

Personal Intelligent
Travel Assistant

A distributed approach

 Technical report
 Martijn Beelen, Bogdan Tatomir, Leon Rothkrantz
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
July 2004

Preface
At the research lab Decis at Delft there is a project running on crisis management. A main
research topic is on communication during a crisis. Agents in the crisis field are assumed to
report about events in the crisis world. This information should be processed, fused and send
to other agents in the field. Traditionally agents are reporting to a central point (emergency
room) using mobile phones or wired communication networks. From there the information is
processed and distributed.
In the current research we took a distributed viewpoint. Agents are communication via a
blackboard structure distributed via PDA’s connected by a wireless network. To show that our
approach is useful we chose as application travellers using public transport. The reason is that
the necessary data is public domain available and also the knowledge to process the data.
In case of crisis environments this information and knowledge is not available.
The agents involved in a crisis have many jobs to do. Usual there is no time to send long
observation reports and to take the time to read all incoming messages. So we assume that a
lot of communication should be handled in the background by intelligent agents.
The goal of the research is to bring the realisation of a next generation of digital personal
travelling assistants with optimal route guidance and demand (or user) driven services. This is
done by designing and implementing a prototype of a system for guidance of travellers in
the Dutch public transportation and a simulation environment for further research on the
topic. Travellers do not need to worry about planning their route, combining information on
occurring delays and rescheduling any longer, as the system does this automatically after a
destination has been specified.

Project

If users of the public transportation are informed about delays in an appropiate way, it is
easier to accept the fact that you are going to be late and you can also take actions
accordingly (such as informing people who otherwise would have been waiting).
As such, the PITA project looked like an exciting challenge. The first problems were however
to get relevant data on the train schedule from NS. As this information is sold commercially by
NS, it was not very easy to acquire this and so the decision was made to copy the train
schedule of a working day from the NS website, using a brute force approach with a HTML
parser. The next problem was finding routes within this enourmous amount of data. By first
implementing a straight forward search algorithm (which I later found to be an
implementation of Moore’s algorithm), this was done. Then the PhD thesis of Eduard Tulp
caught my attention and the interesting features (including train changes and user
preferences in the search) made me replace my implementation with a new implementation
of the DYNET algorithm, of course adapted to the dynamic situation using actual delays
within the route planning.
Combining these systems into a single distributed system has proven to be a real challenge. A
distributed system, especially using autonomous agents, is not as straight forward to develop
as a procedural application and definitely not easy to debug. However in the end, the
prototype was realised, also running on the Zaurus handheld and providing the user with an
optimal advise to get to his destination using the public transportation.

Summary
In The Netherlands one million people use public transportation every working day. The
railroad network is overloaded and minor incidents lead to a large amounts of consecutive
delays. Travellers are informed of delays by signs along the railway track, but there is no
system, helping travellers to find the optimal route by public transportation, which also uses
the delay information. The Personal Intelligent Travel Assistant provides the user with a
personalised, up-to-date advice on a handheld device, which takes into account the actual
delays.

The travellers themselves provide information about the delays of trains, using positioning
technology (like GPS) to estimate whether a user is experiencing a delay. Furthermore the NS
website provides information on delays for 83 stations in the Netherlands. This information can
be imported into the prototype. Using the actual delay information, each user gets an
optimal route advice, which also takes into account his personal preferences.

To find optimal routes, considering train changes and the user preferences, the DYNET
algorithm of Eduard Tulp was selected and implemented. By extending the static information
on the train schedule with dynamic information on delays, a prototype of a dynamic route
guidance system was designed and implemented, which runs on the Sharp Zaurus handheld
and a distributed server backend.

A model was designed for distributing the delay data over a set of servers, which can also be
used for simulation purposes. Furthermore interfaces were designed for manually adding
delays, changing the system time and speeding up the simulation. The system was realised by
agents modelled after the Beliefs, Desires and Intentions agent model, using Jade combined
with Jadex, forming a FIPA compliant distributed agent platform.

Table of contents

Preface..II

Project ...II
Acknowledgements ...Error! Bookmark not defined.

Summary .. III
Table of contents.. IV
Chapter 1: Introduction... 1

1.1 Problem setting... 1
1.2 Seamless Multimodal Mobility... 2

1.2.1 TRAIL .. 2
1.2.2 Seamless Multimodal Mobility.. 2
1.2.3 Research at TU Delft ... 2

1.3 Personal Intelligent Travel Assistant ... 2
1.3.1 Travel Assistant.. 3
1.3.2 Multi modal Intelligent Assistant .. 3
1.3.3 Personal Assistant .. 3
1.3.4 User localisation for delay information .. 3
1.3.5 Ad-hoc networking... 3
1.3.6 Emergent behaviour... 4
1.3.7 Traveller flow planning ... 4

1.4 Goals.. 5
1.5 Report structure .. 5

Chapter 2: Literature.. 7
2.1 GALAXY... 7
2.2 Open Agent Architecture ... 7
2.3 FIPA... 8

2.3.1 Tryllian ADK .. 9
2.3.2 FIPA-OS ... 9
2.3.3 JADE .. 10
2.3.4 LEAP... 10
2.3.5 Jadex: Beliefs, Desires and Intentions agent model .. 11

2.4 Comparing agent platforms and implementations... 12
2.4.1 Agent platforms ... 12
2.4.2 FIPA platform implementations ... 13

2.5 The Cognitive Agent Architecture (COUGAAR) ... 13
2.5.1 Background .. 14
2.5.2 Partitioned distributed blackboard.. 14
2.5.3 COUGAAR compared to JADE... 14

Chapter 3: Tools... 15
3.1 Overview and features... 15
3.2 JADE (Java Agent DEvelopment framework) ... 16

3.2.1 Introduction... 16
3.2.2 The agent platform... 16
3.2.3 Agent Communication Language .. 16
3.2.4 Graphical debugging tools.. 17
3.2.5 Distributed platform .. 19

3.3 Jadex – BDI Agent System ... 20
3.3.1 Introduction... 20
3.3.2 Agent definition files ... 20
3.3.3 Graphical debugging tools.. 21

3.4 Protégé-2000 and the beangenerator plug-in.. 22
3.4.1 Introduction... 22
3.4.2 Ontologies ... 22

3.4.3 Protégé-2000... 23
3.4.4 Beangenerator plug-in .. 24

3.5 Eclipse.. 24
3.5.1 Introduction... 24
3.5.2 Graphical interface.. 24

3.6 Problems and limitations .. 25
Chapter 4: Assumptions, requirements and model... 27

4.1 Description of the Personal Intelligent Travel Assistant .. 27
4.2 Description of the problem to solve.. 28

4.2.1 A technical view on the problem... 29
4.2.2 Division in sub-problems... 30

4.3 Assumptions ... 30
4.3.1 Dynamic delay information.. 30
4.3.2 Determination of the user position ... 30

4.4 Requirements .. 31
4.4.1 System requirements .. 31
4.4.2 User requirements.. 31

4.5 The PITA system model.. 32
4.5.1 Centralised versus decentralised model .. 32
4.5.2 The distributed PITA model.. 33

Chapter 5: Design... 35
5.1 Use case design.. 35

5.1.1 The traveller... 35
5.1.2 The operator and the simulator... 35

5.2 The system design .. 36
5.2.1 Global design ... 36
5.2.2 Delay subsystem .. 37
5.2.3 Route planner... 40
5.2.4 Distributed agent platform ... 44
5.2.5 Handheld application.. 45
5.2.6 The distributed handheld application... 48

5.3 The data model.. 49
5.3.1 System object model ... 49
5.3.2 Sequence diagrams... 51
5.3.3 Ontology diagram .. 52

5.4 The user interfaces ... 53
5.4.1 The Traveller interface.. 53
5.4.2 The System management interface .. 54
5.4.3 The NS delay interface... 55
5.4.4 User test .. 55

Chapter 6: Implementation ... 57
6.1 Acquiring the information.. 57

6.1.1 The static train schedule.. 57
6.1.2 The user position... 58
6.1.3 Delays from the NS website.. 61

6.2 The distributed agent platform .. 62
6.2.1 The agent platform architecture .. 62
6.2.2 Distribution and synchronisation on the backend ... 63
6.2.3 Autonomous agents ... 63

6.3 The route planner... 64
6.3.1 Used algorithms.. 64
6.3.2 Search parameters ... 64
6.3.3 User profiles ... 64
6.3.4 Performance examples ... 65

6.4 Ad-hoc networking.. 67
6.5 The interfaces.. 68

Chapter 7: User scenario... 69

7.1 Backend configuration... 69
7.2 Specification of the travel parameters.. 70
7.3 The route plan... 72
7.4 The introduction of delays ... 72

7.4.1 Interregional delay.. 72
7.4.2 Regional delay... 75
7.4.3 Reaching the destination.. 77

Chapter 8: Simulation environment ... 79
8.1 Server management interface .. 79
8.2 NS delay agent... 81
8.3 Personal agent interface ... 83
8.4 Visualisation applet ... 84

Chapter 9: Conclusions and recommendations ... 87
9.1 Conclusions.. 87

9.1.1 Literature survey... 87
9.1.2 Design of a distributed system ... 87
9.1.3 Implementation of a first prototype... 87
9.1.4 Design and implement a PITA simulation environment.. 87
9.1.5 Perform PITA test experiments.. 88

9.2 Recommendations and future developments.. 88
9.2.1 User interface.. 88
9.2.2 Delay distribution... 88
9.2.3 The route algorithm... 89
9.2.4 New technologies ... 89

Bibliography .. 90
Appendix ... 92

Appendix A: Handheld requirements.. 92
Appendix B: The Java source code... 93
Appendix C: The C source code of the Festival Lite wrapper ... 95

Chapter 1: Introduction

This study explores the possibilities of an application on a handheld device, providing
users of public transportation with an up-to-date advice based on the current delay

situation on the railroad network in The Netherlands. In the first part of this chapter the
current situation and the motivation for the study will be explored. The second part will
present the context in which this research was done. The next part will give an overview
of some interesting aspects of the Personal Intelligent Travel Assistant. After that, the
goals for this project will be presented. The last section gives an overview of the
structure of this report.

1.1 Problem setting
The Netherlands has a very extensive public transportations network, consisting of taxi’s,
busses, trams, metros and trains. Especially in the Randstad (the area between the 4 largest
cities: Amsterdam, Utrecht, Rotterdam and The Hague) the services are very intensive. With
busses stopping about every mile, trams and metros riding every 10 minutes and a 24-hour
train service, a complete package of public transportation is offered to all people.

Every working day, the Dutch Railways (Nederlandse Spoowegen, NS) transports about 1
million people by arranging about 6000 train rides between 400 stations. Connections
between two stations are made varying from once every hour to eight times every hour for
every station. Every year the train schedule is designed to optimally fit the demand for public
transportation at every station. However, since the demand is very high, the network is
flooding during working days in the Randstad.

The flooding of the network is probably one of the main causes for consecutive delays. If one
train gets delayed during working hours, this has a dramatic impact on the total train
schedule. Because the network is flooded, the rescheduling of the delayed train directly
impacts also other trains riding the same track or crossing the track of the delayed train. This
gives a snowball-effect on the delays within the Randstad on working days.

On the other hand NS was the first railroad company, starting 70 years ago, to use a fixed
hourly schedule, with trains riding a certain track every hour again on the same minute of the
hour, in a certain direction. This has created high expectations among the people travelling
by train and depending on certain fixed train changes at certain moments. This has lead to
the current situation in which during working hours the network is flooded and people are
experiencing delays very often and blaming NS for the delays.

So nowadays there exists a continuous tension between people counting on public
transportation at a certain minute every hour and NS coping with the flooded network. A
solution for a better experience for the users of public transportation could be to provide
users with better information about train delays. Currently users are mainly informed of delays
at the moment they arrive at the station and see the delays (which can increase every
minute) on the signs along the track. As of March 25th, 2004 it is also possible to see actual
departure times on the Internet site of NS and on an I-mode mobile phone for about 80
stations.

If a user experiences a delay he or she can decide to wait or to try to find another train route
giving a faster transportation to their destination. This leads to a lot of users running between
tracks to adapt their travelling plans and making it to another train at the last moment, while
trying to solve their travelling problems. This does not lead to a comfortable travelling
experience either. It would be a lot better if the user would get a notification on arrival at the
station telling him which train to take at that moment, considering the actual delays and
giving him a personalised advice to get to his destination.

The Personal Intelligent Travel Assistant (PITA) provides this service. Running on a handheld
device, the PITA will consult the train schedule combined with available delay information
and rerouting information and determine the best travelling option for the user, giving him an
optimal, personalised advice for how to use the public transportsystem to get to his
destination.

1.2 Seamless Multimodal Mobility
This research was conducted as part of the “Seamless Multimodal Mobility” (SMM) research
program of the Netherlands Research School for TRAnsport, Infrastructure and Logistics
[TRAIL]. This section will introduce the research school and the research program.

1.2.1 TRAIL
TRAIL is the Dutch academic research institution targeting world-wide developments in
transport, infrastructure and logistics and combining top-level education and research. It is a
joint initiative of the Delft University of Technology, the Erasmus University of Rotterdam and
the University of Groningen. TRAIL is accredited by the Royal Netherlands Academy of Arts
and Science. The mission statement of TRAIL is as follows:

"First, to educate high-level scientific researchers and research-leaders with a broad
background and of high standing who will contribute scientific innovations to the solution of
scientific, business and societal problems in the field of transport, infrastructure and logistics.
Second, to build up and transfer new, ground-breaking interdisciplinary knowledge and

insights at the highest international level in the fields of transport, logistics and associated
infrastructures, by adopting an integrated and solution oriented approach aimed at
supporting an economically viable, sustainable and accessible society. "

1.2.2 Seamless Multimodal Mobility
The research program “Seamless Multimodal Mobility” of TRAIL at Delft University of
Technology is aimed at developing new public transport services for the future. The traveller
will be transported from door to door without having to spend time on finding the best route
to his destination or worrying about delays or calamities while using public transportation.
Applying the results of the SMM program to current public transport systems will result in
drastic changes in these transport services as new transport modalities and transfer nodes will
be introduced and transport services will be provided on a more demand-driven and less
fixed basis.

1.2.3 Research at TU Delft
At TU Delft several people have contributed to the research on the PITA subject. The PITA is
the subject of the PhD research of Robert van Vark (see [Vark]) and he has written several
papers on the subject. Also Gerritjan Eggenkamp (in [Egge01]) has designed a first version of
the PITA system and also designed a multi modal route planner. Alexandru Dovlecel (in
[Dovl03]) has described the PITA from a web service perspective and Erdal Yildiz has
designed a dynamic traveller guidance system (in [Yild00]). Next to that, as part of the
CACTUS (Context Aware Communication, Terminal and USer) project (see [CACTUS]) and the
Combined systems project (see [Combined]), research is being done on the field of ad-hoc
networking and intelligent mobile devices and user interfaces.

1.3 Personal Intelligent Travel Assistant
Within the research program SMM, research is carried out into the Personal Intelligent Travel
Assistant (PITA). The PITA is an application running on a handheld device, providing
communication between travellers and public transportations companies. It provides the user
with an up-to-date personalised advice on what public transportation to use, based on
current, available delay information. The public transportations companies can get a better
insight in the traveller flows, giving them the possibility to optimise the scheduling of trains and

carriages. A future application is the reservation of public transportation through the PITA
system. Some interesting aspects of the system are described in the rest of this section.

1.3.1 Travel Assistant
The PITA application will continuously provide the user with the best advice about what
public transportation to use to reach his destination, depending on his travelling preferences,
his current location and available delay information. The advice is available before the user
starts to travel and the advice will be updated continuously while the user travels, depending
on delay information or other updated dynamic information becoming available.

1.3.2 Multi modal Intelligent Assistant
The PITA system will monitor the delay information and determine the significance of occuring
delays for the user. If the delays affect the journey of the user, the system will generate
alternative routes, estimate the travelling time and the risks on those routes and select the
best possible option for the user to use. This releases the user from scheduling his journey and
lets the user blindly trust the generated personal advice. Finally it is possible to interact with
the PITA system in a multi modal fashion. This gives the user the possibility to speak to the
system when in a hurry, or to click and point on the handheld when seated in a noisy
environment. The system can also react multi modally, by displaying the advice or read it out
loud to the user, using speech synthesis.

1.3.3 Personal Assistant
Not only will the application run on a personal device of the user, the application will also
represent the user to the rest of the system. The system will learn the preferences of the user
from the day to day use in order to optimise the generated advice (i.e. whether the user
wants to run for a train or rather wait 10 minutes on the next train, whether the user can make
a train change within 3 minutes on Rotterdam Central Station, etc.). In fact, the PITA
handheld will be a copy of the user, functioning on the basis of his preferences and
responsible for all requests to the system. So the user only needs to tell the system where to go
and the PITA will take over everything else and only supply the user with actions to take (i.e.
“take train number 1010 at platform 8b”, etc.).

1.3.4 User localisation for delay information
Crucial to the success of the PITA, is the availability of accurate delay information and other
information affecting the journey of the user. In the best case, the information will be supplied
by the public transport companies (i.e. NS and/or 9292OV) and made available for usage by
the system. However, because this data is very distributed and currently only locally available
to NS and because of other political arguments (NS does not want to supply everybody with
details about the delays, because they get funds by the government for not having delays),
the system has to be able to function without this information being made available.

Since all users of the system have their own handheld with them, the system will use
positioning technology within the handheld to determine the position of the user on the basis
of the position of the handheld. The position of the handheld is made available to the rest of
the system, which can determine the delay the user is experiencing. This information is not
only used to optimise the advice for the user himself, but also to advise other users. This way
the PITA system can generate the delay information itself.

1.3.5 Ad-hoc networking
The PITA handheld has to connect to the rest of the system and several other information
sources to combine the information in an optimal advice for the user. Depending on the
devices (i.e. GSM, Wireless LAN device or GPS device) a user carries with him, the system will
choose the optimal connections for acquiring information about the user’s location, the train
schedule and possible delays. Once the user has configured the available connections, the

system will optimise bandwidth usage and minimise the costs. Also, the possibility of ad-hoc
networking between the handheld devices and sharing available information in an ad-hoc
network (based on Wireless LAN) is used.

1.3.6 Emergent behaviour
Running autonomous assistants on the handhelds, that connect to each other over ad-hoc
wireless networks and use mobile Internet connections to acquire data, gives a very
interesting application in which each of the assistants has to acquire relevant data for the
guidance of his user. The assistant has the choice to connect to the Internet himself or try to
find other users who already have up-to-date information on a journey to his destination.
Since each of the devices itself generates delay information on a specific train, the assistants
are able to exchange information on delays and route plans. This leads to a distribution of
data, driven by the demand of the users of the system in stead of centralised on a server.

1.3.7 Traveller flow planning
For NS it is very important to have accurate predictions about traveller flows across the
different stations in The Netherlands. This is essential to schedule enough carriages on the
different trains to be able to transport the travellers. Currently NS uses the ticket sales and
passenger counting, to get an idea of how many people use a certain connection at a
certain time of the day. This data is also used for designing the train schedule every year.
Special arrangements are made for events (like football matches or concerts), where trains
are scheduled in advance. With the PITA system, the NS will have another instrument to
predict and view current passenger flows, because the system knows the position of its users
and can give NS an overview of where PITA users are at any time of the day. This way NS will
also have a better insight into the passenger flows, which could lead to better scheduled
public transportation. Whenever the public transportation becomes more flexible, the PITA
system can also be used to reserve seats in public transportation in advance and NS can
provide more demand-oriented public transportations.

Figure 1.1 An artistic impression of the PITA system

1.4 Goals
The previous sections describe the functionality of the Personal Intelligent Travel Assistant. The
main goal for this project is to design and implement a distributed application which provides
the PITA functionality. The distributed approach is chosen to develop an application which is
able to run on servers, handhelds and desktops and to improve scalability and stability of the
application. To realise such a system, the use of Artificial Intelligence techniques and
especially agent techniques go without saying. Therefore different agent platforms and
agent communication systems have to be studied first. The second goal of this project is to
design a model of a distributed PITA application. Thereafter a first prototype of the model has
to be implemented. Next a simulation environment has to be designed and implemented
and lastly some test experiments with the simulation environment have to be performed.

To summarize, the goals are listed below:

1. Literature survey on agent platforms and agent communication systems
• Description of state of art agent platform technologies
• Discuss the advantages and disadvantages of each platform
• Select a suitable agent platform

2. Design a model of the distributed PITA system, using handheld devices
• Design a model for distributing data and processing power
• Use available network technologies for connecting the different components
• Assume current mobile devices as operating environment of the application
• Design an UML model for implementation of the system

3. Implement a first prototype of the PITA system
• Acquire information on train schedules and delays
• Implement a suitable routing algorithm
• Implement a prototype which runs on a handheld device, preferably the

Sharp SL-C860 Zaurus
4. Design and implement a PITA simulation environment

• Design and implement a delay simulator
• Automatically import delays from the NS website
• Design and implement a graphical interface showing moving trains

5. Perform PITA test experiments
• Perform experiments to determine the functioning of the system
• Describe a user scenario showing different aspects of the system

The goals of this project therefore focus mainly on designing and implementing a PITA system
from a technical point of view. Realising a simulation environment which can be used for
other projects and as a demonstration application has therefore gotten a higher priority
above other aspects, such as user or simulation test experiments. Also Human-Computer
Interaction was not a main subject of this project and could be studied in another thesis
project. Chapter 4 describes the subject of this thesis in more detail.

1.5 Report structure
First some background information about agent platforms and agent communication
systems is presented in chapter 2. Available standards and implementations are discussed. In
chapter 3 the actual used tools and their limitations are introduced. Chapter 4 describes the
PITA problem, the assumptions and requirements and introduces the model for the design of
the application. In chapter 5 the design of the system is discussed, followed by the
implementation and implementation issues in chapter 6. Chapter 7 discusses a user scenario
in which a jouney was simulated which shows several important aspects of the system. In
chapter 8 the simulation environment which was developed as part of this thesis project is
described. In chapter 9 the conclusions recommendations and suggestions for future
developments are discussed.

Chapter 2: Literature

This chapter gives a survey of current agent technology and agent platforms. First, the
GALAXY architecture is described, followed by the Open Agent Architecture. The third

part of this chapter describes the FIPA architecture and available implementations of
the FIPA standard. Then an overview of the platforms is presented and a platform is
selected for this study. Finally the COUGAAR architecture is described.

2.1 GALAXY
GALAXY is an architecture developed by the Spoken Language Systems group of the MIT
Laboratory for Computer Science (see [SHLPSZ98]). The main focus of the GALAXY project is
to build a framework for integrating speech (recognition, understanding and synthesis) in an
application. The architecture makes use of light-weight clients with specialized servers for the
computationally heavy tasks. As can be seen in figure 2.1, a central role in the GALAXY
system is taken by the programmable Hub, which controls the flow of data between various
clients and servers and retains the state and history of the current conversation.

���

�������	
�	�	�����

�	��������		��

����	����

����
�	��	�

��		��
�	������� ����	
�����������

����	��
�������

���������
����	��

 �����	

�����	�	��

Figure 2.1 An overview of the Galaxy architecture, with a central role for the programmable hub

GALAXY has been released as an Open Source package, written in C and C++, with Java
bindings. The Galaxy Communicator distribution is available in a Windows, a Sparc Solaris and
a Linux version, however some features are available only on specific platforms. Especially
parts of the Open Source Toolkit, containing implementations of Communicator-compliant
dialogue system components, are restricted to specific platforms.

2.2 Open Agent Architecture
The Open Agent Architecture is “a framework for integrating a community of heterogeneous
software agents in a distributed environment”, developed at the Artificial Intelligence centre
of the Stanford Research Institute (SRI) (see [MCM99]). The main focus of the research is
towards distributed communities of agents, where agents communicate with each other by
means of Interagent Communication Language (ICL).

The Open Agent Architecture does not only specify the communication language between
agents, it also specifies a model for how agents should communicate with each other. As
shown in figure 2.2, this communication model uses a facilitator agent in a central role: “a
specialized server agent that coordinates the activities of agents for the purpose of achieving
higher-level, often complex problem-solving objectives”.

Figure 2.2 An overview of the Open Agent Architecture with a Facilitator for communication between agents

The facilitator agent combines advice or constraints from a requesting agent, specifications
provided by service agents, domain-independent strategies for coordinating inter-agent
cooperation and domain-relevant knowledge provided by meta-agents, in order to meet
the requested objectives. Agents query the Facilitator through an unified interface (a single
function-call), giving (Prolog-like) parameters for their request. The Facilitator will look at all
registered agents and their capabilities and by means of some strategy forward the request
to some agent(s). All requests go through the Facilitator and never directly between two
agents. The Open Agent libraries are available in a variety of languages (among which Java,
Prolog and C) and can be used on different platforms (e.g. Windows, Linux and Sun/Solaris).

OAA is distributed under the OAA Community License, which permits unrestricted use for
government, research and other non-commercial purposes. With respect to the commercial
use of OAA, SRI has thought about creating a Pro-version, which would be a more
commercial-quality instantiation of the OAA framework, but currently no further information is
available.

2.3 FIPA
The Foundation for Intelligent Physical Agents (FIPA) is an international organisation
dedicated to developing specifications supporting interoperability among agents and
agent-based applications (see [FIPA23]). By open discussions among members (companies
and universities), FIPA tries to establish a common standard for agents and agent
applications. FIPA does not specify how the specifications should be implemented, but only
specifies the functional behaviour which the implementation should have.

The basis of the FIPA specification is formed by the Agent Management Reference Model, as
shown in figure 2.3.

Figure 2.3 The FIPA Agent Management Reference Model

An Agent Platform consists of a Agent Management System (AMS), one or more Message
Transport Systems (MTS), optionally one or more Directory Facilitators (DF) and Agents. The
Agents are computational processes that implement the autonomous, communicating
functionality of an application. The AMS maintains a directory of Agent identifiers and
transport addresses of all registered Agents. Each Agent must register with the AMS in order to
get a valid identifier. The DF is an optional component of the Agent Platform, which maintains
a list of services offered by Agents. Agents may register their services with the DF and can
query the DF for services offered by other Agents. The Message Transport System offers
communication possibilities between different Agent Platforms.

Agents communicate with each other using Agent Communication Language (ACL), which
is specified by FIPA, but which can be extended by individual programmers to fit their specific
needs. FIPA has defined several ontologies, which specify the interpretation of specific ACL-
messages. By designing their own ontologies, programmers can extend the capabilities of
Agents and implement specific functionality.

FIPA produces open and thoroughly documented standards, but does not provide a
(reference) implementation for the standard. Currently the three most important
implementations of the FIPA standard are the Tryllian ADK, FIPA-OS and JADE, which are
discussed in the following sections.

2.3.1 Tryllian ADK
Tryllian is a Dutch commercial organisation, which developed the Tryllian Agent Development
Kit (ADK) (see [Tryllian]). Based on several open-source components, the ADK can be
downloaded and used freely for non-commercial applications. The ADK is fully implemented
in Java and supports the FIPA standard partly with the Tryllian FIPA Dialect. The ADK also
supports SOAP for messaging and has several security and encryption features. Tryllian mainly
focuses on integration with J2EE web-services for industrial applications.

2.3.2 FIPA-OS
FIPA-OS is an Open Source implementation of the FIPA standard, originally released by Nortel
Networks in 1999 as the first royalty-free implementation of the standard (see [FIPA-OS]). Two
different implementations are available, a Standard edition and a Micro edition (for PDA’s
like Compaq iPaq). FIPA-OS is also fully implemented in Java and FIPA compliant. The Micro
edition can run in 2 different modes on PersonalJava compatible devices. Either the
handheld device can run a complete FIPA-platform with its own AMS, DF and Agents, or the
handheld device can be part of another FIPA-platform as shown in figure 2.4.

Figure 2.4 A – The terminal is part of another platform, B – The terminal runs a FIPA platform

2.3.3 JADE
The Java Agent DEvelopment framework (JADE) is another Open Source implementation of
the FIPA standard, implemented in Java (see [BCPR03]). The copyright holder is Telecom Italia
Lab (TILAB), but the software can be used free of charge. Specific features are the possibilities
for distribution of an agent platform over multiple machines and a set of graphical
(debugging) tools. Figure 2.5 shows how JADE Containers can be used to create a distributed
platform:

Figure 2.5 Jade Containers can be used to create a distributed agent platform

A JADE Main Container is used to host the AMS and DF agents, while other Sub-containers
can be added to the platform to create a distributed platform. Since JADE 3.1 it is also
possible to replicate the Main Container over multiple platforms, to ensure operation after the
machine hosting the Main Container crashes.

The user base of JADE is very large, among which companies like British Telecom, France
Telecom, KPN and Philips and universities like Imperial College of Londen, University of Helsinky
and Parma. Several add-ons exists for the JADE platform implementation. Most notably are
the LEAP add-on, which combined with JADE forms a platform for mobile devices, the Jadex
add-on, which makes it possible to design agents based on the Beliefs, Desires and Intentions
(BDI) model, and the HTTP MTP add-on, which allows agent communication over the HTTP
protocol.

2.3.4 LEAP
The Lightweight Extensible Agent Platform (LEAP) is an extension for JADE, which enables
agents to use mobile devices as agent platform (see [LEAP]). LEAP is developed by a
consortium of Motorola, Broadcom, British Telecom, ADAC, Telecom Italia Lab, University of
Parma and Siemens as a project for the European Commission. LEAP does not only support
the Java 2 Standard Edition and PersonalJava (for PDA’s), but also the Mobile Information
Device Profile (MIDP) 1.0 for cell-phones supporting Java. Programmers do not need to write
different code for any of the devices, since LEAP provides a homogeneous layer (API) for
communicating with the mobile platform, as shown in figure 2.6. Using LEAP it is possible to
create a platform which is not only distributed over different servers but can even be
extended to devices which are connected by a wireless connection.

��	��
����!���
"#� $
��%	�	�
�&
�$�'(

#���)
���
$���� '	������#��� �� �
*+ '

,�*�	��	� �����	�� 	�����

#���)
���
$����

#��	�	��#)�$

������	�

#��	�	��#)�$

*���������	�

#��	�	��'#���

������	�

#��	�	��*+ '

������	�

�����	�	���
��&	�

��	���

 ������	�
��	��
���������

��	��� ��	��� ��	���

+��	��	�
-�	�	��
����	���� -�	�	��
����	�

���

Figure 2.6 The LEAP add-on provides a homogeneous layer for agent communication on mobile devices

Figure 2.6 shows how mobile phones, handhelds, servers and desktops can be integrated,
using LEAP containers that provide a homogeneous API on all platforms. This makes it possible
for agents on a handheld to communicate with agents on a server and vice versa, over fixed
Internet connections and wireless connections.

2.3.5 Jadex: Beliefs, Desires and Intentions agent model
Jadex is developed in Java by the Distributed Systems and Information Systems Group at the
University of Hamburg under the LGPL license (see [PBL03]). It is an extension for the JADE
platform which makes it possible to use the BDI (Beliefs, Desires and Intentions) model to
model agents. The BDI model was first used as a philosophical model for modelling rational
(human) agents and has later been introduced as a software development paradigm. The
mental attitudes belief, desire and intention are used to model autonomous interacting
entities that pursue their own goals and act rationally. In this case the rational behaviour of
the entities means the entities try to take the best measure in order to reach their goals, seen
from an ideal concept of intelligence and not with respect to human behaviour (see [RN95]).

���������	
���http://vsis-
www.informatik.uni-
hamburg.de/projects/jadex/

�	�	!

���	

�����	�
�����

.	�����

 	��	�����

�	�	!
/
�������
$�	��

�����	
$�	���

�	�	��
!��
	�	�����

�����
�	%
,����

$������	
����	

*	����	�

0�	�&1
���1
.	���	
�����

.�����
�����

'���

�����&

 ������
2����3
,����
/
$�	���

+��	����

	�	���

+���
����

�	
'
����

*	����	�

� +
��	��
���	�

Figure 2.7 The BDI Agent model

The BDI model is represented in Jadex by beliefs, goals and plans. As shown in figure 2.7, a
BDI-agent has its own belief base, containing facts about the agents perception of the world.
Furthermore, each agent has a list of goals (and sub-goals) which it wants to achieve. In
order to reach these goals, the agent has a library of plans at its disposal. Triggered by events
the agent decides which plans to execute to achieve the adopted goals. Plans can also
change the beliefs, generate events and adopt new goals, which makes it possible for the
agent to function autonomously in order to reach the goals. A Jadex BDI-agent does not
evaluate how successful the execution of a plan has been, which could be used to optimize
the strategy to reach the goal. In fact, a Jadex BDI-agent tries out different plans until the
goals have been reached.

2.4 Comparing agent platforms and implementations
In this section the features of the discussed platforms are described and a platform and an
implementation of a platform are selected for this project.

2.4.1 Agent platforms
Table 2.1 shows a summary of the features of the 3 different Agent architectures. The Galaxy
architecture is mainly used for multimodal user interfaces. Therefore it may be usable for
designing a multimodal user interface for the PITA, but the architecture is not appropriate for
the distributed personal agent application. The main disadvantages of the Open Agent
Architecture are that it has been written in the C language, does not allow direct
communication between agents and has an unclear license for commercial use. The main
advantages of the FIPA standard are that it has different implementations with their specific
benefits and licenses and does not limit agent communications but rather defines how
agents should communicate with each other. The Facilitator agent of the Open Agent
platform could become a bottle-neck, limiting the scalability of the application. A Java
implementation is preferred because Java code is easier to understand and improve. Thus
the FIPA standard was selected for this project. The next section discusses the selection of the
implementation.

Tabel 2.1 Features of Galaxy, Open Agent and FIPA architecture

 Galaxy Open Agent
Architecture

FIPA

Implementation
language

C / C++ C / C++ Java, different
implementations
available

Language interfaces C / C++ / Java C/ C++ / Java / Prolog Java
Most important
application area

Multimodal user
interfaces

Agent based
applications

Agent based
applications

Support for light-weight
devices

Yes Yes Yes

Direct Agent
communication

No, through the Hub No, through the
Facilitator

Yes

License of available
implementations

Free, open source Open source, free for
non-commercial usage
only

Both free and
commercial
implementations are
available

Commercial pricing No Not available yet Depends on the
implementation

Supported platforms Intel Linux, Solaris,
Windows

Intel Linux, Solaris,
Windows

Intel Linux, Solaris,
Windows

2.4.2 FIPA platform implementations
Concerning the different implementations of the FIPA standard, table 2.2 gives an overview
of the 3 most advanced implementations:

Tabel 2.2 Features of different FIPA platform implementations

 Tryllian ADK Fipa-OS JADE / LEAP / Jadex

Lightweight client
support

Separate J2ME client Yes, PersonalJava only Yes, PersonalJava and
MIDP

License Closed source, free for
non-commercial use
only

Free, open source Free, open source

Commercial pricing Price per runtime, based
on number of users

No No

User base Primarily commercial
users

Some commercial users,
some universities

Both commercial and
academic

Primary focus Web-services, only partly
FIPA-compliant

FIPA-compliant agent
communications

FIPA-compliant agent
communications

Distributed platform Possible Not possible Different possibilities,
with replication

Documentation and
support

++ + +++

Development tools ++ + +++

The combination of JADE and LEAP makes it possible to run the agent platform on the most
different devices. There are also no restrictions on the use of JADE, LEAP or Jadex because of
licenses. Because JADE has the largest (both commercial and academic) user base, the
documentation and development tools are the most advanced and best usable. Lastly JADE
incorporates extensive possibilities for creating distributed platforms, which is an important
feature for this project. This is why JADE combined with LEAP and Jadex was selected as the
agent platform for this project.

2.5 The Cognitive Agent Architecture (COUGAAR)
This section desribes the COUGAAR architecture and implementation (see [KLT03]), which we
describe for completeness of this chapter. At the end of this project, the COUGAAR
architecture looked very interesting for consideration on other projects.

2.5.1 Background
COUGAAR is an open-source Java-based architecture for the construction of scalable
distributed agent-based applications. As a DARPA (Defense Advanced Research Projects
Agency) research project, the research has lead to a robust and scalable platform. It runs on
Java 1.4.2 or later, but there is also a micro edition available (CougaarME) which runs on
Java KVM. The COUGAAR architecture distiguishes itself from other architectures by its agent
model, based on a distributed blackboard.

2.5.2 Partitioned distributed blackboard
Central in the COUGAAR agent model is the role of the partitioned distributed blackboard.
Figure 2.8 shows the COUGAAR agent model.

Figure 2.8 The COUGAAR agent model based on a partitioned distributed blackboard

The plug ins contain the behaviours and business logic of the agent and modify the contents
of the blackboard. The contents of the blackboard are segmented into sets of logically-
related objects by domains. A domain is a specification of the language used by plugins to
communicate with eachother. Each domain has a set of logic providers, which act as
translators between domains. The message queue is used to communicate with other agents
by sending and receiving messages. Each agent owns its part of the blackboard and the
contents of the blackboard are only visible to the agent itself. However the data can be
shared by inter-agent tasking and querying.

2.5.3 COUGAAR compared to JADE
In comparison with JADE, COUGAAR looks very promising, but lacks the advantages of the
large user base of JADE. JADE is better documented, easier to use and has more extensive
mail archives with problems and solutions. Besides this, JADE complies with the FIPA standard,
which enables communications with other FIPA platforms. COUGAAR does not comply with
the FIPA standard and no current development is done on this subject. However, COUGAAR
offers an interesting alternative architecture for the behaviour oriented or BDI agent models.
One of the problems with JADE is how to share information between different agents. The
blackboard of COUGAAR provides a nice solution for this problem. An interesting option is to
use JADE and COUGAAR simultaneously to combine the strengths of both and reduce the
disadvantages.

Chapter 3: Tools

This chapter describes the tools that were used for this project. The project is based on
the JADE agent-platform. The Jadex extension for JADE was used to model and

develop BDI-agents in stead of behaviour-oriented agents. Protégé-2000 was used as a
modelling tool for the ontology which all agents use to communicate. Eclipse was used
as graphical editor for the Java interfaces. The last section of this chapter summarises
the problems which were encountered while using these tools and possible solutions.

3.1 Overview and features
Figure 3.1 shows the connection between the different tools used for this project. Protégé-
2000 was used to model an ontology, which can be converted in Java source files by use of
the beangenerator plug-in. Eclipse is used to develop and design more Java source files.
These Java source files are used by the agent platform JADE, which uses the Jadex plug-in.

Figure 3.1 An overview of the used tools

Some common features of the used tools are:

• All tools are open source, free to use and implemented in Java
Java makes it possible to run the tools on any computer platform and furthermore
makes the code more understandable because it is object oriented and abstracts the
low-level programming problems and Java is used extensively at Delft University. A
disadvantage of Java is that it most of the time requires more processing power and
memory usage as programs developed in other languages.

• All tools have graphical user interfaces or debugging environments
Thanks to the graphical user interfaces it is much more user friendly to learn how to use
and to use the tools, for instance for debugging an application.

• There is a large user base using this combination of tools
The combination of tools is used by a lot of organisations, which ensures an active
developer community and good quality documentation.

The next sections describe each of the mentioned tools.

3.2 JADE (Java Agent DEvelopment framework)

3.2.1 Introduction
Developed and distributed by Telecom Italia Lab, the JADE software framework is a FIPA-
compliant implementation of an agent platform. JADE is fully implemented in Java and
comes with several tools for debugging and controlling the platform. Using the Remote
Monitoring Agent (RMA), it is possible to control the platform from a Graphical User Interface
(GUI). As of version 3.1 (December 2003) JADE has extensive possibilities for creating a
distributed platform.

3.2.2 The agent platform
The FIPA Agent Management Reference Model, as described in section 2.3.3, is implemented
in JADE as can be seen in figure 3.2.

Legenda:

 Agent platform
 Container

 Agent

Figure 3.2 The JADE Agent Platform

The figure shows a tree starting with the agent platforms, which can contain different
Containers. The Main-Container is created by default and contains the Agent Management
System (AMS) and Directory Facilitator (DF). Next to these agents the Remote Monitoring
Agent (RMA) is created, which enables communication with the agent platform through the
GUI shown in figure 3.2.

3.2.3 Agent Communication Language
The Agent Communication Language (ACL), as described by FIPA (in [FIPA61]), forms the
basis of the JADE agent platform. Figure 3.3 shows a screenshot of an ACL Message.

An ACL message can have one or more receivers. The communicative act refers to the
message type of a FIPA communication protocol (i.e. request/inform/failure). The content
field contains the message contents, which are encoded using the specified encoding. The
ontology field is used to specify what types of objects can be stored in the content field of
the message. An ontology can be seen as an object description of objects which can be
exchanged by Agents that understand the same ontology.

Figure 3.3 A screenshot of an ACL Message

3.2.4 Graphical debugging tools
The JADE Remote Monitoring Agent GUI comes with several graphical debugging tools,
which are discussed in the following section.

3.2.4.1 The Sniffer Agent
Figure 3.4 shows a screenshot of the Sniffer Agent. The Sniffer Agent makes it possible to
inspect communications between agents.

Figure 3.4 A screenshot of the Sniffer Agent interface

By selecting which agents to monitor, the Sniffer Agent will log all messages going to and
from the selected agents and gives the possibility to inspect these messages individually.

3.2.4.2 The DummyAgent
Figure 3.5 shows a screenshot of the DummyAgent. The DummyAgent can be used to
communicate with agents and inspect and log the communication.

Figure 3.5 A screenshot of the DummyAgent

By manually filling out the properties of a message, messages can be sent to and received
from other agents. The DummyAgent is especially useful to test the functioning of individual
agents.

3.2.4.3 The Introspector Agent
The Introspector Agent, as shown in figure 3.6, makes it possible to monitor the internal state
and active behaviours of individual agents as well as incoming and outgoing messages.

Figure 3.6 A screenshot of the Introspector Agent

In order to debug an agent, it is possible to break execution of an agent and resume
execution step by step.

3.2.5 Distributed platform
A distributed JADE platform can be created by distributing Containers of an agent platform
over multiple servers. By replicating the Main-Container over different servers a failsafe system
can be created. The next sections describe these features of JADE.

3.2.5.1 Distributed containers
As already shown in figure 3.2, a JADE agent platform can consist of different (sub-)
containers. However, these containers do not necessarily have to be hosted on the same
server. Each container can be hosted on a different server, which makes it possible to have a
distributed platform consisting of containers on different servers, as shown in figure 3.7.

Figure 3.7 A distributed platform can be created by running agent containers on different servers

A disadvantage of distributing a platform as shown in figure 3.7 is the central point-of-failure
which is the server running the Main-Container. If this server crashes, the agent platform will
no longer run. There are two solutions for this problem. The first solution is to run complete
agent platforms on each server (in stead of containers). However this means the application
needs to manage which servers are running agent platforms and which servers have
crashed. Furthermore this limits the possibilities for agent mobility, because this is not possible
across different agent platforms. The second option is to use Main-Container replication, as is
discussed in the next section.

3.2.5.2 Main-Container replication
In order to deal with the central point-of-failure being the server running the Main-Container
of a distributed platform, JADE can be used with Main-Container replication as of version 3.1
(December 2003). By enabling this option, each server can store a copy of the Main-
Container. This makes sure the Main-Container is replicated throughout the agent platform
and in case the server running the Main-Container crashes, a copy on another server can
take over the Main-Container role and the platform can still function. Thus a distributed fault
tolerant agent platform can be created as shown in figure 3.8.

Figure 3.8 A distributed platform with Main-Container replication

By enabling Main-Container replication, a ring is formed between all replica’s. This ring
structure is used for replication of data, but also to ensure operation of each node of the ring.
Crashed nodes are removed from the ring-structure and as soon as the Main-Container fails,
the following replica will launch its Main-Container replica and ensure continued operation of
the agent platform.

3.3 Jadex – BDI Agent System

3.3.1 Introduction
Jadex is an extension for the JADE platform which makes it possible to use the BDI (Beliefs,
Desires and Intentions) model (see figure 2.7) to model agents. It is implemented in Java by
the Distributed Systems and Information Systems Group at the University of Hamburg under
the LGPL license. Currently the software is only available in a beta version (version 0.92).

3.3.2 Agent definition files
For each Jadex agent, an agent definition file has to be created which describes the
different goals, plans, beliefs, languages and ontologies that have to be loaded when
starting the agent. Agent definition files are XML-files that can contain Java-code and regular
expressions. Figure 3.9 gives a overview of the contents of an example agent definition file.

���������	
���http://vsis-
www.informatik.uni-
hamburg.de/projects/jadex/

Figure 3.9 An example agent definition file for a Jadex agent

Agent definition files do not limit the capabilities of an agent, since goals, plans and beliefs
can be added, removed and replaced after the agent is started.

3.3.3 Graphical debugging tools
Starting JADE with the Jadex plug-in adds two new graphical debugging tools to the JADE
RMA. The Logger Agent is added, which makes it possible to track debug/log messages
generated by different agents. The second tool is the Jadex Introspector agent.

<agent xmlns:xsi="http://www.w3c.org/2001/XMLSchema -instance"
xsi:noNamespaceSchemaLocation="http://jadex.sourcef orge.net/jadex.xsd" name="perag0"
class="jadex.runtime.JadeWrapperAgent">
<imports>
<import>jade.core.*</import>
…
</imports>

<plans>
<plan name="personalagentplan" instant="true">
<constructor>new PersonalAgentPlan($arg0)</construc tor>
<waitqueuefilter>PersonalAgentPlan.getEventFilter() </waitqueuefilter>
</plan>
<plan name="updatepositionplan" instant="false">
<constructor>new UpdatePositionPlan()</constructor>
<condition>$beliefbase.destinationLocation != null< /condition>
</plan>
<plan name="travelplan">
<constructor>new TravelPlan()</constructor>
<filter>TravelPlan.getEventFilter()</filter>
</plan>
</plans>

<beliefs>
<!-- system parameters -->
<belief name="systemTime" class="SysTime.class" cat egory="belief">
<fact>new SysTime(60)</fact>
</belief>

<!-- travel parameters -->
<belief name="currentLocation" class="Tuple.class" category="belief">
<fact>new Tuple("Delft","dt")</fact>
</belief>
…
</beliefs>

<languages>
<language>new SLCodec()</language>
</languages>

<ontologies>
<ontology>OVRouteOntology.getInstance()</ontology>
</ontologies>

<goals>
<achievegoal name="reach"/>
</goals>

</agent>

Figure 3.10 A screenshot of the Jadex Introspector agent

The Jadex Introspector agent makes it possible to view the internal state of a BDI agent,
showing the current contents of the beliefbase, planbase and goalbase. This makes it
possible to accurately monitor the behaviour of different plans and goals working together.

3.4 Protégé-2000 and the beangenerator plug-in

3.4.1 Introduction
Protégé-2000 is a widely used knowledge-modelling tool (with about 15.000 registered users),
developed by Stanford Medical Informatics of Stanford University (see [Protégé]). Thanks to a
plug-in (called beangenerator) for Protégé-2000, developed by C.J. van Aart from the
Department of Social Science Informatics (SWI) of the University of Amsterdam, it is possible to
use Protégé-2000 to design ontologies for the JADE agent platform (as described in
[BCPA02]).

3.4.2 Ontologies
An ontology is an abstract description of a language which agents can use to communicate.
In stead of words and grammar, an ontology in this case consists of Java objects that extend
the following Java classes: Predicate, Concept or AgentAction. Figure 3.11 shows a class-
diagram of the Content Reference Model, containing the classes that are included in an
ontology.

Objects extending either Predicate, Concept or AgentAction can be included in ACL
messages directly by using built-in functions of JADE. Ontologies can be designed with the
Protégé-2000 graphical user interface.

Figure 3.11 The Content Reference Model for designing ontologies

3.4.3 Protégé-2000
Protégé-2000 is a graphical knowledge modelling tool. In order to function as a JADE
ontology designer, the SimpleJADEAbstractOntology project has to be included, which in
fact contains the model depicted in figure 3.11. After this, Protégé-2000 can be used to
design Concepts, AgentActions and Predicates.

Figure 3.12 A screenshot of the ontology designed in Protégé-2000

Figure 3.12 shows how the design of an ontology looks in Protégé-2000. In order to create
Java files from this design, it is necessary to install the beangenerator plug-in for Protégé-2000.
The beangenerator makes it possible to create a set of Java source files containing the
ontology, which can directly be used in JADE.

3.4.4 Beangenerator plug-in
The beangenerator is a plug-in for Protégé-2000 which generates a set of Java source files,
containing the ontology which was designed in Protégé-2000.

Figure 3.13 The beangenerator plug-in can be used to generate Java source files

Figure 3.13 shows how by supplying a base directory, package name and ontology name, all
source files can be easily generated by pressing the “Generate Beans” button. The
generated beans can be either JavaBean, J2SE or J2ME compatible.

3.5 Eclipse

3.5.1 Introduction
Eclipse is an open-source IDE (Integrated Development Environment) for developing
applications in all sorts of different languages, for different platforms (see [Eclipse]). IBM uses
Eclipse in its WebShere Studio Device Developer. Eclipse also has a Visual Editor plug in which
simplifies the development of Java graphical interfaces.

3.5.2 Graphical interface
The Eclipse IDE allows developers to both graphically design their Java graphical interfaces
as well as directly modify the code, which then influences the graphical design. Also it offers
code completion and online syntax checking.

Figure 3.14 The Eclipse IDE

Figure 3.14 shows the Eclipse IDE with the Visual Editor plug in, which allows easy graphical
design of user interfaces. However the usability of the IDE is not as good as some other
commercially available tools.

3.6 Problems and limitations
This section describes some problems and limitations which were experienced while using the
mentioned tools. Also, if available, a workaround or solution for the problem is described.

A limitation on the JADE agent platform is that agents are only mobile on the same agent
platform. So, it is possible to move an agent from a Container on one server to a Container
on another server, only if both Containers are part of the same distributed platform. So called
intra-platform agent mobility (between different platforms) is not supported. Another
limitation of JADE is that it loads and stores the class of an agent, when it is first started.
Succeeding agents of the same class are instantiated from this copy in memory. If you are
developing an agent, each time you alter the code and recompile it, you have to restart
your agent platform to test the new version, because the platform will otherwise keep using
the old version of the agent code. This slows down the development considerably.

The Jadex extension for JADE offers so called ThreadedPlans, which contain the application
code. These ThreadedPlan instances are however scheduled by a single-threaded scheduler,
which means that the scheduler will not schedule other plans for execution, if a plan instance
blocks (for instance on a Socket InputStream). There are two solutions for this problem. The first
solution is to edit the Jadex source file jadex/runtime/ThreadedSchedulerBehaviour.java and
replace the following line of code:

with the following line, where MAX_EXECUTION_TIME is replaced by a millisecond value
containing the maximum execution time, before the scheduler resumes it task:

This will cause the scheduler to resume its task on other plans, after a plan is blocking for the
specified time. A better solution is to put the longer tasks or blocking tasks in a separate
Thread, which is instantiated and started from the ThreadedPlan which gives back execution
to the scheduler afterwards. A limitation on both methods is that the plan which is running
after the timeout and the separate Thread can no longer give back control to the scheduler
and cannot send and receive messages as a consequence. To solve this, in case of a
separate Thread, memory has to be shared between the ThreadedPlan and the Thread, and
the Threaded plan has to check whether this memory has changed, in which case the
ThreadedPlan can decide to send messages or vice versa.

A more common problem with developing agent applications is that it is very difficult to
debug the application. Because different parts of code can be running simultaneously and
because agents communicate autonomously, it is not possible to “step through” the whole
application. Individual agents can be stopped and debugged individually, but this will not
involve the communication between other agents. This makes it very difficult to correctly
debug an application and the use of the mentioned tools is absolutely necessary. Another
solution to cope with this problem is to build agents in an incremental way and testing the
behaviour of the agent in steps. Also outputting debug information to the System.out stream
can be useful to get an idea of what is going on.

Concerning the beangenerator plug in for Protégé-2000, there are two limitations on the
bean generation. The first limitation is that the generated beans do not implement the
(empty) Serializable interface, which enables objects to be directly saved in files or
transferred over sockets. The second limitation is that the generated beans always overwrite
the existing contents of the output folder, which means manual changes, made on the
beans are lost between two generations. A better solution would be to merge these changes
in the newly generated beans.

Finally Eclipse has some limitations, compared to other, commercially available tools. An
annoyance is that it is not possible to download a complete Java IDE, but several separate
packages have to be installed. Secondly it is very slow (or it requires a lot of processing
power), especially on larger source files. Also the synchronisation between the graphical
design and the source file can get stuck, in which case the program has to be restarted.
Lastly the graphical editor misses some basic functionality in the sense that the contents of a
ComboBox cannot be edited with the property editor (but have to be edited in the
sourcecode) and in order to switch to a certain tab from a JTabbedPane, you have to use
the object tree, in stead of clicking on the desired tab in the graphical editor.

monitor.wait(); // around line 105

monitor.wait(MAX_EXECUTION_TIME); // replace MAX_EXECUTION_TIME

Chapter 4: Assumptions, requirements and model

This chapter starts with a description of the PITA. After that a technical view on the
problem that has to be solved as part of this thesis is described. Then the assumptions

which form the basis of this thesis are described. Next, the requirements for a solution
are described in the fourth part. Finally the distributed model and considerations which
lead to this model are presented.

4.1 Description of the Personal Intelligent Travel Assistant
The most important aspect of the Personal Intelligent Travel Assistant is that it relieves the user
of having to find the best route to his destination. By determining the position of the user,
using GPS or other techniques, the system is able to optimise the route for the user and
update the advice as the user travels and new information becomes available.

In order to communicate with different types of users in different kinds of situations, the PITA
system provides a multi modal interface to the user. This means the communication can be
based on speech, icons, text or a graphical interface depending on the preferences of the
user and the situation in which the system is used. For instance an elderly user in a busy
environment might prefer to communicate using a large iconic interface, while a business
traveller travelling in a first class private compartment might prefer the speech interface. The
speech interface uses speech recognition and speech synthesis to communicate with the
user.

To optimally fit the desires and demands of the user, the system keeps track of several
preferences of the user. These preferences can be changed by the user, but the system also
tries to learn the user preferences from the day-to-day use. For instance, if the user always
uses the speech interface in the morning and switches to the text interface in the evening,
the system will learn this preference and automatically switch to the most likely interface. Also
if the system detects a lot of noise on the microphone channel, it switches from the speech
interface to the text or iconic interface.

Advising the user about the best route to his destination requires accurate information about
delays of trains and a routing algorithm to find the optimal connection between his current
location and the destination, given the train schedule and expected delays. The information
about delays is partly available from the NS website, but the PITA system can also generate
information about train delays itself. Since the position of each user is known at each
moment, the system can compare the actual position with an expected position and
estimate whether the user is experiencing a delay. This information can then not only be used
to update the route of this user, but also to warn other users that are planning to take this
train and possibly change their route advice.

The optimal route from the current location to the destination can depend on several user
preferences. Depending on the type of user, the system can give the fastest but more risky
solution based on more train changes or it can give a less risky solution which arrives a little
later but is very likely to arrive at that time. The first solution is optimal for young, demanding
users while the second solution will better fit the requirements of business or elderly users. The
routing algorithm should use the user preferences in order to optimally fit the expectations of
the user.

As handhelds become more and more powerful every day, it will be possible to run a larger
part of the application on the handheld device. Ultimately the application will completely
run on the handheld device and depending on information which is available optimise the
advice for the user. This information can come from nearby users which are also using the
PITA system, for instance by using ad-hoc networking techniques or by using dial-up or UMTS

or GPRS based mobile Internet connections to gather the required information about delays.
The PITA system consists of individual handheld applications, gathering and exchanging
information with each other and trying to individually optimise the advice for the users.
Emerging from this behaviour is a distributed application of autonomously functioning
handheld applications which distribute and exchange information over the ad-hoc
connections between the devices and Internet connections where available. If there is no
other information available, the individual applications will still try to give the best advice to
the user, based on static information stored on the handheld device.

The PITA system should be integrated with other applications on the handheld device, which
together form a personal assistant for the user. For instance an application which is able to
automatically schedule appointments between groups of people at a location which
involves the least travelling by the group of people, could use the PITA system to guide each
of the individual users to the correct location. The users then do not need to worry about
planning meetings and scheduling travelling times, since the two applications, working
together for all users take care of this, by communicating on behalf of each of the individual
users.

Besides offering the user a comfortable solution for planning a train route to his destination,
the system also offers NS several new possibilities. Since the position of each user is known by
the system, it is possible to visualise traveller flows. These traveller flows can be used to design
a model of the demand for capacity along every railway connection. Using this model, NS
will be able to better predict traveller flows, which gives NS the possibility to optimally
schedule the trains and carriages. Another possibility is to let passengers reserve a seat in
advance, which gives them a guaranteed seating place and gives NS the possibility to
schedule carriages even better fitted to the demand. In the case of a PITA user, the
reservation of seats will naturally be done automatically by the application without
intervention of the user.

The conductors can be equipped by NS with a PITA device, which gives them the possibility
to advise travellers (without a PITA device) even better about the route they should take,
which also includes actual delays. Besides equipping conductors with PITA devices, NS could
also give travellers who buy an annual railpass a PITA device for reduced charges, as part of
a better customer service. By equipping conductors and heavy users with a PITA device, the
NS can take care of creating a start-up user base which is large enough to be able to gather
enough information about train delays from the system itself, which is very important for
acceptance of the PITA system.

The last advantage of the PITA system for NS is that trains and stations can become aware of
which users are at which platform or in which train. This way it is no longer necessary to
interview people in trains about which type of ticket they use, but this data can be gathered
electronically. Also electronic billing becomes possible, which could simplify the work of the
conductor considerably.

4.2 Description of the problem to solve
The possibilities of the PITA system, as described in the previous section, cover to much
aspects to study as part of a single MSc thesis. Therefore we have divided the system in
several sub-problems which have to be solved and selected a set of these problems to study
as part of this MSc thesis. First a technical view on the PITA problem is presented in order to
get a view on the problem domain. After that, the division in sub-problems is discussed.

4.2.1 A technical view on the problem
In order to create a Personal Intelligent Travel Assistant, it is useful to take a look at how the
problem can be solved from a technical point of view. The goal is to have an application
running on a handheld device, which displays a personal travelling advice for the user, as
shown in figure 4.1. Using GPS or another positioning technology, the position of the user is
determined. Multiple users can be near to each other and share information through an ad-
hoc network, based on for instance WiFi connections. Some handheld devices have access
to a GSM phone, which enables them to connect to the Internet and possibly some server or
servers running another part of the application or gathering and storing data.

���	�����
/
+.

/
��	����	�
����	

Figure 4.1 A technical view on the PITA problem

Data comes from several different sources, such as position and delay data from different
users. Crucial for the PITA application is how this data can be combined into a personal
advice for the user. For large scale acceptance, it is essential to minimise the costs which are
involved in the wireless connections and thus the data going over the GSM data / GPRS or
UMTS connections.

4.2.2 Division in sub-problems
This section describes how the PITA system was divided into sub-problems and which
problems were studied as part of this MSc thesis.

The first sub problem is acquiring the data which is necessary to built a PITA application. This
project will study the possibilities for acquiring information on the static train schedule, delay
information of trains and how to determine the position of the user. Also a model to distribute
this data and the processing power over handhelds and/or servers will be studied.

The second problem is the route planner, which will be studied as part of this project. The
route planner will have to use the acquired data and the preferences of the user in order to
find optimal routes.

The third sub problem is the communication with the user. As described, this should preferably
be done multi modally (by graphical, iconic and speech interfaces) and the user should
have the possibility to switch between different interfaces. This project will not focus on
designing and developing a multi modal interface, but provide a graphical user interface as
part of the prototype which will be developed. Also a simulation environment will be
designed and implemented as part of this project. Testing the usability of the interfaces will
not be part of this project.

The last problem are the capabilities of different handheld devices. This thesis will not study
the different handheld devices which are currently available and implement different code
for compatibility with different types of handhelds. In stead, a prototype will be developed
which is able to run on a single handheld platform, which is as platform independent as
possible. Also ad-hoc networking functionality will not be developed as part of this project,
since currently research is being done in this area at TU Delft and we assume this technology
to be available. The developed prototype will however be prepared to function in an ad-hoc
environment.

4.3 Assumptions
Two assumptions are made for the design presented in this thesis. The first assumption is that is
will be possible to generate or receive dynamic information about delays of trains. The
second assumption is that it will be possible to determine the position of the user in an
acceptable way.

4.3.1 Dynamic delay information
Concerning dynamic information about delays, NS currently provides information on the
actual departure time of trains for 83 (of about 400) stations within The Netherlands. This
information is actualised and includes delays of 5 minutes or larger. For the rest of the railway
tracks, this information is not available. We assume either NS will make this information
available or the information can be generated by the system itself, using handheld devices
capable of determining the position of the traveller accurately (for instance using GPS).

4.3.2 Determination of the user position
The second assumption is that it will be possible to determine the position of the user in an
acceptable way. One possibility is to let the user specify his position manually, another
possibility is to determine the position automatically, for instance by using GPS or GSM
positioning. In order to provide all described functionality, some developments have to take
place on the current handheld devices, which are described in the appendix. By
implementing a first prototype which is able to run on the Sharp SL-C860 Zaurus handheld,
which lets the user manually specify his position, we assume to prove that a PITA handheld
application can be implemented in an acceptable way for its users.

Figure 4.2 The Sharp SL-C860 Zaurus handheld

4.4 Requirements
This section describes the requirements for the PITA system. The requirements are split in
system requirements and user requirements which are described in the following sections.

4.4.1 System requirements
Considering the large amount of potential users of the system (1 million each day), it is
necessary for the system to be able to handle these numbers of users simultaneously. Besides
this, the system should be scalable, which means it is possible to extend the running system
with more processing power as more users are using the system. Besides scalability, reliability is
also very important. The system should be able to handle system crashes or lost connections
and minimise the possibility for users to get ‘stuck’, because the system is not functioning any
more.

As travellers are mobile users, the system should work on a handheld device with wireless
connections. This ensures the traveller to always have the optimal advice on the device in his
pocket, in stead of having to remember trainnumbers or platformnumbers. The last
requirement is that the system should give optimal solutions for the traveller, concerning
available delay information, static route information and the user preferences. The user
should be able to completely trust the solutions from the system and not have doubts about
the optimality of the presented solutions.

4.4.2 User requirements
The most important requirement for the users of the system is probably the ease of use of the
system. The application should not ask unnecessary questions. It should be usable by non
experienced users very easily, but experienced users should have the option to change some
advanced preferences in order to optimally fit their demands.

Beyond the scope of this thesis, but very important in order to realise a commercially usable
system, is the design of interaction dialogues, a multi modal user interface which can be
adapted to the preferences of the user, automatic learning of the user preferences and
testing the usability of the system.

4.5 The PITA system model
This section describes the considerations that lead to the model which forms the basis of the
global design. First the considerations between a centralised or a decentralised method are
described. Next the model for the design is presented.

4.5.1 Centralised versus decentralised model
Two general approaches for designing the system were considered: the centralised
approach and the decentralised approach. The centralised system would have a single
server running the software and in the decentralised model several separate servers and
even handheld computers are used which are linked to each other. In the decentralised
model, processing power as well as data can be distributed over different computing
devices.

4.5.1.1 Centralised system
A centralised system is a lot easier to design and implement, because all programs and data
are available on the same server. Also because all delay data is available on this server, it is
possible to find the optimal routing solution, considering all delays. A disadvantage is that the
single server creates a central point-of-failure, which can cause the total system to go down
because of a small problem with the hardware, software or network connection. Considering
the large amount of users, it is necessary to have a very expensive server to handle all
simultaneous requests.

4.5.1.2 Decentralised system
The main disadvantage of the decentralised system is the complexity involved in designing
and implementing the system. In case the delay data is distributed over several computers,
sub-optimal solutions can be found in stead of optimal solutions, because the delay data has
to be synchronised over several computing devices. The decentralised system can however
cope with the problem of failures to parts of the system and keep running on the working
servers. This makes the system more fault-tolerant. Next to this, because the application is
distributed over several computers, each individual computer can be cheaper, because it
needs to handle only a part of the requests. Finally the decentralised model corresponds
better to the availability of delay data, which is explained in the next section.

4.5.1.3 Historic background
During the process of privatization of the Dutch Railways (Nederlandse Spoorwegen), the
Dutch Government decided to split the ownership of the railway tracks from the railway
companies using the tracks. The ownership of the railway tracks remained with the Dutch
Government and as of the first of July 2002 all stocks of Railinfratrust BV were acquired by the
Dutch Government. January 1st, 2003 the organisation was renamed ProRail and consists of
ProRail Railinfrabeheer (maintenance), ProRail Railned (capacity management) and ProRail
Railverkeersleiding (traffic-control).

ProRail Railverkeersleiding is responsible for controlling the traffic on the Dutch railways,
coordination in case of calamities and providing information about delays. To do this, The
Netherlands are divided into 4 regions: North-West, North-East, South-West and South-East,
which are controlled from 4 different control centres, located in Amsterdam, Zwolle,
Rotterdam and Eindhoven.

Figure 4.3 ProRail Railverkeersleiding has divided The Netherlands in 4 regions with 4 control centres

Because the control of ProRail Railverkeersleiding is distributed over 4 different locations as
shown in figure 4.3, the decentralised model corresponds best to the availability of delay
data.

The following table summarizes the advantages and disadvantages of the two models:

 Centralised model: Decentralised model:

Advantages: Easier to design and implement
Optimal solutions can be found

No central point-of-failure
Standard hardware can be used
Model fits the availability of delay data

Disadvantages: Central point-of-failure
Expensive server costs

Difficult to design and implement
Sub-optimal solutions are used

Considering the advantages and disadvantages, the more difficult design and
implementation of the decentralized model can be seen as a challenge. This makes the
decentralized model the preferred model for the system.

4.5.2 The distributed PITA model
Figure 4.4 shows the model of the distributed PITA system. The system is based on several
servers which are connected by Internet, as shown by the blue inner circle. The yellow
synchronisation layer realises a synchronised system clock. Also each server stores a copy of
the static train schedule, which is extended with regional delay information. Interregional
delay information is synchronised across the servers. Finally each server runs a JADE agent
platform, shown in the brown outer layer, which all together form a single fault tolerant agent
platform as described in section 3.2.5. The agent platform is used by the agents to
communicate with the rest of the system.

The system connects to the external NS website in order to import information about train
delays. This data is parsed from the HTML pages which are collected using a HTTP connection
to the external server. This solution is sub-optimal, as it will generate a lot of data flow
between the NS webserver and the rest of the system. Also the website does not give an
overview of all actual delays, but only offers the possibility to query departing trains (with
delay information) per station, which means 83 queries are necessary to have a complete
picture of all delays.

��
�	
��
��
�

/
+
.

/

�
�	
��
��
	�

�
��
�	

��
	�
�
�
��
�!�
��

�&
��
��
��
�
��
�
�

��
'/
+'

�
	�
%�
��

���	�����
/
+.
/

��	����	�
����	

Figure 4.4 The model for the design of the distributed PITA application

Handheld devices connect to each other by wireless connections (for instance Wireless LAN)
to form an ad-hoc network. Each of the ad-hoc networks connects to the Internet by (built-in)
mobile phones using GSM Data, GPRS or UMTS connections to contact the disitributed server
backend. These connections are currently available, but the costs of using these connections
are high. The difference between a GSM Data connection and the GPRS and UMTS
connections is that the GSM data connection is charged per minute of usage, while the GPRS
and UMTS connections are “always on” and only the bandwidth usage is charged. Therefore
the GPRS and UMTS connections are prefered for the PITA application.

The position of the user can be determined for instance by GPS or by tracking the GSM
phone. The next chapter will describe the different aspects of the distributed PITA model in
detail.

Chapter 5: Design

This chapter presents the design or the PITA system and application. First a design of the
use cases is presented, followed by the system design. Then the data model is

described containing a UML class diagram and sequence diagrams of the system.
Finally the user interfaces are described.

5.1 Use case design
Three different types of users are distinguished for the use case design. First we will discuss the
traveller using the system to guide him to his destination. Next, we distinguish an operator user
who is responsible for running a real-time system, for instance for NS and a simulator user who
simulates travellers using the PITA system, for instance for research purposes. The next sections
describe the different use cases for each of the roles.

5.1.1 The traveller

Figure 5.1 The use-case diagram of the traveller

The traveller is able to view and modify the configuration of the system and his preferences
and to get an advice on how to reach his destination. In order to give a personalised advice,
the user needs to specify a destination and the system will plan an optimal route given the
user preferences. While the user travels, the system continually updates the advice for the
user, as new information about delays or cancelled trains becomes available.

5.1.2 The operator and the simulator

Figure 5.2 The use case diagram of the operator and the simulator

The operator is responsible for running a real-time system, which guides travellers using live
data about trains and delays. In order to do so, the operator uses the system management to
view the status of the different components of the system and to start and stop individual
components. He can also view the actual delays and add or update the delay data. Next to
that he can get a view on the current situation of moving trains and actual travellers using
the system. Lastly he can record delay data, which can then later be used by the simulator to
simulate delays in a simulation. Next to the other functions which a real-time operator has, the
simulator is also able to simulate travellers using the PITA system.

5.2 The system design
This section describes the design of the system. First the global design showing the different
subsystems is described, next each of the individual subsystems is discussed.

5.2.1 Global design

+��
	��
��
��

��
	�

��
��
��

.�
��	

�
!��
��
��
�

4	%
���
���!&

�&��	�
���!�������

'�
	!	
�	�
�	
�

Figure 5.3 The global system design of the PITA system

The PITA system has two user interfaces: a management interface and a handheld interface.
The management interface is used for viewing and modifying the system configuration. The
handheld interface is used by travellers using a handheld device to communicate with the
system. A central role is played by the distributed agent platform, which runs personal agents
for each individual traveller. In order to give an optimal advice to the traveller, the personal
agents receive information about the best route to the destination, given the current delay
situation and occurring delays during the trip. Using the user position it is possible to determine
whether the user is experiencing a delay. This information about delays is also communicated
back to the system itself, to actualise the stored delay information. Next to that the NS Delay
website is used to fill the delay system. The route planner uses the static train schedule
combined with the actual delay information to search an optimal route for the traveller,
based on the preferences of the individual traveller.

5.2.2 Delay subsystem
The delay subsystem is responsible for gathering and storing information about train delays.
Two important sources for this information are the users of the system themselves and a
website of NS which gives information on actual departure times of individual trains.

5.2.2.1 Determining the position of the user
Probably the most important information for the PITA system is the location of the user. This is
necessary to be able to give a travelling advice, estimate delays and to get a view on
traveller flows. A possibility is to ask the user of the system to specify his position, but there are
also automated ways to determine the position. One possibility is to use the Global Positioning
System (GPS). Another possibility is to make use of the GSM system.

5.2.2.1.1 Global Positioning System (GPS)
The Global Positioning System consists of 24 satellites around the world which transmit position
data. Using a GPS receiver (costing around 100 euros) it is possible to receive these signals
and determine the position with an accuracy of about 25 meters, using the angle at which
the signal is being received from different satellites. Currently every Dutch train is being
equipped with a GPS receiver, but this is only for usage by the railway companies. Using a
normal GPS receiver within a train is not ideal, because the train forms a Faraday cage,
which blocks the signal from the satellites. Using an antenna, better results can be achieved
by placing it against the window or outside the train. For the PITA system it would be ideal to
make use of the GPS receivers currently being installed on every train. Another possibility is
using the GSM infrastructure to determine the position of the user.

5.2.2.1.2 GSM cell-id location
The GSM system consists of a very extensive network of antennas. The antennas are
distributed according to the demand for mobile communications, which means the density
of the antennas increases around cities (to about one antenna every square kilometre). Each
antenna has a unique identification code (cell-id). While the user travels, the mobile phone
connects to the nearest GSM antenna, having the strongest signal. Using the cell-ids, it is
possible to determine the position of the user coarsely. A disadvantage of the cell-ids is that
every mobile operator has its own network of antennas with its own set of identification
codes, which means there are 5 networks with different cell-ids in The Netherlands.

5.2.2.2 Delay information
Several types of delays can be distinguished. In the first place there are scheduled delays,
which are caused by for instance maintenance of the railroad. Information about scheduled
delays is available from the website of NS well before the delays occur. Next to this, there are
incidental delays, which occur because of all sorts of unexpected problems occurring while a
train is riding a certain track. Information about incidental delays becomes available only
several minutes up to some hours before the delay occurs. Finally there are structural
incidental delays, which are delays that occur continually because of external factors, like to
tight planning of the travel time on a certain track, or to tight planning of train changes at a
station. Only experienced travellers know about structural delays. The structural delays require
a probabilistic approach in order to predict these occurring. The other delays can be
determined directly from the NS website or from travelling users using the PITA system. As a first
approach, a deterministic model was implemented, which combines the scheduled and
incidental delays and leaves out the structural delays.

Incidental delay information will be generated by travellers using the PITA system. After
receiving information about the position of the user, this information can be used to
determine whether the user is travelling according to the schedule or is experiencing a delay,
by interpreting the position data. Next to this, NS provides some information about incidental
and scheduled delays through their website as is discussed in the following sections.

5.2.2.2.1 Interpreting position data

,'�
���	���	

,�*
���	��� ,�*
���	��� ,�*
���	���

��	5 �677587977 �67758:977 �6775;7977

,'�

�������	 <
):
��
8188=> <
):
��
:?1))@> <
):
��
A)18;)>

�������	 $
@)@
��
8@1::)> $
@)@
��
?1))@> $
@)@
��
@18)@>

,�*

�	����
B'< ��� �7@)8 ��� �7@); ��� �7@)A

�	����
4�������	 AA::� @�� AA:A�$)�� AA:A�$877

�	����
��*���	 777@�777@ 777@�777; 777)�777@

�	����
C����	 ������� ������ � �����

�	����
�	�!��� :;8)�@)8; :;88�8)@7 :;8)�@)8:

,'�
���	���	

Figure 5.4 An example of GPS or GSM data for determining the position of the user

After receiving GPS longitude and latitude information or GSM cell-id information, it is
necessary to interpret this data to be able to predict whether the user is experiencing a
delay. This can be done by keeping track of a profile for every track in The Netherlands,
containing timestamps and position data for a train having no delay. By looking up the
position data in the table for a normal train and comparing this data with the actually
received data, it is possible to estimate the delay of the user. The conversion from position
data to delay data can be done with a mathematic function using the distance between
the reference positions and the actual positions. Another solution would be to use a neural
network or expert system to interpret this data, which is certainly necessary for the GSM
system, because there is no direct mapping between the cell-ids and the location.

5.2.2.2.2 Data provided by NS
Next to interpreting the user position for incidental delay information, it is currently (as of
March 25th, 2004) also possible to get information about the actual delays of individual trains.
NS provides up-to-date delay information for 83 stations in the Netherlands on their website,
giving an accurate view on the departing trains at these stations. This information includes
delays of 5 or more minutes, reschedule information and cancelled trains. This information
can be used as an excellent basis to extend with delay data gathered from the user
positions. Next to this, scheduled delay information is also available from the NS website,
which makes it possible to incorporate these also in the system.

���������	
���http://www.ns.n
l/pers/actueeltjes.cgi?493

5.2.2.3 Distributed delay information
The PITA system will be distributed over several servers, which makes it possible to distribute
the delay information in several different ways over the individual servers. The first possibility is
to synchronise all delay information across all servers. As there are 6000 trains in the static train
schedule, this means 6000 objects have to be synchronised throughout the network of
distributed servers. In order to minimise the necessary synchronisation across the servers, but
to maintain the optimal routing as much as possible, another solution is chosen for the
distributed PITA application.

5.2.2.3.1 Regional and inter-regional delay informati on
In the distributed PITA system, each server will be responsible for a certain region of The
Netherlands. To avoid unnecessary synchronisation of the delay information across the
servers, the delay information is modelled as shown in figure 5.5.

Figure 5.5 The delay model for synchronising Inter-regional delay information

Each server will have a copy of the static train schedule, extended with regional delay
information, about Stoptrein trains within the region. Regional delay information is information
about trains that do not cross region-borders. On top of that, delays for trains which cross
multiple regions are synchronised across all servers. This way information concerning local
trains is available only on the server responsible for the specified region while information
about interregional trains is available throughout the network. Another possibility would be to
build an expert system with knowledge about alternative routes. In case a delay occurs on a
certain track, the expert system can then determine which users should be noticed about this
delay because a better route to their destination is available. This was already done by
Gerritjan Eggenkamp (see [Egge01]) for automobiles on motorways, and will involve
interviewing a lot of “experienced travellers” about route alternatives and modelling this
information in a rule base.

���������	
���Dynamic Multi
Modal Route Planning: An Artificial
Intelligence Approach, July 2001

5.2.2.3.2 Sub-optimal solutions
A disadvantage of the chosen model for distributing the delay information is that in some
cases sub-optimal solutions can be found, since not all delays are replicated over all servers.
Figure 5.6 shows an example situation of how a user at train station A with destination station
C will get a sub-optimal advice due to the synchronisation scheme which is used.

Figure 5.6 An example situation where the user will get a sub-optimal advice

Only information about inter-regional trains is synchronised over all servers, so server 1 for
region 1 will have no knowledge about the delay of the regional train E-C. The optimal route
in the perception of the agent on server 1 will be to go from station A to station D and then
take train E-C to destination station C, with 5 minutes delay, because route A-B-C will have 10
minutes delay. The nominal travelling times of route A-D-C is assumed to be equal to route A-
B-C. The example shows how delays of regional trains can have consequences for inter-
regional travellers. However the (minor) disadvantages of the sub-optimal routes are
compensated by less synchronisation information which has to be exchanged between the
servers.

5.2.3 Route planner
An important part of the PITA system is the route planner, which should be able to find the
best route to the destination in the train schedule combined with available data about train
delays and using the user preferences. Eduard Tulp (in [Tulp91]) has developed the DYNET
algorithm for searching time-table networks. The next sections describe the algorithm and
how it is used in the PITA system.

5.2.3.1 The best route
To find the fastest route between two stations is a well defined problem. However, the best
route between two stations can depend on several factors which make it a non trivial
problem to find this route. The best route can depend on situations, personal preferences and
general preferences. Generally people find the route arriving as early as possible at the
destination, having the shortest overall travelling time and having the least possible train
changes the best route to a destination. However some people prefer a train going directly
from the start to the destination which arrives later in stead of a faster connection having
train changes, because they can remain seated in the same train. Another reason can be
that train changes have the risk that the next train may be delayed. So by having a direct
train, the arrival time at the destination is more certain than the arrival time of a route with
train changes.

5.2.3.2 A discrete dynamic network
In order to represent a time-table network, it is necessary to use a discrete dynamic network
in stead of a normal (directed) graph in which vertices represent stations and edges
represent train connections. Trains do not depart continuously, so the travelling time between
two vertices varies, depending on the arrival and departure time of trains. This is why a
discrete network is used, which associates with each edge a start and end value,
representing the departure and arrival times of an individual train. Another problem are train
changes. Depending on which train is used to arrive at a station, it is sometimes necessary to
walk to another platform to take the next train, which can take several minutes. To represent
time spent on train changes, a lookup table is introduced per node which stores the amount
of time necessary to go from an arriving edge to the next departing edge. In fact this
introduces visiting costs per node, which will be named CON. Also each edge e gets an
attribute id(e) which identifies the train riding the edge. Figure 5.9 shows an example discrete
dynamic network representing 5 stations and 4 trains.

Figure 5.7 An example discrete dynamic network

In order to go from the train represented by edge e1, to the train represented by edge e2, 4
minutes are necessary to go from the arrival platform to the next departure platform. Since
the arrival time at the station represented by vertex v2 is 9:15 and the departure time of e2 is
9:18, this connection cannot be made. However, the connection from e1 to e3 is possible.

5.2.3.3 The DYNET algorithm
The DYNET algorithm (see [Tulp91]) uses a discrete dynamic network to search an optimal
train route between two vertices. The algorithm consists of two passes, a forward pass and a
backward pass. The forward pass finds a route reaching the destination vertex at the earliest
possible arrival time. The backward pass optimises the route found in the forward pass by
finding the route having the last possible departure time which reaches the destination vertex
at the same time. Eduard Tulp describes the DYNET algorithm using macro operators, which
also considers the number of train changes in the solution, as follows:

Consider a discrete dynamic network consisting of t he graph G = (V,E) and
the connection function CON. The maximum value of CON at a vertex u is
maxiCON(u) . The number of train changes in a path P is denoted by
CHANGES(P). The change_value is the time that we are prepared to travel
to avoid one train change. The corrected end value of a path P, cend(P) ,
and the corrected start value of a path P, c start (P) , are defined as
follows:
cend(P) = end(P) + CHANGES(P) x change_value
c start (P) = start(P) – CHANGES(P) x change_value

continued on the next page…

The label of a vertex v is

�
(v) in the forward pass and k(v) in the

backward pass. The smallest end value that was trie d to label u from v is
denoted by � (u,v) . The number of train changes of the (corrected) be st
path arriving at a vertex v is denoted by � (v) . A train riding a sequence
of edges e0, e 1, e 2 is identified by an extra edge attribute id(e 0) =
id(e 1) = id(e 2) . The two special vertices s and t of the network are the
starting and terminating vertices. We want to find a legal path from s to
t in our discrete dynamic network, where the correct ed end value of the
path is minimum and given this corrected end value, the corrected start
value of the path is maximum and its value is at le ast Tstart .

Then the DYNET algorithm, consisting of two passes, is as follows:

PASS 1:
(1)

�
(s) � Tstart and for all v � V, v � s ,

�
(v) � ∞ .

 Create a partial path P0 consisting of s only, cend(P 0) � Tstart .
 For all v � V, � (u,v) = ∞ for each neighbour u of v.
(2) F � { P0 }.
(3) Let P m be a partial path s , e0, u 1, .. , u j-1 , e j-1 , u j in F for which
 cend(P m) is minimum; if F is empty then stop, no complete path could
 be found.
(4) if u j = t , stop, Pm is a complete path with an optimal corrected end
 value.
(5) if CHANGES(Pm) = � (u j) and cend(P m) <

�
(u j) + maxiCON(u j) , then for

 every relevant edge e j : u j � u j+1 :
 create a partial path P n = s , e0, u 1, .. , u j-1 , e j-1 , u j , e j , u j+1 .
 cend(P n) � end(P n) + CHANGES(Pn) x change_value
 if

�
(u j+1) > cend(P n)

 then
�

(u j+1) � cend(P n) and � (u j+1) � CHANGES(Pn) .
 F � F + { Pn }.
 if end(e j) < � (u j+1 , u j)
 then � (u j+1 , u j) � end(e j) .
(6) if CHANGES(Pm) = � (u j) and

�
(u j) + maxiCON(u j) � cend(P m) .

 then for the edge e j : u j � u j+1 for which id(e j) = id(e j-1) :
 create a partial path P n = s , e0, u 1, .. , u j-1 , e j-1 , u j , e j , u j+1 .
 cend(P n) � end(P n) + CHANGES(Pn) x change_value
 if

�
(u j+1) > cend(P n)

 then
�

(u j+1) � cend(P n) and � (u j+1) � CHANGES(Pn) .
 F � F + { Pn }.
(7) F � F - { Pm } and go to step (3).

A relevant edge is defined as follows: given a part ial path u0, .. , u j-1 ,
e j-1 , u j and a vertex u j+1 , then the relevant edges from u j to u j+1 are the
edges e j : u j � u j+1 for which the following two ordered conditions hold:
(1) start(e j) � end(e j-1) + CON(uj , e j-1 , e j) , and
(2) end(e j) < end(e min) + maxiCON(u j+1) ,
 where end(e min) is the minimum end value of any edge satisfying (1).

continued on the next page…

To use the available information about train delays, the DYNET algorithm, as used in the PITA
system, will add the delay of a train on a certain track e to the end(e) attribute of the edge e
and to the begin(ej) and end(ej) attributes of all consequent edges ej having id(ej) = id(e)
and for which begin(ej) � end(e). The CON function was implemented as a function, taking
as parameters a minimum change time and a change time per platform that has to be
crossed as follows (see also section 6.3.2 for a detailed description):

CON(ej-1, ej) = 0 if id(ej-1) = id(ej), or

= train_change_time + (extra_change_time_per_platform x
|getarrivalplatformnumber(ej-1) - getdepartureplatformnumber(ej)|)

5.2.3.4 Using DYNET in the PITA system
As described in the previous section, the first pass of the DYNET algorithm finds the route
reaching the destination as early as possible and departing from the start as early as possible.
For users who are currently already at the start station, this (first pass only) solution can be the
best solution, since they can choose to wait for the fastest route or they can try to get near to
the destination as soon as possible. By travelling towards the destination the risks of incidental
delays are minimised. This is why the route planner of the PITA system can use either the full
DYNET algorithm or only the first pass of the algorithm as a user preference. Another user
preference is the change_value parameter, which defines the maximum extra time per train
change a user would accept for a solution having one train change less compared to
another route. Using these two parameters, the user is capable of optimising the route
algorithm to find the best solution considering his situation as is summarised in table 5.1.

PASS 2:
(1) k(t) �

�
(t) and for all v � V, v � t , k(v) � - ∞ .

 Create a partial path P0 consisting of t only, c start (P 0) �
�

(t) .
(2) F � { P0 }.
(3) Let P m be a partial path u j , .. , u k-1 , ek-1 , t in F for which
 c start (P m) is maximum.
(4) if u j = s , stop, Pm is an optimal complete path.
(5) if � (u j) = CHANGES(Pm) and cstart (P m) > k(u j) - maxiCON(u j) , then for
 every relevant edge e j-1 : u j-1 � u j , with � (u j , u j-1) � start(P m) :
 create a partial path P n = u j-1 , e j-1 , u j , .. , u k-1 , ek-1 , t .
 c start (P n) � start(P n) - CHANGES(Pn) x change_value
 if k(u j-1) < c start (P n)
 then k(u j-1) � c start (P n) and � (u j-1) � CHANGES(Pn) .
 F � F + { Pn }.
(6) if � (u j) = CHANGES(Pm) and k(u j) - maxiCON(u j) > c start (P m) .
 then for the edge e j-1 : u j-1 � u j , with id(e j-1) = id(e j) ,
 and with � (u j , u j-1) � start(P m) ,
 create a partial path P n = u j-1 , e j-1 , u j , .. , u k-1 , ek-1 , t .
 c start (P n) � start(P n) - CHANGES(Pn) x change_value
 if k(u j-1) < c start (P n)
 then k(u j-1) � c start (P n) and � (u j-1) � CHANGES(Pn) .
 F � F + { Pn }.
(7) F � F - { Pm } and go to step (3).

A relevant edge is defined as follows: given a part ial path u j , e j , u j+1 ,
.. , u k and a vertex u j-1 , then the relevant edges from u j-1 to u j are the
edges e j-1 : u j-1 � u j for which the following two ordered conditions hold:
(1) end(e j-1) � start(e j) - CON(uj , e j-1 , e j) , and
(2) start(e j-1) > start(e max) - maxiCON(u j-1) ,
 where start(e max) is the maximum start value of any edge satisfying
 (1).

Table 5.1 The choice of routing algorithm depending on the location and preferences of the traveller

Current location: Travel preference: Routing algorithm:

At the start station High risk, performance user First pass, low change_value (e.g. 0)
At the start station Low risk, comfortable user First pass, large change_value (e.g. 15)

Not at the station High risk, performance user Two pass, low change_value (e.g. 0)
Not at the station Low risk, comfortable user Two pass, large change_value (e.g. 15)

5.2.4 Distributed agent platform
This section describes the distributed agent platform. First the structure of each of the
distributed servers is explained and next the functioning of the personal agents running on the
distributed agent platform is described.

5.2.4.1 The distributed servers
The distributed agent platform consists of several servers running JADE agent containers as
described in section 3.2.5. By using Main-Container replication, the platform will remain
running if a server crashes. However, the individual agents which were running on the server
that crashed are lost, since individual agents are not replicated across multiple servers. Figure
5.8 shows the structure of the distributed servers as wel as what information is synchronised
across the servers.

Figure 5.8 The structure of the distributed servers

The Server Management Layer is the first layer. The responsibility of this layer is to synchronise
the list of active (and correctly running) servers and the system time over all servers. Also this
layer divides the regions which are the responsibility for each server. This forms the basis for
the rest of the application. The data layer contains a copy of the static train schedule, which
is extended with regional delay information and inter-regional delay information, which is
synchronised across each server. The application layer runs the route planner and the agent
containers forming the distributed agent platform together with the agents on the handheld
devices. The next section describes the functioning of the personal agents running in the
agent containers.

5.2.4.2 The personal agent
Personal agents for each individual traveller run on top of the described distributed platform.
These personal agents communicate with the rest of the system to generate an optimal
advice for the user as shown in the following figure:

��
�
�

��
��
	

��

�
	�
��
��
�
�

'�
	!
	�
	�
�	
�

Figure 5.9 The personal agent

The personal agent uses the route planner to find the best route to the destination. Next to
that the personal agent stores the preferences of the user and keeps track of the position of
the user to detect whether the user is experiencing a delay. As soon as a delay is detected,
this is updated in the delay database and a new route to the destination is determined. After
updating the delay information, other personal agents which have planned to take this train
are notified of the delay and can also determine a new route to their destination.

5.2.5 Handheld application
As described in the previous section, the personal agent and the route planner can run on
the distributed servers. However as handhelds become more powerful, it will be possible to
run a larger part of the application on the handheld devices as well. This section describes
the functions of the handheld devices in three scenario’s: either the handheld device is used
as an interface only, or the handheld device runs part of the application or the full
application runs on the handheld device.

5.2.5.1 The handheld interface
In the handheld interface scenario, the personal agent runs on the server and exchanges
only interface commands with the handheld. The handheld itself does not do any
application processing, as is shown in figure 5.10.

Figure 5.10 The handheld interface model

As the application runs on the server, only the interface has to be developed suitable to run
on the handheld device. This makes it possible to rapidly support a large range of handheld
devices. On the other hand, if the connection between the handheld and the distributed
servers is lost, the application does not function any more and the traveller will not get an
updated advice.

5.2.5.2 The handheld application with distributed b ackend
This section describes how the personal agent can run on the handheld device. Next to that
the possibilities for using ad-hoc networks to efficiently share data between handhelds are
described.

5.2.5.2.1 The handheld personal agent
By moving the personal agent from the distributed servers to the handheld device, the
application becomes more robust and is able to advice the user based on the static
information (optionally) stored on the handheld even if the connection to the rest of the
system is lost. After moving the personal agent to the handheld device, the route planner can
also be moved to the handheld device. This however means all information about delays has
to be stored on the handheld device as well, causing a lot of synchronisation between the
handheld device and the distributed server backend. Since the current costs of mobile
Internet connections are very high, the PITA system will run the personal agent on the
handheld device and leave the route planner and delay storage on the distributed servers,
as is shown in figure 5.11.

Figure 5.11 The PITA handheld application model

In this scenario, the personal agent stores the user preferences and the current advice and
keeps track of the user position. The distributed servers keep track of which route information
was given to which personal agents, in order to notify personal agents of delays which could
possibly affect their current travelling advice. All delay information remains on the servers and
the handheld can optionally store a copy of the static train schedule for situations when the
mobile Internet connection is lost.

5.2.5.2.2 Ad-hoc networking
As the personal agent runs on the handheld device, it also becomes possible to exchange
information over an ad-hoc wireless network between individual handheld devices, without
having to use a mobile internet connection. This means the personal agents on different
handheld devices can exchange route information and information about delays in order to
optimally get to each individual destination. Figure 5.12 shows how a handheld connected
only by an ad-hoc wireless network can be connected to the system.

Figure 5.12 A handheld can be connected to the rest of the system by only an ad-hoc wireless connection

By sharing information over an ad-hoc network, it becomes possible to use the system without
having a mobile Internet connection per device. The following information can be shared
over the ad-hoc network:

• Position information
If several travellers are on the same train, then only a single user needs to have a
position device, like for instance a GPS receiver. By sharing this information across the
wireless network, all other users are updated of their locations as well.

• Route information
If several travellers (partly) have the same route to their destination, other users can
use this route as well and do not need to set up their own mobile Internet connection
with the distributed servers.

• Delay information
By sharing information about train delays, this information needs to be communicated
only once over the mobile Internet connection and can then cost effectively be
shared across the wireless ad-hoc network between different handhelds.

In order for the ad-hoc networking to function in an optimal way, it is necessary to have
enough travellers which are equipped with capable devices, having built-in GPS receivers
and mobile Internet connection (preferably GPRS or UMTS). This is necessary to have a user
base which forms a minimal coverage of the PITA system across the stations and trains in The
Netherlands. To realise such a minimal coverage, NS could equip all conductors with a
capable PITA device. Another solution would be to give travellers who buy an annual railpass
the option to buy such a device for reduced charges.

Another problem is that nobody wants to use his mobile Internet connection all the time to
help other users, but also wants to profit from the system from time to time. A solution for this
would be to register credits on each handheld device. As the mobile Internet connection of
the device is used, the handheld gets credits. If there are more devices with a mobile Internet
connection available in an ad-hoc network, the mobile Internet connection of the device
with the least credits is used to provide the network with information. This way the handhelds
will negotiate what connection is used and which information is shared, leading to ad-hoc
created networks and personal agents negotiating and sharing information as they travel
along the Dutch railways.

5.2.6 The distributed handheld application
This section describes a possible design for running the full application on the handheld
device. This scenario was not used for the implementation of the PITA system, but shows
several interesting aspects which can be of interest for further research. Figure 5.13 shows the
route planner is also running on the mobile device in this scenario. Besides this, the handheld
device also stores delay information locally. This means a central server synchronising the
delay information is no longer needed.

Figure 5.13 The distributed handheld application model

In this scenario the delay and route data is shared fully by personal agents in ad-hoc
networks. Each personal agent is responsible for finding relevant data from nearby other
agents. This leads to autonomous functioning personal agents, exchanging and storing
information in a non-deterministic way, based on available information in the nearby ad-hoc
networks. The delay data will be distributed in a way that suits the demand for information
from the users of the system. Emerging from the autonomous functioning agents is a
distributed application with a very interesting distribution model for the data.

The different handheld devices do not need to have the same capabilities in this scenario.
One handheld can have positioning funtionality built-in while another has a mobile Internet
connection. In this heterogeneous network, each of the users can get an optimal advice by
sharing and exchanging information between the different handhelds.

5.3 The data model
This section describes the data model for the PITA system. First the system object model is
described. Then some sequence diagrams present the communication between the objects.
Finally the model of the ontology which is used for communication between the agents is
described.

5.3.1 System object model
Figure 5.14 shows the object model of the system. It consists of the layered server model as
shown in figure 5.8 and a handheld layer containing the personal agent. However it is also
possible to run the handheld layer on top of the distributed servers. The most important object
in the Server Management Layer is the System manager, which is the central component
connecting the different layers. Each distributed server has a single system manager and the
different system managers together synchronise the system time, a list of which servers are
currently active and how the different regions are divided. Each server therefore has a
unique number and a location, which is used to divide the regions. Through the System
management interface, the Operator or Simulator can contact the System manager and
change several settings and get an overview over the system.

The Data layer contains the Train schedule and a Delay manager, which is responsible for
distributing the delays throughout the system. Using the NS website parser, actual data on
train delays can be acquired and stored in the system. The Route planner is able to find the
best route between two stations. It uses the train schedule in order to do so. Per Personal
agent, the Route planner maintains what was the latest route given to that agent. This list is
used to check which Personal agents have to be notified of a specific delay, once a new
delay is added to the system.

The central object on the Handheld layer is the Personal agent. The Personal agent has its
own System time object, which is synchronised to the System time of the rest of the system.
Optionally also an instance of the Train schedule is stored on the handheld. The Personal
agent furthermore keeps track of its current location through the Location object and the
current advise through the Route object. It stores the user preferences and the desired
destination. Lastly it keeps track of a list of other Personal agents that are nearby (more
specific: in the same ad-hoc network). The Traveller can change his destination and
preferences through the Personal agent interface and is also being updated on the current
advice and progress through this interface.

Figure 5.14 The system object model

5.3.2 Sequence diagrams
In order to clarify the functioning of the different objects together, the next sections describe
three different functions of the system, using sequence diagrams to visualise the functions
and messages which are exchanged between objects.

5.3.2.1 A new delay is added
FIgure 5.15 shows the sequence diagram for the addition of a new delay to the system.

Figure 5.15 Sequence diagram of the addition of a new delay

As can be seen, the delay is stored in a list maintaining a copy of each new delay and then
used to update the train schedule. After that, the routeplanner is contacted, which maintains
per personal agent, a list of the last route which was advised. Using this list, the personal
agents that might be interested in the new delay information are notified of the delay and
they will update their advice. Finally the delay is distributed over the different servers, which is
described in the next section.

5.3.2.2 The distribution of a delay
Figure 5.16 shows the sequence diagram of the distribution of delay information. Each server
runs its own delay manager, which is why two different delay manager objects are used in
the figure.

Figure 5.16 Sequence diagram of the distribution of a delay

First it is necessary to find out which servers have to be notified of the delay, which depends
on the region division between the servers and the delay type (regional or inter-regional).
After that, the delay managers on the different servers are notified of the delay and they will
add this delay to the system as described in section 5.3.2.1.

5.3.2.3 Updating the traveller advise
Once a personal agent is notified of a delay, it will estimate whether the current route is still
realizable with the new delay or if it is necessary to find a new route. If a new route is
necessary, the personal agent will try to find such a route, as is shown in figure 5.17.

Figure 5.17 Sequence diagram showing how the advice is updated

The nearby agents list contains a list of other agents which can be contacted over the ad-
hoc wireless network. These agents are first contacted to find out which route they are
currently using. If a route is found, which is also usable for this traveller, this route is used by the
personal agent. Otherwise, the personal agent contacts the route planner for a new route
advise. The route planner updates its list with the routes which were advised to personal
agents.

5.3.3 Ontology diagram
An ontology is an object description of the language which is used by the individual agents
to communicate with each other. Figure 5.18 shows the ontology design for the PITA
application.

Figure 5.18 The ontology object model

The ontology consists of the concepts Journey, Train, Station and OVTime, which form the
basis to store data. The agent action FindRoute describes how route searches can be
initiated. The result of a search is the predicate Route. Furthermore Delay predicates can be
exchanged between agents.

5.4 The user interfaces
The two most important interfaces of the PITA system are the Traveller interface and the
System management interface which are described in the following sections.

5.4.1 The Traveller interface
The Traveller interface forms the interface between the Traveller and the Personal agent. It is
able to run on a handheld device. Figure 5.19 shows a screenshot of the Traveller interface.
The Traveller interface is used by the user to specify his travel parameters (location and
destination), his preferences and to view the advice from the PITA system.

Figure 5.19 The traveller interface

5.4.2 The System management interface
The System management interface is used by the Simulator and Operator users. It is used to
manage and inspect the System manager objects of the distributed servers. Figure 5.19 shows
a screenshot of how the System management interface can be used to inspect the current
division of the regions between the different servers. In this case 4 servers are working from
stations Amsterdam Centraal (pink), Utrecht Centraal (yellow), Maastricht (red) and
Groningen (blue).

Figure 5.20 The System management interface

5.4.3 The NS delay interface
In order to simulate delays, an extra interface was designed for the delay generator. Using
the delay generator, delays can be aqcuired from the NS website and send to the running
PITA servers for a real time system or delays can be read from a file or outputted to a file for
simulations. Figure 5.21 shows how this interface lets the user specify to which server backend
it has to connect.

Figure 5.21 The NS delay interface

5.4.4 User test
To optimise the usability of the user interfaces, it is necessary to do tests with real users of the
system. This is necessary to make sure the users interpret the offered functionality as it was
designed by the developer: the mental model of the user should match the model of the
designer. Metaphors can also be used to improve the usability. Such a user test has not been
carried out as part of this project, because there was no time left to organise such a test. The
provided interfaces are part of the prototype which was developed as part of this project.
Other functions, such as a speech recognition interface and iconic interface are not
developed. Before user tests are done, these other interfaces first have to be integrated into
the current system to have a complete dialogue system for the user, in order to optimally test
the system.

Chapter 6: Implementation

This chapter describes the implementation of the prototype, based on the design of
chapter 5. First is described how the relevant information was acquired, such as the

static train schedule and delay information. Then the configuration of the distributed
agent platform is described, followed by the implementation of the route algorithm.
Finally ad-hoc networking is discussed and the interface implementation is described.

6.1 Acquiring the information
Before being able to build a PITA system, it is necessary to have information on the static train
schedule and delays at your disposal. Because NS does not distribute this information freely, it
was necessary to parse this information from the website for the prototype. First we describe
how the train schedule for a single working day was copied, followed by how GPS and GSM
data can be used for determining the position of the traveller. Then we describe how the
delay data can be parsed from the NS website.

6.1.1 The static train schedule
The information on departure and arrival times of trains is property of NS. NS offers several
services and products which contain the information on the train schedule. In the first place,
NS sells a paper guide containing a printed version of the train tables. Next to this, NS sells a
program on CD called “Planner Plus”, which can be used to plan trips on a personal
computer. This software does however not offer an open interface for accessing the
information on the train schedule from another program. Finally there are two websites which
contain planners based on the train schedule. The first website is www.9292ov.nl which is a
door-to-door planner for public transportation and which also includes regional busses in the
generated advise. The second website is of NS itself, www.ns.nl, it contains a planner with only
information on trains.

In order to have representative data in the prototype of the PITA system, the train schedule of
a normal weekday was copied from the NS site. To built a real PITA system, it is necessary to
make arrangements with NS to get access to the train schedule, because there are several
exceptional rules (for instance on holidays and weekends). In order to automate the process
of copying the train schedule, it was necessary to make a model containing all connections
between stations which are made by trains. This means all direct connections occuring in the
train schedule were added to a XML file. After this, a program was developed which used this
data, to query the NS website on all trains making this direct connection on a single day. This
can be done by rebuilding the “search earlier and later connections” from the website in the
program. Table 6.1 shows the fields which have to be supplied to query the NS webserver.

Table 6.1 The form data used to query the train schedule

Field: Description:

from Contains the ID of the departure station
to Contains the ID of the arrival station

yeartraveldate Contains the year of the date on which to search
monthtraveldate Contains the month of the date on which to search

daytraveldate Contains the day of the date on which to search
hourtraveltime Contains the hour of the time to search

minutetraveltime Contains the minutes of the time to search
state Contains an internal state used by the webserver, which should be updated after

each search

actie Contains ‘ok’ on the first search and ‘advicequery’ on following searches
datumbutton Contains ‘vandaag’, ‘morgen’ or ‘anders’

new_select Contains an integer value which is the selected index

Submitting this data by a HTTP POST action to http://www.ns.nl/cgi-ns/nsbaliecgi, a search in
the train schedule can be done. Consecutive searches have to increment the value in the
new_select field, in order to find later connections. Also the contents of the state field have to
be parsed from the returned page and then used in the new search. This way a copy of the
train schedule of a single normal working day was made for the prototype and stored in a
database. Later an ordered query on the database was saved to a XML file which is used as
input by the prototype.

6.1.2 The user position
There are several possibilities to automatically determine the position of the user. Using a GPS
receiver or a mobile phone are the two best possibilities. As mobile devices converge into a
single device having all different functions built-in, it is very likely handhelds will have mobile
phone and/or GPS functionality built-in in the near future. However at this moment, there are
smart phones having a GSM built-in, or external GPS receivers available. To communicate
with these devices, serial communication is used.

6.1.2.1 Serial communication
Serial communication is used in computers to connect external devices. Starting with mouses
using the physical COM-port connector, to the modern Universal Serial Bus (USB), serial
communications dominate the connection with external devices. The introduction of
Bluetooth, also made it possible to use wireless serial communication to external devices,
such as mobile phones and GPS receivers. On top of a serial communication link, different
protocols can be used in order to exchange information with the external device. In the next
two sections we will describe these protocols for communication with a (Bluetooth) GPS
receiver or a (Bluetooth) mobile phone.

6.1.2.2 GPS receiver
In order to communicate with a GPS receiver, a Bluetooth GPS receiver (Fortuna GPSmart BT)
and a laptop with Bluetooth adapter were used. After configuring the Bluetooth connection,
this creates a virtual COM-port in Windows, which can be used to communicate with the
device. The configuration is shown in figure 6.1.

Figure 6.1 The configuration used to communicate with a GPS receiver

Currently there are two communications standards for communicating with GPS receivers:
The National Marine Electronics Association standard NMEA 0183 and the SiRF standard. The
used GPS receiver used the NMEA protocol, which transmits several different message types
of positional data. Messages containing the current position are the $GPGGA and $GPRMC
message. Figure 6.2 shows a screenshot of a GPS monitor program, which also includes a
dump of the data transmitted by the GPS receiver.

Figure 6.2 A screenshot of a GPS monitor containing a dump of the communicated data

The content of the messages is divided in fields, separated by a comma. Table 6.2 describes
the contents of the $GPRMC and $GPGGA message fields:

Table 6.2 The contents of the NMEA messages from the GPS receiver

$GPGGA message (Global positioning system
fixed data)

 $GPRMC message (Recommended minimum
specific GNSS data)

Field: Content: Field: Content:

1 UTC of Position 1 UTC of position fix

2 Latitude 2 Data status (V= warning, A=valid)

3 N or S 3 Latitude of fix
4 Longitude 4 N or S
5 E or W 5 Longitude of fix
6 GPS quality indicator (0=no fix) 6 E or W
7 Number of satellites in use 7 Speed over ground in knots

8 HDOP Horizontal dilution of position 8 Course over ground in degrees true
north

9 Antenna altitude (w. resp. to sea level) 9 UT date (DDMMYY)
10 M [eters] (Antenna height unit) 10 Magnetic variation degrees

11 Geoidal separation 11 Magnetic variation, sense E or W
12 M [eters] (Units of geoidal separation) 12 Checksum (Mandatory)

13 Age in seconds since last update from
diff. reference station

14 Diff. reference station ID# , 0000-1023

6.1.2.3 GSM mobile phone
Using the same configuration, with a laptop with Bluetooth adapter, a virtual serial port was
connected to a Siemens S55 mobile phone. Current mobile phones implement extended
versions of the HAYES AT-command set, once developed for modems. The AT command
AT+CREG gives information on the current cell of the GSM network which is used. The device
can be set to enable location information messages, by sending the following command:
AT+CREG=2. After this, the mobile phone will give information on the current GSM cell and
update this information as the user moves across the network, by sending response messages.
These messages consist of comma seperated fields, which are described in table 6.3.

Table 6.3 The contents of the network registration message

AT+CREG response messages (Network registration)
Field: Content:

Starts with +CREG:
1 Current mode (needs to be set to 2, to receive

location information, is optional)
2 Current status:

0 = Not checked in, not seeking
1 = Checked in
2 = Not checked in, seeking a network
3 = Check-in denied by network
5 = Registered, roaming

3 Hexadecimal 2-byte string type of location area
code

4 Hexadecimal 2-byte string type of cell ID

By sending the command AT+CREG? it is possible to query the current status of network
registration and GSM cell. Some example messages received in Delft look like this:

+CREG: 2,1,"0030","2DA2"
+CREG: 1,"FFFE","006C"
+CREG: 1,"0002","0175"
+CREG: 1,"000C","0CD1"
+CREG: 1,"000C","0201"

As can be seen, there is no direct mathematic relation between the position and the
received location information.

6.1.2.4 Determining the position in the prototype
The implementation of the first prototype of the PITA handheld application does not include
automatic determination of the position of the user. In stead the user has to specify his
position manually. At the moment a lot of effort would be necessary to implement automatic
determination of the user position, as platform dependent libraries would have to be
implemented. Since simultaneously development is being done on the Java Bluetooth API
and the Java Location API and the limited amount of time available for this project, we have
not started the implementation of such libraries. Figure 6.3 gives an overview of the different
possibilities to automatically determine the user position.

Figure 6.3 The possibilities for automatically determining the position of the user from the PITA application

Because currently it is not yet possible to use the Java Bluetooth API to communicate with
external Bluetooth devices from Java and the Java Location API is not supported directly by
any handheld device having built-in GPS, it would be necessary to implement platform-
dependent libraries (for instance in C for PalmOS) which connect to the device. As it can be
expected that the Bluetooth and Location API’s will be supported in the near future, no effort
was made to develop such hardware dependent libraries.

Another problem with GSM position determination is the lack of a direct link between the
position and the received data. As each mobile operator has its own network, with different
cell ID’s, it is necessary to collect a lot of information on the position of the antenna’s of each
operator and after that it is necessary to implement a non-lineair function to determine the
position. This would also require a lot of time to implement an acceptable solution.

6.1.3 Delays from the NS website
As of March 25th, 2004 it is possible to get information about the actual delays of individual
trains from the NS website. The site contains up-to-date delay information for 83 stations,
giving an accurate view of the departing trains at these stations, including delays. By
submitting a station identifier, either the first 20 departing trains are displayed or all departing
trains leaving the station in the next hour are displayed.

Figure 6.4 A screenshot of the NS website containing delay information

The site which is shown in figure 6.4 has been used to gather delay information. By submitting
the stop field containing the station id of the departure station, as described in table 6.4,
using a HTTP POST action to http://212.108.13.35/dtw/dtwClient.jsp, the list of departing trains
can be requested. It is not always clear which connection a train is going to make, since the
stops are only globally described in the “Via” column. That is why we used the train identifier
combined with the station ID of the departure station in order to combine the delay
information with the static train schedule.

Table 6.4 The form data used to query the delay website

Field: Description:

stop Contains the ID of the departure station

As part of this project a parser was developped which can read delay information either live
from the NS website or from an input file and output the data either to the PITA system or to
an output file. This parser can be used to generate delay data for simulations and to run
simulations with previously saved delay data.

6.2 The distributed agent platform
The distributed agent platform forms the central backend of the PITA system. This section
describes the structure of the platform, how the distribution and synchronisation on the
backend takes place and which agents were implemented.

6.2.1 The agent platform architecture
The agent platform is divided over a backend consisting of different servers connected by
Internet and several individual handhelds as is shown in figure 6.5.

Figure 6.5 The distributed agent platform architecture

The distributed backend consists of several servers, forming a single fault-tolerant platform as
described in section 3.2.5. Each of the handhelds runs a separate platform without replication
or distribution, which connects to the distributed backend by a mobile Internet connection.

6.2.2 Distribution and synchronisation on the backe nd
The backend consists of several servers, which have to distribute the data and workload of
the application across each of the servers. In order to do so, each server has to be started
with two parameters: a unique (increasing) number and a train station location. The unique
number is used for identification of each of the platforms and the train station location is used
for the division of different regions.

As a new backend server is started, it will try to contact a server with a lower number in order
to get information on the currently running configuration. Based on the train station location
of each of the servers a division of the regions is made and the new server will inform all of the
current running servers of this new region division. Each of the servers check whether its region
changed and distribute their data according to the new division over the servers. This leads to
a new configuration in which the newly added server has the responsibility for a region of
which it gets the corresponding data from the other servers. Another scenario would be the
failure of a server. Each of the backend servers has a random time-out, which is used in order
to check the functioning of the system. As soon as the time-out of a server has expired, the
server will start a check of the functioning of the current configuration by contacting each of
the servers. If a server is detected which is not functioning, this server is removed from the
configuration and the operation is repeated by sending each of the servers a new
configuration without the failing server.

6.2.3 Autonomous agents
One of the important features of agent applications is that it is possible to model several
autonomous agents, each having its own responsibility, separately in stead of having to
develop the full application as a single program. Each agent in an agent application is
responsible for reaching its own goals and can autonomously take decisions, execute plans
and communicate with other agents in order to do so. Up front it is unclear how the
application will execute, since this depends on the agent state of each of the different
agents. The application will persue the given goals, but how they are reached depends fully
on the way in which the agents are working and communicating together. The way the
agents work together is usually referred to as the emergent behaviour of the agent
application. Besides the interesting aspects of the emergent behaviour, the agent
application also offers a way to divide a large problem in smaller parts which can be solved
by different agents. By developing plans to solve certain problems, an ontology to
communicate and appropriate goals it is possible to model the problem as an agent
application. For the PITA system, five different agent types were developed, corresponding to
the different systems in the system object model in figure 5.13: a server manager agent, a
route planner agent, a delay agent, a NS delay agent and a personal agent. Table 6.5 gives
an overview of the responsibilities of each of the developed agents.

Table 6.5 The responsibilities of the different agent types

Agent type: Responsibilities:

Server manager Synchronisation of the system time
Maintain a working configuration of backend servers
Maintain a division of different regions over the backend servers

Route planner Plan the best route between two stations, based on preferences and delay info
Maintain a list of the last route which was given to each personal agent
Inform personal agents of relevant delay information

Delay agent Maintain a list of actual delays
Inform other agents of new delays

NS delay agent Aqcuire information on delays from the NS website
Import and export delays from and to files
Inform other agents of delays

Personal agent Manage personal preferences, current position and destination
Maintain a list of other nearby personal agents
Advise the traveller
Communicate with the route planner and nearby agents

The ontology as described in section 5.3.3 was used for the communication between the
agents. The goal of each of the agents is to make sure the responsibilities are fulfilled. The
goal of a personal agent is to reach the destination. Each of the agents was implemented as
a Jadex BDI agent, as described in section 2.3.5.

6.3 The route planner
For this project two different route planning algorithms were implemented: a Moore algorithm
and the DYNET algorithm of Eduard Tulp. This section discusses the implementation of both
algorithms.

6.3.1 Used algorithms
The difference between both algorithms is that the Moore algorithm is a label correcting
algorithm while the DYNET algorithm is a label setting algorithm (based on Dijkstra’s
algorithm). This means the Moore algorithm will continually update the label of different
nodes as shorter paths to the node are found, while the DYNET algorithm will build a shortest
path tree containing the definitive shortest path to a node. Furthermore the implementation
of the Moore algorithm in the system does not take into account time spent on train changes
or alternative routes having less train changes. The DYNET algorithm can be configured with
different parameters to find the best solution for a specific user. Because the DYNET algorithm
can be adapted to the user preferences and takes into account time spent on train
changes, this algorithm has to be preferred above the Moore implementation.

6.3.2 Search parameters
Besides the obvious parameters, such as the starting location, destination and start time, the
DYNET algorithm implementation can take several parameters which are shown in table 6.6.

Table 6.6 The parameters for configuring the DYNET algorithm

Parameter: Description:

change_value The time per train change, a user is prepared to arrive later at his
destination for a solution having less train changes

train_change_time The time a user needs, to leave a train and board the following
train at the same platform

extra_change_time_per_platform The time which is added to the train_change_time per platform
which a user has to cross in order to reach the next train

passes Whether a single (first) pass algorithm is used finding the earliest
leaving, earliest arriving solution or a two pass algorithm, finding
the latest leaving, earliest arriving solution

Using these parameters, the best route can be found for each type of user. As we do not
want to make things to complex to understand for a user, in stead of changing these values
we have defined four user profiles, among which a user can select his preferred profile which
includes these parameters. The next section describes the four user profiles.

6.3.3 User profiles
As described in section 5.2.3.4, four different profiles are distinguished. First we make a
distinction between a user who is currently travelling and wants to get to his destination as
soon as possible. This is used for the profiles with location “at the station, travelling”. Users who
are at home and want to take a train within an hour or so are modelled in the “not at the
station, planning” profile. Next we distinguish the comfortable user, who does not want to run
to make a train change and rather sits in the same train for 10 extra minutes as having to
make a trainchange, and a performance user who really wants to get to his destination as
soon as possible. Of course these parameters can be adjusted and should be adjusted to fit
the user preferences optimally, however this is not done in the current implementation and
the parameters are used statically, as is described in table 6.7.

Table 6.7 The mapping between the user profiles and the search parameters

Current location: User type: Parameters:

At the station, travelling comfortable user change_value = 10 minutes
train_change_time = 2 minutes
extra_change_time_per_platform = ½ minute
passes = first pass only

At the station, travelling performance user change_value = 0 minutes
train_change_time = 1 minutes
extra_change_time_per_platform = ½ minute
passes = first pass only

Not at the station, planning comfortable user change_value = 10 minutes
train_change_time = 2 minutes
extra_change_time_per_platform = ½ minute
passes = two psses

Not at the station, planning performance user change_value = 0 minutes
train_change_time = 1 minutes
extra_change_time_per_platform = ½ minute
passes = two passes

6.3.4 Performance examples
In this section we will discuss different examples of solutions which were found using the first
pass DYNET algorithm and compare these with the result of the NS website. For this we
selected a traveller wanting to go from Uitgeest to Haarlem at 7:40. Using the NS website
planner the following solution was found:

Table 6.8 The route found by the NS website

Time: Station: Platform: Direction: Train ID:

07:42 Uitgeest 3 Amsterdam Centraal Stoptrein 7327
07:47 Krommenie-Assendelft
07:50 Wormerveer

07:53 Koog-Zaandijk
07:55 Koog Bloemwijk

07:58 Zaandam

08:04 Amsterdam Sloterdijk 6

08:16 Amsterdam Sloterdijk 7 Haarlem Sneltrein 2233
08:26 Haarlem 3

Using the comfortable, first pass algorithm, the DYNET algorithm finds the following route in 60
milliseconds searchtime:

Table 6.9 The route found by the comfortable, first pass algorithm in 60 milliseconds

Time: Station: Platform: Direction: Train ID:

08:04 Uitgeest 4a Haarlem Sprinter 4816
08:08 Heemskerk

08:11 Beverwijk
08:15 Driehuis

08:17 Santpoort Noord
08:20 Santpoort Zuid

08:23 Bloemendaal
08:27 Haarlem 6a

This can be explained by the change_value of 10 minutes, which gives a 10 minute penalty to
the routes having a train change. Next we will use the performance, first pass profile to see
which route is found in this case:

Table 6.10 The route found by the performace, first pass algorithm in 50 milliseconds

Time: Station: Platform: Direction: Train ID:

07:51 Uitgeest 1b Alkmaar Stoptrein 7314
07:55 Castricum 1

07:57 Castricum 2 Haarlem Sneltrein 3431
08:06 Beverwijk
08:17 Haarlem 5

The solution was found in 50 milliseconds. In the performance profile, the connection at
Castricum can just be made, which gives absolutely the fastest connection but a high risk. If
we use the comfortable profile in which we change the change_value parameter to 0, the
same route is found as the NS website gives standard in 60 milliseconds.

The implementation of the DYNET algorithm does however not use a linear amount of time for
a more complex problem. For a route from Maastricht to Groningen starting at 10:00 the
following route is found using the performance profile in 591 milliseconds:

Table 6.11 The route from Maastricht to Groningen found by the performance, first pass algorithm in 591 milliseconds

Time: Station: Platform: Direction: Train ID:

10:17 Maastricht 4a Roermond Stoptrein 6838

10:23 Bunde
10:29 Beek-Elsloo

10:33 Geleen-Lutterade
10:39 Sittard

10:44 Susteren
10:48 Echt

10:57 Roermond 3a

11:02 Roermond 2 Eindhoven Intercity 838
11:16 Weert

11:38 Eindhoven
11:58 ’s-Hertogenbosch

12:29 Utrecht Centraal 7a/b
12:32 Utrecht Centraal 4a Amersfoort Stoptrein 5641

12:47 Amersfoort

12:51 Amersfoort Schothorst
12:57 Nijkerk

13:03 Putten
13:07 Ermelo

13:11 Harderwijk
13:19 Nunspeet

13:25 ’t Harde
13:31 Wezep

13:40 Zwolle 5a
13:49 Zwolle 3b Groningen Intercity 743

14:05 Meppel
14:17 Hoogeveen

14:26 Beilen
14:36 Assen

14:48 Haren
14:55 Groningen 2b

After this we also performed a search with the comfortable, first pass profile. In 1432
milliseconds the following route shown in table 6.12 was found, which matches the advice
given by the NS website.

Table 6.12 The route from Maastricht to Groningen found by the comfortable, first pass algorithm in 1432 milliseconds

Time: Station: Platform: Direction: Train ID:

10:17 Maastricht 4a Roermond Intercity 838
10:46 Sittard

11:02 Roermond
11:16 Weert
11:38 Eindhoven

11:58 ’s-Hertogenbosch
12:29 Utrecht Centraal 7a/b

12:53 Utrecht Centraal 11a/b Amersfoort Intercity 1743
13:07 Amersfoort 1

13:10 Amersfoort 2 Zwolle Intercity 743

13:49 Zwolle

14:05 Meppel
14:17 Hoogeveen

14:26 Beilen
14:36 Assen

14:48 Haren
14:55 Groningen 2b

The search times which were mentioned in this section were found using a first, non-optimised
implementation of the DYNET algorithm in Java. By optimising the implementation the
absolute search times can be decreased. From the shown times it becomes clear the
algorithm needs more than o(n) searchtime as the problem becomes more complex. So the
searchtime is non linear with the complexity of the problem instance.

6.4 Ad-hoc networking
The implementation of ad-hoc networking was not a main subject of this thesis project.
However, the personal agent implementation is prepared to function in ad-hoc
environments. If the personal agent is provided with a list of nearby other personal agents
and their (IP) addresses, the personal agent can first try to query these agents in order to find
out whether these other agents are travelling (partly) in the same direction or have new
information on delays.

If this information is found from nearby agents, the agent can subscribe to the other agent to
receive information on delays occurring on the current route plan. This way the agent can
keep up to date as long as the other agent is nearby over the wireless ad-hoc network.
However as soon as the other device is to far away, the personal agent will have to search a
new nearby agent to follow.

Figure 6.6 shows a screenshot of the nearby agents tab of the personal agent interface.
Currently nearby agents are added and removed manually. By integrating ad-hoc network
technology, the list of nearby agents can be generated from the over the wireless network
reachable handhelds. This way the personal agent can first try to find the information locally
over the ad-hoc network and only use the (expensive) mobile internet connection, when
necessary because no information is available locally.

Figure 6.6 Screenshot of the nearby agents configuration

6.5 The interfaces
As described in section 5.4, several graphical interfaces were developed as part of the
project. These interfaces were designed using Eclipse Visual Editor. A central component of
each interface is the tabbed pane which is used in order to divide the different settings and
views over different panes. Because the resolution of handheld devices is limited, tabbed
panes offer a clean solution to arrange the different components.

Furthermore a speech synthesis engine based on Festival Lite with an American male voice
was compiled with a special wrapper developed in C for the ARM processor of the Sharp SL-
C860 Zaurus. The C wrapper takes care of setting up a serversocket, accepting TCP/IP
connections and outputting the text which is send through the socket connection to the
sounddevice of the handheld. This makes it possible to use the speech synthesis engine from
Java by opening a socket connection on the device and outputting text to the socket,
which is read out loud over the sound device of the handheld device. The C source code of
the wrapper is included in the appendix.

However, as stated in section 4.2, the implementation of a multi modal interface was not the
subject of this thesis and therefore the implementation of the speech synthesis engine has to
be seen as a nice side product of the project in stead of a subject which got considerable
attention. As such, no tests with users were conducted to determine the usability of the
interfaces. The provided graphical interfaces are part of the prototype which was developed
and are able to run on devices supporting Java 1.3.1.

Chapter 7: User scenario

This chapter describes a simulated journey with the PITA system starting in Delft at 10:00
going to station Groningen Noord. First the used backend configuration is described.

Next the travel parameters are configured and the advise is started. Then a
interregional and a regional delay are introduced which affect the planned route.
Finally the destination is reached.

7.1 Backend configuration
For this scenario, a server configuration is used with two servers: one on location Groningen
and one in Maastricht. This gives a region division as can be seen in figure 7.1, which shows a
screenshot of the system management interface.

Figure 7.1 The region division between a server in Maastricht and a server in Groningen

Each of the pixels represents a trainstation. The color of a pixel determines to which region the
station belongs. The blue pixels are the responsibility of the Maastricht server and the red
pixels of the Groningen server. The region division is used for the synchronisation of the delay
data, as described in section 5.2.2.3, and to decide which server is contacted by the
personal agent to plan the route to the destination.

Because the journey starts at 10:00, we have to configure the backend servers to change
their system time to 10:00. Using the same interface it is possible to do this, as is shown in figure
7.2. Besides the system time it is also possible to configure the time factor, which is the speed
up factor used for the simulation. A time factor of 10 means every real second, the system
advances the system time with 10 seconds.

Figure 7.2 Configuration of the system time

After configuring the system time, the backend is ready for starting the simulation. The rest of
this chapter will continue with the personal agent interface which provides the route
guidance to the traveller.

7.2 Specification of the travel parameters
Before starting a journey, the PITA system needs to know at which station the traveller starts his
journey and which destination the traveller wants to reach. This can be done using the
personal agent interface, which is shown in figure 7.3. Using the combo boxes, containing all
stations, the start and destination station can be selected. By pressing the first letter of the
station, the selection will jump to the first station starting with this letter, which speeds up the
selection process. The text field is used to specify in how much time the starting station is
reached by the traveller. This makes it possible to plan a journey while the traveller is travelling
to the starting station, for instance in a taxi or bus.

After these parameters are configured, the user presses the Advise button, which will start the
route guidance. The personal agent interface will jump to the next tabpane, which is shown
in figure 7.4. At the top of this pane, the personal travel advice for the user is shown. Below
the advice, the user has two radiobutton selection possibilities to specify wheter he is still
following the advise or has lost track of the advice. If the user is no longer following the
advice, two new comboboxes are enabled which allow him to respecify his current location
and destination. After pressing the Update advise button, the application will use his new
position data to generate a new route and restart the route guidance.

Figure 7.3 Screenshot of the configuration of the travel parameters

Figure 7.4 The personal travel advise tabpane

7.3 The route plan
During his travel, the user can switch between the Advise and the Plan tabpanes. The Advise
tabpane shows the current advice, while the Plan tabpane shows the route plan, which forms
the basis for the user advice and shows which connections the system has planned to take.

Figure 7.5 The route plan for reaching Groningen from Delft

The route plan shows each individual connection separately at the moment and does not
combine connections of the same train into a single connection. This gives a very extensive
view on which trains have to be used. The current plan corresponds to a static route, which
can also be found on the NS website or in a trainschedule. In order to make the situation
more interesting, we will now introduce delays which affect the route plan to see how the
system uses delay information.

7.4 The introduction of delays
In this section we will introduce several different delays. First a interregional delay will be
introduced which does not make a reschedule necessary. By increasing the delay, the
system will be forced to reschedule the journey. Also a regional delay will be introduced,
which is not communicated to the personal agent until the traveller reaches the other region.

7.4.1 Interregional delay
To start we will introduce a 10 minute delay for Intercity 537 from Zwolle. This can be done
using the system management interface. On the Delays pane, first the starting station has to
be selected. This will update the contents of the end station selection box, as this box will only
contain stations to which connections are possible from the start station. After selecting the
end station, the third combobox will contain all trains which ride along this track. Using the
checkbox, a single train can be selected or in the other case all trains in the third combobox
will be delayed.

As can be seen in figure 7.6, we introduce a 10 minute delay for Intercity 537 from station
Zwolle. This means the train will depart from station Zwolle at the normal (static) departure
time, but arrive later at Assen. Subsequently the train will depart 10 minutes later from station
Assen and arrive and depart from all following stations with a delay of 10 minutes.

Figure 7.6 The introduction of an interregional delay for Intercity 537

Since Intercity 537 crosses the region boundaries (station Utrecht is in the Maastricht region
and station Amersfoort is in the Groningen region), the delay will be synchronised over all
servers and the personal agent will get a notification of the Maastricht server. After receiving
this notification, the personal agent will update the travel plan with the new delay
information. The new route plan is shown in figure 7.7.

Since this delay still makes it possible to arrive at station Groningen before the departure of
Stoptrein 30539, the personal agent will only update the route plan with the delay and not
take actions to reschedule a new route to the destination.

While the user travels from Voorburg to Utrecht, the delay is updated to 20 minutes, which no
longer makes it possible to have the connection to Groningen Noord with Stoptrein 30539.
Figure 7.8 shows the server management interface which is used to update the delay to 20
minutes.

Figure 7.7 The updated route plan, containing a 10 minute delay from station Zwolle

Figure 7.8 Updating the delay to 20 minutes

Because the delay affects an interregional train, the personal agent is notified after updating
the delay. Because this time it is no longer possible to reach the destination with the updated
plan, the route is rescheduled from station Utrecht Centraal (as the user is currently in the train
from Voorburg to Utrecht Centraal).

Figure 7.9 The new route plan to Groningen Noord from Utrecht Centraal

As can be seen in figure 7.9, the new route from station Utrecht Centraal still uses the delayed
Intercity 537. For this advise we used a profile with a change_value of 10 minutes. Table 7.1
shows which options the algorithm has compared for travelling to Groningen. Because of the
10 minutes change_value, the search algorithm prefers to remain on the same train and find
a new connection to Groningen Noord.

Table 7.1 The two options considered by the algorithm for reaching Groningen

Train: Intercity 537 Stoptrein 9137

Departure time Zwolle: 12:17 12:26
Arrival time Groningen: 13:15 13:31

Delay minutes: 00:20 00:00

change_value penalty: 00:00 00:10

Corrected arrival time: 13:35 13:41

Next we will introduce a regional delay in the region Groningen.

7.4.2 Regional delay
As regional delays are distributed in another way as interregional delays, it is interesting to
look at the effect of introducing regional delays. The traveller currently travels from Voorburg
to Utrecht Centraal in Intercity 537. We will delay all trains on the track Groningen to
Groningen Noord for 5 minutes. This can be done by selecting the track and leaving the
checkbox for “Only specific train” unchecked, as is shown in figure 7.10.

Figure 7.10 Introducing a regional delay for all trains between Groningen and Groningen Noord

Figure 7.11 The advise is not updated, as the traveller is still in the Maarstricht region

Because regional delays are only distributed to the servers which have the responsibility for
the region in which the train rides, only the Groningen server knows of this regional delay. The
traveller is still travelling from Voorburg to Utrecht and therefore in the Maastricht region. This
means the route plan is not updated, as can be seen in screenshot 7.11.

However, as soon as the traveller reaches the Groningen region by travelling from Utercht
Centraal to Amersfoort in Intercity 537, the personal agent contacts the Groningen server
and gets the information on the delay of the Groningen to Groningen Noord track. This
means the route plan is updated as can be seen in figure 7.12.

Figure 7.12 The updated route plan from Amersfoort to Groningen Noord with the regional delay included

7.4.3 Reaching the destination
The traveller will eventually travel with Intercity 537 to Groningen, reaching Groningen at
13:35. Then waiting for the departure of Stoptrein 30641 at 14:05, the destination Groningen
Noord will be reached at 14:14. Switching back to the Advise tabpane, screenshot 7.13 was
made after the traveller succesfully arrived at destination Groningen Noord.

This showed a scenario containing some important aspects of the system: interregional
delays, regional delays, rescheduling after a delay and rescheduling after switching to
another region. Throughout the scenario, the sytem was rescheduling and communicating
with the backend, while the user only had to follow the given advice and could trust the
system to relieve him from the travelling problems. By adequately informing the traveller, he
(or she) can focus on other things and only has to follow the advice at train changes.

Figure 7.13 The traveller has reached the destination Groningen Noord at 14:14

Chapter 8: Simulation environment

In this chapter the simulation environment which was developed as part of this project
is described. First the simulation possibilities of the server management interface are

described, followed by the NS delay agent. Then the simulation options of the personal
agent interface are described. Finally a visualisation applet which was developed as
part of this project is described.

8.1 Server management interface
As described in previous chapters, the server management interface offers different
functionality in order to perform simulation experiments. The first option the interface offers is
the adjustment of the system time, as shown in chapter 7. Also shown in chapter 7 is the
possibility to view the current region division among the distributed servers of the backend
and the possibility to manually introduce delays to the system. However, an important part of
the functioning of the server management interface was not yet discussed. As the server
management interface is started, it is necessary to connect it to a single backend server as
shown in figure 8.1.

Figure 8.1 Connecting the server management interface to a PITA server platform

As can be seen, it is possible to connect to a platform running on the local server, or to
connect to a platform on another server. After connecting to a server, the time is
synchronised with the system time of this server and the delays which are known to this
particular server are loaded into the system. This is a very important aspect, because this also
shows the distribution model of the delay data. For instance, if the region division is the same
as described in section 7.1, sending a delay for a regional train in the region Groningen to the
Maastricht server, will only add this delay to the Groningen server. To illustrate this, we used
the same region division and added the following delays:

Maastricht – Maastricht Randwyck – Stoptrein 5394 – 5 minutes delay (regional)
Groningen – Groningen Noord – Stoptrein 30581 – 5 minutes delay (regional)
Groningen – Assen – Intercity 520 – 10 minutes delay (inter-regional)
Maastricht – Sittard – Intercity 818 – 10 minutes delay (inter-regional)

After these delays were added to the system, the delay situation on each of the servers
looked as is shown in figure 8.2 and 8.3 for each server.

Figure 8.2 The delay situation on the Groningen server after the addition of the delays

Figure 8.3 The delay situation on the Maastricht server after the addition of the delays

As can be seen from the screenshots, the interregional delays are synchronised across both
servers, while the regional delays are only known to the regional servers. Using these backend
configurations, experiments can be done on the influences of this distribution model on the
routing of different travellers. By making the regions very small, this way a simulation can be
done for the scenario in which the full application runs on the handheld, as described in
section 5.2.6, and only knows about delays within a small region. This is useful for testing the
effects of distributing this information and to estimate the chances of realising a distributed
handheld application.

Lastly the server management agent can be used to simulate randomly travelling personal
agents. Figure 8.4 shows the interface, used for starting simulated travellers.

Figure 8.4 Random travellers can be introduced to the system

The number of personal agents to start can be specified, followed by a prefix which should
be unique, to form the agent names. Next it is possible to select whether the agents should
be launched in a separate container and whether or not the user interfaces of the agents
should be started. After creation, the agents will be initialized with a random location and
destination and start travelling towards the destination.

8.2 NS delay agent
Just like the server management interface connects to a PITA server platform, the NS delay
agent also connects to a platform as was already shown in figure 5.21. After the connection
to a platform is established, the input for the NS delay agent can be selected on the Input
tab pane as shown in figure 8.5.

Figure 8.5 Selecting the input for the delay simulation

The delays can be gathered either live from the NS website (“actuele vertrektijden”) or from
an input text file, containing delays in the following format:

10:16,rta,Intercity,21739,10
13:18,hgv,Intercity,739,5

The first time is the time at which the delay has become known to the system (so this is the
system time). Next is the identifier of the station from which the train is delayed. The next field
contains the train type, then the train number and finally the number of minutes of delay are
specified.

Gathering the delays from the NS website can be done in intervals of 5, 10 or 15 minutes,
because this generates a lot of request (about 83) to the NS webserver everytime.

After specifying the input, the output needs to be specified as shown in figure 8.6. Either the
gathered delays can be send to the server to which the NS delay agent has been attached,
or the delays can be written to a file, in which case they can be used for later simulations.
After pressing the process button, the delays will be processed from the selected input to the
selected output.

Figure 8.6 Selecting the output for the delay data

8.3 Personal agent interface
Chapter 7 already intorduced the personal agent interface, however the visualisation tab
pane of the interface was not yet shown. Figure 8.7 shows a graphic representation of the
route from Delft to Groningen Noord. The server backend consisted of 3 servers: one in
Maastricht, one in Groningen and one in Amsterdam. The black line shows the route plan
from the start to the destination. The magenta cross shows the current position of the user.

To determine the position of the user, a linear interpolation using the total travelling time, the
current time and the positions of the start and end location is used, as follows:

Progress = (Currenttime – Starttime) / (Endtime-Starttime)
Currentposition = (1-Progress) x Startlocation + Progress x Endlocation

Of course, the best solution is to use real-time GPS data for this visualisation.

Figure 8.7 Visualisation of the route plan and current position

8.4 Visualisation applet
The last tool which was developed as part of this project is a visualisation applet. Figure 8.8
shows a screenshot of the applet running in a browser. Black pixels represent the trainstations,
while red pixels represent trains. The applet has the possibility to zoom in on certain regions
and to inspect the departure times at stations by clicking on them. Also individual trains can
be clicked in order to show more information on the train. Using the comboboxes it is possible
to speed up or slow down the simulation.

Obviously the colors of the visualisation applet do not match with the rest of the system.
Because this applet was developed in order to test whether the information gathered from
the NS website was representative for the situation on the Dutch railways and to find
interesting situations or look up specific trains, this applet was developed at the start of the
project. The goal was to integrate the visualisation into the rest of the system, but because of
a lack of time this was unfortunately not completely realised.

Figure 8.8 A screenshot of the visualisation applet

Chapter 9: Conclusions and recommendations
This chapter presents the conlusions of the project which was started with the goals as
described in chapter 1. Finally the recommendations and suggenstions for future
developments are presented.

9.1 Conclusions
This section follows the structure of the goals presented in chapter 1 to discuss the realisation
of each of the goals individually.

9.1.1 Literature survey
Concerning the literature survey, the current agent platforms are described in chapter 2. For
this project COUGAAR was not used, but the combination of the distributed blackboard
model of COUGAAR with the stable JADE platform looks promising. The choice for JADE
combined with Jadex, giving the possibility to design and implement BDI agents, has proven
to be a good choice, which has eventually realised the working prototype. Mainly because
of the available userbase of these tools, the problems occuring from this platform were
minimal or were solved after some email converstations (also with TU Delft specialists).

9.1.2 Design of a distributed system
An important part of the project was the design of a distributed system. Besides a design of a
distributed backend with a suitable distribution model for the delay information, a personal
agent was designed which can run on available handhelds. By combining ad-hoc networks
with mobile Internet connections to aquire relevant information, the real power of the PITA
system can be unleashed. By having autonomously functioning personal agents
communicating with each other and the backend system, the system can distribute its own
data across the different available networks and store and share information between
handheld devices. As suitable routing algorithm a slightly adapted version of the DYNET
algorithm from Eduard Tulp [Tulp91] was used. Finally an UML model was designed which was
used to implement a first prototype of the system.

9.1.3 Implementation of a first prototype
Based on the design a first prototype was developed in Java, based on Jade combined with
Jadex. First the relevant information from the NS website was acquired. Next the distributed
backend was implemented, which also included the designed distribution model for the train
delay data. Several BDI agents were developed of which the personal agent plays a central
role in communicating with the different parts of the system. The DYNET algorithm was
implemented in Java, which provides the system with a customisable routing algorithm,
which fits the user centric PITA system very well. A lot of time of the project is used for
implementation of the prototype. The implemented personal agent can run on the Sharp SL-
C860 Zaurus handheld as well as on a desktop system.

9.1.4 Design and implement a PITA simulation enviro nment
At the end of the project, a simulation environment is realised which gives the possibility to
gather real time delay information from the NS website and store this in files, which can be
used as input for simulations. Also the delay situation on each of the distributed servers can
be inspected and it is possible to manually add or change delays using the server
management interface. Besides this, a visualisation applet has been realised giving an
overview over the situation on the dutch railways. However, because of a lack of time the
visualisation was not fully integrated into the rest of the system.

9.1.5 Perform PITA test experiments
Throughout the implementation fase continually tests were performed to test the functioning
of the different components of the system. As it is very hard to implement (and debug) a
distributed agent application this was more than necessary in order to incrementally build the
system. In chapter 7 a user scenario was described which shows the functioning of several
different important aspects of the system.

9.2 Recommendations and future developments
This section describes the recommendations and possibilities for future developments, which
were not researched or implemented as part of this project.

9.2.1 User interface
The currently provided interfaces are prototype interfaces only, showing which functionality is
possible. However for large scale use of the PITA system, it is necessary to further research and
develop a multi modal userinterface, which should be thouroughly tested on users as to
whether the usability is acceptable. Therefore a speech recognition interface will have to be
developed which runs on a handheld device, an iconic interface has to be designed and
developed and research has to be done into the dialogue which the user has to have with
the system. Easy ways of specifying a location and destination such as using a combination
of clicking and speech recognition look very promising. Also further development has to be
put into the automatic detection of the user position and how to translate this into delay
information.

Currently the PITA application also runs stand-alone. Integration of the application with
planning software or meeting schedulers would provide the user with a complete solution for
his scheduling problems. This way the user is relieved of scheduling appointments, calculating
travelling times, planning and replanning of routes, informing others of experienced delays
etc., which really relieves him of a lot of problems. Also integration with route guidance
software for cars can be interesting, in order to develop a system like KRIS of Gerritjan
Eggenkamp [Egge01], which is able to switch between public transportation and car
transportation to reach the destination as fast as possible. Finally the visualisation interface as
developed as part of this project, has to be fully integrated into the current PITA system, to
optimally use the system for simulation purposes.

9.2.2 Delay distribution
Another interesting notion of the thesis of Gerritjan Eggenkamp is the use of an expertsystem
in order to reroute travellers. The expertsystem approach could also be used in the PITA
system for the distribution of delay data. If an expertsystem which knows which delays affect
which routes and is able to generate alternatives for this route is designed and implemented,
the current delay distribution system can be extended and personal agents can be informed
of delays and rerouting information at the same time, giving a nice solution which requires
only minimal bandwidth usage.

The scenario of the distributed handheld application, as described in section 5.2.6, is also very
interesting to research. As bandwidth for mobile Internet connections becomes cheaper, this
scenario is realisable. However it is very important to design a model for communication and
distribution in the fully distributed situation in order to have a functioning system. Otherwise
there are chances that users might not accept the experimental technology. Another way to
minimise the costs of the application for the customer is to use compression techniques to
minimise the bandwidth usage over the mobile internet connection.

9.2.3 The route algorithm
As described, two route algorithms were used in this project. The DYNET algorithm shows very
good performance, also because it can be adapted to the user preferences. However a lot
of research is done in this field, so all sorts of optimisations can be applied to the current
implementation in order to speed it up or improve the found routes, for instance by using
heuristics. The current implementation in Java is probably not the best solution in case a lot of
users would be using the system. Probably a natively compiled algorithm, running on a
separate server is necessary in order to provide a large user base with optimal routes within
an acceptable time.

The current implementation uses a penalty for train changes in order to find the best route,
however a system which determines the overall risk of a certain route can be developed.
Very tight connections give a high risk value to a route, while trains that realise a certain
connection 99,9% of the time, can be calculated as a certainty. This could be an interesting
extention for the algorithm in order to further maximise the travelling comfort for the user.

9.2.4 New technologies
As described in chapter 2, the combination of COUGAAR with JADE looks very promising. This
could provide the PITA system with a distributed blackboard on which delay and route
information is shared across ad-hoc networks. Ad-hoc networks should be integrated into the
personal agent, to detect nearby agents autmotically. Also as handhelds are becoming
almost as powerful as desktop systems, it should be possible to run speech recognition
software on the handheld, enabling a full speech interface, for instance using Sphinx from
Carnegie Mellon University. Also other voices (for instance of a Dutch female) could be
compiled for the Festival Lite speech synthesis engine. Finally the replication of personal
agents over multiple systems could be investigated, in order to be able to restore a personal
agent after a handheld has crashed.

Bibliography

[BCPA02] F. Bergenti, G. Caire, R. Pels, C. van Aart, Creating and using ontologies in

agent communication, in: EXP, volume 2, number 3, Telecom Italia Lab, Turin,
Italy, September 2002, pages 110-121. See also
gaper.swi.psy.uva.nl/beangenerator.

[BCPR03] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, JADE – A white paper, in: EXP - In

Search of Innovation (Special Issue on JADE), volume 3, number 3, Telecom
Italia Lab, Turin, Italy, September 2003, pages 6-19. See also jade.cselt.it.

[CACTUS] The Context Aware Communication, Terminal and User project at TU Delft, see

www.cactus.tudelft.nl.

[Combined] The Combined systems project of DECIS, see www.decis.nl.

[Dovl03] A. Dovlecel, PITA, Web Service perspective, TU Delft, january 9, 2003.

[Eclipse] The Eclipse IDE and Visual Editor Project, see www.eclipse.org and

www.eclipse.org/vep.

[Egge01] G. Eggenkamp, Dynamic Multi Modal Route Planning, An Artificial Intelligence

Approach, MSc thesis, TU Delft, July 2001.

[FIPA23] Foundation for Intelligent Physical Agents, FIPA Agent Management

Specification, Geneva, Switzerland, 1996-2002. See also www.fipa.org.

[FIPA61] Foundation for Intelligent Physical Agents, FIPA ACL Message Structure

Specification, Geneva, Switzerland, 1996-2002. See also www.fipa.org.

[FIPA-OS] FIPA-OS, see www.emorphia.com/research/about.htm.

[KLT03] K. Kleinmann, R. Lazarus, R. Tomlinson, An Infrastructure for Adaptive Control of

Multi-Agent Systems, IEEE KIMAS'03 Conference Paper, october 2003. See also
www.cougaar.org.

[LEAP] Lightweight Extensible Agent Platform, see leap.crm-paris.com.

[MCM99] D.L. Martin, A.J. Cheyer, D.B. Moran, The Open Agent Architecture: A

Framework for Building Distributed Software Systems, Applied Artificial
Intelligence journal, volume 13, number 1-2, pages 91-128. See also
www.ai.sri.com/~oaa.

[PBL03] A. Pokahr, L. Braubach, W. Lamersdorf, Jadex: Implementing a BDI

-Infrastructure for JADE Agents, in: EXP - In Search of Innovation (Special Issue
on JADE), Vol 3, Nr. 3, Telecom Italia Lab, Turin, Italy, September 2003, pages
76-85. See also vsis-www.informatik.uni-hamburg.de/projects/jadex.

[Protégé] Protégé-2000 ontology and knowledge base editor, see protege.stanford.edu.

[RN95] S. J. Russell, P. Norvig, Artificial Intelligence, A Modern Approach, Prentice Hall,

International, Inc., 1995.

[SHLPSZ98] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, V. Zue, GALAXY-II: A reference
architecture for conversational system development, proceedings ICSLP 98,
Sydney, Australia, November 1998. See also
www.sls.csail.mit.edu/sls/technologies/galaxy.shtml and
communicator.sourceforge.net.

[TRAIL] The Netherlands Research School for TRAnsport, Infrastructure and Logistics,

see www.trail.tudelft.nl.

[Tryllian] Tryllian Agent Development Kit. See www.tryllian.com.

[Tulp91] E. Tulp, Searching Time-table Networks, PhD thesis, Vrije Universiteit van

Amsterdam, Drukkerij Elinkwijk BV, Utrecht, oktober 31, 1991.

[Vark] R.J. van Vark, PhD thesis, to be published.

[Yild00] E. Yildiz, DTGS, een ontwerp voor een dynamisch reisbegeleidingssysteem, BSc

thesis, TH Rijswijk/TU Delft, oktober 14, 2000.

Appendix
First a description of the functionality of handhelds necessary to realise the full PITA
functionality is given, followed by a description of the source code developed as part of this
project. Finally the source code of the C wrapper for Festival Lite is included.

Appendix A: Handheld requirements
In order to be able to use all functions as described in chapter 4, the handheld devices have
to be able to fulfill several requirements. This section lists the requirements for a PITA handheld
device, capable of all functions as described in chapter 4:

• Wireless ad-hoc networking
The ad-hoc Wireless networking functionality has to be available either built-in or by
installing extra software to make ad-hoc connections with nearby devices. Currently
at TU Delft research is done in this area.

• UMTS / GPRS or other mobile Internet connection
Some connection to the Internet is necessary to update the information (for instance
on delays). An always-on connection is preferred, having acceptable prices for
bandwidth usage. Currently these types of connections are available but the costs
are high.

• GPS or other positioning functionality
Some positioning functionality has to be built-in in order to locate the traveller.
Another solution would be to have a separate Bluetooth device for this function.
Important is the possibility to connect to the Internet and the positioning device at the
same time. Some connection managers do not allow this. GPS receivers cost about
100 euro currently and are also built into handheld devices.

• Supporting Java with Bluetooth or Location API
The PITA application is developed in Java, which requires a Java runtime to be
available for the handheld platform. Currently specifications for a Java Bluetooth and
Location API are finalised and these API’s have to be supported by the handheld in
order to be able to determine the position of the traveller from the application.

• Powerful enough to run a Java routing application and speech interface
A well known disadvantage of Java is its demand on processing power and available
memory. The handheld device needs to be able to store the static train schedule in
memory and have enough processing power to find the best route and interact with
the user, for instance using a speech interface. With the never ending increase in
processing power and memory, this requirement will be fulfilled in the near future as
handhelds are becoming almost as powerful as desktop computers.

Currently smart-phones are available (for instance PalmOne Treo 600), having GPRS
connections, but lacking Bluetooth and Wireless LAN connections and positioning
functionality. Handhelds capable of Bluetooth and Wireless LAN (such as iPAQ 5550) do not
support Java and the Java Bluetooth API. Currently the best handheld option is the Sharp SL-
C860 Zaurus, which supports Wireless LAN and is capable of running (not to fast) the Java 2
Standard Edition runtime, however this device does not support Bluetooth or positioning
functionality.

Appendix B: The Java source code

The next table shows the structure of the Java code and some statistics of the input data:

package pitasystem

Class: lines: source (kb): compiled (kb):
DelayAgentPlan 312 11 7
DelayInformationPlan 351 11 7
DelaySubscriptionPlan 143 5 4
DienstRegeling 335 11 7
ManagementAgentPlan 584 17 12
NSDelayAgentPlan 592 18 12
PersonalAgentPlan 743 22 16
RouteAgentPlan 339 12 9
ServerManagementPlan 662 23 13
TravelPlan 554 19 8
UpdatePositionPlan 298 12 5

4913 161 100

package pitasystem.interfaces (used Eclipse)

Class: lines: source (kb): compiled (kb):
DelayFrame 795 18 15
drawPanel 305 10 5
ManagementFrame 1673 39 38
TravellerInterface 1311 31 34

4084 98 92

package pitasystem.moore

Class: lines: source (kb): compiled (kb):
RouteFinder 273 8 4
RoutePossibility 81 2 3
SearchNode 364 12 6

718 22 13

package pitasystem.onto (used Protégé 2000/beangene rator)

Class: lines: source (kb): compiled (kb):
AlternativeJourney 47 2 2
Delay 48 1 1
FindRoute 48 1 1
IsAnswer 26 1 0
Journey 48 2 2
OVRouteOntology 205 12 8
OVTime 325 6 3
Route 59 2 0
RouteMap 36 1 2
RouteResult 26 1 1
Station 59 2 1
Train 281 8 6

1208 39 27

package pitasystem.search

Class: lines: source (kb): compiled (kb):
Frontier 77 2 2
Node 258 7 5
PartialPath 430 16 8
SearchParameters 79 2 1
TulpAlgorithm 469 19 9

1313 46 25

package pitasystem.util

Class: lines: source (kb): compiled (kb):
OVConstants 30 1 0
OVFunctions 59 2 2
SysTime 74 2 2

163 5 4

Totals: 12399 371 261

Data files: lines: source (kb):
stations.xml 387 40
dienstregeling.xml 41301 17250

41688 17290

Appendix C: The C source code of the Festival Lite wrapper
// file: myvoice.c
// uses Festival lite: see http://www.speech.cs.cmu .edu/flite/
// author: Martijn Beelen
// free to use, no warranties
// function: opens a socket on the specified port, by outputting text to this port, the system
will use Festival Lite to output the speech
// limitation: a buffer of 1000 characters is used, please make sure to cut the text in parts
of less than 1000 characters on whole words,
// in order to prevent cuts in the midd le of a word (which will be done by this
code)

#include <stdio.h>
#include <unistd.h>
#include "flite.h"
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <errno.h>

cst_voice *register_cmu_us_kal();

int readpacket(int sck, char *buf, int size)
{
 int eolnfound = 0;
 int nrread = 0;

 int sizeleft = size-1;
 int i;

 while ((eolnfound == 0) && (sizeleft > 0))
 {

 nrread = recv(sck,buf,sizeleft,0);
 sizeleft = sizeleft - nrread;
 if (nrread > 0)
 {
 i = 0;
 while (i < nrread)
 {
 if (buf[i] == '\n')
 {
 eolnfound = 1;
 }
 i++;
 }
 buf += nrread;
 } else {
 shutdown(sck,0);
 eolnfound = 1;
 return 0;
 }

 }
 buf[0] = '\0';
 return 1;
}

int parsemessage(char *buf, int size, cst_voice *v)
{
 int li = 0;
 int cnt = 0;
 int i = 0;
 while ((cnt < size) && (buf[cnt] != '\0'))
 {
 if (buf[cnt] == '\n')
 {
 buf[cnt] = '\0';
 flite_text_to_speech(&buf[li],v,"play");
 li = cnt + 1;
 }
 cnt++;
 }

 if (li > 0)
 {
 // li is nu de laatste index die nog moet
 // laatste stuk nu weer naar voren kopieren
 while ((li < size) && (buf[li] != '\0'))
 {
 buf[i] = buf[li];
 i++;
 li++;
 }
 return i;
 } else {
 // no complete messages found, output current mes sage
 flite_text_to_speech(buf,v,"play");
 buf[0] = '\0';
 return 0;
 }
}

int main(int argc, char **argv)
{
 cst_voice *v;
 int socketfd;
 int acceptfd;
 int err = 0;
 int retval = 0;
 char bf[1024];
 int k = 0;
 int one = 1;

 struct sockaddr_in listensock;
 struct sockaddr_in acceptsock;
 socklen_t accept_addr_len = sizeof(struct sockaddr _in);

 if (argc != 2)
 {
 fprintf(stderr,"Syntax: myvoice <portnr>");
 } else {
 flite_init();
 v = register_cmu_us_kal();
 if ((socketfd = socket(PF_INET,SOCK_STREAM,0)) < 0)
 {
 fprintf(stderr,"no socket");
 return -1;
 }
 listensock.sin_family = AF_INET;
 listensock.sin_port = htons(atoi(argv[1]));
 listensock.sin_addr.s_addr = INADDR_ANY;

 if (bind(socketfd,&listensock,sizeof(struct socka ddr_in)) < 0)
 {
 char buf[10];
 fprintf(stderr,"bind failed");
 sprintf(buf,"%d",err);
 fprintf(stderr,buf);
 return -1;
 }
 if (listen(socketfd,8) < 0)
 {
 fprintf(stderr,"Cannot listen");
 return -1;
 }
 while (retval == 0)
 {
 if ((acceptfd = accept(socketfd,&acceptsock,&acce pt_addr_len)) < 0)
 {
 fprintf(stderr,"Accept failed");
 return -1;
 }
 fprintf(stderr,"Accept succesful\n");

 setsockopt(acceptfd,IPPROTO_TCP,TCP_NODELAY,(void *)&one,sizeof(one));

 while (retval == 0)
 {
 if (readpacket(acceptfd,&bf[k],1000-k))

 {
 k = parsemessage(bf,1000,v);
 } else {
 retval = 1;
 }
 }
 retval = 0;
 }
 }
 return 0;
}

