
Bayesian Networks 
Applied to 

Facial Expression Recognition

Delft University of Technology

Faculty of Electrical Engineering, Mathematics & Computerscience

Literature survey

Paul Maaskant, MSc

August 2005



 



Bayesian Networks Applied to Facial Expression Recognition 

August 2005, Paul Maaskant 

   

 

Page 1 of 39 

Abstract 

 

This literature survey gives a theoretical overview of Bayesian networks (BN) and discusses the application of Bayesian 

networks to the problem of facial expression recognition (FER). A Bayesian network is a graphical representation of a 

probabilistic system that models the full joint conditional probability distribution of an arbitrary problem. Facial expression 

recognition aims to determine the emotional state of a subject by analysis of the facial features. Different structures for Bayesian 

networks are reviewed such as Naïve Bayesian networks (NB), Tree-Augmented Naïve Bayesian networks (TAN) and Hybrid 

Bayes. Bayes is compared to other methods such as Support Vector Machines (SVM), Relevance Vector Machines (RVM) and 

AdaBoost. Furthermore, the small sample case is discussed with regard to the Bayesian approach, which is particularly 

vulnerable to a lack of sufficient training data. We discuss several solutions for the small sample case and some final 

recommendations are made for future research. 
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1 Introduction 

 

The smile of the Mona Lisa is perhaps the most illustrious facial expression known to man. Although there are numerous 

theories as to the cause of the smile, ranging from the ‘highway blues’ theory by Bob Dylan [1] to the alleged self-portrait theory 

defended by Dr. L. Schwartz [2], there seems to be no controversy over Mona Lisa’s portrayed facial expression. This is quite 

interesting, since we may safely assume that there is no one alive today who has actually known Mona, that is to say who has 

extensive knowledge of her facial features, it seems particular that almost every person would recognize the slight smile upon 

her face. Apparently, we humans are uniquely qualified to recognize certain facial expressions and attribute some emotional 

state to the person portraying the observed expression. Of course we may argue that pattern recognition technology can be 

used to determine key points on non-rigid objects such as the human face. The relative key points can be used to systematically 

analyze observed facial expressions. And it has been argued that we can map facial expressions directly to emotional states. 

Yet when we want to use modern technology to simulate recognition in an automated way, we encounter a true challenge.  

1.1 Human-Computer Communication 

Humans communicate. We do so in a lot of different ways, often using more than one mode of communication at the time. We 

converse with words, gestures and facial expressions, none of which is insignificant. Although humans are capable to 

communicate with only written words, we often need more than an exchange of words to achieve a robust level of 

communication. Mere words are often context dependent, so we need some indication of their context, meaning we need to 

asses the current mental state of the person that is trying to communicate with us. One way humans portray their mental state is 

by using facial expressions. When in conversation we often use our face to clarify our words. For instance, if a person with a 

happy face would tell us that he had lost his wallet, we would be inclined to think that this person was telling a joke, while if he 

that person would have had a sad face, we would have been inclined to believe his or her statement to be true.  

 

 
Figure 1.1: Sony’s AIBO 

 

The field of Human-Computer Interaction strives towards a comparable level of communication. A computer that could interact 

with humans through facial expressions would advance human-computer interface towards a standard comparable to human-

human interaction. Today computers can still be seen as ‘emotionally challenged’ as they fail to recognize the emotions of the 

humans with whom they interact. However, if it were possible in some way for computers to become emotionally sensitive, this 

would greatly enrich the possible communication between humans and computers. Obviously, non-verbal communication play a 

big part in everyday life. Not only the expressions on faces are important, but also gestures such as the wink of an eye or a 

stuck out tongue are a form of non-verbal communication. Facial expression recognition can be applied in number of different 

contexts. It can easily be imagined that a intelligent agent designed to be aware of its environment, for example Sony’s AIBO, 

will be greatly improved if it can say something about the emotional state of the subject with whom it is interacting. For instance 

it might try to cheer up a person if it detects sadness, or increase its awareness if it senses fear. Another area of application 
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might face recognition in order to identify certain persons, in which case reverse mapping can be useful to match the person 

portraying a particular facial expression in a video stream back to the expression on the queried image of a neutral face. In a 

nutshell: facial expression recognition provides us with a way to improve the quality of communication between humans and 

machines.  

1.2 Applications for automated facial expression recognition 

Facial expression classification has a number of applications. As discussed in the previous section, most of them are focused at 

improving the communication between humans and machines. The previous section already gave the example of Sony’s AIBO 

as a possible application for expression recognition. Another application might be an automated agent like Microsoft’s ‘Office 

Assistant’ which decides whether or not to intervene with a helpful suggestion, based on the current emotional state of the user. 

When an observation of the user indicates severe frustration (not uncommon) the agent could be conditioned to provide help 

immediately. On the other hand, if the agent notices an increase in the frustration level of the user after intervention, it could be 

conditioned to be less likely to provide help in the future. Such an agent is suggested in [20]. 

 

The existence of emoticons in chat rooms can be largely explained by the lack of context in the conversations. For example, It is 

hard to discern sincerity from sarcasm (context) when written words are the only channel of communication. Of course, when 

two humans converse in a chat room, this problem can be easily solved by a set of webcams. However, when a human is 

conversing with a computer, facial expression recognition provides the means to determine context or can even provide a 

communication channel in itself. In the movie ‘2001: a space odyssey’ the artificial intelligence HAL discovers the plot to shut 

him down, by lip-reading one of the astronauts. This idea might have seem farfetched when the movie premiered in 1968, but it 

seems a whole lot more feasible now.  

 

One might also imagine a system that monitors people for certain expressions. The paper [19] describes a system that 

recognizes violent behavior in a group of people by monitoring their movement patterns. The problem is that this is not a pre-

emptive approach, as the violence is detected only after it has occurred and persisted for a certain amount of time. Facial 

expression recognition might be used to recognize violence in a pre-emptive manner by detecting anger or fear on the observed 

faces, possibly enabling the police to prevent the situation from escalating. A similar application is detecting pain by analyzing 

facial expression (Pantic, Rothkrantz 2003). Patients in hospitals are monitored by keeping track of their blood pressure or hart 

beat-rate, but these are not infallible indicators of pain. 

1.3 Topics in automated facial expression recognition 

To get an idea of the pivotal topics in facial expression recognition, we need to know the problems commonly encountered and 

how facial expression recognition is applied. In general, automated facial expression recognition can be divided into three 

separate processes: detecting the face, extracting the salient features and classifying the expression. Each of these steps 

comes with its own set of problems. 

 

The first step is finding the face in an image or video stream. When looking at facial expression recognition models, the input 

can consist of either a static images or video streams. The main difference is the way we locate the face in the input 

image/stream. Furthermore, video streams also give temporal information. For instance, if a face expresses joy in a particular 

frame, the probability that it will express joy in the consecutive frame is high. Intuitively this makes sense, but how to incorporate 

this into a model is another question entirely. The early facial expression recognition techniques used only static images, but 

when the interest shifted from an analytical point of view to a more practical point of view in the 1970s, recognition from video 

streams became more popular.   

 

When facial expression recognition is applied to static images, the face can be located by determining the location of the face as 

a whole (holistic approach) or by identifying the face by looking for certain facial features such as the eyes (analytic approach). 

Locating the face in a video stream is somewhat more challenging. A common method is to first find all moving blobs in a video 

stream. Consecutively all blobs that might represent faces are identified. Once the face has been found, the model keeps track 

of the blob representing the face by comparing pixel values. This technique is known as tracking. An additional problem is that 
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some parts of the video stream may not contain faces at all. This is especially likely in real-life applications. This poses a 

problem for the systems that assume that a face is always present.  

 

The second step is to localize all salient features that are needed to classify the expression. Most models first locate one of the 

salient features. The eyes are usually the first to be located because the high contrast observed at the outer rim of the iris 

makes them relatively easy to locate. An internal model (template) stores the location of all other landmark points relative to the 

eyes. This is how all other landmark points are found. This approach is vulnerable to the problems of poor illumination, varying 

angles of the observed face (posure) and partial occlusion of the face. Illumination can be a problem because we are essentially 

looking at pixel values. More specifically, we are trying to localize the facial features by using contrasting pixel values to 

determine certain landmark contours or points such as the silhouette of the face, corners of the mouth or tip of the nose. Poor 

illumination will diminish the contrast and consequently increase the difficulty of finding these landmarks. The second problem is 

that, in real life, the pose of a persons face will not necessarily be from a frontal angle. Because most models that are used to 

map the landmark points assume a frontal view, observing a face from a certain angle results in poor performance. As 

explained, a specific single landmark point is first located. The next step is to locate all other landmark points by determining 

their location relative to the first point, but this is where things go wrong because the relative locations are not the same as they 

would be from a frontal view. Consequently the landmark points are misplaced.  Finally, most models assume full visibility of all 

facial features (eyes, mouth etc). However, when a part of the face is obscured for instance by a hand, facial hair or cap, we 

have the same problem: the observed face does not fit the assumed model and landmark points are incorrectly placed. 

 

Finally we have to deduce the correct emotional state from the observed facial features. The analysis of the facial features is 

often achieved by a probabilistic model because classification without error is assumed to be impossible. A human face can 

exhibit complex and intricate expressions. Facial expressions are dependent on many factors such as muscle contractions, 

current emotional state and its implied context. Furthermore, facial expression are individually independent: no two people 

exhibit the same expression in the same way. These factors make the recognition of facial expressions a challenging task. One 

possible approach is to link the positions of the observed key points directly to a particular expression. For example, an opened 

mouth and raised eyebrows could correspond to an expression of surprise. Another approach labels certain areas of the face 

separately and assign expressions to certain combinations of observed labels. 

 

One of the other prominent topics in facial expression recognition is the availability of useable data to train the introduced 

models. Bayesian networks gain their classification abilities by learning from examples. This means that we must gather 

examples that capture the entire span of possible expressions/ faces. This is a time consuming task and requires a significant 

amount of expertise. For this reason only very little data is publicly available and most models are trained on their own small 

data set. This makes comparison between models particularly difficult. In a nutshell: lack of data results in poor performance of 

expression recognition models, and for Bayesian networks in particular. 

1.4 Survey focus and objective 

In this survey we will concentrate only on the process of facial expression analysis as we explore ways of using probabilistic 

models for determining observed emotional states. We will discuss literature that introduces systems that emotional labels for 

observed faces. This area of research is currently very active, as context sensitive reasoning systems are increasingly popular. 

Human-Computer Interaction often suffers from a lack of context. Facial expression recognition is a powerful way to determine 

context, and thus to enhance HCI. As example, consider the automated agent discussed in the previous section. It uses the 

observed facial expression to determine the context, providing different kinds of assistance depending on the observed 

emotional state of the user. Occasionally we will pay a small amount of attention to face detection and extraction of facial key 

points for reasons of clarification, but this is not where we lie our main focus. 

 

We will discuss one such a probabilistic model in particular: the Bayesian network. Bayesian networks is an increasingly popular 

approach towards problems of uncertainty. It learns to estimate probability in a heuristic way by adjusting its parameters to a set 

of training examples. However, like each classifying method, it comes with it own set of merits and drawbacks. One particular 

drawback can be found in the small sample case, which means that only a very limited amount of training samples are available. 

Unfortunately this seems to occur on quite a regular basis, as data gathering and classification are a time-consuming tasks. 
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Consequently several approaches of sample based learning in the small sample case have been proposed, each using different 

techniques and insights. The objective of this survey is to answer the question: Is there still a future for Bayesian networks when 

it comes to facial expression techniques? Obviously, Bayes is not the only method available and other techniques are perhaps 

superior for this particular kind of application. Yet there are several ways in which Bayesian networks can be applied, depending 

on how the input is pre-processed, which structure is used, which assumptions are made concerning dependencies etc. Each 

separate approach may have its own merits and drawbacks and may yield different results. One of the strengths of Bayesian 

networks worth mentioning is that it can learn even with incomplete data, meaning it is able to ‘fill’ the gaps in examples that are 

used for training. This is the direct consequence of the assumed dependence between separate variables 

 

This is a literature survey on the application of Bayesian networks to facial expression recognition. Chapter two will give a brief 

overview of Bayesian networks and how they can be applied to model uncertainty in real-life problems. Chapter three will 

discuss some articles that describe different attempts to apply Bayesian networks to facial expression recognition. Chapter four 

will handle some articles that are relevant to the small sample case. Some criticism, conclusions and final thoughts are given in 

chapter five. 
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2 Bayesian Networks 

 

This chapter will handle the theory of Bayesian networks in general [3, 4, 5]. Although a number of algorithms and techniques 

are mentioned, it is beyond the scope of this survey to discuss each of them in more detail. 

2.1 Bayes rule 

When we try to model uncertainty perceived in our world we strive towards a model that is simple enough to remain 

computationally tractable, yet complex enough to remain useful. The source of complexity in computing uncertainty is 

dependency between different events. In order to understand the relation between different events, we need a way to calculate 

these dependencies. 

 

Science has long favored probability as a model for uncertainty. In 1819, Pierre LaPlace said “Probability theory is nothing but 

common sense reduced to calculation. This chapter will discuss one type of probability model: the Bayesian Belief Network. 

Thomas Bayes was an 18
th
-century cleric who first used probability inductively and established a mathematical base for 

probability inference. He set down his findings on probability in “Essay Towards Solving a Problem in the Doctrine of Chances” 

(1763) published posthumously in the Philosophical Transactions of the Royal Society of London. Reverend Thomas Bayes 

contributions were immortalized by naming a fundamental proposition in probability after him, called Bayes’ Rule: 
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Here follows a short explanation of Bayes’ Rule: equation [2.1] states the if we want to know the probability that hypothesis H is 

true given evidence E, we need to calculate the probability of E being true given that H is true, multiplied by the probability that 

H is true, normalized by the probability of E being true. In short: of all the times of E being true, how often is E caused by H? 

 

For instance, imagine we have a black box of which the contents are invisible to us, but we know that there only 3 possible 

configurations for the contents of the box: it either contains [configuration 1: 3 white marbles and 1 black marble], [configuration 

2: 2 white marbles and 2 black marbles] or [configuration 3: 1 white marble and 3 black marbles]. Each of the three 

configurations is equally likely to be true, so P(configuration 1) = P(configuration 2) = P(configuration 3) = 1/3. This is known as 

the a priori probability, meaning the probability of a hypothesis being true before any evidence is apparent. In Bayes’ rule the a 

priori probability is represented by P(H).  It is given that the world contains just us much white marbles as it does black marbles. 

Now we take a single marble out of the box and it turns out to black. Intuition tells us that it is no longer equally likely for each of 

the configurations to be true, since it is obviously more likely to draw a black marble from configuration 3 than it is to draw a 

black marble from configuration 1. Bayes’ rule now allows us to calculate the a posteriori probability, meaning the probability of 

an hypothesis after all evidence is taken into account. In Bayes’ rule the a posteriori probability is represented by P(H|E). 

Applying Bayes’ rule we can calculate that P(configuration 1) is now 1/2, P(configuration 2) = 1/3 and P(configuration 3) = 1/6. 

 

Although this rule might seem fairly trivial at first, it is the cornerstone of probability inference. Bayes Rule is so important 

because in the physical world we often have no specified knowledge about P(H|E) but we do have some knowledge about 

P(E|H), P(H) and P(E). For instance, we might want to guess the probability that a person has the flu, given that he has a cold. 

Assuming we don’t have any particular information for this phenomenon, all we need to do in order to make an educated guess 

is to specify the probability that a person has a cold, given that that person has the flu, the independent probability that a person 

has the flu and the independent probability that a person has a cold, which can usually be derived from medical records. 

2.2 Knowledge in an uncertain domain 

We use random values to model uncertainty in the world around us. For instance if we toss a coin we might consider the side on 

which the coin will fall as a random value between 0.0 and 1.0, a value between 0.0 and 0.5 indicating heads and a value 

between 0.5 and 1.0 indicating tails. Here we have only the single variable coin, but we can easily imagine a problem domain 



Bayesian Networks Applied to Facial Expression Recognition 

August 2005, Paul Maaskant 

   

 

Page 10 of 39 

with several different variables. The complete set of random variables used to describe this problem domain is called the full 

joint probability distribution. The full joint distribution specifies the probability of every atomic event (every possible combination 

of variables) and is therefore a complete specification of the uncertainty within the problem domain. 

 

To explain, consider a day in Paul’s life. Since Paul is particularly fond of his hair, we want to say something about whether he is 

having a good or a bad hair day, and whether his hair actually looks good or not. We also take into account if Paul still has 

enough gel to perform maintenance. Coincidentally, he also has a an important job interview and a date with a particularly nice 

girl on the same day, and we want to say something about the success of both. Now let us assume we have Boolean variables, 

hairLooksGood, runOutOfGel, badHairday, dateSuccess and interviewSuccess. We know that if we are to answer any question 

within our problem domain, we have need of the full joint probability distribution. This is where things go awry. First of all, this 

approach becomes computationally intractable as the number of variables grow, since each variable has a dependency with 

each other variable. The full joint distribution in the example above would have 2
5
 entries, but one can imagine the increasing 

complexity if we should add another variable or if we use more than 2 possible values for each variable. Secondly, specifying 

data for all atomic events is rather difficult as it requires vast amounts of data which are almost never available. So we need 

another way to model our problem. 

 

 

Figure 2.1: A  typical Bayesian network 

2.2.1 Network topology 

Here we introduce the Bayesian network, as shown in figure 2.1. In a Bayesian network only a few dependencies are modeled, 

since we only model the dependencies between variables that directly influence each other. The rest of the variables are 

assumed conditionally independent. This greatly reduces the complexity of our model yet it can still give a concise specification 

of any full joint probability distribution [3]. A Bayesian network is a directed graph in which each node is annotated with 

quantitative probability information. A full specification is as follows: 

 

1. A set of random variables makes up the nodes of the network. Variables may be discrete or continuous. 

2. A set of directed links connects pairs of nodes. If there is an arrow from node X to Y, X is a parent of Y. 

3. Each node has a conditional probability distribution that quantifies the effect of the parents on the node. 

4. The graph has no directed cycles and hence is a Directed Acyclic Graph (DAG). 

 

The topology of the network specifies the conditional independence relationships that hold in the domain. The intuitive meaning 

of an arrow from X to Y is that X has a direct influence on Y. For instance, figure 2.1 shows that hairLooksGood has a direct 

influence on dateSuccess. On the other hand we have modeled that the success of Paul’s date has no effect on whether or not 

his job interview is a success. While it is true that both variables have a strong dependency on the state of Paul’s hair, they do 

not have any effect on each other. In the full joint probability distribution there is nothing much we can do with this intuition since 

runOutOfGel badHairday 

dateSuccess interviewSucces

s 

hairLooksGood 
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0.2 

P(R) 

0.05 
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T      T 0.1 
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the probability for each atomic event must be specified, but in a Bayesian network we can make the two variables conditionally 

independent simply by not connecting them directly. 

 

Let us take another look at the topology of the network. We see that whether or not Paul still has sufficient gel and whether or 

not he is having a bad hair-day directly affects the looks of his hair. In turn, the looks of his hair have a direct effect on the 

success of his date and his job interview. Thus the network assumes that the success of Paul’s date depends solely on the 

looks of his hair on is conditionally independent of badHairday and runOutOfGel in a direct sense. Furthermore, the network 

assumes that success of Paul’s job interview has no effect on the success of his date later that day.  

 

Notice that the network ignores a lot of other factors that are relevant in real life. For instance, Paul’s resume and 

communication skills will have a certain effect on the success of his job interview, but instead of making these factors explicit in 

the network, we assume they are implicit in the probability distribution of the node interviewSuccess. Therefore we can interpret 

the probability in a node as the summarized probability of all possible relevant factors (i.e. resume, communication, aptitude for 

the vacancy, mood of the interviewer etc.) which are not explicit in the network. The reasons for these factors to remain implicit 

is that usually it’s just to difficult to obtain the relevant data to model these variables explicitly, assuming it’s even possible. 

2.2.2 Conditional probability tables 

Now let us turn to the conditional distributions shown in figure 2.1. In the figure each distribution is shown as a conditional 

probability table (CPT). This form of table is used for discrete variables. Each row in a CPT contains the conditional probability 

of each node value for a conditioning case. A conditioning case is simply a combination of values for the parent nodes and can 

be seen as a miniature atomic event. The sum of each row must be 1, because the entries represent an exhaustive set of cases 

for the variable. For Boolean variables we know that if the probability of a true variable is p, the probability of a false value is 1-p. 

For reasons of efficiency we have omitted the second value in the CPTs. 

 

A Bayesian network provides a complete description of the domain, meaning that every entry in the full joint probability 

distribution can be calculated from the information in the network. A generic entry in the fully joint probability distribution  is the 

probability of a conjunction of particular assignments to each variable, such as P(X1=x1∧…∧Xn=xn), or P(x1, …, xn) in 

abbreviated form. The value of this entry is given by: 

 

∏
=

=
n

i

iin XparentsxPxxP
1

1 )),(|()...,,(  

 

Where parents(Xi) denotes the specific values of the parent nodes of Xi. Put into words, each entry in the full joint distribution is 

represented by the product of the appropriate probability entries in the conditional probability tables in a Bayesian network. To 

illustrate, say that we want to know the probability that Paul has great looking hair(h), while he has not run out of gel (¬r) and 

does not have a bad hair-day (¬b). Furthermore his job interview fails(¬i), but his date is a great success(d): 

 

P(h ∧ ¬r ∧ ¬b ∧ ¬i ∧ d)  

= P(¬i|h) P(d|h) P(h|¬r ∧ ¬b) P(¬r) P(¬b) 

= 0.2 x 0.8 x 0.9 x 0.95 x 0.8 = 0.10944 

 

It can be shown that a correctly constructed Bayesian network represents the full joint probability distribution [3], which means 

that it can be used to answer any query within it’s domain, by summing the probabilities of all the atomic events within the 

specifications of the query. Later in paragraph 2.4 we will discuss how to derive the probability of an arbitrary variable, given the 

values of (some of) the other values.  
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2.2.3 Network construction 

Now that we have some understanding of how a Bayesian network works and what implications are made by the topology of a 

network, we will pay some more attention to the construction of a Bayesian network. As well as being a complete and non-

redundant  representation of the domain it is usually also a far more compact representation of the problem domain. This 

compactness is due to the fact that a Bayesian network is a locally structured system. This means that each subcomponent 

interacts directly with only a limited number of other subcomponents, regardless of the total number of subcomponents. In a 

Bayesian network it is reasonable to assume that a subcomponent (node) is influenced by at most k other subcomponents 

(parent nodes). In the case of Boolean values that means that each CPT will contain at most 2
k
 entries, so if we have n 

subcomponents (nodes) that brings us at a total of n2
k 
entries. In contrast, a full joint probability distribution needs 2

n
 entries. 

 

There are domains in which case each variable can be influenced by each other variable. In this case we need just as much 

information as we need to specify the full joint probability distribution. However, in general, the increase in accuracy of such a 

system does not weigh up to the increase in complexity and need for more detailed information gathering. Therefore we often 

reduce complexity by assuming conditional independence between variables that have only a marginal dependency. 

 

Since we know that the topology of a network has some serious effect on how the dependencies between variables are 

modeled, we can also see that it is not a trivial matter to properly construct a Bayesian network. We do not only need to limit the 

number of dependencies (i.e. limit the number of parents for a particular node) but we have to choose the topology in such a 

way that variables become the parents of the variables that they directly influence, without becoming a cyclic graph. Therefore 

the ‘correct’ order of constructing a network is to first add the nodes that contain the root causes, then the variables they 

influence directly and so on, until we reach the leaf nodes which contain variables that have no direct causal influence on any of 

the other variables. If we should choose the wrong order in building a network this does not have any influence on the 

correctness of the model, but it does usually require more conditional probability tables entries in total, and, what’s worse, in 

order to fill the conditional probability tables we often need tenuous information which requires difficult and unnatural probability 

judgments.  

 

In general, we should try to find the network structure that best fits the joint distribution of all the variables given the available 

data. Another essential issue is that, given that every dataset is finite, we should be careful not to overfit the network to the data, 

which means that the generalizing ability of the network has completely disappeared.  Several automated methods are available 

for this problem, such as the Stochastic Structure Search Algorithm proposed in [18]. We conclude this paragraph with the 

notion that any topology is correct in that it describes the exact same full joint probability distribution. However, if we stick to 

causal relationships during construction we end up with compacter models of which the conditional probability tables are simpler 

to specify. 

2.2.4 Naïve Bayes 

One variation of the Bayesian network that is used often is the Naïve Bayesian network. This type of network basically assumes 

that the observed input variables are dependent only the response variable. The remarkable thing about Naïve Bayes is that it 

assumes conditional independency between its predictive variables given the state of its input variables. Nevertheless, Naïve 

Bayes performs remarkably well in practice, which fuels the argument that increased complexity is not always a necessity for 

good performance. Furthermore, the simplicity of the Naïve Bayesian network is appealing because we don’t have to make 

estimations for countless parameters. Using Naïve Bayes is a trade-off: the incorrectness (assumed independency of 

observations) of the underlying model is countered by the limited error in parameter estimation (due to the limited number of 

parameters). 

 

For example, the Naïve Bayesian network in figure 2.2 implies that if we observe that our girlfriend has wild mood swings and 

has a suspicious sudden craving for pickles, this will tell us nothing about whether or not she will suffer from morning sickness, 

although unfortunately we know better in practice. 
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Performing inference in a Naïve Bayes network differs slightly from inference in a normal CPT network as the cause and 

consequences are reversed. Inference can be achieved as follows: 
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Naïve Bayes is especially applicable in situations when there is not enough data to detect the conditional relations between 

variables. In such a case Naïve Bayes can still achieve good classification results. Besides Naïve Bayes, other similar network 

structures are available such as Tree-Augmented Naïve Bayes described in [16, 17, 21] which is similar to Naïve Bayes, but 

allows each observed feature to have a single extra parent feature beside the parent node of the response variable. In this way 

the features are not totally independent, but the complexity of the network does not increase significantly. 

 

 

Figure 2.2: A Naïve Bayesian network 

2.2.5 Continuous variables 

Up to this point we have only used Boolean variables in our examples, but many real world problems involve continuous 

variables that cannot be specified discretely, such as temperature, distance or the configuration of facial features. As continuous 

variables have an infinite number of possible states, we can see that building a conditional probability table would be a bad idea. 

There are two ways to tackle this problem. The first is by using discretization, dividing the possible values into a fixed set of 

intervals. The second is by defining a probability density function that is specified by a finite number of parameters. Gaussian 

and normal distributions are often used for this purpose, which only require the mean (µ) and variance (σ2
) as parameters. 

 

A network that incorporates both discrete and continuous variables is called a hybrid Bayesian network. Such a networks is 

proposed in [19]. In the case of hybrid networks we need to specify new distributions for two cases: continuous variables that 

have discrete and/or continuous parents and discrete nodes that have continuous parents. We do so by the following example: 

it is Friday night and Paul feels like going out to dinner in his favorite restaurant. The restaurant employs two different chefs, one 

of which works considerably faster than the other. Let us assume that the time between ordering his favorite plate and his food 

being served depends on which of the chefs is working that particular night and the number of customers that is currently in the 

restaurant. Whether or not Paul will wait depends on the estimated waiting time. The described problem is modeled in figure 2.3. 

 

The WaitingTime variable has both a continuous and a discrete parent. To handle NumberOfCustomers (n) we specify how the 

distribution over the waiting time w depends on the continuous value n. ). More explicitly we define a function f(n) = average w.  

cravingForPickles (c) 

pregnant  

wildMoodSwings (w) morningSickness (m) 
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Figure 2.3: Network with discrete and continuous variables 

 

To handle fastChef we specify a separate distribution for each possible value. So in this case we will specify both P(waitingTime 

| numberOfCustomers, fastChef) and P(waitingTime | numberOfCustomers, ¬fastChef). Using a linear Gaussian distribution we 

have: 
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So for this example the conditional distribution for waitingTime is specified by the parameters by using the linear Gaussian 

distribution and providing the parameters at, bt, σt, af, bf and σf. Furthermore, when the prior probability of fastChef is known, 

we are able to average over the two possible distributions in order to specify a distribution for P(w| n). 

 

When dealing with discrete variables that have continuous parents we use threshold functions. Consider for example the waits 

node in figure  2.3. We assume that Paul will wait if the waiting time is low and that he will depart if the waiting time is high and 

the that the probability of Paul waiting varies smoothly somewhere in the middle. Two of the possible threshold functions are the 

probit and the logit distribution. The first uses the integral of the standard normal distribution, the latter uses a sigmoid function 

as shown below: 
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Although the probit distribution is usually a better fit to real situations, the logit distribution is computationally less demanding 

and therefore often preferred. 

2.3 Inference in Bayesian networks 

The purpose of a probabilistic model is that we can determine the posterior probability distribution for a set of query variables 

given a set of observed events. We achieve the posterior probability distribution by using inference within the network. Exact 

inference can be intractable for computation so in practice approximate inference is used. An explanation as to why exact 

inference proves to be intractable can be found in [3]. We will take a short look at both exact and approximate inference. 

fastChef (f) numberOfCustomers (n) 

waits 

WaitingTime (w) 
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2.3.1 Exact inference 

Exact inference can be achieved by enumeration. Given the problem as described in figure 2.1, we might want to know 

P(badHairDay| dateSucces=true, interviewSucces=true). To get our answer we enumerate over all possible values of the 

variables that are not observed (hairLooksGood, runOutOfGel). In order to get the probability distribution for our query variable 

we need to separately enumerate the probabilities of all atomic events that badHairDay is true and that badHairDay is false: 

 

08016.0)|()|(),|()()(),|( ⋅== ∑∑ αα
r h

hiPhdPrbhPrPbPidbP , 

and 

 

46968.0)|()|(),|()()(),|( ⋅=¬¬=¬ ∑∑ αα
r h

hiPhdPrbhPrPbPidbP , 

 

so we have found that: 
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The parameter α acts as a normalization factor. The enumeration method specified by this example is correct, but terribly 

inefficient as the same calculations are computed several times. Other, more efficient methods for exact inference are available, 

which store the intermediate results to save computation. One such an algorithm is the variable elimination algorithm described 

in [3]. We will not explicitly specify the algorithm here, but suffice it to say that it operates by the use of variable elimination, 

which means that the algorithm evaluates an expression right-to-left, storing intermediate results and summing over each 

variable only with the portion of the expression that depend on that variable. 

2.3.2 Approximate inference 

Given the intractability of exact inference it is important that we consider approximate inference methods. To do this we can use 

random sampling algorithms also known as Monte Carlo algorithms. Monte Carlo methods are widely used in computer science 

to estimate quantities that are difficult to calculate exactly. Several Monte Carlo methods are available to achieve approximate 

inference in Bayesian networks: direct sampling, rejection sampling, likelihood weighting and the use of Monte Carlo Markov 

Chains. In this paragraph we will only discuss direct sampling, but detailed descriptions of each method can be found in [3]. 

 

Perhaps the most simple Monte Carlo method for approximate inference is direct sampling. We illustrate how this works with the 

aid of figure 2.4 assuming the ordering [sunnyDay, eatIcecream, drinkSoda, tummyAche]: 

 

1. Sample from P(sunnyDay) = <0.5, 0.5>; suppose true 

2. Sample from P(eatIcecream| sunnyDay=true) = <0.7, 0.3>; suppose true 

3. Sample from P(drinkSoda| sunnyDay=true) = <0.9, 0.1>; suppose false 

4. Sample from P(tummyAche| eatIcecream=false, drinkSoda=true) = <0.15, 0.85>; suppose false 

 

Now we have a sample [true, true, false, false]. Suppose we want to know the probability P(true, true, false, false) using direct 

sampling. We first take N samples as described above. Then we check to see how many of those samples match [true, true, 

false, false]. The probability is then calculated by dividing the number of matching samples by the total number of samples. It 

can be shown that if N is large enough, the calculated probability converges to the expected probability [3]. So if we take 1000 

samples we expect about 30 (0.2975 %) samples to match the sample [true, true, false, false] which gives us P(true, true, false, 

false) = 0.003. 

 

Rejection sampling in Bayesian networks uses the same technique, but it rejects all samples that do not match the evidence. So 

if we want to know P(X=x|e), all samples that do not match e are discarded so that in the end we have the frequency of X=x 
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within all the samples that e is observed. Suppose that we take 1000 samples and we discard 533 as they do not match e. In 

the remaining 467 samples we observe X=x 120 times. So in this way we obtain P(X=x|e) = 120/467 ≈ 0.26. 

 

 

Figure 2.4: Bayesian network 

 

Likelihood weighting differs from rejection sampling in that it generates only samples which match the evidence e, hence there is 

no need for rejection and consequently making it more efficient. Monte Carlo Markov Chain method differs from all the other 

methods in that it does not generate samples from scratch, but generates a new sample by adjusting the previously generated 

sample by changing one of the unobserved variables. 

2.4 Learning in Bayesian networks 

In order for a Bayesian network to give an accurate conditional probability distribution we need to specify all prior and 

conditional probabilities i.e. fill all conditional probability tables. Several methods are available for finding the parameters for a 

network but not all are equally suited. Statistical learning often uses methods such as Maximum likelihood  parameter learning, 

which chooses the parameters which best fit the available data set. The catch is that when you have little or incomplete date you 

often get misleading parameters. 

2.4.1 The beta distribution 

The Bayesian approach to parameter learning places a hypothesis prior over the possible values of the parameters and updates 

this distribution as data arrive. Suppose we like a particular kind of chewing gum. Sometimes when opening the gum packaging 

we find a collectible trading card, but whether or not the gum comes with a card cannot be observed before unpacking. Now 

suppose we want to specify the probability that we find a collectible trading card, that is P(card) = θ. In the Bayesian view θ is 

the (unknown) value of a random variable Θ. Thus P(Θ= θ) is the probability that we have a chance of θ to find a trading card. 

 

To specify θ we use the beta distribution. Each beta distribution is specified by the two hyperparameters a and b. They are 

called hyperparameters because they are in fact parameters of a distribution which in turn is also parameter. So we have: 
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for θ in the range [0, 1]. The parameter α acts as a normalization factor depending on a and b. The mean value of the 

distribution is a/(a+b). To show how this works suppose a counts the number of occurrences that we do find a collectible card in 

a package and b counts the number of times that we don’t. Given the mean value a/(a+b) a higher value of a suggest a value 
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closer to 1. Larger values of (a+b) make the distribution more peaked, suggesting a greater certainty of the value of Θ.  

Furthermore if Θ  has a prior beta[a, b], then, after a data point is observed, the posterior value of Θ is also a beta distribution. 

 

For instance, suppose we have Θ  with prior beta[a, b] and observe a gum with an included card then the probability P(θ| card) = 

beta[a+1, b](θ). Thus after observing a gum package with a card, we simply increment hyperparameter a in order to get the 

posterior. In the same manner we would have incremented hyperparameter b in the event that we had not found a card with the 

gum. So we can see the hyperparameters as virtual counters for each of the possible events. Furthermore, as the number of 

counts increases, the beta distribution converges to a narrow peak such as shown in figure 2.5, where the true probability of 

finding a trading card is equal to 20%. 
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      Figure 2.5: Beta distributions 

 

The beta distribution takes only two possible values of a variable, such as is the case with Boolean variables, but other 

distributions such as the Dirichlet family are distributions of discrete multivalued parameters. The family of Normal-Wishart 

distributions can be used for the parameters of a Gaussian distribution.  

2.4.2 Hidden variables 

Up until now we have only discussed fully observable case, but in real world problems we are not always able to observe every 

relevant variable. Of course we may ask ourselves, if we don’t observe these variables, do we really need them? When we 

compare figure 2.6a and 2.6b we can see that hidden (latent) variables can drastically reduce the complexity of a network. Each 

of the variables has 3 possible values. The network in 2.5a results in a total of 76 independent parameters, while the network in 

figure 2.5b requires only 34 independent parameters.  

 

 

Figure 2.6: Bayesian network with a hidden variable (b) and the same network without (a). Each node is labeled with the number of independent 

entries in the conditional probability table of that node. 
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So using hidden variables means that the amount of data needed in order to specify a Bayesian network is reduced. Evidently 

hidden variables are important, but they do make learning parameters more complicated as it is quite difficult to determine the 

conditional probability table for a variable of which the value is not represented in the training set. In order to estimate the 

conditional probability distribution of a hidden variables the Expectation-Maximization algorithm is often used. When applied to 

Bayesian networks, this algorithm operates in two steps: first it pretends to know the conditional probability distribution and then 

we use inference to update the conditional probability distribution until it converges to the true conditional probability distribution. 

For the general case in which we are learning the conditional probability tables for each variable Xi, given its parents, the update 

is given by the normalized expected counts as follows: 
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where i is an index for the variable, j is an index for its possible values and k is an index for the parents of Xi. The general idea is 

that a Bayesian network uses only a single algorithm for both learning parameters of (both hidden and observed) variables and 

executing queries: inference. 
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3 Facial Expression Recognition 

 

The aim of facial expression recognition is to analyze the affective state of the observed subject. Generally, the face is analyzed 

by identifying so-called facial features (eyes corners, mouth corners etc.). All or a combination of these features are then used 

as input for a classifier e.g. a Bayesian network which attempts to assigned some emotional state to the observed features. This 

chapter discusses the Bayesian network applied to facial expression recognition. 

3.1 History of facial expression recognition 

Images of faces have long been an subject of fascination in the scientific study of emotion. From relatively general studies in the 

first half of the 20
th
 century to contemporary research in relation to neuroscience, the human face seems to remain the focal 

point of many endeavors to classify facial expressions. The publication [6] describes the development of facial expression 

classification starting with early research in the 1920s and 30s.  

 

One such a study was the study by Antonia Feleky which had the objective to show that a relation existed between certain 

emotional states and certain facial expressions. Volunteers were required to look at 86 photos of a woman portraying specific 

facial expressions and were asked to note the expression (a list of 100 possible expressions was provided) that was suggested 

to them for each single photograph. The ‘Feleky’ study served as a baseline for later investigations of facial expression and 

emotion, such as the research by C.A. Ruckmick who claimed that the interpretation of the perceived emotion depended not 

only on the photograph but also on the emotional state of the beholder. Other research by L. Kanner points out the linguistic 

hazards in interpreting emotions from facial expressions, as the observer may not have the vocabulary to express exactly what 

he or she sees on a photograph. 

 

Although early research focused on the context of origin (emotional cause), later research seemed much more concerned with 

the context of application such as is the case in expression recognition. It was not until the 1970s that a system for measuring 

and analyzing facial expression was developed, when knowledge of the psychological affect of facial expressions and the 

knowledge of the anatomy of the face were combined. Psychologists Paul Ekman, Richard Sorensen and Wiliam Friesen had 

just completed a set of cross-cultural studies which suggested six basic emotional prototypes, as a handful of images 

consistently received high correct classification rates, independent of literacy, media exposure and origin of the observer. These 

emotional prototypes were: joy, sadness, fear, disgust, anger and surprise. In 1978 Ekman and Friesen [7] published a coding 

scheme based on these images in a monograph titled The Facial Action Coding System (FACS). 

3.2 Facial Action Coding System 

FACS is meant to provide a standard baseline against which researchers could test their hypotheses regarding the relation 

between expression and emotion. It aims to describe all visually discernable facial movement on the basis of 44 unique Action 

Units (AU). Among the 44 AUs, 12 describe the contractions of the muscles in the upper part of the face and 18 in the lower 

part. The other 14 are miscellaneous actions that do not have a specific anatomic basis. The general idea is that tracking 

stationary points on the face of a subject is not very useful, since the facial features vary wildly over race, age and sex. Instead 

FACS relies on the dynamics (hence the name ‘action’ unit) between these stationary points (contractions of muscle groups) 

which is presumed to be universal. In fact, FACS is probably the best known study on facial expressions and is still widely used 

by researchers in the area of facial expression recognition today, as numerous studies use FACS either to code already existing 

images or use it to create new expressions on a computer. 

 

When data is coded by FACS (labeled data), or an alternative coding scheme, various research studies have achieved better 

recognition results then when using un-coded or unlabeled data. The reason might be that classifiers can be better trained when 

specific facial dynamics are linked with specific classes, whereas raw data i.e. a set of pixel values is harder to classify. Paper 

[21] shows that better results are achieved when training a Bayesian network exclusively with labeled data. 

 

Although numerous studies gratefully use the coding of FACS, not much research has been done to the reliability of the coding 

of facial expressions when applied to spontaneous expressions. One point of criticism that is often encountered is that 



Bayesian Networks Applied to Facial Expression Recognition 

August 2005, Paul Maaskant 

   

 

Page 20 of 39 

spontaneous expressions differ from voluntary expressions, which mean that classifiers might perform poorly if trained on 

voluntary expressions and applied to spontaneous expressions. So we might ask if FACS is capable enough to accurately code 

spontaneous expressions. In order ensure this, we need to be sure that all FACS coders would code a stream of spontaneous 

facial images in the same way.  

 

An evaluation of FACS [8] expresses concern about four different types of reliability between different observers. The first is the 

reliability of the correct AU being identified. Most studies claim to have a good average reliability but little is know of reliability for 

specific AUs. The second reliability expresses concern about the temporal aspect of facial expressions in video streams. 

Transition from one expression to another goes smoothly, so we might ask if all FACS coders choose the same frame (moment) 

at which the AU has become discernable or has disappeared. The third type of reliability concerns the degree of intensity of the 

observed AU. The FACS includes five levels of intensity for each AU, but it may be expected that different coders have different 

thresholds for transition between a level of intensity. The fourth type of reliability concerns different FACS coders attributing the 

same AUs to specific prototype expressions. 

 

To make an evaluation of the ability of FACS to model spontaneous expressions three different setups were used, all having 

multiple coders having to code the same video sequences. The results in paper [8] show that there is a high inter-observer 

reliability for which (spontaneous) AU and corresponding intensity is observed. The variance in timeframes of AU detection was 

in roughly 1/6 second, which is adequate for most expressions, but can be troublesome for some specific facial dynamics such 

as the blink of an eye. Also the attribution of AUs to specific emotional states was similar for all coders. In short, the overall 

results are pretty good, but not conclusive, as they are based on only three small experiments. 

 

Other ways to code facial expressions include the Facial Action Scoring Technique (FAST: Ekman, Friessen & Tomkins 1971), 

A System for Identifying Affect Expressions by Hollistic Judgment (AFFEX: Izard, Dougherty & Hembree 1983) and the 

Maximally Discriminative Facial Movement Coding System (MAX: Izard 1979). 

3.3 Cohn-Kanade database 

Within the past decade significant effort has been put into methods for facial expression analysis. Because most research uses 

its own limited training data to measure performance, little is known about how different methods compare to one another. 

Furthermore limited data leads to specialized models that may perform well in a controlled environment, but will perform poorly 

when applied to a real-life environment. The article [9] describes the problem space for facial expression analysis. Not only the 

variance of the faces themselves are a problem but also the consistency of the observers analyzing and coding the data (e.g. 

with the Facial Action Coding System). Other problems are the difference between spontaneous and deliberate expressions 

such as in [8], head orientation and conformity of image acquisition. To overcome this problem a large database for facial 

expressions is proposed. In the literature this database is commonly known as the Cohn-Kanade database. 

 

 

Figure 3.1: Frames from video sequences in the Cohn-Kanade database 

 

The Cohn-Kanade database, officially baptized the CMU-Pittsburgh AU-coded Face Expression Image Database, consists of 

1917 video sequences of 182 male and female subjects of varying ethnic background (81% Euro-American, 13% Afro-

American, 6% other ethnic groups) between the age of 18 and 50. Furthermore all sequences are coded by the Facial Action 

Coding System for either target frames or the entire sequences. Additionally, each sequence was recorded from both a frontal 

view and  a latent 30 degree angle. Although the database is under constant construction (e.g. addition of additional views and 
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information on emotional states) the Cohn-Kanade database is often used as testing and training data in contemporary research 

concerning the analysis of facial expressions. 

3.4 Previous research 

The study of human facial expressions is a very challenging form of pattern recognition as it focuses on non-rigid deformations 

of the face which differ from person to person. Humans seem particularly capable at recognizing facial expressions, but to 

create a system that is capable of the same is not a trivial undertaking. The Bayesian network is just one classifier in facial 

expression recognition and other approaches have been researched in the last couple of decades. 

 

For example, paper [10] describes a model that is analyses face region motion by spatio-temporal analysis and then uses a rule 

based system instead of a probabilistic model to analyze the observed expression. Consequently the system is less flexible and 

less robust against movements of the head. Although [10] only describes rules to identify the six ‘universal’ facial expressions, it 

would be rather difficult to make a set of rules for each possible expression. It is however one of the early attempts to apply 

facial expression recognition on video streams.  

 

The survey [11] gives a comprehensive overview of the research done in facial expression recognition in the period ’90 to ’00. 

Three distinct ways could be identified when applied to the analysis of observed facial features: the template approach, the rule-

based approach and the neural network approach. The template-based approach attempts to match a newly observed face to a 

number of internal model representations (templates) and classifies the newly observed face to the label of the best fitting 

template. The rule-based approach uses an expert system to classify the newly observed expressions, using the basis of the 

observed facial features. The neural approach tackles the problem by training a neural network. Input images are translated to 

vectors which are used as the input for the artificial neural network. All methods are briefly discussed, but as the survey 

concludes, there is no accountable way to compare the methods as their reported performances are all based on training sets, 

varying both in size and content. Consequently it is very hard to determine which approach actually yields the best 

performance.. 

 

The Bayesian approach to facial expression recognition is relatively new as it has only been applied in the last 5 years. It can be 

seen as a combination of the rule-based and the neural network approach, as it makes us of a network but instead of being 

‘black-box’, which is a property of neural networks, specific meaning is assigned to each node and the dependencies between 

separate input variables need to be specified explicitly, which is a property of rule-based systems. 

3.5 Facial expression recognition and Bayesian networks 

Automatic recognition of facial expressions is often approached as a process based on the analysis of stationary points (face 

contour) in contrast to transient points (facial features). But this is only one half of the process since, after identifying and coding 

the observed features, we want to determine the facial expression that is suggested by that particular set of facial features. To 

accomplish this we can use Bayesian networks. The hypotheses are the six prototypical expressions (or seven, if ‘neutral’ is 

included) and the observed Action Units such as found in FACS, are the evidence. The papers we will discuss in this section 

use different topologies for the proposed Bayesian networks. We discern: Naïve Bayes and Tree-Augmented Naïve Bayes. 

 

Naïve Bayes 

In the paper [12] a Naïve Bayesian network is used for the classification of facial expressions. A new approach is suggested as 

a Cauchy distribution is proposed instead of the Gaussian distribution, which is a common way to model continuous variables in 

Bayesian networks. The system starts by extracting the observed facial features. Instead of FACS, a more simple wireframe 

model is used to model the observed features, consisting of only 12 facial motion measurements. These features are then 

translated to an input vector X consisting of elements (x1, …, x12). As a Naïve Bayes network assumes conditional independency 

between its input variables, which are in this case the elements of the input vector, the eventual problem is to model the 

probability P(xi|E) for each element, where E stands for one of the six prototype expressions. Now instead of using a Gaussian 

distribution to model P(xi|E), a Cauchy distribution is used. The motivation thought is that Cauchy might be better able to model 

outliers in the data set. 
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Two separate experiments are described: one of them person dependent, in which the test data contains only images from 

persons that were also part of the training set, and the other person independent, in which the test data only contains images 

from persons which were not a part of the training set. In the case of the person dependent experiment the Cauchy approach 

(80.05%) performs slightly better then the Gaussian approach (79.36%). In the case of person independent testing the 

performance was considerably worse, with Cauchy (63.58%) against Gauss (58.94%). The bad performance is attributed to the 

relatively small training set, problems with face tracking and the fact that some of the expressions have very similar facial 

measurements (such as fear and surprise). To overcome bad performance, [12] suggest categorizing facial expressions in 

[neutral, negative, positive, surprise] instead of the six prototypes normally used, as it can be argued that a lot of applications of 

facial expression recognition do not need more detailed categorization. Papers [14, 15] use the same alternative categorization. 

By using this alternative categorization, performance is considerably improved. The paper concludes stating that even though 

performance is quite poor it has been shown that Cauchy performs slightly better than Gauss in every situation. However, the 

proposed system in itself is does not yet perform well enough for real-world application. 

 

The article [13] compares Naïve Bayes to two other methods for classification: Support Vector Machines (SVM) and Relevance 

Vector Machines (RVM). Although Naïve Bayes is a proven method for certain classification problems it shows that Naïve Bayes 

performs only as well as the size of the trainingset allows. This can be explained as follows: during training a Bayesian network 

models the dependencies of each feature on the given class (Naïve Bayes assumes no dependencies between features). In 

other words, during training the dependency distributions are learned. However, if the data is sparse, it may not span the entire 

distribution and the learned distribution may differ greatly from the true distribution, which results in poor performance of the 

Bayesian classifier. This is a common problem for Bayesian networks, as data is usually sparsely available. In chapter 4 we will 

pay more attention to this problem. 

 

Support Vector Machined and Relevance Vector Machines both perform considerably better then Naïve Bayes in the 

experiment presented in [13] at the price of being computationally more complex. Also it must be noted that the experiment 

involved only static images for training. Both SVM and RVM aim at finding the optimal discriminate hyperplane in linear space. 

When facial features are translated to vectors in linear space this provides powerful classification techniques when little data is 

available, as both techniques are somewhat robust to overfitting in the small sample case. RVM is a refinement of SVM as it 

weighs relevant facial features more heavily which means it is better able to discriminate the features that have the highest 

degree of variation. This results in a smaller number of discriminative functions and consequently in lower computational 

demands which allows it to perform real-time. Real-time performance is important because many applications of facial 

expression recognition often operate in real-time. 

 

Tree-Augmented Naïve Bayes 

The paper [14] proposes to use a Tree-Augmented Naïve Bayesian network (TAN) for classification of facial expressions in 

video streams. The Tree-Augmented Naïve Bayesian network is similar to the Naïve Bayesian network with the difference that it 

allows a single additional parent (feature) for each observed feature. The motivating thought is that assuming facial feature 

independency is an unfound assumption in facial expression recognition. A TAN allows some dependency between variables. 

To determine which features have the strongest dependency, the correlation for each pair of features for each class is 

calculated. The performance of the proposed TAN is proves significantly better than that of the Cauchy-Naïve Bayes classifier in 

[12].  

 

The paper [15] makes another comparison between different classifiers. The Tree-Augmented Naïve Bayesian network 

proposed in [14] is set out against a Naïve Bayesian network, an Artificial Neural Network (ANN) and a Hidden Markov Model 

(HMM). The first three approaches attempt to classify by analyzing static images from the observed video sequence, while the 

Hidden Markov Model handles the sequence as a single coherent input. Again, the motivating thought is that the observed 

features are not independent of each other and modeling additional dependencies might increase performance. 

 

The experiment was performed using the Cohn-Kanade database [9] to ensure a large enough training set in order to make 

valid comparison. The proposed HMM approach could not be tested, since it required image sequences which start with a 
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neutral expression, transform to the emotional peak of the portrayed expression and then return to neutral state, while the image 

sequences in the Cohn-Kanade database end at the emotional peak. Results showed that the neural network achieved the best 

overall performance (73.81%), closely followed by the proposed TAN approach (73.22%). The Naïve Bayesian network was the 

worst performer (68.14%). 

3.6 Bayes and Principal Component Analysis 

A technique that is often used in conjunction with Bayesian networks in facial expression recognition is Principal Component 

Analysis (PCA). Principal Component Analysis, also known as the Karhunen-Loeve expansion, can be used to reduce the 

dimensionality of an input vector by transforming to a new, smaller set of dimensions that captures primarily the variation in a 

given training set. Reducing the dimensionality of the input vector obviously also reduces the complexity of the Bayesian 

classifier, which allows for improved parameter estimation as parameter estimation is can be very difficult in high-dimensionality. 

Furthermore, PCA provides a way to suppress noise in images as it only captures higher degrees of variation and ignores 

smaller variations. Most modern approaches to facial expression recognition use PCA or a technique that is similar. 

 

The paper [16] describes two Probabilistic Reasoning Models (PRM), both using a Bayesian classifier. The PRMs are applied to 

face recognition, but the technique could be applied on facial expression recognition in a similar manner. First PCA is applied to 

the original object space, in this case the images in the training set. The advantage is twofold as it not only reduces the 

dimensionality and consequently simplifies parameter estimation, but the smaller set of dimensions can be seen as a set of 

orthogonal axis which model all variation, which means the classifier will be fairly robust for the training and testing set. 

However, PCA is not without its drawbacks. The implicit danger is that PCA mistakes small variations of relevant features for 

input noise or mistakes irrelevant variation such as variation in illumination for a principal component. Apparently this is the price 

to be paid for reduced dimensionality.  

 

After applying PCA, the Maximum A Posteriori (MAP) rule is used to classify the images. The MAP rule classifies an input vector 

(image) to the class which returns the highest posterior probability. In order to estimate the posterior probabilities, the 

conditional probability distribution for each class needs to be estimated. As it is not possible to estimate a conditional probability 

density function when the number of samples is limited, the density function is modeled to a normal distribution. The problem is 

now to estimate the correct parameters for the normal distribution, as a mean value and variance are required. The paper [16] 

proposes two different ways as to estimate the variance. As the input and the sample mean are vectors, and the variance is 

represented by a covariance matrix. The first model (PRM-1) uses a the same covariance matrix for each class in which is a 

diagonal matrix containing the sampled variance of each one-dimensional principal component subspace (the variation along 

each axis). The second model (PRM-2) estimates the covariance matrix based on al the within class scatters in the reduced 

PCA subspaces. 

 

The results are promising when the performance of the two proposed models are compared to two other methods. The other 

methods are: PCA without the assumption of a normal distribution and parameter estimation and the Fisherface approach which 

combines PCA and Fisher’s Linear Discriminant. The next step is to make selection of PCA subspaces rather then just selecting 

the subspaces with the highest variation. Furthermore, special weighting matrices may be used to amplify the variation in a 

particular subspace to improve recognition. Alternatively Probabilistic Principal Component Analysis might be used such as 

described in [16]. 

3.7 Hybrid Bayes in FER 

Instead of using a Naïve Bayesian classifier such as in [12], [17] proposes an alternative approach for facial expression 

recognition by using a hybrid Bayesian network. A Hybrid Bayesian network (HBN) is a Bayesian network which consists of both 

discrete and continuous variables. The inputs (observed facial features) are several specific areas of the face, rather than a set 

of key points spanning the entire face. In [10] the face is decomposed into four components: face shape, right eye shape, left 

eye shape and the mouth shape. The motivation for this decomposition is the belief that the shape of the face is individually 

independent and decomposition can be efficiently used to capture the manifolds of the facial expressions. So instead of defining 
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facial expressions as holistic entities, they are represented by a combination of intrinsic functionalities of the following 

subcomponents:  

 

Expression = statemouth + stateeyeRight + stateeyeLeft 

 

The claimed merits of this approach are the intuitive approach and the ability to classify similar expressions without any 

additional overhead (e.g. smile with eyes closed, smile with eyes open). Furthermore, performance with the proposed hybrid 

Bayesian network is expected to be better than Naïve Bayes, since Naïve Bayes assumes independency of the observed 

features given the classified expression. However, dependency between different features can be extremely useful, particularly 

in cases when the input images are partly occluded and not all features are visible. To incorporate dependency in the hybrid 

network (figure 3.2), hidden variables are included that model the dependency between the left eye, P(EL1|LR), and the right 

eye, P(ER1|LR). The same is done for the corners of the mouth. In figure 3.2 round nodes are continuous and square nodes are 

discrete. The unshaded nodes are hidden.  

 

 

Figure 3.2: Hybrid Bayesian network 

 

In the experiment described in [17] the Active Appearance Model (AAM) (Bettinger et al. 2002) is used the make a mean 

representation of the observed face. Furthermore a pose estimator is used in conjunction with Probabilistic PCA (PPCA) 

(Tipping and Bishop 1998). Probabilistic PCA is better suited as normal PCA as it has been found that it provides a much more 

accurate estimation of the principal components by finding the relationship between projected angles and parameters of the 

observed face. The model operates by first detecting the face in a newly observed video stream. Then the observed face is 

transformed to a frontal view representation using the pose estimator. The face is then decomposed into the specified 

subcomponents and the subcomponents are fed to the hybrid Bayesian networks as input vectors. Finally the avatar is animated 

according to the observed output. A few examples are shown in figure 3.3. To test the performance of the hybrid Bayesian 

network it is compared with a Tree-Augmented Naïve Bayesian (TAN) network. Both networks are fed the same image 

sequences. The result shows that the hybrid Bayesian network performs slightly better as it reaches an accuracy of 88% versus 

an accuracy of 82% reached by the TAN. The paper concludes by proposing that the next step in this line of research is to 

incorporate temporal information into the model by using Dynamic Bayesian Networks. 

 

 

Figure 3.3: Animated avatar on the output of the HBN 
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3.8 Dynamic Bayesian networks and affect detection 

In the paper [18] D. Datcu and L.J.M. Rothkrantz propose an automatic system for facial recognition in video sequences. It 

makes use of both a Bayesian network and the FACS model. The first step in the recognition process is to locate the eyes of the 

face in the video stream. This is accomplished by an eye-tracking mechanism based on a Kalman filter (Kalman 1960). After the 

position of the eyes are determined, the rest of the visual features is recovered. The next step is to place key points on the 

observed face, which are 30 specifically located points on the face as described by the Kobayashi and Hara model (fig. 3.5). 

These key points are then used to determine the visual facial parameters. In turn, these visual parameters are then mapped on 

a number of corresponding AUs. 

 

This is where the Bayesian network is applied. The network is modeled to contain knowledge about the relations between 

certain Action Units and the related labels for the expressions, which are the seven prototype expressions. The probability of 

each facial expression is then determined separately. Each facial expression is dependent on the presence of a number of 

specific Action Units or specific combinations of Action Units. For example, the expression ‘happy’ primarily depends on the 

presence of AU 12 or the combination AU 12 + AU 6. In turn, AU 12 and AU 6 are dependent on the facial parameters based on 

key points 2, 6, 8, 15, 16, 17 and 21. In addition to the observed AUs, the probability of each facial expression in the video 

stream is also dependent on the expression observed directly before the current expression. This is because expressions are 

assumed to change ‘smoothly’ over the course of time and not within a matter of frames. Furthermore, the Bayesian network 

also takes into account dynamical changes of the observed key points. After the probability of each facial expression is 

determined, the expression with the highest probability is then elected as the result of the system. 

 

 

Figure 3.4: Facial key points 

 

The conditional probability tables are determined offline by images from the Cohn-Kanade AU-Coded Facial Expression 

Database. The system is able to operate real-time, which is a hard demand for most applications of facial expression 

recognition. Although [18] does not contain quantative performance results, the concluding remark states that the results are 

very promising. Furthermore,  the proposed Bayesian network incorporates dynamical data. It uses the anterior facial 

expression and key points to estimate the current facial expression. Although not explicitly stated in [18], in this sense the 

proposed Bayesian network could be interpreted as a Dynamical Bayesian network. 

 

The facial expression is not the only aspect of a human that betrays his or her emotional state. Physical behavior can also give 

a good indication of a persons mental state. For example, rapid movement of the limbs might indicate a state of agitation and a 

the closing of the eyelids for specific lengths of time might indicate fatigue. Here we will briefly discuss two papers which deal 

with emotion detection without focusing exclusively on the human facial expression. Furthermore, both papers achieve the 

emotional state detection by using Dynamic Bayesian networks. A Dynamic Bayesian network (DNB) is a Bayesian Network 

which incorporates data over different time segments instead of just a single moment, i.e. that if a specific state has been 

detected at timeframe t-1, the same state will occur with a heightened probability at timeframe t. Currently (to the best of the 

authors knowledge) there has been no research specifically focused on facial expression recognition using Dynamic Bayesian 

networks with the possible exception of [18], even though enough research has been done on spatio-temporal analysis of facial 

expressions in the past decade [10, 11]. 
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The paper [19] describes a system that uses a Recurrent Bayesian network to detect violent human behavior. A Recurrent 

Bayesian network is a particular Dynamic Bayesian network which incorporates not only the previous state of the network, but 

the entire series of previous states. The system is used to detect violent behavior in a group of people and violent behavior is 

defined as a high level of agitation in a group. Instead of using facial features, such as in facial expression recognition, the 

pixels which constitute the observed group are monitored for changes in acceleration, density, size and direction. The Recurrent 

Bayesian network is trained with 600 video streams and tested with 10 streams of the same site. Results are promising as all 

test samples were correctly classified. However, there are still some problems, e.g. violent behavior is only detected when an 

enduring state of agitation is observed, and therefore violent behavior is detected with a delay. On the other hand, violent 

behavior that is restricted to a very short time window may not be detected because of the dependencies between time 

segments. 

 

 

Figure 3.5: A general model which shows how a static Bayesian network can be transformed to a DBN by adding temporal links. 

 

The paper [20] describes an automated agent that is able to detect the affective state of a user and provide assistance 

accordingly. A nice example is Microsoft’s ‘Office Assistant’, which incidentally also makes use of a Bayesian network. The 

agent proposed in this paper makes use of a Dynamic Bayesian network, as the detection of the current affective state (neutral, 

confused, fatigued or nervous) is dependent of both the hidden variables and affective state in the previous time segment, and 

the observed features in the current time segment. The observed ‘features’ of the user are detected by multiple sensors, such 

as tracking of the users gaze, eyelid movement and facial expression. Figure 3.5 shows the general model proposed in [20]. 

The observed features are placed in the bottom layer. The hidden variables are modeled directly on top of the bottom layer. The 

affective state is dependant on the hidden variables and two internal variables, which represent the complexity of the current 

task and the modeled user profile. Straight arrows indicate static dependencies, looped arrows indicate temporal dependencies. 

 

In [20], determining the emotional state of the user is not the end-goal. The current affective state is used to estimate whether or 

not the agent should intervene and, if so, what type of assistance is required. For this reason the model also keeps track of the 

user profile and the complexity of the current task. A user that is highly intolerant for intervention from an automated agent is 

less likely to be surprised by intervention of the agent. A user performing a task that is relatively complex is more likely to benefit 

from intervention. To decide which type of assistance is most likely to be needed (warning, emphasis or simplification) the 

benefit and cost for each type of intervention are compared, taking into account the probabilities of the possible affective states 

of the user. Several experiments with both synthesized and real data are described, with the intention of proving that such a 

model would be feasible. Application of this type of agent is not restricted to a specific area as it can be applied to areas such as 

office related software, where fatigue is a common occurrence, or army related control software where people have to operate 

under highly stressful conditions. Although the general model in figure 3.6 includes facial expression analysis, the paper [20] 

relies more heavily on other sensors to operate and does not elaborate on this possibility. 
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4 The Small Sample Case 

 

Using Bayes as a classifier also has some considerable drawbacks. For example, if we want to apply a Bayesian network to a 

problem we have to model the prior probabilities. Without priors Bayes is not much use. So we try to estimate the prior 

distribution based on the available training data. Now it is often said that training data must span the entire domain in order for 

us to make a good estimate of the true distribution. Unfortunately, it is quite exceptional for researchers to have that amount of 

data. The consequence is that we make poor estimates of the prior distribution and consequently make poor Bayesian 

classifiers. 

4.1 The curse of dimensionality 

This phenomenon is known as the curse of dimensionality: the amount of features that we need to extract per data sample is 

significantly greater than the amount if available training samples. This particularly affects Bayesian classifiers as they depend 

on a probability distribution which needs to be estimated from the available data. On the bright side, attempts have been made 

to make up for the curse of dimensionality. This chapter discusses three ways to overcome this problem: training with unlabeled 

data, generating new data with facial expression synthesis and using large-margin classifiers instead of Bayesian networks. 

4.2 Bayes with unlabeled data 

We distinguish to different kinds of data: labeled and unlabeled. Usually when we claim there is not enough data available we 

mean not enough data of the labeled kind. In this case labeled data are samples which have been preprocessed, for instance 

the data might have been coded by certified FACS coders. The culprit is that labeling data requires time, expertise and training. 

On the other hand, unlabeled data is readily available as it is quite easy to collect. All that is needed is a camera and a number 

of subjects. It has been shown in the literature that using labeled data to train classifiers achieves considerably better results. 

 

The paper [21] proposes a way to train a Bayesian classifier with a relatively small amount of labeled data in combination with a 

large amount of unlabeled data. The first step is to train the classifier with the small amount of labeled data and supervised 

learning techniques. The next step is to improve the obtained classifier with the unlabeled data. In previous attempts this has 

usually resulted in a deterioration of the classifiers. In [21] it is argued that the reason that training with unlabeled data results in 

worse classifiers, is due to the poor modeling of the classifiers themselves. It is argued that if a Bayesian network has the 

correct parameters and the correct structure it can be an optimal classifier as it accurately represents the posterior probability 

distribution. A way to search for the optimal structure is to switch structure when performance degradation is detected during 

training. 

 

In order to solve this problem an algorithm is proposed to find the optimal structure for a Bayesian classifier focused explicitly on 

improved classification. The algorithm is known as the Stochastic Structure Search (SSS). It functions by randomly selecting a 

structure and then either adding, removing or changing the direction of a single connection in the network. This method is known 

as the Monte Carlo Markov Chain technique. If the expected error of the new network is smaller than the error in the current 

network, the new network is accepted with a high probability. This process is iterated and uses simulated annealing, meaning 

that the probability of accepting a new network is artificially is reduced as the number of iterations grows in order to ensure 

convergence. The resulting network is then used as a classifier trainable by both labeled and unlabeled data. 

 

In order to measure performance of the network generated by the Stochastic Structure Search it is compared with two other 

common network structures: Naïve Bayes (NB) and Tree-Augmented Naïve Bayes (TAN). A Tree-Augmented Naïve Bayesian 

network is similar to a Naïve Bayesian network in that all features are children of the class label, but in addition all feature nodes 

may have a single other feature node as a parent. This results in a particular kind of tree structure. Both of these network 

structures are known to have degrading performance when trained with unlabeled data.  

 

Table 4.1 shows results for both samples from the Cohn-Kanade database and the Chen-Huang database. It shows the 

performance for each network in case of training with only labeled data and in the case of training with both labeled and 

unlabeled data. It can be seen that performance degrades for both the BN and the TAN as unlabeled data is added to the 
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training set. It also shows that the SSS network, trained on both labeled and unlabeled data, has slightly better performance 

than the BN and TAN networks even though they have been trained exclusively on labeled data. The paper concludes by 

stating that if the SSS algorithm is applied with only labeled data even better performance is expected, which proves the worth 

of labeled data. 

 

Table 4.1: Results of SSS in comparison to NB and TAN 

Dataset 
# Samples 

labeled 

# Samples 

unlabeled 
# Test NB labeled 

NB labeled & 

unlabeled 
TAN labeled 

TAN labeled & 

unlabeled 

SSS labeled & 

unlabeled 

Cohn-Kanade 200 2980 1000 72.50% 69.10% 72.90% 69.30% 74.80% 

Chen-Huang 300 11982 3555 71.25% 58.54% 72.45% 62.87% 74.99% 

 

4.3 Synthesis of facial expressions 

Another possible solution to the small sample problem is to find a way to generate new samples. One area of research that is 

currently blooming is that of face expression synthesis. The idea is that we need only a neutral image of a subject in order to 

generate a new image of the subject with an arbitrary facial expression. Different approaches have been tried, such as creating 

a 3D wire frame model that captures the possible motions and restrictions of a face. But if we are to use generate data for 

training, we will need images that have a high fidelity with real-life images, which is often not the case with 3D model generated 

data. In the publications [22] and [23] a computational model for facial expression is proposed, which generates a mapping from 

an image of face showing a neutral expression to the same face showing an arbitrary expression without regard to sex or skin 

color of the subject. This is achieved by using two models in conjunction with each other: the Facial Expression Shape Model 

(FESM) and the Facial Expression Texture Model (FETM). 

 

         

  Figure 4.2: Alignment of the landmark points    Figure 4.3: Delaunay Triangulation 

 

The Facial Expression Shape Model is a statistical model based on point distribution that only allows for deformations observed 

in the training set, and consequently deformations of the human face. The training set that is needed to train the FETM is 

labeled with the help of the Facial Action Coding System. Each FETM is build for a specific expression, or in other words a 

specific set of Action Units.  The FESM is created by first manually marking the images in the training set with 122 specific 

landmark points. Furthermore, these landmark points are weighted according to their level of importance depending on the AUs 

that the FETM is build for. For example, if we want to make a mapping for AU 12 we would pay specific attention to the corners 

of the mouth. 

 

In order to analyze the variation in the location of these landmark points, the faces in the training set need to be aligned as 

closely as possible. This is achieved by a technique known as generalized Procrustes alignment (GPA). This technique aligns 

two shapes with respect to position, rotation and scale by minimizing the weighted sum of the squared distances between the 

corresponding landmark points. After GPA, the training set is analyzed with Principal Component Analysis to lower the 

dimensionality of the feature input space and to capture the variation of the landmark points. The Facial Expression Texture 

Model is created in a similar manner. All images are warped to a mean shape and then Delaunay triangulation is used to create 
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a wire frame of 214 separate regions between the landmark points. Each face is then converted from color to greyscale and 

pixel values in the triangles are transformed to an input vector. Principal Component Analysis is also used here to reduce 

dimensionality and capture variance of the input vectors. To create a mapping from the neutral expression to a selected set of 

AUs, different approaches are proposed such as the used of a Feedforward Hetero Associative Memory Network (FHMN), 

Radial Basis Functions (RBF) and Support Vector Machines (SVM). Support Vector Machines and Radial Basis Functions will 

be briefly discussed in the next paragraph. In the experiment described in [23] a Feedforward Hetero Associative Memory 

Network is used to model the FESM and Radial Based Functions are used to create a mapping for the FETM. 

 

 

Figure 4.4: The first column shows the real neutral 

images, the second column shows the real ‘happy’ 

images and the third column shows the synthesized 

‘happy’ images. None of the faces were part of the 

training set. 

 

The experiment describes a FESM and FETM trained to warp a neutral face to a face showing Action Units 6, 12 and 15. This 

combination of AUs is generally agreed upon to depict a ‘happy’ expression. Forty people and eighty images from the Cohn-

Kanade AU-coded facial expression database were used to create a training set. The results of the experiment are visible in 

figure 4.4. Numerical results are measured by calculation of a correlation coefficient between the real ‘happy’ images and the 

synthesized ‘happy’ images for both the FESM and the FETM. The FESM achieved an average correlation of 0.814 and the 

FETM achieved an average of 0.7799. It should be noted that this experiment also used labeled data in the training set.  

 

Although [23] shows promising results concerning the synthesis of photo-realistic facial expressions, it should be duly noted that 

it does not suggest the use of synthetic images for training purposes or in other words as the solution for the curse of 

dimensionality. It simply provides a way to transform unlabeled data consisting  of images of neutral faces to labeled data 

consisting of faces portraying a set of specific Action Units. This in essence is a way to handle the curse of dimensionality as 

generating unlabeled data can be done relatively effortless and without regard to sex and skin color of the subjects. However, 

before the assumption can be made that labeled synthesized data can be used to train classifiers such as Bayesian networks, 

this possibility shall have to be researched and tested.  

 

Another paper [24] proposes a different method to achieve facial expression synthesis. Instead of creating a separate model for 

the synthesis of each expression a single model is being created that can generate each of the seven expression for an 

unknown person. In order to get an idea of this different approach we will discuss it briefly.  
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Given an corpus of facial expression images of different persons, an attempt is made to decompose the data into two separate 

subspaces: the expression subspace and the person subspace. High-Order Singular Value Decomposition is used to 

decompose the tensor A which is a third-order tensor (number of facial expressions, number of persons and number of salient 

features): 

featureressionperson
UUUSA ×××= exp

, 

 

in which S is the core tensor representing the inter actions between the decomposed subspaces. By separating the knowledge 

of persons and expressions, it is possible to generate new expressions for all known persons in U
person

 given the new expression 

vector u
e
 , but far more interesting is to ability to generate all known expressions in U

expression
 if we have a new person vector u

p
. 

 

 

Figure 4.5: Generating a new expression for all known people (first row) & generating all known expressions for a new person (second row). The 

first column shows the new expression/person. 

 

Figure 4.5 shows some of the results from [24]. The first row shows a particular synthesized expression for all known persons, 

given the new unknown (portrayed) expression on a known person. The person originally portraying the new expression has to 

be known in order to know the correct mapping for the other persons. The second row shows the synthesis of the seven 

expressions of joy, sadness, fear, anger, surprise, disgust and neutrality, given an unknown person with a known expression. 

Although the results are not discouraging the created model is not very robust to distinctive facial features such as beards and 

mustaches and performs relatively poorly if the person subspace does not contain a person that is similar to a arbitrary new 

person.  

4.4 Other classification approaches 

The very recent paper [25] discusses the problem of facial recognition in the small sample case. A novel approach, named 

Feature Selection via Linear Programming (FSLP), is proposed and compared with three other often used methods: Bayes, 

Support Vector Machines and AdaBoost. The paper argues that the first problem in facial expression recognition is feature 

selection, as there are often a large number of features to choose from. This is the process of selecting the distinguishing 

features for the data in the training set, before actually training. Unfortunately there is no exact way to determine the optimal set 

of features. Although there are algorithms available to calculate an optimal set of features, such as the Sequential Forward 

Floating Selection by Pudid et al. , these are very complex and time-consuming. Both Bayes and AdaBoost use a heuristic 

approach and SVM often uses all available features. 

 

A novel approach is proposed that addresses the problem of feature selection during training instead of before. The algorithm 

works by finding a function such that f(x)>0 if x is an element of A and f(x)<0 if x is an element of B. Finding the function for this 

binary classification problem is achieved by linear programming. In addition the algorithm has the property of being a large 

margin classifier and is therefore somewhat robust to the curse of dimensionality. When a classifier is created with example-

based learning, as is the case with Bayesian networks and particular artificial neural networks, the discriminate function might 

result in separating hyperplanes which are biased towards the last sample used for training. Figure 4.5a shows several such 

hyperplanes, all of which are qualified to classify the training set, but are likely to perform poorly on unseen data. This problem is 
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likely to occur in the small sample case, as there are simply not enough samples to converge to an optimal discriminate 

hyperplane.  

 

 

Figure 4.5: Large margin classifiers (b) compared to other classifiers (a). 

 

Large margin classifiers, however, are still able to find an optimal hyperplane by finding the hyperplane that provides the 

greatest distance between the hyperplane and the nearest data point in each class such as shown in figure 4.5b. A larger 

margin allows for better generalization and consequently better performance when we are faced with a limited amount of 

training samples. Both SVM and AdaBoost, as well as the LP approach qualify as large margin classifiers, but Bayesian 

networks, on the other hand, do not. 

 

The paper [25] also argues that the multiclass classification problem can be simplified. Usually, each class is compared to all 

others in order to determine its probability. Hence the features of each class are chosen to achieve distinction from all other 

classes. However, this is not an optimal approach as, different features are used to distinguish different pairs of classes. For 

instance, the features that are useful to distinguish the letter ‘E’ from ‘F’ may differ from those features needed to distinguish ‘E’ 

from ‘L’. In facial expression recognition we may find that the mouth is of key importance when distinguishing ‘happy’ from ‘sad’ 

and the eyebrows are more important when we distinguish ‘sad’ from ‘surprised’. So a better strategy is to make pairs for each 

two separate classes and assign a subset of distinguishing features for each pair. Thus for a classification problem with 7 

classes (prototype facial expressions including neutral) we would end up with 21 pairs. The most probable class can then be 

found by determining the class which is most probable in most pairs. 

 

Table 4.6: Comparison of results 

 Bayes All Bayes FS AdaBoost L-SVM NL-SVM FSLP 

Accuracy 63.3% 71.0% 71.9% 92.4% 91.9% 91% 

# Features 612 60 80 612 612 17.1 

 

In order to test the proposed results a database of 213 images of 10 Japanese women was used. The results can be found in 

figure 4.6. The six methods compared are: a Bayesian network without feature selection (Bayes All), a Bayesian network with 

pairwise feature selection (Bayes FS), AdaBoost, Linear Support Vector Machines (L-SVM), Nonlinear Support Vector Machines 

(NL-SVM) and Feature Selection via Linear Programming (FSLP). Obviously Bayes and AdaBoost perform relatively poorly 

when compared to Support Vector Machines and FSLP. The advantage of FSLP over SVM is that it is less costly from a 

computational point of view. 

 

The paper [25] concludes by implying that Bayes cannot solve the small sample case problem, as it is outperformed by all other 

methods. The reason is that, for a Bayesian classifier, we need to estimate the conditional probability distribution for each class. 

In the small sample case it is hard to span these distributions and we end up with biased and deformed distributions. 

 

 

 



Bayesian Networks Applied to Facial Expression Recognition 

August 2005, Paul Maaskant 

   

 

Page 32 of 39 

 

 



Bayesian Networks Applied to Facial Expression Recognition 

August 2005, Paul Maaskant 

   

 

Page 33 of 39 

5 Conclusions and recommendations 

 

Research on facial expression recognition is still an open chapter, meaning there is not yet a strong convergence towards a 

single method or technique which outperforms all the others. A large variety of methods have been developed, tested and 

improved [11]. Some of those techniques have earned their stripes such as Principal Component Analysis  (PCA) and the use of 

the Facial Action Coding System [7]. Furthermore, great efforts are being made towards conformity of experiment results, such 

as the implementation of the Cohn-Kanade database [9]. 

 

Other techniques are discarded as new ideas are applied and found to be more effective. Although there are a handful of coding 

systems available for describing facial expressions, only FACS is still in wide spread use. The question that we ask ourselves is: 

is Bayes a deprecated method when it comes to facial expression recognition. 

5.1 Problems in facial expression recognition 

Many of the problems that vex facial expression recognition are well known, but have yet to solved efficiently. This is also the 

main criticism against the current models. Many of the models discussed in this survey still perform poorly when confronted with 

input images that suffer from poor illumination, varying pose and partial occlusion of the face. None of the models proposed in 

the literature encompassed by this survey introduce explicit solutions to these problems with the exception of [17] where 

recognition is possible from varying angles and recognition with partial occlusion is still possible. Almost all current models 

assume anterior knowledge of the position of the face, good lighting conditions and full visibility of the face. These assumptions 

result in poor performance when applied to real-life situations. It should be noted that these problems lie in extracting facial key 

points and not so much in analysis of the observed key points. In other words, these are not problems that are to be solved by a 

Bayesian network. 

 

However, analysis of the observed face brings its own set of problems. Most of the models we have discussed assume a very 

simplistic approach towards modeling facial expression. Naive Bayes and Tree-Augmented Bayesian networks have been tried 

in the past but these models are known to be inaccurate. The reason for their application is their relatively small amount of 

needed samples and parameter estimation. It is very uncommon to find a model that is structures in a more complex and 

accurate way. The paper [21] shows a novel approach by modeling a network by examining the dependencies in the data, 

instead of designing the model and then fitting the data to it. The paper [18] also introduces a more complex but accurate model 

by incorporating the Action Units from FACS explicitly in the network.  

 

Another trend that is to be expected is the rise of multimodal models. Almost all of the models discussed in this survey use only 

a single modality: observation of the face. The reason humans perform so well in recognizing emotional context is because the 

we are able to combine multimodal information. For example, we do not only observe the facial expression, but we are also able 

to pick up emotion from the stress level of someone’s voice or from someone’s body language. Some of the papers discussed in 

this survey suggest a multimodal approach as the next step in their research. However, this survey has not focused in particular 

on determining the emotional state of a subject in a multimodal manner, so the lack of multimodality is an observation rather 

than a hard point of criticism. 

 

A final point of attention is the lack of conformity that exists between the testing data of all proposed models. Even after the 

introduction of the Cohn-Kanade database [9], many (not all) of the proposed models are tested and trained on customized 

training sets or only a small part of the Cohn-Kanade database. This makes it difficult to compare models and thus to discern 

which models actually yield the best results. Furthermore, although it is the largest image resource available, the Cohn-Kanade 

database is not yet complete as many of the frames in the video sequences are yet to be AU-coded. 

5.2 Bayesian networks on FER: state of the art 

We may ask which is the best model that applied to facial expression recognition using Bayesian networks. Comparing the 

results of different models is difficult because the difference in testing sets. However, It is possible to say something about which 

elements increase performance and which techniques have proven to be inefficient.  



Bayesian Networks Applied to Facial Expression Recognition 

August 2005, Paul Maaskant 

   

 

Page 34 of 39 

 

The state of the art in FER using Bayes is a combination of the models described in [17, 18 & 21]. The model proposed in [17] 

provides a model that is to some extent robust against varying poses of the observed subject and partial occlusion of the face. 

This is achieved by using an Active Appearance Model (AAM) and a pose estimator. Partial occlusion is solved by assuming 

specific dependencies between certain facial features. For example, if the right eye is occluded, the information retrieved from 

the left eye makes up for this, still allowing correct classification. The paper [21] shows the state of the art when it comes to 

structuring a model that fits to the data by using a Stochastic Structure Search algorithm. Most current models work the other 

way around, fitting data to an assumed model, which essentially results in a performance that is dependent on the correctness 

of the model. One of the prime benefits of fitting the model to the data is the ability to train the model on unlabeled data. This 

provides us with a way to counter the small sample case. Finally, the paper [18] shows a model that explicitly incorporates 

temporal information when analyzing which expression is observed. Temporal information can be very helpful in classifying 

expressions in video streams as it has been shown that there are strong temporal dependencies the separate frames of a video 

sequence.  

 

All of the models proposed in [17, 18 & 21] use Principal Component Analysis to capture variance in the input images in order to 

achieve better classification results. The next step for PCA is to determine which principal components capture the most 

discriminating variance. Current methods for PCA usually just use the components which cover most of the variation. The 

problem is that in this way image noise and lighting conditions are assumed to be principal components, when it is desirable to 

only capture the variance that is present between faces and expressions. 

 

A final technique that is currently performing nicely is pair-wise feature selection as proposed in [25]. In a multi-class 

classification problem it is highly inefficient to compare all classes by a fixed set of facial features, as different subsets of 

features are the discriminators for each class. The proposed idea is to compare each combination of two classes, as each pair 

only has a small set of discriminating features. To determine the most likely class, we could then select the class that most 

probable most often (of all pairs). Furthermore, this approach allows us to better discriminate classes that are very alike, such as 

fear and surprise, because we focus in particular on the discriminating features. 

5.3 Tools 

The papers discussed in this survey do not make use of specific software tools intended for facial expression recognition. All of 

the discussed models have been self-implemented. However, some tools are available. The Integrated System for Facial 

Expression Recognition (ISFER) developed by Pantic & Rothkrantz (2000) is such a tool that automatically classifies a frontal 

static image to an emotional label. The inference engine that enables this is named HERCULES. The notable thing about 

HERCULES is that it consist of a number of separate reasoning modules that are assigned to specific parts of the observed 

face. The motivating thought is that each technique is has its own particular application in which it performs best. For example, a 

neural network is used to classify the state of the eyes and a fuzzy classifier is used to classify the state of the mouth. Although 

the HERCULES inference engine can easily be expanded with new models, due to its architecture, to the best of the authors 

knowledge, Bayesian Belief network modules have not been included yet 

 

One of the most popular non-software tools for facial expression classification is the Facial Action Coding System [7]. A new 

version of FACS was published in 2002, refining the older version dating from 1978. FACS is still in widespread use today, as it 

is regarded as a comprehensive way to code all possible facial expressions, be it voluntary or spontaneous [8]. Most of the 

classifiers introduced in this survey perform considerably better when trained on data that has been pre-processed by use of 

FACS or some other coding scheme. The probable cause for this increase in performance can be found in the fact models are 

more apt recognizing faces in a analytical manner (i.e. recognizing Action Units) then in a holistic manner (i.e. recognizing the 

expression as a whole). 

 

Another useful ‘tool’ is the Cohn-Kanade database [9] which has been extensively discussed in previous section and in 

particular in section 3.3. It provides the research community with a uniform way to measure performance of the proposed 

systems. Although widely known, the Cohn-Kanade database is not exploited as often as could be expected from its apparent 
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usefulness. The database itself is still under construction, as not all of the images and frames have been AU-coded, but since 

the introduction of the database in 2000 no notable improvements have been reported. 

 

Although most of the models discussed in this system use their own software modules, capable tools for modeling Bayesian 

networks can be found in SMILE and GeNIe [26], developed at the Decisions Laboratory, University of Pittsburgh. SMILE is a 

fully portable library implementing graphical decision-theoretic methods such as Bayesian networks. GeNIe is a development 

environment for graphical decision-theoretic models, making use of the SMILE library. Both SMILE and GeNIe are still under 

development. 

5.4 Current research 

The current research performed by Yacoob et al. [10] is focused on facial recognition and physical action detection rather then 

facial expression recognition. However, analysis of human gestures might very well help analyze the affective state of a subject, 

which makes his research akin to that of facial expression analysis. Cohen et al. [14, 15, 21] is currently researching the 

possibilities for learning the optimal structure for Bayesian networks in order to learn from unlabeled data such as proposed in 

[21]. This might prove a feasible solution for the small sample case. Cohn et al. [9] is currently working on ways to improve 

Active Appearance models. He proposed a method to model an AAM from multiple views of a single face, regardless of the 

position and geometry of the cameras shooting the face. Rothkrantz et al. [11, 13, 18] most recent work on facial expression 

recognition involves exploring other methods for facial expression analysis besides Bayesian networks. Although the application 

of Bayesian networks to facial expression recognition has been examined [18], other classification techniques outperform Bayes 

in the common small sample case [13]. Ghent et al. [22, 23] is currently working on photo-realistic facial expression synthesis. 

Most models that represent the human face are 3D wireframe models that are able to imitate and synthesize facial expressions, 

but not many of them are photo-realistic. Photo-realistic facial expression synthesis might provide us with a feasible solution to 

the small sample case. Gong et al. [17] is currently preparing for the IEEE International Workshop on Analysis and Modeling of 

Faces and Gestures. This also involves exploring novel techniques and applications for facial expression analysis. His research 

is not strictly limited to Bayesian networks or facial expression recognition. 

5.5 Conclusions 

One of the biggest problems in facial expression recognition is the lack of training data. Although efforts are made to counter 

this problem, most research is forced to deal with a small sample case. In theory, a Bayesian network is an optimal classifier as 

it accurately represents the conditional probability distribution of any given problem, under the condition that it is properly trained 

and modeled. This means that we have to make an accurate estimation for the local probability distributions. Obviously, the 

quality of such an estimation depends on the available data. In order to model an accurate distribution this data has to contain 

samples that span the entire distribution. This is were Bayes trips and falls over, as it there is rarely enough data to span the 

entire distribution and frequently not even enough data to make a decent estimation. The consequence is that a Bayesian 

networks fails to accurately represent the conditional probability distribution and consequently has a deteriorated performance 

 

To counter this problem several possible solutions have been explored. The obvious solution is to produce more data. Although 

it is not a problem to acquire more images of facial expressions, it quite an undertaking to label, encode and structure these 

images. Therefore, methods have been explored that learn from unlabeled data [21]. Furthermore, it might be possible to 

synthesize usable data such as described in [22, 23 & 24]. The question remains if these are feasible approaches, as more 

research is needed before this can be determined. Furthermore, other methods have also been tested in the small sample case 

and have proven to be more useful. Support Vector Machines (SVM), Relevant Vector Machines (RVM) and Radial Based 

Functions (RBF) are some of those methods. The main reason these so called ‘large margin classifiers’ outperform Bayes is 

because they make no attempt to model a conditional probability distribution, but simply use the small amount of available data 

to estimate the optimal discrimination functions between the different classes. 

 

Although it is hard to compare different methods, as most of them are tested on different sample sets, it seems that Bayesian 

classifiers have a diminishing viability. Naïve Bayes has already proven to be inadequate for facial expression recognition, as 

the assumed conditional independence is an unfounded assumption when applied to the features of the human face. In fact, 
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dependency amongst features if often very useful as it allows facial expression analysis even when parts of the face are 

occluded [17]. The reason that Naïve Bayes is still used frequently is because the drawback that it is often a bad fit to the 

underlying model is offset by the ability to train on limited data. Tree-Augmented Bayesian networks have also been 

outperformed by other proposed models on the same training data. Research has been done with Bayesian networks that better 

fit to the available data with losing its generalizing ability [17] such as Hybrid Bayesian networks or Bayesian networks with 

optimized structures [16]. 

 

The future of the Bayesian approach lies in the ability to incorporate temporal data. Dynamic Bayesian Networks (DNB) is might 

provide a way to improve classification of facial expressions, but DNBs are a relatively new area of research and (to the best 

knowledge of the author) no pure DNB approach has yet been applied to the problem of facial expression recognition yet, 

although [18] uses dynamical variables. The current area of application for DBNs is speech recognition. However, [19] and [20] 

demonstrate promising results on applying a Dynamic Bayesian Network on the recognition of specific behavior of humans and 

deferring their affective state. It seems feasible that a similar approach can be applied to facial expression recognition. The 

concept of spatio-temporal analysis has been around for about a decade, but, as DNBs are a rather new trend, it has yet to be 

applied in conjunction with a Dynamic Bayesian network. Currently, analysis on video streams with a static Bayesian network 

simply estimate the probability for each frame. 

 

It is the authors final impression that static Bayesian networks are a passed station when it comes to facial expression 

recognition. However, new ways to apply Bayes, such as Dynamical Bayesian networks, might prove that this particular 

probabilistic model can be an extremely powerful classifier if modeled in the right way. 

5.6 Recommendations 

Based on the research reviewed in this survey, the author suggests three possibilities for new research involving Bayesian 

networks and facial expression recognition. 

 

Dynamic Bayesian networks [18, 19] provide us with a way to incorporate temporal data. Facial expressions occur in a specific 

time frame and it has already been shown that the behavior of the facial features over time are correlated with the observed 

expressions [10]. Furthermore, static Bayesian networks can be made dynamic by connecting the nodes of separate static 

Bayesian networks in sequential time steps. The paper [18] proposes a Bayesian network that incorporates temporal data into a 

static network, but it is not explicitly constructed as a Dynamic Bayesian network. The author proposes a hierarchical Hybrid 

Bayesian network such as discussed in [17] made dynamic with temporal dependencies such as shown in figure 5.1. The blue 

arrows indicate temporal dependency. The reason for electing this structure over Naïve Bayes and Tree-Augmented Naïve 

Bayes is that the Hybrid Bayesian network in [17] contains hidden nodes. Hidden nodes do not only reduce the complexity of 

the network but when connected in a dynamic way they might provide more nuanced temporal information than when only the 

diagnostic node is dynamically connected [18] and lead to increased performance compared to static Bayesian networks. NB 

and TAN have no hidden nodes and therefore could only dynamically connect the diagnostic node. 

 

 

Figure 5.1: proposed dynamic Bayesian network 
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A second venue of possible interest in examining the viability of using photo-realistic synthesized images to train Bayesian 

networks. As previously discussed, Bayesian networks suffer from a lack of sufficient training data because its hard if not 

impossible to estimate the conditional probability distributions. Recent work [21, 22, 23] has examined the possibility of 

synthesizing an arbitrary set of Action Units from a single image of a face with a neutral expression. The results were promising 

as the method proved independent of age, sex and race. Although the proposed synthesis method is not specifically meant to 

solve the small sample case, it is effectively a way to transform unlabeled data into labeled data. The author proposed a static 

Bayesian network such as described in [12]. The reason for choosing this network structure is because it incorporates the 

recognition of Action Units. In order to test the viability of synthesized data, two separate instance of the same network would be 

trained. One network would train on a real data, and the other would train on synthesized date. The synthesized-image data set 

would be several magnitudes greater than the real-image data set, since it is generally easier to produce. If training with 

synthesized data proves successful, a system could be considered that integrates synthesis and training. In other words, we 

would have a model that is able to train on a set of only neutral face images. 

 

A third possible venue of research is using a Bayesian network that does not attempt to learn from static facial features, but tries 

to recognize dynamical elements in a video stream of a facial expression. In the discussed literature, all Bayesian networks 

analyze a number of facial features at the same moment, under the belief that the combination of features is a unique key to 

identifying the corresponding emotional prototype. The author proposes a Bayesian networks that takes only a limited number of 

features as input, but has several inputs for each feature, each at a different moment in time. The motivation thought is that 

perhaps emotional prototypes are not only recognizable by a large number of static features, but also by a limited number of 

features over the course of time. Research has already shown that certain emotional prototypes are identifiable by the behavior 

of the face over time [10]. Figure 5.2 attempts to clarify this idea. 

 

 

Figure 5.2: Bayesian network with a number of static features as input (a) and the same network with only a single feature overtime (b). 

 

Bayesian networks have proven their worth when trying to model uncertainty. At the end of this survey, the author has the 

distinct impression that Bayesian networks can be applied to facial expression recognition with great success, but it remains up 

to us to find a way to apply them so that they can prove their worth. 

Figure 5.2: Bayesian network with a number of static features as input (a) and the same network with only a single 

feature over time (b).  
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5.7 Paper overview 

Table 5.3 shows an overview of the papers and literature encompassed by this survey and the specific topics that were included 

per reference. 

 

     Figure 5.3: Overview of included literature 
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