
AAUUTTOOMMAATTIINNGG TTHHEE CCOOCCKKPPIITT
CONSTRUCTING AN AUTONOMOUS, HUMAN-LIKE FLIGHT BOT IN A

SIMULATED ENVIRONMENT

Tamerius, Marten

Technical Report DKS-03-05 / ICE 05
Version 1.1, 06, 2003
Mediamatics / Data and Knowledge Systems group
Department of Information Technology and Systems
Delft University of Technology, The Netherlands

The Rotterdam Institute for Information Technology
Programmes (RIVIO)
Hogeschool Rotterdam, The Netherlands

Tamerius, Marten S. (marten@ch.its.tudelft.nl)

“Automating the Cockpit: Constructing an autonomous, human-like flight bot in a simulated environment”

Technical Report DKS-03-05 / ICE 05
Version 1.1, 06, 2003

Mediamatics / Data and Knowledge Systems group
Department of Information Technology and Systems
Delft University of Technology, The Netherlands

The Rotterdam Institute for Information Technology Programmes (RIVIO)
Hogeschool Rotterdam, The Netherlands

http://www.kbs.twi.tudelft.nl/Research/Projects/ICE/

Keywords: ICE project, knowledge based system, flight simulator, bot, flight plan, cognitive model, flight

analysis, autonomous bot, cockpit automation

mailto:marten@ch.its.tudelft.nl

“…Postquam manus ultima ceopto imposita est, geminas opifex libravit in

alas’ipse suum corpus motaque pependit in aura..!.”1
(…Maar toen dit groots karwei dan toch voltooid was, bracht de knutselaar
zijn lichaam op twee vleugels in evenwicht en bleef klapwiekend hangen in

de lucht!)

Dat oogenblik vergeten we nooit: de sensatie van het buitengewone, toen die
magere, lange man, daar los van de aarde met zijn toestel de lucht werd

ingegooid en zweven bleef, hooger steeg, (alle wetten van zwaartekracht ten
spijt). Toen riepen we: hoera, wij en allen die rondom stonden.2

“Hos aliquis, tremula dum captat arundine pisces aut pastor baculo stivave

innixus arator vidit et obstipuit, quique aethera capere possent, credidit esse
deos”.3

(Een man die zat te vissen met een dunne rieten stengel, een herder leunend
op zijn staf, een boer tegen zijn ploeg zagen hen gaan, verbijsterd, denkend

dat het goden waren die door het luchtruim kunnen vliegen.)

de verwondering - het eerste opstijgen, P. van Dijck, 1999, HUISMUZIEK, after a text taken
from the Dagblad van Noort- Brabant, dating June 28th 1909: “ooggetuige verslag van de eerste

vlucht met een vliegtuig op Nederlands grondgebied”4 and some verses from the story of
Daedalus and Icarus taken from the eighth book of Publius Ovidius: Metamorphoses

1 English translation: But when this big task was finally completed, the amateur balanced his body on two wings and stayed aloft.
2 We will never forget that moment: The extraordinary sensation when the tall lean man became separated from the earth and was thrown into the air with his contraption, floating, climbing,
(defeating all laws of gravity). At that moment we all shouted: hurray!
3 A man who was fishing with a thin reed, a shepherd leaning on his staff, a farmer against his plough saw them go, confounded, thinking they were gods who could fly through the air.
4 Eyewitness report of the first flight with an airplane on Dutch territory

Copyright © 2003, Delft University of Technology i

Abstract

The increasing complexity of aircraft and air traffic has also increased the demands and stress on a
pilot flying an airplane. To ease the workload on pilots and even take some of the tasks away from the
attention of the pilot, research is in progress to filter the data shown to a pilot. In addition, some of the
tasks are automatically performed by systems supporting the pilot. This may prevent disasters because
of human errors and mistakes in judgment of the situation.

This report tries to answer the question: Is it possible for an automated pilot to fly an airplane in a way
resembling human pilot behaviour? There are many automatic pilots that can fly an airplane, but most
of them do not mimic human behaviour and have the same limitations humans have regarding, for
instance, attention resources. The system designed in this project has the condition set specifically to
support research projects focussed on testing human pilot behaviour under certain (critical) conditions.

The project starts with research on the manner in which human pilots interpret and respond to input
cues provided by the instruments in the cockpit and visual cues outside the cockpit. A model is
presented about the information processing and decision-making process of the pilot. Before the flight,
a pilot is briefed about the details regarding the flight plan. The system designed in this project does
this by analysing the flight plan, which is entered by a supervising person, carefully and converting it
into a script of tasks and flight procedures that can be performed consecutively or, in some cases,
concurrently. The robot that executes the flight is now easily able to interpret the script. Furthermore,
it is designed according to the behaviour and constraints in the model that was discussed previously of
human pilots.

The system’s architecture is set up in a modular way to supports future extensions to the project. In
addition to the research, a knowledge base had been set up, which describes the tasks and flight
procedures a pilot is able to perform during a flight. The tasks and procedures are executed according
the script that is generated before take off. The knowledge has been stored in the standard XML format
for use by the system.

The prototype interfaces with Microsoft Flight Simulator 2002 to fly a Cessna 172SP Skyhawk.
Finally, while the first prototype is still in an early phase, it is a first proof of concept. The robot
performed well. Although it is not yet an advanced pilot incorporating complex artificial intelligence,
it is able to execute a simple flight plan in normal environmental conditions.

Copyright © 2003, Delft University of Technology ii

Copyright © 2003, Delft University of Technology iii

Preface

This thesis was written in the course of my graduation project for the Rotterdam Institute for
Information Technology Programmes (Hogeschool Rotterdam) at the Data and Knowledge Systems
group of the Faculty of Information Technology and Systems at the Delft University of Technology.
The graduation project was done as part of the ICE (Intelligent Cockpit Environment) project of the
Data and Knowledge Systems group. The ICE project deals with a number of new techniques and
technology to improve automation and pilot support in the cockpit. The goal is to design, test and
evaluate those new techniques that can be used in the cockpit. The primary focus is artificial
intelligence, which is used to fuse and process the available data and additionally it is used in the
reasoning part of the system.

Project overview

The primary goal of the graduation project was to implement a fully autonomous robot that can
execute a flight plan, entered by a supervisor, in a flight simulator. The actions of the bot should
emulate the behaviour of a human pilot. At the beginning of the project, there was little knowledge
about the behaviour of a human pilot regarding flying an airplane. Therefore research has been done to
create a model of the human pilot and the tasks and procedures a pilot uses to fly an aircraft. When this
was done, the implementation of the prototype started. At this point it became clear that the best way
to acquire the flight plan from the supervisor (the person initiating the flight bot) was in a simple point-
and-click manner. For this reason sectional maps were used that pilots also use in real-life navigation.
The supervisor can point out the consecutive steer points and enter additional parameters for every
steer point. With the flight plan in memory, the flight bot needs a way to understand what is being
meant. At this stage, the flight plan is converted into a flight script, which is in essence a
chronologically ordered list of tasks and flight procedures for the flight bot to execute. After this was
done, the first prototype of the flight bot was implemented.

Acknowledgements

There are a number of people I wish to thank for their support. First and foremost are Dr. drs. Leon
Rothkrantz and ir. Patrick Ehlert for their guidance and advice during my graduation project. The
weekly sessions have stimulated me a lot to push on and to ‘hit nails with heads’5. Furthermore I want
to thank ir. Mohammed Abd El Ghany for his inspirational support from the Hogeschool Rotterdam. In
addition, I owe thanks to my fellow graduates at the Mediamatics / Data and Knowledge Systems
group with whom I worked closely: ir. Quint Mouthaan, Maikel van der Roest, Richard Harreman,
Mahery Andriambololona and Pascal Lefeuvre. They all helped me in some degree to tackle many
problems, to get culminating ideas for the design of the flight bot and just to have fun while working
on the project. I would like to show my gratitude to my friends and family who have always shown
interest in what I have been working on. Even though some of them did not entirely understand my
work, a special thanks to them none the less. Last, but most certainly not least, I want to thank God for
being the true inspirator of my life. Without Him I know I would not have come this far.

Report contents

This report consists of the following. The first chapter gives an introduction into the project. The
following chapter discusses the view a (common) human pilot has on the aircraft system and tasks
while operating an airplane. This leads to the manner in which a pilot undertakes a normal flight. It
begins with the preparations before the actual flight, which is discussed in chapter 3. When the

5 Explanation for the English reader: this is the literal translation of a Dutch saying meaning “go for it”.

Copyright © 2003, Delft University of Technology iv

preparations are done, the actual flight begins. This calls for a pilot or robot that can execute the flight.
The basic design and limitations of the flight bot that replaces the human pilot in this project, is
discussed in chapter 4. The architecture and implementation of the application is explained in chapter
5. Much data is passed between modules and stored inside the application. Chapter 6 discusses the
technique used for this purpose. The results of this project are mentioned in chapter 7. Finally, this
report ends with chapter 8 discussing the conclusions and, in addition, some recommendations about
future work regarding this project.

The appendices describe additional work related to this project. A preliminary study is included about
recommendations concerning the selected flight simulator. In addition, the knowledge bases about the
specification of the aircraft and the specification of the flight procedures and tasks that is used in the
application are described in two appendices.

Marten Tamerius,
Delft, June 2003.

Copyright © 2003, Delft University of Technology v

Contents

ABSTRACT ..I

PREFACE ..III

CHAPTER 1 INTRODUCTION... 1
1.1 PROBLEM SETTING: CAN PILOTS BE AUTOMATED? ... 1
1.2 AUTOMATION OF THE PILOT .. 2

1.2.1 Vision on this project... 2
1.2.2 Research on the decision-making process of a pilot ... 3

1.3 PROJECT GOAL AND SUB-GOALS.. 3
1.4 IMPLEMENTATION .. 3

1.4.1 Tier one: Setting up a flight plan ... 4
1.4.2 Tier two: Analyse the flight plan and convert it into a flight script 4
1.4.3 Tier three: Use artificial intelligence to fly the flight plan ... 4
1.4.4 Tier four: Flight analysis ... 4

CHAPTER 2 DESIGNING A COGNITIVE MODEL .. 5
2.1 AVIATOR ABILITIES .. 5
2.2 COMMON COGNITIVE MODELS .. 6

2.2.1 Information processing ... 6
2.2.2 Levels of behaviour... 7
2.2.3 Basic aviation knowledge and skills ... 8

2.3 SITUATION ASSESSMENT .. 9
2.3.1 Pre-flight briefing ... 9
2.3.2 In-flight .. 10

2.4 THE DECISION MAKING PROCESS ... 10
2.4.1 Situation recognition and situation awareness ... 11
2.4.2 Risk assessment ... 11

2.5 CONCLUSION ... 12
CHAPTER 3 ANALYSING THE FLIGHT PLAN ... 13

3.1 FLIGHT PLAN .. 13
3.1.1 Contents ... 13
3.1.2 Constraints ... 14

3.2 FLIGHT PROCEDURES ... 15
3.2.1 Basic commands ... 15
3.2.2 Flight procedures... 15

3.3 GENERATION OF THE FLIGHT SCRIPT ... 16
3.3.1 Substitution algorithm ... 16
3.3.2 Example of a flight script .. 17

CHAPTER 4 DESIGNING THE FLIGHT BOT ... 19
4.1 LAYERED APPROACH... 19

4.1.1 Expert system and procedures ... 20
4.1.2 Flight plan analysis and situation assessment ... 20
4.1.3 Near-future prediction and planning adjustment .. 20

4.2 HUMAN LIMITATIONS FOR THE FLIGHT BOT .. 21
CHAPTER 5 APPLICATION DESIGN AND IMPLEMENTATION ... 23

5.1 UNIFIED MODELLING LANGUAGE.. 23

Copyright © 2003, Delft University of Technology vi

5.2 APPLICATION ARCHITECTURE ... 23
5.2.1 Flight planner GUI ... 25
5.2.2 Flight plan consistency checker .. 28
5.2.3 Flight script generator ... 28
5.2.4 Flight bot and co pilot.. 29

CHAPTER 6 DATA STORAGE AND EXCHANGE .. 33
6.1 EXTENSIBLE MARKUP LANGUAGE .. 33

6.1.1 Basics of storing data in XML .. 33
6.1.2 Document Type Definitions and XML Schemas ... 34

6.2 USE OF XML IN THE APPLICATION.. 35
6.2.1 Exchanging the flight plan .. 35
6.2.2 Composing a flight script .. 37

CHAPTER 7 PROJECT RESULTS ... 39
7.1 THE COGNITIVE MODEL AND THE SYSTEM FOR DECISION MAKING...................................... 39
7.2 THE APPLICATION .. 39

7.2.1 Acquiring the flight plan .. 39
7.2.2 Analysing the flight plan.. 41
7.2.3 Execute a flight plan.. 42
7.2.4 Extensibility of the application architecture ... 43

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS.. 45
8.1 WHAT HAS BEEN ACCOMPLISHED ... 45

8.1.1 Research and design .. 45
8.1.2 The first prototype.. 45
8.1.3 Please fasten your seat belts: we are taking off! .. 45
8.1.4 Further remarks ... 46

8.2 RECOMMENDATIONS FOR FUTURE PROJECTS ... 46
APPENDIX A PRELIMINARY RESEARCH... 47

A.1 AVAILABLE SIMULATORS ... 47
A.2 COMPARISON ... 47
A.3 RECOMMENDATION ... 48

APPENDIX B AIRCRAFT SPECIFICATIONS FOR THE CESSNA 172SP SKYHAWK.. 49

APPENDIX C FLIGHT TASK KNOWLEDGE BASE.. 51
C.1 BASIC FLIGHT PROCEDURES ... 51
C.2 ADVANCED TASKS ... 53

APPENDIX D BIBLIOGRAPHY ... 57
D.1 LITERATURE ... 57
D.2 WEBSITES .. 57

Copyright © 2003, Delft University of Technology vii

List of figures

Figure 1 The first flight by the Wright brothers in 1903 ... 1
Figure 2 The new Eurofighter Typhoon ... 1
Figure 3 An F-16 Fighting Falcon ... 2
Figure 4 The four stages of the final application .. 4
Figure 5 Layered model of the abilities of a human pilot .. 5
Figure 6 A model of information processing [WiNa88].. 6
Figure 7 Levels of behaviour ([Ras86] and [KBD97]).. 7
Figure 8 Scanning pattern for straight flight .. 8
Figure 9 Scanning pattern for level flight ... 8
Figure 10 Example of a flight plan provided by the FAA... 9
Figure 11 Stages of a typical flight ... 10
Figure 12 Wickens' model of decision-making [WiNa88].. 11
Figure 13 Sometimes judgement errors are made by the pilot .. 12
Figure 14 Area 51 near the shore of Groom Dry Lake.. 14
Figure 15 Design of the flight bot using a three-layered approach ... 19
Figure 16 A Cessna flying over normal ground traffic ... 20
Figure 17 A class diagram of the complete application .. 24
Figure 18 Use case diagram of the flight planner GUI .. 25
Figure 19 Sequence diagram of use case Enter flight plan.. 26
Figure 20 Sequence diagram of use case Check flight plan consistency 27
Figure 21 Sequence diagram of use case Generate flight script... 27
Figure 22 Activity diagram of the flight plan consistency checker ... 28
Figure 23 Activity diagram of the flight script generator .. 29
Figure 24 Activity diagram of the flight bot .. 30
Figure 25 Activity diagram of co pilot ... 31
Figure 26 Relations inside the flight script .. 37
Figure 27 FlightPlanner uses maps to acquire the flight plan from supervisor.......................... 40
Figure 28 The dialog box for entering a steer point ... 40
Figure 29 Airport specific dialog box .. 41
Figure 30 GPS coordinate specific dialog box.. 41
Figure 31 Dialog box of the Flight Script Generator .. 42
Figure 32 Warning generated when FSUIPC is not installed or FS2002 is not running 43
Figure 33 A Skyhawk waiting for take off at an airport.. 45

Copyright © 2003, Delft University of Technology viii

Automating the Cockpit Chapter 1: Introduction

Copyright © 2003, Delft University of Technology 1

Chapter 1 Introduction

1.1 Problem setting: Can pilots be automated?

Ever since man first flew a plane, flight rules have become increasingly complicated to the pilot. Were
the Wright brothers in 1903 alone in the skies, nowadays pilots have to follow up guidance of the Air
Traffic Controller, who keeps air traffic from becoming chaos and prevents disasters from happening.
Moreover, not only air traffic has become
increasingly dense, also planes have evolved
rapidly. When flying, a pilot has to keep an
eye on a lot of complex instruments and
gauges to determine whether the plane is
functioning correctly and flies on the desired
course. These innovations have caused a
dramatic increase of workload on the pilot,
compared to the first fully operable planes.

This is where the Intelligent Cockpit
Environment (ICE) project comes into play.
The question is whether some, or all, tasks
performed by the pilot can be automated. One
approach is to use context-aware systems to
monitor the airplane during flight. Such a system can be used to improve and filter the data that is
shown to the pilot to reduce workload stress. For example, when a military airplane is under attack by
an enemy, it is not of primary concern to the pilot whether a non-essential navigational instrument like

the ILS (Instrument Landing System) is
malfunctioning. This calls for an intelligent system
that is aware of the situation of pilot and airplane at
any particular moment.

In other cases, some pilot tasks may be fully
automated to further reduce workload on the pilot.
For the benefit of the ICE project, it is interesting to
implement a fully autonomous (computer-driven)
pilot, which can perform a great deal of the
navigation a real pilot has to do to reach the
destination. With this flight bot, particular situations
can be simulated and analysed for multiple purposes.
A pilot in training can compare a flight in a simulator

with the one from the flight bot to review for what reasons particular decisions are made. A researcher
may be able to find out in what part of a certain flight the most stressful situations occur for a pilot,
and so on.

Figure 1 The first flight by the Wright brothers in 1903

Figure 2 The new Eurofighter Typhoon

Chapter 1: Introduction Automating the Cockpit

Copyright © 2003, Delft University of Technology 2

1.2 Automation of the pilot

1.2.1 Vision on this project

Will, one day, airplanes be as common in the sky as automobiles are on the roads of today? And, until
that day, how will the aircraft evolve? With the current increase of earth’s population, some day in the
near future a solution will be demanded to the growing problem of traffic jams and the pollution of the
environment because of the ever-increasing use of cars.

One solution is to seek the answer in the air. Aircraft can be designed to transport more people faster to
their destination. However, as big airline jets are the highways of the skies, in the same way the small
airplanes are the city streets of the air. This analogy also predicts the way traffic may be organised in
the future. But as air traffic increases, so does the demand for pilots to fly the aircraft. If it comes to
pass that the demand exceeds the number of trained pilots, new problems will arise.

With this scenario in mind, could it be possible to introduce systems into the cockpit that support pilots
with the handling of an aircraft? Is it
feasible to support even untrained pilots to
fly a plane safely from start to destination
using a software application? Is it really
preposterous to try to automate the pilot out
of the cockpit by giving a computer full
control of the airplane? Of course, the road
to a completely independent, autonomous
fighter bot for the F-16, for instance, is a
long one yet. But curiously enough, studies
have shown that, even when computers are
trained to do exactly the same thing as real
humans, people do not trust the computer to
handle occurring situations properly.
Supporting or monitoring systems, on the
other hand, are welcomed without any
hesitation, as long as there is a human
operator present to make the final decision. Although there are many understandable reasons for this
behaviour, computers and software have become increasingly intelligent and may even surpass humans
in some areas of control. However, before the computer can take over the cockpit completely, a lot of
prejudices and fears people have about computers need to be dealt with. In addition, there is the legal
responsibility of the matter. Therefore taking over a cockpit today is only accepted when it is a virtual
cockpit in a flight simulator, where plane crashes are not as disastrous as in real life.

While there are already automatic pilots available, there are limitations to the workings of these
supporting systems. The simplest designs can only hold a predefined heading and altitude. The more
advanced will fly a certain path entered by a supervisor. But even in those models, advanced artificial
intelligence is not incorporated. When another aircraft is on collision course, the supervisor has to
interrupt the automatic pilot to steer clear from the other airplane. Can a system, aided by artificial
intelligence, make the required decisions to ensure the safety of the plane? Furthermore, this project
has the goal to implement human behaviour and limitations into the flight bot. This opens the way for
researchers to study predefined situations and conditions without the need of a human pilot and an
expensive simulator. In addition, the research can be repeated as many times as is needed. Also
training a pilot may become more realistic in simulators using the flight bot.

Figure 3 An F-16 Fighting Falcon

Automating the Cockpit Chapter 1: Introduction

Copyright © 2003, Delft University of Technology 3

1.2.2 Research on the decision-making process of a pilot

Before the question whether a system can make the required decisions to ensure the safety of a plane
can be answered, a number of things have to be researched. In the first place, a general model has to be
designed to create a framework for the decision-making process of a pilot. In other words, how does a
pilot come to a certain decision in a particular situation? Secondly, research must be done to translate
the designed cognitive model to a computerised pilot. In this stage of the project artificial intelligence
kicks in. After the pilot model has been designed, the implementation cycle of the final application
starts.

1.3 Project goal and sub-goals

The ultimate goal is to develop an autonomous, computer-driven pilot. Such a pilot, also called a robot
or bot, should be capable of flying an aircraft in a simulated environment according to a flight plan. In
addition, it should have capability of making in-flight decisions and actions to adjust the actual flight
path to reach the destination of the flight plan. The decisions and actions are based on human-like
behaviour and constraints.

While the goal to completely automate a pilot is rather unfeasible with the currently available
knowledge and processing power, a number of workable sub-goals have been set for this project, of
which the first two have the main focus:

• Design a cognitive model of a pilot, which can be used to analyse the flight plan and generate
a basic flight script. The tasks and flight procedures that are used must be available to the pilot
in an XML knowledge base.

• Design a system that can execute the flight script and perceives and evaluates certain situations
during flight and reasons which actions should be executed from a generated list of possible
solutions for a specific situation.

• Implement these models in an application, which can acquire, analyse and execute a flight plan
in Microsoft Flight Simulator 2002. The architecture of the application must be set up in a way
to support future extensions to the project.

1.4 Implementation

The development technique, which has been used for this project, is called prototyping. This manner of
developing an application is very useful at the beginning of the project, when the exact specifications
are not defined in detail. Prototyping works with a number of stages. Relatively early in the project
cycle, a prototype of the main concept of the application will be developed. In later stages, the
prototype will be worked out in detail. This way the application will evolve gradually into the end
product.

The choice of modelling technique has been made taking into account the other current ongoing
projects at the department. The most widely used technique is the Unified Modelling Language
(UML), which is further described in Chapter 5 of this report.

The final application of this project can be divided into four tiers. These four stages are described in a
simple flow chart in Figure 4.

Chapter 1: Introduction Automating the Cockpit

Copyright © 2003, Delft University of Technology 4

1. Acquire flight plan

2. Generate flight script

3. Execute flight script

4. Generate flight
analysis report

Figure 4 The four stages of the final application

1.4.1 Tier one: Setting up a flight plan

When the autonomous pilot has to fly a specific route, it must be made clear to the computer how it has
to fly the chosen path. This knowledge is entered as a flight plan by the supervisor. The flight plan
consists of a starting point and a destination (which are both airports) and possibly a number of
waypoints the pilot has to fly by. Examples of waypoints are other airport locations, beacons, and GPS
coordinates. Also other relevant information can be added to the flight plan.

1.4.2 Tier two: Analyse the flight plan and convert it into a flight script

After the flight plan has been entered, the computer decomposes the plan into the basic stages a typical
flight consists of. These stages are then analysed using explicit knowledge about flying an aircraft.
During the design stage of this project, a task analysis will be made to provide insight into the
behavioural patterns of a real pilot during flight. This model of cognitive tasks can be used to construct
the flight script.

In addition, verification will be done during the construction of the script to check consistency,
ambiguity and other constraints of the provided flight plan. Examples of these constraints are time
constraints (is it possible to reach the next waypoint at the specified time?), altitude constraints (it is
definitely undesirable for the airplane to fly into a mountain during flight.) and so forth. Expert
knowledge will be used to set these constraints.

1.4.3 Tier three: Use artificial intelligence to fly the flight plan

When the flight script is approved, an autonomous pilot can be instructed to start executing the script
in a flight simulator. Often, when flying a real aircraft, in-flight decisions are made to adjust the actual
flight plan. The autonomous pilot should also be able to make those decisions based on expert
knowledge and situation-awareness. To study these decisions afterwards, a flight log is maintained for
the supervisor. This will give him the ability to compare the provided flight plan with the actual flight.

1.4.4 Tier four: Flight analysis

Afterwards, the flight log can be studied to compare the entered flight plan to the actual flight plan.
This is useful, for instance, for researchers, who want to study the results of a flight without having the
need of a human being as a pilot.

Automating the Cockpit Chapter 2: Designing a cognitive model

Copyright © 2003, Delft University of Technology 5

Chapter 2 Designing a cognitive model

When designing an automated bot that must simulate human behaviour, it is necessary to know how
people (or rather expert pilots) interpret and respond to data when executing a certain task. A cognitive
model describes the way people process information depending on the mental model they have of a
certain system. This chapter provides insight into the mental model a pilot has while flying an airplane.

2.1 Aviator abilities

In aviation, there is a huge level of experience and knowledge expected from the person piloting an
aircraft. Many tasks must be done unconsciously because of the limited attention resources humans
have. For example, when flying a traffic pattern at an airport while the pilot is waiting to land, flying
the appropriate pattern at the correct altitude must become an automated skill, because many attention
resources of the pilot are focused on the Air Traffic Control messages and the other planes in the
vicinity to prevent disastrous collisions from happening.

As Figure 5 points out, the abilities of a (human) pilot can be divided into several layers. The basis for
expert flying is the skills and knowledge a pilot obtains during training and flight. Some flight
procedures can be done (after training) without the need of allocating many attention resources. These
tasks are easy to automate. Much knowledge is based on a pilot’s experience during his flight history.

Basic aviation
knowledge

Basic aviation
skills

Situation
assessment

Flight plan
interpretation
and execution

Future
prediction

and planning
adjustment

3

2

1

Figure 5 Layered model of the abilities of a human pilot

The second layer depends on the first layer, which is directly underneath the second layer. When a
pilot has acquired much experience from earlier flights, he will also train his ability to be aware of
potentially dangerous situations. In addition, this gives him the advantage to anticipate to and solve
such a situation in an early stage. Usually a pilot wants to fly from airport to airport according to a
flight plan. Assuming the pilot has the necessary skills (again depending on the first layer) he can
navigate by means of waypoints to get to the appointed destination. Obviously the pilot should study
the flight plan carefully before take-off to analyse all aspects of the flight. Not all possible situations
can be foreseen. Many flight plan adjustments must be made in-flight because of changing conditions.

Chapter 2: Designing a cognitive model Automating the Cockpit

Copyright © 2003, Delft University of Technology 6

This calls for a flexible approach to the flight plan. It is not a flight script that is executed by calling
predefined procedures with hard coded and unchangeable variables. For this reason the top layer
consists of capabilities of the pilot to predict possible occurring future situations by analysing the flight
history and the current airplane and environment status. When the pilot can assess the whole situation,
proper measures can be taken to prevent unwanted future situations from happening by changing the
flight plan.

2.2 Common cognitive models

Executing certain tasks can require the user to interact with the interface of a system to set or read
specific parameters. The way people think about a system depends for the most part on the stimuli the
system’s interface gives to the user and how the system actually responds to the input users give.
While working on the specific task, the user needs to gather information from the system and process it
in order to respond appropriately. Obviously, the ability to get the information depends on the
knowledge and the mental model the user has of the system and the task.

2.2.1 Information processing

Typically, there are four stages a person has to go through when processing information. This is
presented in Figure 6, which describes Wickens’ model of human information processing [WiNa88].

Figure 6 A model of information processing [WiNa88]

The first stage consists of the user getting stimuli from the system’s interface or the working
environment. A typical human being has five ways of sensing information, of which vision and hearing
are the major ones. These sensors use a short-term memory to process the perceived signals briefly
before they are send to the brain for further analysis.

After the sensors have converted the (physical) signals into information the brain is able to process, the
data is filtered for useful information. This is done in cooperation with the (long-term and short-term)
memory, which has useful knowledge about the current task and accumulated information from
previous encounters with tasks similar to the one at hand.

Automating the Cockpit Chapter 2: Designing a cognitive model

Copyright © 2003, Delft University of Technology 7

Based on the filtered data a decision has to be made how to react to the current situation. During this
stage, a selection has to be made from a range of actions, like store the data in memory, initiate a
sequence of motor commands, or just stay idle for a certain period. The selection is based upon the
priority and predicted (beneficial) result of the response. When a task exceeds a certain level of
complexity, the user does not have enough attention resources available to process all the information.
In that case, the user will only consume the information, which seems to have the highest priority level
in order to accomplish the task.

When a response has been selected, it will be executed. This will often create feedback to the stimuli in
the next cycle of information processing.

2.2.2 Levels of behaviour

Looking at the behavioural levels gives another perspective to the manner of information processing of
a pilot. In Figure 7, there are three levels of behaviour mentioned in accordance with Rasmussen
[Ras86] and Barbarino [KBD97]. The knowledge-based behaviour level is mainly targeted at the
decision-making process. One level deeper resides the rule-based behaviour level. The situation
awareness and situation assessment is primarily concerned with this level. The basic aviation tasks are
processed on the skill-based behaviour level. The tasks at this level are performed automatically,
without the need to allocate (many) attention resources by the pilot.

Figure 7 Levels of behaviour ([Ras86] and [KBD97])

Chapter 2: Designing a cognitive model Automating the Cockpit

Copyright © 2003, Delft University of Technology 8

2.2.3 Basic aviation knowledge and skills

For the pilot to have a proper understanding of the current state of the world, he has to evaluate several
sources of information. As described in the previous section, humans have a limited supply of attention
resources. In aviation, these resources are often used to full extent because of the complexity of the
decisions and the amount of information the system (in this case the cockpit) has to show the pilot. For
this reason the interface of the cockpit has a specific design to accommodate the pilot in obtaining
information from the various gauges and instruments. During training, pilots learn to read the
instruments in a prescribed scanning pattern in specific situations. For example, Figure 8 and Figure 9
show the instrument-scanning pattern for straight and level flight.

Figure 8 Scanning pattern for straight flight

In the figure above, the pilot needs to know if the flight path is still straight. To put it differently: the
pilot has to verify the plane is not deviating from its current heading. The most important instrument in
this circumstance is the attitude indicator or also called the artificial horizon. It provides the plane’s
current bank and pitch angle. When the bank angle of the plane is zero, the airplane is flying straight
ahead. When the bank angle is checked, it is also necessary to see if the current heading of the airplane
is still correct. It is possible, for example in case of crosswinds, for the aircraft to deviate from the
selected course without actually making a turn. To verify the current course the pilot has to scan the
heading indicator, which is typically located below the attitude indicator.

Figure 9 Scanning pattern for level flight

Automating the Cockpit Chapter 2: Designing a cognitive model

Copyright © 2003, Delft University of Technology 9

When in level flight, the plane is flying at one particular height. To make sure the plane is in level
flight, three gauges have to be checked. The first and again most important one is the attitude indicator.
As stated before, this instrument provides the pilot with the airplane’s pitch information. In ideal
circumstances, the altitude will not increase or decrease when the pitch is zero. Nevertheless, many
external factors have to be taken into account when checking level flight. The occurrence of wind
shear, for example, may influence the altitude of the plane. The altimeter, located to the right of the
attitude indicator, provides the means to check the current height. But, unless the altimeter is checked
frequently, the climb or descent rate is still unknown at this point. For that reason the Vertical Speed
Indicator (VSI) has to be scanned also. If the VSI indicates zero, the plane is not climbing or
descending. This completes the scanning cycle and the plane should fly level.

These are only two of many examples of basic tasks in aviation. These procedures are all stored in the
long-term memory of the pilot in the form of acquired skills and knowledge. After extensive training
and much experience, the basic procedures are performed almost automatically because these skills
will be a second nature of the pilot.

2.3 Situation assessment

There is more to flying an aircraft than just looking at instruments, following certain prescribed
regulations and procedurally executing motor commands. To know when to initiate specific actions,
the pilot needs to be aware of what goes on inside and outside the cockpit. The awareness of certain
(possibly harmful) situations already begins before take-off, during the pre-flight briefing.

2.3.1 Pre-flight briefing

Before taking off, a pilot must participate in a pre-flight briefing, which allows him to obtain important
information about the intended flight. The most important aspects a pilot should be aware of, according
to the Federal Aviation Administration (FAA), are weather condition, type of flight planned, aircraft
identification or pilot's name, aircraft type, departure point, route of flight, destination, altitude(s),
Expected Time of Departure (ETD) and Estimated Time En route (ETE) [FAA03].

Figure 10 Example of a flight plan provided by the FAA

Chapter 2: Designing a cognitive model Automating the Cockpit

Copyright © 2003, Delft University of Technology 10

Most of these aspects are evident for the pilot. The flight plan, however, needs to be analysed carefully
to ensure the pilot does not find himself into hazardous situations that could be prevented beforehand.
In addition, when a pilot knows his flight plan well, the stress on the pilot during flight will decrease
and the level of situation awareness increases because the pilot has to use (much) less attention
resources for the interpretation of the flight plan.
A basic flight plan consists of a departure point, a destination point and the route to fly. Additional
information, like the altitude(s) to fly the route, the amount of fuel left or additional waypoints, can
also be specified in the flight plan.

2.3.2 In-flight

In order to accurately assess the current situation while flying, the pilot uses different techniques
during the various stages of a flight. The stages can be described in a flow chart like the one in Figure
11. When analysing the importance of the instruments and gauges, it appears that in some stages the
instruments are more critical, while in other stages the situation is assessed better by visual cues from
the outside of the plane. For example, when the aircraft is at cruising altitude, practically all the pilot
needs to check to verify the heading and state of the plane is the instrument panel. However, when
landing the plane, the pilot is trained to look outside frequently to assess the safety of the situation.

Taxi and
take-off

Cruise Approach Landing
and taxi

Shutdown

Figure 11 Stages of a typical flight

The importance of the various (instrumental and external) cues is deducted from the mental model the
pilot has of the flight and the context of the current situation. A level of priority is given by the pilot to
various stimuli, which involves the use of the attained knowledge and skills from training and
experience. In other words, the assessment of the current situation depends on the knowledge and skills
in the first layer of the model of the abilities of a pilot (see Figure 5). Based on the gathered
information, the pilot can formulate a hypothesis about the current situation and take proper actions.

Much of the information a pilot has to assess is probabilistic. For example, before the flight is started
weather services may predict a 30% chance of rainfall in the area of the flight. This may be corrected
during flight by visual cues (i.e. clouds building in the direction of the flight path) and this may result
in the pilot initiating a change of heading. The logic required for the assessment task can also introduce
errors in judgment as it is based on probabilistic sources. For that reason special care must be taken
when dealing with statistical information, as 98.6 percent of all people know.

2.4 The decision making process

The judgment and decision-making of a pilot gives him the capability to reach the intended destination
safely, presuming the pilot has trained these capabilities well. The decision-making process is a
complex cognitive task and depends strongly on a flawless mental model of the current state of the
world and the assessment of the informational cues gathered from the instrument panel of the plane
and the view of the outside world.

Automating the Cockpit Chapter 2: Designing a cognitive model

Copyright © 2003, Delft University of Technology 11

2.4.1 Situation recognition and situation awareness

Pilots are trained to make decisions in a procedural way: assess the situation, find all useful respond
actions, evaluate these actions based on certain criteria, then execute the best responsive action. This is
a relatively simple and effective approach for training, but it takes a lot more experience to do this
under real life conditions. Often when flying, a pilot has little or no time to make a decision. Therefore,
many decisions are made without assessing all available information.

Humans have an innate capability of recognizing and generalizing resembling patterns or situations.
Quite often, the pilot recognizes a certain situation from previous encounters and acts in the same way
as before. If the current situation differs (slightly) from the past one, the outcome of the old course of
action may lead now to dangerous situations. Therefore, the pilot must change his understanding of the
current state of the task and must act accordingly. This is an effective way of making decisions.

There are, however, some disadvantages of this approach. When the pilot does not take all information
into account, it is imaginable that in certain circumstances the situation varies in a not detected way
from the situation the pilot thinks has occurred. If the difference is too great, the safety of the airplane
is in jeopardy, because, although the pilot will take the correct responding action, the decision is based
on wrong presumptions.

2.4.2 Risk assessment

The most interesting part is when an unprecedented situation occurs. In such a case, the pilot has to
involve his knowledge to come to a decision. This is explained by Wickens in his model of decision-
making [WiNa88].

Figure 12 Wickens' model of decision-making [WiNa88]

Chapter 2: Designing a cognitive model Automating the Cockpit

Copyright © 2003, Delft University of Technology 12

After the informational cues are processed, the current situation is diagnosed, resulting in a choice of
the best course of action to take. In addition, this decision is influenced by the risk assessment, which
is made by the pilot to be able to maintain a certain level of safety during the flight.

The risk assessment is the pilot’s subjective evaluation of the probability of certain outcomes. The
evaluation can differ from person to person, because it depends on many sources that are probabilistic.
Firstly, the skill to generate as many
problem-solving courses of action as
possible is not an innate ability of humans.
It requires training and not everyone has
the required talent to do this. Secondly,
when calculating risks, people have the
tendency to overestimate the frequency of
very rare positive events. Furthermore,
when people have to choose between two
losses, the risky (potentially dangerous)
loss is seen as a better alternative than a
certain (less life-threatening) loss. This
may be explained by the fact that people
often have overconfidence in their ability
to predict near-future events. This can
sometimes result in disastrous situations
as can be seen in Figure 13. All these facts
put together make the work to model a
real pilot a tedious and difficult job.

2.5 Conclusion

The information presented in this chapter can be used as a starting point for the flight bot that is
modelled in the course of this project. It is the basis for the models described in Chapter 4 and Chapter
5. However, this chapter has a certain point of view towards flying an aircraft. It is not meant to
explain all relevant aspects of, for instance, choosing certain actions while flying by the flight bot.
Flying is too complicated to describe in one or two chapters or even for the duration of this project.
Implementing these aspects in a consequent manner provides a solid platform for the flight bot to start
with.

Figure 13 Sometimes judgement errors are made by the pilot

Automating the Cockpit Chapter 3: Analysing the flight plan

Copyright © 2003, Delft University of Technology 13

Chapter 3 Analysing the flight plan

3.1 Flight plan requirements

When a pilot has to make a flight, a flight plan is provided to mark all special events during the
intended flight. This way the pilot knows beforehand exactly what can be expected to occur while
flying. In order to generate a proper flight script for the flight bot to execute, the entered flight plan has
to be analysed carefully. Because the flight bot cannot create a flight plan on its own, it has to be
provided by a supervisor.

3.1.1 Content requirements

As is stated in section 2.3.1, a minimal flight plan consists of multiple steer points and additional
information about the circumstances of the flight and information about the aircraft. Not all supplied
information is required for the flight bot to know. In addition, some information is ignored because of
the focus of this project. For example, the type of aircraft can be chosen, but only the Cessna 172SP
Skyhawk is selectable for the user. In addition, the amount of fuel is considered unlimited, which is not
realistically, of course. This has been done to keep the project manageable. A selection has been made
to specify what information the supervisor has to enter as a flight plan. The most important information
is the route for the bot to fly. It consists of the airport of departure, possibly multiple steer points and a
destination airport. Each element has its own attributes. For every steer point, the following attributes
are required:

• GPS coordinates (longitude, latitude)
• Time Over Steer point (TOS)
• Type
• Action to take at the steer point
• Airspeed
• Heading
• Altitude

Airports have, in addition to the attributes of a steer point, a name, an abbreviation, a runway number
from which to depart or land and the general GPS coordinates of the airport.

Some of the steer point attributes have priority over others. For example, the airspeed is calculated by
means of the current weather information. However, when a change in weather occurs, it may be
necessary to adjust the airspeed to reach the steer point at the designated TOS time. In addition, the
TOS must be checked for feasibility.

The type of the specified steer point can be chosen from an airport location or a GPS coordinate. It is
possible to have zero or more navigational points along the flight path. These are specified using GPS
coordinates. However, in a flight plan only one airport location may be entered as a start point and one
airport location as an end point. These points have additional attributes that tell the bot how to behave
near the airport.

Chapter 3: Analysing the flight plan Automating the Cockpit

Copyright © 2003, Delft University of Technology 14

3.1.2 Constraints

After acquiring the flight plan, it has to be checked for validity and feasibility. Certain constraints must
be set to make the flight plan a reachable goal. The restrictions can be categorised in aircraft,
environmental and pilot constraints. Because of the overwhelming amount of constraints in real life,
not all restrictions can be examined. A selection of the most important constraints has been made to
verify the flight plan for the most obvious errors.

Most aircraft constraints are rather easy to check. When analysing the flight plan, the following list is a
set of restrictions, which is imposed on the flight plan by the nature of the aircraft.

• Maximum altitude
• Maximum airspeed and throttle
• Minimal airspeed (also known as stall speed)
• Maximum pitch angle
• Maximum banking angle
• Fuel tank capacity

The aircraft constraints are, naturally, dependent on the type of aircraft used. For this project the
Cessna 172SP has been chosen to accomplish the goal. The limits of this particular airplane are listed
in Appendix B.

In addition, other restrictions are imposed by the environment in which the flight takes place. In certain
circumstances, it is not safe to fly in a certain area. It is preferable to take another route, if the area can
be avoided. There are two kinds of environmental constraints, which have to be examined. The first is
the weather report. When a storm is approaching at a certain navigational point, the pilot has to stay
clear of that area. Right before take-off, a pilot is always briefed about the current weather conditions
and forecast. Secondly, some areas are
defined as a no-go zone. Special care has
to be taken at, for example, the airspace
above airports. The air traffic at airports is
always lively because of the planes that
land and take-off. It is preferred to stay
clear of all airports, which are not the
destination of the flight plan. There are
also areas, which are prohibited by
authorities for ‘civilian air traffic’. A well-
known and much used example is Area 51
in the Nevada desert.

Finally, pilot constraints are typical constraints for all human beings. Examples are the limited
attention resources (e.g. not all instruments can be scanned and interpreted at one time) and the limited
physical abilities (most humans have, for example, only one pair of eyes). Most of these constraints
cannot be checked during the analysis of the flight plan, but only in-flight. This is the case when the
pilot suffers from fatigue. Some restrictions may be predicted by analysing the stress at a particular
moment in the flight plan. When many actions must be performed at a steer point, the workload on the
pilot increases and may exceed the limits of a human pilot. In that case, a warning may be issued
beforehand about that particular situation.

Figure 14 Area 51 near the shore of Groom Dry Lake

Automating the Cockpit Chapter 3: Analysing the flight plan

Copyright © 2003, Delft University of Technology 15

3.2 Flight procedures

During analysis of the flight plan, the flight path has to be broken into several smaller pieces, which
resemble the stages of a flight as is mentioned in Figure 11. The stages, also called phases of the flight,
can in turn be executed in a procedural manner by calling certain predefined basic tasks. These tasks
are stored in a knowledge base and are typically situation independent. When dealing with the flight
script on a per-stage basis, the constraints set upon a particular stage can differ from the next stage.
This way, a distinction can be made between the various stages.

The tasks were defined using the ground school-manual from Microsoft’s Flight Simulator 2002
[Mach02]. This manual has been set up to simulate the real thing as best as possible. In addition, it has
been written by a real-life pilot instructor, who gives, besides the standard information about flying in
Flight Simulator 2002, additional information about the points where Flight Simulator differs from
reality.

3.2.1 Basic commands

A layering can be applied to the tasks stored in the knowledge base. The first layer contains the
commands that interact directly with the cockpit’s interface. These commands may be seen as atoms
from which the flight procedures are built. The following list is an enumeration of the basic
commands, as detailed in Appendix C.1.

1. Change attitude
2. Change pitch
3. Change power settings
4. Change mixture settings
5. Trim
6. Change flaps
7. Change rudder to keep inclinometer in the central position
8. Set switch or knob of particular instruments

3.2.2 Flight procedures

With the basic commands in mind, complex flight procedures can be built by combining multiple basic
commands in a particular order. The enumeration of the flight procedures mentioned below is worked
out in Appendix C.2 in the basic steps that have to be executed in chronological order.

1. Take-off
2. Fly level
3. Fly straight
4. Turn
5. Climb (or descent)
6. Approach runway
7. Land

To provide an example, one of these tasks, the “turn” procedure can be worked out as follows:

1. Read out attitude indicator and heading indicator.
2. Calculate difference to the specified target heading. If difference is greater than zero,

increase aileron control input value smoothly. Decrease aileron control input value smoothly
when difference is smaller than zero.

3. Change attitude to +20 degrees if difference is positive. Change attitude to –20 degrees if
difference is negative.

Chapter 3: Analysing the flight plan Automating the Cockpit

Copyright © 2003, Delft University of Technology 16

4. Change rudder to keep inclinometer in the central position.
5. Read out attitude indicator and heading indicator.
6. Calculate difference to the specified target heading. If difference is greater than the default

margin, go to step 4.
7. Change attitude to zero degrees.
8. Change rudder to keep inclinometer in the central position.

Based on these procedures, it should be possible to create a flight plan for a plane to take-off from an
airport, fly according to a flight path and land at the destination airport, assuming the proper conditions
are known. Considering the advanced procedures, tasks that are even more complex can be
accomplished by combining them into an even higher-level procedure. Examples of these kinds of
procedures are flying a traffic pattern or navigating by VOR (Very high-frequency Omni directional
Range) beacons.

3.3 Generation of the flight script

While analysing the flight plan, a script is generated for the flight bot to execute. This script consists of
a list of advanced procedures to be called in chronological order. In addition, some procedures may be
executed concurrently. For instance, while making a right turn, a descent may be initiated. With this
enumeration of procedures it should be possible, in theory, to fly the whole flight plan under ideal
conditions. The way the script evolves can be compared to a hierarchical structure. While the script is
generated before take off using the XML knowledge base, not all details are filled in yet, because some
parameters may not yet be available. During flight the script evolves to a more detailed plan, which is
read and executed by flight bot.

3.3.1 Substitution algorithm

There are many ways to generate a script from a list of tasks. The usability of a certain technique
depends on the nature of the actions and on the level of abstraction in which the actions are defined.
One solution is to use an algorithm that processes a list of actions and substitutes every action with
(possibly multiple) more detailed tasks. This process is repeated to get on the level of flight
procedures.

The following example illustrates the way a substitution algorithm works. At the start there is a list of
steer points with their individual actions. The flight plan is divided in multiple phases. The actions are
used as a seed and extended into complex tasks and procedures with their respective parameters
according to the phase the steer point is in. For example, the land action consists of an approach
procedure and a land procedure, which are all part of the land phase. The list of all the flight
procedures is the basis for the flight script and the input for the flight bot.

Automating the Cockpit Chapter 3: Analysing the flight plan

Copyright © 2003, Delft University of Technology 17

3.3.2 Example of a flight script

To give an example of a flight script, a flight is planned from the airport of Soesterberg (EHSB) to
Schiphol (EHAM). While analysing the acquired flight plan, the following script is generated:

When feeding this script to the flight bot, it will call at every step the appropriate procedure with the
proper attributes. In ideal circumstances (e.g. no weather changes or other air traffic nearby), this script
would be easy to execute. However, most of the time, the flight conditions are far from ideal. This
calls for an agent, which constantly monitors the flight. This agent must be able to correct the flight
script when necessary during the process of flying. This process will be explained in the next chapter.

Nr Procedure Parameters Task
1 Take-off from EHSB at

runway 27
EHSB, runway 27: GPS coordinates
52° 7' 37" N, 5° 17' 56" E, heading 271°

Take-off

2 Climb Altitude: 3500 feet
3 Make a right turn 10° bank to heading 300 Cruise
4 Fly level Altitude: 3500 feet
4 Fly straight for 21 nautical

miles towards airport EHAM
EHAM: GPS coordinates 52° 18' 31.01" N,
4° 45' 50.00" E

5 Descent Altitude: 1000 feet Approach
6 Approach and align with

runway 9
EHAM, runway 9: GPS coordinates
52° 19' 6" N, 4° 47' 49" E, heading 269°

7 Land on runway 9 Land

Chapter 3: Analysing the flight plan Automating the Cockpit

Copyright © 2003, Delft University of Technology 18

Automating the Cockpit Chapter 4: Designing the flight bot

Copyright © 2003, Delft University of Technology 19

Chapter 4 Designing the flight bot

The cognitive model worked out in Chapter 2 has to be implemented in the bot in order to mimic
human behaviour and decision-making in a cockpit environment. Based on what has been stated about
real-world pilots, certain aspects can be translated in a cognitive model for the autonomous bot.

4.1 Layered approach

As is indicated in Chapter 2 (see Figure 5), the capabilities of a human pilot can be split up in three
layers. The first layer contains the basic knowledge used by the pilot to navigate the airplane. The
second layer consists of the actual navigation and the short-term decision-making process to properly
follow the flight plan. The third layer is the ability to anticipate to events that may occur in the future.

When applying the model from section 2.1 to an automatic flight bot, the three layers form a basic
framework for the implementation the bot. The red layer is the part of the flight bot that is the
knowledge base of flight procedures and regulations. The segment of the model in Figure 15, which is
inside the box with the dashed lines, represents the part of the application that actually steers the
airplane (the flight bot) and another part that anticipates on future events and changes the flight script
accordingly (the co pilot).

Knowledge base of
basic aviation
(regulations,

airplane limits etc.)

Store of basic aviation
procedures (taking
turns, taxing etc.)

Flight plan
entered by user

Basic flight
script

Generate flight script

Analyze flight script

Decide what
action to take

Alter flight script

Situation assessment

Near-future prediction
and risk assessment

Revised
flight script

Execute revised
flight script

Sensory
input

Fig 5, layer 1 Fig 5, layer 2 Fig 5, layer 3

Figure 15 Design of the flight bot using a three-layered approach

Chapter 4: Designing the flight bot Automating the Cockpit

Copyright © 2003, Delft University of Technology 20

4.1.1 Expert system and procedures

The basis for proper flying is the use of advanced skill and knowledge about procedures and
regulations in aviation. This is not that complicated to implement when using an expert system with a
knowledge base. The knowledge base consists of the standard aviation regulations. For example, when
flying according to the Visual Flight Rules (VFR), there are rules about the minimal and maximal
altitude to maintain. In addition, the skills can be automated by using generic flight procedures, which
can be called during flight to execute a certain flight manoeuvre. These scripted procedures have to be
generic, because of the many parameters such a procedure depends on. A simple manoeuvre as taking
a turn already needs several parameters, like the banking angle, the throttle setting, the climb or
descent rate and so forth. Special notion has to be taken of the interdependency between parameters.
For example, to maintain airspeed while climbing, the throttle has to be increased.

4.1.2 Flight plan analysis and situation assessment

The knowledge base from the first layer can be used to analyse the flight plan. The analysis can take
place in two stages. Firstly, the basic flight script should be generated according to the standard flight
path, which is stated in the flight plan. After this, the flight path should be reviewed for hazardous
situations or obstacles, which are in the flight
path. If such a situation occurs, a change
should be made to the flight script to
anticipate to these circumstances. When an
adjustment has been made, the whole process
of reviewing the script should be repeated.

After the analysis, the bot can fly the flight
script. While doing this, the bot should be
aware of the current situation to accomplish
the goal of the flight plan. When a condition
arises where the bot has to take action, it
should be able to properly formulate a
hypothesis about the current situation. This
will pave the way for taking the correct measures in the top layer, because it is based on correct
information from the second layer.

4.1.3 Near-future prediction and planning adjustment

When certain conditions are met that can trigger a possible harmful situation, there are in general
several courses of action possible to prevent the situation from happening. These conditions should be
checked at a regular interval by the bot. Choosing which action to execute depends on many factors,
like urgency of the situation, complexity of the task at hand, regulations, commands from external
sources (for example Air Traffic Control), weather conditions and airplane safety.

It is beyond the scope of this study to model all possible alternatives in every situation, taking all
conditions into account. Real-life pilots fly for a major part on experience from previous flight. The
bot should also maintain the flight history for this reason. It must be able to perceive if the current
situation is comparable to previous ones and verify if the outcome was satisfactory. If so, the flight bot
will reason which course of action can be taken in the current situation depending on the list of
comparable situations.

Figure 16 A Cessna flying over normal ground traffic

Automating the Cockpit Chapter 4: Designing the flight bot

Copyright © 2003, Delft University of Technology 21

Risk assessment is another important criterion for selecting the appropriate course of action. The
current situation can be diagnosed, based on a knowledgebase of fuzzy or probabilistic information
about the risk of taking a certain action in the current situation.

4.2 Human limitations for the flight bot

For the situation and risk assessment it is necessary to process the cues the instrument panel provides
about the current situation of the airplane. While a computer can read and process information very
fast, humans cannot perform this task as effective. Because this project has the goal set for the bot to
resemble the flying behaviour of human pilots, the bot has to be programmed to act and respond
generally the same way real pilots do. This has certain implications for the bot.

• It has to acquire instrument readings the same way pilots do with instrument scanning patterns,
also taking into account the speed and accuracy pilots use when reading instrument panels.

• The bot has a limited amount of attention resources, like humans do, and must allocate them
for a period to particular tasks.

• Some kind of memory has to be implemented to recognize patterns and situations from
previous encounters.

• The knowledge stored in the (long-term) memory can also be used to prioritise or filter certain
informational cues while processing them.

• When risk is involved, generate a set of solutions or alternatives, limited to the skill of an
expert pilot.

Chapter 4: Designing the flight bot Automating the Cockpit

Copyright © 2003, Delft University of Technology 22

Automating the Cockpit Chapter 5: Application design and implementation

Copyright © 2003, Delft University of Technology 23

Chapter 5 Application design and implementation

To successfully create an application, a design must be made to give a clear notion of the workings of
the intended application. As an overview of the total application is presented, a better understanding is
available to the programmer of the amount of time and resources needed for the task of implementing
the application. For this reason several techniques have been invented.

5.1 Unified Modelling Language

The Unified Modelling Language (UML) is a methodology created by Grady Booch, James
Rumbaugh, and Ivar Jacobson to define the inner workings of an application. It uses models to make
an abstract representation of a design or a system from a particular point of view. These models are
often visualised in a diagram [PoSt99]. There are various diagrams defined in the Unified Modelling
Language.

• Class diagrams are used to document the static structure of the system. The system consists of
multiple objects. A class describes a set of objects with an equivalent role or roles in a system.
In the class diagram, every class is defined and the relation between the objects is displayed.
Classes can be seen as the nouns in the description of the system in natural language.
Associations, or relations, correspond to the verbs in the same description.

• Use case diagrams document the behaviour of the system from the user’s point of view. The
user is an external entity, which interacts with the system.

• State diagrams show how an object in a system responds to a received message, or other
event. It uses states, transitions and events to visualise the workings of the objects.

• Collaboration diagrams are the diagrams that show the interaction between the classes from
the underlying class model. It allows detailed recording of the way objects interact to perform
a certain task.

• Sequence diagrams show the flow of objects and actors that take part in a certain task. Every
object has a lifeline, which is the time the object is activated for a certain procedure.

• Activity diagrams can be used to describe the way in which a procedure should be
implemented and coordinated. The essential dependencies between operations can be modelled
more clearly in this kind of diagram.

There are even more types of diagrams in the Unified Modelling Language that are more obscure, but
not all diagrams are necessary to be used. The most important criterion why a certain kind of diagram
should be used is the question if using that particular diagram enhances the view on the design of the
entire system.

5.2 Application architecture

While the structure of the flight bot itself has been dealt with in Chapter 4, the application as a whole is
more than just the flight bot. It has been briefly mentioned in the introduction that the application is
divided into four separate stages. These tiers will be worked out in the following sections. An
overview of the application is given to clarify the design of the program in Figure 17.

The class diagram speaks mostly for itself, but a few things are worth noting. The flight planner GUI is
the graphical user interface (GUI) of the application. The supervisor will interact with this part of the
program. The flight planner GUI will also pass commands of the person supervising the flight bot to

Chapter 5: Application design and implementation Automating the Cockpit

Copyright © 2003, Delft University of Technology 24

the rest of the application. Furthermore, the flight plan consistency checker is drawn in grey, which
means it is not implemented yet in this project. Only a shell for the module is implemented, which
always returns true even if the flight plan is not consistent. This part of the program is left for future
development. This is also the case for the co pilot, which monitors the execution of the flight and
adjusts the flight script real-time to reach the appointed goal. The flight bot executes the actual flight
procedures described in the flight script. Finally, the flight plan and the flight script are special classes,
because they are in essence only an XML document.

2. Flight plan
consistency checker

Flight plan

validates consistency

3. Flight script generator

reads

Flight script

generates

4.1. Flight bot

4.2. Co pilot agent

reads

reads and adjusts

monitors

executes flight scripts'
flight procedures

1. Flight planner GUI

creates
initiates

initiates

initiates

<<interface>>
MS Flight Simulator 2002

Figure 17 A class diagram of the complete application

The interface with Microsoft Flight Simulator 2002 is a special module called FSUIPC, written by
Peter Dowson [Dow03], which is installed in Microsoft Flight Simulator. The module supports reading
and writing variables from an external application by a method called Inter-Process Communication.

Automating the Cockpit Chapter 5: Application design and implementation

Copyright © 2003, Delft University of Technology 25

5.2.1 Flight planner GUI

The first part of the application is also the part that interacts with the supervisor. It is called the
graphical user interface (GUI) of the application. The simplest way to model the specifications of a
user interface in UML is by using use case and sequence diagrams.

Figure 18 describes the use cases of the flight planner GUI. There are four actions a supervisor can do
in the interface. Firstly, the supervisor can enter the flight plan into the flight planner. After this has
been done a consistency check must be done to validate the entered flight plan. When the flight plan
has been proven to be correct, the supervisor can initiate the flight script generation. Then, the
supervisor can give the command to feed the flight script into the flight bot, which executes the flight
actions in the flight simulator.

It is apparent that these four use cases depend on each other in a strong fashion. The flight bot cannot
execute any manoeuvres while the flight script has not been generated. A condition for the generation
of the flight script is the fact that the flight plan must be consistent. And finally, when a flight plan has
not yet been entered, it cannot be validated by the application.

«» «»

Check flight plan consistency

Supervisor

«» «»

Enter flight plan

«» «»

Generate flight script

«» «»

Initiate flight bot

Figure 18 Use case diagram of the flight planner GUI

The available use cases are worked out in the next sections in sequence diagrams, which denote the
sequence of the available actions the user can perform. One use case, namely initiate flight bot, has not
been worked out because of the straightforwardness of the use case. When the application has
generated the flight script, the user can initiate the flight bot by giving one command. The flight bot
itself will begin flying the flight script and there will not be any interaction with the flight planner
GUI. In that case, a new stage of the application has been entered and the user will have feedback
directly from the flight bot itself. The flight bot itself has been worked out in a separate chapter.

5.2.1.1 Enter flight plan

For a user to be able to enter a flight plan, several features must be provided by the user interface. In
the first place, a way to actually collect the steer points must be implemented. This is implemented in
the application in the shape of a display for so-called NOS/GEO sectional charts. Sectional charts are

Chapter 5: Application design and implementation Automating the Cockpit

Copyright © 2003, Delft University of Technology 26

used in the aeronautical domain to visualise the flight route. The format of the files in which the charts
are stored is called NOS/GEO. The user can open such a chart in the application and add steer points to
the flight plan by pointing out the various coordinates on the map.

When the supervisor has added the steer points, he can choose to save the flight plan to be able to
retrieve the flight plan on a later date. Changing or removing steer points are also features the
supervisor must have to correct possible mistakes while entering the steer points.

: Supervisor

:Flight planner GUI

Open NOS/GEO sectional charts

[0..n] Enter/Change(steerpoint)

:Flight plan

Add/Change(steerpoint)

Load/Save flight plan(filename)
Import/Export flight plan(flight plan)

Remove(steerpoint)
Remove(steerpoint)

Figure 19 Sequence diagram of use case Enter flight plan

5.2.1.2 Check flight plan consistency

The sequence diagram (Figure 20) of the use case Check flight plan consistency is fairly obvious. The
primary functionality of this module is located at the message whether the “Flight plan is valid”. To
answer this question, many aspects of the flight plan must be researched by the application. Because of
the time constraints of this project, this part of the application has only been implemented to return a
positive answer. A shell or shell of this module has been made for future work to provide the
possibility to extend this feature. This module already incorporates an XML database with the
specifications (or limitations) of the aircraft used by the flight bot. In addition, the general manner the
module is intended to work is described in section 5.2.2.

Automating the Cockpit Chapter 5: Application design and implementation

Copyright © 2003, Delft University of Technology 27

: Supervisor

:Flight planner GUI

Check flight plan consistency

:Flight plan
consistency checker

Check consistency

Flight plan is valid?

:Flight plan

Get(steerpoints)

Steerpoints

Check constraints

Figure 20 Sequence diagram of use case Check flight plan consistency

5.2.1.3 Generate flight script

The Flight Script Generator goes through several phases before the flight script is assembled. Firstly,
the application makes sure the flight plan has already been validated. If this is not the case, the
possibility exists the flight plan is inconsistent and thus a flight script cannot be created from this flight
plan.

A valid flight plan has been given at every steer point at least one task. For every task in the flight
plan, the flight script knowledge base is called to search for a corresponding task in the database. The
task of the knowledge base has been defined using flight procedures, which are the base procedures the
flight bot executes chronologically. Finally, when the flight procedures are added, the parameters for
the procedures are extracted from the flight plan and appended to each procedure.

: Supervisor

:FlightPlannerGUI

Generate Flight Script

:FlightScriptGenerator

Generate Flight Script(Flight Plan)

:FlightScript

Add flight tasks and procedures

Flight Plan has been validated

Add parameters

Figure 21 Sequence diagram of use case Generate flight script

Chapter 5: Application design and implementation Automating the Cockpit

Copyright © 2003, Delft University of Technology 28

5.2.2 Flight plan consistency checker

Although the flight plan consistency checker will not be fully implemented in the scope of this project,
a principal design of this module is given in Figure 22. See section 3.1.2 for more information about
the types of constraints.

Flight plan

Aircraft
specifications

database

reads

uses

1. Analyze flight plan

2. Check aircraft
constraints

3. Check environmental constraints
(weather and no-fly zones)

4. Check pilot constraints

valid

invalid

valid

invalid

valid

invalid

Weather report
and forecast

Specification of
no-fly zones

uses

uses

Figure 22 Activity diagram of the flight plan consistency checker

5.2.3 Flight script generator

The following figure is a model that represents the internal activities of the flight script generator
module. Before the flight script generator starts, it makes sure the flight plan is checked for validity.
Then the module begins with reading the flight plan and the flight script tasks and procedures database.
The database contains the standard tasks the flight bot must be able to perform. Every task is defined
by a chronological list of flight procedures.

Automating the Cockpit Chapter 5: Application design and implementation

Copyright © 2003, Delft University of Technology 29

The generator adds all tasks that are mentioned in the flight plan into the flight script and appends the
corresponding flight procedures for every task. After this, the parameters are added to the list of flight
procedures in the flight script. When this is done, the flight script is ready for use by the flight bot.

Flight plan

Flight script

Flight tasks and
procedures
database

reads

loads

inserts tasks

appends flight procedures

sets parameters

1. Analyze flight plan

2. Load flight tasks and procedures

3. Insert tasks from flight plan into
flight script

4. Append flight procedures for
every task in flight script

5. Set parameters for all flight
procedures in flight script

Flight plan is validated?

yes

no

Figure 23 Activity diagram of the flight script generator

5.2.4 Flight bot and co pilot

In Chapter 4 a design is proposed for the flight bot. This design gives a general impression of the inner
workings of the bot. The next figure is a procedural flow diagram of the flight bot, taking into account
the points noted in Chapter 2 and Chapter 4.

The flight bot and the co pilot can be seen as the second and the third layer of Figure 5. The second
layer of this figure can be described as the layer where all the action is. Here, the pilot executes the
basic actions to fly an airplane and this is the place where the pilot’s training is being used. In the third
layer all the predictions about the future are made. Now, the experience of the pilot from previous
flights is used. The pilot has built up in his long-term memory a vast knowledge base about what
actions to take in certain (hazardous) situation and how to anticipate on those situations.

Chapter 5: Application design and implementation Automating the Cockpit

Copyright © 2003, Delft University of Technology 30

The flight bot works on a short-term basis. It reads the flight script and extracts the task and flight
procedure that should be executed at the current time. This should be done periodically (i.e. not just in
one try at the start of the flight) because the co pilot may have altered the flight script during the
current flight. Hence, to keep track of those changes, the flight bot should always get the most up-to-
date information available from the flight script.

At the beginning of a flight, the aircraft must be positioned at a certain location, which is mentioned in
the flight script as the runway or airport from where the take off must take place. Then it enters a loop
in which the bot will consecutively execute all flight procedures that are read from the flight script.
Every flight procedure has a (short-term) goal, which must be reached to start with the next task or
procedure. The loop is exited when the flight bot has accomplished all goals or when a fatal event
occurs after which the bot is unable to go on.

Flight script reads
1. Position aircraft

3.1 Get status of current
situation

3.2 Check current situation for
potential initiation of commands

2. Determine short term goal
(current task and flight procedure)

4. Execute commands

5. Check whether all
goals are accomplished

yes
no

<<interface>>
MS Flight Simulator 2002

reads status

sets position

Flight tasks and
procedures
database

Basic aviation
knowledgebase

uses

initiates commands

uses

reads

reads

commands

no commands to execute Situation is fatal

Figure 24 Activity diagram of the flight bot

In a concurrent thread, the co pilot is running to determine whether the flight script needs adjustments
to accomplish the tasks appointed by the supervisor in the flight plan. The co pilot, in contrast to the
flight bot, works with long-term goals. These goals are determined by analysing the task at hand.

Automating the Cockpit Chapter 5: Application design and implementation

Copyright © 2003, Delft University of Technology 31

The co pilot must assess the current situation to determine if the goal is still feasible or whether a fatal
occurrence of events may happen. When a situation occurs where the goal cannot be accomplished or a
critical situation is predicted, the co pilot will try to create a number of solutions (a solution is defined
as a set of flight procedures) for this situation, which enables the flight bot to reach the appointed long-
term goal and avoid any (predicted) hazardous situations. The number of solutions generated must be
limited to the available attention resources that are not in use for other means. This should be
implemented to mimic the human behaviour and limitations as is described in section 0.

With this set of solutions available, the co pilot must pick the best solution from the set and adjust the
Flight Script accordingly. A check is then done to verify if the thread of the flight bot is still running.
When the flight bot has finished, stopped or crashed, there is also no need for the co pilot to resume its
duties.

Flight script
reads

1. Determine long term goal

2.1 Get status of current
situation

3.1 Generate alternative solutions for
possible risk situations and/or new ways to

accomplish long term goal

goal not feasible or risk occurs

goal is feasible and risk is absent

2.2 Assess current risk and
feasibility of current long term goal

3.2 Consider all alternative actions and
choose best solution

4. Change flight script
according best solution

no

yes

<<interface>>
MS Flight Simulator 2002reads status

Flight tasks and
procedures
database

Basic aviation
knowledgebase

uses

uses

5. Determine if Flight Bot
thread is still running

changes

uses Aircraft
specifications

database

Weather report
and forecast

Specification of
no-fly zones

Figure 25 Activity diagram of co pilot

Chapter 5: Application design and implementation Automating the Cockpit

Copyright © 2003, Delft University of Technology 32

Automating the Cockpit Chapter 6: Data storage and exchange

Copyright © 2003, Delft University of Technology 33

Chapter 6 Data storage and exchange

When there is an interactive application, there is also the need for data exchange and storage. In this
project there are multiple instances where there is the need to design a data structure to define the way
in which the information is stored. This chapter will elaborate on the choices that have been made
regarding the method and manner in which the data is passed on.

6.1 Extensible Markup Language

In the past five years, a markup language has been developed by the World Wide Web Consortium
[W3C03] to describe data. The Extensible Markup Language, abbreviated as XML, has originally been
developed to exchange information on the Internet. Currently, because of its success and (relative)
simplicity, it is widely used to represent data on various platforms running different kinds of
applications.

The concept is an extension of the much older Standard Generalized Markup Language (SGML). The
main advantages of XML are its extensibility and portability. The language is based on self-describing
tags, which must be defined by the user. There are multiple ways to define the tags. Two of them are
commonly used, namely by Document Type Definitions (DTDs) and by XML Schemas. This opens
the possibility to exchange many kinds of information in an unambiguous and elegant manner.

6.1.1 Basics of storing data in XML

In XML, using so-called tags formats the data. These tags resemble the ones used in SGML and it’s
successor: HTML (HyperText Markup Language). All data is stored in the tags as basic strings of
characters. This ensures the portability of the XML data over the various available platforms.

To give an example of the workings of XML, the following code is designed to catalogue books.

<?xml version="1.0" encoding="UTF-8"?>

<book isbn="0586217835">
<title>

Magician
</title>
<author>Raymond E. Feist</author>
<character>

<name>Pug</name>
<friend-of>Tomas</friend-of>
<birth-town>unknown</birth-town>
<trade>Magician</trade>

</character>
<character>

<name>Tomas</name>
<birth-town>Crydee</birth-town>
<trade>Swordfighter</trade>

</character>
</book>

When examining this code closely, a few points can be noted concerning the nature of XML. Firstly, it
stores the data in a hierarchical fashion. At the root of the data resides the book-tag. A title, an author
and an enumeration of characters describe the book. In addition, the book has an attribute “isbn” inside
the book-tag. All tags must have an equivalent closing-tag, except if the tag only holds attributes and

Chapter 6: Data storage and exchange Automating the Cockpit

Copyright © 2003, Delft University of Technology 34

no data. The definition of an element is everything between a tag and it’s closing tag, also known as
the main building blocks of XML. The attributes give extra information about an element in particular.

Another question may rise when inspecting the previous XML code. Why is data at one instance
entered as an attribute and elsewhere it is put in a child element? For example, the name of a character
can also be added as an attribute to the element “character”. As a matter of fact, both options are valid.
However, there are a number of reasons to prefer child elements above attributes [W3S03]:

• Attributes cannot contain multiple values (child elements can)
• Attributes are not easily expandable (for future changes)
• Attributes cannot describe structures (child elements can)
• Attributes are more difficult to manipulate by program code

Also, validating attribute values against a Document Type Definition (DTD) is not easily done.

6.1.2 Document Type Definitions and XML Schemas

At the beginning of the XML era, the structure of the XML data was defined by a Document Type
Definition (DTD). The DTD is a fairly simple and straightforward way to define the data structure of
the XML data. The main disadvantage of a DTD with regard to XML Schemas is the lack of flexibility
and functionality. With the development of the XML Schemas a new approach has been taken and
many shortcomings in the design of the DTD have been removed. The support for data types is the
primary strength of the XML Schema. It has also been made easier to define the format and restrictions
on data, in addition to the possibility to validate the correctness of the data. Despite of the readability
of a DTD, which is better than for XML Schemas, the choice has been made for this project to use
XML Schemas to define the structure of the data.

The best way to show the capabilities of the method of XML Schemas is to give a real example.
Therefore, the following schema has been made to describe the XML code about the classification of
books from the previous section:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- definition of simple type elements -->
<xs:element name="title" type="xs:string"/>
<xs:element name="author" type="xs:string"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="friend-of" type="xs:string"/>
<xs:element name="birth-town" type="xs:string"/>
<xs:element name="trade" type="xs:string"/>

<xs:simpleType name="isbnType">
<xs:restriction base="xs:string">

<xs:pattern value="[0-9]{10}"/>
</xs:restriction>

</xs:simpleType>

<!-- definition of complex type elements -->
<xs:element name="character">

<xs:complexType>
<xs:sequence>

<xs:element ref="name"/>
<xs:element ref="friend-of" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="birth-town"/>
<xs:element ref="trade"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Automating the Cockpit Chapter 6: Data storage and exchange

Copyright © 2003, Delft University of Technology 35

<xs:element name="book">
<xs:complexType>

<xs:sequence>
<xs:element ref="title"/>
<xs:element ref="author"/>
<xs:element ref="character" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="isbn" type="isbnType" use="required"/>

</xs:complexType>
</xs:element>

</xs:schema>

A few things can be noted when sifting through this code. The whole structure is build up from
elements called “simple type elements”. These elements are data types that hold only (character string)
values and no other element or attribute children. The more complex elements (of type
“complexType”) may have attributes and non-text children (e.g. other complex elements or simple
elements). It is also allowed to reference to earlier declared elements inside another element.

In addition, the values of some elements are constrained by certain attributes. An example of this is the
simpleType element “isbnType”. In this character string, only the characters ‘0’ through ‘9’ are
permitted and it is required to enter ten characters. This way, data can always be tested for validity and
it is possible to verify the stored data structure complies with the standard data structure the user has
designed.

6.2 Use of XML in the application

Now that the concept of XML is explained, the question arises where this knowledge can be used in
the flight bot. There are several occasions where data is gathered and exchanged. The data structures
used in those situations are worked out in the following sections.

6.2.1 Exchanging the flight plan

The data structure of a flight plan has already been defined in section 3.1.1. The next step is to
translate the definition to a correct XML schema. There are many ways to do this. The most common
approach is to define the data structure as a hierarchical tree and create an element for every tree node,
starting at the leaves of the tree. The main reason for starting at the leaves of the tree is that these
elements are so-called simple type elements. By using references to the child elements, the relationship
between the elements is set. The following schema uses this method to create the data structure.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" �

xmlns:fp="urn:flightplan">

<!-- definition of the flight plan (root of the document) -->
<xs:element name="flightplan">

<xs:complexType>
<xs:sequence>
<xs:element name="steerpoint" type="fp:steerpoint" minOccurs="2" �

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<!-- definition of a steer point -->
<xs:complexType name="steerpoint">

<xs:sequence>
<xs:element name="GPSCoordinate" type="fp:GPSCoord"/>

Chapter 6: Data storage and exchange Automating the Cockpit

Copyright © 2003, Delft University of Technology 36

<xs:element name="timeOverSteerPoint" type="xs:string"/>
<xs:element name="task" type="fp:task" maxOccurs="unbounded"/>
<xs:choice id="steerpointType">

<xs:element name="airport" type="fp:airportType"/>
<xs:element name="GPS" type="fp:GPSType"/>

</xs:choice>
</xs:sequence>
<xs:attribute name="phase" type="fp:flightPhaseList" use="required"/>

</xs:complexType>

<!-- define the various types of steer points. Don't forget to mention �

them in the choice section above! -->
<xs:complexType name="airportType">

<xs:sequence>
<xs:element name="runway" type="xs:string"/>
<xs:element name="runwayMagnHeading" type="fp:heading"/>
<xs:element name="runwayMagnVar" type="xs:float"/>
<xs:element name="runwayElevation" type="xs:float"/>
<xs:element name="GPSRunway" type="fp:GPSCoord"/>

</xs:sequence>
<xs:attribute name="shortname" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="GPSType">

<xs:sequence>
<xs:element name="airspeed" type="xs:positiveInteger"/>
<xs:element name="heading" type="fp:heading"/>
<xs:element name="altitude" type="xs:float"/>

</xs:sequence>
</xs:complexType>

<!-- definition of the phase list for each type of steerpoint -->
<xs:simpleType name="flightPhaseList">

<xs:restriction base="xs:string">
<xs:enumeration value="takeoff"/>
<xs:enumeration value="cruise"/>
<xs:enumeration value="land"/>

</xs:restriction>
</xs:simpleType>

<!-- define restrictions of task regarding phase and steer point type in �

fsdb.xml -->
<xs:simpleType name="task">

<xs:restriction base="xs:string">
<xs:enumeration value="takeoff"/>
<xs:enumeration value="cruise"/>
<xs:enumeration value="approach"/>
<xs:enumeration value="land"/>

</xs:restriction>
</xs:simpleType>

<!-- define a GPS coordinate -->
<xs:complexType name="GPSCoord">

<xs:sequence>
<xs:element name="longitude" type="fp:longitude"/>

<xs:element name="latitude" type="fp:latitude"/>
</xs:sequence>
</xs:complexType>

<!-- define other simple type elements -->
<xs:simpleType name="longitude">

<xs:restriction base="xs:float">
<xs:minInclusive value="-180.0"/>
<xs:maxInclusive value="180.0"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="latitude">

<xs:restriction base="xs:float">

Automating the Cockpit Chapter 6: Data storage and exchange

Copyright © 2003, Delft University of Technology 37

<xs:minInclusive value="-90.0"/>
<xs:maxInclusive value="90.0"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="heading">

<xs:restriction base="xs:float">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="360"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

6.2.2 Composing a flight script

The data structure of the flight script is somewhat harder to define because of the complexity of the
flight procedures and the associated parameters. The common manner in which a flight script is
constructed is explained in section 3.3. In addition, the next section defines in meta-language the
structure of a general flight script to make clear from what pieces it is composed.

<?xml version="1.0" encoding="UTF-8"?>
<flightscript>
<phase name="takeoff|cruise|land|...">

<task name="takeoff|cruise|..." steerpoint="n">
<procedure name="takeoff|..." sequence="t">

<parameter a/>
<parameter b/>
<GPSRunway>

<longitude>52.1271667</longitude>
<latitude>5.2911667</latitude>

</GPSRunway>
<runwayHeading>274</runwayHeading>
<runwayElevation>21.7</runwayElevation>

</procedure>
</task>
<task name="takeoff|cruise|..." steerpoint="n+1">

<procedure name="approach|..." sequence="t">
<parameter x/>

</procedure>
<procedure name="land|..." sequence="t+1">

<parameter y/>
</procedure>
...

</task>
...

</phase>
...

</flightscript>

The following figure is extracted from the example above. It depicts the relations between the various
objects of which the flight script consists. A flight script contains (flight) phases. These phases contain
tasks to be executed in a chronological sequence. The tasks are built up from (flight) procedures,
which contain certain parameters to specify the way a procedure should be executed.

Flight script Flight phase Task

Flight procedure Parameter

1 n 1

1

1

n

n
n

Figure 26 Relations inside the flight script

Chapter 6: Data storage and exchange Automating the Cockpit

Copyright © 2003, Delft University of Technology 38

Automating the Cockpit Chapter 7: Project results

Copyright © 2003, Delft University of Technology 39

Chapter 7 Project results

During the period set for this project, much has happened and much has been developed. This chapter
discusses the final application and other project results and how they correspond to the goals set for the
project.

7.1 The cognitive model and the system for decision making

The main project goal was the design of “a cognitive model of a pilot, which can be used to analyse the
flight plan and generate a basic flight script”. This model has been discussed extensively in Chapter 2
and Chapter 4 of this report. In addition, it was required to design “a system that can execute the flight
script and perceives and evaluates certain situations during flight and reasons which actions should be
executed from a generated list of possible solutions for a specific situation”. Chapter 3 and Chapter 4
discuss the system designed for this purpose. In Chapter 5, the design is made more practical by
presenting the application design. This way the models and methods become more applicable to the
programmer.

7.2 The application

The project has a third goal set to implement “these models in an application, which can acquire,
analyse and execute a flight plan”. The part of the application, which can acquire and analyse the flight
plan, is called the Flight Planner application, while the part that executes the flight plan has been
named flight bot. During the implementation of the application, many ideas came up and where
worked out alongside the main goal.

7.2.1 Acquiring the flight plan

First of all, a way had to be devised to acquire the flight plan from the supervisor. After doing a
brainstorm with the persons related to the project, it became apparent the flight plan had to be entered
visually, i.e. by a point-and-click method on a displayed map. As the screenshot in Figure 27 shows,
this has been implemented using maps from AeroPlanner [AER03]. It is possible to open multiple
maps at once, while the correct flight path is drawn on every map.

When the supervisor wants to add a steer point to the flight plan, he or she double-clicks on the map at
the exact place the steer point is located. After that, a dialog box pops up asking the supervisor for
more details about the steer point. The first dialog box determines the general parameters for the steer
point, as is depicted in Figure 28. The longitude and latitude coordinate of the steer point is determined
by the point the user has clicked on the map.

The dialog box is used to enter information about the GPS coordinate and the type (i.e. airport or GPS
coordinate) of the current steer point. Additionally the Time Over Steer point (TOS) is entered. It is not
imperative to enter a TOS at this time. If it is not entered, the flight bot will ignore the TOS during
flight. Finally, the dialog box asks to enter the phase of the flight at the current steer point.

Two types of steer points are implemented. When the steer point is meant as a point from which the
flight bot should take off or land, the type should be “airport”. All other steer points are of type “GPS
coordinate”. This type has a longitude and latitude coordinate at which point a task should be executed.

Chapter 7: Project results Automating the Cockpit

Copyright © 2003, Delft University of Technology 40

Figure 27 FlightPlanner uses maps to acquire the flight plan from supervisor

It is also important to select the correct flight phase from the first dialog box, because the task that
should be executed at the current steer point depends on the flight phase. For example, the flight bot
can only execute the task “land” during the “land” phase of the flight. If the “take off” phase is
selected, the “land” task is not available for the supervisor to select.

After clicking on the “Next” button, the supervisor is asked to enter additional information about the
steer point. The layout of the second dialog box depends on the type of the steer point and the flight
phase, which the supervisor has entered in the first dialog box.

Figure 28 The dialog box for entering a steer point

When the type is “airport”, the second dialog resembles Figure 29. Here, the application looks up the
nearest airport in an airport database and populates the dialog box with the information about the
airport (runways and ICAO name). Additionally, all airports within 10 degrees longitude and latitude
are added to the airport combo box. Now, the supervisor can select quickly the intended airport and
runway.

Automating the Cockpit Chapter 7: Project results

Copyright © 2003, Delft University of Technology 41

Figure 29 Airport specific dialog box

The other type of steer point that is implemented is the “GPS coordinate”. Usually, a flight plan
consists of more than only a point from which to take off and an airport to land at. The supervisor can
specify the route to fly with GPS coordinates. The way to do this is showed in Figure 30.

Figure 30 GPS coordinate specific dialog box

With this point-and-click method it is easy for the supervisor to enter a flight plan. An example of an
entered flight plan is displayed in Figure 27. The flight bot takes off from airport Soesterberg. It will
gain altitude and begin cruising to the GPS coordinate defined in the second steer point. When the
second steer point is reached, the bot turns about 90 degrees to the right to get on course to Schiphol.
Finally, the bot will align with the designated runway and land at Schiphol airport.

7.2.2 Analysing the flight plan

With the flight plan entered, the supervisor must first initiate the consistency check by clicking the
“Check Consistency” button. The other buttons (“Generate Flight Script” and “Execute Flight Script”)
are still disabled while the flight plan has not been verified. After the verification has proven the flight
plan to be correct, the button “Generate Flight Script” will become enabled.

Clicking on the “Check Consistency” button will pop up a new dialog box with messages about the
verification process. Here, the supervisor can see what is wrong with the flight plan if it is not
approved by the application. If the flight plan is approved, the supervisor will be notified and the
dialog box can be closed.

Chapter 7: Project results Automating the Cockpit

Copyright © 2003, Delft University of Technology 42

At this time, the consistency check module has not yet been implemented, as is stated in section 5.2.2.
The current implementation will always assume the flight plan is correct and hence will always
approve the flight plan. This module is left over for future projects to implement.

7.2.3 Execute a flight plan

With the flight plan approved, the way is paved for the flight bot to begin the journey through the
skies. Only one thing must be done before flight execution. Although the flight bot can be build in a
way it understands the flight plan as it resides in memory, it is easier for the bot to read a list of tasks,
which is chronologically ordered. Therefore a flight script must be generated. The supervisor can do
this by clicking the “Generate Flight Script” button.

The dialog box used by the Flight Script Generator has the same appearance as the one used by the
Consistency Check module. Figure 31 gives an example of this dialog box.

Figure 31 Dialog box of the Flight Script Generator

After the flight script has been constructed, the flight bot has to be initiated to execute the tasks. The
supervisor does this by clicking the “Execute Flight Script” button. At this point, the application
assumes Microsoft Flight Simulator 2002 is already running and the airplane is positioned at the
location mentioned in the first steer point.

At the beginning, the flight bot will try to make a connection to Flight Simulator by using the FSUIPC
module created by Peter Dowson [Dow03]. This module enables external applications to exchange
data with Microsoft Flight Simulator by means of a method called Inter-Process Communication. This
enables processes (or applications) that reside concurrently in memory to communicate. It is required
that the FSUIPC module is installed in advance. The flight bot tries to connect to the FSUIPC module.
If this fails, a warning is displayed resembling Figure 32. After closing this message box, the
application returns to the main window, which gives the supervisor time to start Flight Simulator 2002
and retry the initiation of the flight bot. When the connection is successfully opened, the flight bot will
begin executing the flight script task by task.

Automating the Cockpit Chapter 7: Project results

Copyright © 2003, Delft University of Technology 43

Figure 32 Warning generated when FSUIPC is not installed or FS2002 is not running

7.2.4 Extensibility of the application architecture

Another condition of this project is to construct an application architecture, which supports future
extensions to the project. To accomplish this goal, the application has been set up in multiple modules.
Every module that is compiled generates a separate piece of the application. These pieces are called
dynamic link libraries, or simply DLLs. The main application (the FlightPlanner) calls the various
modules when the supervisor initiates those commands by clicking on a button. One advantage of this
approach is the fact that when one module is updated, it is not necessary to recompile the complete
application. Only compiling the module suffices. In addition, it gives clarity about the architecture of
the total application.

Chapter 7: Project results Automating the Cockpit

Copyright © 2003, Delft University of Technology 44

Automating the Cockpit Chapter 8: Conclusions and recommendations

Copyright © 2003, Delft University of Technology 45

Chapter 8 Conclusions and recommendations

Now that first prototype of the flight bot has been implemented, a number of conclusions can be drawn
from the course of the project and the results. This will be done in the first section of this chapter.
Additionally, in the next section recommendations are given about possible extensions to be
implemented in future projects.

8.1 What has been accomplished

Coming at the end of the project, it is a good time to look back and see what has been finished of the
goals and sub-goals set for this graduation project.

8.1.1 Research and design

In the course of this project we have done research to model a flight bot that resembles a human pilot
in behaviour. We have set up a number of rules and limitations the flight bot should keep while
executing a flight plan to mimic the limitations human pilots have while flying. In addition, the flight
procedures and tasks for the flight bot to fly an airplane have been described in an XML knowledge
base.

8.1.2 The first prototype

Furthermore, we have implemented a first prototype of the flight bot. This application currently has
three tiers. The Flight Planner acquires the flight plan from the supervisor by giving the supervisor the
ability to visually enter the flight plan.
The second tier analyses the flight plan
and converts it to a list of tasks and flight
procedures in a language the flight bot
can easily understand. The third part of
the application executes the flight script
in Microsoft Flight Simulator 2002.

8.1.3 Please fasten your seat belts:
we are taking off!

The basic aviation procedures and tasks
are implemented in the flight bot.
Currently the implementation of the flight
bot does not incorporate any artificial
intelligence yet. It is still based on
procedures and (constant) parameters. This means it cannot react to the surroundings yet. Any
unexpected and possibly harmful event (i.e. a collision course with another aircraft, a high cliff or just
very bad weather) will result in a fatal crash of the airplane. It is for future projects to implement the
avoidance or handling of such situations.

Figure 33 A Skyhawk waiting for take off at an airport

Chapter 8: Conclusions and recommendations Automating the Cockpit

Copyright © 2003, Delft University of Technology 46

8.1.4 Further remarks

When looking back on the project, it appears this project has been mainly focussed on the preparations
for the implementation of an intelligent flight bot. With the first prototype all requirements are met to
start flying for the flight bot. At the start of this project it was not yet known how time consuming the
implementation of an intelligent bot is. This project is estimated to last a few more years, before a
really intelligent bot is build. However, it was a satisfying experience and much fun to be working on
this project. We want to encourage any person who wants to spend time on this project to extend the
application and enhance the intelligence of the flight bot.

8.2 Recommendations for future projects

Because the application is just a first prototype, there is much to improve yet to extend the flight bot
application. From the programmer’s point of view a number of items are still not yet implemented.
This refers to the flight plan consistency checker and the co pilot module. The final tier of the
application, the part in which the supervisor can compare the entered flight plan and the actual flight, is
also not yet implemented. Another module should be built to log the current flight. It is advisable to
use the Flight Recorder inside Microsoft Flight Simulator 2002 to do this to reduce the time spent on
such a module.

The flight planner can also be extended on a number of points. For example, the flight path is now
drawn directly from one steer point to the next. It would be interesting and useful to implement a
module that calculates the flight path and avoids certain zones in which flying is prohibited. In
addition, this new module could take the weather forecast into account while planning the flight.

Furthermore, the flight script generator is not yet as flexible as it is supposed to be. It is imaginable to
add artificial intelligence also to this module to make presumptions about certain parameters that are
not clearly defined in the flight plan.

Much work has to be done in the flight bot itself. Currently the flight bot is only following the flight
script without using any artificial intelligence. To mimic human behaviour, a certain level of
intelligence has to be built into the flight bot and the co pilot module. Another problem arises in
mountainous terrain. When a cliff looms up directly in front of the aircraft, it will crash into the
mountain wall because the flight bot does not yet look out the window of the cockpit. In addition,
many more tasks and flight procedures could be added to the knowledge base to enhance the flying
capabilities of the flight bot.

Finally, it would be interesting to combine this project with other subprojects of the ICE environment
to see the outcome. For instance, the situation awareness project can be started alongside the flight bot
to compare whether the results of both projects are consistent and similar. Another fascinating situation
would be the combination of multiple flight bots flying in one environment. Microsoft Flight Simulator
2002 supports multiple users to log on to one instance of Flight Simulator. This way, for instance, the
training of a human pilot becomes more realistic to the pilot.

Automating the Cockpit Appendix A: Preliminary research

Copyright © 2003, Delft University of Technology 47

Appendix A Preliminary research

A study was done in the interest of the project to determine which software could be used best to
accomplish the goal of building an autonomous flight bot. The primary source for the comparison of
the available software was the documentation and resources for developers who want to add new
features to the various available simulators. Most of the documentation was found on the Internet.

A.1 Available simulators

For the ICE project there are currently a number of simulators in use for research and development
purposes. These simulators come in three flavours:

• Microsoft Flight Simulator 2002 Professional Edition
• Flightgear 0.9.1
• Microprose Falcon 4.0

The last one, however, is not an option for this particular project because of the lack of extensibility.
Falcon 4.0 is an extremely realistic F-16 combat simulator, but it does not have the possibility to add
or customize features to the simulator in any way. Therefore only two options are still available for use
in this project.

A.2 Comparison

The most important advantages and disadvantages of the two main candidates for use are shown in the
table below.

 MS Flight Simulator 2002 Pro Flight Gear 0.9.1
Advantages: • Simulator is relatively stable and

already has been through several
extensive implementation cycles

• Well-documented Software
Development Kit (SDK)

• Flight Instructor mode for easy in-flight
adjustments

• Many plugins, extra aircrafts, etc.
available for download on the internet

• Freely available and customisable
source code (open source)

• All implemented models
(environment, aircraft, etc.) can be
checked and customized for realism

• Available for multiple platforms
(Linux, Windows)

• Developers are supported by mailing
lists, forums, etc.

Disadvantages: • Less ‘enthusiastic’ support. (Microsoft
does not officially support the SDK,
although support is always available in
the community of the developers.)

• Not available as open source software
• Only supported by MS Windows 2000,

XP or 98. External plugins can always
be implemented platform
independently, presuming the platform
supports sockets.

• Not as stable on all platforms
• Still in the beginning of the

implementation cycle, thus it is not
as advanced in many areas, e.g.
simulation of the environment,
aircraft dynamics, multiplayer
options, etc.

Appendix A: Preliminary research Automating the Cockpit

Copyright © 2003, Delft University of Technology 48

A.3 Recommendation

After considering the arguments mentioned in the comparison of the two simulators, the best choice is
to use Microsoft Flight Simulator 2002 Professional Edition. The main reasons for this decision are
listed below.

• Quality considerations: the main advantage of Flightgear is the availability by open source
standards. Every nook and cranny in the simulator can be checked for realism and can in
case of an unrealistic situation, be adjusted to make the simulator even better. This cannot
be done in Flight Simulator 2002, because the source is not freely available. However,
because of the age of Flight Simulator, compared to Flightgear, the developers at
Microsoft have had more time (and resources) to develop and improve Flight Simulator
2002.

• Developer support considerations: the main disadvantage of Microsoft Flight Simulator
2002 is the lack of support for developers who want to implement new features in Flight
Simulator. However, this is compensated by the community of developers who have
experience with implementing new plugins and extending current functionality in Flight
Simulator.

Automating the Cockpit Appendix B: Aircraft specifications for the Cessna 172SP Skyhawk

Copyright © 2003, Delft University of Technology 49

Appendix B Aircraft specifications for the Cessna 172SP Skyhawk

All estimated performance data are based on airplane weights at 2,550 pounds; standard atmospheric
conditions; level, hard-surface, dry runways; and no wind. They are calculated values derived from
flight tests conducted by The Cessna Aircraft Company under carefully documented conditions and will
vary with individual airplanes and numerous factors affecting flight performance [CES03].

Performance data English Metric
Cruise * 45% power at 10,000 ft
 range
 time

638nm
6.72 hr

(1,182 km)

Cruise * 75% power at 8,500 ft
 range
 time

518nm
4.26 hr

(959 km)

Engine: Textron Lycoming IO-360-L2A
 180 BHP at 2,700 RPM

Landing Performance
 Ground roll
 Total distance over 50 ft obstacle

575 ft
1,335 ft

(175 m)
(407 m)

Power Loading 14.2 lb/hp (6.4 kg/hp)

Propeller: 2-Bladed Fixed Pitch, Diameter 76 in (1.93 m)

Rate of Climb at Sea Level 730 fpm (223 mpm)

Service Ceiling 14,000 ft (4,267 m)

Speed
 Maximum at sea level
 Cruise, 75% power at 8,500 ft

126 kts
124 kts

(233 kph)
(230 kph)

Stall Speed, CAS
 Flaps up, power off
 Flaps down, power off

53 knots
48 knots

(98 kph)
(89 kph)

Takeoff Performance
 Ground roll
 Total distance over 50 ft obstacle

960 ft
1,630 ft

(293 m)
(497 m)

Wing Loading 14.7 lb/sq ft (71.8kg/sqm)

Appendix B: Aircraft specifications for the Cessna 172SP Skyhawk Automating the Cockpit

Copyright © 2003, Delft University of Technology 50

Automating the Cockpit Appendix C: Flight task knowledge base

Copyright © 2003, Delft University of Technology 51

Appendix C Flight task knowledge base

This part describes the basic flight procedures and the advanced tasks used by the flight bot to execute
a flight script in a standard Cessna 172SP Skyhawk. The advanced tasks are composed of basic flight
procedures. The procedures are defined in the next section. The basis of these procedures and tasks has
been taken from the ground school manual Microsoft provides with Flight Simulator 2002 [Mach02].

C.1 Basic flight procedures

When a standard margin is mentioned, a default margin should be defined for the action in question.

• Change attitude
Description: Increase or decrease the bank angle of the aircraft.
Parameters: Goal attitude angle (degrees).
Actions:

1. Read out current attitude and calculate difference with goal attitude angle.
2. If difference is greater than the standard margin then smoothly increase or decrease

the aileron control input value depending on whether the difference is positive or
negative.

3. Read out new attitude angle and calculate difference with goal attitude. Go to point 1
if the difference is greater than the standard margin.

4. Smoothly set aileron control input value to zero.

• Change pitch
Description: Increase or decrease the pitch angle of the aircraft.
Parameters: Goal pitch angle (degrees).
Actions:

1. Read out current pitch and calculate difference with goal pitch angle.
2. If difference is greater than the standard margin then smoothly increase or decrease

the elevator control input depending on whether the difference is positive or negative.
3. Read out new pitch angle and calculate difference with goal pitch angle. Go to point 1

if the difference is greater than the standard margin.

• Change power settings
Description: Increase or decrease the throttle of the aircraft.
Parameters: Goal throttle setting (percentage||speed in knots).
Actions:

1. Read out current throttle setting and calculate difference with goal setting.
2. Gently increase or decrease throttle to goal setting.

• Change mixture settings

Description: Set fuel mixture level of the engine.
Parameters: Goal mixture setting (percentage).
Actions:

1. Read out current mixture setting and calculate difference with goal setting.
2. Gently increase or decrease mixture to goal setting.

Appendix C: Flight task knowledge base Automating the Cockpit

Copyright © 2003, Delft University of Technology 52

• Trim
Description: Set trim button to adjust elevator trim tab.
Parameters: Up trim or down trim (up||down).
Actions:

1. Increase trim level by one unit if aircraft needs a down trim, decrease trim level by
one unit if aircraft needs an up trim.

• Change flaps

Description: Set flaps indicator to adjust flaps position.
Parameters: Extend or retract flaps (up||down).
Actions:

1. Increase flaps postition by one unit if flaps need to be lowered (extended), decrease
flaps level by one unit if flaps need to be raised (retracted).

• Change rudder to keep inclinometer in the central position

Description: During a turn, the rudder is used to avoid slipping.
Parameters: None.
Actions:

1. Read out inclinometer and calculate the difference to the normal position.
2. If difference is greater than the standard margin, smoothly increase the pressure on the

left rudder pedal if the plane makes a left turn; smoothly increase the pressure on the
right rudder pedal if the plane makes a right turn.

3. Read out new inclinometer value and calculate difference with the normal position.
Go to point 1 if the difference is greater than the standard margin.

• Change rudder during take-off to keep aligned with runway

Description: During take-off, the rudder is used to keep the aircraft on the runway using the
centreline of the runway as a guide.
Parameters: None.
Actions:

1. Calculate deviation from centreline of the runway.
2. If difference is greater than the standard margin, smoothly increase the pressure on the

left rudder pedal if the plane deviates to the right; smoothly increase the pressure on
the right rudder pedal if the plane deviates to the left.

3. Calculate new deviation. If difference is greater than the standard margin, go to point
1.

• Set switch or knob of particular instruments

Description: This procedure sets one of the many other switches and knobs of the instrument
panel that have not yet been described in other flight procedures.
Parameters: Button or knob identification (number) and intended value (number).
Action:

1. Set knob or button to the intended value.

Automating the Cockpit Appendix C: Flight task knowledge base

Copyright © 2003, Delft University of Technology 53

C.2 Advanced tasks

• Take-off
Description: The aircraft starts at a runway of an airport. It will make speed and take off at a
certain velocity. Then the plane gains altitude until cruise altitude (or a predefined altitude) has
been reached.
Preconditions:

o The aircraft is positioned at the start of a runway.
o All pre-take off checklists are done.
o The throttle is set to zero and the plane is ready for take off.

Postconditions:
o The aircraft is airborne and has reached the correct altitude.
o Throttle is greater than the idle state.
o Ground speed is greater than zero.

Actions:
1. Release any brakes (use Set a particular instrument’s switch or knob).
2. Change mixture settings to 100%.
3. Change power settings to 100%.
4. Change rudder during take-off to keep aligned with runway.
5. Read out Indicated Airspeed indicator. If IAS is smaller than 55 knots, go to point 4.
6. Change rudder to keep inclinometer in the central position.
7. Change pitch to +11 degrees.
8. Read out altimeter. If altitude is smaller than 500 feet, go to point 8.
9. Change power settings to 85 knots.
10. Read out altimeter. If altitude is smaller than defined altitude, go to point 10.
11. Change pitch to 0 degrees.

• Fly level

Description: Gets the plane flying without gaining or losing altitude.
Preconditions:

o The aircraft is airborne.
Postconditions:

o The aircraft flies level.
Parameters:

o None.
Actions:

1. Read out altimeter, Vertical Speed Indicator and attitude indicator.
2. If VSI is greater than zero, change pitch to –3 degrees.

If VSI is smaller than zero, change pitch to +3 degrees.
3. Read out Vertical Speed Indicator. If VSI is still diverging from zero, increase pitch

with another (+/-)3 degrees. Go to step 3.
4. Read out value of elevator control unit. If value is greater or smaller than zero,

decrease value one unit towards zero.
5. Read out Vertical Speed Indicator. If VSI is still converging to zero go to point 5.
6. Read out value of elevator control unit. If value is greater than zero, trim down. If

value is smaller than zero, trim up. If value is not zero, go to point 5.

Appendix C: Flight task knowledge base Automating the Cockpit

Copyright © 2003, Delft University of Technology 54

• Fly straight
Description: Gets the plane flying without turning left or right.
Preconditions:

o The aircraft is airborne.
Postconditions:

o The aircraft flies in a straight line.
Parameters:

o None.
Actions:

1. Change attitude to zero.

• Turn
Description: Makes a turn to a specific heading.
Preconditions:

o The aircraft is airborne.
Postconditions:

o The aircraft flies in a straight line at the specified heading.
Parameters:

o Target heading (degrees)
o Steep turn (true || false)

Actions:
1. Read out attitude indicator and heading indicator.
2. Calculate difference to the specified target heading. If difference is positive, increase

aileron control input value smoothly. Decrease aileron control input value smoothly if
difference is negative.

3. Change attitude to +20 degrees (in case of steep turn: +50 degrees) if difference is
positive. Change attitude to –20 degrees (in case of steep turn: -50 degrees) if
difference is negative.

4. Change rudder to keep inclinometer in the central position.
5. Read out attitude indicator and heading indicator.
6. Calculate difference to the specified target heading. If difference is greater than

default margin, go to step 4.
7. Change attitude to zero degrees.
8. Change rudder to keep inclinometer in the central position.

• Climb (or descent)

Description: Gets the plane flying at the specified altitude.
Preconditions:

o The aircraft is airborne.
Postconditions:

o The aircraft flies level at the specified altitude.
Parameters:

o Target altitude (meter).
Actions:

1. Read out altimeter, Vertical Speed Indicator and attitude indicator.
2. Change power settings: increase if plane should climb, decrease if plane should

descent.
3. Read out altimeter, Vertical Speed Indicator and attitude indicator. If VSI is smaller

than 75 knots during climb, go to step 2. If VSI is greater than –75 knots during
descent, go to step 2.

4. If difference between current altitude and goal altitude is greater than the standard
margin, go to step 4.

Automating the Cockpit Appendix C: Flight task knowledge base

Copyright © 2003, Delft University of Technology 55

5. If VSI is greater than zero, change pitch to –3 degrees.
If VSI is smaller than zero, change pitch to +3 degrees.

6. Read out Vertical Speed Indicator. If VSI is still diverging form zero, increase pitch
with another (+/-)3 degrees. Go to step 3.

7. Read out Vertical Speed Indicator. If VSI is greater than the standard margin, go to
point 4.

8. Read out value of elevator control unit. If value is greater or smaller than zero,
decrease value one unit towards zero.

9. Read out Vertical Speed Indicator. If VSI is still converging to zero go to point 5.
10. Read out value of elevator control unit. If value is greater than zero, trim down. If

value is smaller than zero, trim up. If value is not zero, go to point 5.

• Approach runway
Description: Gets the plane aligned with the runway.
Preconditions:

o The aircraft is airborne.
o The aircraft is within range of the specified airport.

Postconditions:
o The aircraft flies aligned with the specified runway.

Parameters:
o Target airport and runway. (ICAO name of the airport, GPS coordinates of start and

end of runway)
Actions:

1. Calculate the heading of the runway with the start and end GPS coordinates.
2. Turn to the calculated runway heading.
3. Read out the current position of the aircraft. (GPS coordinates)
4. Calculate the offset from the airplane perpendicular to the line intersecting the start

and the end of the runway.
5. If the offset is positive, turn +90 degrees. If the offset is negative, turn –90 degrees.
6. Calculate the offset to the line intersecting the start and the end of the runway. Until

the offset is within the default margin, go to step 5.
7. Turn to the calculated runway heading.

Appendix C: Flight task knowledge base Automating the Cockpit

Copyright © 2003, Delft University of Technology 56

• Land
Description: Gets the plane on the ground at the specified runway and stops the airplane.
Preconditions:

o The aircraft is airborne.
o The aircraft is within range of the specified airport.
o The aircraft is aligned with the specified runway.

Postconditions:
o The aircraft has landed on the specified runway and stands idle.

Parameters:
o Target airport and runway. (ICAO name of the airport, GPS coordinates of start and

end of runway)
Actions:

1. Read out the current position of the aircraft (GPS coordinates and ground altitude).
2. Calculate the descent rate for the aircraft at which the start GPS coordinates of the

runway is reached with the current position.
3. Change pitch to –14 degrees.
4. Read out Vertical Speed Indicator. If VSI is greater than the calculated descent rate,

change power settings to a lower value. If VSI is lower than the calculated descent
rate, change power settings to a higher value.

5. Read out altimeter and Indicated Airspeed. If IAS is greater than 65 knots, change
pitch to a higher value. If IAS is lower than 65 knots, change pitch to a lower value.

6. If altitude is greater than 20 feet, go to step 4.
7. Change pitch to +10 degrees.
8. Read out altimeter. If altitude is greater than zero, go to step 8.
9. Change pitch to 0 degrees.
10. Use brakes and read out Indicated Airspeed. If IAS is greater than 0, go to step 10.
11. Set parking brakes.

Automating the Cockpit Appendix D: Bibliography

Copyright © 2003, Delft University of Technology 57

Appendix D Bibliography

D.1 Literature

[Ber00] Berndt, J.S. (2000) JSBSIM: A configurable flight dynamics model

http://jsbsim.sourceforge.net/JSBSim.PDF

[KBD97] Kallus, K.W., Barbarino, M., Damme, D. Van (1997) Model of the Cognitive Aspects of
Air Traffic Control, EUROCONTROL, http://www.eurocontrol.int/humanfactors/docs/HF7-
HUM.ET1.ST01.1000-REP-02.pdf

[Mach02] Machado, R. (2002) Rod Machado’s Ground School, Microsoft (bundled with Microsoft
Flight Simulator 2002)

[Mou03] Mouthaan, Q.M. (2003) Flying an F16: A knowledge base describing the situations an
F16 pilot may encounter, Technical Report DKS03-03 / ICE 03, Data and Knowledge
Systems group, Faculty of Information Technology and Systems, Delft University of
Technology, http://www.kbs.twi.tudelft.nl/Publications/Report/2003-Mouthaan-DKS03-03.html

[PoSt99] Pooley, R.J., Stevens, P. (1999) Using UML: software engineering with objects and
components, Addison Wesley Longman Ltd, England

[Ras86] Rasmussen, J. (1986) Information processing and human-machine interaction: An
approach to cognitive engineering, North-Holland, New York (NY), USA

[SaAm00] Sarter, N.B., Amalberti, R. (2000) Cognitive engineering in the aviation domain,
Lawrence Erlbaum Associates, Inc., New Jersey, USA

[SRK97] Seamster, T.L., Redding, R.E., Kaempf, G.L. (1997) Applied cognitive task analysis in
aviation, Ashgate Publishing Ltd, England

[WiNa88] Wiener, E.L., Nagel, D.C. (1988) Human factors in aviation,
Academic Press, San Diego, USA

D.2 Websites

[AER03] Imaps (2003) AeroPlanner.com

http://www.aeroplanner.com

[CES03] Cessna Aircraft Company (2003) Cessna SkyhawkSP. Specification and description
http://skyhawksp.cessna.com/spec_perf.chtml

[Dow03] Dowson, P. (2003) Creator of the FSUIPC module.
http://www.schiratti.com/dowson.html

[FAA03] Federal Aviation Administration (FAA) (2003) Flight services 7110.10P,

http://jsbsim.sourceforge.net/JSBSim.PDF
http://www.aeroplanner.com/
http://skyhawksp.cessna.com/spec_perf.chtml
http://www.schiratti.com/dowson.html

Appendix D: Bibliography Automating the Cockpit

Copyright © 2003, Delft University of Technology 58

http://www2.faa.gov/atpubs/FSS/INDEX.HTM

[Mack02] Mackie, R. (2002) Microsoft Flight Simulator and Microprose Falcon 4.0 resources
http://website.lineone.net/~rmackie/flightsim.htm

[MSFS03] Microsoft Flight Simulator 2002 Homepage (2003)
http://www.microsoft.com/games/fs2002/

[Mur98] Murr, D.L. (1998) Flightgear Flight Simulator project design proposal
http://www.flightgear.org/proposal-3.0.1

[Oli03] Olivares, T. (2003) FlightGear: A Flight Simulator For Linux!
http://www.simflight.com/news5/modules.php?name=News&file=article&sid=2511

[Ols02] Olsen, C.G. (2002) Flightgear Flight Simulator Overview
http://www.flightgear.org/Overview/

[SDD02] Selig, M.S., Deters, R., Dimock, G. (2002) Aircraft Dynamics Models for Use with
FlightGear.
http://www.aae.uiuc.edu/m-selig/apasim/Aircraft-uiuc.html

[W3C03] World Wide Web Consortium homepage (2003)
http://www.w3.org/

[W3S03] W3Schools (2003) W3Schools online web tutorials
http://www.w3schools.com/

[Wil03] Williams, E. (2003) Aviation Formulary V1.37
http://williams.best.vwh.net/avform.htm

http://www2.faa.gov/atpubs/FSS/INDEX.HTM
http://website.lineone.net/~rmackie/flightsim.htm
http://www.microsoft.com/games/fs2002/
http://www.simflight.com/news5/modules.php?name=News&file=article&sid=2511
http://www.flightgear.org/Overview/
http://www.aae.uiuc.edu/m-selig/apasim/Aircraft-uiuc.html
http://www.w3.org/
http://www.w3schools.com/
http://williams.best.vwh.net/avform.htm

	Abstract
	Preface
	Introduction
	Problem setting: Can pilots be automated?
	Automation of the pilot
	Vision on this project
	Research on the decision-making process of a pilot

	Project goal and sub-goals
	Implementation
	Tier one: Setting up a flight plan
	Tier two: Analyse the flight plan and convert it into a flight script
	Tier three: Use artificial intelligence to fly the flight plan
	Tier four: Flight analysis

	Designing a cognitive model
	Aviator abilities
	Common cognitive models
	Information processing
	Levels of behaviour
	Basic aviation knowledge and skills

	Situation assessment
	Pre-flight briefing
	In-flight

	The decision making process
	Situation recognition and situation awareness
	Risk assessment

	Conclusion

	Analysing the flight plan
	Flight plan requirements
	Content requirements
	Constraints

	Flight procedures
	Basic commands
	Flight procedures

	Generation of the flight script
	Substitution algorithm
	Example of a flight script

	Designing the flight bot
	Layered approach
	Expert system and procedures
	Flight plan analysis and situation assessment
	Near-future prediction and planning adjustment

	Human limitations for the flight bot

	Application design and implementation
	Unified Modelling Language
	Application architecture
	Flight planner GUI
	Enter flight plan
	Check flight plan consistency
	Generate flight script

	Flight plan consistency checker
	Flight script generator
	Flight bot and co pilot

	Data storage and exchange
	Extensible Markup Language
	Basics of storing data in XML
	Document Type Definitions and XML Schemas

	Use of XML in the application
	Exchanging the flight plan
	Composing a flight script

	Project results
	The cognitive model and the system for decision making
	The application
	Acquiring the flight plan
	Analysing the flight plan
	Execute a flight plan
	Extensibility of the application architecture

	Conclusions and recommendations
	What has been accomplished
	Research and design
	The first prototype
	Please fasten your seat belts: we are taking off!
	Further remarks

	Recommendations for future projects

	Preliminary research
	Available simulators
	Comparison
	Recommendation

	Aircraft specifications for the Cessna 172SP Skyhawk
	Flight task knowledge base
	Basic flight procedures
	Advanced tasks

	Bibliography
	Literature
	Websites

