret  
 

1843 1923 Joseph Karen 

.. 
 

.. .. .. .. 

 
Table 1. Part of a family tree database 

 
Type definitions carry semantics; they contain the 
essential properties (e.g. uniqueness of the identifications 
‘Karen’, ‘Joseph’, etc. and essential relationships (e.g. 

related persons ‘William’, ‘Bernhard’, ‘Ellen’, etc. must 
occur in the related person instances). Aggregation can be 
described using the verb to have. For example, each 
instance of ‘person’ has a ‘from_year’, a ‘to_year’, a 
‘father_person’ and a ‘mother_person’. Identifications are 
properties denoted by type names (see table 1 above). 
This interpretation implies singular identifications for 
instances (implementation level) and types (conceptual 
level). Attributes (not types!) may contain roles; examples 
are ‘from_year’ and ‘to_year’, related to base type ‘year’. 
The attributes ‘father_person’ and ‘mother_person’ are 
related to the type ‘person’. Roles are separated from the 
type by an underscore. The expression ’A its B’ denotes 
the attribute B of type A. 
 Because the recursive data model in figure 1 consists 
of only one composite type, the starting point for 
recursion (the root in the earlier definition of recursion) 
must be given first. In this example we use the default 
value “?” for this purpose. Applied to a person this root 
instance has itself as father and as mother. As instance 
identification this value occurs only once. As attribute 
value this value may occur several times (also as a domain 
value for other unrelated attributes). This default value 
solution allows us to use two-valued logic in query 
language statements. The value “..” is used because only 
a part of the family tree is given in table 1. It is used to 
denote places where defined instance values occur. As a 
result all earlier shortcoming of a nested structure are 
disappeared: 
• All persons (both parent and child) are modeled in the 

same way. The desired properties (e.g. being parent or 
child) can be derived easily. 

• Completeness and consistency is no issue anymore. 
Each person has exactly two parents. When a parent 
is unknown, this is derivable from the presence of a 
certain attribute value as “?”, but not from the 
absence of a value. 

• The structure contains no undesirable asymmetry. It 
is simple to determine the children of a certain person. 
It is also simple to determine the parents of a certain 
person.  

• The essential relationship between persons is 
present: from the inherently defined structure it is 
clear that a person always has two parents. 

• Simple update properties: The fact that a person 
becomes parent must be recorded only once. Children 
with the same parent are easily to derive. 

• The structure contains no redundancy: each fact is 
recorded exactly once. 

 
 
3. Applications 
 
Applications on a recursive data structure can have a 
recursive or a non-recursive character. This section 
presents a number of examples to illustrate different 



 

 

interpretations of the same semantic relationship. These 
interpretations require different language elements. The 
elements are fixed in the Xplain data model; they are 
derived from the inherent constraints in a semantic data 
model. They prevent pitfalls and misinterpretations and 
result also in unique query specifications. A query 
consists always of a limited number of semantic 
definitions (derivations) and a selection. The first query is 
an example of the extend command. This command does 
not require any processing order. 
 
Query 1: Determine children 
 
extend person with father =  (1.1) 
 any person   (1.2) 
 per father_person.  (1.3) 
extend person with mother =  (1.4) 
 any person   (1.5) 
 per mother_person.  (1.6) 
get person    (1.7) 
 where not father and not mother. (1.8) 
 
Brief explanation: 
(1.1)..(1.3) We start the query specification with a 
definition of a father. A father is a person occurring in at 
least one instance as ‘father_person’; this new property is 
recorded as a Boolean attribute. A defined extension can 
be conceived as a normal attribute, but disappears after 
query execution. 
(1.4)..(1.6) Analogously the property mother is defined as 
a Boolean attribute. 
(1.7)..(1.8) Child is a person not being a father and not 
being a mother. 
 
 
Prelude to related persons 
Following queries 2 to 6 have to do with persons related in 
one or another way to a particular person. For example, we 
are interested in brothers and sisters, cousins, 
descendants and ancestors of a particular person. In all 
cases the user determines the relevant person. For this the 
following fixed construct is used in the query 
specification: 
 
value name = input(a15) ‘Enter name:’. (0.1) 
extend person with himself = (false). (0.2) 
update person name its himself = (true). (0.3) 
 
Brief explanation: 
(0.1) User is asked to give the name of the relevant person. 
The prompt consists of the text ’Enter name:’. A name may 
contain at most 15 alphanumeric characters. 
(0.2) Initially for all persons a new attribute ‘himself’ is 
defined. This attribute is given the value false, denoting 
that the person is not the relevant person in question. 
(0.3) Only the person with the given name receives a true 
value. This update command enables us to select the 

person identified with name from the collection of persons. 
The update command is also used in the following queries 
in order to exclude the root of the family tree. 
 The value for the extended attribute ‘himself’ is 
determined in all queries in the same way. That is the 
reason why the steps (0.1)..(0.3) are not repeated in the 
following queries. We start with some non-recursive 
applications. The required information can be derived from 
the database by using extend commands. These simple 
applications are dealing with a fixed number of levels in 
the family tree. Examples are: 
 
• Determine the brothers and sisters of a person. 
• Determine the cousins of a person. 
 
Brothers and sisters have the same father. Cousins have 
the same grandfather, but not the same father. The first 
queries require first definitions of persons with these 
properties. Then, persons with a special relationship can 
be selected from the collection of persons. 
 
Query 2: Determine brothers and sisters 
 
extend person with ownfather =  (2.1) 
 any person where himself  (2.2) 
 per father_person.   (2.3) 
update person ”?” its ownfather = (false). (2.4) 
get person     (2.5) 
 where not himself   
      and father_person its ownfather. (2.6) 
 
Brief explanation: 
(2.1) The type ‘person’ is extended with attribute 
‘ownfather’ denoting whether the person is father of 
‘himself’. 
(2.2) Function any results in a logical value. The 
‘ownfather’ has value true; others have value false. 
(2.3) The ‘ownfather’ has a relationship with the relevant 
person. Grouping is done on the basis of attribute 
‘father_person’. Persons who are not father will have the 
value false. 
(2.4) The root of the family tree must be excluded. When 
the root is not excluded, all persons with unknown father 
will be selected. 
(2.5) Because no attributes are specified, by default all 
attributes of a person are selected. 
(2.6) Select persons who satisfy the condition that the 
person has the same father, ‘himself’ excluded. Join terms 
are not needed because necessary metadata is available. 
 
 
Query 3: Determine cousins 
 
Cousins of a certain person are those persons having the 
same grandfather but not the same father. Each person has 
two grandfathers, one via the mother and the other via the 
father. We need two similar extends: 



 

 

extend person with grandfather1 =  (3.1) 
 any person where himself  (3.2) 
 per father_person its father_person. (3.3) 
update person “?” its grandfather1 = (false) (3.4) 
extend person with grandfather2 =  (3.5) 
any person where himself   (3.6) 
 per mother_person its father_person. (3.7) 
update person “?” its grandfather2 = (false) (3.8) 
extend person with ownfather =  (3.9) 
 any person where himself  (3.10) 
 per father_person.   (3.11) 
update person “?” its ownfather = (false) (3.12) 
get person    (3.13) 
   where not father_person its ownfather   (3.14) 
   and (father_person its father_person  
  its grandfather1  (3.15) 
   or mother_person its father_person  
   its grandfather2).  (3.16) 
 
Brief explanation: 
(3.1)..(3.4) We determine the first grandfather via the 
person’s father. 
(3.5)..(3.8) The second grandfather is determined. 
(3.9)..(3.12) The father is determined to be able to exclude 
brothers, sisters and ‘himself’. 
(3.13)..(3.16) Cousins do not have the same father and 
have one of the two grandfathers. 
 
Foregoing solutions have all the same structure: a number 
of derivations followed by a selection. Recursive queries 
consist (according the definition of recursion) always of at 
least two steps: initialization and cascade (the recurrent 
term). The recurrent term is completely driven by the 
database contents. The value of a recurrent term can 
change during execution. An extend-command can 
therefore not be applied: it is not possible to use a value 
for modification while its definition is not completed (or 
even not exists). That is the reason why all recursive 
queries contain the cascade update command. In this 
command both directions present in a relationship can be 
used.  
 The definite relationship requires the its construct (for 
example: ‘get person its mother_person’), whereas the 
variable relationship (for example: ‘count person per 
mother_person’) requires a set function and the per 
construct. 
 
Query 4: Determine descendants 
 
Descendants of a certain person have a father or mother 
who is also a descendant. The start of the recursion is the 
person ‘himself’. Next the cascade is executed. A person 
is a descendant if it concerns ‘himself’ or if father or 
mother is already a descendant. The necessary ordering 
(first father and mother) is determined during query 
parsing and is immediately used in query execution. This 
ordering is determined by the software system (in our case 

Lex and Yacc) using the metadata. 
 
extend person with descendant = (false). (4.1) 
update person name its descendant = (true). (4.2) 
cascade person its descendant =  (4.3) 
 (descendant     (4.4) 
  or father_person its descendant  (4.5) 
  or mother_person its descendant ). (4.6) 
get person its from_year   (4.7) 
 where not himself and descendant (4.8) 
 per from_year.   (4.9) 
 
Brief explanation: 
(4.1)..(4.2) Person ‘himself’ is the starting point for the 
recursive process. 
(4.3)..(4.6) The cascade command contains the recurrent 
term. It is important that father and mother are marked as a 
descendant before the person can be marked as a 
descendant. The root cannot be a descendant. 
(4.7)..(4.9) Descendants, ‘himself’ excluded, are selected. 
The result is given in ascending ‘from_year’ order. 
 
The definite relationship can also be used in the reverse 
direction. In that case a set function is needed together 
with the per construct. Example queries concern the 
determination of ancestors and forefathers. Again a 
cascade follows the initialization. Different grouping 
criteria can be used.  
 
Query 5: Determine ancestors 
 
extend person with ancestor = (false). (5.1) 
update person name its ancestor = (true). (5.2) 
cascade person its ancestor =  (5.3) 
 any person where ancestor  (5.4) 
 per father_person, mother_person. (5.5) 
update person “?” its ancestor = (false). (5.6) 
get person its from_year   (5.7) 
 where not himself and ancestor (5.8) 
 per from_year.   (5.9) 
 
Brief explanation: 
(5.1)..(5.2) The person with the given name is starting 
point for the cascade command. 
(5.3)..(5.5) In the recurrent term for the determination of 
ancestors, fathers and mothers do play a role. When a 
person is already ancestor, then father and mother is also 
ancestor. 
(5.6)..(5.9) The root of the family tree is excluded. Select all 
ancestors and exclude the person ‘himself’. The result is 
given in ascending order of ‘from_year’ (‘per from_year’). 
 
Query 6: Determine forefathers. 
 
In this query we are interested in the direct ancestor line in 
the family tree, that is the line: person ‘himself’, father 
(person’s father), grandfather (father’s father), etc. 



 

 

extend person with forefather = (false). (6.1) 
update person name its forefather = (true). (6.2) 
cascade person its forefather =  (6.3) 
 any person where forefather  (6.4) 
 per father_person.   (6.5) 
update person “?” its forefather = (false). (6.6) 
get person its from_year   (6.7) 
 where not himself and forefather (6.8) 
 per from_year.   (6.9) 
 
Brief explanation: 
(6.1)..(6.2) The starting point for recursion is given. 
(6.3)..(6.5) The father plays a role in the recurrent term. 
(6.6)..(6.9) The root of the family tree is excluded. Select all 
forefathers, the root excluded. The result is given in 
ascending order of ‘from_year’ (‘per from_year’). 
 
 
Query 7: Determine number of generations. 
 
extend person with generation = -1.  (7.1) 
cascade person its generation =  (7.2) 
max (father_person its generation,  
         mother_person its generation) + 1 (7.3) 
get max person its generation.  (7.4) 
 
Brief explanation: 
(7.1) The root of the family tree has ‘himself’ as a father 
and mother: the generation should initially start with -1. 
The cascade command will set this value to 0. 
(7.2)..(7.3) A child from a father and/or a mother will be a 
person of the next generation. If only the direct 
descendants line is needed the maximum of father’s and 
mother’s generation should be replaced by the attribute: 
‘father_person its generation’.  
(7.4) The maximum value for generation is selected. 
 
The last example illustrates that not only logical 
operations but also computations can be specified by 
cascade commands. 
 
 
4. Consequences 
 
In the presented unique approach both designer and end 
user do not specify nor use navigation through data; they 
only follow path’s existing in the model. This absence of 
procedural details in their specifications requires that the 
responsibility for process ordering be delegated solely to 
the software system.  
 
Because only definite relationships may be used, the 
system must take this responsibility using the underlying 
data model. This separation of concerns has been 
implemented in the Xplain software system version 5.7 and 
has two important consequences: 

• Ordering is not specified 
Designers don’t have to tune their design to the 
processing order desired by end users: ordering can 
be used on the fly without any warning.  

• Errors are reduced 
Incorrect or incomplete process specification is not an 
issue anymore, which is important for both designer 
and user. The software guarantees finiteness of 
processing.  

 
It took us much time before we clearly understood that the 
required procedural details (ordering, guaranteeing 
termination) for recursive processing could be inferred 
from declarative query specifications. Although this was 
already realized for non-recursive queries (also in 
relational systems), the Xplain approach has given a 
fundamental extension to the expressive power of a 
declarative query language. Advantages of this new 
approach are gigantic: 
 
• A possible recursive ordering has no consequences 

for storage and access to data. Recursive processes 
can be specified on the fly, without procedural details. 

• The correct and optimal processing is in all cases 
determined by software. This implies a gain of time for 
all database users. 

• Processes are reliable because of a minor dependency 
of user and designer. Only the software guarantees 
the finiteness of applications. This is important in 
environments where several users are using the same 
database. This becomes even more important when 
databases are accessible by an enormous number of 
unknown users through the Internet; then it is 
impossible to protect systems by authorization tables.  

 
 
5. Implementation 
 
We can distinguish two forms of the cascade update 
command: the first form is based the use of on a set 
function and the other form without set function. The first 
form uses the variable (derivable) relationship and the 
second form uses the specified definite relationship. The 
general structure of these commands is as follows: 
 
1. cascade <subtype> its <cascade attribute>  
          = <function> <maintype> its <expression>  
                      per <group>. 
 
2. cascade <subtype> its <cascade attribute> 
          = <expression>. 
 
In case of a recursive data structure both <subtype> and 
<maintype> indicate the same type from the data model. 
The other difference is that <group> may consist of two 
attributes (‘per father_person, mother_person’) instead of 



 

 

only one attribute. The <group> attributes must be related 
to <subtype>. Also this is easily determined during query 
parsing. 
 The required ordering is defined by the instance 
related to the <cascade attribute> in <expression> and the 
<cascade attribute> in the instance of <maintype> related 
to <group>. There is only a recursive process if both 
<expression> and <group> are related to different roles of 
the type with the <cascade attribute> of <maintype>. A 
processing order is determined such that <expression> of 
an instance is known before the value of <cascade 
attribute> is assigned. During query preparation the 
recursive ordering of instances in <maintype> is 
determined using the different roles. 
 The second form of the cascade command is unique 
for recursive data structures. There is only a recursive 
process if <expression> contains the <cascade attribute>. 
The related instance is determined by using the different 
roles. Query processing is such that the values in 
<expression> are known before the result is assigned to 
<cascade attribute>.  
 
An overview of the foregoing recursive queries is given in 
table 2; each step in a recursive process uses the value of 
a cascade attribute belonging to an originating instance 
(of ‘person’) and assigns a calculated value to a destined 
instance (of ‘person’).  
 The ordering of these successive assignments 
(source and destination) is inferred from the query 
specification. The query language processor determines 
all metadata required for query execution. This is done 
during parsing time of the query. In our case Lex and Yacc 
determine the required recursive ordering.  
 
 

query cascade  
attribute  

 

source  destination 

4 person its 
descendant 
 

father_person, 
mother_person 

person 

5 person its 
ancester 
 

person father_person, 
mother_person 

6 person its 
forefather 
 

person father_person 

7 person its 
generation 
 

father_person, 
mother_person 

person 

 
 

Table 2. Cascade attributes and direction 
                               of recursive operations 
 
Query execution consists of the following steps: 

1. Determine the recursive ordering for the processing of 
instances of <maintype>. Present a clear error 
message if this ordering cannot be determined. 

2. Execute the command as an update command 
according the ordering from step 1. 

 
A description of the implementation of step 1 in Xplain 
DBMS (including error handling) has been given in [6]. 
Normally the processing of a query command consists 
only of step 2, in which a system defined ordering is used. 
This is also the ordering for the update command in case 
the cascade command is used without fulfilling the 
required preconditions. 
 The performance of this declarative solution for 
recursive queries is extremely high. Processing of 
recursive queries (including parsing, execution and 
presentation of the result) is within almost linear 
processing time. This was already confirmed by extensive 
tests on small, medium and large databases [4, 5]. The 
queries in this paper have only been tested on a small 
database concerning the family tree of a royal family as 
found in literature consisting of 80 persons and 10 
generations. The elapsed time for previous queries was 
always within 0.06 sec. on a Pentium II notebook under 
standard Linux. 
 
 
6. Conclusion 
 
The semantic model can be used to represent important 
mathematical structures as graphs and recursive data 
structures. The consequence of inherent representation of 
definite relationships is that both recursive and non-
recursive applications can be described using a 
declarative query language. This means that the semantic 
model is more than relational complete.  
Designers and users don’t have to specify procedural 
details; all required semantic information is derived on the 
fly from inherently structured data by a query language 
processor. 
 The emphasis of other approaches on variable 
relationships has caused blockades on several fronts. 
View modeling (modeling a singular application) instead of 
conceptual modeling makes it difficult to derive other 
views. Furthermore, recursive applications must be 
specified in complex computer programs (including 
recursion, nesting, navigation and iteration) instead of 
declarative queries. These shortcomings hold for 
hierarchical, network and object-oriented models.  
 Exceptions are the relational and the semantic model. 
Both emphasize definite relationships, but only the 
semantic model endorses an inherent specification of 
definite relationships. The resulting exchangeability of 
type and attribute enables us to use the semantic model 
for declarative specifications of recursive queries, also on 
recursive data structures.  
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