
Modeling
physiological processes

with
dynamic Bayesian networks

ir. J. Hulst
Copyright c© August 2006

Contents

Notation and abbreviations vii

1 Introduction 1
1.1 Motivation . 1
1.2 Assignment . 3

1.2.1 Theoretical part . 3
1.2.2 Implementation part . 4
1.2.3 Application part . 4

1.3 Thesis overview . 5

I Preliminaries 7

2 Modeling physiological processes in the human body 9
2.1 Glucose-insulin regulation . 9
2.2 Cardiovascular system . 11

2.2.1 Circulatory system . 11
2.2.2 Regulation of the heart rate . 11
2.2.3 Mathematical model . 12

2.3 Summary . 14

3 Bayesian network theory 15
3.1 Bayesian networks . 17

3.1.1 Bayesian probability . 17
3.1.2 Network structure . 18
3.1.3 Conditional probability table . 19
3.1.4 Inference . 20
3.1.5 Conditional independence and d-separation 21
3.1.6 Canonical models . 22
3.1.7 Learning . 23

3.2 Dynamic Bayesian networks . 28
3.2.1 Network structure . 28
3.2.2 Inference . 29
3.2.3 Learning . 31

3.3 Other temporal reasoning techniques . 31
3.3.1 Hidden Markov models . 31
3.3.2 Kalman filter models . 32

3.4 Summary . 33

4 Current software 35
4.1 DSL software . 35

iii

4.1.1 SMILE . 36
4.1.2 GeNIe . 36

4.2 DBN libraries . 36
4.2.1 BNT . 37
4.2.2 GMTK . 37
4.2.3 PNL . 37

4.3 DBN modeling tools . 38
4.3.1 BayesiaLab . 38
4.3.2 Netica . 40

4.4 Summary . 41

5 Related work 43
5.1 Problem solving in medical applications . 43
5.2 Temporal reasoning . 44
5.3 Summary . 45

II Model and implementation 47

6 Research architecture 49

7 DBN formalism extensions 53
7.1 kth-order Markov processes . 53
7.2 Temporal plate and contemporal nodes . 56
7.3 Anchor and terminal nodes . 57
7.4 Extended mathematical representation . 57
7.5 Empirical study . 58

7.5.1 Design . 58
7.5.2 Setup . 59
7.5.3 Results . 59

7.6 Summary . 62

8 Temporal reasoning in GeNIe and SMILE 63
8.1 Requirements . 64

8.1.1 Actors . 64
8.1.2 Use cases . 64
8.1.3 Functional requirements . 64
8.1.4 Nonfunctional requirements . 66
8.1.5 Pseudo requirements . 67

8.2 Design . 67
8.2.1 Design goals . 67
8.2.2 Subsystem structure . 68
8.2.3 Class identification . 68
8.2.4 Persistent data management . 69
8.2.5 Graphical user interface . 71

8.3 Implementation . 76
8.3.1 DSL_network . 77
8.3.2 DSL_nodeEntry . 78
8.3.3 DSL_temporalArcs . 78
8.3.4 DSL_dbnUnrollImpl . 79

iv

8.3.5 DSL_node . 79
8.3.6 DSL_nodeDefinition . 79
8.3.7 DSL_nodeValue . 80
8.3.8 DSL_nodeDefTemporals . 81
8.3.9 DSL_nodeValTemporals . 81

8.4 Testing . 81
8.4.1 Inspecting components . 83
8.4.2 Unit testing . 83
8.4.3 Integration testing . 84
8.4.4 System testing . 85
8.4.5 Testing results . 86

8.5 Summary . 86

9 Modeling with a DBN 87
9.1 DBN structure . 87
9.2 DBN parameters . 89

9.2.1 Considerations . 90
9.2.2 Parameter learning method for the extended DBN formalism 90

9.3 Discretization of continuous data . 92
9.3.1 Uniform-sized intervals . 93
9.3.2 Uniform-sized binning . 94
9.3.3 Single-link clustering . 95
9.3.4 Empirical study and results . 95

9.4 Summary . 97

III Application and empirical studies 99

10 Glucose-insulin regulation in the human body 101
10.1 Patient simulation . 102
10.2 DBN structure . 103
10.3 DBN parameters . 105
10.4 Empirical study . 105

10.4.1 Experimental design . 106
10.4.2 Special-purpose software . 106
10.4.3 Experiment 1: varying the glucose measurement rate 109
10.4.4 Experiment 2: varying the number of patient cases used for learning . . . 111
10.4.5 Experiment 3: changing the discretization method 112
10.4.6 Conclusions . 114

10.5 Summary . 114

11 Cardiogenic shock in the human cardiovascular system 115
11.1 Patient simulation . 116
11.2 DBN structure . 117
11.3 DBN parameters . 120
11.4 Empirical study . 121

11.4.1 Experimental design . 123
11.4.2 Special-purpose software . 123
11.4.3 Experiment 1: Comparison of DBN and BN model 124
11.4.4 Experiment 2: Varying the measurement rate 127

v

11.4.5 Conclusions . 129
11.5 Summary . 129

IV Results 131

12 Conclusions and future work 133
12.1 Goals and objectives . 133

12.1.1 Theoretical part . 134
12.1.2 Implementation part . 135
12.1.3 Application part . 136

12.2 Contributions to the field . 137
12.3 Future work . 138

Bibliography 141

V Appendices 147

A Temporal reasoning in SMILE tutorial and API 149
A.1 Introduction . 149
A.2 Tutorial . 149

A.2.1 Creating the DBN . 150
A.2.2 Performing inference . 152
A.2.3 Unrolling . 153

A.3 Public API . 154
A.3.1 DSL_network . 154
A.3.2 DSL_node . 155
A.3.3 DSL_nodeDefinition . 156
A.3.4 DSL_nodeDefTemporals . 156
A.3.5 DSL_nodeValue . 157
A.3.6 DSL_nodeValTemporals . 157

B Temporal reasoning in GeNIe tutorial 159
B.1 Creating the DBN . 160
B.2 Performing inference . 162
B.3 Unrolling . 165

C An example of defining and learning the CV DBN 167
C.1 Snippet of dataset . 167
C.2 CV DBN definition and learning tool . 168

vi

Notation and abbreviations

A summary of the most frequently used notation and abbreviations is given below. The standard
convention is adopted that random variables are denoted as capital letters (e.g. X,Y,Xi,Θ), and
values of random variables are denoted as lower-case letters (e.g. x, y, xi, θ). Sets of random
variables and values are denoted as bold-face letters (e.g. X,Y,Xi and x, y, xi). Furthermore,
node and (random) variable can be used interchangeably, unless explicitly stated otherwise.

α normalization factor
θi ithparameter of a CPD of a random variable
π initial state distribution
σ standard deviation
B1 BN part of DBN that defines the initial state distribution
B→ BN part of DBN that defines the transition model
hi ith hypothesis
l(θ; x) incomplete log-likelihood
lc(θ; x, z) complete log-likelihood
N(μ, σ2) Normal distribution with mean μ and variance σ2

p(x) probability of the assignment of x to X, also used as probability distribution
Pa(X) parent of X
ri number of states of ith variable
T length of time sequence
Xt random variable at time-slice t
x1:t values for X for time-sequence 1 to t
Xi

t ith random variable in time-slice t

(k + 1)TBN (k + 1)-slice temporal Bayesian network
2TBN two-slice temporal Bayesian network
API application program interface
ASR automatic speech recognition
BN Bayesian network
BNT Bayes net toolbox for Matlab
CPD conditional probability distribution
CPT conditional probability table
DAG directed acylic graph
DBN dynamic Bayesian network
DSL Decision Systems Lab
ED Euclidean distance
EM expectation-maximization
GeNIe Graphical Network Interface
GMTK graphical models toolkit
GUI graphical user interface
HD Hellinger distance
HMM hidden Markov model
ICT information and communications technology
ICU intensive care unit

vii

i.i.d. independent and identically distributed
JPD joint probability distribution
KFM Kalman filter model
LPD local probability distribution
MAP maximum a posteriori
ME mean error
MED mean Euclidean distance
MHD mean Hellinger distance
ML maximum likelihood
MSE mean squared error
ODE ordinary differential equation
PNL probabilistic network library
PRNA Philips Research North America
SDE stochastic differential equation
SMILE Structural Modeling, Inference, and Learning Engine

viii

Introduction 1
Chapter

This thesis is about designing probabilistic dynamic models for temporal reasoning, in particular
for modeling the physiological processes in a living human being. For centuries, system mod-
eling is a scientists principal tool for studying complex systems. Models exist in all disciplines
ranging from Astrophysics to Zoology. Historically, numerical models dominate the modeling
practice, for dynamic models the utilization of systems of (ordinary) differential equations is
dominant.

A model is a simplified picture of a part of the real world in order to explain and understand
the reality. One of the best-known models are Newton’s three laws of motion. This is a very good
model because of its relative simplicity, reliability and predictive power. These three aspects are
the reason why models of the motion of physical objects are generally so successful.

Imagine constructing a simple model of the impact of a tile falling from the roof of a build-
ing. Newton’s laws prescribe exactly what parameters we need, such as the gravitational con-
stant, air resistance, weight of the tile, and height of the building. Furthermore, it prescribes the
exact relations between the variables. In this case it is relatively easy to make a good model,
because we know the underlying relations and we can measure all parameters directly. The
problem that we are interested in is the situation where the relations between variables are not
that obvious, and the exact parameters are unknown and cannot be measured. We focus on the
medical domain, in particular the physiological processes that form the basis of a major part of
the existing medical applications.

1.1 Motivation

Medicine is a field in which much data is generated. Most of this data used to disappear, but
in recent years, rapid developments in the field of ICT gave the opportunity to store data in a

1

Introduction 1.1 Motivation

maintainable fashion. During the early days of the ICT revolution, most physicians were averse
to using ICT in the form of decision support systems or even plain patient databases, and most
physicians still are, being afraid that the craft of healing will get mechanized. However, the
tide is changing. More and more physicians see the benefits that ICT can provide them, and
understand that machines will never replace a human’s judgment.

Imagine the complex system of physiological processes in a living human being. In this
particular case, imagine a subset of this system, the human’s glucose-insulin regulation. Recent
studies show that the glucose-insulin regulation in critically ill patients malfunctions more often
than not. This malfunction is not limited to patients who are known to be diabetic, and thus
tight glucose control is needed to decrease postoperative morbidity and mortality.

Tight glucose control involves identifying patients at risk, monitoring blood glucose fre-
quently and using an effective insulin infusion algorithm to control blood glucose within a nar-
row range. Since the introduction of computers in the medical domain, the majority of models
for the glucose-insulin regulation (and other physiological processes) are based on ordinary
differential equations (ODEs).

Originally, a system of ODEs is deterministic, meaning that it needs exact values for all its
parameters. This poses a problem, because it is impossible to obtain, for instance, the exact
insulin production rate of the pancreas for every unique patient at time t as this value changes
from patient to patient and from time to time. Another problem is that for more complex
physiological processes, the interactions between variables are unknown altogether.

The first problem can be solved by the insight that a satisfying model can be obtained by
defining the insulin production rate of the pancreas as a Gaussian distributed variable with a
given mean μ and variance σ2. Hence, we introduce the concept of uncertainty in our model.

Several modeling techniques exist that can handle uncertainty, one of them is extending
the system of ODEs with random variables, turning them in stochastic differential equations
(SDEs). However, a system of SDEs still does not solve the problem where the interactions
between variables are unknown altogether. In this research, we use the dynamic Bayesian
network (DBN) formalism, which is a relatively new and promising technique in the field of
artificial intelligence that naturally handles uncertainty well and is able to learn the interactions
between variables from data.

DBNs are the temporal extension of Bayesian networks (BNs), which are graphical models
for probabilistic relationships among sets of variables. A DBN can be used to describe causal
relations between variables in a probabilistic context. This means that a DBN can provide a
good insight in the modeled reality by giving the interaction between variables a meaning,
making it robust for erroneous results. The random variables in a DBN do not have to be real
numbers, they could just as easily be nominal values (e.g. male/female or true/false), ordinal
values (e.g. grade or rank), or intervals (e.g. temperature ≤ 50◦C, temperature > 50◦C).

A DBN model can be obtained by expert knowledge, from a database using a combination
of machine-learning techniques, or both. These properties make the DBN formalism very in-
teresting for the medical domain, as this domain has an abundance of both expert knowledge
and databases of patient records. Furthermore, many interactions between variables in physio-
logical processes are still unclear. More insight can be gained in these interactions by modeling
them with a DBN.

Creating models for temporal reasoning with DBNs sounds promising at first sight, but many
questions remain. For instance: How do we obtain the structure and parameters? What is the
performance of inference? How much patient data do we need for learning the parameters? If
possible, how much does a DBN outperform a BN when applied to the same problem? These
questions form the motivation for the research presented in this thesis.

2

1.2 Assignment Introduction

1.2 Assignment

This thesis is a result of research done at the Decision Systems Lab in collaboration with Philips
Research. The thesis is part of the requirements for my Master of Science degree at the Man-
Machine Interaction Group within the Faculty of EEMCS of Delft University of Technology.

The Decision Systems Lab (DSL) is a research group within the Department of Information
Science and Telecommunications and the Intelligent Systems Program at the University of Pitts-
burgh. Its mission is maintaining a research and teaching environment for faculty and students
interested in the development of techniques and systems that support decision making under
uncertainty. The methods include theoretical work, system building, and empirical studies.
The DSL utilizes probabilistic, decision-theoretic, and econometric techniques combined with
artificial intelligence approaches. The probabilistic reasoning software library SMILE and its
graphical user interface GeNIe are a result of DSL research.

Philips Research North America (PRNA) is the North American research laboratory of the
well-known multi-national of Dutch origin. This research was done in collaboration with the
BioMedical Informatics department of PRNA. The mission of this department is to research,
specify, design, and prototype healthcare systems with a focus on medical IT, in particular
clinical decision support systems.

The assignment consisted of three main parts:

1. A theoretical part that consisted of (1) investigating the existing DBN theory, (2) extending
the current DBN formalism, (3) adapting DBN parameter learning, and (4) validating the
extensions.

2. An implementation part that consisted of (5) investigating current DBN software, (6)
designing and implementing DBN functionality in SMILE, and (7) designing an intuitive
graphical user interface to DBNs in GeNIe.

3. An application part that consisted of (8) applying the extended DBN formalism to physio-
logical processes in the human body, and (9) performing empirical studies on the perfor-
mance.

An overview of the different smaller parts is given below. These smaller parts can be seen as
the objectives of this research.

1.2.1 Theoretical part

1. Investigating existing DBN theory A survey needed to be performed on current (D)BN
research and its (medical) applications to get a feeling of the field and its challenges. This part
of the research is based mainly on research papers published in the last decade [Hul05].

2. Extending DBN formalism Important work on DBNs has been done in [Mur02], making
this work currently the standard in DBN theory. However, [Mur02] gives a very conservative
definition of DBNs using the 2TBN approach. This approach has three main problems: First,
only first-order Markov processes can be modeled. Second, when unrolling the network, every
node is copied to every time-slice, even if the value of this node is the same for every time-
slice. Finally, although it is possible to define a different initial distribution, it is not possible to
define a different terminal distribution. This can be useful for inferring variables that are only
important at the end of a process, but are not of interest during the process. In the current
formalism, these variables need to be inferred every time-slice. We desired to extend the DBN
formalism to counter these problems.

3. Adapting DBN parameter learning In most existing literature it is stated that parameter
learning with DBNs is just a generalization of parameter learning with BNs. In general, this is
true. However, there are some problems that need to be addressed when learning parameters

3

Introduction 1.2 Assignment

of DBNs. First, there is the problem of the discretization of time-series data. Using continuous
variables in DBNs is problematic, so we need to discretize the incoming continuous signal first.
Furthermore, current learning algorithms do not take into account the extended DBN formalism
introduced in this thesis.

Another potential problem is learning the initial state distribution of the system. For the ini-
tial state distribution, there are two possibilities. In the first possibility, it is just the initial state
of the dynamic system. In this case learning is relatively easy, since the initial state distribution
can be learned separately from the transition distribution. However, when the initial state dis-
tribution represents the stationary distribution of the system, the initial state distribution and
the transition distribution become coupled.

We needed to devise a practical method for parameter learning with the extended DBN
formalism that accounts for these problems.

4. Validating the extended DBN formalism Extending the DBN formalism is nice, but mean-
ingless if the performance gain is not verified. Experiments needed to be performed to show
the performance gain in time and memory for dynamic systems modeled with the current DBN
formalism and the extended DBN formalism.

1.2.2 Implementation part

5. Investigating current DBN software Current DBN software needed to be investigated
to get an insight in what was possible and what was missing for existing implementations of
temporal reasoning. Insight that was gained from this investigation was used in the design and
implementation of temporal reasoning in the SMILE and GeNIe software.

6. Designing and implementing the DBN formalism in SMILE The environment that we
used for this research is the SMILE library that has been in development since 1997. The SMILE
library needed to be extended with temporal reasoning within certain constraints. A design
and implementation of temporal reasoning in SMILE that honors these constraints needed to
be made and tested.

7. Designing a GUI to DBNs in GeNIe GeNIe is the graphical user interface to SMILE. A GUI
for incorporation of the temporal extension in GeNIe needed to be designed, implemented and
tested.

1.2.3 Application part

8. Applying the extended DBN formalism to physiological processes in the human body
After extending the DBN formalism and implementing it in the DSL software, we wanted to
investigate the usability of the extended DBN formalism in the modeling of physiological pro-
cesses in the human body. In collaboration with Philips Research, the extended formalism was
applied to two physiological processes: the glucose-insulin regulation, and the cardiovascular
system. The challenge was to convert these dynamic systems to a DBN and learn the parameters
in such a way that the resulting DBN represented the dynamic system as close as possible.

9. Performing empirical studies Philips Research is very interested in the possibilities that
DBNs can provide in medical diagnosis, prognosis and treatment support systems. For this
research, we needed to investigate the following aspects of the usability of DBNs: The perfor-
mance of inference in general, and as a function of learned data size and missing measure-
ments. Empirical studies were needed to get insight in these aspects. Furthermore, different
discretization methods were tested and a comparative study with a BN of the same problem
was performed.

4

1.3 Thesis overview Introduction

1.3 Thesis overview

The thesis is globally separated in five parts:

• Part I contains the physiological processes that we model with DBNs in chapter 2; the
theoretical foundation of the DBN formalism in chapter 3; existing software packages for
temporal reasoning in chapter 4; and a short overview of related work in the medical field
in chapter 5. In this part we describe the preliminaries or framework that this research is
performed in.

• Part II contains our research architecture in chapter 6; our extensions of the DBN formal-
ism in chapter 7; our design and implementation of temporal reasoning in the GeNIe and
SMILE software in chapter 8; and our methodology of deriving the DBN structure, the
DBN parameters, and the discretization process in chapter 9. In this part we extend the
framework described in part I. It contains general work on DBN theory and application,
which we will apply to specific problems in part III.

• Part III contains our application of the DBN formalism to two physiological processes in
the human body: glucose-insulin regulation in chapter 10; and cardiogenic shock in the
cardiovascular system in chapter 11. Empirical studies are performed to provide insight
in our research questions formulated in section 1.1.

• Part IV contains the conclusions and the possibilities for future work following from this
research in chapter 12.

• Finally, part V contains the appendices. Appendix A contains the SMILE tutorial and API
that will be included in the SMILE documentation; appendix B contains the GeNIe tutorial
that will be included in the GeNIe documentation; and appendix C contains a practical
example of defining a DBN structure and learning its parameters from a dataset.

5

Part I

Preliminaries

“Everything should be made as simple as possible,
but not simpler.”
- Albert Einstein.

7

Modeling physiological
processes in the human
body 2

Chapter

Traditionally, medicine is a field in which much data is generated. Most of this data used to
disappear, but in recent years, rapid developments in the field of ICT gave the opportunity
to store data in a maintainable fashion. During the early days of the ICT revolution, most
physicians were averse to using ICT in the form of decision support systems or even plain
patient databases, and most physicians still are, being afraid that the craft of healing will be
mechanized. However, the tide is changing. More and more physicians see the benefits that
ICT can provide them, and understand that machines will never replace a human’s judgment.

In this chapter we give a high-level introduction to two dynamic systems of the physiolog-
ical processes in the human body: glucose-insulin regulation and the cardiovascular system,
mostly because this kind of medical knowledge does not belong to the skill set of the average
of computer scientist. Both dynamic systems are modeled using systems of ordinary differential
equations (ODEs). We are going to use the dynamic systems to simulate patients. Why simulate
patients when there exists so much patient data in medical center databases? The reason for
simulation is that medical centers are not eager to share their data, as they are aware that this
data can be of inestimable value. Next to that, generally much data processing is needed to ex-
tract useful information from raw patient data stored in databases. The research in this thesis
focuses on how patient data can be used for decision support systems, not on how to store and
retrieve this data.

2.1 Glucose-insulin regulation

Glucose is the vehicle by which energy gets from digested food to the cells of the human body.
Insulin is needed to get glucose out of the blood and into the cells of the human body. Blood
glucose and insulin form a negative feedback loop, a mechanism designed for maintaining

9

Modeling physiological processes in the human body 2.1 Glucose-insulin regulation

the human body’s dynamic equilibrium (homeostasis). Figure 2.1 shows how the glucose and
insulin levels evolve due to the negative feedback loop when insulin is injected in an average
patient.

0 1 2 3 4 5 6
20

40

60

80

100

G
lu

co
se

 [m
g/

d
l]

Glucose−insulin regulation

0 1 2 3 4 5 6
0

10

20

30

40

Time in hours

In
su

lin
 [m

U
/

d
l]

Figure 2.1: Glucose-insulin regulation of an average patient. After one hour, an insulin infusion of 10 [U] is
given and the negative glucose-insulin feedback loop gets the patient back to its equilibrium levels.

Glucose-insulin regulation in the human body is mainly administered by the pancreas, there-
fore a model of the pancreatic function is needed. One of the main functions of the pancreas
is to regulate glucose concentration in the blood through the release of the enzyme insulin.
The glucose-insulin regulation model presented here is based on Stolwijk and Hardy’s version,
the parameters are based on average values. The model was modified by adding a term for
exogenous insulin infusion [CR04]. The glucose dynamics are governed by

CG
dG
dt
= UG +QG − λG − νGI , G ≤ θ , (2.1)

CG
dG
dt
= UG +QG − λG − νGI − μ(G − θ) , G > θ , (2.2)

and the insulin dynamics are governed by

CI
dI
dt
= UI − αI , G ≤ ϕ , (2.3)

CI
dI
dt
= UI − αI + β(G − ϕ) , G > ϕ , (2.4)

where

G(t) instantaneous blood glucose level in [mg/dl] at time [t],
I(t) instantaneous blood insulin level in [mU/dl] at time [t],
UG(t) exogenous glucose infusion in [mg] at time [t],
UI(t) exogenous insulin infusion in [mU] at time [t],
CG glucose capacitance in the extracellular space,
CI insulin capacitance in the extracellular space,
QG(t) glucose inflow into blood in [mg/h],
α insulin destruction rate,
β insulin production rate by the pancreas,

10

2.2 Cardiovascular system Modeling physiological processes in the human body

θ threshold for renal discharge of glucose in [mg/ml],
λ tissue usage rate of glucose that is independent of I(t),
μ glucose rate excreted by the kidneys,
ν tissue usage rate of glucose that is dependent on I(t),
ϕ threshold for pancreatic production of insulin in [mg/ml].

The parameter coefficients have physiological significance, and differ depending on the condi-
tion of the patient. In chapter 10, we will see how this model can be used to simulate different
patients in an intensive care unit (ICU) situation, and how a dynamic Bayesian network can be
build based on patient data. Experiments are performed to investigate the predictive abilities
of the resulting dynamic Bayesian network.

2.2 Cardiovascular system

The cardiovascular system is one of the three principal coordinating and integrating systems of
the human body. It distributes essential substances and removes by-products of metabolism. It
also participates in mechanisms such as the regulation of body temperature. The cardiovascular
system consists of a pump, a series of distributing and collecting tubes, and an extensive system
of thin-walled vessels. The explanation given here is rather simplified and the interested reader
is directed to [BL00] for a detailed explanation.

2.2.1 Circulatory system

The heart consists of two pumps in series. First, there are the right ventricle and atrium which
pump blood through the lungs to exchange CO2 with O2. This is known as the small blood
circulation or pulmonary circulation. Second, there are the much stronger left ventricle and
atrium which pump blood to all other tissues of the body. This is known as the large blood
circulation or systemic circulation. The heart has two main phases, the ventricular contraction
(systole) where the blood is pumped out and the ventricular relaxation (diastole) where the
blood is pumped in the chambers.

In the large blood circulation, the blood is pumped from the left ventricle to the aorta and its
arterial branches. In these vessels, the blood contains much O2. The branches become narrower
and narrower, until they are so thin that the blood can exchange its diffusible substances (and
O2) with the tissue that needs it. These thin-walled vessels are called capillaries. After the
exchange, the branches get larger and larger again and keep decreasing in number until the
right atrium of the heart is entered via the vena cava. These vessels are called veins and
contain blood that is low on O2. In the small blood circulation, blood is pumped from the right
atrium to the lungs where CO2 is exchanged with O2. After that, the blood enters the left atrium
again and the process starts all over again. As a side node, the heart itself receives its O2 by the
coronary arteries, which branch from the aorta. See figure 2.2 for a simplified high-level view
of the circulatory system.

2.2.2 Regulation of the heart rate

The heart has a natural excitation, which means that it continues to beat for a while, even when
it is completely removed from the body. In the heart, the automatic cells that ordinarily fire at
the highest frequency are located in the sinoatrial node or SA node. This node is the natural
pacemaker of the heart and is located at the junction of the vena cava and right atrium.

The quantity of blood pumped by the heart each minute is called the cardiac output. The
cardiac output is equal to the volume of blood pumped each beat (stroke volume) multiplied
by the number of heartbeats per minute (heart rate). Thus the cardiac output can be varied by
changing either the heart rate or the stroke volume.

11

Modeling physiological processes in the human body 2.2 Cardiovascular system

Figure 2.2: Main vessels that make up the circulatory system. Based on similar drawing in [BL00].

Nervous control The heart rate is mainly regulated by the autonomic nervous system. The SA
node is usually influenced by both divisions of the autonomic nervous system: (1) Stimulation
of the sympathetic system increases the heart rate. The sympathetic system is stimulated by
the so-called three f’s: flight, fright and fight. Stimulation of the parasympathetic (or vagal)
system decreases the heart rate. (2) The parasympathetic system is stimulated during digestion
and sleep. Changes in heart rate usually involve a reciprocal action of the two divisions of the
autonomic nervous system. The sympathetic system influences the heart rate quickly whereas
the parasympathetic system influences the heart rate more gradually. The contractile strength
of the heart determines the stroke volume. This is partly regulated by the cardiac nerves, but
also by a number of mechanical and humoral factors.

Reflex control is achieved in four different ways: (1) Acute changes in blood pressure reflexly
alter the heart rate. Such changes are mediated mainly by the baroreceptors. The barorecep-
tors are located in the carotid sinuses and the aortic arch. The baroreceptors influence the
sympathetic and parasympathetic systems, who in their turn influence the heart rate. (2) The
sensory receptors located in the atria of the heart detect changes in blood volume. When blood
volume suddenly increases (by for instance an infusion), the heart rate decreases or increases
depending on the current heart rate. The sensory receptors send impulses to the certain nucleï
in the brain which in their turn send impulses to the SA node that are carried by sympathetic
and parasympathetic fibers. Also, stimulating the sensory receptors increase the urine flow.
(3) The frequency of respiration has an influence on the heart rate, because neural activity in-
creases in the sympathetic nerve fibers during inspiration and increases in the parasympathetic
fibers during expiration. (4) Arterial chemoreceptors influence the heart rate. The way these
receptors affect the heart rate is very complex and not interesting for this research, so we will
not get into details here.

2.2.3 Mathematical model

The explanation given in the previous section is rather simplified in contrast to the complex
system that is functioning in every living human being. However, it is detailed enough to
understand the assumptions on which the mathematical model given in [Urs98] is based on.

[Urs98] presents a mathematical model of the interaction between carotid baroregulation
and the pulsating heart. It consists of an elastance variable description of the left and right

12

2.2 Cardiovascular system Modeling physiological processes in the human body

parts of the heart, the systemic and pulmonary circulations, the afferent1 carotid baroreceptor
pathway, the sympathetic and parasympathetic efferent2 activities and the action of several ef-
fector mechanisms. The model is used to simulate the interaction among the carotid baroreflex,
the pulsating heart, and the effector responses.

Figure 2.3 shows the qualitative model. It consists of eight compartments. Each compart-
ment has a hydraulic resistance (Rj), a compliance (Cj), and an unstressed volume (Vu, j).
Furthermore, Lj denote intertances, Pj the intravascular pressure and Fj the blood flow. Five of
the compartments reproduce the systemic circulation: differentiating among the systemic arter-
ies (sa), the splanchnic3 peripheral (sp) and venous (sv) circulations, and the extrasplanchnic4

peripheral (ep) and venous (ev) circulations. The other three compartments reproduce the pul-
monary circulation: the arterial (pa), peripheral (pp) and venous (pv) circulations. Inertial
effects of blood are only taken into account for the larger compartments, since they are not
significant in the smaller ones. At the inertances (Lj) preservation of mass and equilibrium of
forces are enforced.

Figure 2.3: Qualitative hydraulic analog of cardiovascular system [Urs98].

The compartments of the heart (left atrium, left ventricle, right atrium, and right ventricle)
are denoted by respectively la, lv, ra, and rv. The left and right parts of the heart have a
similar model, but with different parameters. The heart period varies as a consequence of the
baroreflex control action.

In the operation of the carotid baroreflex, a distinction is made among the afferent pathway,
the efferent sympathetic and parasympathetic pathways, and the action of several distinct effec-
tors. The distinct effectors are: the response to sympathetic stimulation of peripheral systemic
resistances, of systemic venous unstressed volumes, and of heart contractility and the response
of heart period to both sympathetic and parasympathetic activities.

This qualitative description, along with the correct equations and their parameters is suf-
ficient to create a satisfactory model of an interesting part of the cardiovascular system. The
resulting dynamic system is much more complex than glucose-insulin regulation. In chapter 11,
we will show how an extension of this model can be used to simulate different patients in an

1Afferent is Latin for going to. In this context it represents the pulses going from the carotid sinuses to the nucleus
of the solitary tract and the nucleus ambiguus in the brain.

2Efferent is Latin for going from. In this context it represents the pulses going from the brain to the heart / SA node.
This signal is carried by the sympathetic and parasympathetic nervous systems.

3The splanchnic circulation consists of the blood supply to the gastrointestinal tract, liver, spleen, and pancreas.
4The extrasplanchnic circulation consists of the blood supply to the other parts of the human body, such as muscle

and skin.

13

Modeling physiological processes in the human body 2.3 Summary

intensive care unit (ICU) situation, and we will investigate if the dynamic Bayesian network
formalism can provide us with a useful tool to interpret the generated patient data.

2.3 Summary

In this chapter we briefly discussed two physiological processes in the human body. A general
understanding of these processes is needed, because they form the basis of the DBN structures
that we will derive in part III. Furthermore, the systems of ODEs are going to help us to simulate
different patients. This patient data is needed for learning the parameters of the derived DBNs.

14

Bayesian network
theory 3

Chapter

Before we dive into the (dynamic) Bayesian network theory, let us first present an example to
get some feeling with the subject. It is a relatively simple example that presents some of the
issues involved in modeling with (dynamic) Bayesian networks, without getting into the theory
too much. This example will return several times in this chapter for clarification of the theory.

Example (Officer on a navy vessel) Imagine an officer on the bridge of a navy vessel
who has the responsibility to watch the radar and alert his superiors in case an incoming
flying object, such as a missile, is hostile and poses a thread of impact. Ideally, he does
not want to give false alarm, because that causes an unnecessary burden on his superiors.
However, if the incoming flying object is hostile and poses an impact thread, he must not
hesitate to alarm his superiors, because else the consequences can be fatal. An incoming
flying object has a speed S, and a distance D from the navy vessel. The radar can measure
these variables within a certain error range, providing the officer with approximations of
the speed and distance: S̃ = s̃ and D̃ = d̃. It is up to the officer to decide on the two
measurable variables if the object is hostile H and if the object is heading for impact I.
Based on these variables, he can choose to inform his superiors to take evasive action A.

What can we tell about the above problem? First of all, the officer has to deal with seven vari-
ables: (1) speed S that represents the real speed of the object; (2) its derived S̃ that represents
the measured speed; (3) distance D that represents the real distance of the object from the navy
vessel; (4) its derived D̃ that represents the measured distance; (5) hostile H that represents
the probability that the object is hostile; (6) impact I that represents the probability that the
object is heading for impact; and (7) action A that represents the probability that evasive action
is needed.

These seven variables interact with each other: the variables S̃ and D̃ are a result of the
real values S and D (and of the error range of the radar, but we choose not to incorporate

15

Bayesian network theory

this explicitly); S and D on their turn are a result of whether the object is hostile: H can be
seen as the cause of a certain value for S and D; S and D influence the probability that the
object is heading for impact I; and finally, the combined probabilities of H and I influences the
probability of whether to take evasive action A. If these interactions are drawn schematically,
this results in the graph presented in figure 3.1.

A

H I

S D

s̃ d̃

Figure 3.1: The interaction between the variables speed, distance, hostile, impact, and action, including the
noisy measurements.

In this graph, the nodes that are gray can be observed or measured, which means that an
outcome can be assigned to the variable that the node represents. In the network shown in
figure 3.1, the outcomes are S̃ = s̃ and D̃ = d̃. If a node is white, its value cannot be observed
or measured directly, meaning that variable is hidden. In this case, the values of S, D, H, I, and
A have to be inferred based on the values that can be measured. In fact, the graph presented
in figure 3.1 is a Bayesian network structure of the officer’s decision problem! We will call this
network the Navy BN from now on.

When using the BN from figure 3.1, the officer soon finds out that the results are not satisfy-
ing. This is because the BN only takes into account the current measured speed and distance and
does not take into account previous measurements. However, a human would take into account
previous measurements as well, because they can be extrapolated to obtain better predictions.
Thus, S and D should not only rely on the measurements at time t (St and Dt), but also on
values of S and D at time t − 1 (St−1 and Dt−1). On their turn, St−1 and Dt−1 should partly rely
on St−2 and Dt−2, and so on and so forth. This process is shown in figure 3.2, where the length
of the sequence is denoted with t = T.

A1 A2 AT

I1 I2 IT

H1 H2 HT

D1 D2 · · · DT

S1 S2 · · · ST

d̃1 d̃2 d̃T

s̃1 s̃2 s̃T

Figure 3.2: Extending the BN with a temporal dimension.

A BN extended with a temporal dimension is called a DBN. In a DBN, every time t =
1, 2, . . . ,T represents one time-instant, or time-slice. Figure 3.2 presents a possible DBN struc-

16

3.1 Bayesian networks Bayesian network theory

ture of the officer’s decision problem for a sequence of length T, that we will call the Navy DBN
from now on. We say possible, because other structures might be better.

The enemy figured out that the navy is using a DBN to detect if an incoming object
is hostile and heading for impact. Even worse, the enemy figured out what the DBN
structure looks like and decides to anticipate on the fact that the values for St and Dt

partly rely on St−1 and Dt−1. The enemy decides to adapt its missiles in such a way that
at every given time t, the distance to the navy vessel and the missile’s speed are more or
less random. In this case, the arcs between St, St−1 and Dt, Dt−1 are not valid anymore,
making the DBN obsolete. After a while, the officer finds out how the enemy adapted its
missiles and he decides to remove the arcs between St, St−1 and Dt, Dt−1 and let Ht and It

partly depend on Ht−1 and It−1 instead.

Even then, the officer can not be sure that the adapted DBN structure is optimal. For instance,
one can argue that the probability of It also depends on Ht. If this is the case, why did the officer
not draw an arc between It and Ht? There can be several reasons for this, one of them is that It

and Ht still depend on each other because of a phenomenon called d-separation, meaning that
It and Ht depend on each other through the St and Dt variables. How this works exactly will be
explained further on in this chapter.

In the above example we tried to introduce some basic terminology from the Bayesian net-
work theory, such as network structure, inference, time-slice, and d-separation, without getting
too much into details. Furthermore, it presented some modeling questions that need to be an-
swered when applying the (D)BN formalism to a problem domain, such as: What is the network
structure? Do we need a DBN or is a BN sufficient? and What are the temporal relations? How-
ever, many questions remain. This chapter tries to answer these questions in two sections. In
section 3.1 we discuss Bayesian networks. However, Bayesian networks are only useful in static
domains, as we have seen in the example above. The temporal extension of a Bayesian net-
work, i.e. a dynamic Bayesian network, is discussed in section 3.2. In the third and final section
of this chapter, we discuss some other commonly used temporal probabilistic techniques.

3.1 Bayesian networks

A Bayesian network (BN), also known as a belief network or a Bayesian belief network, is a graph-
ical model for probabilistic relationships among a set of variables [Hec98]. For over a decade,
expert systems use BNs in domains where uncertainty plays an important role. Nowadays, BNs
appear in a wide range of diagnostic medical systems, fraud detection systems, missile detection
systems, etc.

Why are BNs so interesting? BNs have a couple of properties that make them so popular and
suitable to use. The five most important properties are, in no particular order, the following: (1)
BNs can handle incomplete data sets; (2) BNs allow one to learn about relationships between
variables; (3) it is possible to combine expert knowledge and data into a BN; (4) because of the
use of Bayesian methods, the overfitting of data during learning can be avoided relatively easy;
and (5) BNs are able to model causal relationships between variables.

BNs have a qualitative and a quantitative component. The qualitative component is repre-
sented by the network structure and the quantitative component is expressed by the assignment
of the conditional probability distributions to the nodes. Before we discuss the network struc-
ture and conditional probability distributions, first Bayes’ Theorem is presented.

3.1.1 Bayesian probability

The main building block of BN theory is Bayes’ Theorem. This theorem is stated as follows:

p(X|Y) =
p(Y|X) · p(X)

p(Y)
, (3.1)

17

Bayesian network theory 3.1 Bayesian networks

where:

• p(X|Y) is the posterior probability of the hypothesis X, given the data Y,
• p(Y|X) is the probability of the data Y, given the hypothesis X, or the likelihood of the

data,
• p(X) is the prior probability of the hypothesis X, and
• p(Y) is the prior probability of the data Y, or the evidence.

Equation 3.1 states that by observing evidence, the prior probability of the hypothesis changes
to a posterior probability.

Two other rules are important in BNs. The first one is the expansion rule. Consider the
situation where X and Y are random variables with k possible outcomes:

p(X) = p(X|yk=1) · p(yk=1) + p(X|yk=2) · p(yk=2) + · · · + p(X|yk=k) · p(yk=k)

=
∑

Y

p(X|Y) · p(Y) . (3.2)

Applying the expansion rule means that we can introduce variables on the right-hand side of
the equation, as long as we sum over all their possible values. This concept is also known as the
marginal probability of X, meaning that only the probability of one variable (X) is important
and all information about other variables (Y) is ignored.

The second rule is the chain rule. This rule is derived by writing Bayes’ Theorem in the
following form, which is called the product rule:

p(X,Y) = p(X|Y) · p(Y)
= p(Y|X) · p(X) . (3.3)

Successive application of the product rule yields the chain rule:

p(X1, . . . ,Xn) = p(X1, . . . ,Xn−1) · p(Xn|X1, . . . ,Xn−1)
= p(X1, . . . ,Xn−2) · p(Xn−1|X1, . . . ,Xn−2) · p(Xn|X1, . . . ,Xn−1)
= p(X1) · p(X2|X1) · · · p(Xn|X1, . . . ,Xn−1)

= p(X1)
n∏

i=2

p(Xi|X1, . . . ,Xi−1) . (3.4)

For every Xi, there may be a subset of (X1, . . . ,Xi−1) such that Xi and the subset are conditionally
independent. This means that this subset can be left out of the original set (X1, . . . ,Xi−1). When
the subset is empty, Xi is conditionally dependent on all variables in (X1, . . . ,Xi−1).

3.1.2 Network structure

The qualitative part of the BN is represented by its structure. A BN is a directed, acyclic graph
(DAG) where the nodes represent the set of random variables and the directed arcs connect
pairs of nodes. We have already seen two examples of BN structures in the figures 3.1 and 3.2.
The nodes in the BN represent discrete1 random variables. If an arc points from X1 to X2 then X1
is a parent of X2 and X2 is a child of X1. A parent directly influences its children. Furthermore,
every node has its own local probability distribution. All these components together form the
joint probability distribution (JPD) of the BN. The joint probability distribution of X follows
from applying equation 3.4 on the network structure. The parents of X are denoted by Pa(X):

p(X1, . . . ,Xn) =
n∏

i=1

p(Xi|Pa(Xi)) . (3.5)

1The theory can be easily extended to handle continuous random variables with arbitrary probability distributions.

18

3.1 Bayesian networks Bayesian network theory

p(Xi|Pa(Xi)) is called the local probability distribution (LPD). The process of breaking up the
joint probability distribution into local probability distributions is called factorization, which
results in an efficient representation that supports fast inference (subsection 3.1.4). This is a
property of BNs that forms a major contribution to its success. To come back to the restriction
for a BN to be a DAG, this follows from equation 3.5. To see this, imagine the network in
figure 3.3. For this network, the JPD can be calculated by:

p(X1,X2,X3) = p(X1|Pa(X1)) · p(X2|Pa(X2)) · p(X3|Pa(X3))
= p(X1|X3) · p(X2|X1) · p(X3|X2) . (3.6)

It is easy to see that the resulting calculation can never be written back to the original chain
rule (equation 3.4), which in its turn was a direct result of successive application of the product
rule form of Bayes’ Theorem. In short, allowing cycles in the network is not consistent with
Bayes’ theorem!

X1 X2

X3

Figure 3.3: A network with a cycle.

3.1.3 Conditional probability table

The quantitative part of the BN is represented by the assignment of the conditional probability
distributions to the nodes. Each node in a BN has a conditional probability table (CPT) that
defines the conditional probability distribution (CPD) of the represented discrete random vari-
able. To get insight in what a CPT looks like, we take a subset of the Navy BN from figure 3.2.
The subset, including its CPT parameters are shown in figure 3.4. Note that the CPT entries of
the parents of I and H are already marginalized out, according to equation 3.2. The entries in

A

H I

p(H)

true 0.4

false 0.6

p(I)

true 0.1

false 0.9

p(A)

h true false

i true false true false

true 0.95 0.7 0.4 0.01

false 0.05 0.3 0.6 0.99

Figure 3.4: A subset of the Navy BN with the hostile, impact, and action variables.

the CPTs tell us what the probabilities are of a hidden node given its parents. For instance, the
probability that I is true without inserting any evidence is equal to 0.1 (according to figure 3.4).

The officer knows for sure that an incoming object is hostile and heading for impact.
In this case, the probability of A can be read from the CPT by looking at the entry for
p(A|h = true, i = true) = 0.95.

One could ask why this probability is 0.95 and not just 1.0, because a hostile object (such as a
missile) is heading for impact and this can not be a good thing! The answer to this question is
that there could be other factors involved that the officer did not explicitly put in the model.
For instance, the navy vessel could be navigating within an enemy minefield. In this situation,
getting hit by a missile can be a better scenario than getting hit by a mine. The officer could
also choose to explicitly insert a variable minefield into the BN, but he choose to implicitly model

19

Bayesian network theory 3.1 Bayesian networks

such external factors through the probabilities. When modeling a problem, the modeler always
has to solve this kind of dilemma’s.

A potential problem of using CPTs for defining the conditional probability distributions is
their size. The size of the CPT of variable Xi ∈ X depends on the number of states ri of the
variable and the number of states rj of each parent Xj ∈ Pa(Xi) as follows:

size(CPT)i = ri ·
∏

rj=r(Xj∈Pa(Xi))

rj . (3.7)

If rj is equal for all parents of Xi (as is the case in figure 3.4), the equation simplifies to:

size(CPT)i = ri · (rj)n , (3.8)

where n is the number of parents. As can be seen from either equation 3.7 or equation 3.8, the
size of the CPTs grows exponentially with the number of parents. Knowing this, it is important
to keep the number of nodes that node Xi is dependent on as low as possible.

3.1.4 Inference

Inference is the process of calculating the probability of one or more variables X given some
evidence e. The evidence is expressed as an instantiation of some variables in the BN. In short:
p(X|e) needs to be calculated. The two rules that are needed for inference are Bayes’ theorem
(3.1) and the expansion rule (3.2). Inference can be best explained by an example.

An observer from the mainland sees the navy vessel making an evasive action, thus A is
equal to true. The observer now wonders what the probability of the object approaching
the vessel being hostile equals to. Thus, p(H = true) needs to be calculated.

H is called a query variable and A is called an evidence variable. The observer wants to know
what the probability is of H = true, given A = true. The calculation comes down to:

p(x|e) = p(h|a) =
p(a|h) · p(h)

p(a)
. (3.9)

This expression needs some rewriting using equations 3.1 and 3.2 to enable us to insert the
probabilities in the CPTs of figure 3.4 directly:

p(a|h) · p(h)
p(a)

=

∑
I(p(a|hi) · p(i)) · p(h)∑

H
∑

I p(a|hi) · p(h) · p(i)
, (3.10)

(0.95 · 0.1 + 0.7 · 0.9) · 0.4
0.95 · 0.4 · 0.1 + 0.4 · 0.6 · 0.1 + 0.7 · 0.4 · 0.9 + 0.01 · 0.6 · 0.9 =

0.29
0.3194

≈ 0.91 . (3.11)

The probability of H being true, knowing that A is true equals to approximately 0.91. The
probability that H is false given that A is true equals to 1 − p(h) ≈ 0.09. As can be seen in
equation 3.10, the denominator is complex, but constant no matter the value of the queried
variable H. Basically, the denominator is a normalization constant that is needed to make the
probabilities of the different values of H sum up to 1. That is why often the normalization
factor α is introduced:

α(p(a|h) · p(h)) = α(
∑

I

(p(a|hi) · p(i)) · p(h)) , (3.12)

changing the calculation into:

H = true: α((0.95 · 0.1 + 0.7 · 0.9) · 0.4) = 0.29 , (3.13)

H = false: α((0.4 · 0.1 + 0.01 · 0.9) · 0.6) = 0.0294 . (3.14)

20

3.1 Bayesian networks Bayesian network theory

α 〈0.29, 0.0294〉 results in the normalized probabilities 〈≈ 0.91,≈ 0.09〉! Despite this simplifica-
tion of the original calculation, exact inference of large, multiply connected BNs becomes very
complex. In fact, it is NP-hard [Coo90]. Because of this intractability, approximate inference
methods are essential. In general, randomized sampling algorithms, also called Monte Carlo
algorithms, are used.

For exact inference, variable elimination algorithms or junction tree algorithms can be used.
Variable elimination uses a smart way to rewrite the inference calculations by choosing a specific
elimination order of the variables, making computation more efficient. Junction tree algorithms
convert the multiply connected BNs to junction trees, after which inference can be performed
using variable elimination (Shafer-Shenoy algorithm) [SS88] or belief propagation (Lauritzen-
Spiegelhalter algorithm) [LS88]. Of course, this conversion can be very complex as well, so it
is not suitable for every BN.

A third technique that can be used to reduce complexity of the inference computations is
called relevance reasoning. This is a preprocessing step that explores structural and numerical
properties of the model to determine what parts of the BN are needed to perform the computa-
tion. Relevance reasoning reduces the size and the connectivity of a BN by pruning nodes that
are computationally irrelevant to the nodes of interest in the BN [DS94].

3.1.5 Conditional independence and d-separation

In the previous section we stated that exact inference is very complex. In fact, with n variables,
inference has a complexity of 2n. However, the conditional independence of variables is not
taken into account yet. Conditional independence can cut the cost of inference calculations
drastically, turning the complexity from 2n to n · 2k were n is the total number of variables and
k the maximum number of variables that a single variable can be dependent on.

Variables with no connection whatsoever are conditionally independent, but variables with
an indirect connection can still be conditionally dependent. Again, we look at a subset of the
Navy BN from figure 3.1, this time with the variables hostile, impact, distance, and speed. This
subset is shown in figure 3.5.

H I

S D

Figure 3.5: A subset of the Navy BN with the hostile, impact, distance and speed variables.

The officer on the navy vessel did not model an explicit relation between an object being
hostile and heading for impact. This is expressed by the absence of an arc between H
and I. However, he soon finds that if he observes H = true, the probability of I = true
increases. On the other hand, if he observes the exact values for D and S, observing H
does not influence I.

It seems that the variables H and I can be dependent after all! At least, for specific configu-
rations of the BN. To understand why and for what configurations, we take a closer look at
what happens when observing H = true: If H = true, more becomes known about the S and
D variables, because hostile objects have a different behavior than friendly objects. But, if
more becomes known about S and D, also more becomes known about I, because they have
an explicit connection in the form of an arc going from S and D to I. What happens is that
the evidence of H propagates through S and D to I. If S and D are observed, the connection
between H and I is blocked.

This example introduces the notion of d-separation [Pea88]. The four configurations in
figure 3.6 are used to describe the definition of d-separation. The variables in a BN are condi-
tionally independent if and only if they are d-separated.

21

Bayesian network theory 3.1 Bayesian networks

X1 X3

X2

X2

X1 X3

X1 X1

X2 X2

X2 X3

Figure 3.6: From left to right: A converging (or v-structure), a diverging and two serial BNs.

Definition (D-separation)
Two nodes X1 and X3 in a BN are d-separated if for all paths between X1 and X3, there is an
intermediate node X2 for which either:

• The connection is serial or diverging and the state of X2 is known for certain; or
• The connection is converging and neither X2 (nor any of its descendants) have received any

evidence at all.

For large BNs, d-separation of two variables can be solved using the Bayes ball algorithm,
a reachability algorithm that makes use of the notion of a ball and a set of bouncing rules to
determine whether a set of variables can be reached from another set of variables through a
third set of variables [Sha98].

3.1.6 Canonical models

Generally, it is necessary to assign each node a set of conditional probabilities that grows ex-
ponentially with the number of its parents. This makes inference, training and storage very
complex for nodes with many parents. To reduce complexity, causal interaction models, also
called canonical models, were introduced [Pea88]. In this section, the (leaky) Noisy-OR and
-MAX models are discussed. The main advantage of using these models is that the set of condi-
tional probabilities grows linearly (rather than exponentially) with the number of parents.

Noisy-OR The Noisy-OR model is based on the deterministic OR gate. Each binary variable Xi

produces the binary variable Y independently of the other variables with a certain probability
ci. This probability is modeled using an inhibitor node Zi. Absence of all X yields absence of Y.
For a certain configuration of x, the probability of Y is calculated as follows:

p(y|x) = 1 −
∏

i

(1 − ci · xi) . (3.15)

Leaky Noisy-OR This model is based on the assumption that next to the causes that are mod-
eled in the Noisy-OR gate, other causes can produce Y as well. In most real-world applications,
a common problem is that not all causes are known or can be modeled in the BN. In the leaky
Noisy-OR model, this problem is solved by introducing a probability cL that Y is present given
the absence of all X. This extra probability is introduced using an extra node ZL. Using the
leaky Noisy-OR, the probability of Y is calculated as follows:

p(y|x) = 1 − (1 − cL) ·
∏

i

(1 − ci · xi) . (3.16)

(Leaky) Noisy-MAX The Noisy-MAX and leaky Noisy-MAX models are generalizations of the
Noisy-OR variants for non-binary variables. The Noisy-MAX model is based on the deterministic
max function: y = max(x). The variables should be ordinal and have an equal number of states.
Again, a probability cL can be introduced to obtain the leaky variant.

22

3.1 Bayesian networks Bayesian network theory

X1 · · · Xn

Z1 · · · Zn

Y

(a)

X1 · · · Xn

Z1 · · · Zn ZL

Y

(b)

Figure 3.7: (a) A Noisy-OR/MAX model. (b) A leaky Noisy-OR/MAX model.

Other models Similar to Noisy-OR and Noisy-MAX models, also Noisy-AND and Noisy-MIN
models exist, which are based on respectively the deterministic AND and the min function.
Currently, a great deal of research effort goes into finding useful canonical models.

3.1.7 Learning

One very useful property of BNs is their ability to learn from observations. Learning of BNs can
be divided into two types: parameter learning and structure learning. With parameter learning,
the structure of the BN is given and only the CPT parameters are learned. With structure
learning, the BN structure itself is learned. Before parameter learning and structure learning
are discussed, a short introduction on the concept of Bayesian learning is given.

Bayesian learning forms the basis of learning in BNs and calculates the probability of each of
the hypotheses given the data. Predictions are made by averaging over all probabilities of the
hypotheses. The probability of each hypothesis hi given data d is given by:

p(hi|d) = α · p(d|hi) · p(hi) . (3.17)

If we want to make a prediction about an unknown quantity X with given data d, an average
over all possible hypotheses hi is calculated using the expansion rule:

p(X|d) =
∑

i

p(X|d, hi) · p(hi|d)

=
∑

i

p(X|hi) · p(hi|d)

=
∑

i

α · p(X|hi) · p(d|hi) · p(hi) . (3.18)

Note that the set of hypotheses forms an intermediate variable between the unknown quantity
and the data, the unknown quantity does not depend directly on the data.

Example (A biased coin) Imagine we are tossing a coin and predicting the outcome.
Since the coin can be unfair, the prediction whether it lands on heads or tails is based on
the hypotheses: h1 that the coin is fair, h2 that the coin is biased with a probability of 3

4
toward heads and h3 that the coin is biased with a probability of 3

4 toward tails. It is in-
teresting to know which hypothesis hi is true given the previous outcomes d, because that
defines the probability of the next outcome Toss. To get more insight, a prior probability
is assigned to the hypotheses, for example < 1

3 ,
1
3 ,

1
3 >, which means that in this case, all

hypotheses can occur with the same probability. The posterior probability is updated after
each observation in d using the likelihood p(d|hi) of each hi, because with each observa-
tion, more about the unknown hypothesis becomes known. If for instance after the first 5
tosses, the outcomes are all heads, then the posterior probabilities of hi become:

23

Bayesian network theory 3.1 Bayesian networks

p(h1|d) = α · p(d|h1) · p(h1) = α · (1
2)5 · (1

2)0 · (1
3) = α · 32

3072 =
32

276 , (3.19)

p(h2|d) = α · p(d|h2) · p(h2) = α · (3
4)5 · (1

4)0 · (1
3) = α · 243

3072 =
243
276 , (3.20)

p(h3|d) = α · p(d|h3) · p(h3) = α · (1
4)5 · (3

4)0 · (1
3) = α · 1

3072 =
1

276 . (3.21)

Clearly, h2 is the most probable hypothesis after these five observations. In fact, no matter
what the prior assignment may be, as long as the true hypothesis is not ruled out, it will
eventually dominate the Bayesian prediction, since any false hypothesis will disappear as
more observation data is collected. To calculate which side of the coin to bet on, we use
equation 3.18. The calculation below clearly shows that heads is the outcome to bet on.

p(Toss = heads|d) =
∑

i

p(X|hi) · p(hi|d)

= 1
2 · 32

276 +
3
4 · 243

276 +
1
4 · 1

276 =
794

1104 , (3.22)

p(Toss = tails|d) = 1 − 794
1104 =

310
1104 . (3.23)

This example has only a few hypotheses, but many real-life problems have an enormous hy-
pothesis space. In equation 3.18, all hypotheses are used to calculate the probability density
of X, even the hypotheses with a very small probability. In real-life problems, the calculation
of equation 3.18 becomes very complex. A common approximation is Maximum A Posteriori
(MAP) estimation. Instead of all hypotheses, only the best hypothesis, which is the hi that
maximizes p(hi|d), is taken: p(X|d) ≈ p(X|hMAP). Another simplification is assuming an equal
prior for all hypotheses, as is the case in the biased coin example. In this case, MAP estima-
tion reduces to choosing the hi that maximizes p(d|hi). This is called maximum-likelihood (ML)
estimation and provides a good approximation as long as the data set is large enough.

Parameter learning A BN consisting of discrete random variables has a CPT for every vari-
able. Every entry θ in a CPT is unknown at first and must be learned. To get back to the
coin example: Suppose nothing is known about how the coin is biased. This means that it
can be biased toward heads with a probability 0 < θ < 1 and toward tails with a probability
0 < (1 − θ) < 1, as can be seen in figure 3.8. Using ML estimation, only an expression for p(d|θ)

p(Toss)

heads θ

tails 1 − θ
Toss

Figure 3.8: A BN of the biased coin example and its CPT.

and its maximum needs to be found to obtain the optimal value for the parameter θ. In the
coin example, this will result in a hypothesis equal to the proportion of tosses that gave heads
divided by the total number of tosses. The obvious problem with this approach is the large data
set needed to get a satisfactory result. Such a large data set is not available most of the time.

The solution to this problem is introducing a hypothesis prior over the possible values of the
needed parameter. This prior is updated after each new observation. In the coin example, the
parameter θ is unknown. Instead of giving it one prior value, a continuous prior distribution
p(Θ) is assigned to it. A beta distribution is used to achieve this. The beta distribution is defined
as:

p(θ) = Beta(θ|α, β) = Γ(α + β)
Γ(α) · Γ(β) · θ

(α−1) · (1 − θ)(β−1) , (3.24)

where Γ is the Γ function, defined as:{
Γ(x + 1) = x · Γ(x) ,
Γ(1) = 1 . (3.25)

24

3.1 Bayesian networks Bayesian network theory

Beta distributions have the convenient properties that they are only non-zero over the interval
[0, 1] and integrate to one. Furthermore, their hyperparameters α and β are the number of
(events + 1) and (events + 1). These are called hyperparameters to distinguish them from the
parameter θ that is being learned and they must be greater than zero to be able to normalize
the distribution. A different prior can be introduced by setting the hyperparameters before the
learning process starts.

The mean value of the beta distribution is α
α+β , so a proportionally larger number of αmeans

that Θ gets closer to one. Larger values of α + β result in a peaked distribution, which means a
larger data set gives more certainty about Θ. Some examples of the beta distribution are shown
in figure 3.9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
Beta(1,1)
Beta(2,2)
Beta(5,2)
Beta(40,10)

Figure 3.9: Four example beta distributions, as α becomes proportionally larger than β, Θ gets closer to one
and as more data is gathered, the distribution becomes more peaked.

The Dirichlet distribution is a generalization of the beta distribution for multinomial distri-
butions. In the multinomial case, the observed variable X is discrete and has r > 2 possible
states. Its parameters are θ = {θ2, . . . , θr} (and θ1 = 1 − ∑r

k=2 θk). The hyperparameters are
defined as α = {α1, . . . , αr}:

p(θ|α) = Dir(θ|α) =
Γ(
∑r

k=1 αk)∏r
k=1 Γ(αk)

r∏
k=1

θαk−1
k . (3.26)

In parameter learning, usually parameter independence is assumed, meaning that every pa-
rameter can have its own beta or Dirichlet distribution that is updated separately as data are
observed:

p(Θ) =
∏

i

p(Θi) , (3.27)

where each Θi denotes a specific combination of the state of the node’s parents.
The assumption of parameter independence results in the possibility to incorporate the pa-

rameters into a larger BN structure. Figure 3.10 illustrates the Navy BN with the incorporation
of the learning parameters Θ. The process of learning BN parameters can be formulated as
an inference problem of an extended BN, making it possible to use the same techniques as
discussed in section 3.1.4 to solve the learning problem p(θ|d).

In the case that the data is incomplete or partially observed (i.e. some variables in some
cases are not observed), approximation algorithms need to be used. One of the most commonly
used algorithms, the EM algorithm, will be discussed next.

25

Bayesian network theory 3.1 Bayesian networks

Θ1 Θ2 Θ3 Θ4

A1 A2 AN

H1 I1 H2 I2 HN IN

S1 D1 S2 D2 · · · SN DN

S̃1 D̃1 S̃2 D̃2 S̃N D̃N

Θ5 Θ6 Θ7

Figure 3.10: The Navy BN with incorporation of the learning parameters Θ and N data samples.

The EM algorithm If the data is only partially observed because of missing data or hidden
variables, learning becomes much harder. In this case, one usually has to settle for a locally op-
timal solution, obtained using an approximation method such as the expectation-maximization
algorithm or EM algorithm. Much has been written about the EM algorithm. Papers that specifi-
cally apply the EM algorithm on BNs include [Lau95, Zha96, BKS97]. This paragraph presents
a brief summary of the algorithm.

The EM algorithm is an iterative hill-climbing algorithm that consists of an expectation step
(E step) and a maximization step (M step). In the E step, the unobserved values are basically
filled-in. This means that the probabilities of the unobserved variables are calculated given the
observed variables and the current values of the parameters. In short, the expected sufficient
statistics are computed. In the M step, the parameters are recomputed using the filled-in values
as if they were observed values. This step is no more complex than it would be if the missing
values were observed in the first place. The alternating process of filling-in the missing values
and updating the parameters is iterated until convergence.

To get a general understanding of the algorithm, let X denote the observable variables and
Z the variables that are hidden. The resulting probability model is p(x, z|θ). If Z could be
observed, than the problem reduces to ML estimation maximizing the quantity2:

lc(θ; x, z) � p(x, z|θ) . (3.28)

In the context of the EM algorithm, this is referred to as the complete log likelihood. However,
Z is not observed and one has to deal with the incomplete log likelihood:

l(θ; x) = log p(x|θ) = log
∑

z

p(x, z|θ) . (3.29)

2Previously, the likelihood instead of the log-likelihood was maximized. The log-likelihood is monotonically related
to the likelihood and therefore, maximizing the one is equivalent to maximizing the other. However, since in the
log-likelihood products are converted to summations, this form is preferable.

26

3.1 Bayesian networks Bayesian network theory

Equation 3.29 shows that because of the summation sign, the separate components of θ can not
be written in separate terms outside the logarithm, which means that they cannot be maximized
independently. That is why the EM algorithm is needed, to estimate the values z first and the
parameters θ second in an iterative way. The notion that forms the basis of the EM algorithm
is the expected complete log likelihood, which is defined using the averaging distribution q(z|x):

〈lc(θ; x, z)〉q �
∑

z

q(z|x,θ) · log p(x, z|θ) . (3.30)

The expected complete log likelihood acts as a surrogate to the complete log likelihood, because
the complete log likelihood can not be maximized directly. The averaging distribution q(z|x)
needs to be chosen, after which the surrogate is maximized to obtain new values of θ, which
can represent an improvement from the initial values of θ. If so, one can iterate this process
and hill-climb. To obtain the final form of the EM algorithm, the averaging distribution q(z|x) is
used to provide a lower bound on the incomplete log likelihood:

l(θ; x) = log p(x|θ) = log
∑

z

p(x, z|θ) = log
∑

z

q(z|x) · p(x, z|θ)
q(z|x)

(3.31)

≥
∑

z

q(z|x) · log
p(x, z|θ)
q(z|x)

� L(q,θ, x) . (3.32)

In equation 3.32, a concept called Jensen’s inequality is used to show that the function L(q,θ, x)
is a lower bound for the incomplete log likelihood.

These are all the ingredients required for the EM algorithm. To summarize, the EM algo-
rithm is a coordinate ascent algorithm on the function L(q,θ, x). This means that hill-climbing
is achieved indirectly, with the advantage that the expected log likelihood is maximized instead
of the incomplete log likelihood, which is a substantial simplification. At every iteration, first
L(q,θ, x) is maximized using the θ obtained from the previous step with respect to q(z|x). After
that, L(q,θ, x) is maximized with respect to θ to obtain the updated θ:

(E step) qt+1 = arg max
q
L(q,θt, x) , (3.33)

(M step) θt+1 = arg max
θ
L(qt+1,θ, x) . (3.34)

There are two final important points to mention. The first point is that the M step using
L(q,θ, x) is indeed equivalent to maximizing 〈lc(θ; x, z)〉q. The second point is that L(q,θt, x)
needs to be maximized with respect to the averaging distribution q(z|x). The choice qt+1(z|x) =
p(z|x,θt) yields that maximum.

Structure learning Next to the parameters of the BN, also its structure can be learned from a
data set. This is called structure learning. There are two types of structure learning: constraint-
based learning and score-based learning. Constraint-based learning tries to find the optimal
network structure based on a set of independence constraints. These independence constraints
can be learned from data, but that is a statistically difficult task. In score-based learning, a
scoring function is defined that consists of one or more search criteria that assign a value to
each network structure. A searching algorithm, such as hill-climbing or simulated annealing, is
used to find the maximum value of this scoring function.

A network structure does not have to be learned from ground up, but can be derived from
expert knowledge. After that, a structure learning technique can be used to optimize the derived
network structure. Structure learning is not in the scope of this thesis and interested readers
are directed to [Hec98, KF05].

27

Bayesian network theory 3.2 Dynamic Bayesian networks

3.2 Dynamic Bayesian networks

A BN is useful for problem domains where the state of the world is static. In such a world,
every variable has a single and fixed value. Unfortunately, this assumption of a static world is
not always sufficient, as we have seen with the Navy BN in the introduction of this chapter. A
dynamic Bayesian network (DBN), which is a BN extended with a time dimension, can be used
to model dynamic systems [DK88]. In this section we only describe the DBN formalism that is
in common use today. Our extension of the formalism and its application is described in parts II
and III of this thesis. A more extensive introduction on DBNs can be found in: [Jor03, Mur02].

3.2.1 Network structure

First of all, the dynamic extension does not mean that the network structure or parameters
changes dynamically, but that a dynamic system is modeled. A DBN is a directed, a-cyclic
graphical model of a stochastic process. It consists of time-slices (or time-steps), with each
time-slice containing its own variables. A DBN is defined as the pair (B1,B→) where B1 is a BN

A1

I1

H1

D1

S1

D̃1

S̃1

At−1 At

It−1 It

Ht−1 Ht

Dt−1 Dt

St−1 St

˜Dt−1 D̃t

˜St−1 S̃t

(a) (b)

Figure 3.11: (a) The initial network for the Navy DBN, (B1). (b) The 2TBN for the Navy DBN, (B→).

that defines the prior or initial state distribution of the state variables p(Z1) [Mur02]. Typically,
Zt = (Ut,Xt,Yt) represents the input, hidden and output variables of the model. B→ is a two-
slice temporal Bayesian network (2TBN) that defines the transition model p(Zt|Zt−1) as follows:

p(Zt|Zt−1) =
N∏

i=1

p(Zi
t|Pa(Zi

t)) , (3.35)

where Zi
t is the i-th node at time t and could be a component of Xt, Yt or Ut. Pa(Zi

t) are the
parents of Zi

t, which can be in the same or the previous time-slice (in this case, the model
is restricted to first-order Markov models). The nodes in the first slice of the 2TBN network
do not have parameters associated with them. The nodes in the second slice do have a CPT.
The structure repeats and the process is stationary, so the parameters for the slices t = 2, 3, . . .
remain the same. This means that the model can be fully described by only giving the first two
slices. In this way, an unbounded sequence length can be modeled using a finite number of
parameters. The joint probability distribution for a sequence of length T can be obtained by
unrolling the 2TBN network:

p(Z1:T) =
T∏

t=1

N∏
i=1

p(Zi
t|Pa(Zi

t)) . (3.36)

28

3.2 Dynamic Bayesian networks Bayesian network theory

We have already seen the Navy DBN in the introduction of this chapter in figure 3.2. The
(B1,B→) definition for this DBN is shown in figure 3.11.

3.2.2 Inference

There exist several ways of performing inference on DBNs. The most common types of inference
are given in figure 3.12 and discussed next.

filtering
t

prediction
t

h

fixed-lag
smoothing

t

l

fixed interval
smoothing
(offline)

t T

Viterbi
t

Figure 3.12: The main types of inference. The shaded region is the interval that contains evidence. The arrow
represents the time of inference. t is the current time, and T is the sequence length.

• With filtering (or monitoring), the current belief state is computed given all evidence from
the past. To achieve this, p(Xt|y1:t) needs to be calculated. Filtering is used to keep track
of the current state for making rational decisions. It is called filtering, because noise is
filtered out from the observations.

• With prediction, a future belief state is computed given all evidence from the past. This
means p(Xt+h|y1:t) needs to be calculated for some h > 0. Prediction can be used to
evaluate the effect of possible actions on the future state.

• With smoothing (or hindsight), a belief state in the past is calculated given all evidence
up to the present. So, p(Xt−l|y1:t) is calculated for some fixed time-lag l > 0. Smoothing is
useful to get a better estimate of the past state, because more evidence is available at time
t than at time t − l. In figure 3.12, two types of smoothing are given: fixed-lag smoothing,
which is the type of smoothing given above, and fixed-interval smoothing, which is the
offline case in which p(Xt|y1:T) is calculated for all 1 < t < T.

• The final inference method to be described here is Viterbi decoding (or most likely expla-
nation). This is a different kind of inference, but it is used very often nonetheless. With
Viterbi decoding, one wants to compute the most likely sequence of hidden states given a
sequence of observations. That is: arg maxx1:t p(x1:t|y1:t) needs to be calculated.

Summarized, the goal of inference in a DBN is to calculate p(Xt|y1:τ), where with filtering τ = t,
with smoothing τ > t and with prediction τ < t. Several exact and approximate inference
algorithms exist that will be shortly discussed next.

Exact inference The first approach for exact inference in DBNs is based on the notion that an
unrolled DBN is in fact the same as a static BN. Variable elimination can be used with filtering.
This algorithm results in having only two slices of the unrolled DBN in memory at a time. For
smoothing, using the junction tree algorithm is more efficient.

A second approach is to convert the DBN to a HMM and then apply the forward-backward
algorithm. Converting a DBN to a HMM is only possible with discrete state DBNs. With Nh
hidden variables per slice, each variable having up to M values, the resulting HMM will have
maximally S = MNh values. As long as S is not to large, this is a nice method, because it is

29

Bayesian network theory 3.2 Dynamic Bayesian networks

very easy to implement. Unfortunately, most of the times S will be too large and more efficient
methods need to be used.

The frontier algorithm [Zwe96] is based on the notion that in the forward-backward algo-
rithm, Xt of the HMM d-separates the past from the future. This can be generalized to a DBN
by noticing that the hidden nodes in a slice d-separate past from future. This set of nodes is
called the frontier. This algorithm also uses a forward and a backward pass.

The interface algorithm [Mur02] is an optimization of the frontier algorithm because it does
not use all hidden nodes in a slice, but only the subset of nodes with outgoing arcs to d-separate
the past from the future. This subset is called the forward interface. The modified 2TBN is called
a 1.5DBN Ht in this algorithm, because it contains all the nodes from slice 2, but only the nodes
with an outgoing arc from slice 1. After this modification, a junction tree is created of each Ht

and they are glued together. Finally, inference is performed on each separate tree and messages
are passed between them via the interface nodes, first forward and then backward.

Finally, analogous to the conversion from discrete state-space DBN to HMMs, a linear-
Gaussian state-space DBN can be converted to a Kalman filter model (KFM). Kalman filtering or
Kalman smoothing can be used for exact inference after this conversion.

Approximate inference Exact inference in discrete-state models is often unacceptably slow.
When faster results are needed, approximate inference can be used. Furthermore, it turns
out that for most DBNs with continuous or mixed discrete-continuous hidden nodes, exact
representations of the belief state do not exist. Generally, two types of approximations are
distinguished: deterministic and stochastic algorithms.

Deterministic algorithms for the discrete-state DBNs include: the Boyen-Koller algorithm
(BK) [BK98], where the interface distribution is approximated as a product of marginals and the
marginals are exactly updated using the junction tree algorithm; the factored frontier algorithm
(FF) [MW01], where the frontier distribution is approximated as a product of marginals and
the marginals are computed directly; and loopy belief propagation, which is a generalization of
BK and FF.

Deterministic algorithms for linear-Gaussian DBNs include: the Generalized Pseudo Bayesian
approximation (GPB(n)), where the belief state is always represented using Kn−1 Gaussians;
and the interacting multiple models (IMM) approximation, which also collapses the priors.

Deterministic algorithms for mixed discrete-continuous DBNs include: Viterbi approxima-
tion, in which the discrete values are enumerated in a priori order of probability; expectation
propagation, which is the generalization of BK for discrete-state DBNs and GPB for linear Gaus-
sian DBNs; and variational methods, that decompose the problem into separate discrete and
continuous chains which are treated differently.

Deterministic algorithms for non-linear/non-Gaussian models include: the extended Kalman
filter (EKF) or the unscented Kalman filter (UKF) for non-linear models, which calculate a local
linearization and then apply a Kalman filter (KF).

Stochastic algorithms can be divided in offline and online methods. Offline methods are
often based on importance sampling or Monte Carlo Markov Chain. Online methods often rely on
methods such as particle filtering, sequential Monte Carlo, the bootstrap filter, the condensation
algorithm, survival of the fittest, and others.

Stochastic algorithms have the advantage over deterministic algorithms that they are easier
to implement and that they are able to handle arbitrary models. Unfortunately, this comes with
a price, because stochastic algorithms are generally slower than the deterministic methods.
Both methods can be combined to get the best of two worlds. [Mur02] presents the Rao-
Blackwellised Particle Filtering algorithm, in which some of the variables are integrated out
using exact inference and sampling is applied to the other variables.

30

3.3 Other temporal reasoning techniques Bayesian network theory

3.2.3 Learning

The techniques for learning DBNs are generally the same as the techniques for learning static
BNs. The specific methodology used in this research for learning the parameters of a DBN with
complete data is presented in chapter 9. The main differences between learning of static and
DBNs are discussed below.

Parameter learning can be done both online and offline. For online learning, the parameters
are added to the state space after which online inference is applied. For offline learning, the
same techniques as for learning BNs can be used. Some points that are specifically applicable
to DBNs:

• Parameters must be tied across time-slices, so models of unbounded length can be mod-
eled.

• In the case that the initial parameters π represent the stationary distribution of the sys-
tem, they become coupled with the transition model. As such, they cannot be estimated
independently of the transition matrix [Nik98].

• Linear-Gaussian DBNs sometimes have closed-form solutions to the maximum likelihood
estimates.

Structural learning of DBNs consists of learning both inter-slice and intra-slice connections.
If only the inter-slice connections are learned, the problem reduces to feature selection (what
variables are important for temporal reasoning and what variables are not). Again, learning for
static BNs can be adapted.

3.3 Other temporal reasoning techniques

The DBN formalism is not the first development in temporal reasoning under uncertainty. The
two most popular techniques still in use nowadays are the hidden Markov model (HMM) and
the Kalman filter model (KFM). Their popularity is mostly due to their compact representation,
fast learning and fast inference techniques. However, a DBN can have some significant advan-
tages over these two formalisms. For one, HMMs and KFMs are really limited in their expressive
power. In fact, it is not even correct to call HMMs and KFMs other techniques, because the DBN
formalism can be seen as a generalization of both HMMs and KFMs. The DBN formalism brings
out connections between these models that had previously been considered quite different,
because they were developed in very different research areas.

DBNs generalize HMMs by allowing the state space to be represented in factored form,
instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary
probability distributions, not just conditional linear Gaussian distributions. The basic versions
HMMs and KFMs are briefly discussed here because of historical relevance. Extensions exist for
both HMMs and KFMs to counter some of their issues, but an extensive description of those is
beyond the scope of this thesis.

3.3.1 Hidden Markov models

A HMM models a first-order Markov process where the observation state is a probabilistic func-
tion of an underlying stochastic process that produces the sequence of observations. The un-
derlying stochastic process cannot be observed directly, it is hidden. Both the hidden and obser-
vation states are modeled by discrete random variables [Rab89].

The HMM formalism first appeared in several statistical papers in the mid 1960s, but it took
more than 10 years before its usefulness was recognized. Initially, the use of HMMs was a
great success, especially in the fields of automatic speech recognition (ASR) and bio-sequence

31

Bayesian network theory 3.3 Other temporal reasoning techniques

analysis. Because of its success, the use of HMMs in ASR is still dominant nowadays, despite its
undeniable issues [RB03].

A HMM definition consists of three parts: an initial state distribution π0, an observation
model p(Yt|Xt) and a transition model p(Xt|Xt−1). HMMs are generally used to solve one of the
following problems: (1) state estimation p(Xt = x|y1:t) using the forward-backward algorithm,
(2) most likely explanation arg maxx1:t p(x1:t|y1:t) using the Viterbi algorithm, and/or (3) maxi-
mum likelihood HMM arg maxλ p(y1:t|λ) (for learning the HMM) using the EM algorithm, called
the Baum-Welch algorithm in this context.

Figure 3.13 shows a HMM modeled as a DBN. In this figure, the HMM is not shown as the
usual state transition diagram, but every outcome of xt indicates the occupied state at time t and
yt represents the observation vector. In this representation, time is made explicit, which means
that the arcs pointing from Xt−1 to Xt represent causal influences instead of state transitions.

X1

Y1

Xt−1 Xt

Yt−1 Yt

X1 X2 X3 X4

Y1 Y2 Y3 Y4

(a) (b) (c)

Figure 3.13: (a) The initial network for a HMM, (B1). (b) The 2TBN for a HMM, (B→). (c) The model unrolled
for T = 4 slices.

Being a HMM, the sequence of observations (Yt) depend on discrete hidden states (Xt).
The sequence of this hidden state is defined by a Markov process. This results in the following
assignment of Zt:

• Z1
t = Xt ,

• Z2
t = Yt ,

• Pa(Z1
t) = Pa(Xt) = Xt−1 , and

• Pa(Z2
t) = Pa(Yt) = Xt .

Using this assignment in equation 3.36, it becomes:

p(X1:T,Y1:T) = p(X1) · p(Y1|X1)
T∏

t=2

p(Xt|Xt−1) · p(Yt|Xt) , (3.37)

where you can clearly see the that the equation consists of three parts: the initial state distribu-
tion π0: p(X1) · p(Y1|X1), the transition model: p(Xt|Xt−1), and the observation model: p(Yt|Xt).

One of the main problems of HMMs is the fact that the hidden state is represented by only
a single discrete random variable. DBNs are able to decompose the state of a complex system
into its constituent variables, taking advantage of the sparseness in the temporal probability
model. This can result in exponentially fewer parameters. The effect is that using a DBN can
lead to fewer space requirements for the model, less expensive inference and easier learning.

3.3.2 Kalman filter models

Basically, a KFM is a HMM with conditional linear Gaussian distributions [WB04]. It is generally
used to solve uncertainty in linear dynamic systems. The KFM formalism first appeared in
papers in the 1960s [Kal60], and was successfully used for the first time in NASA’s Apollo
program. Nowadays, it is still used in a wide range of applications. The KFM formalism assumes
the dynamic system is jointly Gaussian. This means the belief state must be unimodal, which
is inappropriate for many problems. The main advantage of using a DBN over a KFM is that
the DBN can use arbitrary probability distributions instead of a single multivariate Gaussian
distribution.

32

3.4 Summary Bayesian network theory

3.4 Summary

This chapter presented the theoretical foundation of temporal reasoning on which the remain-
der of this thesis relies. It presented a global overview of (D)BN theory and techniques that is
vital for a general understanding of the rest of this thesis, such as d-separation, inference, and
learning. Furthermore, a short comparison of DBNs to other temporal reasoning techniques
was given, and in-depth reference material on different aspects of temporal reasoning was pre-
sented. As such, this chapter can serve as a good starting point for readers that are trying to get
familiar with (D)BN theory and techniques.

In part II of this thesis, the DBN formalism as presented in this chapter will be extended,
implemented and tested, because the existing formalism proved too restrictive for our modeling
needs. Furthermore, a practical methodology for parameter learning of the extended DBN for-
malism will be presented. In part III of this thesis, the extended DBN formalism will be applied
to two physiological processes: glucose-insulin regulation and the cardiovascular system.

33

Current software 4
Chapter

In this chapter we present a general overview of the software developed at the Decision Sys-
tems Laboratory (DSL), which did not have support for temporal reasoning before. After that,
libraries and modeling tools that did have support for temporal reasoning are discussed.

The software with DBN functionality that is currently on the market can be divided into two
classes: software that does have a GUI and software that does not have a GUI. The software
that does have a GUI is mostly commercial and is relatively easy to use for a user with only
an average knowledge of BNs. The software without a GUI is mostly academic-oriented, which
means that it is a result of research in the area of (D)BNs. Academic-oriented software is very
flexible, but this can also make its application to specific problems very time-consuming.

In this chapter only the software that could be investigated directly is covered1. Investigat-
ing this software gives insight on which features are useful, which are currently offered and
which are currently missing.

4.1 Decision Systems Laboratory software

SMILE and GeNIe are members of the family of software solutions developed at the DSL of the
University of Pittsburgh. This software is a direct result of the research interests of the DSL
and is developed for the purpose of probabilistic modeling, including special extensions for
diagnostic inference. The software, the documentation, and many example applications can be
freely downloaded from http://genie.sis.pitt.edu.

1This means that software such as dHugin [Kjæ95] is not covered, since it is not possible to obtain a free, down-
loadable (test)version.

35

Current software 4.2 DBN libraries

4.1.1 SMILE

The Structural Modeling, Inference, and Learning Engine is a fully platform independent library
of c++ classes that implements graphical probabilistic and decision-theoretic models and is
suitable for direct inclusion in intelligent systems [Dru99]. The individual classes defined in
the Application Program Interface (API) of SMILE enable the user to create, edit, save and
load graphical models, and use them for probabilistic reasoning and decision making under
uncertainty. To be able to access the SMILE library from a number of other programming
languages, wrappers exist for ActiveX, Java, and .NET. SMILE was first released in 1997 and
has been thoroughly used in the field since. Its main features are:

• Platform independent; versions available for Windows, Unix (Solaris), Linux, Mac, Pock-
etPC, etc.

• Wrapper available for use with .NET framework. Compatible with all .NET languages.
May be used to create web-based applications of BNs.

• Thorough and complete documentation.
• Robust and running successfully in the field since 1997.
• Responsive development team support.

4.1.2 GeNIe

The Graphical Network Interface is the graphical user interface to the SMILE library. It is
implemented in c++ and makes heavy use of the Microsoft Foundation Classes. Its emphasis
is on accessibility and friendliness of the user interface, making creation of decision theoretic
models intuitive using a graphical click-and-drop interface approach. It is a versatile and user-
friendly environment for building graphical decision models and performing diagnosis. Its
primary features are:

• Graphical editor to create and modify models.
• Supports nodes with General, Noisy-OR/MAX and Noisy-AND/MIN probability distribu-

tions.
• Functionality to cut and paste parts from/to different BNs.
• Complete integration with Microsoft Excel, cut and paste data into internal spreadsheet

view of GeNIe.
• Cross compatibility with other software. Supports all major file types (e.g. Hugin, Netica,

Ergo).
• Support for handling observation costs of nodes.
• Support for diagnostic case management.

Nowadays, the combination of SMILE and GeNIe has several thousand users worldwide. Appli-
cations based on the software range from heavy-duty industrial software to academic research
projects [Dru05]. Some examples are: battle damage assessment, group decision support mod-
els for regional conflict detection, intelligent tutoring systems, medical diagnosis and therapy
planning, diagnosis of diesel locomotives, airplanes, and production processes of integrated
circuits. SMILE and GeNIe are also used for teaching statistics and decision-theoretic methods
at several universities.

4.2 DBN libraries

Three libraries exist that have DBN functionality and are freely downloadable. All three have
a work-in-progress status, which means that much functionality is missing and/or has to be
tested and optimized.

36

4.2 DBN libraries Current software

4.2.1 The Bayes net toolbox for Matlab

Until the introduction of the Bayes net toolbox for Matlab (BNT) [Mur01], the field lacked
a free general purpose software library that was able to handle many different variants of
graphical models, inference and learning techniques. The BNT is an attempt to build such a
free, open-source, and easy-to-extend library that can be used for research purposes.

The author chose to implement the library in Matlab because of the ease with which it can
handle Gaussian random variables. Matlab has various advantages and disadvantages, the main
disadvantage being that it is terribly slow.

In the BNT, BNs are represented as a structure containing the graph, the CPDs and a few
other pieces of information. A DBN is represented similar to the representation in section 3.2
with a prior and a transitional network, making it only possible to model first-order processes.
The BNT offers a variety of inference algorithms, each of which makes different trade offs
between accuracy, generality, simplicity, speed, etc. All inference methods have the same API,
so they can be easily interchanged. The conditional probabilities of the defined variables can
be continuous or discrete. Parameter and structure learning are supported as well.

The toolbox was the first of its kind and set a standard for (D)BN libraries. It is still widely
in use today, because the code is relatively easy to extend and well documented and the library
has by far the most functionality of all software currently available. However, much functional-
ity still needs to be added to make it a real general purpose tool, such as tree-structured CPDs,
Bayesian modeling, online inference and learning, prediction, more approximate inference al-
gorithms, and support for non-DAG graphical models. Also, the scripting part that is needed to
implement a model in the BNT can be really cumbersome. Added to that, BNT does not have
support for standard BN file formats, which cancels the possibility to export and/or import
BN models from/to other packages. The BNT is released as open-source software and can be
downloaded from http://bnt.sourceforge.net. A GUI is currently in development.

4.2.2 The graphical models toolkit

The graphical models toolkit (GMTK) [BZ02] is a freely-available and open-source toolkit writ-
ten in c++ that is specialized in developing DBN-based automatic speech recognition (ASR)
systems. The GMTK has a number of features that can be used for a large set of statistical
models. These features include several inference techniques, continuous observation variables
and discrete dependency specifications between discrete variables. The DBN model needs to
be specified in a special purpose language. In this language, a DBN is specified as a template
that contains several time-slices. The collection of time-slices is unrolled over time to create
an unrolled DBN. The time-slices in the template are divided into a set of prologue, repeating
and epilogue time-slices and only the repeating frames are copied over time. This approach to
modeling DBNs has much expressive power, but it is also a lot of work to specify a DBN model.

The GMTK is a promising library. To become really useful, a couple of disadvantages need
to be tackled. Its main disadvantages are that it is not a general purpose toolkit, because it
specializes in ASR and it therefore lacks much functionality that is useful for other applications.
Furthermore, the documentation is far from complete, making it difficult for a user that is
not closely involved in the development of the software to understand the toolkit. Finally,
although the author of the toolkit states that it is open-source, the website (http://ssli.ee.
washington.edu/~bilmes/gmtk) still only offers a binary version.

4.2.3 The probabilistic network library

Intel’s research lab in Saint Petersburg, Russia is responsible for the probabilistic network library
(PNL) [Int04], which is an open-source library written in c++ that can be used for inference
and learning using graphical models. PNL has support for a large variety of graphical models,
including DBNs. In fact, PNL can be seen as the c++ implementation of BNT, since its design is

37

Current software 4.3 DBN modeling tools

closely based on that library. PNL does not support all functionality provided by BNT yet, but
the long-term goal is that it will surpass that functionality.

The influence of BNT is very clear when diving into the API of PNL. A DBN is also defined
as a prior and a transitional network and the BN techniques are clearly based on [Mur02] as
well. Because the approach is similar, PNL can also only model first-order processes. The API is
very well documented, making it a good option if one wants to model DBNs (or other graphical
models). However, the implementation is far from complete and still lacks much functional-
ity that BNT offers. The library recently reached its v1.0 status, which can be downloaded
from http://www.intel.com/technology/computing/pnl. Work is being done to make PNL
compatible with the GeNIe GUI.

4.3 DBN modeling tools

Currently, there are only two modeling tools that both support temporal reasoning and have
a GUI: BayesiaLAB and Netica. To illustrate the use of DBNs in these programs, the umbrella
DBN that also serves as an illustrative example in [RN03] is implemented:

Example (Umbrella) Imagine a security guard at some secret underground installation.
The guard wants to know whether it is raining today, but his only access to the outside
world occurs each morning when he sees the director coming in, with or without, an
umbrella. For each day t, the set of evidence contains a single variable Umbrellat (observed
an umbrella) and the set of unobservable variables contains Raint (whether it is raining).
If it is raining today depends on if it rained the days before. The model is considered
first-order Markov and stationary, so Raint depends only on Raint−1. The resulting initial
network, 2TBN and CPTs are shown in figure 4.1

.

R1

U1

Rt−1 Rt

Ut−1 Ut

p(Rain1)

true 0.7

false 0.3

p(Raint)

Raint−1 true false

true 0.7 0.3

false 0.3 0.7

p(Umbrellat)

Raint true f alse

true 0.9 0.2

f alse 0.1 0.8

Figure 4.1: The umbrella DBN and its CPTs.

4.3.1 BayesiaLab

BayesiaLab is the BN software toolkit developed by the French company Bayesia (http://www.
bayesia.com) [Bay04]. BayesiaLAB has two modi: a modeling mode for designing the BN (fig-
ure 4.2a) and a validation mode (figure 4.2b) for inference. In the modeling mode, it is possible
to add temporal arcs to a BN to indicate that the parent node of the two nodes is in the previ-
ous time-slice. Only first-order Markov models can be designed this way. Temporal arcs have a
different (red) color. The user needs to specify the initial state and the temporal probabilities
of the nodes. After specification, the validation mode can be selected to follow the changes of
the system over time by browsing between time steps (only forward steps are supported) or by
setting the number of steps and then plotting a graph of the variables (figure 4.2c). The DBN
does not unroll graphically, only the values change. It is possible to set evidence by hand or by
importing a data file. Of the inference methods discussed in 3.2.22, only filtering and prediction
are possible.

2filtering, prediction, online/offline smoothing and Viterbi

38

4.3 DBN modeling tools Current software

(a)

(b)

(c)

Figure 4.2: The GUI of BayesiaLAB: (a) The design mode where the user designs the (D)BN. (b) The validation
mode where it is possible to perform inference on the (D)BN. (c) A time-graph of the variables. Since no evidence

is set, the system goes to an equilibrium.

39

Current software 4.3 DBN modeling tools

4.3.2 Netica

Netica is a product of Norsys (http://www.norsys.com) [Nor97], which is located in Canada.
In Netica, the user designs the (D)BN and then compiles it, after which inference is possible.
Compiling the (D)BN basically means that it is converted to a junction tree representation.
When designing a DBN, temporal arcs can be added between nodes (figure 4.3). The temporal
arcs have a red color. The difference with BayesiaLAB is that we explicitly define the temporal
relationship (called a time-delay in Netica) of two nodes in one of the nodes instead of the im-
plicit approach of BayesiaLAB. In this way, k-order Markov processes can be modeled. When the
DBN has nodes with temporal relations to itself (which is usually the case), the DBN definition
contains loops. Of course, this is only valid in the definition of the DBN; the unrolled version
should not contain loops. After defining the DBN, it can be unrolled for t slices and compiled.
The resulting BN is opened in a new window (figure 4.3). Inference can be performed on this
unrolled and compiled BN. All inference methods discussed in 3.2.23 are supported. We can
enter evidence by hand or by importing a data file.

(a)

(b)

Figure 4.3: The GUI of Netica: (a) The design mode where the user designs the BN. (b) The unrolled and
compiled (static) BN on which inference is possible.

3filtering, prediction, online/offline smoothing and Viterbi

40

4.4 Summary Current software

4.4 Summary

After looking at and playing with the existing software, we can only conclude that there is
no satisfying solution for modeling with DBNs yet. Cumbersome scripting to implement the
DBN, conservative DBN definitions, lack of import/export functionality for BN models, and
slow implementations are features that apply to one or more of the reviewed packages. The
package with the most functionality is BNT, but unfortunately it is slow, lacks a GUI and has a
very conservative definition of DBNs. However, the two modeling tools that do have a GUI are
not satisfying either, since they also lack much functionality and are quite slow, making them
only useful for toy problems.

The nice thing about SMILE and GeNIe is that it combines the best of two worlds: The SMILE
API provides a researcher with all the flexibility and functionality he wants and the GeNIe GUI
makes the core functionality relatively easy accessible to the public. However, SMILE and GeNIe
need to be extended with temporal reasoning before it can be used for modeling with DBNs.

Extending SMILE and GeNIe with temporal reasoning functionality is not trivial. Since
no standard approach of representing DBNs exists yet, the extension consists of two parts:
designing a modeling approach, and implementing it in the software. The designed modeling
approach will be discussed in chapter 7. The design and implementation of temporal reasoning
in SMILE and GeNIe will be discussed in 8.

41

Related work 5
Chapter

BNs are very popular in medical applications where they have been used for over a decade
now. This popularity is mostly due to the property of BNs that makes it possible to com-
bine expert knowledge and gathered data for handling the uncertain knowledge involved in
establishing diagnoses, selecting optimal treatment and predicting treatment outcomes. Tradi-
tionally, medicine is a field that relies heavily on expert knowledge and generates much data.
Combining these can provide a great help for physicians.

5.1 Problem solving in medical applications

According to [LvdGAH04], there are four main applications of BNs in biomedicine and health-
care support. Three of these applications consider the important stages of patient treatment
requiring decision support. The fourth is a more research based application:

1. Diagnostic reasoning Diagnosing a patient comes down to constructing a hypothesis
about the disease based on observations or symptoms of the patient. However, these
observations generally do not unambiguously reveal the condition of the patient. To avoid
errors in diagnosing the patient, this uncertainty needs to be taken into account. BNs offer
a natural formalism for this type of reasoning, because BNs present the physician with a
probability distribution over the diseases that can be present, and provides information on
what test to perform to maximize the certainty of a correct diagnose. In fact, diagnostic
reasoning was the first real-life medical application of BNs. Well-known examples are the
MUNIN [AJA+89] and Pathfinder [HHN92] systems, both can be found in the network
repository of http://genie.sis.pitt.edu.

2. Prognostic reasoning amounts to making a prediction about how the disease evolves
over time. Knowledge of the process evolution over time needs to be exploited to be able

43

Related work 5.2 Temporal reasoning

to make successful predictions. Although very useful, prognostic BNs are a rather new
development in medicine. This is probably because there is little or no experience with
integrating traditional ideas about disease evolution into BNs and the DBN formalism is a
rather recent development.

3. Treatment selection The BN formalism does not provide means for making decisions,
since only the joint distribution over the random variables is considered. In decision
support systems, the BN formalism is often extended to include knowledge about deci-
sions and preferences. An example of such an extension is the influence diagram formal-
ism [HM84]. This formalism can help an expert to select the best treatment for a patient.
When a treatment selection system reasons over time, this application class is also known
as therapy planning.

4. Discovering functional interactions The above three applications account for problem
solving with already constructed BNs. However, important new insights can be gained by
constructing a BN, especially when learning both the structure and parameters from data.
Currently, there is a growing interest in using BNs to unravel uncertain interactions among
variables, such as unraveling molecular mechanisms at the cellular level by learning from
biological time-series data. Again, the use of the DBN formalism is required.

5.2 Temporal reasoning

The incorporation of temporal reasoning helps to continue the success of decision support sys-
tems in medicine. To clarify its usefulness, let use look at the four main applications again: (1)
During diagnostic reasoning, it can make a substantial difference to know the temporal order in
which some symptoms occurred or for how long they lasted; (2) during prognostic reasoning,
the potential evolutions of a disease are conceived as a description of events unfolding in time;
(3) during treatment selection, the different steps of treatment must be applied in a precise
order, with a given frequency and for a certain time-span in order to be effective [Aug05]; and
(4) in discovering functional interactions, research often deals with noisy time-series data.

These phenomena can not be modeled in an ordinary BN, hence the DBN formalism comes
into play. Despite the early adaption of BNs in medical applications, the incorporation of tem-
poral reasoning started only a few years ago and practical applications are starting to emerge at
this very moment. Some recent examples of applications with temporal reasoning using DBNs
in the medical field are:

In [CvdGV+05], a DBN is designed for diagnosing ventilator-associated pneumonia in ICU
patients with the help of domain experts. A DBN is constructed that explicitly captures the
development of the disease through time and the diagnostic performance is compared to an
earlier constructed BN of the same disease. The results show that the DBN formalism is suitable
for this kind of application. The paper also discusses how probability elicitation from domain
experts serves to quantify the dynamics involved and shows how the nature of patient data
helps to reduce the computational burden of inference.

In [KCC00], a comparison is made between stationary and non-stationary temporal models
that are designed for the prediction of ICU mortality. A process is stationary if its stochastic
properties stay the same when it is shifted in a positive or negative direction by a constant
time parameter, and is non-stationary otherwise. The DBNs are trained using data collected
from 40 different ICU databases. Overall, the DBNs based on the stationary temporal models
outperformed the non-stationary versions, except for one that was trained using a large dataset.
The authors suggest that stationary and non-stationary models can be combined to get even
better results.

[LdBSH00] proposes a framework for incorporating an expert system based on the DBN
formalism into clinical information systems. The development of a probabilistic and decision-
theoretic system is presented that can assist clinicians in diagnosing and treating patients with
pneumonia in the ICU.

44

5.3 Summary Related work

[TVLGH05] describes a DBN for modeling and classifying visual field deterioration and
compares it to a number of more common classifiers. The authors recognize the potential of
the recent explosion in the amount of data of patients who suffer from visual deterioration that
is being stored, including field test data, retinal image data and patient demographic data and
took this opportunity to investigate the usefulness of the DBN formalism in this area. Results
show that the DBN classifier is comparable to existing models, but also gives insight of the
underlying spatial and temporal relationships.

5.3 Summary

The presented papers show that in the last couple of years, some advances have been made
in the application of the DBN formalism in medical systems. However, a lot can still be done
to make the application of DBNs to medical systems more successful, especially in prognostic
reasoning and treatment selection.

Temporal modeling of physiological processes present some new challenges. If a physician
starts to monitor a patient at time t = 0, he will also take the disease history and other properties
such as gender/age/etc. of the patient into account to be able to predict the outcome better.
When modeling this kind of features using the DBN formalism, the modeler has answer many
questions, such as: (1) Is a DBN really needed, or is a BN sufficient? (2) Is it even possible
to model the medical problem in a DBN? (3) What is the purpose of the DBN? Is the DBN
going to be used for monitoring and diagnosis, or does it need input variables for prognostic
reasoning and treatment selection? (4) What variables are important for the physician and
for the performance of inference? (6) How to model non-numeric properties such as nominal,
ordinal, and interval variables? (7) What data is stored in available patient databases, what is
the quality of the data and how useful are the stored variables?

Given the fact that nowadays more and more patient data is stored creates better opportu-
nities for DBNs to make a difference in the medical field, but for most of the above questions
there is no general answer. However, insight can be gained by reading how these questions
are tackled in this research, starting with our extension of the DBN formalism in chapter 7 and
finishing with two applications and accompanying empirical studies in chapters 10 and 11.

45

Part II

Model and implementation

“Do you like our owl?”
“It’s artificial?”

“Of course it is.”
- Blade Runner.

47

Research architecture 6
Chapter

This part of the thesis is about our extension of the DBN theory and the design and imple-
mentation of different research tools that constitute the framework for temporal reasoning in
modeling physiological processes. In short, in the chapters in this part of the thesis we dis-
cuss the subsystems that form the research architecture. In this chapter we present a short
overview of these subsystems and how they relate to each other. Before we discuss the research
architecture, let us go back to the original assignment introduced in chapter 1.

Although creating models for temporal reasoning with DBNs sounds promising at first sight,
many questions remain to be answered. For instance: How do we obtain the structure and
parameters? What is the performance of inference? How much patient data do we need for learning
the parameters? If possible, how much does a DBN outperform a BN when applied to the same
problem? These questions form the motivation for the research presented in this thesis. The
assignment consisted of three main parts:

1. A theoretical part that consisted of (1) investigating the existing DBN theory, (2) extending
the current DBN formalism, (3) adapting DBN parameter learning, and (4) validating the
extensions.

2. An implementation part that consisted of (5) investigating current DBN software, (6)
designing and implementing DBN functionality in SMILE, and (7) designing an intuitive
graphical user interface to DBNs in GeNIe.

3. An application part that consisted of (8) applying the extended DBN formalism to physio-
logical processes in the human body, and (9) performing empirical studies on the perfor-
mance.

Most of the above-mentioned items not only form the basis of our research on temporal rea-
soning, but can be seen as a framework for temporal reasoning in the medical domain, where
the following questions generally need to be answered: (1) Is a DBN really needed, or is a BN

49

Research architecture

sufficient? (2) Is it even possible to model the medical problem in a DBN? (3) What is the
purpose of the DBN? Is the DBN going to be used for monitoring and diagnosis, or does it need
input variables for prognostic reasoning and treatment selection? (4) What variables are im-
portant for the physician and for the performance of inference? (6) How to model non-numeric
properties such as nominal, ordinal, and interval variables? (7) What data is stored in available
patient databases, what is the quality of the data and how useful are the stored variables?

Figure 6.1 shows how the different subsystems derived from the assignment are related.
Each independent subsystem is briefly discussed below.

Background
knowledge

Problem
domain

DBN
formalism
extension

DBN
structure

derivation

DBN
parameter
learning

GeNIe &
SMILE

Empirical
study

Discretizing
data

Figure 6.1: Research architecture.

Background knowledge It is not possible to do good research if one does not have a thor-
ough understanding of the field. Background knowledge forms the basis of the research and
is connected to every subsystem in the research architecture. It includes knowledge about the
medical domain, Bayesian network theory, existing software tools and related work. All these
elements are discussed in part I of this thesis.

Problem domain We are going to model the human physiological processes by means of a
DBN. This subsystem contains the aspects of the problem that we are going to model, in our case
both the glucose-insulin regulation and the cardiovascular system discussed in chapter 2. In this
part of the thesis the problem domain will not be made explicit, because the presented research
architecture holds for every problem domain. In part III, we will elaborate on how to apply
this research architecture to our two physiological processes, where we will simulate patients
in an ICU situation by means of systems of ordinary differential equations. The parameters of
the systems of ODEs are varied for different patients and for different ICU situations. An ideal
situation would be gathering real patient data from a database, but we do not have such a
database at our disposal.

DBN formalism extension The definition of a DBN given in [Mur02] is very conservative and
does not provide enough modeling power when modeling human physiological processes. The
first step was to extend the DBN theory to be able to model the human physiological processes in
a concise and efficient manner. The DBN theory extension, including general experimentation
on the performance is discussed in chapter 7. In general, one should investigate if the DBN
formalism provides enough modeling power for the domain to be modeled and extend it when
appropriate.

50

Research architecture

DBN structure derivation A DBN consists of two parts: a qualitative part that defines the
structure of the DBN and a quantitative part that defines the conditional probability distribu-
tions of the DBN. We have seen in chapter 3 that we can obtain the DBN structure by machine-
learning techniques or by expert elicitation, e.g. interviewing a physician.

In our case, the obtained DBN structures are a combination of expert knowledge from physi-
cians and our knowledge about modeling with DBNs. The obtained DBN models are a close
enough approximation of the real world, without being computationally too expensive. We
elaborate more on derivation of the DBN structure in general in chapter 9.

DBN parameter learning The quantitative part of the DBN consists of its conditional prob-
ability distributions. Again, this can be obtained by machine-learning techniques or by expert
elicitation. Because many parameters are involved, obtaining them by means of expert elici-
tation is infeasible. We will devise a DBN parameter learning method for the extended DBN
formalism in chapter 9. This method can be used to learn the DBN parameters from a patient
database and an existing BN learning algorithm, i.e. the EM algorithm. A special-purpose
c++ tool was written on top of SMILE to perform parameter learning on the glucose-insulin
regulation DBN and the cardiovascular system DBN.

Discretizing data Because continuous variables in a DBN is problematic due to complexity
issues, the patient data must be discretized. Currently, discretization of continuous time-series
data is often performed as an unsupervised preprocessing step. The choice of the method
and accompanying parameters are rarely justified [MU05]. However, for field experts it is of
great importance that the resulting interval boundaries are meaningful within the domain, and
that is why we will discuss some discretization methods and their considerations in chapter 9.
Matlab was used to implement and test these discretization methods. We choose Matlab for
this purpose, because it provides many mathematical and graphical representation possibilities.
These tools will not be released to the public, but similar functionality is available in the current
version of SMILE and GeNIe.

GeNIe & SMILE The DSL software needed to be extended with temporal reasoning. For our
research, extending SMILE with temporal reasoning was most important, because this func-
tionality was needed for the empirical studies on the glucose-insulin regulation and the car-
diovascular system DBNs. GeNIe was extended with a temporal reasoning GUI to provide its
users with the added temporal reasoning functionality of SMILE. The temporal extension of
both GeNIe and SMILE is presented in chapter 8 and will be released to the public.

Empirical studies The above subsystems are needed to perform empirical studies on model-
ing the problem domain with a DBN. Special-purpose tools where written in both Matlab and
c++ to perform several experiments on the glucose-insulin regulation and the cardiovascular
system DBNs. The application of the extended DBN formalism, the experiments and the results
are discussed in part III of this thesis.

51

DBN formalism
extensions 7

Chapter

Before implementing the DBN formalism, we need to ask ourselves the question what aspects
of a dynamic system we want to be able to model. The DBN theory discussed in section 3.2 is
largely based on work done in [Mur02]. This work is currently viewed as the standard in DBN
theory, but it employs a rather limited definition of a DBN. We decided to extend the formalism
to provide us with more modeling power than Murphy’s definition allows, and to improve the
performance in terms of execution time and memory usage. Extending the DBN formalism
enables us to deal with complex dynamic systems in an intuitive way.

Before we extend the DBN formalism, let us review the original definition given in [Mur02].
In the original definition, a DBN is defined as the pair (B1,B→) where B1 is a BN that defines
the prior or initial state distribution of the state variables p(Z1). B→ is a two-slice temporal
Bayesian network (2TBN) that defines the transition model p(Zt|Zt−1). Only the nodes in the
second time-slice of the 2TBN have a conditional probability distribution.

If we take a closer look at this definition, we notice a couple of things. The most obvious
one is that it is only possible to model first-order Markov processes. Another one is that when
unrolling the network for inference, every node is copied to every time-slice, even if it has a
constant value for all time-slices. Finally, although it is possible to introduce a different initial
state using the B1 part of the definition, it is not possible to define a different ending state, which
can be useful for modeling variables that are only interesting after the end of the process. These
three observations form the basis of our extension of the DBN formalism.

7.1 kth-order Markov processes

Murphy’s definition of DBNs is sufficient for modeling first-order Markov processes. However,
as we want to be as expressive in modeling temporal processes as possible, we also want to

53

DBN formalism extensions 7.1 kth-order Markov processes

be able to model kth-order Markov processes1. This extension can be useful when modeling
physiological processes at a small time-scale, for example when devising a DBN model that
catches the dynamics of the human cardiovascular system for every 50[ms]. In such temporal
models, assuming a first-order process is not sufficient.

We have extended Murphy’s definition to the following: B→ is not defined as a 2TBN, but
as a (k+ 1)TBN that defines the transition model p(Zt|Zt−1,Zt−2, . . . ,Zt−k) for a kth-order Markov
process.

p(Zt|Zt−1,Zt−2, . . . ,Zt−k) =
N∏

i=1

p(Zi
t|Pa(Zi

t)) . (7.1)

Not surprisingly, equation 7.1 is essentially the same as equation 3.35 in section 3.2, only the
set of parents is not restricted to nodes in the previous or current time-slice, but can also contain
nodes in time-slices further in the past. In this definition, the joint distribution for a sequence of
length T can be obtained by unrolling the (k + 1)TBN and then multiplying all the CPTs, again
this equation is similar to equation 3.36 in section 3.2.

p(Z1:T) =
T∏

t=1

N∏
i=1

p(Zi
t|Pa(Zi

t)) . (7.2)

Because graphically representing a kth-order Markov process with a (k + 1)TBN can be really
cumbersome, we have developed a different visualization of a DBN, where we introduce the
concept of a temporal arc. This concept is inspired on earlier work in [AC96].

Definition (Temporal arc)
A temporal arc is an arc between a parent node and a child node with an index that denotes the
temporal order or time-delay k > 0. A parent and a child node can be the same node.

An example second-order DBN according to the (k + 1)TBN visualization is shown in fig-
ure 7.1a. This example DBN is relatively simple, but imagine specifying a DBN model with
many variables and different temporal orders per time-slice. With our visualization, complex
temporal models can be visualized showing only one time-slice. An example of our visualization
is shown in figure 7.1b. Even while we are dealing with a relatively simple DBN, it is immedi-
ately clear from our visualization that the DBN has three temporal arcs (Xt−2 → Xt, Xt−1 → Xt,
and Yt−1 → Yt) and two non-temporal arcs (Ut → Xt, Xt → Yt), where this is less obvious from
the (k+ 1)TBN visualization. Not only the visualization is more comprehensible, also the speci-

Ut−2 Ut−1 Ut

Xt−2 Xt−1 Xt

Yt−2 Yt−1 Yt

Ut

Xt

Yt

1

1

2

(a) (b)

Figure 7.1: (a) The (k+1)TBN visualization of a second-order DBN using t = 3 time-slices. (b) The same second-
order DBN using our temporal arcs visualization. The initial network is defined implicitly in this example.

fication of a DBN is easier. For the example DBN in figure 7.1, specifying the (k + 1)TBN would

1It is possible to simulate kth-order dependencies by using first order Markov processes and introducing extra state
variables in time-slice t that are directly copied from the previous time-slices, but that introduces many unnecessary
extra variables.

54

7.1 kth-order Markov processes DBN formalism extensions

mean specifying nine nodes and eleven arcs, where for our representation only three nodes and
five arcs have to be specified, which results in significantly less code and most probably fewer
errors. To see how big the difference is for the example DBN in figure 7.1, two simplified XML
listings are shown in listing 7.1. Even with such a simple network, the specification for the
3TBN is already almost two times larger than the specification with temporal arcs.

1 <?xml version="1.0"?> <?xml version="1.0"?>
2 <smile version="1.0" id="temporalarcs"> <smile version="1.0" id="3TBN">
3 <nodes> <nodes>
4 <cpt id="U" dynamic="plate"> <cpt id="U">
5 <state id="False" /> <state id="False" />
6 <state id="True" /> <state id="True" />
7 <probabilities >.</probabilities > <probabilities >.</probabilities >
8 </cpt> </cpt>
9 <cpt id="X" dynamic="plate"> <cpt id="X">

10 <state id="False" /> <state id="False" />
11 <state id="True" /> <state id="True" />
12 <parents>U</parents> <parents>U</parents>
13 <probabilities >.</probabilities > <probabilities >.</probabilities >
14 </cpt> </cpt>
15 <cpt id="Y" dynamic="plate"> <cpt id="Y">
16 <state id="False" /> <state id="False" />
17 <state id="True" /> <state id="True" />
18 <parents>X</parents> <parents>X</parents>
19 <probabilities >.</probabilities > <probabilities >.</probabilities >
20 </cpt> </cpt>
21 </nodes> <cpt id="U_1">
22 <dynamic numslices="3"> <state id="False" />
23 <node id="X"> <state id="True" />
24 <parent id="X" order="1" /> <probabilities ></probabilities >
25 <parent id="Y" order="1" /> </cpt>
26 <parent id="X" order="2" /> <cpt id="X_1">
27 <cpt order="1">.</cpt> <state id="False" />
28 <cpt order="2">.</cpt> <state id="True" />
29 </node> <parents>U_1 X Y</parents>
30 </dynamic> <probabilities >.</probabilities >
31 </smile> </cpt>
32 <cpt id="Y_1">
33 <state id="False" />
34 <state id="True" />
35 <parents>X_1</parents>
36 <probabilities >.</probabilities >
37 </cpt>
38 <cpt id="U_2">
39 <state id="False" />
40 <state id="True" />
41 <probabilities >.</probabilities >
42 </cpt>
43 <cpt id="X_2">
44 <state id="False" />
45 <state id="True" />
46 <parents>U_2 X_1 Y_1 X</parents>
47 <probabilities >.</probabilities >
48 </cpt>
49 <cpt id="Y_2">
50 <state id="False" />
51 <state id="True" />
52 <parents>X_2</parents>
53 <probabilities >.</probabilities >
54 </cpt>
55 </nodes>
56 </smile>

Listing 7.1: A simplified XML representation for the temporal arcs visualization (left) and the 3TBN (right) of
the DBN shown in figure 7.1.

55

DBN formalism extensions 7.2 Temporal plate and contemporal nodes

7.2 Temporal plate and contemporal nodes

The second problem of Murphy’s definition is that every node is copied to every time-slice when
unrolling the DBN for inference. For nodes that have a constant value at every time-slice, this
is a real waste of memory and computational power. To represent the notion of nodes that
are constant for every time-slice graphically, we were inspired by the notion of a plate from
graphical model theory that was originally developed independently by both Spiegelhalter and
Buntine [Bun94]. In the original definition, the plate stands for N independent and identically
distributed (i.i.d.) replicas of the enclosed model. We decided to use it in a similar way for
DBNs. However, since the plate was originally introduced without the notion of temporal arcs,
we have extended the definition to include temporal arcs, introducing the concept of a temporal
plate.

Definition (Temporal plate)
The temporal plate is the area of the DBN definition that holds the temporal information of the net-
work. It contains the variables that develop over time (and are going to be unrolled for inference)
and it has an index that denotes the sequence length T of the process.

The part of the DBN that is going to be unrolled is represented within the temporal plate,
so all variables with temporal arcs need to be inside the temporal plate. Variables outside the
temporal plate cannot have temporal arcs! The length T of the temporal process is denoted
as an index. All nodes outside the temporal plate are not copied during unrolling, but their
arcs are. The temporal arcs are set to the appropriate nodes in future time-slices, according to
their temporal order. The temporal plate has the effect that no matter how many time-slices
the DBN is unrolled to, the nodes outside the temporal plate are unique. During unrolling, the
unique node itself is not copied, but its outgoing arcs are copied to the corresponding nodes in
all time-slices. This is useful for modeling variables in the network that remain constant over
time, for instance the gender of a patient. We will call these nodes contemporal nodes.

C

Ut

Xt

Yt

1

1

2

5

C

U1 U2 U3 U4 U5

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

(a) (b)

Figure 7.2: (a) The visualization of a second-order DBN with one contemporal variable. The temporal plate
holds the part of the network that is unrolled for inference, the contemporal node is stored outside the temporal
plate. The index of the temporal plate denotes that the DBN is going to be unrolled for t = 5 time-slices. (b)

The unrolled DBN. The initial network is defined implicitly in this example.

Definition (Contemporal node)
A contemporal node is a node outside the temporal plate whose value remains constant over time. It
can have children inside the temporal plate, but no parents. When a DBN is unrolled for inference,
a child variable Xt with a contemporal parent node C has C as parent for every unrolled node X1:T.

An important consequence of the extension of the plate definition is that the replicated time-
slices are not i.i.d. anymore because of their temporal relationships. However, if no temporal
arcs and no contemporal nodes with temporal children exist, then the time-slices are still i.i.d.,

56

7.3 Anchor and terminal nodes DBN formalism extensions

so our definition of the temporal plate is backwards compatible with the original definition of a
plate. The graphical visualization of the use of a temporal plate for a DBN definition is shown
in figure 7.2.

7.3 Anchor and terminal nodes

Our final extension of the original DBN formalism consists of introducing nodes that are only
connected to the first or the last time-slice of the unrolled DBN. This can be useful for introduc-
ing extra variables before the start or after the end of the process that need not to be copied
every time-slice and are not connected to every time-slice like contemporal variables. Typical
applications would be situations where we only want to infer variables after or before the pro-
cess, such as an end-of-sequence observation in the case of ASR [Zwe98]. This also enables us
to give an explicit definition of the initial network of the model, just like the definition of Mur-
phy2. Graphically, these nodes are stored outside the temporal plate. However, to distinguish
them as being of a special kind, a third arc is introduced. In figure 7.3, the anchor3 and terminal
nodes are denoted by a blue dotted arc.

C

A

Ut

Xt

Yt

1

1

2

5

C

U1 U2 U3 U4 U5

A X1 X2 X3 X4 X5 T

T Y1 Y2 Y3 Y4 Y5

(a) (b)

Figure 7.3: (a) The visualization of a second-order DBN. The temporal plate holds the part of the network that
is unrolled. The anchor and terminal nodes are stored outside the temporal plate, next to the nodes that are
contemporal. The index of the temporal plate denotes that the DBN is going to be unrolled for t = 5 time-slices.

(b) The unrolled DBN. It is possible to explicitly model a different initial network using the anchor nodes.

Definition (Anchor node)
An anchor node is a node outside the temporal plate that has one or more children inside the
temporal plate. If the DBN is unrolled for inference, the anchor node is only connected to its
children in the first time-slice of the unrolled network.

Definition (Terminal node)
A terminal node is a node outside the temporal plate that has one or more parents inside the
temporal plate. If the DBN is unrolled for inference, the terminal node is only connected to its
parents in the last time-slice of the unrolled network.

7.4 Extended mathematical representation

Introducing a temporal plate with contemporal variables (C), anchor (A) and terminal (T)
variables also changes the mathematical representation of DBNs. We have already adapted

2Using the B1 part of the (B1,B→) pair.
3We call them anchor nodes to distinguish them from the (implicit) initial network of a DBN (B1 of Murphy’s

definition).

57

DBN formalism extensions 7.5 Empirical study

Murphy’s original equations to kth-order Markov processes earlier in this section, resulting in
equations 7.1 and 7.2. Now, we also need to include the C, A and T variables. Adapting the
transition model (equation 7.1) results in equation 7.3.

p(Zt|Zt−1,Zt−2, . . . ,Zt−k,C) =
N∏

i=1

p(Zi
t|Pa(Zi

t),C
i) . (7.3)

where Pa(Zi
t) denote the parents of Zi

t inside the temporal plate and Ci denote the contemporal
variables that are a parent of Zi

t.
The joint distribution for a sequence of length T can be obtained by unrolling the (k+1)TBN

and then multiplying all the CPTs, including those of the A, C and T variables. To achieve this,
equation 7.2 needs to change to equation 7.4.

p(A,C,Z1:T,T) = p(C) · p(A|C)
N∏

i=1

p(Zi
1|Pa(Zi

1),Ai,Ci)
T∏

t=2

N∏
i=1

p(Zi
t|Pa(Zi

t),C
i)

N∏
i=1

p(T i|Zi
T),Ci) .

(7.4)
Ai denote the anchor variables that are a parent of Zi

1 and T i denote the terminal variables that
are a child of Zi

T. To conclude, in order to completely specify the extended DBN, we need to
define four sets of parameters:

1. Initial parameters: p(A|C), that specify the probability distribution of the anchor vari-
ables and p(Z1|Pa(Z1),A,C), that specify the probability distribution of the initial time-
slice in the temporal plate.

2. Temporal parameters: p(Zt|Pa(Zt),C), that specify both the transition distribution be-
tween two or more consecutive time-slices and the distribution within a time-slice.

3. Contemporal parameters: p(C), that specify the probability distribution of the contem-
poral variables.

4. Terminal parameters: p(T|ZT,C), that specify the distribution of the terminal variables.

Again, the parameters can be obtained by expert elicitation or learned from a dataset. Our
parameter learning methodology for the extended DBN formalism is discussed in chapter 9.

7.5 Empirical study

To get an insight of the performance gain in terms of execution time and memory usage of
the extended DBN formalism over Murphy’s DBN formalism, an empirical study needed. The
following experiments give that insight, next to some insight on the overall performance of
the SMILE library. Our claimed gain in modeling power partly depends on the performance
gain and partly depends on the modeled domain. We will show how to use the extended
DBN formalism in part III of this thesis, where DBN models of two physiological processes are
presented.

7.5.1 Design

The experiments measured duration and memory usage of inference on four basic DBNs with
varying sequence lengths (T was set consecutively to 500, 1000, 2000, 4000, and 8000 time-
slices). These sequence lengths were chosen to get insight in how the inference complexity
grows for the two DBN formalisms when inferring longer sequences. The basic DBNs exploit
the three properties of the extended DBN formalism that can have a large impact on the perfor-
mance:

1. The introduction of contemporal nodes,
2. The possibility of kth-order Markov processes, and

58

7.5 Empirical study DBN formalism extensions

3. The introduction of terminal nodes.

The DBN topologies modeled using the extended formalism and Murphy’s formalism are shown
in table 7.1. This table also includes a baseline DBN. This is a minimal DBN that is used to enable
us to compare the different extensions. The left column of the table shows the DBN modeled
with the extended formalism, the middle column shows the DBN converted to a DBN according
to Murphy’s formalism, and the right column gives a short explanation on how to get to that
conversion. From the DBN inference techniques discussed in section 3.2, we choose to stick
with unrolling the DBN and applying a BN inference algorithm. Because exact inference is not
feasible for (D)BNs with many nodes per time-slice and many time-slices, the state-of-the-art
EPIS sampling algorithm [YD03] was used for inference.

7.5.2 Setup

The experiments were conducted on a 1.5Ghz Pentium-M processor with 512Mb RAM as a
real-time process (priority 24) under Windows XP. Because it is difficult to get a reliable esti-
mate based on a single measurement, inference on every DBN topology is repeated 100 times
after which the average is calculated. The CPT parameters are randomized at every itera-
tion. Measurement of memory usage was done using Sysinternals’ Process Explorer (http:
//www.sysinternals.com).

7.5.3 Results

An overview of the experimental results is given in table 7.2. Before we consider the results, it
must be stated that the performance gain measured from these experiments cannot be general-
ized just like that. A great deal of the performance of a DBN depends on the overall complexity
of the topology and its observable nodes, not only on whether or not we use the features pro-
vided by the extended formalism. However, it can be concluded that when one wants to model
a process that is suitable for incorporation of contemporal nodes, has a temporal order larger
than 1, and/or has terminal nodes, the performance gain in speed and memory is significant.

The experimental results can be divided into two parts: (1) performance gain in time and
(2) performance gain in memory. We can see clearly from table 7.2 that both the performance
gain in time and memory is significant for every extension of the formalism. The biggest im-
provement is due to the addition of the terminal nodes, because adding terminal nodes to the
last time-slice does not influence drastically the performance of the baseline DBN. The two
experiments with temporal arcs of different temporal orders also show promising results. How-
ever, we argue that the incorporation of the contemporal nodes in the extended formalism will
be the most useful. As can be seen in table 7.2, inference time and memory costs are always an
order of magnitude larger with Murphy’s formalism compared to the extended formalism with
the addition of contemporal nodes. Furthermore, feedback from the field suggests that contem-
poral nodes can be used in a wide variety of domains as index variables, whereas higher-order
temporal processes are less commonly used.

One final thing worth mentioning is the space complexity of inference for DBNs. Currently,
SMILE naively unrolls the DBN for the required number of time-slices after which inference is
performed. For Murphy’s formalism, special-purpose algorithms exist that exploit the repetitive
structure of a DBN, so only a couple of time-slices have to be kept in memory at every time
instant. This decreases memory usage at the cost of extra running time. Examples of these
algorithms are discussed in the following papers: [Dar01, ZP00, BMR97]. However, these ex-
isting algorithms are incompatible with the extended formalism and thus need to be adapted,
something we will not do in the research presented in this thesis. For now, we will just stick to
performing inference by the unrolling the DBN and applying static inference algorithms.

59

DBN formalism extensions 7.5 Empirical study

Table 7.1: The four basic DBNs and the baseline DBN modeled using the extended DBN formalism and Murphy’s
DBN formalism. Both variants model the same process.

Extended formalism Murphy’s formalism Variants Conversion explanation

Xt

1 t

Xt

1 t

None.

The baseline DBN. This DBN is the
same for the extended formalism
and Murphy’s formalism and has
only one node and an arc of tem-
poral order 1.

C

Xt

1 t

C

Xt

1

1

t

The DBN has 1, 2,
or 3 contemporal
nodes.
(The shown variant
has 1 contemporal
node.)

To incorporate contemporal nodes
in Murphy’s formalism, the con-
temporal nodes must be copied to
every time-slice and the temporal
CPT must be defined as a determin-
istic one. The initial CPT of the con-
temporal nodes is taken from the
extended formalism.

Xt1

2

3

t

Y2
2

X1 X2

Y3
t

Y2
t

Xt

1

1
1

1
1

t

The DBN has arcs
with temporal or-
ders 1, 2 or 1, 2, 3
or 1, 2, 3, 4.
(The shown variant
has arcs with tem-
poral orders 1, 2,
3.)

To model kth-order Markov proces-
ses using a first-order DBN, transfer
nodes need to be introduced. These
nodes transfer the value of a node
at time t to consecutive time-slices.
The CPT parameters of the transfer
nodes are fully deterministic. Two
kind of kth-order Markov processes
are used in the experiment: One
with all temporal arcs up to and in-
cluding kth, and one with only first
and kth-order temporal arcs. This is
the former variant.

Xt1 3

t

Y2
2

X1 X2

Y3
t

Y2
t

Xt

1

1

1
1

t

The DBN has arcs
with temporal or-
ders 1, 2 or 1, 3 or
1, 4.
(The shown variant
has arcs with tem-
poral orders 1, 3.)

To model kth-order Markov proces-
ses using a first-order DBN, transfer
nodes need to be introduced. These
nodes transfer the value of a node
at time t to consecutive time-slices.
The CPT parameters of the transfer
nodes are fully deterministic. Two
kind of kth-order Markov processes
are used in the experiment: One
with all temporal arcs up to and in-
cluding kth, and one with only first
and kth-order temporal arcs. This is
the latter variant.

Xt

1 t

T

Tt

Xt

1 t

The DBN has 1, 2,
or 3 terminal no-
des.
(The shown variant
has 1 terminal no-
de).

The modeling of terminal nodes us-
ing Murphy’s formalism is a mat-
ter of simply copying the terminal
nodes to every time-slice. This im-
plies that although only interesting
at the end of the process, the value
is inferred for every time-slice.

60

7.5 Empirical study DBN formalism extensions

Table 7.2: Performance of inference in time and memory for the four DBN variants and the baseline DBN.

Time Memory

DBN variants with 1, 2, or 3 contemporal nodes

1000 2000 3000 4000 5000 6000 7000 8000
10

−1

10
0

10
1

10
2

10
3

number of time−slices

in
fe

re
nc

e
ti

m
e

in
 s

ec
on

d
s

Baseline DBN
Ext. form. − 1 contemporal node
Mur. form. − 1 contemporal node
Ext. form. − 2 contemporal nodes
Mur. form. − 2 contemporal nodes
Ext. form. − 3 contemporal nodes
Mur. form. − 3 contemporal nodes

1000 2000 3000 4000 5000 6000 7000 8000

10
1

10
2

10
3

number of time−slices

m
em

or
y

us
ag

e
in

 m
eg

ab
yt

es

Baseline DBN
Ext. form. − 1 contemporal node
Mur. form. − 1 contemporal node
Ext. form. − 2 contemporal nodes
Mur. form. − 2 contemporal nodes
Ext. form. − 3 contemporal nodes
Mur. form. − 3 contemporal nodes

DBN variants with temporal orders 1,2 or 1,3 or 1,4

1000 2000 3000 4000 5000 6000 7000 8000
10

−1

10
0

10
1

10
2

10
3

number of time−slices

in
fe

re
nc

e
ti

m
e

in
 s

ec
on

d
s

Baseline DBN
Ext. form. − temporal orders 1,2|1,3|1,4
Mur. form. − temporal orders 1,2
Mur. form. − temporal orders 1,3
Mur. form. − temporal orders 1,4

1000 2000 3000 4000 5000 6000 7000 8000

10
1

10
2

10
3

number of time−slices

m
em

or
y

us
ag

e
in

 m
eg

ab
yt

es

Baseline DBN
Ext. form. − temporal orders 1,2|1,3|1,4
Mur. form. − temporal orders 1,2
Mur. form. − temporal orders 1,3
Mur. form. − temporal orders 1,4

DBN variants with temporal orders 1 - 2 or 1 - 3 or 1 - 4

1000 2000 3000 4000 5000 6000 7000 8000
10

−1

10
0

10
1

10
2

10
3

number of time−slices

in
fe

re
nc

e
ti

m
e

in
 s

ec
on

d
s

Baseline DBN
Ext. form. − temporal orders 1 − 2
Mur. form. − temporal orders 1 − 2
Ext. form. − temporal orders 1 − 3
Mur. form. − temporal orders 1 − 3
Ext. form. − temporal orders 1 − 4
Mur. form. − temporal orders 1 − 4

1000 2000 3000 4000 5000 6000 7000 8000

10
1

10
2

10
3

number of time−slices

m
em

or
y

us
ag

e
in

 m
eg

ab
yt

es

Baseline DBN
Ext. form. − temporal orders 1 − 2
Mur. form. − temporal orders 1 − 2
Ext. form. − temporal orders 1 − 3
Mur. form. − temporal orders 1 − 3
Ext. form. − temporal orders 1 − 4
Mur. form. − temporal orders 1 − 4

DBN variants with 1, 2, or 3 terminal nodes

1000 2000 3000 4000 5000 6000 7000 8000
10

−1

10
0

10
1

10
2

10
3

number of time−slices

in
fe

re
nc

e
ti

m
e

in
 s

ec
on

d
s

Ext. form. − 1|2|3 terminal node(s) & Baseline DBN
Mur. form. − 1 terminal node
Mur. form. − 2 terminal nodes
Mur. form. − 3 terminal nodes

1000 2000 3000 4000 5000 6000 7000 8000

10
1

10
2

10
3

number of time−slices

m
em

or
y

us
ag

e
in

 m
eg

ab
yt

es

Ext. form. − 1|2|3 terminal node(s) & Baseline
Mur. form. − 1 terminal node
Mur. form. − 2 terminal nodes
Mur. form. − 3 terminal nodes

61

DBN formalism extensions 7.6 Summary

7.6 Summary

To conclude this chapter, let us briefly review our extension of the DBN formalism. First of
all, the our extension offers far more modeling power, such as the introduction of kth-order
temporal arcs for modeling of complex time-delays, and the introduction of contemporal nodes
for modeling the context of variables in the temporal plate. This modeling power enables the
modeler to apply our DBN formalism to a wide range of complex temporal problems. Second,
variables that do not have to be copied every time-slice are not copied. This feature delivers
both a considerable performance gain and a more intuitive way of modeling. Third, by intro-
ducing the notion of a temporal plate and temporal arcs, the visualization of complex models is
more insightful, making a DBN model easier to understand for field experts, and specification
of any DBN can be as concise as possible. In part III, we will use our extended DBN formalism
on two physiological processes and show how its properties can be used in practice.

62

Temporal reasoning in
GeNIe and SMILE 8

Chapter

In chapter 3 we presented the DBN formalism that is reasonably common since [Mur02]. We
argued that the original formalism is too limited for a wide range of temporal reasoning appli-
cations and as a result, the formalism was extended in chapter 7, after which it was validated
to get insight in its advantages. An overview of existing software was given in chapter 4, where
we concluded that no satisfying software solution exists yet.

From the chapters mentioned above, it became clear that there was a need for reliable
and fast temporal reasoning software of industrial quality with academic capabilities. This
chapter presents the requirements, design, implementation, and testing of such software. The
overall goal was to extend the already widely used high quality software SMILE and GeNIe
with temporal reasoning. The users of this software are generally field experts with a basic
knowledge about (temporal) reasoning, but not about the underlying algorithms. Because this
is a reengineering project, the current design and implementation choices of SMILE and GeNIe
needed to be respected, which resulted in some extra challenges not applicable when building
software from the ground up.

In this chapter, a general overview of the design and implementation trajectory is given;
these are loosely based on methods described in [BD00]. Because the focus of this thesis is
not on the software engineering part, only the most important aspects are discussed in detail.
One final thing worth mentioning is the fact that SMILE and GeNIe are in fact two different
products. SMILE is the underlying library and GeNIe is the shell that provides the GUI. This
separation makes that it is sometimes wise to treat them differently and sometimes to treat
them as a whole. In the following sections, it will become clear from the text whether they are
treated as a whole or separately. The author of this thesis was fully responsible for the design
and implementation of temporal reasoning into SMILE and for the design of the GUI in GeNIe.
The implementation of the graphical user interface in GeNIe and the extension of SMILEXML
was done by T. Sowinski.

63

Temporal reasoning in GeNIe and SMILE 8.1 Requirements

8.1 Requirements

8.1.1 Actors

GeNIe has three types of actors: network modelers, decision makers, and domain experts.
SMILE has two types of actors: application builders and network modelers. The possibility
exists that one or more of these actors are represented by one user, but in larger projects, the
different responsibilities will most probably lie with different users.

An application builder is an actor that builds an application on top of the SMILE library,
in a similar way as GeNIe is built on top of SMILE. In many domains, the general user-interface
of GeNIe does either not suffice or is too extensive. In these type of applications, a specialized
application can be built that gives the decision maker only access to a subset of the function-
ality of SMILE. The application builder only interacts with the API of SMILE by writing a
specialized tool on top of it.

The network modeler is the actor that elicits knowledge from a domain expert to model
the problem domain in a DBN. Knowledge elicitation can refer to elicitation of the DBN struc-
ture and/or DBN parameters. The network modeler interacts with the software by building a
DBN from the elicited knowledge.

The decision maker is the actor that actually uses the DBN, either by using a specialized
tool or GeNIe. The decision maker inserts evidence in the network, performs inference and
makes decisions based on the posterior beliefs. He does not change the DBN structure or
parameters. The decision maker interacts with the software to get a better insight in the
situation and to make (hopefully) better decisions.

Finally, the domain expert is the actor that has extensive knowledge of the problem do-
main. He does not have to be a direct user of the system, but it is still an actor, as the system
needs a way to provide intuitive input of domain knowledge. GeNIe already has means to
provide such intuitive input, so this actor is not taken into account in the current temporal
reasoning design.

8.1.2 Use cases

A common way of obtaining use cases is scenario identification, where developers observe users
and develop a set of detailed scenarios for typical functionality provided by the future software.
However, because of time and resource constraints, we choose to obtain the most important
use cases at brainstorm sessions within the DSL, sessions with users from Intel Research and
Philips Research, and feedback from individual users. This resulted in the use cases presented
in table 8.1. We have to keep in mind that:

• Table 8.1 only contains the added use cases, i.e. use cases that are introduced because of
the extension of the software with temporal reasoning.

• The use cases for GeNIe and SMILE are a little different, because GeNIe hides some spe-
cific implementation details from the user. However, the functionality is basically the
same. Table 8.1 shows the use cases for GeNIe, as they demonstrate the general function-
ality in a concise manner.

• An important constraint in the design of new use cases is keeping them consistent with
the already existing underlying structure of the software.

8.1.3 Functional requirements

The GeNIe and SMILE software is extended to incorporate temporal reasoning using the ex-
tended DBN formalism as previously discussed. The extension provides support for nodes with
the four temporal types: (1) anchor, (2) contemporal, (3) plate, and (4) terminal. Nodes in

64

8.1 Requirements Temporal reasoning in GeNIe and SMILE

Table 8.1: Use cases for the temporal reasoning extension.

Use case name TemporalType (Set, Edit)

Participating actor Executed by the network modeler.

Entry condition 1. The network modeler selects the node
that needs its temporal type changed.

Flow of events 2. The network modeler drags the node
to one of the following parts of the DBN
definition: anchor, contemporal, temporal
plate, or terminal.

Exit condition 3. The node has its temporal type
changed.

Use case name TemporalArc (Add, Remove, Edit)

Participating actor Executed by the network modeler.

Entry condition 1. The network modeler selects the arc
drawing tool.

Flow of events 2. The network modeler draws an arc
from a parent to a child (in the temporal
plate).
3. The network modeler sets the
temporal order of the arc.

Exit condition 4. The network has a new temporal
dependency.

Use case name TemporalProbabilities (Set, Edit)

Participating actor Executed by the network modeler.

Entry condition 1. The network modeler selects the node
that needs its temporal probabilities set.

Flow of events 2. The network modeler selects the
temporal CPT(s) of that node.
3. The network modeler specifies the
parameters of the temporal CPT(s).

Exit condition 4. The node has its temporal probabilities
set.

Use case name NumberOfSlices (Set, Edit)

Participating actor Executed by the decision maker.

Entry condition 1. The decision maker opens the global
temporal network settings.

Flow of events 2. The decision maker sets the number
of time-slices in the appropriate option.

Exit condition 3. The network has the number of
time-slices set for which inference must
be performed.

Use case name TemporalEvidence (Insert, Edit,
Remove)

Participating actor Executed by the decision maker.

Entry condition 1. The decision maker selects the node
for which there is temporal evidence.

Flow of events 2. The decision maker inserts temporal
evidence at the appropriate time-slice(s).

Exit condition 3. The node has some or all of its
temporal evidence set.

Use case name TemporalValue

Participating actor Executed by the decision maker.

Entry condition 1. The decision maker has set the
number of time-slices.
2. The decision maker performs
inference on the temporal network.
3. The decision maker selects the node
for which he wants to know the temporal
posterior beliefs.

Flow of events 4. The decision maker views the
temporal beliefs in one of the dedicated
representation windows.

Exit condition None.

Use case name UnrollNetwork

Participating actor Executed by the decision maker.

Entry condition 1. The decision maker has set the
number of time-slices.

2. The decision maker opens the global
temporal network settings.

Flow of events 3. The decision maker selects the unroll
option.

Exit condition 4. A window is opened with the temporal
network unrolled for the given number of
time-slices.

Use case name LocateNode

Participating actor Executed by the decision maker.

Entry condition 1. The decision maker has unrolled the
temporal network.
2. The decision maker selects an
unrolled node.

Flow of events 3. The decision maker selects the locate
in original DBN option.

Exit condition 4. The temporal network is opened and
the located node is highlighted.

65

Temporal reasoning in GeNIe and SMILE 8.1 Requirements

the temporal plate can have temporal arcs with arbitrary temporal orders. Users are able to de-
fine temporal probability distributions and the number of time-slices of the temporal process.
Users can set temporal evidence and perform inference on the temporal network to obtain the
posterior temporal values. The posterior temporal values can be visualized in several ways to
give the user insight in the development of the different variables over time. A temporal net-
work can be unrolled to a static network for a given number of time-slices. This static network
can be used for debugging purposes. Finally, the software is able to restore and save temporal
networks.

8.1.4 Nonfunctional requirements

The nonfunctional requirements relevant for the temporal extension are presented in this sec-
tion. Above all, the design and implementation of the temporal extension must be consistent
with the current design and implementation of the software.

User interface and human factors GeNIe and SMILE have a wide variety of users, varying
from users from the industry (Boeing, Intel, Philips) to academic users from a wide range of
universities all over the world. Most of these users have a basic knowledge of BNs, but are
not experts on more complex issues, such as the exact workings of the different inference tech-
niques. The interface of the software needs to hide as much of the more complex functionality
as possible in a consistent way, so these users do not get confused. However, expert users are
able to make use of this advanced functionality as well. An important property that all the users
share is that they want as much freedom as possible when modeling networks.

Documentation An advantage of the DSL software over its competitors is the availability of
documentation, reference manuals, tutorials and examples on all the provided functionality.
An on-line documentation, reference manual and tutorial also needs to be provided for the
temporal extension of both GeNIe and SMILE1. Example networks need to be made available
in the network repository of http://genie.sis.pitt.edu.

Platform considerations SMILE is compiled for a wide variety of platforms: Windows, Unix
(*BSD, Solaris, Mac OS X), Linux, and PocketPC. This means that for the implementation only
the standard c++ library can be used, as it is fully cross-platform. GeNIe is only available for
Windows, because it relies heavily on the Microsoft Foundation Classes. There are no hardware
considerations, as long as the hardware is able to run one of the before-mentioned platforms.

Performance characteristics Inference techniques rely on already implemented algorithms,
thus the achieved response time and accuracy are determined by the efficiency of the existing
implementation. The implementation of the temporal extension is light-weight, so users of
static networks do not notice a performance drop when upgrading to a version that has support
for temporal reasoning.

Error handling and extreme conditions A current design choice that must be respected is
that network changes that result in inconsistencies are always blocked. Because inference can
use a lot of memory resources, the software should be able to handle situations where no more
memory can be allocated.

1See appendices A and B.

66

8.2 Design Temporal reasoning in GeNIe and SMILE

Quality issues SMILE and GeNIe are robust in the sense that they do not crash when doing
what they are designed to do. When something goes wrong, the software needs to give a proper
warning and the network needs to stay consistent.

System modifications Future changes of the software are done by different people at the
DSL. Because many different people develop the software, good documentation is a must.

8.1.5 Pseudo requirements

The SMILE library and thus the temporal extension needs to be written in c++. GeNIe relies
heavily on the Microsoft Foundation Classes and will its incorporation of the temporal exten-
sion. Finally, networks are saved to a proprietary XML file format (.xdsl). This file format
needs to be extended to enable users to save and load temporal networks.

8.2 Design

In the previous section, a global overview of the system requirements was presented. After an
analysis step, a system design can be made from these requirements. We purposely skip the
analysis model, as this model only shows the interaction between the actors and the software,
but does not contain information about its internal structure. Because the temporal extension
cannot be seen separately from the DSL software, this section directly presents the resulting
class diagrams of the temporal extension integrated in the DSL software.

8.2.1 Design goals

After requirements elicitation, we could derive the most important design goals. The design
goals identify the qualities that the temporal extension focuses on. Note that the design partly
follows from the research assignment presented in section 1.2, where we stated that temporal
reasoning has to be implemented in SMILE instead of making stand-alone version. Evaluating
the requirements from the previous section resulted in four main design goals:

1. Since the start of the implementation of the SMILE library in 1997, many different peo-
ple have added many different features. As a result, the SMILE library gained a lot of
momentum. A returning challenge for every extension is to keep the SMILE functional-
ity consistent. For the extension with temporal reasoning this is even more important,
as it adds functionality to some of the core classes of SMILE. So, the first design goal is
consistency of the temporal extension with the current SMILE library.

2. An important property of SMILE over its competitors is its performance. The temporal
extension must not have an effect on the performance of existing static networks. From
this fact follows the second design goal: the temporal extension must be light-weight.

3. Currently, SMILE has many users in both the industrial and the academic world. More of-
ten than not these users have written dedicated applications that use the SMILE library as
underlying engine. The third design goal follows from the fact that these users are willing
to try temporal reasoning, but not if this results in a total rewrite of the dedicated appli-
cations. The temporal extension of SMILE must provide easy access to temporal reasoning
in existing networks and dedicated applications.

4. The final design goal follows from the fact that many different people work on SMILE.
Next to a good documentation, the design should be maintainable and expandable.

These four goals need to be satisfied for a successful implementation of temporal reasoning in
SMILE. How these goals are satisfied will become clear from the design choices made in the
remainder of this chapter. On a global level, the first goal is satisfied by transferring much

67

Temporal reasoning in GeNIe and SMILE 8.2 Design

of the static functionality to the temporal domain. The second goal is satisfied by making a
design that only initializes the temporal classes when needed. The third design goal is satisfied
by integrating the temporal extension in the core classes of SMILE and keeping the extended
SMILE library backwards compatible. Note that it can seem that design goal two excludes
design goal three, because integrating the temporal extension in the core classes of SMILE can
easily decrease the current performance. However, in the current approach, this is not the
case, as we will show in the final design. Design goal four is satisfied by adopting the current
object-oriented design approach.

8.2.2 Subsystem structure

The SMILE library is divided into four subsystems that provide different parts of the BN func-
tionality. In most cases, the subsystems are maintained by people that are dedicated to that
particular subsystem. Users of SMILE can choose to use load different subsystems for extra
functionality or choose to stick with the basic SMILE functionality. From the design goals
follows that the temporal extension should be added to the main SMILE library and not be
designed as a subsystem.

1. SMILE This is the subsystem that provides all the basic functionality for the design of
and inference on Bayesian networks and influence diagrams. It has support for several
CPDs, such as CPTs, canonical gates, and in the near future also arbitrary continuous
distributions. The temporal extension is part of this subsystem.

2. SMILearn This subsystem extends SMILE with learning and data mining functionality. It
provides a set of specialized classes that implement learning algorithms and other use-
ful tools for automated building graphical models from a dataset. Learning algorithms
include methods for learning both structure and parameters of BNs.

3. SMILEXML This subsystem provides the functionality to save and restore networks to a
XML file in the .xdsl format. This file format needed to be extended to be able to save
and restore networks with temporal relations.

4. SMILEMech A relatively new research topic in BNs is the incorporation of structural equa-
tions. This subsystem provides functionality for this incorporation and is currently under
development at the DSL.

5. Wrappers To enable users of programming languages other than c++ to interface with
the SMILE functionality, different wrappers are provided. Currently, Java programmers
can use the jSMILE wrapper, .NET programmers can use the SMILE.NET wrapper, and
VB6/VBA programmers can use the SMILEX ActiveX wrapper. Functionality that is added
to SMILE generally has a thorough testing period, after which the extra functionality
becomes available through the wrappers.

6. GeNIe This subsystem provides an easy-to-use GUI to SMILE for users of Microsoft Win-
dows. The GUI needs to be extended to provide access to the temporal reasoning func-
tionality.

The subsystem structure of the DSL software is shown in figure 8.1. To summarize, the temporal
extension was incorporated into the core classes of the SMILE subsystem. After that, SMILEXML
was adapted to enable users to save and restore temporal networks. Finally, GeNIe was adapted
to provide access to the temporal functionality. When the development of temporal reasoning
in SMILE has stabilized, the functionality will also be made accessible through the different
wrappers. However, that will not be part of this thesis.

8.2.3 Class identification

To be able to incorporate temporal reasoning in SMILE, several new classes and types were
designed. A global description is given here. How these classes fit into the current design and
how they relate to each other is discussed in section 8.3.

68

8.2 Design Temporal reasoning in GeNIe and SMILE

«subsystem»
GeNIe

«subsystem»
Wrappers

«subsystem»
SMILE

«subsystem»
SMILEMech

«subsystem»
SMILEXML

«subsystem»
SMILearn

Figure 8.1: Subsystem structure of DSL software.

Temporal arcs A temporal arc is defined as an arc from a parent to a child with a certain
temporal order. The DSL_temporalArcs class keeps track of the temporal parents and children
of a node.

Temporal node types Because we have extended the DBN formalism with the notion of
a temporal plate, anchor and terminal nodes, a property of type dsl_temporalType is in-
troduced that can be set to one of the following values: dsl_normalNode, dsl_anchorNode,
dsl_terminalNode, or dsl_plateNode.

Temporal definitions Every node needs to keep track of an extra CPD for every incoming tem-
poral arc with a different temporal order. The superclass DSL_nodeDefTemporals is introduced
that contains virtual methods to administer temporal CPDs. Several subclasses implement these
virtual methods: the DSL_defTemporalCpts class for the administration of the temporal CPTs;
the DSL_ciDefTemporals class that adds functionality for canonical gates and the DSL_noisy-
MaxTemporals that inherits from DSL_ciDefTemporals to implement the Noisy-MAX gate.

Temporal evidence and beliefs Every node in the temporal network is responsible for the
administration of its evidence for every time-slice. After inference, each node contains the
updated beliefs for every time-slice. The DSL_nodeValTemporals superclass contains virtual
methods for this administration. Again, every type of CPD has its own subclass. Because
the posterior beliefs of CPTs and canonical gates can be expressed in the same way, only one
subclass is introduced that implements the virtual nethods: DSL_valTemporalBeliefVectors.

Inference For inference in a temporal network, the DSL_dbnUnrollImpl class is introduced
that takes a temporal network, unrolls it for a given number of time-slices, performs inference
and copies the posterior beliefs back to the temporal network.

8.2.4 Persistent data management

GeNIe and SMILE save networks to the flat files in the XML-based .xdsl format. XML is a text-
based general-purpose markup language for creating special-purpose markup languages, such
as the .xdsl format. Languages based on XML are defined in a formal way, allowing programs
to modify and validate documents in these languages without prior knowledge of their form.
The XML schema for .xdsl files can be downloaded from http://genie.sis.pitt.edu.

The main advantage of using XML is that it is both a human- and machine-readable format.
Another important advantage is that it is platform-independent. A disadvantage can be the

69

Temporal reasoning in GeNIe and SMILE 8.2 Design

storage-size of files saved in an XML format. XML files tend to get very large, because the
syntax is fairly verbose and partially redundant. This is also the case for larger networks stored
in the .xdsl file format. However, because generally these networks do not have to be sent
over a network and because storage space is cheap, this does not pose a problem.

The .xdsl file format needed to be extended to hold the temporal information of a network.
Furthermore, SMILEXML needed to be extended to deal with the extensions of the .xdsl file
format. A challenge of incorporating the temporal extension into the .xdsl file format was that
at every moment during parsing, the intermediate network must be consistent. For instance,
it is not possible to add temporal arcs to a node if that node is not yet in the temporal plate.
Basically, the incorporation of temporal networks in the .xdsl file format comes down to:

1. Introducing the attribute dynamic to the node tag that can take one of the following val-
ues: anchor, plate, or terminal. Nodes for which this attribute is not set are contemporal
by default. The use of this attribute is not forced to stay compatible with existing net-
works.

2. Introducing the dynamic tag with a numslices attribute. This tag contains the temporal
information of the network. It contains the nodes in the temporal plate with temporal
parents of a certain order through the node tag and the parent tag that has an order
attribute. The temporal CPDs are also saved in this part in corresponding CPD tags, such
as the cpt tag for CPTs. These tags also get an extra order attribute.

When a network is loaded from an .xdsl file, first the nodes and non-temporal arcs and non-
temporal CPDs are set, together with the temporal type of these nodes. After that, the temporal
arcs and temporal CPDs are added to the nodes in the temporal plate. As a result, .xdsl files
can be parsed without getting intermediate networks that are inconsistent. Figure 8.2 shows the
extended umbrella network that is also used in the tutorial (appendices A and B) and listing 8.1
shows a snippet of the corresponding .xdsl file.

A

Rt

Ut

1

8

p(Area)

Pittsburgh 0.5

Sahara 0.5

p(Rain1)

Area Pittsburgh Sahara

true 0.7 0.01

false 0.3 0.99

p(Raint)

Area Pittsburgh Sahara

Raint−1 true false true false

true 0.7 0.3 0.001 0.01

false 0.3 0.7 0.999 0.99

p(Umbrellat)

Raint true f alse

true 0.9 0.2

f alse 0.1 0.8

Figure 8.2: The extended umbrella DBN and its CPTs.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <smile version="1.0" id="UmbrellaNetwork" numsamples="1000">
3 <nodes>
4 <cpt id="Area">
5 <state id="Pittsburgh" />
6 <state id="Sahara" />
7 <probabilities >0.5 0.5</probabilities >
8 </cpt>
9 <cpt id="Rain" dynamic="plate">

10 <state id="True" />
11 <state id="False" />
12 <parents>Area</parents>
13 <probabilities >0.7 0.3 0.01 0.99</probabilities >
14 </cpt>
15 <cpt id="Umbrella" dynamic="plate">
16 <state id="True" />
17 <state id="False" />
18 <parents>Rain</parents>

70

8.2 Design Temporal reasoning in GeNIe and SMILE

19 <probabilities >0.9 0.1 0.2 0.8</probabilities >
20 </cpt>
21 </nodes>
22 <dynamic numslices="8">
23 <node id="Rain">
24 <parent id="Rain" order="1" />
25 <cpt order="1">0.7 0.3 0.3 0.7 0.001 0.999 0.01 0.99</cpt>
26 </node>
27 </dynamic>
28 <extensions >
29 ...
30 </extensions >
31 </smile>

Listing 8.1: The extended umbrella network stored as an .xdsl file.

8.2.5 Graphical user interface

The design of a GUI can be a time-consuming process for both designer and user. In large soft-
ware projects, a common approach for GUI design is prototyping. In this approach, designing
the GUI is an iterative process where the designer proposes a design that is presented to the
user for evaluation. Based on feedback from the user, the designer modifies the design, presents
the modified design, and so on and so forth.

However, because this process is so time-consuming, we decided to follow a different ap-
proach. First, we take a look at the target user group that we distinguished in section 8.1:

GeNIe and SMILE have a wide variety of users, varying from users from the industry (Boeing,
Intel, Philips) to academic users from a wide range of universities all over the world. Most of these
users have a basic knowledge of BNs, but are no experts on more complex issues, such as the exact
workings of the different inference techniques.

What extra GUI design criteria follow from the specification of the user group? First of all,
our design needs to focus on visualizing temporal reasoning, not on the techniques behind it.
Second, because most users use GeNIe as a research tool, debugging of temporal networks must
be provided. Of course, the design goals stated earlier in this section also hold: the GUI design
for temporal reasoning must be consistent with the current GUI and easy access to temporal
reasoning in existing networks must be provided.

Based on this, brainstorm sessions within the DSL were held to design an initial GUI with
the help of existing packages. The resulting GUI design was globally evaluated in sessions with
potential users from Intel and Philips using screen mock-ups of the design of a DBN and of infer-
ence results. After this revision, the global design was finished and during its implementation,
individual feedback was used to further refine the GUI. This resulted in the current GUI. One
thing to keep in mind is that the process of GUI refinement is never finished. Development of
GeNIe is largely driven by feedback from users all over the world and several good suggestions
are being implemented at this very moment. The GUI design process resulted in a design of
temporal reasoning in GeNIe that can be separated in several subparts. These subparts were
incorporated into existing parts of GeNIe to maintain consistency.

Temporal types Remember that in the DBN formalism, a node can be one of the four temporal
types: anchor, contemporal, plate, and terminal. In a static network, the concept of temporal
types does not exist. In the GUI design for temporal networks, we needed to incorporate the
concept of temporal types without changing the GUI that already existed. This is achieved in
the following way: A new network is static by default. When the network modeler decides
to add temporal relations, he clicks on Network → Enable Temporal Plate in the menu bar as
shown in figure 8.3. This results in the network area being divided into four parts, according
to the four temporal types defined in chapter 7:

71

Temporal reasoning in GeNIe and SMILE 8.2 Design

Figure 8.3: Temporal options in the menu bar of GeNIe under Network.

1. Contemporals This is the part of the network area where the static nodes are stored by
default.

2. Initial conditions This is the part of the network area where the anchor nodes are stored.
3. Temporal plate This is the part of the network area where the nodes in the temporal

plate are stored. Nodes in the temporal plate are the only nodes that are allowed to
have temporal arcs. This area also shows the number of time-slices for which inference is
performed.

4. Terminal conditions This is the part of the network area where the terminal nodes are
stored.

The boundaries of the different areas can be changed by dragging them. These boundaries are
also used to layout the network when it is unrolled explicitly. Temporal types of nodes can be
changed by dragging them to one of the three other areas. A general overview of the network
area environment is shown in figure 8.4.

Figure 8.4: General overview of the network area environment in GeNIe.

72

8.2 Design Temporal reasoning in GeNIe and SMILE

Temporal arcs After a network modeler drags a node to the temporal plate, he can add
temporal arcs. A temporal arc consists of a parent, a child and a temporal order. The network
modeler can add a temporal arc by clicking on the arc button and drawing an arc from a parent
to a child2. When the network modeler has drawn the arc and releases the mouse button, a
context menu appears to enable the user to set the temporal order of the arc. Every temporal
arc has a small label with its temporal order. Figure 8.5 demonstrates the addition of a temporal
arc to a network.

Figure 8.5: Adding a temporal arc in GeNIe.

Temporal definition Every node in the temporal plate needs a CPD for every incoming tem-
poral arc with a different temporal order. Just like setting the CPD for ordinary nodes, the
network modeler needs to double-click on the node in the network area and go to the defi-
nition tab to set the temporal CPDs. When a node has incoming temporal arcs, the network
modeler can select the appropriate temporal CPD from a list and set its parameters. Figure 8.6
demonstrates this process.

Temporal evidence When a temporal network is finished, the decision maker can use it for
decision support. Before the decision maker can add observations or evidence to the temporal
network, he needs to set the number of time-slices of the temporal network by clicking on
Network → Slice Count. . . . The number of time-slices denote the time-period the decision
maker is interested in. After setting the number of time-slices, he can add evidence to nodes in
the temporal network by right-clicking on a node and selecting Evidence from the context menu.
For non-temporal nodes, the decision maker can set the evidence directly. For temporal nodes,
a form appears where the decision maker can add evidence for every time-slice. Figure 8.7
demonstrates the addition of evidence to a temporal node.

2This can be the same node.

73

Temporal reasoning in GeNIe and SMILE 8.2 Design

Figure 8.6: Setting the temporal definition of a node in GeNIe.

Figure 8.7: Setting temporal evidence in GeNIe.

Temporal inference Calling inference on a temporal network is no different than calling
inference on a non-temporal network from a GUI perspective. The decision maker can set
the inference algorithm by clicking on Network → Algorithm. . . and selecting the appropriate
algorithm. The algorithm is called by right-clicking on the network area and selecting Update
Beliefs from the context menu or by pressing F5.

74

8.2 Design Temporal reasoning in GeNIe and SMILE

Figure 8.8: Showing the different representations of the temporal posterior beliefs in GeNIe.

Temporal posterior beliefs After inference is called, the temporal network has its beliefs
updated. A clear presentation of these updated beliefs is very important for the decision
maker. The updated beliefs for a temporal node can be obtained by double-clicking on the
node and selecting the Value tab. This tab contains the updated beliefs for all time-slices of
that node not only in floating point numbers, but also as: an area chart, contour plot, and
time-series plot. Both the area chart and time-series plot can be found in other packages as
well, but the contour plot is a representation of temporal beliefs that is a unique feature of

75

Temporal reasoning in GeNIe and SMILE 8.3 Implementation

GeNIe to the best of our knowledge. The contour plot represents a three dimensional space
with the dimensions: time (x-axis), state (y-axis), and probability of an outcome at every point
in time (the color). It is possible for the decision maker to cut-off the color range to get more
insight into the development and the uncertainty of the temporal process. This representation
is especially useful for temporal nodes that have many states, where the other representations
are more useful for temporal nodes with not too many states. Figure 8.8 shows the different
representations of the temporal posterior beliefs.

Unrolling It can be useful for debugging purposes to explicitly unroll a temporal network for
a given number of time-slices. GeNIe provides this possibility through the Network → Unroll
option. When clicking this option, GeNIe opens a new network that has the temporal network
unrolled for the given number of time-slices. It is possible to locate a node in the temporal
network from the unrolled network by right-clicking on the node in the unrolled network and
select Locate Original in DBN from the context-menu. The unrolled network that is a result from
unrolling the temporal network is cleared from any temporal information whatsoever. It can
be edited, saved and restored just like any other static network. Figure 8.9 shows the unrolled
representation of a temporal network.

Figure 8.9: Unrolling a temporal network and locating a node in GeNIe.

8.3 Implementation

This section discusses the actual implementation of temporal reasoning in SMILE. It presents
how the classes of SMILE are re-engineered to incorporate the classes and data types identified
in section 8.2. The implementation of the GUI for temporal reasoning in GeNIe is not discussed,
because those changes were not implemented by the author of this thesis. The same holds for
the implementation of the .xdsl file format extension in SMILEXML.

A general overview of the introduced and adapted classes and data types is given in fig-
ure 8.10. In this class diagram, the classes of SMILE that are not adapted for the temporal rea-
soning extension are omitted. The specific implementation details for every class are described
next in a top-down order. Whenever needed, the interaction between the classes is discussed

76

8.3 Implementation Temporal reasoning in GeNIe and SMILE

DSL_network
-numSlices : int

DSL_temporalArcs

DSL_nodeEntry

DSL_node

DSL_nodeValue DSL_nodeDefinition

DSL_cpt

DSL_nodeDefTemporals

DSL_beliefVector

DSL_valTemporalBeliefVectors

DSL_nodeValTemporals

DSL_defTemporalCpts

1

*

1

0..1

1

1

1

1

1

1

1

1

1

0..1

1
1

1

0..1

DSL_ciDefinition

DSL_noisyMAX

DSL_ciDefTemporals

DSL_noisyMAXTemporals

1

1

DSL_dbnUnrollImpl

«enumeration»
dsl_temporalType

1 1

1

*

parents - children

1

1

1

1

1

1

11

Figure 8.10: General overview of the temporal extension in SMILE.

as well. Unfortunately, not too many implementation details can be given, because SMILE is
closed-source. The implementation of the temporal reasoning extension forms a significant part
of the current SMILE library.

8.3.1 DSL_network

This is the most important class of the SMILE library. Most functionality can be reached by call-
ing methods from this class. To extend SMILE with temporal reasoning, a property numSlices
was introduced that holds the number of time-slices. Furthermore, some methods were added
for the administration of a temporal network.

77

Temporal reasoning in GeNIe and SMILE 8.3 Implementation

+AddTemporalArc(in parent : int, in child : int, in order : int) : int
+GetMaximumOrder() : int
+GetNumberOfSlices() : int
+GetTemporalChildren(in node : int) : vector<pair<int, int>>
+GetTemporalParents(in node : int) : vector<pair<int, int>>
+GetTemporalType(in node : int) : dsl_temporalType
+RemoveAllTemporalInfo() : int
+RemoveTemporalArc(in parent : int, in child : int, in order : int) : int
+SetNumberOfSlices(in slices : int) : int
+SetTemporalType(in node : int, in type : dsl_temporalType) : int
+TemporalRelationExists(in parent : int, in child : int, in order : int) : bool
+UnrollNetwork(out unrolled : DSL_network) : int

-numSlices : int
DSL_network

Figure 8.11: New methods and properties of the DSL_network class.

8.3.2 DSL_nodeEntry

This is the class that holds all the information of a node. It is invisible for the user, but all
communication between the network and the nodes and between nodes themselves is man-
aged through an array of DSL_nodeEntry objects. The DSL_nodeEntry class is extended with
a dsl_temporalType property and a DSL_temporalArcs property. The DSL_temporalArcs is
NULL by default. These properties are set through methods in the DSL_network class.

+temporalArcs : DSL_temporalArcs
+temporalType : dsl_temporalType

DSL_nodeEntry

Figure 8.12: New methods and properties of the DSL_nodeEntry class.

8.3.3 DSL_temporalArcs

A temporal arc is defined as an arc from a parent to a child with a certain temporal order
larger than zero. The new DSL_temporalArcs class is a property of DSL_nodeEntry that keeps
track of the temporal relations. DSL_nodeEntry is the most logical place to hold this property,
because it already keeps track of the static relations between parent and child nodes. The
DSL_temporalArcs property is NULL by default to reduce overhead for static networks and
nodes. The DSL_network class is responsible for the consistency of the temporal arcs of the
DSL_temporalArcs property.

+AddChild(in child : int, in order : int)
+AddParent(in child : int, in order : int)
+CleanUp()
+FindPositionOfChild(in child : int, in order : int) : int
+FindPositionOfParent(in parent : int, in order : int) : int
+GetChildren() : vector<pair<int, int>>
+GetParents() : vector<pair<int, int>>
+GetMaximumOrderOfChild() : pair<int, int>
+GetMaximumOrderOfParents() : pair<int, int>
+HasChild(in child : int, in order : int) : bool
+HasParent(in parent : int, in order : int) : bool
+IsEmpty() : bool
+RemoveChild(in child : int, in order : int) : int
+RemoveParent(in parent : int, in order : int) : int

-children : vector<pair<int, int>>
-parents : vector<pair<int, int>>

DSL_temporalArcs

Figure 8.13: The new DSL_temporalArcs class.

78

8.3 Implementation Temporal reasoning in GeNIe and SMILE

8.3.4 DSL_dbnUnrollImpl

When a decision maker performs inference on a temporal network, the DSL_network class
creates a temporary object of the DSL_dbnUnrollImpl class. This class takes the temporal net-
work, unrolls it, copies evidence, performs inference, and copies the posterior beliefs back to the
temporal network. The decision maker is not aware of this process, the DSL_dbnUnrollImpl
is completely hidden from the outside. The purpose of this class is to provide an object-oriented
way to several temporal inference techniques, because in the future, more temporal inference
techniques will be implemented.

+Unroll(out out : DSL_network) : int
+UpdateBeliefs() : int
-ConvertToSlicesRepresentation() : int
-CopyBasicTemporalNode(in node : int, in slice : int) : int
-CopyNodes(in plateNodes : DSL_intArray) : int
-CopyNodesRec(in node : int, inout NodesToDo : DSL_intArray, in currentSlice : int) : int
-GetTemporalNodeHandle(in node : int, in order : int) : int
-SetTemporalEvidence(in nodes : DSL_intArray)
-SetTemporalMatrices(in nodes : DSL_intArray) : int
-SetTemporalNodeArcs(in nodes : DSL_intArray)
-SetTerminalNodeArcs(in nodes : DSL_intArray)

-dbn : DSL_network
-unrolled : DSL_network
-nodesTInfo : vector<pair<int, int>>

DSL_dbnUnrollImpl

Figure 8.14: The new DSL_dbnUnrollImpl class.

8.3.5 DSL_node

The DSL_node class is extended with two methods to provide easy access to the temporal defi-
nition and the temporal values.

+TemporalDefinition() : DSL_nodeDefTemporals
+TemporalValue() : DSL_nodeValTemporals

DSL_node

Figure 8.15: New methods of the DSL_node class.

8.3.6 DSL_nodeDefinition

This is a class with mainly virtual methods that are implemented by its subclasses. Each sub-
class represents a certain conditional probability distribution. Every node definition gets a
property that holds its temporal definition. This property is NULL by default and is instantiated
by calling the (virtual) EnsureTemporalsExist() method and can be accessed by the (virtual)
GetTemporals() method. The DSL_nodeDefinition class implements three methods that syn-
chronize children of nodes that change their definition. These methods, recognized by the
Common prefix, needed to be adapted to provide for synchronization of the temporal definition
as well. The subclasses that inherit from DSL_nodeDefinition are discussed below.

DSL_cpt This class is extended with the DSL_temporalCpts property and according methods.
The most important changes within this class are a result of the need to keep the static definition
in synchronization with the temporal definition. Several methods needed to be extended to
provide this.

79

Temporal reasoning in GeNIe and SMILE 8.3 Implementation

+virtual EnsureTemporalsExist() : int
+virtual GetTemporals() : DSL_nodeDefTemporals
#CommonChangeOrderOfOutcomes(in outcomes : DSL_intArray) : int
#CommonInsertOutcome(in outcome : int) : int
#CommonRemoveOutcome(in outcome : int) : int
#GetUniqueTemporalChildren(out children : DSL_intArray) : int

DSL_nodeDefinition

+AddParent(in parent : int) : int
+AddState(in name[] : char) : int
+ChangeOrderOfStates(in order : DSL_intArray) : int
+CheckParentsStructure() : int
+CleanUp(in deep : int)
+Clone(in def : DSL_nodeDefinition) : int
+DaddyChangedOrderOfOutcomes(in daddy : int, in order : DSL_intArray) : int
+DaddyGetsBigger(in daddy : int, in position : int) : int
+DaddyGetsSmaller(in daddy : int, in position : int) : int
+EnsureTemporalsExist() : int
+GetTemporals() : DSL_nodeDefTemporals
+InsertState(in position : int, in name[] : char) : int
+OrderOfParentsGetsChanged(in order : DSL_intArray) : int
+ReCreateFromNetworkStructure() : int
+RemoveParent(in parent : int) : int
+RemoveState(in state : int) : int
-SetTemporals(in def : DSL_nodeDefTemporals) : int

DSL_cpt
#temporalCpts : DSL_defTemporalCpts

+CheckParentsStructure() : int
+GetTemporals() : DSL_nodeDefTemporals
+InsertOutcome(in position : int, in name[] : char) : int
+RemoveOutcome(in state : int) : int
+SetDontKeepSynchronized()

DSL_ciDefinition
#ciDefTemporals : DSL_ciDefTemporals

+AddParent(in parent : int) : int
+ChangeOrderOfOutcomes(in order : DSL_intArray) : int
+ChangeOrderOfStrenghts(in position : int, in order) : int
+CiToCpt()
+CleanUp(in deep : int)
+Clone(in def : DSL_nodeDefinition) : int
+DaddyChangedOrderOfOutcomes(in daddy : int, in order : DSL_intArray) : int
+DaddyGetsBigger(in daddy : int, in position : int) : int
+DaddyGetsSmaller(in daddy : int, in position : int) : int
+EnsureTemporalsExist() : int
+OrderOfParentsGetsChanged(in order : DSL_intArray) : int
+ReCreateFromNetworkStructure() : int
+RemoveParent(in parent : int) : int
+SetParentOutcomeStrengths(in position : int, in strengths : DSL_intArray) : int
-SetTemporals(in def : DSL_nodeDefTemporals) : int

DSL_noisyMAX

Figure 8.16: New and altered methods and properties of the DSL_nodeDefinition, DSL_cpt, DSL_ciDefini-
tion, and DSL_noisyMAX classes.

DSL_ciDefinition This is the superclass for canonical gate definitions. It implements some
of the virtual methods of DSL_nodeDefinition, but most functionality is implemented by its
subclasses. The DSL_ciDefinition class is extended with the DSL_ciDefTemporals property
and the appropriate methods. Some methods needed to be adapted to keep the DSL_ciDef-
Temporals property synchronized.

DSL_noisyMAX This class implements the canonical gate based on the NoisyMAX representa-
tion. An important extra data structure that needed to be taken into account is the vector that
holds the causal order of the parent strengths. Again, several methods needed to be extended
to account for synchronization with the temporal definition.

8.3.7 DSL_nodeValue

Just like DSL_nodeDefinition, this class contains mainly virtual methods that are implemented
by its subclasses. Each subclass represents a certain posterior belief representation. Every node
value implementation gets a property that holds its temporal values. This property is NULL by
default and is instantiated by calling the (virtual) SetTemporals() method. This call is realized
in the case where we are dealing with a temporal network and the number of time-slices is set in
the DSL_network class. The temporal values can be accessed by the (virtual) GetTemporals()
method. The DSL_beliefVector subclass that inherits from DSL_nodeValue is discussed below.

80

8.4 Testing Temporal reasoning in GeNIe and SMILE

+GetAllFlags() : int
+virtual GetTemporals() : DSL_nodeValTemporals
+virtual SetTemporals(in val : DSL_nodeValTemporals) : int

DSL_nodeValue

+ClearEvidence() : int
+Clone(in val : DSL_nodeValue) : int
+GetTemporals() : DSL_nodeValTemporals
+SetTemporals(in val : DSL_nodeValTemporals) : int

-tBeliefs : DSL_valTemporalBeliefVectors
DSL_beliefVector

Figure 8.17: New and altered methods and properties of the DSL_nodeValue and DSL_beliefVector classes.

DSL_beliefVector This class is extended with the DSL_valTemporalBeliefVectors property
and according methods. The most important changes within this class are a result of the need
to keep the static values in synchronization with the temporal values. A couple of methods
needed to be extended to provide this.

8.3.8 DSL_nodeDefTemporals

The DSL_nodeDefTemporals class is the superclass for the temporal part of the node definition.
It contains mainly virtual methods that are implemented in its subclasses. Unfortunately, be-
cause of historical reasons in the development of SMILE, some methods are redundant. For
instance, State and Outcome refer to the same functionality. To keep the methods in the tem-
poral definition consistent with the methods in the node definition, we decided to deliberately
copy this redundancy, but we know this goes against every software engineering principle. A
large part of the methods in the DSL_nodeDefTemporals class is needed to keep the node defi-
nition in synchronization with the temporal definition, only a subset of the methods is needed
for the management of the temporal definition itself.

DSL_defTemporalCpts This class implements the virtual methods that are declared in DSL_-
nodeDefTemporals and gets a property that stores the temporal CPTs.

DSL_ciDefTemporals This class implements some of the virtual methods that are declared in
DSL_nodeDefTemporals and adds general functionality for temporal canonical gates.

DSL_noisyMAXTemporals This class implements the functionality for the temporal Noisy-MAX
gate.

8.3.9 DSL_nodeValTemporals

The DSL_nodeValTemporals class is the superclass for storing the temporal evidence and pos-
terior beliefs. It contains methods for administration of the temporal flags for every time-slice.
It also declares virtual methods that are implemented by its subclasses. At the moment, only
the DSL_valTemporalBeliefVectors subclass is implemented, because this class is compatible
with the CPT and Noisy-MAX representations.

DSL_valTemporalBeliefVectors This class implements the virtual methods that are declared
in DSL_nodeValTemporals. It has one property that contains the temporal evidence or beliefs
for every time-slice of the temporal network.

8.4 Testing

Quality assurance is a very important aspect of extending GeNIe and SMILE with new function-
ality. Both products are of industrial quality regarding robustness and performance. This means

81

Temporal reasoning in GeNIe and SMILE 8.4 Testing

+CleanUp()
+GetMaximumOrder() : int
+GetNodeDefinition() : DSL_nodeDefinition
+GetNodeHandle() : int
+SetNodeDefinition(in def : DSL_nodeDefinition) : int
+SetNodeHandle(in node : int) : int
+virtual AddParent(in parent : int) : int
+virtual AddState() : int
+virtual AddTemporalParent(in parent : int, in order : int) : int
+virtual ChangeOrderOfOutcomes(in order : DSL_intArray) : int
+virtual ChangeOrderOfStates(in order : DSL_intArray) : int
+virtual DaddyChangedFromAnchor(in parent : int) : int
+virtual DaddyChangedOrderOfOutcomes(in daddy : int, in order : DSL_intArray) : int
+virtual DaddyChangedToAnchor(in parent : int) : int
+virtual DaddyGetsBigger(in daddy : int, in position : int) : int
+virtual DaddyGetsSmaller(in daddy : int, in position : int) : int
+virtual GetMaximumOrderTemporalDefinition(out here : DSL_Dmatrix) : int
+virtual GetMaximumOrderTemporalMatrix(out here : DSL_Dmatrix) : int
+virtual GetSize() : int
+virtual GetTemporalDefinition(in here : DSL_Dmatrix) : int
+virtual GetTemporalMatrix(in here : DSL_Dmatrix) : int
+virtual GetType() : int
+virtual InsertOutcome(in position : int) : int
+virtual InsertState(in position : int) : int
+virtual OrderOfParentsGetsChanged(in order : DSL_intArray) : int
+virtual RemoveOutcome(in position : int) : int
+virtual RemoveParent(in parent : int) : int
+virtual RemoveState(in position : int) : int
+virtual RemoveTemporalParent(in parent : int, in order : int) : int
+virtual SetTemporalDefinition(in probs : DSL_doubleArray, in order : int) : int
+virtual SetTemporalDefinition(in matrix : DSL_Dmatrix, in order : int) : int
+virtual SetTemporalMatrix(in matrix : DSL_Dmatrix, in order : int) : int
+virtual SetTemporalProbabilities(in probs : DSL_doubleArray, in order : int) : int
+virtual TemporalDaddyChangedOrderOfOutcomes(in daddy : int, in order : DSL_intArray) : int
+virtual TemporalDaddyGetsBigger(in daddy : int, in position : int) : int
+virtual TemporalDaddyGetsSmaller(in daddy : int, in position : int) : int
#GetStaticParentsNotAnchor(out here : DSL_intArray) : int
#GetTemporalPosition(in parent : int, in order : int) : int
#GetNumberOfTemporalParents(in order : int) : int

#nodeDef : DSL_nodeDefinition
#nodeHandle : int
#maxOrder : int

DSL_nodeDefTemporals

#theCpts : map<int, DSL_Dmatrix>
DSL_defTemporalCpts

Implements virtual methods...

+ChangeOrderOfStrengths(in parentpos : int, in order : const DSL_intArray) : int
+SetParentOutcomeStrengths(in parentpos : int, in strengths : DSL_intArray) : int
+ChangeTemporalOrderOfStrengths(in parentpos : int, in neworder : const DSL_intArray, in order : int) : int
+SetTemporalParentOutcomeStrengths(in parentpos : int, in strengths : DSL_intArray, in order : int) : int
-SetInitialParameters(in parentpos : int) : int
-GetParentStartingPosition(in hispos : int) : int
-GetNumOfParentOutcomes(in parentpos : int) : int
-SetTemporalInitialParameters(in parentpos : int, in order : int) : int
-GetTemporalParentStartingPosition(in parentpos : int, in order : int) : int
-GetTemporalNumOfParentOutcomes(in parentpos : int, in order : int) : int
-TemporalCiIndexConstrained(in ci : DSL_Dmatrix, in index : int, in order : int) : int
-GetTemporalPosition(in staticpos : int) : int
+GetStrengthOfOutcome(in parentpos : int, in outcome : int) : int
+GetTemporalStrengthOfOutcome(in parentpos : int, in outcome : int, in order : int) : int
+GetParentOutcomeStrengths(in parentpos : int) : DSL_intArray
+GetTemporalParentOutcomeStrengths(in parentpos : int, in order : int) : DSL_intArray
+GetTemporalParentOutcomeStrengths(inout here : vector<DSL_intArray>, in order : int) : int
+GetMaximumOrderTemporalParentOutcomeStrengths(inout here : vector<DSL_intArray>) : int
+ ()

#theStrengths : map<int, vector<DSL_intArray> >
DSL_noisyMaxTemporals

+GetMaximumOrderTemporalCiWeights(inout here : DSL_Dmatrix) : int
+SetDontKeepSynchronized()
+GetTemporalCiWeights(inout here : DSL_Dmatrix, in order : int) : int
+SetTemporalCiWeights(inout matrix : DSL_Dmatrix, in order : int) : int
+SetTemporalCiWeights(in probs : DSL_doubleArray, in order : int) : int
+ ()

#theTables : map<int, DSL_Dmatrix>
#theCiWeights : map<int, DSL_Dmatrix>

DSL_ciDefTemporals

Implements virtual methods...

Implements virtual methods...

Figure 8.18: The new DSL_nodeDefTemporals, DSL_defTemporalCpts, DSL_ciDefTemporals, and
DSL_noisyMAXTemporals classes.

82

8.4 Testing Temporal reasoning in GeNIe and SMILE

+AddIndexingTemporalParent(in parent : int, in pslice : int, in slice : int) : int
+CleanUp()
+ClearTemporalFlag(in flag : int, in slice : int)
+GetAllIndexingTemporalParents() : multimap<int, pair<int, int>>
+GetNodeHandle() : int
+GetNodeValue() : DSL_nodeValue
+IsTemporalEvidence(in slice : int) : int
+IsTemporalFlagSet(in flag : int, in slice : int) : int
+IsTemporalPropagatedEvidence(in slice : int) : int
+IsTemporalRealEvidence(in slice : int) : int
+IsTemporalValueValid(in slice : int) : int
+SetAllTemporalFlags(in flags : int, in slice : int) : int
+SetNodeHandle(in node : int) : int
+SetNodeValue(in val : DSL_nodeValue) : int
+SetTemporalFlag(in flag : int, in slice : int) : int
+SetTemporalValueInvalid(in slice : int) : int
+SetTemporalValueValid(in slice : int) : int
+virtual ClearAllTemporalEvidence() : int
+virtual ClearTemporalEvidence(in slice : int) : int
+virtual GetTemporalEvidence(in slice : int) : int
+virtual GetTemporalValue(out here : DSL_Dmatrix) : int
+virtual GetType() : int
+virtual SetTemporalEvidence(in evidence : int, in slice : int) : int
+virtual SetTemporalValue(in matrix : DSL_Dmatrix, in slice : int) : int
#virtual CleanTemporalEvidence(in slice : int) : int
#virtual StoreTemporalEvidence(in evidence : int, in slice : int) : int

-indexingTParents : multimap<int, pair<int, int>>
-nodeHandle : int
-nodeValue : DSL_nodeValue
-sliceFlags : vector<int>

DSL_nodeValTemporals

#temporalBeliefs : vector<evBels>
DSL_valTemporalBeliefVectors

Implements virtual methods...

Figure 8.19: The new DSL_nodeValTemporals and DSL_valTemporalBeliefVectors classes.

that errors discovered by end users need to be minimized. An important aspect of quality as-
surance is a well-balanced testing methodology. Thorough testing is essential for the temporal
reasoning extension before a public version gets released. This section elaborates on the testing
methodology followed while implementing temporal reasoning.

8.4.1 Inspecting components

During implementation of temporal reasoning in SMILE, the source code of the implemented
classes was reviewed to find potential errors. These inspections where performed manually and
took place in turns with unit testing. Next to finding errors, an important goal of this exercise
was to maximize quality and efficiency of the delivered source code. Also, the returned error
codes were reviewed and the use of assertions was encouraged to enlarge the maintainability
of the source code.

8.4.2 Unit testing

Unit testing focuses on the building blocks of the software system. Because of time constraints,
not every class is tested individually, but several classes were grouped together to form coherent
blocks that could be tested individually. For SMILE, this resulted in the seven subsystems shown
in figure 8.20. A library of small test programs was written to test the majority of methods in
the subsystems. Several methods were not tested directly. If a method that is composed of
several sub-methods behaved correctly, it was assumed that the sub-methods behaved correctly
as well. The small test programs implemented the following three test methods:

1. Boundary testing Examples of boundary testing include: testing temporal networks with
zero time-slices, testing temporal arcs of order zero, retrieving posterior beliefs for non-
existing time-slices, etc.

2. Path testing Object-oriented languages pose some difficulties for path testing in compar-
ison to imperative languages, because of polymorphism of objects, interconnectivity of
objects, and many small methods instead of several large methods. However, path testing

83

Temporal reasoning in GeNIe and SMILE 8.4 Testing

DSL_valTemporalBeliefVectors

DSL_nodeValTemporals

DSL_nodeValue

DSL_beliefVector

DSL_nodeDefTemporals

DSL_defTemporalCpts

DSL_ciDefTemporals

DSL_noisyMAXTemporals

DSL_temporalArcs

DSL_nodeEntry

«enumeration»
dsl_temporalType

DSL_nodeDefinition

DSL_cpt

DSL_ciDefinition

DSL_noisyMAX

DSL_dbnUnrollImpl

DSL_node

DSL_network

1

2

3

4

5
6

7

Figure 8.20: The implementation of temporal reasoning in SMILE decomposed into seven subsystems. Each
subsystem was tested individually during unit testing. The arrows depict the order in which the subsystems
where connected during the integration testing. All subsystems are connected during integration testing when

testing subsystem 7 DSL_network.

can still be useful. We performed path tests for large methods in the DSL_network and
DSL_dbnUnrollImpl classes, such as setting the temporal type of a node, updating the
beliefs, or adding temporal arcs. Several of these tests where repeated during integration
testing, because of the relation between the subsystems.

3. State-based testing Throughout the testing phase, specialized debug methods printed the
state of the accessed objects to the standard output after each step. These methods gave
insight into the states of tested objects and were used to test whether state-transitions of
those objects behaved correctly.

Figure 8.20 shows the seven subsystems that were tested during unit testing. The arrows depict
the order in which the subsystems were connected during the integration testing, which is
described next.

8.4.3 Integration testing

During integration testing, components are integrated into larger components and tested to-
gether. During this phase, errors are detected that could not be detected during unit testing,
such as faults associated with calling the interfaces. Figure 8.20 shows how the seven sub-
systems are integrated in several steps to ultimately form the SMILE subsystem with temporal
reasoning. This is a form of bottom-up testing where the subsystems where cumulatively tested
in the following order:

• Cumulative subsystem I: double test {1, 2}, triple test {1, 2, 3},
• Cumulative subsystem II: double test {1, 4}, triple test {1, 4, 5},
• Cumulative subsystem III: double test {6, I}, double test {6, II}, and
• SMILE subsystem: double test {III, 7}.

84

8.4 Testing Temporal reasoning in GeNIe and SMILE

Performing these tests results in the fully tested SMILE subsystem. This subsystem in its
turn needed to be integration tested with the two other subsystems that were implemented:
SMILEXML and GeNIe. Figure 8.21 shows shows how the three top layer subsystems are inte-
grated and tested.

«subsystem»
GeNIe

«subsystem»
SMILE

«subsystem»
SMILEXML

1

2

3

Figure 8.21: Integration testing for SMILE, SMILEXML, and GeNIe.

8.4.4 System testing

System testing focuses on the complete system. It ensures that the complete system complies
with the functional and non-functional requirements stated in section 8.1. We decided to test
the use cases, performance and robustness of the implementation of temporal reasoning in
SMILE and GeNIe.

Application testing Throughout this research the implementation in SMILE and GeNIe was
tested by applying it to the two problems in the medical domain that we modeled.

Functional testing The functional testing was completely based on the use cases derived in
section 8.1. Testing all possible valid and invalid inputs for all use cases is not feasible and thus
a subset of inputs was identified that were likely to cause failures. The tests with this subset of
inputs was performed on both GeNIe and SMILE.

Performance testing Performance testing was conducted to investigate the software’s be-
havior with large networks (either because the temporal network had many variables, many
time-slices, or many states per node), temporal networks with a high in-degree, and temporal
networks that had many d-connected3 variables. The system was tested for both memory- and
time-constraints.

Pilot testing GeNIe was tested by a selected set of users. For this test, several DSL members
that did not contribute to the development of temporal reasoning in GeNIe were invited to play
with the extension and give their feedback. This was also the first time that a working GUI
was presented to users from Philips. Pilot testing turned out to be very useful, because the
pilot users where using the program without any theoretical background whatsoever. Several
potential errors that we did not think of could be caught because of this.

3Two nodes are d-connected if and only if they are not d-separated.

85

Temporal reasoning in GeNIe and SMILE 8.5 Summary

8.4.5 Testing results

The most important errors where discovered during inspection of the components and unit
testing. During these testing activities several errors due to wrongly saved CPTs, bad calculation
of the size of evidence and/or belief vectors, and copying of evidence to non-existing time-slices
were corrected.

Furthermore, the inference results were corrected by turning off relevance reasoning during
the unrolling phase before the actual inference and during the transfer of beliefs from the un-
rolled network to the temporal network after the actual inference. During the actual inference,
relevance reasoning was switched on. Switching off relevance reasoning also slightly improved
the performance.

Another important test result is that the addition of temporal reasoning does not signif-
icantly influence the performance of the functionality that already existed. Next to that, it
seems that the separation of the temporal functionality and the existing functionality worked
out fine, because none of the errors that were found affected the existing functionality.

8.5 Summary

This chapter presented the requirements, design, implementation, and testing of temporal
reasoning in SMILE and GeNIe. The result of this effort can be downloaded from http:
//genie.sis.pitt.edu. Designing, implementing, and testing temporal reasoning in SMILE
and GeNIe proved to be a time-consuming process. However, it was required to be able to use
and test the extended DBN formalism, because no other software package for temporal reason-
ing exists that provides this functionality. To the best of our knowledge, our implementation of
temporal reasoning in SMILE and GeNIe is the first that provides this much freedom in temporal
modeling, is easy to use, and introduces the concept of canonical models in temporal networks.
In part III of this thesis, the extended DBN formalism and its implementation will be applied to
two problems in the medical domain: glucose-insulin regulation and the cardiovascular system,
but first, deriving the DBN structure and parameters with the extended DBN formalism will be
discussed in the next chapter.

86

Modeling with a DBN 9
Chapter

A DBN consists of a qualitative part (the structure) and a quantitative part (the parameters).
Both can be obtained by machine-learning techniques, expert elicitation or a combination. In
our approach, the DBN structure is obtained by a combination of expert knowledge in the
form of interviewing domain experts and by looking at existing models (if they exist). The
DBN parameters are learned from a data set. In this chapter our approach for obtaining the
DBN structure and learning the DBN parameters of the extended DBN formalism is discussed.
Furthermore, some issues related to the discretization of continuous data are presented.

9.1 DBN structure

There exist many methods for obtaining the DBN structure, including various machine-learning
and expert elicitation techniques. We choose to obtain the DBN structure by a combination
of expert elicitation in the form of domain expert interviews and by investigation of existing
models, such as systems of ODEs presented in chapter 2. Note that for many physiological
processes, the exact interactions between variables is not known and satisfying models do not
exist yet. In this case, the network modeler has to rely on expert knowledge and/or machine-
learning techniques only.

For several physiological processes, systems of ODEs exist that describe the interactions
between variables. This means that we can get an idea of the underlying reality if we inves-
tigate these interactions. However, investigating these interactions are not enough to obtain
knowledge about a complete model of the real world. For instance, a system of ODEs does not
provide a natural support for modeling different classes of patients (or the context). Also, the
interactions between variables of a system of ODEs are based on a certain time-granularity. It is
not so obvious what remains of the interactions between its variables if the time-granularity is

87

Modeling with a DBN 9.1 DBN structure

changed several orders of magnitude. However, when modeling physiological processes with a
DBN, the modeled time-granularity will often be a result of the needs of the field expert and not
of the time-granularity prescribed by existing models. For instance, a physician is typically not
interested in what happens every couple of milliseconds, but it interested in what will happen
the next minute.

An example of the difference in DBN structures as a result of changing the time-granularity
is shown in figures 9.1 and 9.2, where two different DBN models for the cardiovascular system
are shown, one with a time-granularity of 50[ms] and one with a time-granularity of 3[s]. Note
that when enlarging the time-granularity, it might not even be appropriate to devise a DBN
model, maybe a non-temporal BN is sufficient. Also note that by changing the time-granularity,
different properties of the modeled variables can become important. Figures 9.1 and 9.2 show
that when modeling the pressure of the systemic arteries (Psa) for a time-granularity of 50 [ms],
the course of the variable is sufficient. However, when modeling Psa for a time-granularity of
3 [s], a separation is needed between the systolic and diastolic pressure. The meaning of the
majority of the variables in these models is already explained in chapter 2 and will be repeated
in chapter 11, where the full DBN model for a time-granularity of 3[s] will be explained.

Shockt CAt EFt

HRt Plv t

Rep t Psa t

Rsp t Emlv t Vlv t

1

11

2

1

1

1

1

1

4

2

4

2

42

Figure 9.1: The DBN model of the cardiovascular system for a time-granularity of 50[ms].

Another consideration of using existing models is that when modeling physiological pro-
cesses with a DBN, in most cases only a subset of the variables in existing models are inter-
esting. Investigating the interactions between variables in existing models becomes difficult in
these cases, as many interactions will change due to omitting certain variables.

Despite the above-mentioned considerations, a part of the DBN structure can be obtained
from existing models, but this has to be done with caution and with the underlying reality in
mind. For instance, some dependencies in a DBN can be obtained by investigating the terms
and factors that ODEs consist of. If the equation for dY/dt contains terms and/or factors with
X and Y, we have to take into account the possibility of temporal arcs between Yt−1 → Yt and
Xt−1 → Yt.

Furthermore, one can choose to purposely leave out some interactions between variables
in the DBN to reduce computational complexity by investigating the parameters of existing
models. This can be useful in situations where many variables and dependencies need to be
modeled, but certain dependencies do not have a large influence. The modeler can choose to
leave these dependencies out of the DBN, because their influence on the final result is minimal.
The possibility of this approximation varies from application to application.

88

9.2 DBN parameters Modeling with a DBN

Shockt CA↑ t EFt Vlv↑ t

Rsp t Psa↓ t HRt Emlv t Vlv↓ t

Rep t Psa↑ t Plv↑ t

1 1

11

1

1

11

1 1

1

Figure 9.2: The DBN model of the cardiovascular system for a time-granularity of 3[s].

When modeling a physiological process with a DBN, one has to keep in mind that the result-
ing DBN model must not be limited by the assumptions of existing models. The DBN formalism
is very powerful, providing natural ways of modeling phenomena that other techniques might
lack. An example of this is our extension of the DBN formalism with contemporal nodes that
can be introduced to model the context of a variable. These contemporal nodes can serve as
an index of a child in the temporal plate to distinguish between different contexts. Consider
the glucose-insulin regulation that was introduced in chapter 2. In this case, we have three
classes of patients: diabetic type-1, diabetic type-2 and normal. To be able to create a DBN
model, we could use the system of ODEs as a tool to simulate patients by solving the ODEs with
different parameters. (In fact, this is exactly what we will do in chapter 10.) Every simulated
patient gets slightly different ODE parameters compared to patients in the same class, but the
ODE parameters of patients in different classes are very different. The contemporal node can
serve as a classifier when inferring a patient whose class is unknown, or can reduce the error of
the inferred values when the patient class is known. Note that this contemporal node does not
follow from the system of ODEs as such, only from the underlying reality where the system of
ODEs is a result of.

A great deal has been written about the connection between graphical models and other
modeling techniques, such as systems of ODEs. Interested readers are directed to: [Das03,
DDN00, LPKB00]. In part III of this thesis we will derive the DBN structures for two physiolog-
ical processes and discuss the modeling issues involved.

9.2 DBN parameters

In section 3.2 we stated that learning parameters of DBNs is generally the same as learning pa-
rameters of BNs with a few small differences. Because we want to perform parameter learning
for our extension of the DBN formalism, we need to investigate what specific differences hold.

89

Modeling with a DBN 9.2 DBN parameters

9.2.1 Considerations

Parameters must be tied across time-slices, so models of unbounded length can be mod-
eled. This is easily achieved by pooling the expected sufficient statistics for all variables that
share the same parameters. However, parameter tying is not needed with the method that we
employ for learning with complete data, because we do not unroll the DBN explicitly and thus
do not have to tie the CPDs in every time-slice.

In the case that the initial parameters π represent the stationary distribution of the sys-
tem, they become coupled with the transition model. As such, they cannot be estimated
independently of the transition matrix. The parameters π for p(X1) can be taken to repre-
sent the initial state of the dynamic system. If such an initial state distribution is known, π can
be learned independently from the transition distribution p(Xt|Xt−1). However, if this is not the
case, [Mur02] proposes that we should follow the algorithm presented in [Nik98]. This algo-
rithm starts with an initial guess for the priors in the first time-slice, does belief updating, and
reads off the values of the state variables in the second time-slice. These values are transferred
back to the first time-slice, and the process repeats until the distributions in the two time-slices
converge to the same value. Note that this algorithm only works for first-order DBNs.

Linear-Gaussian DBNs sometimes have closed-form solutions to the maximum likelihood
estimates. Since SMILE does not support continuous-valued variables yet, this does not need
to be considered in this research.

9.2.2 Parameter learning method for the extended DBN formalism

Current DBN parameter learning algorithms for Murhpy’s formalism unroll a DBN for t = T
time-slices, where T is the sequence length of the process, after which the learning data is
inserted in the unrolled network and the parameters are learned. Remember that for Murhpy’s
formalism, two sets of parameters need to be specified, the initial parameters in B1 and the
transition parameters in the second slice of B→. An example for learning a DBN model of a
HMM is shown schematically in figure 9.3. In this example, the parameters for B1 are given by{
ΘX1 ,ΘYt

}
and the parameters for B→ are given by

{
ΘXt ,ΘYt

}
. When learning the parameters,

the DBN is unrolled for T time-slices, the parameters are tied and learned by insertion of the
learning data. However, in case the initial parameters represent the stationary distribution of

ΘX1 ΘXt

X1 X2 X3 X4 · · · XT

Y1 Y2 Y3 Y4 YT

ΘYt

Figure 9.3: Schematical representation of unrolling the DBN for learning of its parameters with decoupled
initial and transition parameters.

the system, they become coupled with the transition parameters. This is shown schematically
in figure 9.4. On a modeling level, decoupled initial and transition parameters mean that the
modeled process has a specific beginning, i.e. the first time-slice of the DBN always models the

90

9.2 DBN parameters Modeling with a DBN

ΘX1 ΘXt

X1 X2 X3 X4 · · · XT

Y1 Y2 Y3 Y4 YT

ΘYt

Figure 9.4: Schematical representation of unrolling the DBN for learning of its parameters with coupled initial
and transition parameters.

same time instant of the process. The initial and transition parameters become coupled when
the modeled process does not have a specific beginning, i.e. the first time-slice of the DBN
starts somewhere in the modeled process, but where is unclear. When modeling physiological
processes, we are dealing with the latter, because a patient does not have a distinctive initial
state. As we mentioned already in the previous section, learning DBN parameters in case the
initial parameters represent the stationary distribution of the system can be problematic. For
first-order DBNs, an algorithm is presented in [Nik98], but this algorithm cannot be used with
our extension of the DBN formalism. Furthermore, unrolling the DBN at every learning iteration
seems unnecessary, and that’s why we decided to develop our own method for learning the DBN
parameters.

We have developed a straightforward method that enables us to learn the parameters of the
extended DBN formalism with a given structure using standard BN learning algorithms. Our
method is based on the fact that a DBN only has a limited number of CPDs that need to be
learned and that it is possible to decompose the DBN definition into several BNs that can be
learned independently. With our method it is possible to learn the parameters for DBNs where
the initial and transition parameters are either coupled or decoupled.

Remember that from equation 7.4 follows that we need to specify four sets of parameters
for the extended DBN formalism: the initial parameters

{
p(A|C), p(Z1|Pa(Z1),A,C)

}
, the tempo-

ral parameters p(Zt|Pa(Zt),C), the contemporal parameters p(C), and the terminal parameters
p(T|ZT,C). Our method makes use of the fact that these four sets can be learned independent
of each other and that the resulting decomposition of the DBN definition can be learned with
existing BN learning algorithms. Note that it is often possible to merge one or more of these
parameter sets. The general outline of our method is as follows:

1. The DBN definition is unrolled for k+ 1 time-slices where k denotes the temporal order of
the Markov process. The DBN needs to be unrolled for this number of time-slices, because
in the resulting unrolled network every CPD that needs to be learned will be represented
with at least one copy.

2. The unrolled DBN is decomposed into four smaller BNs. The resulting BNs jointly contain
exactly one copy of every CPD that needs to be learned. If an already learned variable is
needed to index a variable that is not learned yet, its parameters are fixed. The decom-
position consists of:

• A BN that defines the initial parameters p(A|C) and p(Z1|A,C).
– If the initial distribution of the DBN represents the initial state of the dynamic

system, the variables in the first time-slice need to be defined as anchor vari-
ables. In this case, only a network with p(A|C) needs to be learned.

– If the initial distribution of the DBN represents the stationary distribution of
the dynamic system, the coupling of the initial distribution and the transition

91

Modeling with a DBN 9.3 Discretization of continuous data

distribution is obtained by defining the variables as the first time-slice in the
plate. In this situation, the BN contains both p(A|C) and p(Z1|Pa(Z1),A,C).

• A BN that defines the (temporal) parameters within the plate p(Zt|Pa(Zt),C).
– In this BN, all the variables with tied parameters are deleted except for the ones

that are not learned yet or needed to provide an index for the variables that still
need to be learned.

• A BN that defines the contemporal parameters p(C).
• A BN that defines the terminal parameters p(T|ZT,C).

3. (Optional) Discretize the time-series data using a proper discretization method, more on
this in section 9.3.

4. Load the (discretized) time-series data and learn the parameters of the BNs by setting
prior distributions and running a BN learning algorithm accordingly.

The presented learning method enables us to learn the parameters of the extended DBN formal-
ism without completely unrolling the network. Also, expert knowledge can be easily incorpo-
rated by setting the prior distributions and an equivalent sample size (to denote the confidence
of the expert knowledge) before learning the parameters from a dataset.

An example of the decomposition of a DBN model is shown in figure 9.5. The definition of
the DBN is shown in figure 9.5a, where we can see that we are dealing with a second-order
Markov process. Remember that each node has a different CPD for every incoming arc with a
different temporal order. For this DBN, we need to specify nine CPDs: {A, C, T, U1, X1, Y1, Xt+1,
Yt+1, Xt+2}. To obtain at least one copy of each CPD that needs to be learned, we unroll the
DBN to three time-slices. The unrolled version is shown in figure 9.5b. The unrolled version is
decomposed into three smaller BNs that can be learned independently (9.5c, 9.5d, and 9.5e).
Because of the decomposition, each CPD is learned only once. In this example, the initial and
contemporal BNs are merged to obtain the initial network in figure 9.5c. Furthermore, during
learning of the transition network in figure 9.5d, the CPDs need entries from CPDs that where
already learned in the initial network. These CPDs are gray, which in this case means that
their parameters are fixed and that they are only used as an index for the CPDs that are being
learned.

9.3 Discretization of continuous data

Using continuous variables in a DBN is often problematic due to complexity issues. In addition,
SMILE does not support the use of continuous variables yet. Because of this, discretization of
continuous data is needed before the DBN parameters can be obtained using machine-learning
techniques. Discretization can be defined as follows [Har01]:

Definition (Discretization)
A discretization of a real-valued vector v = (v1, . . . , vn) is an integer-valued vector d = (d1, . . . , dn)
with the following properties:

1. Each element of d is in the set {0, 1, . . . , k − 1} for some (usually small) positive integer k,
called the degree of the discretization.

2. For all 1 ≤ i, j ≤ n, we have di ≤ dj if vi ≤ vj.

In current research, discretization of continuous time-series is often performed as an un-
supervised preprocessing step. The choice of the method and accompanying parameters are
rarely justified [MU05]. However, for field experts it is of great importance that the resulting
interval boundaries are meaningful within the domain, and that is why we will discuss some
discretization methods and their considerations.

There are three different dimensions by which discretization methods can be classified:
global vs. local, supervised vs. unsupervised and static vs. dynamic. Local methods produce

92

9.3 Discretization of continuous data Modeling with a DBN

C

A

Ut

Xt

Yt

1

1

2

t
T

C

U1 U2 U3

A X1 X2 X3 T

Y1 Y2 Y3

(a) (b)
C

U1

A X1

Y1

U2 U3

X1 X2 X3

Y1 Y2

X3 T

(c) (d) (e)

Figure 9.5: (a) A DBN definition. (b) The DBN definition unrolled for k+ 1 order time-slices. (c), (d), and (e)
The decomposed network. Note that in this specific example, the initial and contemporal network are merged

to obtain network (c).

partitions that are applied to localized regions of the instance space. Global methods produce
a mesh over the entire continuous instance space, where each variable is partitioned indepen-
dent of the other variables. Unsupervised methods do not make use of instance labels in the
discretization process, where supervised methods do. Many discretization methods require a
given k as an indication of the maximum number of intervals to produce. These methods are
called static, in contrast to dynamic methods where such a parameter does not have to be
specified [DKS95].

We found that currently a great deal of research on discretization methods is going on, but
also found that three discretization methods are most common for discretization of time-series
data: uniform-sized intervals, uniform-sized binning, and single-link clustering. We decided
to investigate the performance of these three discretization methods by implementing them
in Matlab and applying them to the continuous-valued glucose and insulin variables from the
glucose-insulin regulation model. But first, the three discretization methods are presented.

9.3.1 Uniform-sized intervals

The simplest discretization method is uniform-sized intervals. This is an unsupervised, global,
and static discretization method that merely divides the range of the data set v into k equal
sized intervals, the interval width ω is obtained by:

ω =
max(v) −min(v)

k
, (9.1)

and the discretization thresholds τ are obtained by:

τ j = min(v) + j · ω , (9.2)

93

Modeling with a DBN 9.3 Discretization of continuous data

where j = 1, . . . , k − 1 and k is provided by the user. In most cases, the selection of a suitable
k is an ad-hoc event, because its ideal value is a combination of the range of the variable, the
complexity of the model and the required precision. A downside of this method is that a general
understanding of the range is needed, else the method is vulnerable to outliers. Furthermore,
skewed data is not handled well. An advantage of this approach is that is very easy to implement
and use if a general understanding of the range is available.

9.3.2 Uniform-sized binning

A discretization method that is slightly more complex is uniform-sized binning. This is also an
unsupervised, global, and static discretization method that divides the data set v into k intervals,
each interval containing approximately the same number of samples. In case of a data set v of
n samples, the size of the sample sets s = s1 = . . . = sk for k intervals can be obtained by:

s1 ≈ . . . ≈ sk ≈ n
k

, (9.3)

and the discretization thresholds τ are obtained by ordering the samples in v from low values
to high values and obtaining the threshold by:

τ j = v0 + vj·n/k . (9.4)

Finding the correct thresholds is not as straightforward as it may seem, because the boundaries
obtained by naively dividing v into uniform-sized bins can have the effect that two or more
intervals overlap. For our research, we implemented an algorithm that first sorts the data
values in v from low values to high values and calculates n

k , then creates a bin for every distinct
value and then iteratively loops through these bins while adding them together until an optimal
distribution of the samples over the bins is reached.

An optimal distribution is a solution where the sizes of all bins approximate the mean-size n
k

as closely as possible. That this is an optimal solution can be proven by showing that Shannon’s
entropy (the measure of how much information can be carried with a certain discretization)
is maximized when splitting the range of observed values into uniform-sized bins. Shannon’s
entropy is given by:

H = −
k∑

i=1

pi log2 pi , (9.5)

where k is the set of possible events and pi denotes an individual probability of such an event.
In the case of discretization of data set v into k bins, Shannon’s entropy is given by:

H =
k∑

i=1

si

n
log2

n
si

. (9.6)

From equation 9.6 follows that an increase in the number of bins implies an increase in entropy,
with an upper bound of log2 n. However, we do not want to maximize the entropy by enlarging
the number of bins, but we want to maximize the entropy when the number of bins is given
and fixed. To see that the entropy is maximized in the case of uniform-sized bins, imagine that
we divide the data set into two bins, with one bin containing m samples and the other n − m
samples. In this case, Shannon’s entropy can be calculated by:

H =

2∑
i=1

si

n
log2

n
si

(9.7)

=
s1

n
log2

n
s1
+

s2

n
log2

n
s2

(9.8)

=
m
n

log2
n
m
+

n −m
n

log2
n

n −m
. (9.9)

94

9.3 Discretization of continuous data Modeling with a DBN

We can verify that the entropy reaches its maximum value over 0 < m < n at m = n
2 . This result

can be easily generalized for k > 2 bins and thus the maximum entropy is reached when we
split the data set into uniform-sized bins.

9.3.3 Single-link clustering

The final method we will present here is a variant of single-link clustering (SLC). Normally, this
is an unsupervised, global, and static discretization method that divides the range of the data
set v into k intervals, where k has to be specified by the user. However, we will discuss the
variant presented in [DML05], where the ideal value for k is calculated using several criteria.
Therefore, the discretization method is dynamic.

SLC is a divisive (top-down) hierarchical clustering that defines the distance between two
clusters as the minimal Euclidean distance of any two real-valued entries belonging to different
clusters. The algorithm starts from the entire data set and iteratively splits it until either a
certain threshold is reached or every cluster only contains one element. SLC has one major
advantage: very little starting information is needed, only distances between points. This may
result in a discretization where most of the points are clustered into a single bin if they happen
to be relatively close to one another. However, this disadvantage is countered in the variant of
the algorithm described in [DML05]. This algorithm employs graph theory as a tool to produce
a clustering of the data and provides a termination criterion that finds a trade-off between the
number of bins and the amount of information, so k does not have to be specified by the user.
An outline of the algorithm is is given below:

Extended SLC discretization algorithm [DML05] The algorithm has a real-valued vector
v = (v1, . . . , vn) as input and an integer-valued vector d = (d1, . . . , dn) as output. It consists of
the following steps:

1. Construct a complete weighted graph G where each vertex represents a distinct vi and the
weight of each edge is the Euclidean distance between the incident vertices.

2. Remove the edge(s) of the highest weight.
3. Repeat step (2) until G gets disconnected into clusters Cj, j = 1, . . . , k.
4. For each cluster Cj, recursively disconnect further if one of the following criteria holds:

(a) avg.weight(Cj) >
avg.weight(G)

2 .
(b) |max(v) ∈ Cj −min(v) ∈ Cj| ≥ |max(v)∈G−min(v)∈G|

2 .
(c) min.vertex.degree(Cj) < #vertices(Cj) − 1 .

5. Apply Shannon’s information measure criterion to the largest Cj to check whether further
disconnection is needed. If so, go to (6). Else, go to (7).

6. Sort the values of Cj and split them into two equally sized sets.
7. Sort the clusters Cj, j = 1, . . . , k and enumerate them 0, . . . , k − 1, where k is the number

of components into which G got disconnected. For each i = 1, . . . ,n, di is equal to the
label of the cluster in which vi is a vertex. The discretization thresholds can be obtained
by finding the minimal and maximum vertex in every cluster.

9.3.4 Empirical study and results

We tested the performance of the three discussed discretization methods by implementing them
in Matlab and applying them to the continuous-valued glucose and insulin levels from the
glucose-insulin regulation model. The datasets for the glucose and insulin variables consisted
of 333,000 records each. In figure 9.6, the two histograms of the variables are shown to gain in-
sight into the range and distribution of their values. We decided to discretize the variables with
the uniform-binning and -interval methods starting with k = 10 bins, and adding k = 5 bins until

95

Modeling with a DBN 9.3 Discretization of continuous data

k = 100 bins was reached. Remember that in most cases, the selection of a suitable k is an ad-
hoc event, because its ideal value is a combination of the range of the variable, the complexity
of the model and the necessary precision. We will see in chapter 10 that for the glucose-insulin
regulation model, a discretization of k = 30 bins for the glucose and insulin variables provided
a sufficient precision for our purposes. We decided to measure the performance using three

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

Glucose [mg/dl]
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3
x 10

4

Insulin [mU/dl]

Figure 9.6: The histograms of the glucose and insulin variables.

different measures. The first measure is Shannon’s information measure or entropy, which we
discussed already and is given in equation 9.5. This measure is useful because it gives insight
into how much information can be encoded in the discretization. The higher the entropy, the
more information can be encoded in the discretization. The second measure we use is the mean
error (ME):

Mean error The mean error or ME of an estimated vector x̃ and the true vector x can be
calculated as follows:

ME =
1
n

n∑
i=1

|xi − x̃i| . (9.10)

The mean error is an intuitive measure for gaining insight into the precision of the discretiza-
tion. For this measure it is evident that the smaller the outcome, the better the results. The
final measure we use is the mean squared error (MSE):

Mean squared error The mean squared error or MSE of an estimated vector x̃ and the true
vector x can be calculated as follows:

MSE =
1
n

n∑
i=1

(xi − x̃i)
2 . (9.11)

The MSE can also be used to gain insight into the precision of the discretization, but it is less
intuitive, because the MSE has the property that larger errors give a proportionally larger MSE
than smaller errors. For this measure also holds that the smaller the outcome, the better the
results.

During the experiment we found that the SLC-based algorithm was way too slow for the
amount of data that we needed to discretize. The SLC-based algorithm is ideal in situations
where we do not have a large dataset and do not have insight into the range of the data.
However, for our applications, we do have insight into the range of the data. That is why we
decided to drop the SLC-based algorithm altogether and do not show its results in figure 9.7.

96

9.4 Summary Modeling with a DBN

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

en
tr

op
y

Glucose

Uniform bins

Uniform intervals

Maximum entropy

10 20 30 40 50 60 70 80 90 100
0

2

4

M
E

 [m
g/

d
l]

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

number of bins

M
SE

 [m
g/

d
l]

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

en
tr

op
y

Insulin

10 20 30 40 50 60 70 80 90 100
0

1

2

M
E

 [m
U

/
d

l]
10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

number of bins
M

SE
 [m

U
/

d
l]

Figure 9.7: ME, MSE, and entropy of discretization of glucose and insulin variables.

From figure 9.7, we can notice a couple of things. First of all, the entropy of the uniform-
binning method comes really close to its optimal value, where the entropy of the uniform-
interval method stays behind. Note that for the calculation of entropy, the distribution and
range of the data does not influence the outcome, only the number of bins and the number of
samples in those bins are important. That is why the entropy for glucose and insulin are more
or less the same for the uniform-binning method.

If we compare the ME and the MSE of each variable, we see that the uniform-binning
method gives better results for the ME and the uniform-interval method gives better results
for the MSE. The difference can be translated back to the difference between the ME and
MSE. Apparently, the uniform-binning method has a smaller overall error, but for some values,
the error is really large. This is especially the case for the insulin variable. If we look at the
histogram of insulin in figure 9.6, we see that in the range between 50 [mU/dl] and 80 [mU/dl]
we have only a couple of data points. This means that the uniform-binning method only assigns
a couple of bins to a significant part of the total range. The result is that the data-points in this
range have a potentially large error. If this poses a problem is a modeling decision. In the
case for the insulin variable, the modeler will probably consider the data points larger than 50
[mU/dl] as outliers and only consider the data points up to 50 [mU/dl].

Overall, we can conclude that it depends on the application whether uniform-binning or
uniform-interval discretization is a better choice. How both methods work out when applied to
a physiological process will be discussed in chapter 10, where we compare two versions of the
glucose-insulin regulation model that only differ in discretization method.

9.4 Summary

This chapter discussed important issues for modeling with the extended DBN formalism, such as
obtaining the structure, learning the parameters, and choosing a discretization. Overall, we are
now ready to apply the presented theory, tools, methods and algorithms to actual physiological
processes. We therefore conclude this part of the thesis and go on to part III, where we elaborate
on the glucose-insulin regulation and cardiovascular system DBN models.

97

Part III

Application and empirical studies

“In the computer field,
the moment of truth is a running program;

all else is prophecy.”
- Herbert Simon.

99

Glucose-insulin
regulation in the human
body 10

Chapter

Recent studies show that hyperglycemia1 and/or hypoglycemia2 are common in critically ill
patients. This malfunction is not limited to patients who are known to be diabetic, and thus
tight glucose control is needed to decrease postoperative morbidity and mortality. Tight glucose
control involves identifying patients at risk, monitoring blood glucose frequently and using an
effective insulin infusion algorithm to control blood glucose within a narrow range. In this
chapter, we will present a DBN model that can be used to infer insulin and glucose levels based
on noisy glucose measurements. This is a first step toward an application of the extended DBN
formalism in an expert system that can help to govern the glucose-insulin administration of a
patient in an intensive care unit (ICU).

The goal of this application was to obtain an initial insight into the applicability and us-
ability of the extended DBN formalism in modeling physiological processes. In the previous
part of this thesis, we showed how we extended Murphy’s DBN formalism (chapter 7), how we
implemented the extension in GeNIe and SMILE (chapter 8), and how we can obtain the DBN
structure and parameters of the DBN model (chapter 9). In this chapter, a study is performed
to answer our research questions presented in section 1.1: How do we obtain the structure and
parameters? What is the performance of inference? How much patient data do we need for learn-
ing the parameters? If possible, how much does a DBN outperform a BN when applied to the same
problem?

The chapter first discusses the simulated patients and the resulting patient data. After that,
the derivation of the DBN structure and the learning of the DBN parameters is discussed. Fi-
nally, the setup of the empirical study and its results are presented. Special-purpose tools

1A condition in which an excessive amount of glucose circulates in the blood plasma.
2A condition in which too little glucose circulates in the blood plasma.

101

Glucose-insulin regulation in the human body 10.1 Patient simulation

were programmed in c++ and/or Matlab for patient simulation, data discretization, parameter
learning, and the empirical study. A general overview of the steps for modeling glucose-insulin
regulation with a DBN is given in figure 10.1, including some questions and considerations
regarding these steps. This figure is derived from the global research architecture presented in
chapter 6.

Background Knowledge
- Physiological processes glucose-insulin regulation
- ICU situation
- Interests of physicians

Problem domain (generate patient data by
simulation of glucose-insulin regulation

in ICU situation)

DBN formalism extension
(anchor and contemporal

nodes are needed)

DBN structure derivation
(from system of

ODEs and domain
knowledge)

DBN parameter learning
(amount of patient

data needed)

GeNIe & SMILE (write special-purpose tool
for glucose-insulin regulation DBN on top

of SMILE)

Empirical study (gain
insight in the applicability
and usability of the DBN)

Discretizing data
(uniform-sized bins or

intervals)

Figure 10.1: Overview of steps for modeling glucose-insulin regulation with a DBN.

10.1 Patient simulation

Chapter 2 presented a dynamic system that is able to model the glucose-insulin regulation of
patients based on whether a patient is diabetic type-13, diabetic type-24, or normal. We are
going to use this dynamic system to simulate patients. Remember that the presented dynamic
system was based on average values for its parameters. We will give these parameters a Gaus-
sian distribution, where we will take the average values as mean and the standard deviation
will be set to (0.13 · average value). The 0.13 is based on expert knowledge from Philips Re-
search. The parameters of the dynamic system that are Gaussian distributed are: CG, CI, QG(t),
α, β, λ, μ, ν, φ, and θ.

We use the dynamic system to model the situation where an arbitrary patient in an ICU gets
an insulin infusion on an empty stomach of 0, 5, 10 or 15 [U/h]. The glucose and insulin levels
of every patient are monitored for 9 hours after the insulin infusion and every 15 minutes
a measurement of the glucose level is taken. This measurement is simulated by taking the
glucose level G(t) and adding Gaussian noise with a standard deviation σ of 5.5 [mg/ml]. The
Gaussian noise is added for two reasons. First, in a real-life situation, measuring the glucose
level is noisy by itself, and second, it is not improbable that physicians measure the glucose
levels several minutes too early or too late. Because the patient has an empty stomach before
the insulin infusion, his glucose and insulin levels are considered to be in the dynamic system’s
steady-state (or homeostasis in this context). Figure 10.2 shows the course of the glucose and
insulin levels of three patients, including the noisy observations of the glucose levels. (It is not
possible to measure the insulin levels directly.)

Decision space One might wonder what the decision space is going to be of the resulting
DBN model. To give some insight in the decision space, we have plotted the glucose-insulin

3A patient lacks the capacity to produce adequate amounts of insulin.
4A patient is unable to utilize circulating insulin effectively due to peripheral tissue resistance to its effects.

102

10.2 DBN structure Glucose-insulin regulation in the human body

0 2 4 6 8
0

50

100

150

200
G

lu
co

se
 [m

g/
d

l]

Patient 1 (normal)
Insulin infusion: small

0 2 4 6 8
0

20

40

60

Time in hours

In
su

lin
 [m

U
/

d
l]

0 2 4 6 8
0

50

100

150

200

G
lu

co
se

 [m
g/

d
l]

Patient 2 (diabetes2)
Insulin infusion: medium

0 2 4 6 8
0

20

40

60

Time in hours

In
su

lin
 [m

U
/

d
l]

0 2 4 6 8
0

50

100

150

200

G
lu

co
se

 [m
g/

d
l]

Patient 3 (diabetes1)
Insulin infusion: large

hidden process
observations

0 2 4 6 8
0

20

40

60

Time in hours

In
su

lin
 [m

U
/

d
l]

Figure 10.2: The glucose-insulin regulation of three randomly generated patients.

levels over a period of 9 hours of 1,000 patients in one graph per variable (figure 10.3). The
patients are: normal (blue), diabetic type-1 (red), or diabetic type-2 (green). As one can see,
the graphs that result from plotting 1,000 patients are rather complex. The task of the DBN is
to smooth and/or predict the glucose and insulin levels (top and bottom graphs) based on the
noisy glucose measurements (center graph).

10.2 DBN structure

The DBN has to be able to predict the course of the glucose and insulin levels before and after
the infusion and/or identify diabetes based on noisy glucose measurements. Before we go to
the actual DBN structure, let us recall the ODEs our dynamic system is based on. The glucose
dynamics are governed by

CG
dG
dt
= UG +QG − λG − νGI , G ≤ θ , (10.1)

CG
dG
dt
= UG +QG − λG − νGI − μ(G − θ) , G > θ , (10.2)

and the insulin dynamics are governed by

CI
dI
dt
= UI − αI , G ≤ ϕ , (10.3)

CI
dI
dt
= UI − αI + β(G − ϕ) , G > ϕ , (10.4)

What can we learn from these equations? Well, we can use these equations to obtain a part
of our DBN structure. Remember that we discussed in chapter 9 what considerations we have
to keep in mind when obtaining the DBN structure. We will now apply these considerations
to the glucose-insulin regulation model, starting with the fact that the system of ODEs and our
DBN model have a time-granularity in the same order of magnitude, enabling us to give the
interactions in the system of ODEs some more attention. From equations 10.1 and 10.2, it

103

Glucose-insulin regulation in the human body 10.2 DBN structure

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

G
lu

co
se

 [m
g/

d
l]

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

G
lu

co
se

 O
bs

er
va

ti
on

s
[m

g/
d

l]

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

Time in hours

In
su

lin
 [m

U
/

d
l]

Figure 10.3: The glucose levels, noisy glucose measurements, and insulin levels of 1000 randomly generated
patients. Normal patients are blue, diabetic type-1 patients are red, and diabetic type-2 patients are green.

follows that the glucose level at time t depends on the glucose and insulin levels at time t − 1.
Furthermore, from equations 10.3 and 10.4, it follows that the insulin level at time t depends
on the glucose and insulin levels at time t − 1 and the size of the insulin infusion. Another
important fact is that the parameters of different patient types (diabetic type-1, diabetic type-2
and normal) are Gaussian distributed with different means and variances for every patient type.
So, we can add a contemporal variable that serves as an index variable to the glucose and insulin
level variables that switches between the probability distributions of a diabetic type-1, diabetic
type-2, or normal patient. Finally, we learn that at the beginning of each modeled patient
process, the patient has an empty stomach, meaning that the dynamic system is in a steady-
state (homeostasis). In this case, the dependency of the insulin and glucose levels interact with
each other within the same time-step. Hence, the initial distribution (or the anchor nodes)
also contains an arc between the glucose and insulin variables. The resulting DBN definition is
shown in figure 10.4. Included are the two networks that result from the decomposition of the
DBN definition according to the method described in section 9.2.2.

104

10.3 DBN parameters Glucose-insulin regulation in the human body

P UI

I0

G0

OG,0

It

Gt

OG,t

t

11

1

1

P

I0

G0

OG,0

P II

I1 I2

G1 G2

OG,2

(a) (b) (c)

Figure 10.4: (a) DBN definition for glucose-insulin administration, shaded variables can be observed. (b) The
initial network for learning the parameters. (c) The transition network for learning the parameters, variables

that are only used for indexing are shaded.

10.3 DBN parameters

Figures 10.4b and 10.4c show the networks that result from the decomposition of the glucose-
insulin regulation DBN. A part of the patient data that was generated during the simulation is
shown in tables 10.1a and 10.1b. Before this data can be used to learn the DBN parameters,
it needs to be processed. This preprocessing consists of two steps: Sampling (decimation) and
discretization. In this particular case, sampling is fixed to 15 minutes between each sample. The
variables are discretized into 30 bins, which provides a sufficient precision for our purposes.
Section 10.4 discusses the experimental results of two discretization approaches of the patient
data.

Table 10.1: Part of the simulated patient data that can be used to learn the glucose-insulin regulation DBN.

P I0 G0 OG,0

diabetes1 2.0 166.2 172.5

diabetes2 21.8 154.9 164.7

diabetes2 21.4 129.5 132.7

diabetes1 2.0 179.7 176.3

normal 5.8 85.5 85.1

.

.

.
.
.
.

.

.

.
.
.
.

P II I1 I2 G1 G2 OG,2

diabetes1 large 2.0 23.7 166.2 136.3 143.0

diabetes1 large 23.7 40.0 136.3 82.2 86.5

diabetes1 large 40.0 38.5 82.2 45.3 50.2

diabetes1 large 38.5 29.4 45.3 32.8 32.3

diabetes1 large 29.4 22.4 32.8 29.4 32.2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

(a) (b)

10.4 Empirical study

Tight glucose control for critically ill patients is needed to decrease postoperative morbidity and
mortality. Currently, the glucose control algorithms used by physicians do not take into account
past glucose measurements to predict the future. Often, this results in the physician overriding
a glucose control algorithm, because it is not effective. In this case, a DBN can help to obtain a
better glucose control algorithm, because it can make predictions of glucose and insulin levels

105

Glucose-insulin regulation in the human body 10.4 Empirical study

based on glucose observations from both the past and the present. This section will show how
well the DBN formalism is suited for this application.

10.4.1 Experimental design

For the glucose-insulin regulation DBN, we are interested in three research questions: How
many observations do we typically need for reliable inference results and when do we need to do
the observations? How many patient cases do we need for parameter learning? What is the effect of
uniform-sized intervals versus uniform-sized binning in the discretization step on the performance
of the DBN?

We will try to answer these questions in three separate experiments. We have many degrees
of freedom in the design of these experiments, so we need to make some choices. The DBN pa-
rameters are learned with patient simulations of 9 hours. The patient data is sampled every 15
minutes, thus the time between two consecutive time-slices is 15 minutes as well. The deriva-
tion of the sampling-rate can be an experiment on its own, but in this case, expert knowledge
from physicians stated that 15 minutes is optimal. This seems like a long time between two
consecutive time-slices, but in real-life, glucose levels are only measured a couple of times per
day at most.

In real ICU situations, only the first couple of hours after the infusion are interesting for
a physician and thus we will concentrate on the first 4 hours after the infusion during the
experiments. This means that the DBN is going to be unrolled for a sequence length of T =
16 time-slices. Including the anchor variables, this results in a DBN of 17 time-slices. The
chosen time-period has the largest variation of the glucose and insulin levels, as can be seen
in figure 10.3. All experiments assume that the present time t is at 2 hours after the infusion
and that the size of the insulin infusion and the patient type are known. Glucose observations
are collected for 0-2 hours. This means that from 0-2 hours the glucose and insulin levels are
smoothed, at 2 hours after the infusion the levels are filtered and from 2-4 hours the levels are
predicted, as clarified in figure 10.5. The baseline DBN used for the experiments is trained by

time [h] 0:00 1:00 2:00 3:00 4:00
time-slice 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
observations

smoothing t prediction T

Figure 10.5: Inference in the glucose-insulin regulation DBN. The shaded region is the interval that contains
observations. t is the current time, and T is the sequence length.

taking 90% of 10,000 = 9,000 simulated patients. The remaining 1,000 patients are used as
test data. The glucose levels, insulin levels, and glucose measurements are discretized using
the uniform-interval method. These variables contain 30 distinctive states each.

10.4.2 Special-purpose software

Special-purpose software was written to process the data during the different steps of the exper-
iments. Every experiment consisted of four main steps: (1) Simulating patients in Matlab, (2)
discretizing and sampling the patient data, (3) learning the DBN parameters and performing in-
ference with c++/SMILE, and (4) calculating the performance measures in Matlab. Figure 10.6
shows the experimental design of every experiment. In the first step, a number of patients is
simulated using the Matlab implementation of the glucose-insulin regulation model presented
in chapter 2 and section 10.1. The generated patient data is saved to a .csv5 file, after which

5Flat file format with each value separated by a comma.

106

10.4 Empirical study Glucose-insulin regulation in the human body

Data sampling and
discretization (in

Matlab)

Glucose-insulin regulation
DBN learning tool
(on top of SMILE)

Performance calculation
(in Matlab)

Glucose-insulin regulation
DBN inference

tool (on top of SMILE)

90% of patient data (.csv file)

10% of patient data (.csv file) mean PEs and beliefs (.csv file)

glucose-insulin DBN (.xdsl file)

Patient simulation
(in Matlab)

patient data (.csv file)

Figure 10.6: The experimental design of every experiment.

it is discretized and sampled in the second step. 90% of the resulting patient data is used for
learning the DBN parameters and the remaining 10% is used as test data. The third step loads
the .csv file with patient test data and the learned DBN from a .xdsl file into the glucose-
insulin regulation DBN tool. This tool performs inference and writes the posterior beliefs and
the mean point estimates to another .csv file. The fourth and final step loads this file and the
patient test data file into a Matlab program that calculates the inference performance measures.
The quality of the posterior beliefs and the mean point estimates can be compared using the
following measures, two of which we have already seen in chapter 9, but will be repeated here:

Mean squared error The mean squared error or MSE of an estimated vector x̃ and the true
vector x can be calculated as follows:

MSE =
1
n

n∑
i=1

(xi − x̃i)
2 , 0 ≤ MSE ≤ ∞ . (10.5)

The mean squared error has the property that larger errors give a proportionally larger MSE
than smaller errors. This is a property that we are not interested in, and thus we will use the
more intuitive mean error or ME for the experiments:

ME =
1
n

n∑
i=1

|xi − x̃i| , 0 ≤ ME ≤ ∞ . (10.6)

Because we are not only dealing with an error because of inference, but also with an error
because of the discretization step, the ME will be taken of the inferred state minus the original
state, and of the value that the inferred state represents minus the original value to see how
the effect of the discretization translates to the performance of the DBN. Note that the ME will
be taken over a point estimate (the mean) of an inferred state vector. With this approach, it
is not possible to measure the level of certainty of an inferred state vector. For instance, the
state vector {0.01, 0.01, 0.96, 0.01, 0.01} will give the same mean point estimate as the state vector
{0.20, 0.20, 0.20, 0.20, 0.20}, but we can clearly see that the level of certainty of the former state
vector is much higher than the latter. Therefore two other common measures can be used to
get insight into the level of certainty: the Euclidean distance and the Hellinger distance.

Euclidean distance The Euclidean distance or ED of an estimated vector x̃ and the true vector
x can be calculated as follows:

ED =

√√
n∑

i=1

(xi − x̃i)
2 , 0 ≤ ED ≤ √2 . (10.7)

An important difference between the ED and the ME is that the ED will be taken between state
vectors of the original and inferred states, where the ME will be taken over the original state and

107

Glucose-insulin regulation in the human body 10.4 Empirical study

the mean point estimate of the inferred state! Because we are interested in the mean Euclidean
distance over all the state vectors, we will calculate:

MED =
1
k

k∑
j=1

√√
n∑

i=1

(xi − x̃i)
2 , 0 ≤ MED ≤ √2 , (10.8)

where k is the number of state vectors. With this approach, it is possible to measure the level of
certainty of a state.

The Euclidean distance has one major disadvantage and that is that it treats the inferred
state vectors {0.01, 0.01, 0.96, 0.01, 0.01} and {0.00, 0.02, 0.96, 0.02, 0.00} different (compared to
an original state vector {0, 0, 1, 0, 0}. It is debatable whether the former or the latter distribution
gives more certainty, but the former gives definitely not more certainty than the latter. However,
the Euclidean distance implies this. For this reason, we will use the Hellinger distance [KN01]
in the experiments, which is introduced next.

Hellinger distance The Hellinger distance or HD of an estimated vector x̃ and the true vector
x is defined as follows:

HD =

√√√√
n∑

i=1

⎛⎜⎜⎜⎜⎜⎝
√

xi∑n
i=1 xi

−
√

x̃i∑n
i=1 xi

⎞⎟⎟⎟⎟⎟⎠
2

, 0 ≤ HD ≤ √2 . (10.9)

Because the values of the states within a state vector always sum up to 1, the equation becomes:

HD =

√√
n∑

i=1

(√
xi −

√
x̃i

)2
, 0 ≤ HD ≤ √2 . (10.10)

Again, we are interested in the mean Hellinger distance over all the state vectors, so we will
calculate:

MHD =
1
k

k∑
j=1

√√
n∑

i=1

(√
xi −

√
x̃i

)2
, 0 ≤ MHD ≤ √2 , (10.11)

where k is the number of state vectors. With this approach, it is possible to measure the level of
certainty of a state in a better way than the Euclidean distance.

Figure 10.7: The output of the special-purpose glucose-insulin regulation DBN tool in comparison to the
output of the same network in GeNIe. The center screenshot shows the special-purpose tool, the left and right

screenshots are from GeNIe.

108

10.4 Empirical study Glucose-insulin regulation in the human body

G
lu

co
se

 [m
g/

d
l]

Time in hours
0 0.5 1 1.5 2 2.5 3 3.5 4

20

40

60

80

100

120

140

160

180

200

220 inferred levels
hidden levels
measurements

In
su

lin
 [m

U
/

d
l]

Time in hours
0 0.5 1 1.5 2 2.5 3 3.5 4

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 10.8: The output of the glucose-insulin regulation DBN in Matlab. Shown are the discretized measure-
ments and actual glucose and insulin levels of the patient, and the inferred beliefs.

As a side note, the special-purpose tool that performs inference on the glucose-insulin reg-
ulation DBN can also be used as a standalone tool for a decision maker. However, the GUI that
GeNIe provides is much more user friendly. Figure 10.7 shows the tool in comparison to the
GeNIe GUI. Figure 10.8 shows the same patient using Matlab’s visualization tools. The advan-
tage of using Matlab for visualization is the possibility to include the actual glucose and insulin
levels.

10.4.3 Experiment 1: varying the glucose measurement rate

The first experiment varies the observation rate of the glucose levels in the first 2 hours (or
9 time-slices) of the total sequence. For 1,000 simulated patients, glucose measurements are
done every 15, 30, or 60 minutes until 2 hours after the infusion. Inference is performed to
obtain the smoothed, filtered and predicted beliefs of the glucose and insulin levels.

Results We are interested in the performance of the baseline DBN 6 for time-slices 0-16. Be-
cause evidence is inserted until 2 hours after the infusion, the DBN smooths the glucose and
insulin levels for time-slices 0-7, filters the levels for time-slice 8, and predicts the levels for
time-slices 13-16. Table 10.2 presents the mean errors and Hellinger distances for time-slices
0-16. How the errors and distances develop over time is presented in figure 10.9.

Discussion In the following discussion, we will only consider the performance of inference of
the states of the glucose and insulin levels (first row of figure 10.9). The actual values (second
row of figure 10.9) are included in the graph to get an insight on how the inference error
translates to actual values of the glucose and insulin levels. The original discretization error
after discretization of the test data is included to get an idea of the smallest error that can
be achieved. It is theoretically not possible for the DBN to get its inferred values below the
discretization error.

A number of things can be concluded from figure 10.9. Starting with the glucose graphs:

• As expected, the error and the uncertainty of glucose grows as the prediction time gets
larger, no matter how many observations are done. This can be seen in the graphs for the
ME and MHD of glucose.

6The DBN parameters are learned using the simulated data of 9,000 patients. The variables are discretized using
uniform-sized intervals and have 30 distinctive states each. The time between two consecutive time-slices is 15 minutes.

109

Glucose-insulin regulation in the human body 10.4 Empirical study

Table 10.2: Overview of results for experiment 1: varying the observation rate.

Glucose Insulin

data-rate ME state ME value ME disc. MHD ME state ME value ME disc. MHD

15 minutes 0.60 4.91 1.88 0.82 0.93 2.45 0.65 0.88

30 minutes 0.68 5.45 1.88 0.88 0.98 2.59 0.65 0.89

60 minutes 0.84 6.61 1.88 0.94 1.06 2.80 0.65 0.90

0 2 4 6 8 10 12 14 16
0

1

2

3

m
ea

n
er

ro
r

Mean error of the inferred state of glucose

0 2 4 6 8 10 12 14 16
0

5

10

15

m
ea

n
er

ro
r

Mean error of the inferred value of glucose in [mg/dl]

0 2 4 6 8 10 12 14 16
0

1

2

3
Mean error of the inferred state of insulin

0 2 4 6 8 10 12 14 16
0

2

4

6
Mean error of the inferred state of insulin in [mU/dl]

Discretization error
Measurements every 15 [min]
Measurements every 30 [min]
Measurements every 60 [min]

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

Hellinger distance of the inferred state of glucose

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

time−slices

Hellinger distance of the inferred state of insulin

Figure 10.9: Mean errors and Hellinger distances of glucose and insulin levels over time for experiment 1.

• Smoothing really works! The error and the uncertainty of glucose get smaller when more
glucose measurements are gathered over time. The ME even gets smaller than the ME
introduced by doing the noisy glucose measurements (not shown in the graph), which is
surprising because the DBN also has to deal with the error due to the discretization.

• Not surprisingly, the error and the uncertainty get larger as less glucose measurements
are done and thus a glucose measurement every 15 minutes is best. However, further
investigation gives the insight that the course of the glucose and insulin levels are espe-
cially difficult to predict just after the infusion, as can be seen from the graphs where
a peak occurs at time-slices 1 and 2 (15-30 minutes after the infusion) and the error is
not significantly different for the measurement rates from time-slice 4 and onwards. This
observation suggests that an optimal scheme is taking measurements every 15 minutes
for the first 30 minutes and every 60 minutes afterward.

The insulin graphs show very different results. A global explanation can be that the insulin
levels have to be inferred with the glucose levels as an intermediate variable between the in-
sulin levels and the glucose measurements. The DBN seems to have some problems with this. A
solution would be to find method to measure the insulin level directly. Qualitative experimenta-
tion shows that not many insulin measurements are needed to improve the results significantly.
However, it is not easy to accomplish insulin measurements on real patients. An evaluation of
the insulin graphs:

• Again, the error of the insulin infusion is largest just after the infusion. The DBN finds it
difficult to predict how the patient will utilize the infusion based on the glucose measure-
ments.

110

10.4 Empirical study Glucose-insulin regulation in the human body

• An unexpected result is that the error and the uncertainty get smaller over time, no matter
what the glucose measurement rate is. This can be explained partly by observing from
figure 10.3 that the insulin level goes back to its steady-state relatively fast. The insulin
levels in the DBN also goes to this state as time moves forward and the patient gets no
new insulin infusion, no matter what the glucose measurement reads. Somehow, the DBN
incorporates this background knowledge during the learning phase.

Overall we can conclude from this experiment that a variable glucose measurement rate
scheme needs to be devised for optimal smoothing and prediction results. An optimal scheme
would be taking measurements every 15 minutes for the first 30 minutes and every 60 minutes
afterward. Furthermore, although not shown in figure 10.9, it appears that including some
extra insulin measurements improves the performance of the DBN significantly.

10.4.4 Experiment 2: varying the number of patient cases used for learn-
ing

The second experiment varies the number of patient cases used for learning. Because we can
generate an unlimited amount of data, we decided to vary the number of patients from 100
to 10,000 patients. In every learning iteration, 90% of the data is used for training and the
remaining 10% is used for testing. We did not consider techniques such as cross-validation that
can be used for learning with a small dataset.

Results In the experiment, the measurement rate of the glucose levels is every 15 minutes
in the first 2 hours (or 9 time-slices) of the total sequence. Inference is performed to obtain
the smoothed, filtered and predicted beliefs of the glucose and insulin levels for DBNs that are
trained with a different number of patients. Table 10.3 shows a global overview of the results.
Figure 10.10 shows an overview of the results over time. We decided to only plot the cases
where a DBN is learned for 100, 1,000, or 10,000 patients.

Discussion The experimental results presented in table 10.3 and figure 10.10 give the follow-
ing insights:

• For a data set ranging from 1,000 to 10,000 patients the inference results do not differ sig-
nificantly. The results for 1,000 patients are even a little better than the results for 10,000
patients, but this is due to the properties of the test data. The results for experiments with
DBNs that are learned with a number of patients that lies in the interval [1, 000 − 10, 000]
are not shown in the graph, but give similar results.

• A patient data set of 100 patients is definitely not enough to learn the DBN. Strangely
enough, smoothing still performs quite well, but the error explodes with the prediction
part. This is especially the case for the insulin variable. Apparently a patient data set of
100 patients is not enough to let the information of the glucose measurements get through
to the insulin variable with the glucose variable as intermediate variable. Furthermore,
the insulin variable has many more parameters to be learned than the glucose variable,
because it has one extra parent.

• Again, the DBN finds it difficult to infer the result of the insulin infusion just after the
infusion, but we have seen this already in experiment 1.

Overall, the optimal number of patients for learning the DBN lies somewhere between the
interval of [800 − 1, 200] patients, depending on the quality of the patient data. This is less
than expected according to the number of CPT parameters that need to be learned. For insulin
the number of CPT parameters is 30 · 31 · 41 · 302 = 324, 000 and for glucose the number of
CPT parameters is 30 · 31 · 302 = 81, 000 (equation 3.7). This is a huge number of parameters
that need to be learned, but after investigation of the insulin and glucose CPTs, it appears

111

Glucose-insulin regulation in the human body 10.4 Empirical study

Table 10.3: Overview of results for experiment 2: varying the number of patient cases used for learning.

Glucose Insulin

number of patients ME state ME value ME disc. MHD ME state ME value ME disc. MHD

9000 patients 0.60 4.91 1.88 0.82 0.93 2.45 0.65 0.88

900 patients 0.53 4.59 1.88 0.78 0.87 2.27 0.65 0.88

90 patients 0.74 5.92 1.88 1.00 2.56 6.25 0.65 1.09

0 2 4 6 8 10 12 14 16
0

2

4

6

m
ea

n
er

ro
r

Mean error of the inferred state of glucose

0 2 4 6 8 10 12 14 16
0

5

10

m
ea

n
er

ro
r

Mean error of the inferred value of glucose in [mg/dl]

0 2 4 6 8 10 12 14 16
0

2

4

6
Mean error of the inferred state of insulin

0 2 4 6 8 10 12 14 16
0

5

10

15
Mean error of the inferred state of insulin in [mU/dl]

Discretization error
9000 Patients
900 Patients
90 Patients

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

Hellinger distance of the inferred state of glucose

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

time−slices

Hellinger distance of the inferred state of insulin

Figure 10.10: Mean errors and Hellinger distances of glucose and insulin levels over time for experiment 2.

that many parameters are not set after learning the DBN, because they still have their initial
distribution (uniform). This suggests that a different canonical model can be appropriate for
both the glucose and insulin variables. However, applying the Noisy-MAX canonical model did
not give satisfying results, so a different canonical model needs to be devised. This is currently
a very active research topic [ZD06, ZVD06], but we will not go into details here, because it is
beyond the scope of this thesis.

10.4.5 Experiment 3: changing the discretization method

We presented several discretization methods in section 9.3. We already stated that the SLC-
based algorithm does not apply to us, but it is interesting to compare the performance of the
other two discretization methods. In the following experiment, we are going to compare the
baseline DBN that is learned with 9,000 patients and has its glucose and insulin variables
discretized using 30 uniform-intervals to a DBN that is also learned with 9,000 patients, but
has its variables discretized using 30 uniform-bins.

Results In the experiment, the measurement rate of the glucose levels is every 15 minutes
in the first 2 hours (or 9 time-slices) of the total sequence. Inference is performed to obtain
the smoothed, filtered and predicted beliefs of the glucose and insulin levels for DBNs that
are trained with a different number of patients. Table 10.4 shows a global overview of the
results. Figure 10.11 shows an overview of the results over time. In contrast to the two earlier
experiments, the difference between the ME of the inferred states (first row of figure 10.11) and

112

10.4 Empirical study Glucose-insulin regulation in the human body

values (second row of figure 10.11) is important, because we are varying the mapping between
them.

Table 10.4: Overview of results for experiment 3: changing the discretization method.

Glucose Insulin

discretization method ME state ME value ME disc. MHD ME state ME value ME disc. MHD

uniform-intervals 0.60 4.91 1.88 0.82 0.93 2.45 0.65 0.88

uniform-bins 0.97 5.44 2.18 0.87 1.75 2.39 0.80 1.05

0 2 4 6 8 10 12 14 16
0

1

2

3

m
ea

n
er

ro
r

Mean error of the inferred state of glucose

0 2 4 6 8 10 12 14 16
0

5

10

15

m
ea

n
er

ro
r

Mean error of the inferred value of glucose in [mg/dl]

0 2 4 6 8 10 12 14 16
0

1

2

3
Mean error of the inferred state of insulin

0 2 4 6 8 10 12 14 16
0

2

4

6
Mean error of the inferred state of insulin in [mU/dl]

disc. error uniform−intervals
uniform−intervals
disc. error uniform−bins
uniform−bins

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

Hellinger distance of the inferred state of glucose

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

time−slices

Hellinger distance of the inferred state of insulin

Figure 10.11: Mean errors and Hellinger distances of glucose and insulin levels over time for experiment 3.

Discussion The experimental results presented in table 10.4 and figure 10.11 give the follow-
ing insights:

• Uniform-interval discretization outperforms uniform-binning discretization, which is a
bit surprising because uniform-bin discretization takes the properties of the data into
account, and uniform-interval discretization does not. When looking into the results of
the uniform-bin discretization algorithm, it appeared that the glucose range from ≈ 182.5
[mg/dl] to ≈ 227.5 [mg/dl] is represented with only 1 interval, where this is 6 intervals
when using the uniform-interval discretization algorithm. The insulin discretization is
even worse, here the range from ≈ 35 [mU/dl] to ≈ 75 [mU/dl] is represented with only
1 interval, where this is 16 intervals with uniform-interval discretization. This explains
why the mean (discretization) error of the glucose and insulin values between respectively
time-slices 2-8 and 1-5 are so much larger with uniform-bin discretization than uniform-
interval discretization.

• It partly follows from the previous insight, but for lower values of glucose and insulin,
uniform-bin discretization gives a lower discretization error than uniform-interval dis-
cretization. However, this does not affect the results of inference of the insulin and glu-
cose levels. This can be clearly seen from the graph where the ME of the insulin value
is shown over time (right-most graph in second row of figure 10.11). In this graph, the
discretization error gets less over time for uniform-binning discretization, but the errors
of the values stay similar.

113

Glucose-insulin regulation in the human body 10.5 Summary

The results of this experiment show that both methods have their advantages and disad-
vantages, although in this particular case, uniform-interval discretization outperforms uniform-
binning discretization. Therefore, we will just stick with uniform-interval discretization in this
research. From observing the inference performance results and the results of the unsupervised
uniform-bin discretization, it seems that an optimal discretization can be found by making the
discretization part of the learning algorithm instead of two separate steps. In such an algorithm,
the dependencies among variables for different discretization intervals can be exploited. This
might result in better inference performance and a smaller overall discretization error. How-
ever, devising and implementing such an algorithm is beyond the scope of this thesis. Another
option is to use knowledge about the domain to discretize the variables. This is what we will
do in chapter 11, where we will devise a DBN model for the human cardiovascular system.

10.4.6 Conclusions

Although several of the insights gained from the experiments apply solely to modeling the
glucose-insulin regulation, much experience was gained for modeling a physiological process
with a DBN. The three most important insights can be generalized and applied to other DBN
models. These insights are:

1. When learning the DBN parameters, less data is needed for an acceptable performance
than one might expect from the number of parameters that need to be learned. How
much data is needed also depends on the purpose of the DBN, i.e. for smoothing and
filtering significantly less data is needed than for prediction.

2. No matter the amount of data used to learn the DBN, many CPT parameters of the dis-
cretized variables remain untouched after learning. This suggests that a different para-
metric representation is suitable for these variables. One example might be applying the
Noisy-MAX gate, but this did not give satisfying results. Research needs to be done to find
better canonical representations for these kind of variables.

3. Discretization can have a major influence on the performance of the DBN. As such, it is not
wise to use an unsupervised discretization method without considering the domain, the
process and the DBN structure. Ideally, an algorithm could be devised that incorporates
the discretization into the learning algorithm, but we choose to rely on expert knowledge
about the domain.

10.5 Summary

In this chapter we devised a DBN model for the human glucose-insulin regulation and per-
formed an empirical study to get insight into its performance. During the empirical study, it
turned out that the glucose-insulin DBN performs quite well. For most experiments, the error
stays within reasonable bounds, and the computation time for inference was only in the order
of seconds. Based on the results from the experiments, we gained many insights into the prac-
tical issues involved when modeling a physiological process with a DBN. These insights will
be used in the next chapter, where we will devise a DBN model for the much more complex
cardiovascular system.

114

Cardiogenic shock in
the human
cardiovascular system 11

Chapter

Cardiovascular diseases pose a great problem in the industrialized world, where it has been the
leading cause of death for over a century. According to the World Health Organization (WHO),
the gap between the cardiovascular cause of death and others will widen as more and more
people in the industrialized world are getting overweight because of bad eating and drinking
habits and too little exercise.

Unfortunately, the development for treatment of cardiovascular diseases tends to stay be-
hind. One of the main causes might be the lack of an effective and flexible model of the
cardiovascular system. Philips Research is currently working on a model based on a system of
ordinary differential equations (ODEs) extended with non-linearities that is able to simulate pa-
tients with several cardiac disorders. An overview of a part of this system and the cardiovascular
system in general was presented in chapter 2. The problem of modeling a physiological process
with a system of ODEs is that the exact interactions between variables need to be known, some-
thing that is not the case for the complete cardiovascular system. The DBN formalism provides
means of countering this problem by enabling the modeler to use machine-learning techniques
to obtain the interactions from data. Furthermore, the DBN formalism provides natural support
for uncertainty and for non-numeric variables, such as nominal, ordinal, or interval variables.

The cardiovascular system DBN that we present in this chapter is a result of combining
our DBN knowledge gained by the extension of Murhpy’s DBN formalism, development of the
temporal reasoning software, and insights from modeling the glucose-insulin regulation with
knowledge from medical experts on the cardiovascular system. The resulting DBN model is able
to infer the values of important physiological variables on the basis of measuring non-evasive
variables such as the heart-rate and the systolic and diastolic arterial blood pressure for every
3 seconds. Furthermore, it is able to detect whether the patient is having a cardiogenic shock.
In the following sections, we will discuss the variables of the cardiovascular system and how
they relate to each other, the properties of a cardiogenic shock, and the derivation of the DBN

115

Cardiogenic shock in the human cardiovascular system 11.1 Patient simulation

structure and its parameters. After this, we will present the results of an empirical study on the
performance of the DBN model. Just like modeling the glucose-insulin regulation in chapter 10,
special-purpose tools were programmed in c++ and/or Matlab for data manipulation and dis-
cretization, parameter learning, and the empirical study. A general overview of the steps for
modeling the cardiovascular system with a DBN is given in figure 11.1. This figure is derived
from the global research architecture presented in chapter 6.

Background Knowledge
- Physiological processes cardiovascular system
- Cardiogenic shock
- Time granulariy
- Interests of physicians

Problem domain (simulation
of patients and

cardiogenic shock)

DBN formalism extension
(compare performance

to BN)

DBN structure
derivation (domain

knowledge)

DBN parameter learning

GeNIe & SMILE (write special-purpose tool
for cardiovascular DBN on top of SMILE)

Empirical experiments
(gain insight in the

applicability and usability
of the DBN)

Discretizing and
manipulation of data

(based
on domain knowledge)

Figure 11.1: Overview of steps for modeling the cardiovascular system with a DBN.

11.1 Patient simulation

A global introduction to the cardiovascular system was presented in chapter 2. Philips Research
is developing a model based on a system of ODEs extended with non-linearities that is able to
simulate the cardiovascular system of patients with varying properties and cardiac disorders.
The cardiovascular system consists of many interacting variables, but only a subset of those is
important for a physician and will be incorporated into the DBN model. Note that we will only
consider variables that are related to the left-ventricle of the heart, because this is the ventricle
that pumps blood through your body. (The right ventricle supplies blood to the lungs.) The
nine variables of interest are the following:

• Cardiac output (CA) in [ml],
• Ejection fraction (EF) in [%],
• Maximum elastance of the left ventricle (Emlv) in [mmHg/ml],
• Heart-rate (HR) in [bpm],
• Pressure of the left ventricle (Plv) in [mmHg],
• Pressure of the systemic arteries (Psa) in [mmHg],
• Resistance of the extrasplanchnic peripheral circulation (Rep) in [mmHgs/ml],
• Resistance of the splanchnic peripheral circulation (Rsp) in [mmHgs/ml], and
• Volume of the left ventricle (Vlv) in [ml].

Most of these variables speak for themselves, except maybe for the cardiac output, which is the
volume of blood pumped out of the left ventricle; the ejection fraction, which is the percentage
of blood pumped out at each heart beat; and the maximum elastance of the left ventricle, which
determines the strength of the cardiac muscle.

For the DBN model, we added a binary cardiogenic shock variable (Shock) that gives mean-
ing to the levels of the variables by assigning each moment in time with a belief of the patient
having a cardiogenic shock or not. A cardiogenic shock is a result of a heart failure and causes

116

11.2 DBN structure Cardiogenic shock in the human cardiovascular system

an insufficient amount of blood reaching the brain. In our dataset, the heart failure is simulated
by lowering the maximum elastance of the left ventricle.

The dataset provided by Philips Research consisted of 2933 patient simulations of 100 [s]
per patient, sampled every 50 [ms]. During this period, the maximum elastance of the left
ventricle was lowered by a variable amount, consequently simulating the possibility of a cardio-
genic shock. Furthermore, high-frequency fluctuations of several variables were incorporated
into the simulation to get a better approximation of the real cardiovascular system. An exam-
ple of the course of the variables of an arbitrary simulated patient is given in the figure 11.2,
where the blue line represents the data set as provided by Philips Research. The purpose of
the red and green lines will be explained in section 11.3. The shown patient clearly suffers
from a cardiogenic shock caused by lowering the maximum elastance of the left ventricle at
time t = 30[s]. Some patients are able to compensate the drop of the maximum elastance (and
thus the drop of the systemic pressure and the cardiac output) by a combination of a higher
heart-rate and vasoconstriction (narrowing of the vessels), enabling them to avoid getting into
a cardiogenic shock.

11.2 DBN structure

The structure of the DBN for the cardiovascular system was devised by the combined efforts of
our knowledge about modeling with DBNs and expert knowledge from physicians. The DBN
model had to represent the cardiovascular system for a time-granularity of 3 [s] and be able to
infer values for all variables solely based on the easy measurable heart-rate and pressure of the
systemic arteries. We chose a time-step of 3 [s] because this is a period that is short enough
to capture interesting dynamics of the cariovascular system, but long enough to capture mean
values of the variables that are meaningful. Because we are modeling time-steps of 3 [s], several
physiological variables are split into their systolic (upper) and diastolic (lower) counterparts.
The presented model is certainly not perfect, but it provides us with enough precision without
being too computationally expensive. What follows are the assumptions that the resulting DBN
model is based upon.

The strength of the cardiac muscle (Emlv) influences the volume of the left ventricle (Vlv).
When the cardiac muscle contracts, the volume gets smaller and when it releases the volume
gets larger again. The amount of decrease and increase in volume is determined by Emlv.
Vlv is separated into a systolic (Vlv↑) and diastolic (Vlv↓) variable, thus we have to draw two
arcs: Emlv → Vlv↑ and Emlv → Vlv↓. These variables also depend on each other and from the
insight that the systolic pressure follows from the diastolic pressure, the following arc is added:
Vlv↓ → Vlv↑.

The cardiac muscle also influences the pressure in the left ventricle (Plv), by contracting the
pressure increases, thus the higher its strength, the higher the potential pressure. Because the
diastolic pressure in the left ventricle is more or less constant for every patient, we decided to
only consider the systolic pressure of the left ventricle (Plv↑) and we introduce the following
arc: Emlv → Plv↑.

Plv also influences Vlv, because more blood will flow into the aorta when the pressure is
higher. Thus, we introduce Plv↑ → Vlv↑ and Plv↑ → Vlv↓.

The interaction between Plv and Vlv also depends on the arterial blood pressure Psa. When
Psa is high, the heart needs to build up a very high pressure to pump enough blood into the
aorta, so Vlv will decrease less at higher values for Psa given a certain value for Plv

1. Again, Psa

is divided into a systolic Psa↑ and diastolic Psa↓ variable. Based on the previous reasoning, we
add the following arc: Psa↑ → Plv↑.

Psa depends on three variables: on the amount of blood circulating with a certain speed or
force because of Emlv, and on the splanchnic and extra-splanchnic resistance of the vessels Rsp

1This also means that the cardiac muscle needs more strength for people with a blood pressure that is (too) high.

117

Cardiogenic shock in the human cardiovascular system 11.2 DBN structure

0 10 20 30 40 50 60
0

200

400

600

800

C
ar

d
ia

c
O

ut
pu

t (
m

l)

0 10 20 30 40 50 60
30

40

50

60

70

E
je

ct
io

n
Fr

ac
ti

on
 (%

)

0 10 20 30 40 50 60
1.5

2

2.5

3

3.5

E m
lv

 (m
m

H
g/

m
l)

Time (s)

0 10 20 30 40 50 60
60

65

70

75

80

H
ea

rt
 R

at
e

(b
ea

t/
m

in
)

0 10 20 30 40 50 60
0

50

100

150

P lv
 (m

m
H

g)

0 10 20 30 40 50 60
60

80

100

120

140

P sa
 (m

m
H

g)

Time (s)

0 10 20 30 40 50 60
1.4

1.5

1.6

1.7

1.8

R
ep

 (m
m

H
g

s
/

 m
l)

0 10 20 30 40 50 60
0.68

0.7

0.72

0.74

0.76

R
sp

 (m
m

H
g

s
/

 m
l)

0 10 20 30 40 50 60
50

100

150

200

V
lv

 (m
l)

Time (s)

Figure 11.2: The development of the variables in the cardiovascular system of an arbitrary patient measured
for a period of 60 [s]. At t = 30 [s], the patient suffers from a heart failure.

118

11.2 DBN structure Cardiogenic shock in the human cardiovascular system

and Rep. The following arcs are introduced: Emlv → Psa↑, Rep → Psa↑, Rep → Psa↓, Rsp → Psa↑,
Rsp → Psa↓, and Psa↑ → Psa↓. The arc from Emlv to Psa↓ is omitted, because its influence is
minimal. Furthermore, although from a causal perspective it would be better to have the arc
going from Psa↓ to Psa↑, from a computational perspective it is better to add the arc the other
way around, because this saves a significant number of CPT parameters to be specified.

Most vessels have circulatory muscles, which gives them the ability to contract. If a vessel
contracts, its resistance increases (so Rep and/or Rsp increase). When Psa decreases, vessels
will contract reflexively trying to stabilize the blood pressure. When you use specific parts of
your body, its vessels dilate to provide enough blood. This mechanism regulates the amount of
blood going to particular parts of the body. For example, when you exercise, your peripheral
muscles will have a larger need for blood, while when you just had some food, the vessels to
your stomach and intestines will dilate, so those parts of the body will get more blood. That is
why exercising right after having a meal is not a good idea.

Vessels also react to reflexes on temperature. In case you are hot, your vessels will dilate
trying to loose the heat and Psa will go down. This is why some people feel dizzy after standing
up from a lying position in a hot environment, because Psa dropped so much that for a short
period the brain does not get enough blood. Fortunately, this is compensated for very quickly.

In the vessels the baroreceptors are allocated, which sense the value of Psa. They initiate a
reflex that influences the heart rate HR and thus we introduce Psa↑ → HR and Psa↓ → HR. HR
also influences Psa, i.e. the higher the heart rate, the higher the blood pressure. This is only
true as long as the heart has enough time to fill with blood. If the HR gets too high, Psa will go
down because there is only a little amount of blood that leaves the heart at every stroke. We
model this by introducing HR→ Plv↑.

The ejection fraction EF is determined by the volume and pressure of the left ventricle, thus
we add the following arcs: Vlv↑ → EF, Vlv↓ → EF, and Plv↑ → EF. The cardiac output CA↑
is related to the heart-rate and the volume of blood leaving the heart. This introduces the
followings arcs: EF→ CA↑ and HR→ CA↑.

Shock (Shock) means that the patient does not get enough blood (oxygen) into his brain.
Whether this occurs or not depends on the blood pressure and the cardiac output. Shock can
have many different causes, e.g. a bleeding (circulating volume of blood decreases too much)
or an allergic reaction (all the vessels dilate, so the volume of vessels increases a lot. This leads
to a relative lack of blood volume). Also a failure of the heart can lead to a shock. This is called
a cardiogenic shock and is the phenomenon that is modeled in this DBN. To determine whether
the patient is having a shock or not we introduce the following arcs: Psa↑ → Shock, Psa↓ → Shock
and CA↑ → Shock.

The above model describes the causal relation between the variables as closely as possible.
However, we did not yet introduce temporal reasoning into the presented model. First of
all, we decided not to insert temporal relations between different variables, because most of
such relations are short-term (i.e. during a heart-beat) and the DBN model is relatively long-
term. Furthermore, we wanted to be able to compare the performance of a BN model with the
performance of a DBN model for the same domain. Hence, the model we have defined until so
far is the BN model of the cardiovascular system.

The BN model is extended by the observation that the variables in the model not only
depend on other variables, but also on their previous values. We decided to stick with a first-
order temporal model and we added a temporal arc with a temporal order of one to almost
every variable in the model. The only variable that does not have such a temporal arc is the
Shock variable. This is because a cardiogenic shock only depends on current values of CA and
Psa and not on whether the patient was in shock in the previous time-step. The resulting DBN
model is shown in figure 11.3. The three variables that are of major importance to physicians
are the CA, EF, and Shock variables.

119

Cardiogenic shock in the human cardiovascular system 11.3 DBN parameters

Shockt CA↑ t EFt Vlv↑ t

Rsp t Psa↓ t HRt Emlv t Vlv↓ t

Rep t Psa↑ t Plv↑ t

1 1

11

1

1

11

1 1

1

Figure 11.3: The DBN model of the cardiovascular system for a time-granularity of 3 [s].

11.3 DBN parameters

After obtaining the DBN structure, the parameters needed to be learned from the dataset pro-
vided by Philips Research. As previously stated, the data set consisted of 2933 patient simula-
tions of 100 [s] per patient, sampled every 50 [ms]. The variables of the patient simulations
were stored in Matlab .mat files of about 200 patients each. Before we could learn the DBN
parameters, the data needed to undergo several preprocessing steps:

• Merge data and cut out individual patients,
• Manipulate and sample variables,
• Divide data into learn and test set, and
• Discretize variables.

An example of the course of the variables of an arbitrary simulated patient was already given
in the figure 11.2, where the blue line represents the data set as provided by Philips Research.
After cutting out individual patient simulations of 60 [s] each, we needed to sample the data
to 3 [s] between each time step2. Ordinary decimation would give erroneous results due to
aliasing, so before the actual sampling step, we needed to extract the useful properties of the
signal. The red and green lines represent the useful properties that we extracted from the
original data. For instance, if we need a measure of Psa over the last 3 [s], it is better to split
this measure into two separate values: the mean systolic and the mean diastolic pressure. This
manipulation is done for all variables of the cardiovascular system. Note that it might be better
for CA to have taken the integral over the signal instead of its peaks. However, taking the peaks
will do for now. Besides, the ratio between the peaks and the surface under the signal is pretty
constant anyway.

After sampling, we divided the dataset into two sets, one for learning and one for testing.
Machine-learning has a rule of thumb for the sizes of these sets (90% for learning, 10% for

2A simulation of 60 [s] was chosen to keep the amount of data before and after the heart failure of equal size. This
has the effect that the prior distribution for a heart failure is equally distributed.

120

11.4 Empirical study Cardiogenic shock in the human cardiovascular system

testing) that we choose to obey. This resulted in a learning dataset of 2640 patients and a
testing dataset of 293 patients. Another rule in machine-learning is to never use any properties
of the testing dataset for learning, including the assumptions that you base your model on. In
this light, we needed to discretize the variables based on properties of the learning dataset.
Remember that from the experiments in chapter 10, we learned that naievely applying an
unsupervised discretization algorithm is not optimal. That is why we choose to discretize the
variables in ten uniform intervals each, based on domain knowledge and the properties of the
variables.

To give some insight into the ranges, distributions and course of the variables over time,
we present two figures: figure 11.4 shows the ranges and distribution of the variables as a
whole and figure 11.5 shows the ranges and distribution of the variables over time, where each
simulated patient suffers from a heart failure at time t = 30 [s]. After discretization, we

300 400 500 600 700 800
0

500

1000

Cardiac Output
up

30 40 50 60 70
0

500

1000

Ejection Fraction
1.5 2 2.5 3 3.5
0

2000

4000

E
mlv

60 65 70 75 80 85
0

500

1000

Heart Rate
100 110 120 130 140 150
0

1000

2000

P
lv up

70 80 90 100
0

500

1000

P
sa down

100 110 120 130 140 150
0

500

1000

P
sa up

1.3 1.4 1.5 1.6 1.7
0

500

1000

R
ep

0 1 2 3 4
0

200

400

R
sp

50 60 70 80 90 100
0

500

1000

1500

V
lv down

120 130 140 150 160 170
0

500

1000

V
lv up

Figure 11.4: Histograms for all continuous variables in the cardiovascular system.

added the binary Shock variable and exported the data set to a .csv file that we can import
in SMILE for learning the DBN parameters using the methodology presented in chapter 9. It
might be interesting for the reader to see how this practically works out. For this reason we
added appendix C that contains a snippet of the .csv file and the c++ tool that was written to
define the cardiovascular system DBN structure and learn its parameters using the SMILE API.

11.4 Empirical study

After obtaining the cardiovascular DBN, we performed an empirical study on its performance.
This section presents the results of two experiments. The first experiment compares the perfor-
mance of the DBN with a BN of the cardiovascular system. The second experiment measures
the performance of the DBN for a varying measurement rate. Note that the second experiment
is not possible for the BN, because the DBN explicitly uses evidence from other time-steps to
infer the values for time-steps for which no evidence is inserted.

121

Cardiogenic shock in the human cardiovascular system 11.4 Empirical study

Figure 11.5: The range and distribution of the course of all continuous variables in the cardiovascular system.

122

11.4 Empirical study Cardiogenic shock in the human cardiovascular system

11.4.1 Experimental design

For the empirical study on the cardiovascular system DBN, we are interested in two research
questions: How well does the DBN perform when compared to a BN? and How well does the DBN
perform for a varying measurement rate? We use the testing dataset of 293 patient simulations
of 60[s], where from t = 30 [s] onwards, the patients suffer from a heart failure. Each time-
slice in the DBN represents 3 [s] of the patient simulation, so the DBN will be unrolled for 20
time-slices during inference.

Because the provided dataset does not show a trend before a heart failure occurs (a heart
failure is simulated by an abrupt change for the Emlv variable), it cannot be used to predict
when the heart failure occurs. However, it can be used to infer values for all variables in
the cardiovascular system based solely on fluctuations in heart-rate (HR) and arterial blood
pressure (Psa↑ and Psa↓). Figure 11.6 shows the time-period involved in the experiments. Note
that we do not have a 0th time-slice here, because the inserted observations do not consist of
values at time t, but of mean values for a period of 3 [s] of HR, Psa↑ and Psa↓ before time t. It is
not physically possible to have a mean value of the previous 3 [s] at time t = 0 [s].

time [s] 0:00 0:15 0:30 0:45 1:00
time-slice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
observations

heart failure T

Figure 11.6: Inference in the cardiovascular system DBN. The shaded region represents the observations con-
sisting of mean values over 3 [s] for HR, Psa↑ and Psa↓. The observation rate is varied in the second experiment.

11.4.2 Special-purpose software

In section 10.4 we briefly discussed the special-purpose software needed to perform the glucose-
insulin regulation DBN experiments. To perform the experiments for the cardiovascular system
DBN, these software tools were adapted to incorporate the properties of the cardiovascular
system variables. Figure 11.7 shows the experimental design for the experiments. Again, we
use the mean error (ME) and mean Hellinger distance (MHD) as performance measures. For
an explanation on the performance measures, the reader is directed to section 10.4.

Because the cardiovascular system DBN turned out to be too complex for exact inference
(clustering algorithm), we used the state-of-the-art EPIS sampling algorithm [YD03] as an ap-
proximation. This algorithm uses loopy belief propagation to compute an estimate of the pos-
terior probability over all nodes of the network and then uses importance sampling to refine
this estimate. After some experimentation with the EPIS sampling parameters to minimize the
errors due to sampling, we decided to configure the EPIS sampling algorithm using the param-
eters shown in table 11.1. Finally, figure 11.8 shows the Matlab representation of the inferred
values for the arbitrary patient that was presented in figure 11.2.

Table 11.1: EPIS sampling algorithm parameters

parameter value parameter value

propagation length 60

samples 100000 ε otherwise 5e-005

states small 5 ε small 0.006

states medium 8 ε medium 0.0001

states large 20 ε large 5e-005

123

Cardiogenic shock in the human cardiovascular system 11.4 Empirical study

Data sampling and
discretization
 (in Matlab)

Cardiovascular system DBN
learning tool

(on top of SMILE)

Performance calculation
(in Matlab)

Cardiovascular system DBN
inference tool

(on top of SMILE)

90% of patient data (.csv file)

10% of patient data (.csv file) mean PEs and beliefs (.csv file)

cardiovascular DBN (.xdsl file)

Patient simulation by
Philips Research

(in Matlab)

patient data (.mat files)

Figure 11.7: The experimental design of every experiment.

11.4.3 Experiment 1: Comparison of DBN and BN model

The first experiment compares the performance of the DBN and the BN of the cardiovascular
system. Two inference types were applied to the DBN: filtering and smoothing. Remember
that filtering only uses evidence up to time t, where smoothing also uses evidence after time t
if available. The HR, Psa↓, and Psa↑ variables of the testing dataset of 293 patient simulations
served as evidence for the smoothed DBN, filtered DBN and BN. All other variables needed to
be inferred.

Results Although for a physician, only the CA↑, EF, and Shock variables are essential, we
decided to show the performance for all inferred variables. Table 11.2 shows the overall per-
formance of the three networks. Figure 11.9 shows the performance of the three networks over
time.

Table 11.2: Overview of results for experiment 1: Comparison smoothed and filtered DBNs and BN model.

CA↑ EF Emlv

method ME state ME value ME disc. MHD ME state ME value ME disc. MHD ME state ME value ME disc. MHD

DBN smoothing 0.42 17.06 8.75 0.89 0.42 0.95 0.52 0.85 0.22 0.07 0.04 0.42

DBN filtering 0.47 18.67 8.75 0.91 0.52 1.13 0.52 0.88 0.36 0.09 0.04 0.55

BN 0.56 21.90 8.75 0.95 0.95 1.97 0.52 0.99 0.99 0.20 0.04 0.81

Plv↑ Rep Rsp

method ME state ME value ME disc. MHD ME state ME value ME disc. MHD ME state ME value ME disc. MHD

DBN smoothing 0.01 1.01 0.99 0.14 0.38 0.01 0.01 0.75 0.21 0.10 0.08 0.51

DBN filtering 0.03 1.10 0.99 0.26 0.43 0.02 0.01 0.81 0.42 0.15 0.08 0.72

BN 0.05 1.14 0.99 0.47 0.94 0.03 0.01 1.00 0.91 0.28 0.08 1.01

Shock Vlv↓ Vlv↑
method ME state ME value ME disc. MHD ME state ME value ME disc. MHD ME state ME value ME disc. MHD

DBN smoothing 0.10 N/A N/A 0.46 0.25 1.64 1.09 0.61 0.60 2.55 1.00 0.92

DBN filtering 0.11 N/A N/A 0.48 0.31 1.87 1.09 0.67 0.60 2.56 1.00 0.94

BN 0.19 N/A N/A 0.53 0.76 3.80 1.09 0.85 0.99 4.07 1.00 1.02

Discussion It should not come as a surprise that the smoothed DBN outperforms the filtered
DBN, which in its turn outperforms the BN. Furthermore, the largest error occurs at the moment
of the heart failure, because it takes a while for the DBNs to adapt. The BN is not able to adapt
to the situation after the heart failure at all and thus the high error remains.

What is interesting to see is that the BN does not perform much worse than a DBN for a
stable cadiovascular system (= the cardiovascular system before the heart failure). However,

124

11.4 Empirical study Cardiogenic shock in the human cardiovascular system

C
ar

d
ia

c
O

ut
pu

t up
 (m

l)

0 10 20 30 40 50

500

600

700 inferred levels
hidden levels

E
je

ct
io

n
Fr

ac
ti

on
 (%

)

0 10 20 30 40 50

45

50

55

60

E m
lv

 (m
m

H
g/

m
l)

Time in seconds
0 10 20 30 40 50

1.5

2

2.5

3

P lv
 u

p (m
m

H
g)

0 10 20 30 40 50

110

120

130

140

R
ep

 (m
m

H
g

s
/

 m
l)

0 10 20 30 40 50

1.4

1.5

1.6

R
sp

 (m
m

H
g

s
/

 m
l)

Time in seconds
0 10 20 30 40 50

1

1.5

2

2.5

3

Sh
oc

k
(b

in
ar

y)

0 10 20 30 40 50
0

0.5

1

V
lv

 d
ow

n (m
l)

0 10 20 30 40 50

60

70

80

90

V
lv

 u
p (m

l)

Time in seconds
0 10 20 30 40 50

130

140

150

160

Figure 11.8: The output of the cardiovascular system DBN in Matlab for the arbitrary patient in figure 11.2.

125

Cardiogenic shock in the human cardiovascular system 11.4 Empirical study

0 5 10 15 20
0

0.5

1

1.5
m

ea
n

er
ro

r

ME inferred state Cardiac Output
up

0 5 10 15 20
0

20

40

60

m
ea

n
er

ro
r

ME inferred value Cardiac Output
up

 in (ml)

0 5 10 15 20
0.8

1

1.2

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD Cardiac Output
up

0 5 10 15 20
0

50

100

150

200

m
ea

n
er

ro
r

ME inferred state Ejection Fraction

0 5 10 15 20
0

2

4

m
ea

n
er

ro
r

ME inferred value Ejection Fraction in (%)

0 5 10 15 20
0.7

0.8

0.9

1

1.1

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD Ejection Fraction

0 5 10 15 20
0

1

2

3

m
ea

n
er

ro
r

ME inferred state E
mlv

0 5 10 15 20
0

0.2

0.4

m
ea

n
er

ro
r

ME inferred value E
mlv

 in (mmHg/ml)

0 5 10 15 20
0

0.5

1

1.5

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD E
mlv

0 5 10 15 20
0

0.1

0.2

0.3

0.4

m
ea

n
er

ro
r

ME inferred state P
lv up

0 5 10 15 20
0.5

1

1.5

2

2.5

m
ea

n
er

ro
r

ME inferred value P
lv up

 in (mmHg)

0 5 10 15 20
0

0.2

0.4

0.6

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD P
lv up

0 5 10 15 20
0

0.5

1

1.5

2

m
ea

n
er

ro
r

ME inferred state R
ep

0 5 10 15 20
0

0.02

0.04

0.06

m
ea

n
er

ro
r

ME inferred value R
ep

 in (mmHg s / ml)

0 5 10 15 20

0.8

1

1.2

1.4

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD R
ep

0 5 10 15 20
0

0.5

1

1.5

m
ea

n
er

ro
r

ME inferred state R
sp

0 5 10 15 20
0

0.2

0.4

m
ea

n
er

ro
r

ME inferred value R
sp

 in (mmHg s / ml)

0 5 10 15 20
0

0.5

1

1.5

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD R
sp

0 5 10 15 20
0

0.2

0.4

0.6

0.8

m
ea

n
er

ro
r

ME inferred state Shock

0 5 10 15 20

0.4

0.5

0.6

0.7

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD Shock

0 5 10 15 20
0

0.5

1

1.5

2

m
ea

n
er

ro
r

ME inferred state V
lv down

0 5 10 15 20
0

2

4

6

8

m
ea

n
er

ro
r

ME inferred value V
lv down

 in (ml)

0 5 10 15 20
0

0.5

1

1.5

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD V
lv down

0 5 10 15 20
0

0.5

1

1.5

2

m
ea

n
er

ro
r

ME inferred state V
lv up

0 5 10 15 20
0

2

4

6

8

m
ea

n
er

ro
r

ME inferred value V
lv up

 in (ml)

Discretization Error
Smoothing
Filtering
BN

0 5 10 15 20
0.8

1

1.2

1.4

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD V
lv up

Figure 11.9: The mean errors and Hellinger distances of the variables over time for experiment 1.

126

11.4 Empirical study Cardiogenic shock in the human cardiovascular system

after the heart failure the BN is not able to fully compensate for the change. We can partly
explain this behavior by looking at the distributions of the dataset in the previous section.
Before the heart failure, all patients expose more or less the same behavior, but every patient
responds very different to a heart failure. This behavior can be caught in a DBN, but not in a
BN.

There is one exception to this observation: the performance for inferring Rsp is too difficult
for the BN in any case. This can be explained by looking at the dataset, where we see that Rsp

varies much between patients, even before the heart failure.
During our investigation of individual inferred patients, we noticed one more thing. Basi-

cally, when we manipulated the dataset during the preprocessing step, we naively labeled the
time-period before t = 30 [s] with Shock = false and after t = 30 [s] with Shock = true. However,
this is not 100% correct, because some patients are able to compensate for the heart failure and
do not get into a shock. Remarkably, the inference results for Shock showed that the DBN was
somehow able to recover from the erronuous labeling and for some patients, the inferred val-
ues were closer to reality than our original labeling. We did not incorporate this observation
into the overall results, but it shows us two things: because a DBN is based on statistics, it can
be quite robust when learning from datasets with incorrectly labeled entries, and a DBN can
indeed give us more insight into the real properties of the modeled problem.

Overall, we can conclude that for changes in complex systems such as the cardiovascular
system, values of hidden variables can only be inferred within an acceptable error range when
taking temporal dependencies into account. As long as the complex systems is stable, a BN can
be sufficient.

11.4.4 Experiment 2: Varying the measurement rate

The second experiment compares the performance of the DBN for varying measurement rates
to test its robustness for missing measurements. Measurements of the HR, Psa↓, and Psa↑ were
inserted every time-slice, once every two time-slices, or once every four time-slices. Smoothing
was used as inference type.

Results Again, we decided to show the performance for all inferred variables. Table 11.3
shows the overall performance for varying measurement rates. Figure 11.10 shows the perfor-
mance over time.

Table 11.3: Overview of results for experiment 2: Varying the measurement rate.

CA↑ EF Emlv

data-rate ME state ME value ME disc. MHD ME state ME value ME disc. MHD ME state ME value ME disc. MHD

every slice 0.42 17.06 8.75 0.89 0.42 0.95 0.52 0.85 0.22 0.07 0.04 0.42

1of2 slices 0.50 19.40 8.75 0.92 0.51 1.12 0.52 0.89 0.28 0.08 0.04 0.50

1of4 slices 0.62 23.45 8.75 0.99 0.89 1.85 0.52 0.99 0.65 0.14 0.04 0.67

Plv↑ Rep Rsp

data-rate ME state ME value ME disc. MHD ME state ME value ME disc. MHD ME state ME value ME disc. MHD

every slice 0.01 1.01 0.99 0.14 0.38 0.01 0.01 0.75 0.21 0.10 0.08 0.51

1of2 slices 0.18 1.35 0.99 0.48 0.42 0.02 0.01 0.81 0.28 0.11 0.08 0.60

1of4 slices 0.42 2.09 0.99 0.76 0.60 0.02 0.01 0.91 0.47 0.16 0.08 0.81

Shock Vlv↓ Vlv↑
data-rate ME state ME value ME disc. MHD ME state ME value ME disc. MHD ME state ME value ME disc. MHD

every slice 0.10 N/A N/A 0.46 0.25 1.64 1.09 0.61 0.60 2.55 1.00 0.92

1of2 slices 0.12 N/A N/A 0.50 0.32 1.88 1.09 0.68 0.65 2.76 1.00 0.95

1of4 slices 0.16 N/A N/A 0.60 0.59 3.04 1.09 0.80 0.87 3.62 1.00 1.02

127

Cardiogenic shock in the human cardiovascular system 11.4 Empirical study

0 5 10 15 20
0

0.5

1

1.5

2
m

ea
n

er
ro

r

ME inferred state Cardiac Output
up

0 5 10 15 20
0

20

40

60

80

m
ea

n
er

ro
r

ME inferred value Cardiac Output
up

 in (ml)

0 5 10 15 20
0.8

1

1.2

1.4

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD Cardiac Output
up

0 5 10 15 20
0

100

200

300

m
ea

n
er

ro
r

ME inferred state Ejection Fraction

0 5 10 15 20
0

2

4

6

m
ea

n
er

ro
r

ME inferred value Ejection Fraction in (%)

0 5 10 15 20

0.8

1

1.2

1.4

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD Ejection Fraction

0 5 10 15 20
0

1

2

3

m
ea

n
er

ro
r

ME inferred state E
mlv

0 5 10 15 20
0

0.2

0.4

0.6

m
ea

n
er

ro
r

ME inferred value E
mlv

 in (mmHg/ml)

0 5 10 15 20
0

0.5

1

1.5

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD E
mlv

0 5 10 15 20
0

0.5

1

1.5

2

m
ea

n
er

ro
r

ME inferred state P
lv up

0 5 10 15 20
0

2

4

6

8

m
ea

n
er

ro
r

ME inferred value P
lv up

 in (mmHg)

0 5 10 15 20
0

0.5

1

1.5

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD P
lv up

0 5 10 15 20
0

0.5

1

1.5

m
ea

n
er

ro
r

ME inferred state R
ep

0 5 10 15 20
0

0.02

0.04

0.06

m
ea

n
er

ro
r

ME inferred value R
ep

 in (mmHg s / ml)

0 5 10 15 20

0.8

1

1.2

1.4

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD R
ep

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

m
ea

n
er

ro
r

ME inferred state R
sp

0 5 10 15 20
0.05

0.1

0.15

0.2

m
ea

n
er

ro
r

ME inferred value R
sp

 in (mmHg s / ml)

0 5 10 15 20
0.4

0.6

0.8

1

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD R
sp

0 5 10 15 20
0

0.2

0.4

0.6

0.8

m
ea

n
er

ro
r

ME inferred state Shock

0 5 10 15 20
0.2

0.4

0.6

0.8

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD Shock

0 5 10 15 20
0

0.5

1

1.5

2

m
ea

n
er

ro
r

ME inferred state V
lv down

0 5 10 15 20
0

2

4

6

8

m
ea

n
er

ro
r

ME inferred value V
lv down

 in (ml)

0 5 10 15 20
0

0.5

1

1.5

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD V
lv down

0 5 10 15 20
0

0.5

1

1.5

m
ea

n
er

ro
r

ME inferred state V
lv up

0 5 10 15 20
0

2

4

6

m
ea

n
er

ro
r

ME inferred value V
lv up

 in (ml)

Discretization Error
Measurement every slice
Evidence 1 of 2 slices
Evidence 1 of 4 slices

0 5 10 15 20
0.8

1

1.2

time−slices

H
el

lin
ge

r
d

is
ta

nc
e

HD V
lv up

Figure 11.10: The mean errors and Hellinger distances of the variables over time for experiment 2.

128

11.5 Summary Cardiogenic shock in the human cardiovascular system

Discussion We can clearly see that the performance does not change much when we do mea-
surements every time-slice or once every two time-slices. From this observation, we can con-
clude that the DBN is quite robust for occasional missing measurements. However, when we do
measurements once every four time-slices, we see a drastic performance drop.

The inference performance for each variable shows globally the same trend, except for the
Plv↑ variable, where we see some kind of saw tooth pattern occur, with minimal errors when
a measurement is inserted. After inspection of the Plv↑ CPTs, we see that Plv↑ is very strongly
correlated with Psa↑. In fact, for certain values it is a fully deterministic relation! As such,
leaving out Psa↑ measurements has a very strong impact on the inference performance of Plv↑,
hence the saw tooth pattern.

Overall, we can conclude that the cardiovascular system DBN is robust for occasional miss-
ing measurements, as long as they stay occasional. Occasional in this context means not more
than two successive missing measurements before a new measurement is done.

11.4.5 Conclusions

The empirical study gave us more insight into applying the DBN formalism to a complex phys-
iological process such as the cardiovascular system. Overall, we are quite content with the
performance of the DBN, especially when compared to a BN, and when taking into account
that the DBN presented in this chapter is way more complex than the glucose-insulin regulation
DBN in chapter 10. The main insights are:

1. We gained this insight before when investigating the glucose-insulin regulation DBN, but
we will repeat it here: investigation of the learned CPTs suggested that different paramet-
ric representations are suitable, because many parameters remain untouched during the
learning phase.

2. A BN can model a complex system such as the cardiovascular system only when no
changes over time are involved. Otherwise, a DBN is needed.

3. A DBN is able to recover from wrongly labeled values for variables during learning. As
such, it can be used to get more insight in the actual properties of the modeled domain.

4. A DBN is robust for missing measurements, as long as there are not too many missing
measurements. The number of missing measurements differs from application to applica-
tion. In the cardiovascular system DBN, this means not more than two successive missing
measurements before a new measurement is done.

11.5 Summary

In this chapter, we presented the first step toward a cardiovascular system DBN that is able
to infer the hidden values of the physiological process based solely on fluctuations in heart-
rate (HR) and arterial blood pressure (Psa↑ and Psa↓). An empirical study gave insight into
the performance of the DBN when compared to a BN and when missing measurements are
involved. Furthermore, it showed us that a DBN is able to recover from wrongly labeled values
for variables during learning and that it can be used to get more insight in the actual properties
of the modeled domain.

129

Part IV

Results

“The most exciting phrase to hear in science,
the one that heralds the most discoveries,

is not Eureka! but That′s funny . . .”
- Isaac Asimov.

131

Conclusions and future
work 12

Chapter

The observant reader probably noticed the quote of Isaac Asimov as introduction of this part
of the thesis. Although we do not want to claim that our exclamations of That’s funny! herald
great discoveries, many interesting results were due to the fact that the empirical studies on our
extended DBN formalism, discretization of continuous variables, the glucose-insulin regulation
DBN and the cardiovascular system DBN did not yield the expected results. And that was indeed
funny. And useful.

In this chapter we review our initial goals and objectives and show to what extent they
were satisfied. Furthermore, our contribution to the field is presented. Finally, we present five
opportunities for future work.

12.1 Goals and objectives

In the introduction of this thesis, we proposed the following research questions:

1. How do we obtain the DBN structure and parameters?
2. What is the performance of inference?
3. How much patient data do we need for learning the DBN parameters?
4. If possible, how much does a DBN outperform a BN when applied to the same problem?

Based on these questions, we formulated our assignment. The original assignment consisted of
three parts: a theoretical part, an implementation part, and an application part. In their turn,
these three parts consisted of our goals and objectives of the research presented in this thesis.
What follows is a one-by-one discussion of the satisfaction of these goals and objectives.

133

Conclusions and future work 12.1 Goals and objectives

12.1.1 Theoretical part

1. Investigating existing DBN theory We performed a survey on current (D)BN research and
its applications and presented the results of this investigation in chapters 3 and 5. We tried to
present our findings as clearly as possible and included many references to in-depth material,
so it can serve as a starting point for readers that are trying to get familiar with DBN theory
and techniques. Our investigation also resulted in a proposal for the extension of Murphy’s
DBN formalism (chapter 7) and a description of a framework for applying the DBN formalism
to physiological processes (chapter 6).

2. Extending DBN formalism Based on our findings from objective 1, we decided to extend
Murphy’s DBN formalism with several new concepts because it has several unnecessary limita-
tions due to its restrictive definition. The most obvious limitation of Murphy’s DBN formalism
is the possibility to model first-order Markov processes only. A second limitation is that when
unrolling the network for inference, every node is copied to every time-slice, even if it has a
constant value for all time-slices. The final limitation is that although it is possible to introduce
a different initial state, it is not possible to define a different ending state, which can be useful
for modeling variables that are only interesting after the end of the process.

To overcome these limitations, we introduced several extensions of Murphy’s DBN formalism
in chapter 7. First, we introduced kth-order temporal arcs to enable the modeler to model
processes with complex time-delays. Second, because we found the original definition of DBNs
using the (B1,B→) pair too cumbersome for representation of (k + 1)TBNs, we introduced the
concept of a temporal plate. We argued that the temporal plate representation is both easier to
understand and more intuitive to model with. Furthermore, it simplifies the implementation
of the model significantly by decreasing the amount of code (and thus the number of potential
errors) needed to specify the model. The introduction of a temporal plate also made way to
handle nodes within the temporal plate differently from nodes outside the temporal plate. This
lead to our introduction of anchor, contemporal, and terminal nodes. Anchor nodes are only
connected to the first time-slice in the temporal model and provide the modeler with means of
adding nodes to the temporal model that only affect the initial phase of the modeled process.
Similarly, terminal nodes provide the modeler with means of adding nodes to the temporal
model that are only interesting at the end of the modeled process. With Murhpy’s formalism,
these nodes would have to be copied (and inferred) every time-slice. The introduction of
contemporal nodes enables the modeler to model the context of a process by providing nodes
that are connected to every time-slice in the temporal plate, but are not copied themselves
during unrolling. Such context nodes have two main purposes. First, they can serve as evidence
nodes that are used to index the nodes in the temporal plate for switching between different
conditional probability distributions. Second, if the state of the context nodes is unknown, they
can serve as classifiers based on temporal observations from nodes in the temporal plate.

Finally, we showed in chapter 7 that for our extension of the DBN formalism, next to the ob-
vious advantages modeling wise, also the performance in terms of execution time and memory
usage increases significantly.

3. Adapting DBN parameter learning In chapter 9 we discussed issues concerning the DBN
structure, the DBN parameters, and discretization of continuous variables. Although we were
to obtain the DBN structures of our applications by using domain knowledge, the parameters
needed to be learned from data. During our study of existing DBN theory, we found that most
literature states that DBN parameter learning is essentially the same as BN parameter learning,
with only a few small differences. Existing DBN parameter learning algorithms unroll the DBN
for the to-be-learned sequence length after which the parameters of similar CPDs are tied and
the DBN is learned using an adapted BN learning algorithm. We proposed a methodology that
decomposes the DBN to several BNs (initial parameters, temporal parameters, contemporal
parameters, and terminal parameters) instead and use an (unaltered) BN parameter learning

134

12.1 Goals and objectives Conclusions and future work

algorithm for several reasons. First of all, by decomposing the DBN, we do not have to deal
with unrolling the DBN and tying the parameters for the unrolled DBN. This saves a lot of over-
head. Secondly, in the case where the initial parameters represent the stationary distribution
of the system (and thus become coupled with the transition model), they cannot be learned
independently of the transition parameters. Existing DBN parameter learning algorithms need
to be adapted for this situation, but for our method it does not matter whether we learn the pa-
rameters for a DBN with coupled or decoupled initial and transition parameters (because of our
introduction of anchor nodes). Finally, our methodology is more practical to apply. While there
exist many fast and reliable implementations of BN parameter learning, this is not the case
for DBN parameter learning; most likely because it is difficult to generalize DBN parameter
learning for all possible network topologies.

We found that an important, but generally overlooked preprocessing step for learning the
parameters of continuous variables with DBNs is their discretization. We presented several
methods for discretization of continuous variables and showed their differences. We showed
that different methods have different advantages (chapter 9), but also showed that a wrongly
chosen discretization can have a major impact on the performance of the DBN (chapter 10). We
decided to apply a discretization of continuous variables based on expert knowledge, but devel-
opment of an automated optimal discretization method clearly poses a window of opportunity
for future work.

4. Validating the extended DBN formalism We support our claims on the relevance of our
extension of the DBN formalism, application of our DBN parameter learning methodology, and
discretization of continuous variables by means of several smaller and larger empirical studies
performed throughout this thesis. Next to a validation of our approach, the empirical studies
presented general insight into the overall performance of different methodologies and provided
knowledge on how to apply the DBN formalism for modeling the temporal domain in general.

Chapter 7 presents an empirical study that validates our extension of the DBN formalism and
gives insight into the performance gain in terms of memory and time. Our parameter learning
methodology was validated by applying it to the glucose-insulin regulation and cardiovascu-
lar system DBNs in chapter 10 and 11. Empirical studies on the discretization of continuous
variables were presented in chapters 9 and 10.

12.1.2 Implementation part

5. Investigating current DBN software To get insight into the functionality of current DBN
software, several packages were downloaded, installed, and tested. The results of this study
were presented in chapter 4, where we concluded that no satisfying solution existed yet. Cur-
rent solutions lack one or more essential features, such as different inference types (filtering,
prediction, smoothing, Viterbi), different node representations (CPT, Noisy-MAX, continuous
distribution), different inference algorithms (exact inference, approximate inference), and/or
importing/exporting DBN models. Furthermore, they are generally inflexible, too slow and do
not have a GUI. Based on these insights, we saw a need for the development of a flexible, fast,
reliable and easy-to-use implementation of temporal reasoning. As such, the DSL software so-
lutions SMILE and GeNIe were extended with temporal reasoning using our extension of the
DBN formalism as a guideline.

6. Designing and implementing the DBN formalism in SMILE Chapter 8 presents the
design, implementation, and testing of temporal reasoning in SMILE using our extension of the
DBN formalism as a guideline. We showed that our extension of SMILE with temporal reasoning
is designed and implemented in such a way that it does not affect the performance of existing
functionality, the extended API is consistent with the existing API, access to temporal reasoning
functionality is straightforward and easy, and the temporal extension is easy maintainable and
expandable.

135

Conclusions and future work 12.1 Goals and objectives

The implementation enabled us to use SMILE for temporal reasoning purposes, and is to the
best of our knowledge the first implementation of temporal reasoning that provides this much
freedom and ease in temporal modeling by supporting kth-order temporal arcs, a temporal
plate, anchor, contemporal and terminal nodes, and different canonical representations. Our
implementation enabled us to use SMILE for modeling physiological processes, but it can be
used to model temporal problems in arbitrary domains.

7. Designing a GUI to DBNs in GeNIe After the implementation in SMILE, a GUI was de-
signed for temporal reasoning in GeNIe based on brainstorm sessions within the DSL and feed-
back from users in the field. The design of the extension of GeNIe with temporal reasoning was
merged into the current design of GeNIe, so existing users do not get confused due to the newly
introduced functionality. The GUI design includes our introduction of the concepts of kth-order
temporal arcs, a temporal plate, and anchor, contemporal and terminal nodes. Furthermore,
we designed a straightforward way to define temporal conditional probability distributions, set
temporal evidence, perform inference, and visualize the temporal posterior beliefs in several
ways. Initial response from the field is enthusiastic, and yields some useful suggestions for fu-
ture extensions of both functionality and visualization (more on this in section 12.3). However,
the current implementation is fully functional and both GeNIe and SMILE with inclusion of
temporal reasoning functionality can be downloaded from http://genie.sis.pitt.edu.

12.1.3 Application part

8. Applying the extended DBN formalism to physiological processes in the human body
After extending the DBN formalism, developing a DBN parameter learning methodology, and
investigating several discretization algorithms, it was time to apply the gained knowledge by
modeling two clinically relevant physiological processes: glucose-insulin regulation and the car-
diovascular system described in chapter 2, and try to answer the remaining research questions
by obtaining a dataset, discretizing the continuous variables, implementing the DBN models in
SMILE, learning the DBN parameters, and performing empirical studies on the obtained DBNs.

Our first real application of the DBN formalism was modeling the glucose-insulin regulation
in the human body (chapter 10). For derivation of the DBN structure we could rely on an
existing mathematical model that we extended with nominal-valued nodes to model the patient
type and the size of the insulin infusion. Furthermore, we could use the mathematical model to
simulate different patient cases for learning the DBN parameters. Based on the size of a given
insulin infusion and (noisy) glucose measurements, the DBN was able to infer the patient type
and/or predict future glucose and insulin levels. The obtained glucose-insulin regulation DBN
can be used by physicians to improve the glucose control algorithms currently in use in the ICU.
However, our main goal for modeling the glucose-insulin regulation using a DBN was to serve
as a primer for modeling the more complex cardiovascular system.

In contrast to the glucose-insulin regulation, there does not yet exist an effective and flexible
model for the cardiovascular system. However, such a model can be of great help for the devel-
opment of treatment of cardiovascular diseases, the leading cause of death in the industrialized
world for over a century. Based on expert knowledge from physicians, simulated patient cases
(provided by Philips Research), and our DBN knowledge, we were able to develop a new causal
temporal model of the cardiovascular system that is able to infer values for important physi-
ological variables on the basis of measuring non-evasive variables, such as heart-rate, systolic
and diastolic arterial blood pressure (chapter 11). Furthermore, it is able to infer whether a
patient has a cardiogenic shock, a property that can be of great clinical significance.

9. Performing empirical studies Empirical studies were performed on the glucose-insulin
regulation and cardiovascular system DBNs in chapter 10 and 11. Although the glucose-insulin
regulation DBN served as a primer for the cardiovascular system DBN, the results of the em-
pirical study were useful nonetheless. First of all, it proved that our newly introduced DBN

136

12.2 Contributions to the field Conclusions and future work

concepts and their implementation in SMILE and GeNIe worked, next to our DBN parameter
learning methodology. Furthermore, it proved that the chosen discretization of continuous vari-
ables can have a major influence on the performance of the DBN, just like we expected. Finally,
it showed that not that many patient cases are needed to learn the DBN parameters as one
might expect from the number of CPT parameters to be learned. Inspection of the CPTs showed
that after learning, many CPT parameters kept their initial distribution, suggesting that a dif-
ferent canonical gate might be appropriate. This observation presents another opportunity for
future work.

The empirical study on the cardiovascular system DBN showed that a DBN clearly out-
performs a BN for complex systems where change is involved. The BN was able to infer the
physiological variables before the heart failure, but after the heart failure, the BN is not able
to adapt to the new situation. Furthermore, it showed that due to its statistical properties, a
DBN is able to recover from erroneous labeled inputs, providing us (and physicians) with more
insight about the actual properties of the modeled domain. Finally, the DBN formalism appears
robust to missing measurements.

All in all, the empirical studies showed that our extension of the DBN formalism is well
suited for application to physiological processes and can be of great help for both research and
practical applications.

12.2 Contributions to the field

The previous section presented our work in terms of the satisfaction of our earlier defined goals
and objectives. However, the question remains what parts of our work are a contribution to the
field.

As a whole, although we developed a framework with the application of the extended DBN
formalism to physiological processes in mind, we want to stress that the framework presented in
this thesis can be used in other domains, such as automatic speech recognition, missile detection
systems, user-modeling, etc. for classification, filtering, smoothing, Viterbi, and prediction
purposes. The issues that we discussed concerning the modeling of physiological processes can
be easily generalized to other domains, because every domain has to deal with modeling issues
such as complex time-delays, context specific probability distributions, and discretization of
continuous variables sooner or later. The research in this thesis shows how to use these concepts
and what issues are involved when building temporal models. Furthermore, it clarifies the use
of these concepts by applying them to relevant applications, and shows how the concepts work
out in practice.

On a modeling level, we made contributions to the field by extending the DBN formalism
with the notion of kth-order temporal arcs, a temporal plate, and anchor, contemporal, and
terminal nodes to counter the limitations of Murphy’s DBN formalism. We developed a new
approach for representation and implementation of temporal networks and showed how to uti-
lize our extensions for modeling purposes. We claim that our extension is both more intuitive
and provides more modeling power than Murphy’s DBN formalism. Furthermore, implementa-
tion of temporal models using our representation results in less code and less potential errors.
Empirical study showed that the performance of our extension in terms of execution time and
memory usage is also significantly better than Murphy’s DBN formalism.

For learning the DBN parameters, we developed a straightforward method that decomposes
the DBN definition into several BNs and uses an existing BN parameter learning algorithm in-
stead of adapting an existing BN parameter learning algorithm to a DBN version. Our method-
ology counters the disadvantages of existing DBN parameter learning algorithms that have to
unroll the DBN for the to-be-learned sequence length and tie the parameters, and that do not
provide straightforward means for parameter learning when the initial parameters and the
transition parameters are coupled.

Furthermore, we shed light on the issues involved when discretizing continuous variables,

137

Conclusions and future work 12.3 Future work

an important preprocessing step that is generally overlooked in applications using the DBN
formalism, but can have a major influence on the performance of the DBN, as we have shown
in an empirical study as well.

We found that although the DBN formalism is very promising, not much has happened re-
garding real and practical applications. We think that this is mostly due to the fact that no
satisfying software solution exists yet for temporal reasoning. A very concrete contribution of
this research is the extension of SMILE and GeNIe with temporal reasoning. This software is to
the best of our knowledge the first implementation of temporal reasoning that provides support
for kth-order temporal arcs, a temporal plate, and anchor, contemporal and terminal variables,
next to support for using different canonical representations in temporal models, such as the
Noisy-MAX gate. Next to that, the software provides an intuitive modeling approach using our
temporal plate representation, a straightforward way to define temporal conditional probabil-
ity distributions, set temporal evidence, perform inference, and visualize the temporal posterior
beliefs in several ways. During our design and implementation of the temporal reasoning exten-
sion, we took great care to provide means for future extensions, such as new temporal inference
algorithms, which opens another window of opportunities for future work. Initial users of the
temporal reasoning extension in GeNIe and SMILE are enthusiastic.

A contribution with clinical significance is our temporal model of the cardiovascular system.
As we have stated before, cardiovascular diseases are leading cause of death in the industri-
alized world for over a century, but a good model of the cardiovascular system does not yet
exist. We showed that the extended DBN formalism is well-suited to model (parts of) the car-
diovascular system, and is even able to infer relevant physiological and clinical variables within
a sufficient error range. With the help of our model, physicians are able to gain a better insight
into the cardiovascular system, something that will hopefully help in treatment of cardiovascu-
lar diseases.

Finally, although some conclusions from the empirical studies performed in chapters 10
and 11 apply to specific applications, many insights are generalizable, such as: the insight that
less data is needed for learning the DBN parameters than expected from the number of CPT
parameters to be learned; the insight that the discretization method has a major influence on
the performance of the DBN; the insight that DBNs are quite robust for missing evidence; and
the insight that DBNs can recover from incorrectly labeled learning data, providing us with
more knowledge about the domain. The last insight is particularly important for research in
the medical domain.

12.3 Future work

Research on modeling with DBNs is currently a very active field. As such, many opportunities
for future research exist. Based on the research reported in this thesis, we will give five oppor-
tunities for future research on modeling with DBNs. Some of these opportunities are mentioned
briefly in previous sections, but we will give a short explanation here nonetheless.

First of all, for this research we relied on existing BN inference algorithms when performing
inference on the DBNs. For these algorithms to work, the DBN needs to be unrolled for the
appropriate number of time-slices. However, this approach is very inefficient regarding space-
complexity. For Murphy’s DBN formalism, space-efficient algorithms exist that keep only a
number of time-slices in memory at every instant of the algorithm, but these algorithms only
work because of the restrictive nature of Murphy’s DBN formalism. An opportunity for future
work can be devising and implementing a space-efficient algorithm for our extension of the DBN
formalism. A difficulty that needs to be overcome when devising such an algorithm is how to
efficiently deal with the large cliques that can appear during the moralization and triangulation
steps of exact inference in the case of unobserved contemporal nodes. A more general difficulty
arises when considering the DBN definition in figure 12.1a. Initially, this DBN looks rather
simple. In fact, it does not even have non-temporal arcs. However, during inference the DBN

138

12.3 Future work Conclusions and future work

definition needs to be unrolled (figure 12.1b). Here we can clearly see that although the non-
temporal arc X1

4 → X4
4 does not exist, X4

4 is still dependent on X1
4 because of the path through

X1
1! For this reason, exact inference for DBNs is intractable most of the times. Future work

could go into devising an approximate inference algorithm for the extended DBN formalism
based on the EPIS sampling algorithm that makes use of the special properties of a DBN, such
as its repetitive structure.

X1
t

X2
t

X3
t

X4
t

1

1

1

1

1

1

1

X1
1 X1

2 X1
3 X1

4

X2
1 X2

2 X2
3 X2

4

X3
1 X3

2 X3
3 X3

4

X4
1 X4

2 X4
3 X4

4

(a) (b)

Figure 12.1: (a) DBN definition. (b) Unrolled DBN. X4
4 becomes dependent on X1

4 through X1
1.

A second opportunity for future work arises when modeling continuous variables with dis-
crete nodes. We have shown that the discretization step can have a major impact on the perfor-
mance of the DBN. However, most current work overlooks the issues involved when discretizing
continuous variables. We argue that a research opportunity lies in devising a learning algorithm
that includes the discretization of continuous variables as inherent part of the learning process.
In this way, the learning algorithm can search for an optimal tuning between the learned CPT
parameters and the chosen discretization intervals.

A third opportunity for future work is to extend the DSL software to allow for continuous
variables in the DBN. Allowing for continuous variables is not without problems. For instance,
unless for some cases where the continuous variables are limited to a representation as nodes
with Gaussian distributions, exact inference is generally impossible and one needs to resort to
approximate inference techniques. However, because (D)BNs are often used to model continu-
ous variables, this can be a very interesting topic. A part of the research done at the DSL focuses
on developing mathematical and computational solutions to the representation and reasoning
of hybrid Bayesian networks consisting of a mixture of discrete and continuous variables with
arbitrary distributions or equations. Results of these research efforts are currently built into
SMILE and can be extended to the temporal domain in future releases.

A fourth opportunity for future work presented itself during inspection of the learned CPTs
of nodes in both the glucose-insulin regulation DBN and the cardiovascular system DBN. We
found that many CPT parameters remained untouched after the learning phase. This suggests
that different parametric representations are suitable for these variables. However, experiment-
ing with the Noisy-MAX representation did not yield satisfying results, so different parametric
representations need to be devised. Research effort could go into finding and implementing
new canonical representations specifically for discretized variables.

139

Conclusions and future work 12.3 Future work

A fifth opportunity for future work can be found in the medical domain, where on a more
practical level our cardiovascular system DBN can be extended with the context of patients based
on patient properties, such as gender, age, smoker/non-smoker, etc. Unfortunately, this was not
possible with the current dataset, because the patients were not labeled as such. Furthermore,
the DBN model can be extended with other types of shock (hypovolumic, septic, etc.) to learn
how well the DBN performs in classifying different types of shock.

140

Bibliography

[AC96] C. F. Aliferis and G. F. Cooper. A structurally and temporally extended Bayesian
belief network model: definitions, properties, and modeling techniques. In Pro-
ceedings of the 12th conference on uncertainty in artificial intelligence (UAI-96),
pages 28–39, Portland, OR, USA, August 1996. Morgan Kaufmann publishers.

[AJA+89] S. Andreassen, F. V. Jensen, S. K. Andersen, B. Falck, U. Kjærulff, M. Woldbye,
A. R. Sørensen, and A. Rosenfalck. MUNIN - An expert EMG assistant. In J. E.
Desmedt, editor, Computer-aided electromyography and expert systems, chapter 21.
Elsevier Science publishers, Amsterdam, The Netherlands, 1989.

[Aug05] J. C. Augusto. Temporal reasoning for decision support in medicine. Artificial
intelligence in medicine, 33:1–24, 2005.

[Bay04] Bayesia SA. BayesiaLAB 3.0 tutorial, 2004.

[BD00] B. Bruegge and A. H. Dutoit. Object-oriented software engineering - conquering
complex and changing systems. Prentice-Hall International, Inc., Upper Saddle
River, NJ, USA, 2000.

[BK98] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In
Proceedings of the 14th conference on uncertainty in artificial intelligence (UAI-98),
pages 33–42, University of Wisconsin, Madison, WI, USA, July 1998.

[BKS97] E. Bauer, D. Koller, and Y. Singer. Update rules for parameter estimation in
Bayesian networks. In Proceedings of the 13th conference on uncertainty in arti-
ficial intelligence (UIA-97), pages 3–13, Brown University, Providence, RI, USA,
August 1997.

[BL00] R. M. Berne and M. N. Levy. Principles of physiology. Mosby, third edition, 2000.

[BMR97] J. Binder, K. P. Murphy, and S. J. Russell. Space-efficient inference in dynamic
probabilistic networks. In Proceedings of the 15th international joint conference on
artificial intelligence (IJCAI-97), pages 1292–1296, Nagoya, Aichi, Japan, August
1997.

[Bun94] W. L. Buntine. Operations for learning with graphical models. Journal of artificial
intelligence research, 2:159–225, December 1994.

[BZ02] J. A. Bilmes and G. G. Zweig. The graphical models toolkit: An open source soft-
ware system for speech and time-series processing. In Proceedings of the 2002 IEEE
international conference on acoustics, speech, and signal processing (ICASSP02),
volume 4, pages 3916–3919, May 2002.

[Coo90] G. F. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial intelligence, 42:393–405, 1990.

[CR04] N. W. Chbat and T. K. Roy. Glycemic control in critically ill patients - effect of
delay in insulin administration. Mayo Clinic, Rochester, MN, USA, 2004.

141

BIBLIOGRAPHY BIBLIOGRAPHY

[CvdGV+05] T. Charitos, L. C. van der Gaag, S. Visscher, K. Schurink, and P.J.F. Lucas. A
dynamic Bayesian network for diagnosing ventilator-associated pneumonia in ICU
patients. In J. H. Holmes and N. Peek, editors, Proceedings of the 10th intelligent
data analysis in medicine and pharmacology workshop, pages 32–37, Aberdeen,
Scotland, 2005.

[Dar01] A. Darwiche. Constant space reasoning in dynamic Bayesian networks. Interna-
tional journal of approximate reasoning, 26:161–178, 2001.

[Das03] D. Dash. Caveats for causal reasoning with equilibrium models. PhD thesis, Intelli-
gent systems, University of Pittsburgh, Pittsburgh, PA, USA, April 2003.

[DDN00] R. Deventer, J. Denzler, and H. Niemann. Control of dynamic systems using
Bayesian networks. In Proceedings of the IBERAMIA/SBIA 2000 workshops, pages
33–39, Atibaia, Sao Paulo, Brazil, 2000.

[DK88] T. Dean and K. Kanazawa. Probabilistic temporal reasoning. In Proceedings of
the 7th national conference on artificial intelligence (AAAI-88), pages 524–529, St.
Paul, MN, USA, August 1988. MIT Press.

[DKS95] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretiza-
tion of continuous features. In A. Prieditis and S. Russell, editors, Proceedings of
the 12th international conference on machine learning, pages 456–463, San Fran-
cisco, CA, USA, 1995. Morgan Kaufmann publishers.

[DML05] E. S. Dimitrova, J. J. McGee, and R. C. Laubenbacher. Discretization of time
series data. http://polymath.vbi.vt.edu/discretization, August 2005. c++
implementation of algorithm available on website.

[Dru99] M. J. Druzdzel. SMILE: Structural modeling, inference, and learning engine and
GeNIe: A development environment for graphical decision-theoretic models. In
Proceedings of the 16th national conference on artifical intelligence (AAAI-99), pages
342–343, July 1999.

[Dru05] M. J. Druzdzel. Intelligent decision support systems based on SMILE. Software
developer’s journal, 2:26–29, February 2005.

[DS94] M. J. Druzdzel and H.J. Suermondt. Relevance in probabilistic models: "back-
yards" in a "small world". In Working notes of the AAAI-1994 fall symposium series:
relevance, pages 60–63, New Orleans, LA, USA, November 1994.

[Har01] A. Hartemink. Principled computational methods for the validation and discovery
of genetic regulatory networks. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2001.

[Hec98] D. E. Heckerman. A tutorial on learning with Bayesian networks. In Proceedings of
the NATO advanced study institute on learning in graphical models, pages 301–354,
Norwell, MA, USA, 1998. Kluwer Academic publishers.

[HHN92] D. E. Heckerman, E. J. Horvitz, and B. N. Nathwani. Toward normative expert
systems: part I - the pathfinder project. Methods of information in medicine, 31:90–
105, 1992.

[HM84] R. A. Howard and J. E. Matheson. Influence diagrams. In Readings on the principles
and applications of decision analysis, volume 2, pages 721–762, Strategic decision
group, Menlo Park, CA, USA, 1984.

142

BIBLIOGRAPHY BIBLIOGRAPHY

[Hul05] J. Hulst. Research Assignment: Dynamic Baysesian networks and speech recognition.
Man-machine interaction group, Faculty of EEMCS, Delft University of Technol-
ogy, Delft, The Netherlands, August 2005.

[Int04] Intel Corporation. Probabilistic Network Library - User guide and reference manual,
March 2004.

[Jor03] M. I. Jordan. An introduction to probabilistic graphical models. To appear, June
2003.

[Kal60] R. E. Kalman. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME - journal of basic engineering, 83:35–45, 1960.

[KCC00] M. M. Kayaalp, G. F. Cooper, and G. Clermont. Predicting ICU mortality: A com-
parison of stationary and non-stationary temporal models. In Proceedings of the
2000 AMIA annual symposium, pages 418–422, 2000.

[KF05] D. Koller and N. Friedman. Bayesian networks and beyond. To appear, 2005.

[Kjæ95] U. Kjærulff. dHugin: A computational system for dynamic time-sliced Bayesian
networks. International journal of forecasting, 11:89–111, 1995.

[KN01] G. Kokolakis and P. H. Nanopoulos. Bayesian multivariate micro-aggregation un-
der the Hellinger’s distance criterion. Research in official statistics, 4(1):117–126,
2001.

[Lau95] S. L. Lauritzen. The EM algorithm for graphical association models with missing
data. Computational statistics and data analysis, 19:191–201, 1995.

[LdBSH00] P. J. F. Lucas, N. de Bruijn, K. Schurink, and A. Hoepelman. A probabilistic and
decision-theoretic approach to the management of infectious disease at the ICU.
Artificial intelligence in medicine, 19(3):251–279, 2000.

[LPKB00] U. Lerner, R. Parr, D. Koller, and G. Biswas. Bayesian fault detection and diagnosis
in dynamic systems. In AAAI/IAAI, pages 531–537, Austin, TX, USA, 2000.

[LS88] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems (with discussion).
Journal of the royal statistical society, series B (methological), 50(2):157–224,
1988.

[LvdGAH04] P. J. F. Lucas, L. C. van der Gaag, and A. Abu-Hanna. Bayesian networks in
biomedicine and health-care. Artificial intelligence in medicine, 30:201–214, 2004.

[MU05] F. Morchen and A. Ultsch. Optimizing time-series discretization for knowledge
discovery. In The 11th ACM SIGKDD international conference on knowledge discov-
ery and data mining, pages 660–665, Chicago, IL, USA, August 2005.

[Mur01] K. P. Murphy. The Bayes net toolbox for Matlab. Computing science and statistics,
33:331–350, Oktober 2001.

[Mur02] K. P. Murphy. Dynamic Bayesian networks: representation, inference and learn-
ing. PhD thesis, Computer science division, University of California, Berkeley, CA,
USA, Fall 2002.

[MW01] K. P. Murphy and Y. Weiss. The factored frontier algorithm for approximate in-
ference in DBNs. In Proceedings of the 17th conference on uncertainty in artificial
intelligence (UAI-01), pages 378–385, University of Washington, Seattle, WA, USA,
August 2001.

143

BIBLIOGRAPHY BIBLIOGRAPHY

[Nik98] D. Nikovski. Learning stationary temporal probabilistic networks. In Conference
on automated learning and discovery, Pittsburgh, PA, USA, June 1998. Carnegie
Mellon University.

[Nor97] Norsys Software Corporation. Netica - Application for belief networks and influence
diagrams - User guide, March 1997.

[Pea88] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann publishers, San Mateo, CA, USA, 1988.

[Rab89] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. In Proceedings of the IEEE, volume 77 issue 2, pages 257–286,
February 1989.

[RB03] M. J. Russell and J. A. Bilmes. Introduction to the special issue on new compu-
tational paradigms for acoustic modeling in speech recognition. Computer speech
and language, 17:107–112, April 2003.

[RN03] S. J. Russell and P. Norvig. Artificial intelligence: A modern approach - Second
edition. Prentice-Hall international, international edition, 2003.

[Sha98] R. Shachter. Bayes-Ball: The rational pasttime (for determining irrelevance and
requisite information in belief networks and influence diagrams). In Proceedings
of the 14th conference on uncertainty in artificial intelligence (UAI-98), pages 480–
487, San Francisco, CA, USA, 1998. Morgan Kaufmann publishers.

[SS88] G. Shafer and P. Shenoy. Local computation in hypertrees. Business school, Uni-
versity of Kansas. Working paper No. 201, 1988.

[TVLGH05] A. Tucker, V. Vinciotti, X. Liu, and D. Garway-Heath. A spatio-temporal Bayesian
network classifier for understanding visual field deterioration. Artificial intelli-
gence in medicine, 34:163–177, 2005.

[Urs98] M. Ursino. Interaction between carotid baroregulation and the pulsating heart:
a mathematical model. American physiological society, 275(5):H1733–H1747,
November 1998.

[WB04] G. Welcha and G. Bishop. An introduction to the Kalman filter. Technical Report
95-041, University of North Carolina at Chapel Hill, Department of computer
science, Chapel Hill, NC, USA, April 2004.

[YD03] C. Yuan and M. J. Druzdzel. An importance sampling algorithm based on ev-
idence pre-propagation. In Proceedings of the 19th conference on uncertainty in
artificial intelligence (UAI-03), pages 624–631, San Fransisco, CA, USA, 2003.
Morgan Kaufmann publishers.

[ZD06] A. Zagorecki and M. J. Druzdzel. Knowledge engineering for Bayesian networks:
How common are Noisy-MAX distributions in practice? In The 17th European
conference on artificial intelligence, pages 361–365, Aug 2006.

[Zha96] N. L. Zhang. Irrelevance and parameter learning in Bayesian networks. Artificial
intelligence journal, 88:359–373, 1996.

[ZP00] G. G. Zweig and M. Padmanabhan. Exact alpha-beta computation in logarithmic
space with application to MAP word graph construction. In Proceedings of the
6th international conference on spoken language processing (ICSLP-00), volume 2,
pages 855–858, Beijing, China, October 2000.

144

BIBLIOGRAPHY BIBLIOGRAPHY

[ZVD06] A. Zagorecki, M. Voortman, and M. J. Druzdzel. Decomposing local probability
distributions in Bayesian networks for improved inference and parameter learn-
ing. In The 19th international Florida artificial intelligence research society confer-
ence (FLAIRS), Melbourne Beach, FL, USA, May 2006.

[Zwe96] G. G. Zweig. A forward-backward algorithm for inference in Bayesian networks
and an empirical comparison with HMMs. Master’s thesis, Department of com-
puter science, University of California, Berkeley, CA, USA, 1996.

[Zwe98] G. G. Zweig. Speech recognition with dynamic Bayesian networks. PhD thesis,
University of California, Berkeley, CA, USA, Spring 1998.

145

Part V

Appendices

“Begin at the beginning
and go on till you come
to the end: then stop.”

- The King,
Alice in Wonderland.

147

Temporal reasoning in
SMILE tutorial and API A

Appendix

A.1 Introduction

A BN is useful for problem domains where the state of the world is static. In such a world, every
variable has a single and fixed value. Unfortunately, this assumption of a static world does not
always hold, as many domains exist where variables are dynamic and reasoning over time is
necessary, such as dynamic systems. A dynamic Bayesian network (DBN) is a BN extended with
a temporal dimension to enable us to model dynamic systems [DK88]. This tutorial assumes
a basic knowledge about the DBN formalism. If this is not the case, the reader is directed
to: [Jor03, KF05, Mur02].

A.2 Tutorial

For this tutorial, we have extended the umbrella DBN that also serves as an illustrative ex-
ample in [RN03] with a random variable that models the area where the secret underground
installation is based:

Example (Extended umbrella network) Suppose you are a security guard at some secret
underground installation. You have a shift of seven days and you want to know whether
it is raining on the day of your return to the outside world. Your only access to the
outside world occurs each morning when you see the director coming in, with or without,
an umbrella. Furthermore, you know that the government has two secret underground
installations: one in Pittsburgh and one in the Sahara, but you do not know which one
you are guarding.

149

Temporal reasoning in SMILE tutorial and API A.2 Tutorial

For each day t, the set of evidence contains a single variable Umbrellat (observed an
umbrella) and the set of unobservable variables contains Raint (whether it is raining) and
Area (Pittsburgh or Sahara). If it is raining today depends on if it rained the day before
and the geographical location. The resulting DBN and CPTs are shown in figure A.1.

A

Rt

Ut

1

8

p(Area)

Pittsburgh 0.5

Sahara 0.5

p(Rain1)

Area Pittsburgh Sahara

true 0.7 0.01

false 0.3 0.99

p(Raint)

Area Pittsburgh Sahara

Raint−1 true false true false

true 0.7 0.3 0.001 0.01

false 0.3 0.7 0.999 0.99

p(Umbrellat)

Raint true f alse

true 0.9 0.2

f alse 0.1 0.8

Figure A.1: The extended umbrella DBN and its CPTs.

Before we can start with the tutorial, we need to construct the default program presented in list-
ing A.1. The methods CreateDBN(), InferenceDBN(), and UnrollDBN() will be implemented
during the tutorial.

1 // Default program.
2 #include "smile.h"
3
4 using namespace std;
5
6 void CreateDBN(void);
7 void InferenceDBN(void);
8 void UnrollDBN(void);
9

10 int main(){
11 EnableXdslFormat();
12 CreateDBN();
13 InferenceDBN();
14 UnrollDBN();
15 return DSL_OKAY;
16 }

Listing A.1: Main program

A.2.1 Creating the DBN

Creating a DBN is essentially the same as creating a BN. First, we initialize the network, the
nodes and their states (listing A.2).

1 void CreateDBN(void){
2 // Initialize network and nodes.
3 DSL_network theDBN;
4 int rain = theDBN.AddNode(DSL_CPT,"Rain");
5 int umbrella = theDBN.AddNode(DSL_CPT,"Umbrella");
6 int area = theDBN.AddNode(DSL_CPT,"Area");
7
8 // Create and add statenames to [rain], [umbrella].
9 DSL_idArray stateNames;

10 stateNames.Add("True");
11 stateNames.Add("False");
12 theDBN.GetNode(rain)->Definition()->SetNumberOfOutcomes(stateNames);
13 theDBN.GetNode(umbrella)->Definition()->SetNumberOfOutcomes(stateNames);
14
15 // Create and add statenames to [area].

150

A.2 Tutorial Temporal reasoning in SMILE tutorial and API

16 stateNames.CleanUp();
17 stateNames.Add("Pittsburgh");
18 stateNames.Add("Sahara");
19 theDBN.GetNode(area)->Definition()->SetNumberOfOutcomes(stateNames);
20

Listing A.2: Creating the DBN - Initialize

After that, we set the non-temporal probabilities and arcs, just like we would do with a plain
BN (listing A.3).

21 // Add non-temporal arcs.
22 theDBN.AddArc(area, rain);
23 theDBN.AddArc(rain, umbrella);
24
25 // Add non-temporal probabilities to nodes.
26 DSL_doubleArray theProbs;
27
28 // Add probabilities to [area].
29 theProbs.SetSize(2);
30 theProbs[0] = 0.5;
31 theProbs[1] = 0.5;
32 theDBN.GetNode(area)->Definition()->SetDefinition(theProbs);
33
34 // Add probabilities to the initial CPT of [rain].
35 theProbs.SetSize(4);
36 theProbs[0] = 0.7;
37 theProbs[1] = 0.3;
38 theProbs[2] = 0.01;
39 theProbs[3] = 0.99;
40 theDBN.GetNode(rain)->Definition()->SetDefinition(theProbs);
41
42 // Add probabilities to [umbrella].
43 theProbs[0] = 0.9;
44 theProbs[1] = 0.1;
45 theProbs[2] = 0.2;
46 theProbs[3] = 0.8;
47 theDBN.GetNode(umbrella)->Definition()->SetDefinition(theProbs);
48

Listing A.3: Creating the DBN - Non-temporal

The above code should look familiar, as it just defines a standard BN. Next, we are going to add
temporal dependencies. First, the temporal types of the variables need to be set. The temporal
type is dsl_normalNode by default, but it is only possible to add temporal arcs between nodes
in the plate. Listing A.4 shows the code that moves the nodes Rain and Umbrella to the plate.

49 // Set temporal types.
50 theDBN.SetTemporalType(umbrella , dsl_plateNode);
51 theDBN.SetTemporalType(rain, dsl_plateNode);
52

Listing A.4: Creating the DBN - Temporal type

We add a temporal arc from Raint to Raint+1 by calling the method AddTemporalArc(int
parent, int child, int order) (listing A.5).

53 // Add temporal arc.
54 theDBN.AddTemporalArc(rain, rain, 1);
55

Listing A.5: Creating the DBN - Temporal arc

151

Temporal reasoning in SMILE tutorial and API A.2 Tutorial

Finally, the parameters of the temporal CPT are set and the DBN is saved to a file (listing A.6).
We now have obtained the Umbrella DBN that is going to help us solve the problem of the
guard in the secret underground base!

56 // Add temporal probabilities to the first-order CPT of [rain].
57 theProbs.SetSize(8);
58 theProbs[0] = 0.7;
59 theProbs[1] = 0.3;
60 theProbs[2] = 0.3;
61 theProbs[3] = 0.7;
62 theProbs[4] = 0.001;
63 theProbs[5] = 0.999;
64 theProbs[6] = 0.01;
65 theProbs[7] = 0.99;
66 theDBN.GetNode(rain)->TemporalDefinition()->SetTemporalProbabilities(theProbs , 1);
67
68 // Write the DBN to a file.
69 theDBN.WriteFile("dbn.xdsl");
70 }

Listing A.6: Creating the DBN - Temporal CPT

A.2.2 Performing inference

Performing inference on a DBN is very easy. Just like performing inference on a BN, it is a
matter of setting evidence, calling UpdateBeliefs(), and obtaining the updated values. This
tutorial assumes that the Umbrella DBN is saved to dbn.xdsl. Before we can add evidence, the
network needs to be loaded and the nodes identified (listing A.7).

1 void InferenceDBN(void){
2 DSL_network theDBN;
3 theDBN.ReadFile("dbn.xdsl");
4
5 // Obtain the node handles.
6 int rain = theDBN.FindNode("Rain");
7 int umbrella = theDBN.FindNode("Umbrella");
8 int area = theDBN.FindNode("Area");
9

Listing A.7: Inference - Load network

Because we want to predict the weather conditions on the eight day, the DBN needs to be un-
rolled for eight time-slices. This number is set through the SetNumberOfSlices(int slices)
method (listing A.8).

10 // Perform inference over a period of 8 days.
11 theDBN.SetNumberOfSlices(8);
12

Listing A.8: Inference - Set time-slices

During his shift, the guard only observed an umbrella on the fourth day. In a DBN, evidence
is set by calling the SetTemporalEvidence(int state, int slice) method. In this case, our
evidence is the following: u0:6 = {false, false, false, true, false, false, false}(listing A.9).

13 // Set the evidence of the DBN.
14 theDBN.GetNode(umbrella)->TemporalValue()->SetTemporalEvidence(1, 0);
15 theDBN.GetNode(umbrella)->TemporalValue()->SetTemporalEvidence(1, 1);
16 theDBN.GetNode(umbrella)->TemporalValue()->SetTemporalEvidence(1, 2);
17 theDBN.GetNode(umbrella)->TemporalValue()->SetTemporalEvidence(0, 3);

152

A.2 Tutorial Temporal reasoning in SMILE tutorial and API

18 theDBN.GetNode(umbrella)->TemporalValue()->SetTemporalEvidence(1, 4);
19 theDBN.GetNode(umbrella)->TemporalValue()->SetTemporalEvidence(1, 5);
20 theDBN.GetNode(umbrella)->TemporalValue()->SetTemporalEvidence(1, 6);
21

Listing A.9: Inference - Set evidence

Inference is performed by calling the method UpdateBeliefs(), after which the updated tem-
poral values can be retrieved by calling the method GetTemporalValue(DSL_Dmatrix &here,
int order) (listing A.10).

22 // Do inference.
23 theDBN.UpdateBeliefs();
24
25 // Get beliefs.
26 DSL_Dmatrix abeliefs;
27 DSL_Dmatrix rbeliefs;
28 abeliefs = *theDBN.GetNode(area)->Value()->GetMatrix();
29 theDBN.GetNode(rain)->TemporalValue()->GetTemporalValue(rbeliefs , 7);
30

Listing A.10: Inference - Update and retrieve values

Finally, the updated values for Area and Rain on the eight day are printed to the console (list-
ing A.11). The output should be <Pittsburgh = 0.088, Sahara = 0.912> for A and <True =
0.038, False = 0.962> for R8.

31 // Print beliefs.
32 DSL_idArray *stateNames;
33
34 stateNames = theDBN.GetNode(area)->Definition()->GetOutcomesNames();
35 cout << "Beliefs�of�[area]" << endl;
36 cout << "��" << (*stateNames)[0] << "\t" << abeliefs[0] << endl;
37 cout << "��" << (*stateNames)[1] << "\t" << abeliefs[1] << endl;
38 cout << endl;
39
40 stateNames = theDBN.GetNode(rain)->Definition()->GetOutcomesNames();
41 cout << "Beliefs�of�[rain]�tomorrow" << endl;
42 cout << "��" << (*stateNames)[0] << "\t\t" << rbeliefs[0] << endl;
43 cout << "��" << (*stateNames)[1] << "\t\t" << rbeliefs[1] << endl;
44 cout << endl;
45 }

Listing A.11: Inference - Print beliefs

A.2.3 Unrolling

It can be useful to obtain an unrolled version of the DBN. The UnrollNetwork(DSL_network
&here) method can be used for this purpose (listing A.12).

1 void UnrollDBN(void){
2 DSL_network theDBN;
3 theDBN.ReadFile("dbn.xdsl");
4
5 // Unroll DBN for a period of 8 days.
6 theDBN.SetNumberOfSlices(8);
7
8 // Save unrolled DBN to a file.
9 DSL_network unrolled;

10 theDBN.UnrollNetwork(unrolled);
11 unrolled.WriteFile("dbn_unrolled_8.xdsl");
12 }

153

Temporal reasoning in SMILE tutorial and API A.3 Public API

Listing A.12: Unroll

A.3 Public API

A.3.1 DSL_network

The DSL_network class contains all the methods that are needed for the administration of
nodes, normal arcs and temporal arcs, importing and exporting network definitions from/to
files, unrolling the DBN, and performing inference. In the future, specialized inference methods
can be added by extending the UpdateBeliefs() method, but currently the standard inference
techniques of SMILE are used.

int AddTemporalArc(int parent, int child, int order) Adds a temporal arc from the parent
to the child with given temporal order. For this method to succeed, the following conditions
must hold: the parent and child need to exist as nodes in the plate; the given temporal order
needs to be greater than 0; for a given temporal order greater than 1, a temporal arc with a
temporal order of 1 must already exist; and the temporal arc must not exist already.
Error return values: DSL_OUT_OF_RANGE (if any of the above mentioned conditions is not true).

vector< pair<int, int> >& GetTemporalChildren(int node) Returns a vector of pairs of
<node handle, temporal order> values that are temporal children of the node. If the node
does not exist, or does not have temporal children, the vector is empty.

int GetMaximumOrder() Returns the maximum temporal order of the network.

int GetNumberOfSlices() Returns the number of time-slices of the plate.

vector< pair<int, int> >& GetTemporalParents(int node) Returns a vector of pairs of
<temporal order, node handle> values that are temporal parents of the node. If the node
does not exist, or does not have temporal parents, the vector is empty.

dsl_temporalType GetTemporalType(int node) Returns the temporal type of the node. Tem-
poral type can be one of the following values of the enum dsl_temporalType:

• dsl_anchorNode,
• dsl_normalNode,
• dsl_plateNode,
• dsl_terminalNode.

int RemoveAllTemporalInfo() Removes all temporal information from the network: it sets
the number of time-slices to 0; it deletes all temporal arcs; and it sets all temporal types to
dsl_normalNode.

int RemoveTemporalArc(int parent, int child, int order) Removes the temporal arc from
the parent to the child with the given order. For this method to succeed, the following conditions
must hold: the parent and child need to exist; the given temporal order needs to be greater
than 0; the temporal arc needs to exist; and the temporal arc may not be the last temporal arc
with a temporal order of 1 if there are still temporal arcs with a temporal order greater than 1.
Error return values: DSL_OUT_OF_RANGE (if any of the above mentioned conditions is not true).

154

A.3 Public API Temporal reasoning in SMILE tutorial and API

int SetNumberOfSlices(int slices) Sets the number of time-slices of the nodes in the plate.
For this method to succeed, the following conditions must hold: the given number of time-slices
must be not less than 0; and the maximum temporal order of the network must be greater than
1 if the given number of time-slices is greater than 0.
Error return values: DSL_OUT_OF_RANGE (if any of the above mentioned conditions is not true).

int SetTemporalType(int node, dsl_temporalType type) Sets the temporal type node. Tem-
poral type can be one of the following values of the enum dsl_temporalType:

• dsl_anchorNode,
• dsl_normalNode,
• dsl_plateNode,
• dsl_terminalNode.

For this method to succeed, the following conditions must hold: the node must exist; and none
of the checks in table A.1 fails.

Table A.1: Implemented checks for temporal type transitions. The conditions in the table block the transition.

TO

FROM Anchor Normal Plate Terminal

Anchor No conditions. Children out of plate that
are not terminal nodes.

Children in the plate.

Normal No conditions. Children out of plate that
are not terminal nodes.

Children in the plate.

Plate Parents in the plate or
temporal arcs.

Parents in the plate or
temporal arcs.

Children in the plate or
temporal arcs.

Terminal Parents in the plate. Parents in the plate. No conditionsa.
a It is not allowed for terminal nodes to have static arcs to anchor nodes.

Error return values: DSL_OUT_OF_RANGE (if any of above mentioned the conditions is not true).

bool TemporalRelationExists(int parent, int child, int order) Returns true if the temporal
arc from the parent node to the child node exists with this temporal order and false otherwise.

int UnrollNetwork(DSL_network &here) Unrolls the plate of the network to the number of
time-slices defined by calling the SetNumberOfSlices(int theSlices) method and saves it
to DSL_network here. For this method to succeed, the following conditions must hold: the
maximum temporal order of the network must be greater than 1, the DBN definition must be
consistent.
Error return values: DSL_OUT_OF_RANGE (if any of above mentioned the conditions is not true),
DSL_OUT_OF_MEMORY.

A.3.2 DSL_node

The DSL_node class is extended with two methods that make it more convenient to obtain the
temporal definitions and values of the node.

DSL_nodeDefTemporals* TemporalDefinition() Returns a pointer to the temporal definition
of the node or NULL if the node does not have one. Currently, only nodes of type DSL_CPT are
supported, the method will return NULL if this is not the case.

155

Temporal reasoning in SMILE tutorial and API A.3 Public API

DSL_nodeValTemporals* TemporalValue() Returns a pointer to the temporal posteriors of
the node or NULL if the node does not have one. Currently, only nodes of type DSL_CPT are
supported, the method will return NULL if this is not the case. A user should always use
DSL_nodeValTemporals when retrieving temporal posterior beliefs for the nodes in the plate.

A.3.3 DSL_nodeDefinition

The DSL_nodeDefinition class has a property DSL_nodeDefTemporals that is only instantiated
if the node has temporal arcs. It is NULL otherwise. Currently, only node definitions of type
DSL_CPT can have a temporal definition.

DSL_nodeDefTemporals* GetTemporals() Returns a pointer to the temporal definition of
the node definition or NULL if the node definition does not have one. Currently, only node
definitions of type DSL_CPT are supported, the method will return NULL if this is not the case.

A.3.4 DSL_nodeDefTemporals

The DSL_nodeDefTemporals class is responsible for the administration of the temporal prob-
ability distributions of a node. Currently, only DSL_nodeDefTemporals of type DSL_CPT are
supported.

int GetMaximumOrder() Returns the maximum temporal order of this temporal definition.

int GetMaximumOrderTemporalMatrix(DSL_Dmatrix &here) Saves the temporal probabil-
ity distribution with the maximum temporal order to DSL_Dmatrix here.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeDefTemporals is not of type DSL_CPT).

DSL_nodeDefinition* GetNodeDefinition() Returns the pointer of the DSL_nodeDefinition
that this DSL_nodeDefTemporals belongs to.

int GetNodeHandle() Returns the handle of the node that this DSL_nodeDefTemporals be-
longs to.

int GetTemporalMatrix(DSL_Dmatrix &here, int order) Saves the temporal probability dis-
tribution with the maximum temporal order to DSL_Dmatrix here.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeDefTemporals is not of type DSL_CPT).

int GetType() Returns the type of the temporal definition.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeDefTemporals is not of type DSL_CPT).

int SetTemporalMatrix(DSL_Dmatrix &matrix, int order) Sets the temporal matrix with
this temporal order. For this method to succeed, the given temporal order must be greater than
0.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeDefTemporals is not of type DSL_CPT),
DSL_OUT_OF_RANGE (if temporal order smaller than 1).

156

A.3 Public API Temporal reasoning in SMILE tutorial and API

int SetTemporalProbabilities(DSL_doubleArray &probs, int order) Set the probabilities of
the temporal matrix with this temporal order. For this method to succeed, the following con-
ditions must hold: the given temporal order must be greater than 0; the temporal matrix with
this temporal order must exist; and the array of probabilities must have the correct size.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeDefTemporals is not of type DSL_CPT),
DSL_OUT_OF_RANGE (if any of the above mentioned conditions is not true).

A.3.5 DSL_nodeValue

The DSL_nodeValue class has a property DSL_nodeValTemporals that is only instantiated for
nodes in the plate if the number of time-slices is set to be greater than 0. It is NULL otherwise.
Currently, only node values of type DSL_BELIEFVECTOR can have a temporal value.

DSL_nodeValTemporals* GetTemporals() Returns a pointer to the temporal value of the
node value or NULL if the node value does not have one. Currently, only node values of type
DSL_BELIEFVECTOR are supported, the method will return NULL if this is not the case.

A.3.6 DSL_nodeValTemporals

The DSL_nodeValTemporals class is responsible for the administration of the temporal poste-
rior beliefs of a node. Currently, only DSL_nodeValTemporals of type DSL_BELIEFVECTOR are
supported.

int ClearAllTemporalEvidence() Clears the observed states for all time-slices of this node.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeValTemporals is not of type DSL_BE-
LIEFVECTOR.

int ClearTemporalEvidence(int slice) Clears the observed state for the given time-slice of
this node. Time-slices range from 0 to (number of slices - 1). Note that this does not guarantee
that after this call this time-slice will not be evidence anymore, as evidence can be propagated
from other nodes into this one (there must be some deterministic relationship between nodes
for this to happen). For this method to succeed, the following conditions must hold: the time-
slice must be valid; and the evidence must exist.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeValTemporals is not of type DSL_BE-
LIEFVECTOR), DSL_OUT_OF_RANGE (if any of the above mentioned conditions is not true).

int GetNodeHandle() Returns the handle of the node that this DSL_nodeValTemporals be-
longs to.

DSL_nodeValue* GetNodeValue() Returns the pointer of the DSL_nodeValue that this DSL_-
nodeValTemporals belongs to.

int GetTemporalEvidence(int slice) Returns the observed state for the given time-slice of this
node. Time-slices range from 0 to (number of slices - 1). The observation may come directly
from the user or can be deduced from other observations in other nodes of the network. For
this method to succeed, the following conditions must hold: the state must be observed; and
the time-slice must be valid.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeValTemporals is not of type DSL_BE-
LIEFVECTOR), DSL_OUT_OF_RANGE (if any of the above mentioned conditions is not true).

157

Temporal reasoning in SMILE tutorial and API A.3 Public API

int GetTemporalValue(DSL_Dmatrix &here, int slice) Saves the temporal posterior beliefs
for the given time-slice of this node to DSL_Dmatrix here. Time-slices range from 0 to (number
of slices - 1). A user should always use DSL_nodeValTemporals when retrieving temporal
posterior beliefs for the nodes in the plate.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeValTemporals is not of type DSL_BE-
LIEFVECTOR), DSL_OUT_OF_RANGE (if the time-slice is not valid).

int GetType() Returns the type of the temporal value.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeValTemporals is not of type DSL_BE-
LIEFVECTOR).

int IsTemporalEvidence(int slice) Returns a non-zero value if the state for the given time-
slice of the node has been directly observed or has been deduced from the evidence in other
nodes.
Error return values: DSL_OUT_OF_RANGE (if the given time-slice is not valid).

int IsTemporalValueValid(int slice) Returns a non-zero value if the value for this time-slice
of the node is valid.
Error return values: DSL_OUT_OF_RANGE (if the given time-slice is not valid).

int SetTemporalEvidence(int evidence, int slice) Sets the observed state for the given time-
slice of this node to the specified evidence. Time-slices range from 0 to (number of slices - 1).
For this method to succeed, the following conditions must hold: the state must be valid; and
the time-slice must be valid.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeValTemporals is not of type DSL_BE-
LIEFVECTOR), DSL_OUT_OF_RANGE (if any of the above mentioned conditions is not true).

int SetTemporalValue(DSL_Dmatrix &matrix, int slice) Sets the posterior beliefs for the
given time-slice of this node to the specified beliefs. Be careful with this function, it does not
check if the posterior beliefs are still consistent.
Error return values: DSL_WRONG_NODE_TYPE (if DSL_nodeValTemporals is not of type DSL_BE-
LIEFVECTOR), DSL_OUT_OF_RANGE (if the given time-slice is not valid).

158

Temporal reasoning in
GeNIe tutorial B

Appendix

A BN is useful for problem domains where the state of the world is static. In such a world, every
variable has a single and fixed value. Unfortunately, this assumption of a static world does not
always hold, as many domains exist where variables are dynamic and reasoning over time is
necessary, such as dynamic systems. A dynamic Bayesian network (DBN) is a BN extended with
a temporal dimension to enable us to model dynamic systems [DK88]. This tutorial assumes
a basic knowledge about the DBN formalism and GeNIe. If this is not the case, the reader is
directed to: [Jor03, KF05, Mur02] and to previous GeNIe tutorials.

For this tutorial, we have extended the umbrella DBN that also serves as an illustrative
example in [RN03] with a random variable that models the area where the secret underground
installation is based:

Example (Extended umbrella network) Suppose you are a security guard at some secret
underground installation. You have a shift of seven days and you want to know whether
it is raining on the day of your return to the outside world. Your only access to the
outside world occurs each morning when you see the director coming in, with or without,
an umbrella. Furthermore, you know that the government has two secret underground
installations: one in Pittsburgh and one in the Sahara, but you do not know which one
you are guarding.
For each day t, the set of evidence contains a single variable Umbrellat (observed an
umbrella) and the set of unobservable variables contains Raint (whether it is raining) and
Area (Pittsburgh or Sahara). If it is raining today depends on if it rained the day before
and the geographical location. The resulting DBN and CPTs are shown in figure B.1.

159

Temporal reasoning in GeNIe tutorial B.1 Creating the DBN

A

Rt

Ut

1

8

p(Area)

Pittsburgh 0.5

Sahara 0.5

p(Rain1)

Area Pittsburgh Sahara

true 0.7 0.01

false 0.3 0.99

p(Raint)

Area Pittsburgh Sahara

Raint−1 true false true false

true 0.7 0.3 0.001 0.01

false 0.3 0.7 0.999 0.99

p(Umbrellat)

Raint true f alse

true 0.9 0.2

f alse 0.1 0.8

Figure B.1: The extended umbrella DBN and its CPTs.

B.1 Creating the DBN

Creating a DBN is essentially the same as creating a BN. First, we create a static network
containing three nodes: Area, Rain, and Umbrella and two arcs going from Area to Rain and
from Rain to Umbrella, just as we would do normally. The result of this first step is shown in
figure B.2.

Figure B.2: Creating the static network in GeNIe.

Activating the plate Because we are dealing with a temporal network, we need to add a
temporal arc from Raint to Raint+1. Temporal arcs can only be added to nodes in the temporal
plate. The temporal plate is the part of the temporal network that contains the temporal nodes,
which are Rain and Umbrella in this example. Before we can add nodes to the plate, we need to
activate it first. This can be done by clicking on Network→ Enable Temporal Plate in the menu
bar as shown in figure B.3. This results in the network area being divided into four parts:

1. Contemporals This is the part of the network area where the static nodes are stored by
default.

2. Initial conditions This is the part of the network area where the anchor nodes are stored.

160

B.1 Creating the DBN Temporal reasoning in GeNIe tutorial

Figure B.3: Temporal options in the menu bar of GeNIe under Network.

3. Temporal plate This is the part of the network area where the nodes in the plate are
stored. Nodes in the plate are the only nodes that are allowed to have temporal arcs. This
area also shows the number of time-slices for which inference is performed.

4. Terminal conditions This is the part of the network area where the terminal nodes are
stored.

The boundaries of the different areas can be changed by dragging them. These boundaries are
also used to layout the network when it is unrolled explicitly. Temporal types of nodes can be
changed by dragging them to one of the three other areas. After enabling the temporal plate,
we drag first the Umbrella node and second the Rain node (in this order!) to the temporal plate.
This results in the network shown in figure B.4.

Figure B.4: The network area of GeNIe with the temporal plate enabled

Adding the temporal arc We now have a network with one contemporal node and two tem-
poral nodes. The temporal arc can be added by clicking on the arc button and drawing an arc
from the parent (Rain) to the child (Rain). When the mouse button is released, a context menu

161

Temporal reasoning in GeNIe tutorial B.2 Performing inference

appears to enable us to set the temporal order of the arc. We create a temporal arc with order
1. Figure B.5 demonstrates the addition of a temporal arc to a network.

Figure B.5: Adding a temporal arc in GeNIe.

Setting the temporal probabilities The next step is to add the static and temporal probabil-
ities from the CPTs in figure B.1. How to set the static probabilities should be known by now,
but setting the temporal probabilities is something new. In a temporal network, every node in
the plate needs a CPT for every incoming temporal arc with a different temporal order. Just like
setting the CPT for static nodes, the CPTs for temporal nodes can be set by double-clicking on
the node in the network area and go to the definition tab. When a node has incoming temporal
arcs, the appropriate temporal CPT can be selected from a list and the CPT parameters can be
set. Figure B.6 demonstrates the process of adding the temporal probabilities from figure B.1.

Now our first temporal network is finished! We can save it to a file and load it again as
many times as we want, but more interesting is to see how we can reason with this network.

B.2 Performing inference

Performing inference on a DBN is very easy. Just like performing inference on a BN, it is just a
matter of setting evidence and updating the posterior beliefs by right-clicking the network area,
clicking Network → Update Beliefs, or pressing F5. However, with temporal networks, some
extra steps need to be taken. Imagine the following situation:

During his shift, the guard only observed an umbrella on the fourth day. This
means that the evidence vector for the Umbrella node is the following: Umbrella0:6 ={
false, false, false, true, false, false, false

}
.

Setting temporal evidence We have collected evidence for the temporal network and now
we want to add it. Before the addition of evidence, the number of time-slices of the temporal
network needs to be set by clicking on Network → Slice Count. . . . The number of time-slices
denote the time-period of interest, in our case we set it to 8.

162

B.2 Performing inference Temporal reasoning in GeNIe tutorial

Figure B.6: Setting the temporal CPTs of a node in GeNIe.

After setting the number of time-slices, we can add the evidence by right-clicking Umbrella
and selecting Evidence from the context menu. Because this is a temporal node, a form appears
where evidence can be added for every time-slice. Figure B.7 demonstrates the addition of
evidence (including the step where we set the number of time-slices).

Figure B.7: Setting temporal evidence in GeNIe.

163

Temporal reasoning in GeNIe tutorial B.2 Performing inference

Figure B.8: Showing the different representations of the temporal posterior beliefs in GeNIe.

Temporal posterior beliefs After we call inference, the temporal network has its beliefs up-
dated. The updated beliefs for a temporal node can be obtained by double-clicking on the node
and selecting the Value tab that appears after inference. This tab contains the updated beliefs
for all time-slices of that node not only in floating point numbers, but also as: an area chart,
contour plot, and time-series plot. The area and time-series plots speak for themselves. The
contour plot represents a three dimensional space with the dimensions: time (x-axis), state
(y-axis), and probability of an outcome at every point in time (the color). This representation is

164

B.3 Unrolling Temporal reasoning in GeNIe tutorial

especially useful for temporal nodes that have many states, where the other two representations
are more useful for temporal nodes with not too many states. Figure B.8 shows the different
representations of the temporal posterior beliefs for the Rain node after setting the temporal
evidence in Umbrella and calling inference.

B.3 Unrolling

It can be useful for debugging purposes to explicitly unroll a temporal network for a given
number of time-slices. GeNIe provides this possibility through the Network → Unroll option.
When clicking this option, GeNIe opens a new network that has the temporal network unrolled
for the given number of time-slices. It is possible to locate a node in the temporal network
from the unrolled network by right-clicking on the node in the unrolled network and select
Locate Original in DBN from the context-menu. The unrolled network that is a result from
unrolling the temporal network is cleared from any temporal information whatsoever. It can
be edited, saved and restored just like any other static network. Figure B.9 shows the unrolled
representation of a temporal network.

Figure B.9: Unrolling a temporal network and locating a node in GeNIe.

165

An example of defining
and learning the
cardiovascular system
DBN C

Appendix

This appendix contains a snippet of the dataset in .csv format and the c++ program that was
written to define the structure and learn the parameters of the cardiovascular system DBN using
the SMILE API. It is included to provide a reference example for using the SMILE API.

C.1 Snippet of dataset

1 CardOut_up ,EF_mean,EmaxLV_mean ,HR_mean,Plv_up,Psa_down,Psa_up,Rep_mean ,Rsp_mean ,Shock
,Vlv_down ,Vlv_up,CardOut_up_1 ,EF_mean_1 ,EmaxLV_mean_1 ,HR_mean_1 ,Plv_up_1 ,
Psa_down_1 ,Psa_up_1 ,Rep_mean_1 ,Rsp_mean_1 ,Shock_1,Vlv_down_1 ,Vlv_up_1

2 s03_630p00_665p00 ,s02_0p56_0p58 ,s01_2p84_3p02 ,s03_74p00_76p00 ,s02_130p00_134p00 ,
s01_90p50_93p00 ,s02_130p00_134p00 ,s09_below_1p35 ,s01_2p88_3p18 ,false,
s07_58p50_63p00 ,s08_130p00_134p00 ,s03_630p00_665p00 ,s02_0p56_0p58 ,s01_2p84_3p02 ,
s02_76p00_78p00 ,s02_130p00_134p00 ,s01_90p50_93p00 ,s02_130p00_134p00 ,
s09_below_1p35 ,s01_2p88_3p18 ,false,s08_54p00_58p50 ,s07_134p00_138p00

3 s03_630p00_665p00 ,s02_0p56_0p58 ,s01_2p84_3p02 ,s02_76p00_78p00 ,s02_130p00_134p00 ,
s01_90p50_93p00 ,s02_130p00_134p00 ,s09_below_1p35 ,s01_2p88_3p18 ,false,
s08_54p00_58p50 ,s07_134p00_138p00 ,s03_630p00_665p00 ,s02_0p56_0p58 ,s01_2p84_3p02 ,
s02_76p00_78p00 ,s01_134p00_138p00 ,s01_90p50_93p00 ,s01_134p00_138p00 ,s08_1p35_1p38
,s01_2p88_3p18 ,false,s07_58p50_63p00 ,s07_134p00_138p00

4 s03_630p00_665p00 ,s02_0p56_0p58 ,s01_2p84_3p02 ,s02_76p00_78p00 ,s01_134p00_138p00 ,
s01_90p50_93p00 ,s01_134p00_138p00 ,s08_1p35_1p38 ,s01_2p88_3p18 ,false,
s07_58p50_63p00 ,s07_134p00_138p00 ,s03_630p00_665p00 ,s02_0p56_0p58 ,s01_2p84_3p02 ,
s02_76p00_78p00 ,s02_130p00_134p00 ,s01_90p50_93p00 ,s02_130p00_134p00 ,s08_1p35_1p38
,s01_2p88_3p18 ,false,s07_58p50_63p00 ,s08_130p00_134p00

Listing C.1: cvdata.csv

167

An example of defining and learning the CV DBN C.2 CV DBN definition and learning tool

C.2 Cardiovascular system DBN definition and learning tool

1 #include <string>
2 #include "smile.h"
3 #include "smilearn.h"
4
5 using namespace std;
6
7 class CardioVas{
8 public:
9 CardioVas(void){};

10 ~CardioVas(void){};
11
12 void CopyCPT(int from, int to, int order);
13 void CopyDBNParameters(void);
14 void CreateDBNStructure(void);
15 void CreateTransitionNetStructure(void);
16 void LearnTransitionNet(void);
17 void LoadDataFile(string datafile);
18 void Run(string datafile);
19 void SaveDBN(string dynNetStr);
20
21 DSL_network dynNet;
22 DSL_network tNet;
23 DSL_dataset dataset;
24 };

Listing C.2: cvdbn.h

1 #include "cardiovas.h"
2 #include <iostream>
3
4 //--
5
6 void CardioVas::CopyCPT(int from, int to, int order){
7 DSL_Dmatrix probs;
8 probs = *(tNet.GetNode(from)->Definition()->GetMatrix());
9 if (order == 0){

10 dynNet.GetNode(to)->Definition()->SetDefinition(probs);
11 } else {
12 dynNet.GetNode(to)->TemporalDefinition()->SetTemporalMatrix(probs, order);
13 }
14 }
15
16 //--
17
18 void CardioVas::CopyDBNParameters(void){
19 // Get the nodes from the dbn.
20 int CardOut_up_t = dynNet.FindNode("CardOut_up");
21 int EF_mean_t = dynNet.FindNode("EF_mean");
22 int EmaxLV_mean_t = dynNet.FindNode("EmaxLV_mean");
23 int HR_mean_t = dynNet.FindNode("HR_mean");
24 int Plv_up_t = dynNet.FindNode("Plv_up");
25 int Psa_down_t = dynNet.FindNode("Psa_down");
26 int Psa_up_t = dynNet.FindNode("Psa_up");
27 int Rep_mean_t = dynNet.FindNode("Rep_mean");
28 int Rsp_mean_t = dynNet.FindNode("Rsp_mean");
29 int Shock_t = dynNet.FindNode("Shock");
30 int Vlv_down_t = dynNet.FindNode("Vlv_down");
31 int Vlv_up_t = dynNet.FindNode("Vlv_up");
32
33 // Get the nodes from the trained network - Order 0.
34 int CardOut_up_tNet_0 = tNet.FindNode("CardOut_up");
35 int EF_mean_tNet_0 = tNet.FindNode("EF_mean");

168

C.2 CV DBN definition and learning tool An example of defining and learning the CV DBN

36 int EmaxLV_mean_tNet_0 = tNet.FindNode("EmaxLV_mean");
37 int HR_mean_tNet_0 = tNet.FindNode("HR_mean");
38 int Plv_up_tNet_0 = tNet.FindNode("Plv_up");
39 int Psa_down_tNet_0 = tNet.FindNode("Psa_down");
40 int Psa_up_tNet_0 = tNet.FindNode("Psa_up");
41 int Rep_mean_tNet_0 = tNet.FindNode("Rep_mean");
42 int Rsp_mean_tNet_0 = tNet.FindNode("Rsp_mean");
43 int Shock_tNet_0 = tNet.FindNode("Shock");
44 int Vlv_down_tNet_0 = tNet.FindNode("Vlv_down");
45 int Vlv_up_tNet_0 = tNet.FindNode("Vlv_up");
46
47 // Order 1.
48 int CardOut_up_tNet_1 = tNet.FindNode("CardOut_up_1");
49 int EF_mean_tNet_1 = tNet.FindNode("EF_mean_1");
50 int EmaxLV_mean_tNet_1 = tNet.FindNode("EmaxLV_mean_1");
51 int HR_mean_tNet_1 = tNet.FindNode("HR_mean_1");
52 int Plv_up_tNet_1 = tNet.FindNode("Plv_up_1");
53 int Psa_down_tNet_1 = tNet.FindNode("Psa_down_1");
54 int Psa_up_tNet_1 = tNet.FindNode("Psa_up_1");
55 int Rep_mean_tNet_1 = tNet.FindNode("Rep_mean_1");
56 int Rsp_mean_tNet_1 = tNet.FindNode("Rsp_mean_1");
57 int Vlv_down_tNet_1 = tNet.FindNode("Vlv_down_1");
58 int Vlv_up_tNet_1 = tNet.FindNode("Vlv_up_1");
59
60 // Copy the CPTs from the trained network to the dynamic network - Order 0.
61 CopyCPT(CardOut_up_tNet_0 , CardOut_up_t , 0);
62 CopyCPT(EF_mean_tNet_0 , EF_mean_t , 0);
63 CopyCPT(EmaxLV_mean_tNet_0 , EmaxLV_mean_t , 0);
64 CopyCPT(HR_mean_tNet_0 , HR_mean_t , 0);
65 CopyCPT(Plv_up_tNet_0 , Plv_up_t , 0);
66 CopyCPT(Psa_down_tNet_0 , Psa_down_t , 0);
67 CopyCPT(Psa_up_tNet_0 , Psa_up_t , 0);
68 CopyCPT(Rep_mean_tNet_0 , Rep_mean_t , 0);
69 CopyCPT(Rsp_mean_tNet_0 , Rsp_mean_t , 0);
70 CopyCPT(Shock_tNet_0 , Shock_t, 0);
71 CopyCPT(Vlv_down_tNet_0 , Vlv_down_t , 0);
72 CopyCPT(Vlv_up_tNet_0 , Vlv_up_t , 0);
73
74 // Order 1.
75 CopyCPT(CardOut_up_tNet_1 , CardOut_up_t , 1);
76 CopyCPT(EF_mean_tNet_1 , EF_mean_t , 1);
77 CopyCPT(EmaxLV_mean_tNet_1 , EmaxLV_mean_t , 1);
78 CopyCPT(HR_mean_tNet_1 , HR_mean_t , 1);
79 CopyCPT(Plv_up_tNet_1 , Plv_up_t , 1);
80 CopyCPT(Psa_down_tNet_1 , Psa_down_t , 1);
81 CopyCPT(Psa_up_tNet_1 , Psa_up_t , 1);
82 CopyCPT(Rep_mean_tNet_1 , Rep_mean_t , 1);
83 CopyCPT(Rsp_mean_tNet_1 , Rsp_mean_t , 1);
84 CopyCPT(Shock_tNet_0 , Shock_t, 1); // Order "1".
85 CopyCPT(Vlv_down_tNet_1 , Vlv_down_t , 1);
86 CopyCPT(Vlv_up_tNet_1 , Vlv_up_t , 1);
87 }
88
89 //--
90
91 void CardioVas::CreateDBNStructure(void){
92 // Initialize nodes for the dynamic network.
93 int CardOut_up_t = dynNet.AddNode(DSL_CPT, "CardOut_up");
94 int EF_mean_t = dynNet.AddNode(DSL_CPT, "EF_mean");
95 int EmaxLV_mean_t = dynNet.AddNode(DSL_CPT, "EmaxLV_mean");
96 int HR_mean_t = dynNet.AddNode(DSL_CPT, "HR_mean");
97 int Plv_up_t = dynNet.AddNode(DSL_CPT, "Plv_up");
98 int Psa_down_t = dynNet.AddNode(DSL_CPT, "Psa_down");
99 int Psa_up_t = dynNet.AddNode(DSL_CPT, "Psa_up");

100 int Rep_mean_t = dynNet.AddNode(DSL_CPT, "Rep_mean");
101 int Rsp_mean_t = dynNet.AddNode(DSL_CPT, "Rsp_mean");
102 int Shock_t = dynNet.AddNode(DSL_CPT, "Shock");

169

An example of defining and learning the CV DBN C.2 CV DBN definition and learning tool

103 int Vlv_down_t = dynNet.AddNode(DSL_CPT, "Vlv_down");
104 int Vlv_up_t = dynNet.AddNode(DSL_CPT, "Vlv_up");
105
106 // Set the outcomenames.
107 int handle = dynNet.GetFirstNode();
108 while (handle != DSL_OUT_OF_RANGE){
109 // Map variable in dataset to dynNet.
110 string id(dynNet.GetNode(handle)->Info().Header().GetId());
111 int v = dataset.FindVariable(id);
112
113 // Get the stateNames.
114 vector<string> stateNamesStr = dataset.GetStateNames(v);
115 DSL_stringArray stateNames;
116 vector<string >::iterator iter = stateNamesStr.begin();
117 for(iter; iter < stateNamesStr.end(); iter++){
118 stateNames.Add(const_cast <char*>(iter->c_str()));
119 }
120 dynNet.GetNode(handle)->Definition()->SetNumberOfOutcomes(stateNames);
121
122 // Go to next node in dynNet.
123 handle = dynNet.GetNextNode(handle);
124 }
125
126 // Set temporal types.
127 dynNet.SetTemporalType(CardOut_up_t , dsl_plateNode);
128 dynNet.SetTemporalType(EF_mean_t , dsl_plateNode);
129 dynNet.SetTemporalType(EmaxLV_mean_t , dsl_plateNode);
130 dynNet.SetTemporalType(HR_mean_t , dsl_plateNode);
131 dynNet.SetTemporalType(Plv_up_t , dsl_plateNode);
132 dynNet.SetTemporalType(Psa_down_t , dsl_plateNode);
133 dynNet.SetTemporalType(Psa_up_t , dsl_plateNode);
134 dynNet.SetTemporalType(Rep_mean_t , dsl_plateNode);
135 dynNet.SetTemporalType(Rsp_mean_t , dsl_plateNode);
136 dynNet.SetTemporalType(Shock_t, dsl_plateNode);
137 dynNet.SetTemporalType(Vlv_down_t , dsl_plateNode);
138 dynNet.SetTemporalType(Vlv_up_t , dsl_plateNode);
139
140 // Add arcs - Order 0.
141 dynNet.AddArc(EF_mean_t , CardOut_up_t);
142 dynNet.AddArc(HR_mean_t , CardOut_up_t);
143 dynNet.AddArc(Plv_up_t , EF_mean_t);
144 dynNet.AddArc(Vlv_down_t , EF_mean_t);
145 dynNet.AddArc(Vlv_up_t , EF_mean_t);
146 dynNet.AddArc(Psa_down_t , HR_mean_t);
147 dynNet.AddArc(Psa_up_t , HR_mean_t);
148 dynNet.AddArc(EmaxLV_mean_t , Plv_up_t);
149 dynNet.AddArc(HR_mean_t , Plv_up_t);
150 dynNet.AddArc(Psa_up_t , Plv_up_t);
151 dynNet.AddArc(Psa_up_t , Psa_down_t);
152 dynNet.AddArc(Rep_mean_t , Psa_down_t);
153 dynNet.AddArc(Rsp_mean_t , Psa_down_t);
154 dynNet.AddArc(EmaxLV_mean_t , Psa_up_t);
155 dynNet.AddArc(Rep_mean_t , Psa_up_t);
156 dynNet.AddArc(Rsp_mean_t , Psa_up_t);
157 dynNet.AddArc(CardOut_up_t , Shock_t);
158 dynNet.AddArc(Psa_down_t , Shock_t);
159 dynNet.AddArc(Psa_up_t , Shock_t);
160 dynNet.AddArc(EmaxLV_mean_t , Vlv_down_t);
161 dynNet.AddArc(Plv_up_t , Vlv_down_t);
162 dynNet.AddArc(EmaxLV_mean_t , Vlv_up_t);
163 dynNet.AddArc(Plv_up_t , Vlv_up_t);
164 dynNet.AddArc(Vlv_down_t , Vlv_up_t);
165
166 // Order 1.
167 dynNet.AddTemporalArc(CardOut_up_t , CardOut_up_t , 1);
168 dynNet.AddTemporalArc(EF_mean_t , EF_mean_t , 1);
169 dynNet.AddTemporalArc(EmaxLV_mean_t , EmaxLV_mean_t , 1);

170

C.2 CV DBN definition and learning tool An example of defining and learning the CV DBN

170 dynNet.AddTemporalArc(HR_mean_t , HR_mean_t , 1);
171 dynNet.AddTemporalArc(Plv_up_t , Plv_up_t , 1);
172 dynNet.AddTemporalArc(Psa_down_t , Psa_down_t , 1);
173 dynNet.AddTemporalArc(Psa_up_t , Psa_up_t , 1);
174 dynNet.AddTemporalArc(Rep_mean_t , Rep_mean_t , 1);
175 dynNet.AddTemporalArc(Rsp_mean_t , Rsp_mean_t , 1);
176 dynNet.AddTemporalArc(Vlv_down_t , Vlv_down_t , 1);
177 dynNet.AddTemporalArc(Vlv_up_t , Vlv_up_t , 1);
178
179 // Set number of time-slices.
180 dynNet.SetNumberOfSlices(2);
181 }
182
183 //--
184
185 void CardioVas::CreateTransitionNetStructure(void){
186 // Initialize.
187 int prevSlices = dynNet.GetNumberOfSlices();
188 dynNet.SetNumberOfSlices(2);
189 dynNet.UnrollNetwork(tNet);
190 dynNet.SetNumberOfSlices(prevSlices);
191
192 // Set [DSL_NOLEARN = ALL] userproperty.
193 DSL_node* temp = tNet.GetNode(tNet.FindNode("Shock_1"))
194 temp->Info().UserProperties().AddProperty("DSL_NOLEARN", "ALL");
195 }
196
197 //--
198
199 void CardioVas::LearnTransitionNet(void){
200
201 // Map network to dataset.
202 for (int v = 0; v < dataset.NumVariables(); v++){
203 dataset.SetHandle(v, tNet.FindNode(dataset.GetId(v).c_str()));
204 }
205
206 // Learn the TransitionNet.
207 DSL_em learnParams;
208 learnParams.SetRandomizeParameters(false);
209 learnParams.Learn(dataset, tNet);
210 }
211
212 //--
213
214 void CardioVas::LoadDataFile(string datafile){
215 // Initialize.
216 DSL_textParser parser;
217
218 // Parse the data file.
219 parser.SetUseHeader(true);
220 parser.SetTypesSpecified(false);
221 int result = parser.Parse(datafile.c_str());
222 if (result != DSL_OKAY) return result;
223
224 // Obtain the data.
225 dataset = parser.GetDataset();
226 }
227
228 //--
229
230 void CardioVas::Run(string datafile){
231 cout << "Load�data�file..." << endl;
232 LoadDataFile(datafile);
233
234 cout << "Create�DBN�structure..." << endl;
235 CreateDBNStructure();
236

171

An example of defining and learning the CV DBN C.2 CV DBN definition and learning tool

237 cout << "Create�tNet�structure..." << endl;
238 CreateTransitionNetStructure();
239
240 cout << "Learn�tNet�structure..." << endl;
241 LearnTransitionNet();
242
243 cout << "Copy�parameters�to�DBN..." << endl;
244 CopyDBNParameters();
245 SaveDBN("cv_steady_dbn_learned.xdsl");
246 cout << "Done..." << endl;
247 }
248
249 //--
250
251 void CardioVas::SaveDBN(string dynNetStr){
252 return dynNet.WriteFile(dynNetStr.c_str());
253 }
254
255 //--

Listing C.3: cvdbn.cpp

Figure C.1: Resulting cardiovascular system DBN in GeNIe.

172

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

