
Automated bookmark management

Vojtěch Knězu

May 2002

Technical report
TR-DKS-02-02

Data and Knowledge Systems group
Department of Mediamatics

Faculty of Information Technology and Systems

Abstract

In this report, we address the issue of automatization of bookmark management by
means of information retrieval and machine learning techniques. We have designed a
system that categorizes bookmarks in an automated way and thus facilitates adaptively
their management. Organization of bookmarks is based on hierarchical categories,
which are mapped to the structure of the Open Directory Project. The user’s hierarchy
is built dynamically according to additions and removals of bookmarks. Furthermore,
the system is designed to recommend related Web pages to the recent bookmarks. This
service is based on similarities observed during the categorization process. The de-
signed system has been fully implemented and named CaterBook.

Acknowledgments

I would like to take this opportunity to express my thanks to the people at the Knowl-
edge Based Systems Group at the Faculty of Information Technology and Systems at
the Delft University of Technology. They have helped me in many ways and created
a friendly atmosphere for the elaboration of my thesis. My gratitude belongs to the
Nuffic organization, which financially supported my study stay in the Netherlands. Ac-
knowledgments also go to the members of my home Department of Mathematics at the
Faculty of Nuclear Sciences and Physical Engineering at Czech Technical University
in Prague for their advices and support.

Special thanks belong to dr. drs. Leon Rothkrantz, who supervised my work and
inspired me a lot, not only as a teacher but also as a great person with a big heart.

Last but not least, I would like to thank my parents and the whole family for their
continuous support and love.

Contents

1 Introduction 9
1.1 Problem definition . 9
1.2 Goals . 9
1.3 Related Work . 10

I Theoretical background 11

2 Organizing electronic documents 13
2.1 Classification . 13
2.2 Clustering . 14

3 Automated text categorization 15
3.1 History . 15
3.2 Task of ATC . 15
3.3 Vector space model . 16

3.3.1 Document indexing . 16
3.3.2 Term weightening . 16
3.3.3 Similarity measures . 17
3.3.4 Data visualization . 17

3.4 Classification methods . 17
3.4.1 Training and testing data . 18
3.4.2 Centroid-based document classification 18
3.4.3 Megadocument classification 18

4 Searching and organizing on the Web 20
4.1 Semantics and ontology . 20
4.2 Web directories . 20

4.2.1 Open directory project . 21
4.3 Google . 21

II Design 23

5 System overview 25

3

6 Bookmark management 29
6.1 Tree navigation . 29
6.2 Algorithms for the bookmark manipulation 30
6.3 Integration with a browser . 30
6.4 Recommendation service . 33

7 Categorization model 35
7.1 Consideration of different approaches 35
7.2 Web document indexing . 36

7.2.1 HTML parsing . 36
7.2.2 Tokenisation . 38
7.2.3 Stop word deletion . 38
7.2.4 Stemming . 38

7.3 Classification . 39
7.3.1 Training data and pre-classification 39
7.3.2 Classifier . 40

III Implementation 42

8 Implementation of the categorization module 44
8.1 Overview . 44
8.2 Classes description . 45

9 Implementation of the bookmark manager 50
9.1 Overview . 50
9.2 Classes description . 50

IV Testing & Evaluation 54

10 Testing Datasets 56

11 Document similarity testing 60
11.1 Similarity visualization by means of Sammon’s mapping 60
11.2 Similarity tests on different categorical levels 60

12 Testing of the categorization effectiveness 69
12.1 Training and test data . 69
12.2 Evaluation method . 69
12.3 Results . 70

13 Testing of the system by users 73

14 Conclusions 77
14.1 Future work . 78

A User’s manual to CaterBook 83

B Paper 88

C Enclosed CD-ROM 99

4

List of Figures

3.1 Megadocument generation . 19

4.1 Google interface . 22

5.1 Hierarchy of categorical folders for bookmarks 25
5.2 Use cases of a user’s interaction with the system 26
5.3 System architecture . 27

6.1 Propagation of bookmarks to parent folders. 30
6.2 Algorithm for addition of a recently categorized bookmark 31
6.3 Algorithm for finding the nearest existing folder to a category 31
6.4 Algorithm for addition of a bookmark to parental folders 31
6.5 Algorithm for splitting of a folder 31
6.6 Algorithm for removal of a bookmark from a folder 32
6.7 Recommendation of related Web pages to a bookmark 34

7.1 Activity diagram of a Web document indexing 37
7.2 Example of pre-classification by means of Google 40
7.3 Activity diagram of the classification process 41

8.1 Event trace diagram of the categorization process 46

10.1 Pareto graph of term multiplicities 59

11.1 Sammon’s mapping, dataset no.1 . 61
11.2 Sammon’s mapping, dataset no.5 . 61
11.3 Sammon’s mapping, dataset no.2 . 62
11.4 Sammon’s mapping, dataset no.6 . 62
11.5 Sammon’s mapping, dataset no.3 . 63
11.6 Sammon’s mapping, dataset no.7 . 63
11.7 Sammon’s mapping, dataset no.4 . 64
11.8 Sammon’s mapping, dataset no.8 . 64
11.9 Legend to the Sammon’s mapping figures 65

13.1 Categorization precision evaluated by users 74
13.2 Example of categorization of user’s bookmarks concerning the artifi-

cial intelligence . 75

A.1 Preferences dialog . 85
A.2 Screenshot of CaterBook . 86

5

A.3 Recommendation of related Web pages 87

6

List of Tables

8.1 Java classes of the categorization module 44

9.1 Java classes of the bookmark manager 51

10.1 Testing datasets . 57
10.2 Categories included in the datasets 58

11.1 Similarities on the second ODP level 65
11.2 Similarities on the third ODP level 67
11.3 Similarities on the fourth ODP level 67

12.1 Effectiveness of the classifier . 71

13.1 Results of the user’s testing . 74

7

8

Chapter 1

Introduction

1.1 Problem definition

Users of the World Wide Web often want to keep track of the valuable Web sites they
have visited and where they would like to return. This is usually done by a personal list
of URLs, which is commonly called as bookmarks. Well organized bookmarks facili-
tate a user’s work and constitute his or her personal information space. Unfortunately,
the current Web browsers offer very limited functionality for the bookmark manage-
ment, mainly only manual sorting bookmarks into manually created folders. There is
no surprise that the bookmark management was one of the main problems of work with
the Web reported by users in the recent large survey reported by [Abrams98].

The research of [Kaasten01] outlines several user’s problems with the bookmark
management, mainly the troubles with long alphabetical bookmark lists, which make
desired pages difficult to find. Keeping a list effective for searching requires ideas for
organizing and a constant maintenance, and that is something what people are often
unable or unwilling to do. Considering these problems, some other ways of bookmark
organizing and management should be explored.

1.2 Goals

This thesis wants to address the previously mentioned issues and explore the possibil-
ities for an automated organizing and managing of bookmarks, which would lead to
better adaptability to the user’s needs. The research comprises an examination of new
techniques of information retrieval with respect to the Web and then their application
in a prototype system as a proof of concept. Such a system should serve as a personal
bookmark assistant, which organizes bookmarks in an automated way and thus saves
user’s time for their processing and maintenance. The way of bookmark’s organizing
should be adaptive and incremental, enabling smooth additions of new bookmarks to
the recent structure.

In order to make the system more personal and assistant, it should be able to rec-
ommend to a user other Web hyperlinks, which are similar to the already organized
bookmarks and thus facilitates a user’s searching for interesting Web pages.

The work should accompany several testings, from tests of the automated system
up to a test of the application by users.

9

1.3 Related Work

In the recent years we have been witnessing an expansion of several systems and ap-
proaches for personalization on the World Wide Web. This section briefly summarizes
some of the personal assistants for the bookmark management and recommendation of
Web pages.

WebTagger [Keller97] is a system which allows users to store, retrieve and share
their bookmarks with others. Each authorized member of a group can deposit a book-
mark in an associated group memory. Bookmarks have to be manually categorized
into one or more topical categories and can be rated by users. In addition, the sys-
tem enables a searching for recommendation in the categories, which is based on the
ratings.

Bookmark organizer [Maarek96] provides automatic categorization mechanism that
uses the clustering analysis to organize bookmarks based on their similarity. It com-
bines hierarchical agglomerative clustering (HAC) technique and user interaction to
organize collection of Web documents listed in a bookmark file. The HAC technique
starts with singleton clusters, where each contains one document, and in each step
merges the two most similar clusters, until there is only one top cluster. The clus-
ters are labeled by the most frequent words and a percentage measure of intra-cluster
similarity.

SiteSeer [Rucker97] is a recommendation system that uses bookmarks and their or-
ganization within folders for predicting and recommending other relevant pages. It is a
collaborative system, which measures the degree of overlap of user’s folders with other
people’s folders. The system does not derive any semantic value from the contents of
the URLs.

Syskill & Webert [Pazzani96] is both a personalized recommendation and search
system. It recommends interesting Web pages using explicit feedback from a user. If
a user rates some links on a page, Syskill & Webert can recommend other links on the
page in which he might be interested. In addition, the system can construct a query to
the Lycos search engine and retrieve other interesting pages for a user.

WebMate [Chen98] is another personal assistant for Web browsing. It is based on
a proxy that stores visited Web pages as weighted keyword vectors and clusters them.
These clusters are automatically labeled with the most frequent words and are assumed
to represent one domain of a user’s interest. Then WebMate spiders Web pages with
news articles the user wants to be monitored and creates their personalized presentation
based on the user’s profile.

10

Part I

Theoretical background

11

12

Chapter 2

Organizing electronic
documents

With the increasing number of documents available in electronic document collections,
methods for organizing these collections to allow topic-oriented browsing and orienta-
tion gain importance. However, manual organizing becomes more source demanding
or even infeasible with the large amount. Several research projects have taken up the
task of automated organizing document collections, which mainly followed two main
approaches: clustering (non-supervised learning) and classification (supervised learn-
ing).

This short chapter describes these two main methods in order to sketch the possible
ways for the bookmark organizing. Advantages and disadvantages of these techniques
for our specific problem and a justification of our selected approach for the design and
implementation of our system is described later in section 7.1.

2.1 Classification

In data mining area, we understand classification as a process of finding a model that
describes and distinguishes data classes, for the purpose of being able to use the model
for predicting classes of objects whose class label is unknown. The derived model is
based on the analysis of a set of training data, i.e. objects whose class label is known
and applied to a set of testing data, i.e. object which class we want to predict.

This definition is going be more specific in case of classification of electronic do-
cuments, where each document is assigned a class label from a set of predefined topic
categories, based on a set of examples of preclassified documents. For example, Ya-
hoo!’s taxonomy and its associated Web documents can be used as training and test
sets in order to derive a Web document classification model. This model may then be
used to classify new Web documents by assigning categories from the same taxonomy
[Mladenic98].

Automatic classification is traditionally content-based, i.e. performed by extract-
ing the information for representing a document from the document itself. The re-
search area which studies content-based techniques for organizing documents consid-
ering mainly text is called automated text categorization and in details is discussed in
chapter 3. However, with an explosive growth of documents available on the Web, also
other media than text are considered for the classification, e.g. images, plug-ins etc.

13

Additionally, some complementary approaches to the content-based gain importance,
for example context-based classification of Web documents, which extracts useful in-
formation for classifying a document from the context where a URL referring to it
appears. This approach is discussed and evaluated e.g. in [Chakrabarti98], [Attardi99]
and [Glover02].

2.2 Clustering

Unlike classification, which analyzes class-labeled data objects, clustering analyzes
data objects without consulting a known class label. The class labels are not present
in the training data and clustering can be used to generate such labels. The objects are
clustered based on the principle of maximizing the intra-similarity within a cluster and
minimizing the inter-similarity between clusters. That is, clusters of objects are formed
so that objects within a cluster have high similarity in comparison to one another, but
are very unsimilar to objects in other clusters.

Application of clustering techniques for organizing documents has been primarily
used in information retrieval for improving the effectiveness and efficiency of the re-
trieval process [Rasmussen92]. More recently, clustering techniques are used by many
intelligent software agents in order to retrieve, filter and cluster documents available on
the Web. The similarity between documents is usually measured by using the vector
space model, e.g. by the cosine of angle between two document vectors (for details see
section 3.3). However, other methods than document vector similarity have been used
for clustering, for example neural networks as described in [Bartfai94].

Hierarchical clustering algorithms have been used in document clustering, but the
long computation time of this method was always the problem when using document
clustering on-line. More recently faster algorithms for clustering have been introduced,
namely the method called Suffix Tree Clustering (STC) reported by [Zamir98], which
creates clusters based on phrases shared between documents. Automatic labeling of
document clusters by labels approproate for humans is still a difficult problem usually
solved by using the most frequent or most predictive words, which is rarely satisfactory.

14

Chapter 3

Automated text categorization

A research area which studies techniques for content-based organizing of documents is
called automated text categorization (ATC). It is a discipline concerned with the con-
struction of automatic text classifiers, i.e. programs capable of assigning to a document
one or more among a set of predefined categories. Building these classifiers is done
automatically, by means of a general inductive process that learns the characteristics
of the categories from a set of preclassified documents. ATC lies in a crossroad of
Information Retrieval and Machine Learning and has a number of applications includ-
ing word sense disambiguation [Roth98], Web page classification under hierarchical
Web directories [Mladenic98], ontology learning [Labrou99] or detection of text genre
[Kessler97].

3.1 History

Automated text categorization arose in the early 60s and until the late 80s the main
approach used to the realization of automatic document classifiers consisted in their
manual construction through manually building an expert system capable of taking
categorization decisions. The main shortage of this approach to the construction of
automatic classifiers was the existence of a knowledge acquisition bottleneck, i.e. rules
for the expert system has to be defined manually by a knowledge engineer by help of a
domain expert.

A new approach to the construction of automatic document classifiers based on
machine learning arose in 90s and now become the dominant one. In this approach a
learning process automatically builds a classifier for a category by observing the char-
acteristics of a set of documents that have previously been classified manually under
a category by a domain expert. The machine learning approach for text categorization
heavily relies on the information retrieval basis. The reason is that both information
retrieval and text categorization are content-based document management tasks, and
therefore share many characteristics.

3.2 Task of ATC

Automated text categorization may be defined as the task of assigning a category or
more categories to a given text document. It is achieved by automatic text classifiers,

15

that label documents with categories from a predefined set. Usually, for each cate-
gory an independent classifier has been constructed, which can decide whether a given
document should be classified under the category or not.

More formally, consider a set of documents to be classified
���������
	��
�
��	
�����

,
and a set of categories � �������
	��
����	������ . Text categorization may be defined as a task
of approximation of the unknown function ��� ��� � � ��!"	$#�� by means of a function�&%'� �(� �)� �$!*	$#�� . A value of 1 indicates the decision that a given document
may be classified under a category, a value 0 indicates the opposite decision. In case
of construction of an independent classifier for each category, we can divide the task
of ATC into + independent problems: we are looking for approximation of the total
unknown functions �$,-� � � ��!*	�#�� by means of functions ��%, � � � ��!*	�#�� for all. � #/	��
�
�
	 + [Sebastiani99].

3.3 Vector space model

The most common model used in information retrieval and text-based machine learning
applications for document representation is the vector space model. The procedure
of this model can be divided into three stages: document indexing, weighting of the
indexed terms and ranking documents according the similarity measures. These stages
are used also in the design and implementation of our prototype system, in more details
in chapter 7.

3.3.1 Document indexing

The task of document indexing refers to an automatic processing of text documents
into an internal representation such that it can be interpreted by a classifier. It repre-
sents documents in a space in which each axis corresponds to a term. Indexing of a
document consists in the extraction of content bearing terms. These terms are specified
by a dictionary, which can be manually or automatically defined. The dimensionality
of the space is given by the number of words in the dictionary. The feature terms are
assigned fixed positions in a feature vector and assigning values to these terms projects
the document into a numerical space. Generally, document indexing transforms a do-
cument into a vector 0�1�325476$8 ��	
�
���
	9476$8 ��: , where

476$8 ,�;�< !*	$#�= for
. �3#�	��
����	 + are

the values (weights) of contained terms in the space.

3.3.2 Term weightening

The terms of the feature vector should to be weightened according importance for the
document and thus facilitate the categorization task. Different weightening methods are
used, the simplest binary method assigns 1 noting the presence and 0 noting the absence
of the feature term. Another method called term frequency weightening assigns the
count of occurences of terms within the document.

The well-known and most common method for the term weightening is Term Fre-
quency - Inverse Document Frequency (TFIDF) scheme. It makes explicit the notion
that the feature terms that describe a document can be found among the words that oc-
cur frequently within the document, but infrequently in other documents. The TFIDF
weighting not only gives weight to predictive words, but also minimizes terms that oc-
cur in many documents. The TFIDF weight of the term > in the document

�
is usually

defined as

16

>9� . � � 2 > 	
�*:?� >9� 2 > 	��":A@�BDC
EF2HG� � 2 > : :
where >9� 2 > 	
�*: denotes the number of times > occurs in

�
, G denotes total number

of documents and
� � 2 > : denotes the number of documents in which the term > occurs

at least once [Salton88].

3.3.3 Similarity measures

The vector space model is used mainly as a way to compare documents and queries
to each other. The similarity of two documents I and J with a defined common term
dictionary of size + and representation by their feature vectors 0I �K254ML/8N��	
�
���
	947L/8 �O:
and 0J �P254RQ�8 ��	
���
�
	
4RQ�8 ��: can be measured by several distance measuring methods, the
most used function is the cosine of angle between two feature vectors:

S .UT 2 0I 	 0J :?�HV
WYX$2 0I[Z 0J :[� 0I @ 0J\]\ 0I \^\(\]\ 0J \]\ � _ �,a` � 4bL/8 , 4RQ�8 ,c _ �,d` � 254bL/8 , :fe c _ �,a` � 2547Q�8 , :fe
3.3.4 Data visualization

In order to visualize a similarity between a bigger amounts of documents, a method
which projects a high-dimensional vector space onto a lower-dimensional space is a
necessity. We suggest to use the Sammon’s mapping for this purpose. The algorithm
works in that way it finds the locations in the target space so as much as possible of the
original structure of the vectors in the high-dimensional space is conserved.

More formally, consider 0I ��	 0I e 	��
�
�
	 0Ihg vectors in + -dimensional space, distances��2 0IO, 	 0Iji : between each two vectors according to some metric and a distance matrix
�

with elements
� , 8 i �k��2 0IO, 	 0Iji : . Let 0J/, be the image of 0I�, in the 2-dimensional output

space. With l we denote a matrix containing the distance between images. The goal
is to place the points 0J/, in such a way that the distance matrix l resembles as closely
as possible matrix

�
, i.e. to optimize an error function m by following an iterative

steepest descent process.

m � #
_ g, 8 i�` � � , 8 i

no gp
, 8 i�` �

2D� , 8 i7q C , 8 i : e� , 8 i
rs

We use the Sammon’s mapping for our testing which is described in chapter 11.

3.4 Classification methods

A growing number of classification methods and machine learning techniques have
been applied to the text categorization task in recent years. We should mention prob-
abilistic Naive Bayes classifiers, Rochio’s algorithm, neural networks, decision trees
and decision rules approach, support vector machines classifiers and instance-based
learning methods. We are focused on the last approach, since we decided to use it in
our system (arguments for it are discussed in chapter 7).

Instance-based learning methods do not have an off-line training phase, the train-
ing examples are simply stored and no generalization beyond these examples is done.

17

When a new instance has to be classified, the previously stored examples are exam-
ined in order to induct a classifier for the new instance. For this reason, these methods
are sometimes called “lazy” learning. It includes k-nearest neighbour classification,
locally weighted regression methods, case based reasoning etc. (for a comprehensive
study see [Mitchell97]).

3.4.1 Training and testing data

The induction process of the classifiers requires existence of a set of documents with
known, already assigned categories, often referred as a � C$t�u&v S . It is usually splitted
into two sets, a training set w t/x . +1yz� C$t�u&v S and a test set w|{ S >}yz� C$t�uOv S , w t/x . +'~w|{ S > ��� . The classifier is constructed automatically by training on a set of documents
from w t/x . + . Once a classifier has been built, its effectivness may be tested applying it
to the test set w|{ S > and checking the degree of correspondence between the decisions
of the automatic classifier and those contained in the corpus. This approach is called
the train and test approach [Sebastiani99].

3.4.2 Centroid-based document classification

This method, also known as Rocchio’s centroid algorithm, is based on the vector space
model, it means that documents are represented as vectors in a term space. The main
idea of the classification consists in using category-specific centroid vectors, where for
each category a centroid vector is created as a representative. This is done by counting
an average from all vectors of documents which belong to the same category.

More precisely, given a category � and set of document vectors within the category,��� �k� 0�j��	��
����	 0�Y�h� , the centroid vector 0� is defined as

0�R� #\ ��� \ p�6$���/� 0�
The classification algorithm is rather simple: for each set of documents belonging

to the same category, their centroid vectors are computed. Given � categories in the
training set, this leads to � centroid vectors 0���
	 0� e 	��
����	 0��� , where each 0� , is the centroid
for the

.
th category. The category of a new document vector 0I is determined as follows:

���
�������i�` �98N� �N�N8 � 25V�WYX$2 0I 	 0� i :9:
The computational complexity of the training phase of this centroid classifier is

linear on the number of documents and the number of terms in the training set. The
amount of time required to classify a new document I is at most l 2 � T : , where

T
is

the number of terms present in I . However, this method can suffer from the hetero-
geneity of Web documents (e.g. various length, structuring, mixed media etc.) and
simple averaging over a set of document vectors may not lead to good results (see
[Chakrabarti98]).

3.4.3 Megadocument classification

This very new approach was suggested, described and tested in [Klas00]. It’s a varia-
tion of the centroid-based document classification, but in order to cope with the hetero-
geneity, the megadocument approach is different: for each category all corresponding

18

document texts from the same category are concatenated to a megadocument, which is
then indexed using standard methods (see figure 3.1).

Document2

Document5

Document1

Document3

Document4

Category

text

Document1

Document2

Document3

Document4

Document5

Megadocument

Figure 3.1: Megadocument generation

The classification algorithm is the same as in case of the centroid-based document
classification: to classify a new document, the similarity between the document and all
the megadocuments is calculated and the most similar megadocument determines the
category to be assigned. The computational complexity of both the training phase and
the testing phase is the same as for the centroid-based document classification.

The evaluations described in [Klas00] show that for Web collections, the megadoc-
ument method outperforms other methods like centroid-based or kNN classification.
In contrast, for the Reuters collection, they only achieve average results.

19

Chapter 4

Searching and organizing on the
Web

4.1 Semantics and ontology

The Web has no general classification system for Web sites, no formal indexing policy
or controlled vocabulary nowadays. Web pages are represented by HTML code, which
does not catch the semantics at all. There is a possibility of using meta tags, e.g.
keywords and description tags, but this is not obligatory and a big portion of Web pages
do not use it. However, the semantic meaning is crucial for interpreting, exchanging
and another automated processing of Web pages. Nowadays we are witnessing the
birth of semantic standardization activity [SemanticWeb] under the auspices of W3C
organization, with a vision of having data on the Web defined and linked in a way, that it
can be used by machines not only for displaying, but for using it in various applications.
The eXtended Markup Language (XML) is accepted as the emerging standard for data
interchange on the Web.

On the way towards semantics on the Web, an ontology for Web pages is necessary.
In philosophy, an ontology is a theory about the nature of existence, of what types
of things exist. Artificial intelligence researchers have assimilated the term to their
own terminology, and for them an ontology is a specification that formally defines the
relations among terms or objects.

The most typical kind of ontology for the Web has a taxonomy and a set of inference
rules. The taxonomy defines classes of objects and relations among them. Public Web
directories are the typical examples of such a taxonomy for Web documents. Their cat-
egories in a hierarchy can serve as the classes and semantically characterize a content
of a Web document and its relation with other documents [Labrou99].

4.2 Web directories

Web directories are organized in a hierarchical manner and compose a tree of cate-
gories (or precisely: a directed acyclic graph). Each category is denoted by keywords,
describing category content, that appear on the path from the root of the hierarchy to
the node representing the category. In other words, a more specific category is named
by adding a keyword to the name of the more general category, for example “Science:

20

Computer Science: Machine Learning”. Each category contains together with links to
subcategories also links to Web documents corresponding to the category. The taxon-
omy of major Web directories (e.g. [Yahoo!] or [ODP]) is created and maintained by
human indexers, who explore the content of a submitted Web page and decide the most
appropriate category. This manual approach ensures a high precision of the categorized
Web pages.

A user study [Chen00] showed that users often prefer navigating through such di-
rectories of pre-classified content, which provides a categorical view of retrieved do-
cuments and enables them to find more relevant information in a shorter time. The
hierarchical manner, how are categories in a Web directory sorted, well describes the
content of a document and its relation with other documents.

4.2.1 Open directory project

The Open Directory Project [ODP] is the largest, most comprehensive human-edited
directory of the Web. It is constructed and maintained by a vast, global community of
volunteer editors. Everyone can become an editor for a particular category according
his/her knowledge and interest. In November 2001, ODP contained 3 millions of cat-
egorized Web sites included in 440,000 categories, which were maintained by 43,000
editors. The Open Directory powers the core directory services for the Web’s largest
and most popular search engines and portals, including Netscape Search, AOL Search,
Google, Lycos, HotBot, DirectHit etc.

4.3 Google

Google is the largest search engine which offers a broad spectrum of services. It in-
dexes about 1.6 billion Web pages (November 2001), mainly HTML files, but also
PDF, PostScript, Word and PowerPoint documents has been recently added to the in-
dex. Furthermore, it enables searching in Usenet discussion groups and in the Google
Web directory. Queries can be submitted in any language and can be limited to 15
languages including all major European languages.

Results of searching are presented with a title, URL, first two lines with search
terms highlighted in boldface, and size in bites (see figure 4.1). Additional features of
result presentation are a cached link, a similar pages link, a translation link (in case of
a foreign language) and a category link (in case the page is categorized in the Google
Web directory). The cached link leads to a snapshot of the page as Google crawls the
Web. The similar link prompts a service called GoogleScout to search the Web for
pages related to the resultant search. According the testing of [Ridley00], GoogleScout
returns relevant pages on average at a hit rate of 65% and in general GoogleScout works
well for the majority of Web pages.

The Google Web directory is powered by the Open Directory Project [ODP]. The
Web search and Web directory are interlaced, so Google’s regular Web search results
are enhanced by information from the Google directory.

Our system uses services of Google, mainly the Web directory and GoogleScout
(see section 7.3.1).

21

Figure 4.1: Google interface

22

Part II

Design

23

24

Chapter 5

System overview

This chapter gives a glimpse at the design of our bookmark system. It consists of two
separate parts: the bookmark management interface and the module for the automated
bookmark categorization. Figure 5.3 gives an overview of the system architecture and
shows the cohesion of the two parts. With respect to section 4.1, we decided for a
bookmark organization similar to the hierarchical manner used in Web directories.
User’s bookmarks are then sorted in categorical folders and compose a private Web
directory. The taxonomy of categories for our system is taken from the Open Direc-
tory Project [ODP] (and consequently from the Google Web directory, which actually
exploits ODP). Apparently, only a small subset of the ODP categories is engaged in
a user’s bookmark tree, depending on his interests embedded in the bookmarks (see
figure 5.1).

Arts Businness SportsComputers Computers Sports

Hacking Ethics Golf Rodeo

.
.

.

.

.

.

.
User’s categorized bookmarksOpen Directory Project

Figure 5.1: Hierarchy of categorical folders for bookmarks and their correspondence
to ODP

The decision of the hierarchical organization of bookmarks influenced the design
of both the bookmark management interface and the categorization module. The book-
mark manager, which facilitates the interaction with a user, presents user’s bookmarks
in such a tree of categorical folders, in which they are automatically categorized. Fig-
ure 5.2 shows a use-case diagram in order to give an overview of possible operations
with the manager. The user does not have to care about the categorization process, he
only submits a bookmark for categorization and the system automatically suggests a
categorical folder for the bookmark. Bookmarks can be also imported from a recent
user’s bookmark file used within a browser. The categorized bookmarks can be saved
and loaded in XML format, which is useful for data exchange with other applications.

25

Based on the recent bookmarks the system can also recommend hyperlinks to Web
pages with a related content. The detailed description of the design of the manager is
discussed in chapter 6. The implementation with the goal of a user-friendly interface
and an easy installation is described in chapter 9.

Figure 5.2: Use cases of a user’s interaction with the system

The automated categorization module is the more sophisticated part of the system.
It tries to find a category for a submitted bookmark. It works independently on the
bookmark manager, it means that it looks for a correct category regardless on the cate-
gory tree which is already existing in the manager and it is up to the manager how to
place a categorized bookmark into the recent tree. The categorization process consists
of a pre-classification of a bookmarked Web page including a gathering of training data
from the Google Web directory, then follows the indexing of the data, selection of fea-
tures and the final classification. The design of this module is described in chapter 7
and its implementation in chapter 8.

26

H
i
e
r
a
r
c
h
y

o
f

c
a
t
e
g
o
r
i
c
a
l

f
o
l
d
e
r
s

w
i
t
h

b
o
o
k
m
a
r
k
s

W
e
b

b
r
o
w
s
e
r

bookm
ark file

C
l
a
s
s
i
f
i
c
a
t
i
o
n

P
r
e
−
c
l
a
s
s
i
f
i
c
a
t
i
o
n

U
R

L
s

C
a
t
e
g
o
r
i
z
a
t
i
o
n

B
o
o
k
m
a
r
k

F
e
a
t
u
r
e

s
e
l
e
c
t
i
o
n

D
o
c
u
m
e
n
t

i
n
d
e
x
i
n
g

R
e
p
o
s
i
t
o
r
y

U
s
e
r

recom
m

ended

U
R

L
s

G
o
o
g
l
e

W
e
b

training

and test data

X
M

L

m
a
n
a
g
e
m
e
n
t

R
e
c
o
m
m
e
n
d
a
t
i
o
n

s
y
s
t
e
m

to show

m
anipulation

bookm
ark

U
R

L
new

bookm
arked

bookm
ark

categorized

 bookm
ark

indexed docum
ents

feature vectors

Figure 5.3: System architecture

27

28

Chapter 6

Bookmark management

This chapter describes a design of the bookmark manager, the part of the system fo-
cused on the manipulation with bookmarks and interaction with a user. Implementation
details can be found in chapter 9.

6.1 Tree navigation

Navigation through a hierarchy of categories and searching for a bookmark should be
as easy as possible. There are two issues about the navigation: at first, users would like
to find a bookmark always at the same place and at second, users do not want to go
necessarily too deep in the hierarchy of categories.

The first issue presumes a stability of the tree that can be difficult to achieve since
dynamic additions and removals of bookmarks necessarily influence its structure. Our
approach for bookmark organizing minimizes changes in the tree structure and ensures
that during an addition only a leaf folder can be splitted and the rest of the tree remains
the same. A removal of a bookmark can lead to a deletion of the folder when it is
empty, but again only in case it is a leaf node. The explication of these operations
which influence a structure of the tree comes in the following section 6.2.

The second issue, a deepness of the tree, is influenced only by parameters � and�
, which specifies the minimum and maximum number of bookmarks in a folder,

respectively. The creation of subfolders can happen only when the threshold
�

is
reached in a particular folder. These parameters are set by the user.

For further facilitation of searching for a bookmark, we suggest to display a book-
mark not only in a folder where it has been sorted, but also in its parent folders up to
the top. To avoid a confusion, such a bookmark is displayed in different way in the
parent folders, e.g. by a different font. We assume that it can speed up a searching for
a bookmark, because a user do not have to descend to a particular folder, but can find
the bookmark also in one of the upper folders. Figure 6.1 depicts such a propagation,
the bookmarked URLs displayed with the bold font are sorted precisely in that partic-
ular folder, the URLs in italic are sorted in a child folder but propagated to the upper
folders.

29

6.2 Algorithms for the bookmark manipulation

Addition of a new bookmark

The automated categorization process tries to find a category as much as specific for a
new bookmark. It means that the suggested category is often deep in the tree of ODP
and the corresponding categorical folder does not have to exist in the user’s tree. In
that case the new bookmark is sorted to the nearest existing parental categorical folder
in the user’s hierarchy (figures 6.2 and 6.3). For example, consider a bookmark was
assigned into a category “Agents” with the path “Computers > Artificial Intelligence >
Agents” in the categorization process . However, in the user’s tree only the categorical
folder “Computers” exists without any children. Then, the new bookmark is sorted
directly to "Computers" without creating the subfolders “Artificial intelligence” and
“Agents”.

Removal of a bookmark

A removal of a bookmark can lead also to a removal of the assigned folder. It happens
when the folder is a leaf in the tree and the number of bookmarks is lower than � .
In other cases only the bookmark is deleted and the structure of folders remains (see
figure 6.6).

6.3 Integration with a browser

A bookmark management system should fit naturally into a Web browser. We discern
the following important issues for the integration:

1. Easy import of recent bookmarks to the system.

2. Automated addition of bookmarks, which were freshly bookmarked by a user
within a browser.

3. Launch of a browser with a selected bookmark.

Computers

Agents

Artificial Intel.

http://www.agentlink.org
http://www.neuroinf.org
http://www.botspot.com

http://agents.umbc.edu
http://www.agentlink.org
http://www.neuroinf.org

http://agents.umbc.edu

http://agents.umbc.edu
http://www.agentlink.org

http://www.botspot.com

Figure 6.1: Propagation of bookmarks to parent folders.

30

addBookmark(Category C, Bookmark b)
Folder F= findAppropriateFolder(C)
F.bookmarks = F.bookmarks � {b}
if(|F.bookmarks| � �) then

split(F)
else if(F.hasParent()) then

addChildBookmark(F.parent, b)
end if

Figure 6.2: Algorithm for addition of a recently categorized bookmark

Folder findAppropriateFolder(Category C)
Folder F = rootFolder;
integer level = 1;
while(C.hasLevel(level)

AND F �� nil
AND F.hasChildren()) do

String label = C.getLabel(level);
F = getChildFolder(label);
level++;

done

Figure 6.3: Algorithm for finding the nearest existing folder to a category

addChildBookmark(Folder F, Bookmark b)
F.childBookmarks = F.childBookmarks � {b}
if(F.hasParent()) then

addChildBookmark(F.parent, b)
end if

Figure 6.4: Algorithm for addition of a bookmark to parental folders

split(Folder F)
for all Bookmark b ; F do

Folder subF = findOrCreateSubfolder(b)
subF.bookmarks = subF.bookmarks � {b}
F.bookmarks = F.bookmarks � {b}
F.childBookmarks = F.childBookmarks �

{b}
end for

Figure 6.5: Algorithm for splitting of a folder

31

removeBookmark(Folder F, Bookmark b)
F.bookmarks = F.bookmarks � {b}
if(F.hasParent()) then

F.parent.removeChildBookmark(b)
end if
if(|F.bookmarks| < �

AND F.hasNoChildren()) then
deleteFolder(F)

end if

Figure 6.6: Algorithm for removal of a bookmark from a folder

4. Preservation of the recent bookmark file.

Both of the well-known browsers, Internet Explorer and Netscape Navigator, have an
integrated bookmark tool, even though of the poor usability. The issue is, how our
system can replace these simple bookmark organizers and fulfill the mentioned issues.

We examined the possibility of using the Webclient project ([Webclient01]), which
aims to provide a browser-neutral Java API that enables generic Web browsing capa-
bility. However, the project is in an early stage and not mature enough for an effective
and stable usage.

Another promising alternative was seen in an adaptation of a new version of the
Netscape Communicator browser (6.x), which is based on the open source project
Mozilla and thus offers more possibilities for a customization and enhancement. This is
achieved especially by the XML user interface language ([XUL01]), which is a cross-
platform language for describing user interfaces of applications. It is a promising ap-
proach, however it presumes an adaptation of the browser code. Unfortunately the
current versions of Netscape and Mozilla browsers are also rather unstable and buggy,
so this solution could not be recommendable nowadays.

The design and implementation of our bookmark manager as an applet seemed to be
a feasible solution. An applet can communicate with a browser by means of Javascript
and the bookmarking can be solved by a button or a keystroke within the applet. But
there are some issues, which makes this approach worse applicable. Our system has to
read and write to local files and that interferes with the applet security. Therefore an
applet has to be trusted by a certificate authority. This is not very convenient, especially
during the phase of development.

Finally, we decided to design our bookmark manager as a Java stand-alone appli-
cation. The following paragraphs describe how the chosen approach challenges with
the issues, the details about implementation can be found in chapter 9.

The import of bookmarks can be feasibly solved. The system supports import from
several types of bookmark files. The first run of the system requires setting of such a
bookmark file for the initial import and automated categorization. However, import of
another bookmark file can be done at any time.

The automated addition of a new bookmark can be seamless; when a user book-
marks a new URL within a browser, it is automatically submitted for the categorization

32

and the result inserted into the manager. For this task we designed and implemented
a monitor, which checks in intervals for changes in a bookmark file. If a new URL is
found, it is automatically send to the categorization module. We argue that a delay be-
tween a Web page is bookmarked by the user within a browser and the time when the
bookmark is categorized and inserted into our application is not substantial, because
users rarely look for a recently added bookmark immediately after the bookmarking.

The launch of a browser with a selected bookmark is easily implemented inde-
pendently on a type of browser or a platform. A user has to set his preferred browser at
the first run of the system. When a user presses a button, an instance of the preferred
browser is launched with the bookmark.

The preservation of the recent bookmark file offers to a user an option which book-
marks’ structuring is more suitable in a given case. Our system saves the categorized
bookmarks in another file and does not make any change at the bookmarks maintained
by a browser. Furthermore, the system exports bookmarks in the XML Bookmark
Exchange Language [XBEL99], which can be easily compiled to a browser-specific
format and used instead of the former one.

6.4 Recommendation service

One of the goals of our work aims at a recommendation service of related Web pages
to the recent user’s bookmarks. We suggest the service can be based on similarities
between a bookmark and the training data used in the categorization process (see sec-
tion 7.3). The training data consist of Web pages that are categorized in the Google
Web directory. The category that is after classification considered as the winner con-
tains the most similar Web pages to the categorized bookmark. Thus when a user looks
for similar Web pages to that particular bookmark, the system can recommend some of
those Web pages contained in the winning category of the Google Web directory. It rec-
ommends only the top hyperlinks according to the ranking of Google, in order to offer
to the user really the most relevant URLs. The whole process is displayed at figure 6.7.
Implementation details about the recommendation service follow in chapter 9.

33

Categorization

Recommendation

related Web pages

bookmark

training

data

Web pages

WWW

Google directory

category
in the winning

category
winning

Figure 6.7: Recommendation of related Web pages to a bookmark

34

Chapter 7

Categorization model

7.1 Consideration of different approaches

Both classification and clustering techniques can be used for organizing documents
and thus also for the organizing bookmarks. The theoretical background of those tech-
niques is already described in chapter 2. In this section we discuss the practical issues
and compile advantages and disadvantages of these approaches with objective of the
best decision for the design of our system.

Clustering

Clustering for bookmark organizing was already used in work of [Maarek96]. We con-
clude from this and other studies at least three shortcomings of this approach. First,
clustering cannot deal with incremental changes effectively, e.g. running a cluster-
ing algorithm on ten documents may result two categories. Then, adding ten more
documents and rerun the clustering algorithm may yield a complete different set of
categories. This dynamic nature of document organization suffers from poor usability,
since the user may have harder time to need documents being frequently reclassified
than if the documents are not organized in the first place. Second shortcoming lies
in a possible low accuracy of document categorization because of the small number
of documents (bookmarks) at the client side. Finally, choosing distinctive labels for
the clusters generated by non-supervised learning algorithms is difficult. The study
of [Maarek96] uses the most frequent words in a category as labels but the presented
resulting labels does not seem very representative.

Classification

The first apparent disadvantage of the classification technique consist in the training
phase, which has to be carried out before any bookmark is possible to classify. It can
be time and space consuming, especially when there is no restriction for a topic domain
of bookmarks, which is also our case. On the other hand, training data can be obtained
from several Web directories. The labeling of categories used in Web directories also
solve the problem which the clustering approach suffers. The automated text categori-
zation technique (ATC), described in chapter 3, is a classification method which can fit
to the classification of bookmarks.

35

Conclusion

The shortcomings of the clustering techniques are significant and this approach for
bookmark organizing was already examined by [Maarek96]. The ATC as a classifica-
tion method has been examined for several types of documents and datasets, but never
applied for bookmarks. We concluded that it offers a challenging way for the bookmark
organizing, which should be explored.

After the decision for the classification approach, we considered several methods
based on the machine learning, which are suitable for the automated text categorization:
Naive Bayes classifiers, regression models, neural networks, instance-based classifiers,
support vector machines (SVM) etc. We have concluded from a literature survey that
especially SVM and instance-based classifiers can outperform other methods [Yang99].
SVM is a promising approach, but as the most of the other techniques, its training phase
has to be accomplished before any document can be tested. It means that the complete
training dataset has to be available and the training is strictly separated from the testing
phase. It’s a binding limit for our system, because we cannot gather a dataset, which
can train the classifier for any category of human interest in advance and even we
cannot afford to save it at the client side. Therefore we suggest to use instance-based
classification, where the training data are gathered at the time when new document has
to be classified and the dictionary of terms for classification adapts for each testing
case.

7.2 Web document indexing

The classification process is based on the similarity (or distance) measurements be-
tween documents. However, Web pages in their HTML form cannot be directly used
for such a measurement and must be first transformed into another document form,
where the content is represented mainly by a feature vector. This process is generally
referred as a Web document indexing. For our system we designed a module for the
document indexing, which is composed by submodules for the HTML fetching, pars-
ing, tokenisation, stop word deletion and stemming, as depicted at the activity diagram
in figure 7.1.

The indexing process is following: first a Web page is fetched from a Web server
and parsed. Only the text without HTML tags and comments is extracted, the rest is
omitted. When a Web page does not contain enough of text, also the pages which
are saved at the same server and linked from the former page, are fetched and parsed.
Next, the extracted text is tokenized and common words without any semantic value are
deleted. Finally the words are stemmed by means of the Porter stemmer. The number
of words which will represent document can be specified. These words are stored in a
term frequency vector. Details about each step of the indexing process are described in
the following paragraphs.

7.2.1 HTML parsing

How and what should be displayed to a user in a browser is defined by the HTML code
of the Web page. Unfortunately, a content of a page is not separated from its visual
appearance definition, like in XML, but everything is mixed all together. Thus, the
terms which are potentially useful for the classification have to be extracted.

36

Creating a term−frequency vector

Parsing HTML
Extracting a title, metakeywords,

Filtering stop words

Tokenizing the text

Stemming words

not enough terms

enough terms

Following the hyperlinks
within the website

hyperlinks, text

bookmarked URL

indexed Web document

Fetching the URL from the Internet

Figure 7.1: Activity diagram of a Web document indexing

37

We have considered a possibility of usage one of the free available HTML parsers,
but finally we have decided for our own implementation. Available parsers are either
too complex or cannot handle with all of the HTML features. We prefer full control
over the code and a speed provision of our own parser.

Our HTML parser omits useless parts of the code and extracts only the following:� title� meta keyword tag� meta description tag� normal text� links to other pages which are stored at the same server

7.2.2 Tokenisation

Tokenisation extracts words from the text. Our system does not use word dictionaries,
because it takes more time to access them. In order to exclude as many noise words as
possible, only the words which consist of characters and their length is less than 20 are
considered. All capitalized letters are translated into lower case.

7.2.3 Stop word deletion

Some words appear in natural text very frequently and have very little information
value . Thus they are not beneficial for information retrieval, namely for our classifica-
tion task and it’s useful to delete them already during the indexing phase. These noisy
words are often so-called as stop words.

We define two kinds of stop word lists: general English stop words and Web spe-
cific stop words. General English stop words are independent of the domain and the set
includes English words like “the”, “of” etc. Web specific stop words include the words
appearing in most Web pages, such as “mail” and “home”. Since we did not find any
standardized list of English or Web specific stopwords, we defined our lists containing
325 words and 25 words, respectively.

Besides the benefit of decreased sized of corpus, stop word deletion can improve
accuracy of classification up to 8% [Mase98]. Note that the stop word deletion is done
before the stemming. The stemming process is more computational demanding than
stop word deletion.

7.2.4 Stemming

Stemmer is a program that reduces word forms to a canonical form, almost like a
lemmatiser. The main difference is that a lemmatiser takes only inflectional endings
off a word. A stemmer on the other hand tries to remove derivational suffixes as well,
and the resulting string of characters might always be a real word.

Stemmers are used mainly for information retrieval. The performance of the system
is improved if terms with the similar meaning are conflated into a single term and so the
terms are identical for indexing purposes. This may be done by removal of the various
suffixes like -ed, -ing, -ion, -ions etc. to leave the single term. For instance terms
“connect”, “connected”, “connection”, “connections” can be stemmed to the single
term “connect”.

38

In addition, the suffix stripping process apparently reduces the total number of
terms in the system, and hence reduce the size and complexity of the data, which is
advantageous. It can reduce the dictionary size by around 20 % [Mase98]. Thus we
decided to encompass the well-known Porter’s stemming algorithm [Porter88] to our
system.

We considered also an additional reduction of the dictionary size by using a the-
saurus, but that requires a large database on a client-side or a Web service on a server-
side and therefore we did not involve it.

7.3 Classification

7.3.1 Training data and pre-classification

Most of the experimental categorization systems utilize for training some of the exist-
ing Web directories like [Yahoo!] or [ODP]. The systems use the same taxonomy of
categories and train their classifiers on the included documents. However, the number
of categories and documents contained in a Web directory is generally very large (see
section 4.2). Because of that, the recent categorization systems are designed only for
the top-level categories [Chen00], [Mase98] or another portion of a Web directory, e.g.
a “Computer Sciences” subtree ([Govert99], [Mladenic99], [Frommholz01]).

Despite of the large amount of categories, we have to design our bookmark ca-
tegorization system that it is suitable to categorize Web pages of any area of human
interest. Therefore we suggest before the classification is carried out, a domain into
which a bookmark can fall should be narrowed. A number of candidate categories for
a bookmark has to be reduced and then the amount of training data would not be so
extensive. Therefore we designed of an agent, which negotiates with Google about
candidate categories for a bookmark and prepares training data for the classification. It
can be done by additional services which Google offers, namely by GoogleScout and
the Google Web directory (see section 4.3).

The agent for the pre-classification carries out the following steps for each book-
mark:

1. It sends a query to GoogleScout for related Web pages to a given bookmark.

2. From results it extracts hyperlinks of associated categories, which lead to the
Google Web directory.

3. From the directory pages representing each category it extracts hyperlinks to
Web documents

Figure 7.2 shows an example of such a negotiation, which is actually done in auto-
mated way by the agent. Thus we obtained candidate categories for a bookmark, each
with a set of categorized Web documents which can serve well as the training data for
the classifier. We conclude that the utilization of Google has the following advantages:

1. The Google Web directory composes a hierarchy of categories whose labels de-
scribe comprehensibly any domain of a human’s interest. The categorized Web
pages in the directory are of a good quality and can serve well as a training data.

2. The service of GoogleScout enables to find candidate categories for a bookmark.
This kind of pre-classification enables to design our classification system without
a large training database.

39

Computers > Artificial Intelligence

Query to Google

Google Web directory

Web pages
for the megadocument

Results of the query

Candidate categories

Category:

Figure 7.2: Example of pre-classification by means of Google

7.3.2 Classifier

Most of the automated text categorization methods rely on the existence of a good
quality text like those in the Reuters-21578 test collection [Reuters]. However, Web
documents are rather heterogeneous and their content can be based also on non-text
media like pictures, plugins etc. Metadata tags are not used consistently and often
does not exist in a Web page. Our testing of similarities between documents described
in chapter 11 shows that it happens a document is rather dissimilar to others of the
same category, because of these issues. Thus we conclude it is worth to use a classi-
fier based on the megadocument approach (see section 3.4.3), which can handle better
with the heterogeneity than a k-nearest neighbour or centroid-based document classifier
[Klas00].

Figure 7.3 displays the whole classification process. After the pre-classification
and the document indexing, the classifier gets on the input set of megadocuments and
the test document. Each megadocument is a representative of a candidate category
obtained in the pre-classification process. The term dictionary is defined by terms
extracted from the megadocuments. Vectors with frequencies of the terms are created
for the documents. Then the vectors are weighted by TFIDF and similarities between
the vector of the tested document and the vectors of megadocuments are calculated by
the cosine of angle (see section 3.3). The highest similarity is compared to a threshold �
and when it is higher, the corresponding category to the winning megadocument vector
is assigned to the tested bookmark. If the similarity is lower than � , the bookmark
remains uncategorized.

40

bookmarked URL

URLs of
categories and the bookmark

 the candidate

training megadocuments

and the tested document

and the megadocuments
document the tested
between

TFIDF

vectors

winning category

for the bookmark

of the same dimensionality
term−frequency vectors

Document indexing
Creation of the term

of TFIDF among vectors

Pre−classification

dictionary

Calculation Similarity calculation

Thresholding

similarities

Figure 7.3: Activity diagram of the classification process

41

Part III

Implementation

42

Introduction

The system prototype was fully implemented and named CaterBook. The name is
somewhat a reflection of its design concept as a bookmark manager with the automated
categorization.

CaterBook was implemented in the Java programming language using the Java 2
SDK, v1.3. No other third-party packages or classes were used for CaterBook. The
class files, source code and Java programming documentation are included on the en-
closed CD-ROM. A brief user’s manual to CaterBook can be found at the appendix A.

Details about the implementation of the categorization module and the bookmark
manager are described in chapter 8 and 9, respectively. Testing and evaluation of the
system by users is described in chapter 13.

Label with status messages

Tree of categorical folders

Selected bookmark

Table with bookmarks of the selected folder

Categorization and recommendation buttons

Figure: Screenshot of CaterBook

43

Chapter 8

Implementation of the
categorization module

8.1 Overview

The categorization module is implemented as a separate package called catr. The
implementation corresponds to the design described in chapter 7. Table 8.1 summa-
rizes Java classes of the catr package. The more detailed explanation of important
classes follows in the next section. The well commented source code files and the Java
documentation might be useful for a deeper understanding. Each class (unless it is not
an inner class) is saved in a file of the same name with the extension “.java” .

Table 8.1: Java classes of the categorization module

Class name Task of the class

Document indexed Web site
Category category of Google with assigned documents

MegaDocument mergence of indexed documents from a Google category
DocIndexer indexer of Web documents

MegaDocIndexer indexer and merger of the ODP Web documents
GooWebSearch agent for interaction with the GoogleScout
GooDirSearch agent for interaction with the Google Web directory
TFVector term-frequency vector of a document
HTMLParser HTML parser of Web pages

ParserThread separate thread covering the HTTP connection
StopWordChecker checker of a text for English and Web stop words
PorterStemmer stemming by the algorithm of Porter
Tokeniser tokeniser of text into words
Corpus a corpus of training documents

LazyClsfier instance-based classifier
Repository repository of the data
Catizer main categorization class

44

Figure 8.1 displays the event trace of the categorization process. It shows only the
case, when neither the tested or the training documents were found in the repository of
the system. When it occurs, the indexing is not carried out, but the indexed documents
are taken from the repository.

8.2 Classes description

Document

An object of the Document class represents an indexed Web page. The content of
the page is extracted into a term-frequency vector, i.e. into a TFVector object. Each
document can be assigned to a category. The appropriate category can be found out in
the categorization process or explicitly designated in case the Web site is categorized
in the Google Web directory.

Besides the term-frequency vector and the category, a document contains its URL
and title of a Web page.

HTMLParser

This class provides the parsing of a Web page and extraction of the contained text and
hyperlinks. A Web page is specified by a URL and it is fetched by GET method of
the HTTP protocol. The plain text, title, meta keywords, meta description and set of
outgoing hyperlinks can be requested after a successful parsing.

The parser extracts only the hyperlinks, which lead to Web pages on the same
server and in the same subtree. This feature is implemented on behalf of the docu-
ment indexer, that utilizes it. Only HTTP hyperlinks are extracted, other protocols are
omitted. The links extracted from a Web page which are in form of a relative path (e.g.
“jaxb/index.html”) or an absolute path (e.g. “/xml/jaxb/index.html”) are transformed to
their global representation (e.g.”http://java.sun.com/xml/jaxb/index.html”). The links
with another host then the parsed page are omitted. Fragments in a URL, i.e. the parts
that start with ’#’ character are deleted for avoidance of a URL ambiguity.

A robustness of the parser was tested by more than 200 Web pages and had been
improving, so finally it can recognize and handle with the following issues and errors:� recognition of the content type, only HTML is considered.� skipping Web pages with the 404 Not Found and 403 Forbidden HTTP

status code response.� automated redirection in case of the 301 Moved HTTP status code response.� automated redirection in case of the HTML tag <META HTTP-EQUIV=
"Refresh" CONTENT="x; URL=new.URL"> in the HEAD tag of the Web
page.� managing frames: parsing of HTML code for each frame.� handling with the usage or non-usage of quotation marks for links.� skipping commentaries in the HTML code.� recovery from malformations of the HTML code.

45

in
de

x
do

cu
m

en
t

ge
t T

F
ID

F
 v

ec
to

rs

ge
t t

ra
in

in
g

m
eg

ad
oc

um
en

ts

in
de

x
m

eg
ad

oc
um

en
t(

 c
at

eg
or

y
)

cl
as

si
fy

(
te

st
ed

 d
oc

um
en

t,
m

eg
ad

oc
um

en
ts

)

cr
ea

te
 d

ic
tio

na
ry

(
m

eg
ad

oc
um

en
ts

)

ca
lc

ul
at

e
si

m
ila

rit
ie

s

ca
te

go
riz

eC
at

iz
er

D
oc

In
de

xe
r

G
oo

D
ir

Se
ar

ch
M

eg
ad

oc
In

de
xe

r
L

az
yC

ls
fi

er
C

or
pu

s
G

oo
W

eb
Se

ar
ch

D
oc

um
en

t

ge
t G

oo
gl

e’
s

ca
te

go
rie

s

ge
t G

oo
gl

e’
s

ca
te

go
ry

−
sp

ec
ifi

c
do

cu
m

en
ts

as
si

gn
 c

at
eg

or
y(

 c
at

eg
or

y
)

Figure 8.1: Event trace diagram of the categorization process

46

Furthermore, the time-out problem of unreachable Web sites is solved more efficiently
than the standard HttpURLConnection class offers. An attempt for connection
is invoked by a separate thread of class ParserThread and the object of HTML-
Parser waits only a limited time (e.g. 5 seconds) and after expiration continues with
processing other URLs.

PorterStemmer

For stemming purposes, we adopted and implemented the Porter’s stemming algorithm
[Porter88]. This algorithm has been widely used, quoted, and adapted over the past 20
years. It works only for English words.

StopWordChecker

This class provides checking of words whether they belong among the general English
stop words or Web specific stop words. The lists of stop words are saved in the text files
“engstopwords.txt” and “webstopwords.txt” in the directory of the application. These
lists are downloaded during creation of an object of this class and they are stored in two
hash tables (English and Web specific) in order to recognize a stop word in a constant
time.

DocIndexer

The DocIndexer class provides the indexing of a Web site. It exploits services of
HTMLParser for downloading and parsing of the main Web page and hyper-linked
pages from the same server. Then, the services of Tokeniser, PorterStemmer
and StopWordChecker are used for the creation of a document with the term-
frequency vector representation. When a Web site is not reachable or it is not in En-
glish (this can be checked by means of StopWordChecker), the indexing method
indexDoc()returns null value.

Megadocument

The Megadocument class is a child of the Document class and represents a mer-
gence of Web sites, which are categorized in the Google Web directory and thus are
specific for a certain category. Objects of this class are intended as the training data for
the classifier.

MegaDocIndexer

The MegaDocIndexer is an indexing tool for megadocuments, i.e. objects of the
Megadocument class. It indexes a set of given Web sites and their content merges
together into one term-frequency vector. The class is a child of the DocIndexer class
and thus inherits and uses the auxiliary methods for the indexing task.

GooWebSearch

The GooWebSearch class represents that part of the pre-classification agent which
communicates with GoogleScout. It tries to find candidate categories for a bookmark.
It makes queries to Google for related pages to the bookmarked URL, i.e. for the
Web pages which are similar to the bookmark. The results are filtered and only the

47

Web pages, that have assigned a Google’s category, are considered. It extracts not
hyperlinks of the Web pages, but hyperlinks of the assigned categories, which later
serve as the candidate categories for the submitted URL. This service can be used by
invocation of the public method getCatURLs(). It can happen that a new bookmark
is already categorized in the Google Web directory. In this case only the corresponding
category is returned.

The subcategories of the “World” category are omitted, because they contain Web
sites in different languages and our classification system is designed only for English.
Also the “Regional” and “By region” subcategories are omitted, because of difficulties
with the regional-specific categorization.

GooDirSearch

The GooDirSearch class represents the second part of the pre-classification agent,
which communicates with the Google Web directory. It extracts URLs of Web sites,
that are categorized in a given category. The number of Web sites can be specified.
This can be done by invocation of the getDocURLs()method.

Corpus

The Corpus creates a term dictionary from the contained documents and calculates
TFIDF vectors for the training of the classifier. It also calculates norms of the document
vectors, however it does not divide each member of vector by the norm, but postpones
the division at the classification time, where the whole sum is divided only once, which
saves the computational time.

LazyClsfier

The LazyClsfier class provides instance-based (also known as lazy) classification.
It can be invoked by the public method classify(), where the collection of training
documents and a tested document should be passed. In case of the successful classifica-
tion, it returns the most similar training document to the tested one. The classification
is considered as unsuccessful, when none of the similarities between the training docu-
ments and the tested document is not higher than the threshold SIM_THRESHOLD. The
value was set experimentally to 0.1, it means that the tested document has to be similar
to one of the training documents at least in 10%, otherwise the classification failed.
The classifier uses an object of the Corpus class for the creation of the term dictio-
nary and the TFIDF computation. The private method calculateSim() calculates
the similarity among the tested document vector and the training document vectors by
the cosine of angle between two TFIDF vectors.

Repository

The class serves as a persistent repository for indexed Web documents, megadocuments
and categories. Once a bookmark is being categorized, all the training data are saved
there, in order to speed up a future categorization of a bookmark with similar training
data. The repository is loaded at the launching of CaterBook and saved at the closure.
The repository file is named as “repository” and is saved in the application directory.

48

Catizer

This class provides the main interface to the categorization module. It is a descen-
dant of the Thread class and thus the whole categorization can run independently
on the whole system. The categorization of a Web page, which is represented by a
URL, can be invoked by one of the public methods with the same name catego-
rize(). One of them waits until the whole categorization is finished and returns
a Document object with the assigned category. The second method adds the cate-
gorization request to a queue and lets the categorization process run separately. The
sequence of commands in the categorize() method is the following: at first it
looks into the repository, whether the Web site wasn’t already indexed and categorized.
Otherwise it uses a DocIndexer object for indexing and a GooWebSearch object
for obtaining candidate categories for the document. If there are no candidate cate-
gories, the categorization fails. When candidate categories were found, it looks again
in the repository for megadocuments that represents the categories, otherwise a GooD-
irSearch object and a MegadocIndexer object are used for obtaining them. The
megadocuments and the document being categorized are passed to the LazyClsfr
object for the classification. If the classification finishes successfully, the most similar
megadocument is returned by the classification method. The category corresponding
to the megadocument is then assigned to the Web document.

49

Chapter 9

Implementation of the
bookmark manager

9.1 Overview

The bookmark manager is implemented in a separate Java package called manager.
Table 9.1 summarizes Java classes, which implement the management module accord-
ing to the design described in chapter 6. The more detailed explanation of important
classes follows in the next section. The Java documentation and the well commented
source codes might be useful for a deeper understanding. Each class (unless it is not
an inner class) is saved in a separate file of the same name with the extension “.java”.

9.2 Classes description

BookMan

This is the main frame class of the bookmark manager. It contains the main method
of the whole application and creates objects of the other manager’s classes as the tree,
table etc. The class is also responsible for the communication with the categorization
module, more precisely, it creates an object of the Catizer class. And last but not
least it creates and communicates with an object of the Repository class.

The BookMan class is a descendant of the JFrame class. The main frame is split
into four parts, at the top is a tool bar of the class JToolBar, on the left a tree panel
of the class BookTree, on the right a table panel of the class BookTable and at the
bottom a status bar with labels of the class JPanel.

BookTree & BookTreeModel

The BookTree class is a descendant of the JTree class and is responsible for dis-
playing the tree with categorical folders. The tree is built dynamically according a
content of an object of the class BookTreeModel. This one is responsible for creat-
ing, removing and splitting folders and also for adding and removing bookmarks from
a folder. The BookTree class also contains an inner class DTListener, that serves
as a drop target for a bookmark dragged from the bookmark table.

50

Table 9.1: Java classes of the bookmark manager

Class name Task of the class

BookMan main class of the bookmark manager
BookTree tree of categorical folders

BookTreeModel model of the tree holding the content
Folder folder in the tree

BookTable table for records of bookmarks
BookTableModel model of the table holding the content
Preferences user’s preferences
BookReader reader of XML bookmark files
BookWriter writer of XML bookmark files

XBELFileFilter dialog filter for XML bookmark files
BookFileChecker monitor of the browser bookmark file

BookmarkFileFilter dialog filter for browser bookmark files
ImportDlg dialog for a bookmark import

TablePopupMenu pop-up menu for the table
Recommender recommends related Web pages

Folder

The class is a descendant of the DefaultMutableTreeNode class and thus serves
as a node of the BookTree. It holds a collection of bookmarked documents, the path
to the root and the list of its children folders.

BookTable & BookTableModel

The BookTable class is a descendant of the JTable class and implements a table
for bookmark’s records. It contains an inner class called DGListener, that serves as
the drag gesture listener for the dragging of a bookmark to another folder in the tree.

The content of the table is managed by an object of the BookTableModel class,
which is a descendant of the AbstractTableModel class. It contains records of
bookmarks from the currently selected folder. The records consist of a title, URL and
a status icon. These items are updated every time when another folder is selected.

BookReader & BookWriter

These classes implement the reading and writing of bookmarks in and from an XML
file. A saved bookmark file accomplishes requirements of the XML Bookmark Ex-
change Language v1.0 specification [XBEL99]. The bookmark reader can of course
read the files written by the writer, but it cannot read any XBEL file. Nevertheless, this
is not required, because another class called BookmarkFileChecker is suited for
the import of different types of bookmarks of different browsers, including an import
of the XBEL files.

51

Preferences

The class manages the user’s preferences, their loading and saving from and to a pref-
erences file (called caterpref and saved in the application directory). A user can
set the following parameters: a type of the used Web browser, a bookmark file of the
browser, a minimum and maximum number of bookmarks in a folder. Other parame-
ters as time stamps when the bookmark file was checked for changes, the last checked
URL and the last opened XML bookmark file are maintained without an interaction
with a user.

The class also contains an inner class for displaying a preference dialog, which is
called PrefDialog.

BookFileChecker

This class is a descendant of the Thread class and thus an object of this class runs
in a separate thread. It monitors and checks a bookmark file corresponding to a Web
browser for newly added bookmarks. It can handle with bookmark files of Netscape
Navigator (all versions), Konqueror (version 2 and upper), Opera (all versions) and
Internet Explorer (all versions). It checks a bookmark file in an interval (default is 10
minutes) for any change of the saved URLs. If a new URL is found, it is submitted for
categorization and saved in a folder in CaterBook.

Recommender

This class implements the recommendation service. It can recommend related Web
pages to the already categorized bookmarks. The service is based on the Web pages
categorized in the Google Web directory in the same category as a bookmark. It fetches
the Google Web directory page of a category and extracts top ten hyperlinks, which can
be presented to the user.

52

53

Part IV

Testing & Evaluation

54

55

Chapter 10

Testing Datasets

We performed several tests in different stages of our work in order to evaluate each step
of the bookmark processing. This chapter describes datasets we gathered and observa-
tions we made about the size of the term dictionary. Similarity measures among docu-
ments is evaluated and described in chapter 11. Another testing described in chapter 12
evaluates the effectiveness of our classifier and the last testing in chapter 13 focuses on
user’s experiences with our bookmark manager called CaterBook.

We gathered 27 different datasets of Web documents for testing purposes. They
were fetched from several categories of the Open Directory Project [ODP]. The datasets
differ in the number of documents, number of categories and setting of parameters for
the indexing process. Table 10.1 summarizes the specifics of the datasets. The fifth col-
umn “term inclusion” refers to the method of creating the indexing dictionary, terms
can be included either from all documents or only from megadocuments, which are the
representatives of the involved categories. The sixth column “freq threshold” refers to
a threshold of a term occurence within a document, these terms which occur less than
the threshold are not omitted during the indexing. The last column refers to the number
of terms which are extracted from a Web page, in case there are not enough terms, the
hyperlinked Web pages from the same server are also indexed and a particular portion
of terms from each page is included. Table 10.2 displays categories of ODP included
in the datasets.

From the gathering of these datasets we observed the following phenomena:

1. The size of a term dictionary is much smaller (15-30%) when using the megadoc-
ument approach than the classic approach.

2. The threshold value for a term frequency set to 3 leads to a half-size term dic-
tionary than when the threshold with value 2 is used. This phenomenon is also
confirmed by our testing evaluating how often is a term repeated within a docu-
ment. The result is depicted in a "pareto" graph in figure 10.1.

3. The reduction from 400 down to 300 extracted terms per document results in
reduction of the dictionary size by 15 % in average.

4. The data does not allow us to make distinctive conclusions from a projection into
a 2D graph by the principal component analysis, mainly because of the unnormal
distribution of the data. We exploratively applied PCA to some of the datasets,

56

Table 10.1: Testing datasets

dataset no. of no. of dictionary term freq terms

no. documents categories size inclusion threshold per page

1 180 18 4348 all 2 400
2 180 18 3798 all 2 300
3 180 18 2599 all 3 400
4 180 18 2201 all 3 300
5 180 18 1371 megadocs 2 400
6 180 18 1278 megadocs 2 300
7 180 18 630 megadocs 3 400
8 180 18 522 megadocs 3 300
9 100 5 2492 all 2 400

10 100 5 2183 all 2 300
11 100 5 1534 all 3 400
12 100 5 1254 all 3 300
13 100 5 418 megadocs 2 400
14 100 5 385 megadocs 2 300
15 100 5 202 megadocs 3 400
16 100 5 173 megadocs 3 300
17 60 3 1711 all 2 400
18 60 3 1418 all 2 300
19 60 3 927 all 3 400
20 60 3 726 all 3 300
21 60 3 255 megadocs 2 400
22 60 3 208 megadocs 2 300
23 60 3 118 megadocs 3 400
24 60 3 101 megadocs 3 300
25 10 2 428 all 2 400
26 10 2 474 all 2 400
27 10 2 500 all 2 400

57

Table 10.2: Categories included in the datasets

Category Datasets
Arts>Literature>Poetry 1-8
Business>Investing>Investment Guides 1-8
Computers>Artificial Intelligence 1-16,25
Computers>Artificial Intelligence>Agents 26
Computers>Artificial Intelligence>Machine Learning 26
Computers>Artificial Intelligence>Machine Learning>Case-based reas. 27
Computers>Artificial Intelligence>Machine Learning>Datasets 27
Computers>Speech technology 25
Games>Gambling>Blackjack 1-24
Health>Fitness>Aerobics 1-16
Kids and Teens>School Time 1-16
News>Internet Broadcasts 1-8
Recreation>Climbing 1-24
Recreation>Climbing>Indoor 1-8
Recreation>Food>Drink>Wine 1-8
Recreation>Food>History 1-8
Reference>Dictionaries 1-8
Science>Astronomy 1-8
Science>Social Sciences>Psychology>Behavior Analysis 1-8
Shopping>Consumer Electronics>Audio 1-8
Society>Religion and Spirituality>Taoism 1-8
Sports>Snowboarding 1-8

58

 2 3 4 5 6 7 8 9 10 12 11
0

10

20

30

40

50

60

70

80

90

100

F
re

qu
en

cy
 o

f m
ul

tip
lic

iti
es

 (
%

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0%

Multiplicity of terms in a document

Figure 10.1: Pareto graph of term multiplicities

for the datasets no.21-24 we obtained distinctive clusters each comprising docu-
ments of same category, but in other cases it led to low variances captured by the
first and second principal component and thus the results were useless.

These observation give an idea how the term dictionary can be reduced which
would be a big asset for the classification computations. The influence of these changes
on the similarity measures between documents is described in the following chapter 11.

59

Chapter 11

Document similarity testing

11.1 Similarity visualization by means of Sammon’s map-
ping

In this chapter we discuss evaluation of similarity measurements among Web docu-
ments, after they were indexed by the process described in section 7.2. The similarity
is measured by cosine of angle between document vectors, where the vector elements
are weightened by TFIDF weightening. We tested 180 Web documents from 18 cate-
gories, i.e. the datasets 1-8 as described in table 10.1. For each dataset we calculated
a distance matrix and applied the Sammon’s mapping technique for visualization of
similarities among documents in a 2D graph. Each symbol in the mappings represents
a document of a category, the included categories with their symbols (the legend) are
described in figure 11.9. Documents within a same category should be close together
and compose separate clusters. The quality of clustering varies for different datasets,
as it is observable in the following figures. Each couple of figures displays the Sam-
mon’s mappings of datasets indexed by using the classical or megadocument approach,
respectively.

We observed that the results with a significantly reduced dictionary by the megadoc-
ument approach are comparable or even better than the results achieved by the classic
approach. Thus we concluded there is no reason for using huge dictionaries and we
decided for megadocuments in the design and implementation of our system. The
best result was achieved with the dataset no.7 (figure 11.6), where the term frequency
threshold is set to 2, the number of extracted terms are 400 and the megadocument
approach is used for the dictionary definition. When the threshold is increased (fig-
ures 11.4 and 11.8) or the number of terms decreased (figure 11.2 and 11.4), the clus-
tering of documents is not so remarkable. The calculation of the Sammon’s mapping
was carried out several times for confirmation of the presented observations.

11.2 Similarity tests on different categorical levels

In order to discover if a deepness of categories in the hierarchical tree influences sim-
ilarity among Web documents within a category and between different categories, we
performed three tests, each on different level of the ODP hierarchy. The datasets no.26,
27 and 28 comprise two categories on the second, third and fourth level of the ODP

60

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 11.1: Sammon’s mapping, dataset no.1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 11.2: Sammon’s mapping, dataset no.5

61

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 11.3: Sammon’s mapping, dataset no.2

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 11.4: Sammon’s mapping, dataset no.6

62

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 11.5: Sammon’s mapping, dataset no.3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 11.6: Sammon’s mapping, dataset no.7

63

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 11.7: Sammon’s mapping, dataset no.4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 11.8: Sammon’s mapping, dataset no.8

64

Figure 11.9: Legend to the Sammon’s mapping figures

hierarchy, respectively. Similarities were measured as cosine of angle of normalized
vectores and in the following sections they are presented as percentage values.

Testing on the second level

Table 11.1 summarizes the similarity among documents from the “Artificial Intelli-
gence” (�|� �
	��
�
�
	 �|���) and “Speech technology” (

� w �
	��
�
�
	 � wF�) categories, which are
children of the category "Computers". The mean of similarities of documents within
the first and within the second category is

#��"�
and � � , respectively, thus the first ca-

tegory is much more coherent than the second one. The mean of similarities between
documents among those two categories is

#��
.

Table 11.1: Similarity between the "Artificial intelligence" (AI) and "Speech technol-
ogy" (ST) categories A¡
¢ A¡f£ ¤¡¦¥ ¤¡U§ ¤¡f¨ ©"ª*¢ ©"ª«£ ©«ª«¥ ©«ª�§ ©"ª«¨ ¤¡ ¢

x 38% 19% 11% 12% 3% 0% 3% 1% 2% ¤¡ £
38% x 18% 13% 13% 1% 0% 1% 1% 0% ¤¡ ¥
19% 18% x 5% 4% 0% 1% 1% 2% 0% ¤¡ §
11% 13% 5% x 9% 0% 0% 0% 2% 1% ¤¡¬¨
12% 13% 4% 9% x 1% 1% 2% 2% 1%©"ª ¢
3% 1% 0% 0% 1% x 3% 14% 7% 3%©"ª £
0% 0% 1% 0% 1% 3% x 3% 2% 5%©"ª ¥
3% 1% 1% 0% 2% 14% 3% x 6% 5%©"ª §
1% 1% 2% 2% 2% 7% 2% 6% x 26%©"ª ¨
2% 0% 0% 1% 1% 3% 5% 5% 26% x

Testing on the third level

Table 11.2 summarizes the similarity among documents from the “Machine learning”
(­k® ��	��
�
�
	 ­k®¯�) and “Agents” (� Ej�
	��
����	 � E �) categories, that are children of the
category "Artificial Intelligence". The mean of the similarites of documents within the

65

first and within the second category is ° � and
#Y#��

, respectively. Thus, the "Machine
learning" category seems rather incoherent. The mean of similarities among those two
categories is ± � .

66

Table 11.2: Similarity between the "Machine learning" (ML) and "Agents" (Ag) cate-
gories ²´³ ¢ ²´³ £ ²´³ ¥ ²´³ § ²´³ ¨ ¶µ ¢ ·µ £ ¶µ ¥ ¶µ § ¶µ ¨²´³ ¢

x 8% 2% 3% 2% 0% 0% 0% 1% 1%²´³ £
8% x 6% 8% 8% 4% 2% 3% 3% 2%²´³ ¥
2% 6% x 3% 3% 1% 0% 0% 1% 1%²´³ §
3% 9% 3% x 6% 4% 4% 4% 4% 4%²´³ ¨
2% 8% 3% 6% x 1% 1% 1% 2% 5% ·µ ¢
0% 4% 1% 4% 1% x 24% 10% 30% 18% ·µ £
0% 2% 0% 4% 1% 23% x 4% 19% 7% ·µ ¥
0% 3% 0% 4% 1% 10% 4% x 9% 5% ·µ�§
1% 3% 1% 4% 2% 30% 19% 9% x 7% ·µ ¨
1% 2% 1% 4% 5% 18% 7% 5% 7% x

Testing on the fourth level

Table 11.3 summarizes the similarity among documents from the “Case-based reason-
ing” (�¹¸ �
	
���
��	 �¹¸º�) and “Datasets” (

� � ��	��
����	�� � �) categories, that are children of
the category "Machine Learning".

The mean of similarites of documents within the first and within the second cate-
gory is ± !«� and

�"�
, respectively. The mean of similarities among those two categories

is ± � . The category "Case-based reasoning" seems to be very coherent except the �¹¸ e
document, which is a Web page containing only personal names of people interested in
case-based reasoning, so there is no wonder why the similarity of this document with
the others of the same category is so low. The "Datasets" category is rather incoherent,
mainly because of the lack of the common terms.

Table 11.3: Similarity between the "Case-based reasoning" (CR) and "Datasets" (DS)
categories »¤¼ ¢ »¤¼ £ »¤¼ ¥ »¤¼ § »¤¼ ¨ ½ © ¢ ½ © £ ½ © ¥ ½ © § ½ © ¨»¤¼ ¢

x 3% 21% 26% 27% 1% 0% 0% 0% 0%»¤¼ £
3% x 6% 3% 3% 3% 1% 0% 0% 0%»¤¼ ¥
21% 6% x 38 24% 3% 1% 1% 0% 1%»¤¼ §
26% 3% 38% x 39% 0% 1% 0% 2% 0%»¤¼ ¨
27% 3% 24% 39% x 0% 1% 0% 2% 1%½ © ¢
1% 3% 3% 0% 0% x 5% 2% 3% 4%½ ©«£
0% 1% 1% 1% 1% 5% x 3% 2% 5%½ © ¥
0% 0% 1% 0% 0% 2% 3% x 2% 5%½ © §
0% 0% 0% 2% 2% 3% 2% 2% x 4%½ © ¨
0% 0% 1% 0% 1% 4% 5% 5% 4% x

Conclusion of the level testing

The assumption that documents in a deeper level have more specific vocabulary and
thus the similarity between documents of a category would be higher was not approved.
It varies from category to category and a level in the hierarchy has no impact on it.

67

There are some categories which are very incoherent in the hierarchy, and thus
we conclude that it is not advisable to use e.g. � nearest neighbour or centroid-based
document classification method, but rather the megadocument approach, which clears
noisy words and creates a better category-specific dictionary.

68

Chapter 12

Testing of the categorization
effectiveness

12.1 Training and test data

The megadocument classifier was trained and tested on 18 categories of ODP (see
table 12.1). The training of the classifier was carried out with data obtained by means
of Google, i.e. by indexing megadocuments from the top ranked Web pages present
in the Google Web directory. Maximum of 100 terms per page was extracted until the
whole megadocument reached the number of 500 terms. It means approx. 5 Web pages
from Google were used.

The test data were gathered from corresponding categories of ODP, with omitting
the pages which were used for the training megadocuments. Additionally, there was
another portion of Web pages, which was also deleted form the test dataset. It was
those Web pages that were categorized in the Google Web directory and Google gave
in response to a query for related pages the same ones as a top result with already
assigned category. Thus, there would be no task for our classifier and for this reason
also these Web pages were not used for the testing. It would be rather discreditable and
the results of our testing would be strongly biased, if we test these simple cases. Only
the Web pages, for which the classification was considerable including more candidate
categories, were presented in the test-bed.

The indexing of test pages was carried out as follows: the number of 400 terms was
extracted from each test document, all the terms in the initial Web page and the rest
from linked pages within the same server. Further details about the indexing, training
and classification process are described in chapters 7 and 8 (design and implementa-
tion).

12.2 Evaluation method

The evaluation is based on the classic notion of precision with adaptation to the text
categorization, as described in [Govert99]. Precision with respect to a category �b, is
defined as the conditional probability, that if a random document

�
is classified under�¯, , this decision is correct. This probability may be estimated as

69

¾¿-t , � w ¿ ,w ¿ ,�ÀÂÁ ¿ ,
where w ¿ , denotes the number of documents correctly classified under �7, (true

positives with respect to �R,) and Á ¿ , denotes the number of incorrectly classified
documents (false positives). For the whole category set of size

T
, we use the micro-

averaging evaluation, which is obtained by global summing over all individual deci-
sions, i.e.

¾¿-t¹� _ �,a` � w ¿ ,_ �,a` � 2 w ¿ ,OÀÃÁ ¿ , :
12.3 Results

Table 12.1 shows the results of the testing. The first column displays the names of cate-
gories in ODP, the second column the number of correctly categorized Web documents
and the third column the total number of the tested Web documents in a category.
From this we calculated the micro-averaged precision, considering the 18 categories
together with other categories which Google suggested as "false" candidates in the pre-
classification. A decision of the classifier to classify a document to one of these “false”
categories was naturally evaluated as incorrect, thus as a "false positive" (FP) for a ca-
tegory. A document which was categorized into its training category (or into its more
specific subcategory) was evaluated as a "true positive" for a category.

We achieved a value of 73 % for the micro-averaged precision. This is comparable
to the results obtained in text categorization applied to the standard text collections
like Reuters, which varies between 70 and 80 % (see [Yang99]). When we compare
our system to the recent systems for Web document categorization, our result is much
better than those reported by e.g. [Govert99] and [Klas00], who achieved only max.
37% and 51% precision, respectively. Their evaluation was carried out with a testbed
created from Yahoo!, however there should not be a big difference to ODP.

We accredit our favorable results to the pre-classification process which signifi-
cantly narrows the number of candidate categories, i.e. the amount of training data for
a tested bookmark. This approach brought significant improvement to our system.

70

Table 12.1: Effectiveness of the classifier

Category Correct Total

Arts>Literature>Poetry 21 23
Business>Investing>Investment Guides 25 60
Computers>Artificial Intelligence 20 24
Computers>Artificial Intelligence>Machine Learning 10 16
Games>Gambling>Blackjack 21 21
Health>Fitness>Aerobics 37 48
Kids and Teens>School Time 43 67
News>Internet Broadcasts 11 19
Recreation>Climbing 25 29
Recreation>Climbing>Indoor 7 10
Recreation>Food>Drink>Wine 27 31
Recreation>Food>History 16 22
Reference>Dictionaries 5 15
Science>Astronomy 16 16
Science>Social Sciences>Psychology>Behav. Analysis 12 16
Shopping>Consumer Electronics>Audio 25 31
Society>Religion and Spirituality>Taoism 25 26
Sports>Snowboarding 20 25

In total 366 499

71

72

Chapter 13

Testing of the system by users

We have asked some of our colleagues to test the system, that is to install CaterBook,
import their recent bookmarks, let them automatically categorize, evaluate the results
and fill a questionary. We have addressed 15 people and we have got 9 responses. The
users were asked about the following in the questionary :

1. The total number of bookmarks a user imported to Caterbook.

2. The number of bookmarks in the folder "Others".

3. The number of non-English bookmarks in the folder "Others”.

4. The number of unreachable bookmarked Web pages in the folder "Others".

5. The number of bookmarks which were according to user’s opinion wrongly cat-
egorized.

6. The number of those wrongly categorized bookmarks, which have even the top
category wrongly assigned.

7. How were the user satisfied with CaterBook, with options: very frustrated, un-
satisfied, neutral, contented, very keen.

8. Whether the user will use CaterBook in future, if some additional features are
implemented, with options: absolutely not, probably not, maybe, likely, surely.

Table 13.1 summarizes users’ responses, where each column refers to one question.
We can see that number of bookmarks per user differs a lot, some people we asked
for testing even do not use bookmarks, however some of them use bookmarking very
heavily.

Figure 13.1 shows categorization results evaluated by users, that is six ratios for
each user. Meaning of abbreviations in the legend is the following: > C > refers to the
total number of user’s bookmarks, Ä x"B to the number of valid (English and not obso-
lete) bookmarks,

��B5x S�S to the number of classified (the pre-classification by means of
Google suggested candidate categories and the classification was performed),

�
C$t
to

the number of correctly categorized bookmarks (according to a user) and > C
u��
C$t to the
number of correctly assigned to a top category.

Figure 13.2 shows an example of a part of user’s categorized bookmarks concerning
the artifical intelligence area. Icons on the right side represent the user’s evaluation
about the correct and incorrect categorization.

73

Table 13.1: Results of the user’s testing

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
user total others non-eng. unreach. wrong abs.wr. satisf. future

1 166 92 10 33 28 11 neutral maybe
2 147 65 23 5 21 11 content maybe
3 72 36 14 10 8 7 content maybe
4 880 445 101 54 40 13 content maybe
5 53 21 10 8 3 1 content maybe
6 180 70 25 37 29 10 neutral likely
7 20 7 3 4 2 1 content maybe
8 89 30 2 15 12 7 content maybe
9 359 192 58 20 19 10 content likely

Figure 13.1: Categorization precision evaluated by users

74

Computers
Artificial Intelligence

Academic departments
Agents

Fuzzy
Belief networks

Knowledge represenation

Machine learning
Conferences
Datasets

Publications

Research groups
Software

AILab, University of Zurich

Jackal

JavaBayes 0.346

FuzzyCLIPS

CLIPS

Topic Map

Ontology

SemanticWeb.org

UMUAI homepage

DELVE

The Reuters 21578

Fabrizio Sebastiani

Machine learning laboratory

The Bow toolkit

Weka 3

Incremental Tree Inducer

http://jackal.cs.umbc.edu/

http://www−2.cs.cmu.edu/~javabayes/Home/

http://users.bestweb.net/~sowa/ontology/

http://www.semanticweb.org/

http://umuai.informatik.uni−essen.de/

http://www.cs.toronto.edu/~delve/index.html

http://www.iit.nrc.ca/II_public/Classification/resources.html

http://www.ghg.net/clips/CLIPS.html

http://www.topicmap.com

http://www.ifi.unizh.ch/groups/ailab/

http://www.cs.umass.edu/~lrn/

http://www−2.cs.cmu.edu/~mccallum/bow/

http://www.cs.waikato.ac.nz/~ml/weka/index.html

http://www.cs.umass.edu/~lrn/iti/

Text Classification:Resources

http://www.research.att.com/~lewis/reuters21578.html

http://faure.iei.pi.cnr.it/~fabrizio/central.html#ATCbiblio

http://ai.iit.nrc.ca/IR_public/fuzzy/fuzzyClips/

Figure 13.2: Example of categorization of user’s bookmarks concerning the artificial
intelligence

Since the testing has been carried out with such a small sample of users, we can-
not make any significant conclusion. However, we consider the users’ evaluations as
a valuable preview of the functionality of our system. Additionally, the users gave us
some more comments about their experiences with the system. They appreciated the
recommendation service and found it beneficial. On the other hand, they judged neg-
atively that the categorization system does not take into account the original structure
of a bookmark file during its import.

75

76

Chapter 14

Conclusions

In this report, we have addressed the issue of adaptive and automated bookmark man-
agement. We have investigated the usage of information retrieval and machine learning
techniques for the organizing bookmarks in an automated way and we have concluded
the automated text categorization can be applied to our problem. We have had to over-
come difficulties with a heterogeneity of Web documents, that influences performance
of a classification. We have solved it by the megadocument approach for the train-
ing data processing, which wipes out noisy words and preserves the significant feature
terms. Another problem has emerged with the training of our classification system for
such a broad area of topics that bookmarks can comprise. We have solved this issue
by a “pre-classification”, where our agent negotiates with the Google search engine for
candidate categories for a particular bookmark. After obtaining these candidates, the
classifier can be trained on the data contained in these categories and can classify the
bookmark. The negotiation has shown to be a crucial and volatile point of the categori-
zation process, because if a correct category is not among the candidates, the following
classification cannot result in a right decision. However, such a pre-classification has
shown to be necessary because of the classification computational costs.

We have suggested the organization of bookmarks in a hierarchy of categories,
based on the structure of ODP. In order of adaptability the user’s hierarchy is built dy-
namically according additions and removals of bookmarks. The number of bookmarks
in a categorical folder can be constrained by maximum and minimum thresholds, which
can lead to the splitting and merging of folders. The idea of propagation of bookmarks
to the parent categorical folder has been presented.

Bookmarking is not the only way, how to manage a user’s area of interesting Web
pages. We have concluded that our system can be more than just a bookmark manager
and we have integrated an assistant service for recommendation of similar Web pages
to the bookmarked ones. This feature has been often positively judged by users during
their evaluation of the system.

The testings, which have been carried out, have helped us in every stage of the
work and revealed several interesting aspects about documents on the Web with respect
to their automated categorization and application for bookmarks. Then, the designed
system has been fully implemented as a client-side application and named CaterBook.
It has been coded in Java programming language and thus it is a platform independent.
The prototype version is freely available and we hope it will facilitate a user’s work
with the Web.

77

14.1 Future work

There is a lot of space for a future research in the area of adaptive and automated book-
mark management. We see some issues which can be improved in the categorization
module of our system. Several different techniques can be used for the feature extrac-
tion from Web pages, considering their structuring and hyperlink cohesion. It is also
desirable to explore other techniques for the representation of Web documents, e.g. the
latent semantic indexing.

The bookmark management and adaptability to a user can be improved in several
aspects. Our system does not take in account the recent structure of a user’s bookmark
file, namely the folders, which were already created by a user. Combination of a user’s
structuring and the categorical hierarchy of ODP can bring a new quality to the book-
mark management. Other issue, which was not yet addressed, is the placement of a
bookmark to more than one category. It is considerable for many Web pages, that more
than one category can fit and thus it would facilitate a searching when a bookmark is
placed in more categories. The very essential improvement we see in a searching in-
terface for bookmarks, not only searching in titles and URLs, but also in the content
of bookmarked Web pages. Because the feature keywords are extracted by the system
during the categorization process, it should be straightforward to implement a simple
search engine, which would facilitate searching for bookmarks. Other visualization of
bookmarks than the hierarchy of categories can be investigated, e.g. tree-map visual-
ization, and thus the system could offer multiple views to the user’s bookmarks. There
is also a small step towards user modeling, i.e. the evaluation of user’s areas of interest,
their specifity, intensity and variability in time.

We are strongly encouraged to continue with our research in order to facilitate
bookmark management and personalization on the World Wide Web.

78

Bibliography

[Abrams98] D. Abrams, R. Baecker, M. Chignell. Information Archiving with
Bookmarks: Personal Web Space Construction and Organization. In
Proceedings CHI-98, Conference on Human Factors in Computing
Systems, pp 41-48, Los Angeles, USA, 1998.

[Attardi99] G. Attardi, A. Gullí and F. Sebastiani. Automatic Web Page Catego-
rization by Link and Context Analysis. In Proceedings of THAI-99,
1st European Symposium on Telematics, Hypermedia and Artificial
Intelligence, pp. 105-119, 1999.

[Bartfai94] G. Bartfai. Hierarchical Clustering with ART Neural Networks. In
Proceedings of the IEEE International Conference on Neural Net-
works, volume 2, pp. 940-944. 1994.

[Boley99] D. Boley, M. Gini, R. Gross, E. Han, K. Hastings, G. Karypis, V. Ku-
mar, B. Mobasher, J. Moore. Partitioning-Based Clustering for Web
Document Categorization. Journal of Decision Support Systems. Vol
27, no. 3, pp. 329-341, 1999.

[Belew00] R.K. Belew. Finding Out About: a cognitive perspective on search
engine technology and the WWW. Cambridge University Press, 2000.

[Chakrabarti98] S. Chakrabarti and B. E. Dom and P. Indyk. Enhanced hypertext cate-
gorization using hyperlinks. In Proceedings of SIGMOD-98, ACM In-
ternational Conference on Management of Data, pp. 307-318, ACM
Press, New York, US, 1998.

[Chekuri97] C. Chekuri and P. Raghavan. Web Search Using Automatic Classi-
fication. In Proceedings of the Sixth International World Wide Web
Conference, Santa Clara, CA, USA, 1997.

[Chen00] H. Chen and S.T. Dumais. Bringing order to the Web: Automatically
categorizing search results. In Proceedings of CHI’00, Conference on
Human Factors in Computing Systems, The Hague, NL, 2000.

[Chen98] L. Chen and K. Sycara. Webmate : A personal agent for browsing
and searching. In Proceedings of 2nd International Conference on
Autonomous Agents, Minneaoplois, USA, 1998.

[Chuang00] W. Chuang, A.Tiyyagura, J.Yang, and G.Giuffrida. A Fast Algorithm
for Hierarchical Text Classification. In Proceedings of the Second In-
ternational Conference on Data Warehousing and Knowledge Dis-
covery (DaWaK’00), pp. 409-418. London-Greenwich, UK, 2000.

79

[Cutting92] D.R. Cutting, D.R. Karger, J.O. Pedersen and J.W. Tukey. Scat-
ter/Gather: A Cluster-based Approach to Browsing Large Document
Collections. In Proceedings of the 15th Annual International Con-
ference on Research and Development in Information Retrieval (SI-
GIR’98), Copenhagen, 1992.

[Deerwester90] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K.
Landauer, and Richard Harshman. Indexing by latent semantic anal-
ysis. Journal of the American Society for Information Science, 41(6).
pp. 391-407, September 1990.

[Frommholz01] I. Frommholz. Categorizing Web Documents in Hierarchical Cata-
logues. In Proceedings of ECIR-01, 23rd European Colloquium on
Information Retrieval Research, Darmstadt, Germany, 2001.

[Glover02] E. J. Glover, K. Tsioutsiouliklis, S. Lawrence, D. M. Pennock and
G. W. Flake. Using Web structure for classifying and describing Web
pages. In Proceedings of WWW-02, International Conference on the
World Wide Web, Honolulu, Hawai, 2002.

[Google] L.Page and S.Brin. Google. 1997. http://www.google.com

[Govert99] N. Govert, M. Lalmas, and N. Fuhr. A probabilistic description-
oriented approach for categorising Web documents. In Proceedings
of the 8th International Conference on Information and Knowledge
Management, pp. 475-482, ACM, New York, 1999.

[Han01] J. Han. Data mining:concepts and techniques. Morgan Kaufmann,
San Francisco, 2001.

[Kaasten01] S. Kaasten and S. Greenberg. Integrating Back, History and Book-
marks in Web Browsers. In Extended Abstracts of the ACM Confer-
ence of Human Factors in Computing Systems (CHI’01), pp.379-380,
ACM Press. 2001.

[Keller97] R.M. Keller, S.R. Wolfe, J.R. Chen, J.L. Rabinowitz and N. Mathe.
Bookmarking Service for Organizing and Sharing URLs. In Proceed-
ings of the 6th World-Wide Web Conference, Santa Clara, USA, 1997.

[Kessler97] B. Kessler, G. Nunberg and H. Schütze. Automatic detection of text
genre. In Proceedings of ACL-97, 35th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 32-38, Morgan Kaufmann
Publishers, San Francisco, US, 1997.

[Klas00] C. Klas and N. Fuhr. A new Effective Approach for Categorizing Web
Documents. Proceedings of BCSIRSG-00, the 22nd Annual Collo-
quium of the British Computer Society Information Retrieval Spe-
cialist Group, 2000.

[Labrou99] Y. Labrou and T. Finin, Yahoo! As an Ontology: Using Yahoo! Cat-
egories to Describe Documents. In Proceedings of 8th International
Conference on Knowledge and Information Management (CIKM-99),
Kansas City, MO. 1999.

80

[Maarek96] Y.S. Maarek I.Z.B. Shaul. Automatically Organizing Bookmarks per
Contents. In Proceedings of the 5th International World Wide Web
Conference. Paris, France, 1996.

[Mase98] H. Mase. Experiments on Automatic Web Page Categorization for IR
system. Technical report, Stanford University, 1998.

[Mladenic98] D. Mladenic. Turning Yahoo! into an Automatic Web-Page Classi-
fier. Proceedings of the 13th European Conference on Aritficial Intel-
ligence ECAI’98, pp. 473-474. 1998.

[Mladenic99] D. Mladenic. Machine learning used by Personal WebWatcher. Pro-
ceedings of ACAI-99, Workshop on Machine Learning and Intelligent
Agents, Chania, Crete, 1999.

[Mitchell97] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[ODP] Open Directory Project. 1998. http://www.dmoz.org

[Pazzani96] M. Pazzani, J. Muramatsu, and D. Billsus. Syskill & Webert: identify-
ing interesting Web sites. In Proceedings of 13th National Conference
on Artificial Intelligence, pp.54-61. Portland, USA, 1996.

[Porter88] M.F. Porter. An algorithm for suffix stripping. In Program, 14 no. 3,
pp. 130-137, July 1980.

[Rasmussen92] E. Rasmussen, editorials W. B. Frakes and R. Baeza-Yates. Informa-
tion Retrieval: Data Structure and Algorithms. Chapter 16: Clustering
Algorithms, pp.419-442. Prentice Hall, USA, 1992.

[Reuters] Reuters text categorization test collection.
http://www.research.att.com/˜lewis/reuters21578.html

[Ridley00] J.S. Ridley.A summative evaluation of the Google search engine.
2000.
http://www.atomicrevs.net/jaki/google/test.html

[Rijsbergen79] C. J. van Rijsbergen, Information Retrieval. Butterworths, London.
1979.

[Roth98] D. Roth. Learning to resolve natural language ambiguities: a unified
approach. In Proceedings of AAAI-98, 15th Conference of the Ameri-
can Association for Artificial Intelligence, pp. 806-813, AAAI Press,
Menlo Park, US, 1998.

[Rucker97] J. Rucker and J.P. Marcos. Siteseer: Personalized Navigation for the
Web, Communications of the ACM, pp. 73-75, Vol. 40, no. 3, March
1997.

[Rumehart86] D. E. Rumehart, G. E. Hinton, and J. L. McClelland. Parallel Dis-
tributed Processing, chapter A General Framework for Parallel Dis-
tributed Processing, pp. 45-76. The MIT Press, Cambridge, MA,
1986.

81

[Rusell95] S. Russell and P. Norwig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 1995.

[Salton88] G. Salton and C. Buckley. Term-weightining approaches in automatic
text retrieval. Information Processing and Management 24, 5, pp.
513-523.1998.

[Sebastiani99] F. Sebastiani. A tutorial on automated text categorisation. In Proceed-
ings of ASAI-99, 1st Argentinian Symposium on Artificial Intelligence,
pp. 7-35. Buenos Aires, AR, 1999.

[SemanticWeb] W3C Semantic Web. http://www.w3.org/2001/sw/

[Webclient01] Webclient v1.1 . 2001.
http://www.mozilla.org/projects/blackwood/webclient/

[XBEL99] The XML Bookmark Exchange Language (XBEL), version 1.0. 1999.
http://www.oasis-open.org/cover/xbel.html

[XUL01] XML User Interface Language (XUL) 1.0 . 2001.
http://www.mozilla.org/projects/xul/xul.html

[Yahoo!] D. Filo and J.Yang. Yahoo! 1994. http://www.yahoo.com

[Yang99] Y. Yang and X. Liu. A re-examination of text categorization meth-
ods. In Proceedings of the 22th Annual International Conference on
Research and Development in Information Retrieval (SIGIR’99), pp.
42-49, 1999.

[Zamir98] O. Zamir and O. Etzioni. Web document clustering: A feasibility
demonstration. In Proceedings of the 21th Annual International Con-
ference on Research and Development in Information Retrieval (SI-
GIR’98), 1998.

Note: all the Internet addresses were checked and operational on � u&t . B¬# ± th 	 ± !Y! ± .

82

Appendix A

User’s manual to CaterBook

Overview

CaterBook is a bookmark management tool, which automatically organizes user’s book-
marks in a Yahoo-like hierarchy of categories. At the first execution it imports user’s
bookmark file and categorizes the bookmarked Web pages. The hierarchy of cate-
gories is dynamically built during the categorization process. After the categorization
finishes, the user can easily browse through the hierarchy, manipulate with the book-
marks and add new bookmarks. A user can also use CaterBook without importing his
recent bookmarks, just by testing it with arbitrary URLs.

Features� automated classification of English written Web pages and categorization into
appropriate folders.� dynamical building and maintaining of the hierarchy of categorical folders.� monitoring of a browser’s bookmark file and checking for newly added book-
marks. When a new bookmark is detected, it is automatically submitted for
classification and sorted into a categorical folder in the hierarchy. The bookmark
file import and monitoring currently works with Mozilla , Netscape Navigator,
Konqueror, Opera and Internet Explorer in all their versions.� loading and saving of bookmarks in the XML format. The format of a saved file
fulfill the XML Bookmark Exchange Language (XBEL) standard (http://www.oasis-
open.org/cover/xbel.html).

System Requirements

The application is written in 100% pure Java and it can run on any Java 2 platform. For
a complete list of platforms that support Java, please check http://www.javasoft.com/cgi-
bin/java-ports.cgi

System requirement for hardware is basically the same as that of any Java 2 envi-
ronment, 128 MB RAM is recommendable. Additionally it requires a fast and stable
Internet connection (T1/T3/DSL) and approximately 1 MB of free space on a hard disc
(200 kB for the application and 800 kB for the working data).

Platforms which were tested for running CaterBook:

83

� Sun Ultra 5, 128 MB RAM, Solaris SunOS 5.7� PC Pentium II, 128 MB RAM, Linux 2.4.18, Debian distribution� PC Pentium II, 128 MB RAM, Windows NT 4.0, service pack 6a� PC Pentium III, 256 MB RAM, Windows 2000 Professional edition

Download

The newest version of CaterBook, packed in a zipfile can be downloaded at http://caterbook.can.com
.

Installation

1. Make sure that you have installed Java 2 Runtime Environment (1.2 or later),
which is free for download at Sun’s Java site http://java.sun.com/ j2se/. If not,
please download a free copy at this site and install it according to the installation
instruction. If you have installed JDK that already include Java virtual machine,
you don’t need to install Java Runtime any more.

2. Choose a directory of your choice and unzip the file you downloaded to the
directory. A subdirectory called caterbook with the application is automatically
created. There is no additional installation.

Uninstallation

Simply delete the whole directory, where you have installed CaterBook.

Starting CaterBook in Windows

1. Go to the CaterBook’s directory and find the caterbook.jar file. Try double click-
ing on it and CaterBook should start up. If this fails you need to change the
application which Windows uses for opening a .jar file. Right-click on the cater-
book.jar file and choose: "Open With... > Choose the program... >". Browse the
list with programmes you will see and choose javaw and if applicable, set it with
an option as javaw -jar. Don’t forget to mark "Always use this program to open
these files".

2. The simplest way to start-up CaterBook in future times is to make a shortcut
to your desktop from the caterbook.jar file (just right-click again to make the
shortcut). Please, do not move the file itselft from the directory, otherwise the
application will not work properly.

3. When you start CaterBook for the first time, a window with the user’s prefer-
ences will appear (see figure A.1). If you want to import your recent book-
marks, please choose there which browser you use and the location of your
bookmark file or "favorites" directory. The usual location of MS Internet Ex-
plorer "Favorites" directory is in your profile directory, e.g. “C:\Documents and
Settings\username\Favorites” or
“c:\Windows\Profiles\username\Favorites”.

84

Figure A.1: Preferences dialog

4. The first import of your bookmark file can take a really long time (for 100 book-
marks approximately half an hour). Don’t worry about the application and let it
run in the background. If you skip the initial categorization process or the sys-
tem crashes (which should never happen!), restart the application and click on
the button “Reimport” in the preferences dialog.

Starting CaterBook on Unix systems

1. Go to the caterbook directory and find the caterbook.jar file. Start the application
by java -jar caterbook.jar. If you want to launch the application from another
directory, start it by java -jar PATH/caterbook.jar, where PATH is the path to the
location of caterbook.jar.

2. When you start CaterBook for the first time, a window with the user’s preferences
will appear (see figure A.1). Please choose there which browser you use and the
location of your bookmark file. Finding of the location might be difficult, try the
following paths:

(a) Netscape Navigator: $HOME/.netscape/bookmarks.html

(b) Mozilla: $HOME/mozilla/bookmarks.html

(c) Konqueror: $HOME/kde/bookmarks.xml

3. The first import of your bookmark file can take a really long time (for 100 book-
marks approximately half an hour). Don’t worry about the application and let it
run in the background. If you skip the initial categorization process or the sys-
tem crashes (which should never happen!), restart the application and click on
the button “Reimport” in the preferences dialog.

Categorization of bookmarks

The categorization process is based on finding of similarity between the bookmarked
Web page and Web pages already categorized in the Google Web directory (http://directory.google.com)
. It happens CaterBook fails in the categorization of bookmarks, because no similarity
was found or the bookmarked URL is obsolete. In this case the bookmark is sorted
into a top folder called "Others". CaterBook supports in the current version only cate-
gorization of English written Web pages. Web pages written in another language are
categorized in the folder "Others". Note, that the default preset bookmarks of Netscape
Navigator and Internet Explorer are skipped during the import of a bookmark file. They
are usually considered as useless.

85

Label with status messages

Tree of categorical folders

Selected bookmark

Table with bookmarks of the selected folder

Categorization and recommendation buttons

Figure A.2: Screenshot of CaterBook

Working with the CaterBook

The application frame is splitted into two panels, on the left is the hierarchy tree of
categories and on the right are the bookmark records of the currently selected category
(see figure A).

The bullet of each bookmark record shows if a bookmark is categorized precisely
in that folder (a green bullet) or if it is categorized in a subfolder (a blue bullet). The
displaying of bookmarks even in the upper categories than they are really categorized
facilitates the searching. You can affect the maximum and minimum number of book-
marks in a category by setting the values in the Tree tab pane of the preferences dialog.
After the maximum of bookmarks in a category folder is reached, the application will
offer splitting of the folder into subfolders and resorting of the contained bookmarks.
The bookmarks can be manipulated in several ways:� show a bookmark in the browser - press the right mouse button and choose the

Open in a browser item from the pop-up menu. Or select the bookmark and click
on the Open button in the toolbar.� categorize a new Web page - type the new URL into the text field in the toolbar
and click on the Categorize button.� get recommendation for related Web pages to a bookmark - select a bookmark
and click on the button “Recommend” at the right top corner. In the table you
will get in few seconds a list of related Web pages, displayed with a red bullet
(see figure A.3).� move a bookmark - press the left mouse button, drag the bookmark record from
the table and drop it to another folder� copy a bookmark - press the left mouse button and Control key, drag the book-
mark record from the table and drop it to another folder� delete a bookmark - press the right mouse button and choose the Delete item
from the pop-up menu.

86

button for recommendation of related Web pages

selected bookmark

related Web pages

Figure A.3: Recommendation of related Web pages

� rename a bookmark - press the right mouse button and choose the Rename item
from the pop-up menu.

87

Appendix B

Paper

The following paper called “A System for Automated Bookmark Management” was
submitted to the 14th Belgian-Dutch Conference on Artificial Intelligence (BNAIC’02).

88

Appendix C

Enclosed CD-ROM

The CD-ROM enclosed to the thesis contains the following:� The installation package of the prototype system CaterBook.� The source code of the system including the Java documentation.� The thesis text in the PDF and HTML format.� The conference paper presented in Appendix B in the PDF format.� The conference and journal papers used in the bibliography in the PDF format.

When using the CD-ROM, start a browser with the file index.html placed in the root
directory, which contains the interface to the content.

99

