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Abstract 
 

A robust way to discern facial mimics (facial muscle 
activity) in images of faces, insensitive to scale, pose, and 
occlusion, is still the key research challenge in automatic 
facial expression analysis domain. A practical method 
recognized as the most promising one for addressing this 
problem is through facial mimics analysis of multiple 
views of the face. However, portraits of faces or nearly 
frontal-views of faces constitute input data processed by 
current systems for automatic facial mimics analysis. To 
advance the existing technological framework upon which 
further research on automatic facial mimics analysis from 
multiple facial views can be based, we developed an 
automatic system as to analyze subtle changes in facial 
expressions based on profile-contour fiducial points in a 
profile-view video. A probabilistic classification method 
based on statistical modeling of the color and motion 
properties of the profile in the scene is proposed for 
tracking the profile face. From the segmented profile 
face, we extract the profile contour and from it, we extract 
10 profile-contour fiducial points. Based on these face 
profile features, 20 individual facial-actions occurring 
alone or in a combination are recognized by a rule-based 
method. A recognition rate of 85% is obtained.  
 
1. Introduction 

The human face is a rich source of information about 
human behavior. Nonverbal facial cues regulate our social 
interactions [1], form our primary means to communicate 
emotion [2], and form visible speech signals that we use to 
confirm what has been said by means of lip reading [3]. 
Automatic analyzers of subtle facial changes, therefore, 
seem to have a natural place in various vision systems 
including the automated tools for psychological research, 
lip reading, bimodal speech analysis, affective computing, 
videoconferencing, face and visual speech synthesis, and 
human-behavior-aware next-generation interfaces. It is 
this wide range of principle driving applications that has 
caused an upsurge of interest in the research problems of 
automatic facial mimics visual analysis. 

This problem domain usually includes three sub-
problem areas [4]: finding faces, detecting facial features, 
and interpreting this information in terms of facial subtle 

changes or microactions such as the facial action units of 
the FACS system [5].  

Discerning the existence and location of a face in the 
scene is an autonomous perceptual human ability that is 
rather difficult to duplicate computationally. Yet this task 
is a precursor to encoding the information that the facial 
display provides. The typical issue here is that of scale, 
pose, and occlusion; rigid head and body motions of the 
observed person usually cause changes in the viewing 
angle and visibility of the tracked face. As noted in [6], 
perhaps the most promising method for addressing this 
problem is through the use of multiple cameras yielding 
multiple views of the face. To date, however, most works 
on automatic facial mimics analysis have largely avoided 
dealing with facial views other than a frontal one: portraits 
[7, 8, 9] or nearly frontal-views of faces [10, 11] 
constitute input data processed by the current systems.  

The problem of automatic facial feature detection in 
input images has at least three dimensions: (1) is temporal 
information used, (2) are the features holistic (spanning 
the whole face) or analytic (spanning subparts of the face), 
and (3) are the features view (2D) or volume (3D) based. 
Given this glossary, most existing methods for automatic 
facial mimics visual analysis are directed towards 
temporal analysis of analytic 2D facial features. The 
proposed strategies include optical flow analysis across 
the entire face or local facial feature regions [7, 8, 10], 
holistic spatial analysis [8], analytic spatial analysis [9], 
and analytic spatio-temporal analysis [11].  

From several existing methods for recognition of facial 
mimics based on visually observable facial muscular 
activity, the FACS system [5] is the most commonly used 
in psychological research [12]. Following this trend, all of 
the existing methods for automatic facial mimics visual 
analysis, including the method proposed in this paper, 
interpret the facial display information in terms of the 
facial action units (AUs) of the FACS system. Yet none 
automatic system is capable of encoding the full range of 
facial mimics, i.e., none is capable of recognizing all 44 
AUs that account for the changes in facial display. From 
the previous works, the automatic facial mimics analyzers 
presented in [11] and [9] perform the best in this aspect: 
they code 16 and, respectively, 27 AUs occurring alone or 
in a combination in frontal-view facial images.  
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feature extraction, parametric feature representation and 
AU coding are explained in sections 2, 3, 4 and 5 
respectively. Section 6 concludes the paper. 

 
2. Face profile tracking 

The first step in automatic facial mimics analysis is to 
ascertain the presence of a face in the scene and to locate 
it. In order to do so, we adapted a semi-automatic method 
for object-based segmentation of complex-scene image 
sequences [13] for the purpose of human face tracking. An 
outline of the adapted method is shown in Fig. 2.  

Face region tracking is addressed as a segmentation 
problem in two objects: the Face and the Background. For 
the first frame of the sequence, markers of the two objects 
are extracted as follows. For the face region the marker is 
extracted as the largest connected image component with 
Hue, Saturation and Value within the range [5,35], [0, 0.7] 
and [0.1, 0.9] respectively. In the absence of a similar 
model for the Background, its marker is extracted as the 
bounding box of the Face marker. A color-based version 
of a watershed segmentation algorithm provides the final 
segmentation for the first frame [13]. The color-based 
watershed segmentation provides good localization of the 
face given that the most prominent color edge between the 
Background and the Face markers is indeed the face 
contour. Under the assumption that in the first frame of 
the sequence the face is seen in a nearly vertical position, 
this is usually the case. However, for the rest of the image 
sequence, rotations of the face (see Fig. 1) can result in 
bounding boxes that contain large parts of the background 
with probable strong edges. Therefore, for the rest of the 
image sequence, we perform the segmentation based on 
tracking of the local statistical color and motion properties 
of the Face and the Background.   

The method operates at three levels. At Level 1 (pixel 
level) a feature vector is estimated for each pixel in the 
current frame. At Level 2 (region level) a watershed color 
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U recognition

Encode AUs 
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Fig. 3: Projection of segment s in the label field of 
the previous frame 



segmentation method decomposes the current frame in a 
number of color regions. The statistical properties of the 
color regions are estimated subsequently under the 
assumption that the same process, which is modeled as a 
multivariate Gaussian, generates the feature vectors at 
pixels inside the same region. At Level 3 (object level) a 
labeling based on probabilistic classification of the color 
regions takes place. To wit, each color region is projected 
in the previous frame where an estimation of the label 
field is available (Fig. 3). For each object present in a 
window surrounding the area of projection, we estimate 
the parameters of the model (a multivariate Gaussian) 
describing the objects color and motion properties. Then, 
each color region is assigned the object label such that the 
joint probability of the label field and the observed color 
and motion features is maximized. Once each color region 
is labeled, the local models are re-estimated for the 
current frame and an iterative region-classification / model 
estimation procedure is performed until no color region 
changes its label. Fig. 4 illustrates the typical results of 
this method. For further details about this method and its 
performance, the reader is referred to [13]. 

 
3. Profile contour and feature extraction 

The contour of the face profile region (referred to as 
“face profile contour” in the text below), generated by the 
face profile tracking method (Fig. 4), is utilized for further 
analysis of shown facial mimics. We proceed with feature 
points’ extraction (Fig. 5) under two assumptions: (1) the 
face images are non-occluded nearly left profile view with 
possible in-plane head rotations, and (2) the first frame is 
in a neutral expression. After initializing the feature points 
in the first frame based on the face region of the initial 
label field, they are automatically extracted from the 
tracked face profile contour for the rest of the sequence. 

To account for possible in-plane head rotations and 
variations in scale of the tracked face profile, the face 
profile contour is normalized in each frame based on two 

referential points (Fig. 5): the tip of the nose (P4) and the 
top of the forehead (P1). The major impulse to the usage 
of these referential points comes from their stability with 
respect to non-rigid facial features’ movements: facial 
muscles’ contractions do not cause physical displacements 
of these points [14]. The tip of the nose and the top of the 
forehead are extracted as the leftmost and, respectively, 
the uppermost leftmost point of the generated contour. To 
handle possible inaccuracies in detection of the referential 
points caused by inaccuracies in the segmentation of the 
face profile region, we exploit all: information from the 
previous frames, the knowledge about temporal dynamics 
of rigid head movements (usually they occur gradually in 
time) and the knowledge about the facial stability of the 
referential points. To wit, a small window (its height and 
width set to 3% of the length of P1P4 measured in frame 
t-1) centered at the location of a referential point extracted 
from frame t-1 is searched for the pertinent referential 
point in frame t. If a referential point cannot be defined 
such that it belongs to the face profile contour determined 
for frame t, the relevant referential point determined for 
frame t-1 is used instead. Finally, the face profile contour 
is normalized by carrying out affine transformations of it 
such that the line P1P4 between the referential points 
discerned for the current frame is of the same length and 
orientation as the line P1P4 determined for the first frame.  

To extract the feature points from the normalized face 
profile contour, we move from image to function analysis 
and treat the left-hand side of the normalized face profile 
contour (up to the determined referential point P1) as the 
profile contour function. First we extract the extremities of 
this function (i.e., the zero-crossings of the function’s 1st 
order derivative). Then, given the a priori knowledge on 
where the convexities and concavities of a left face profile 
are, we analyze the extracted extremities to find out where 
the function is arched. The maximums and minimums of 
the function’s 2nd order derivative are extracted as the 
feature points (Fig. 5). To ascertain correct extraction of 
the feature points when the tongue is visible (P7’ and P7’’ 

Fig. 4: Results for the “pleasant surprise” sequence. 
1st and 3rd columns: Superposition of the contour of 
the face profile region on the original frames. 2nd

and 4th columns: Face profile region (i.e., the label 
field for segmentation in two objects). Results are 
shown for frames 1, 36, 42, 91, 105, and 115.

Fig. 5: Feature points (profile contour fiducials)



Search window basis: WPB: 3% length(P1t1P4t1) ×××× 3% length(P1t1P4t1) 

P1 (defined already as the referential point): uppermost point of f 
P4 (defined already as the referential point): leftmost point of f 
P2: maximum of f” between P1 and P4; WP2: 2 ∗∗∗∗  width(WPB) ×××× 4 ∗∗∗∗  height(WPB); right-middle(WP2) = P2t1 
P3: minimum of f” between P1 and P4; WP3 = WPB; center(WP3) = P3t1 
P10: lowermost maximum of f”; WP10: 15 ∗∗∗∗  width(WPB) ×××× 15 ∗∗∗∗  height(WPB); top-middle(WP10) = P10t1 
P5: the first minimum of f” between P4 and P10; WP5: width(WPB) ×××× 2 ∗∗∗∗  height(WPB); right-middle(WP5) = P5t1 
P9: the last minimum of f” between P4 and P10; WP9: 15 ∗∗∗∗  width(WPB) ×××× 15 ∗∗∗∗  height(WPB); center(WP9) = P9t1 
P7: the first minimum of f” between P5 and P9; WP7: 5 ∗∗∗∗  width(WPB) ×××× 5 ∗∗∗∗  height(WPB); center(WP7) = P7t1 

if P7 is the only minimum of f” between P5 and P9, P7’ and P7” do not exist, otherwise: 
P7”: the second minimum of f” between P5 and P9; WP7” = WP7; center(WP7”) = P7t1 
P7’: maximum of f” between P7 and P7”; WP7’ = WP7; center(WP7’) = P7t1 

P6: maximum of f” between P5 and P7; WP6: 4 ∗∗∗∗  width(WPB) ×××× 8 ∗∗∗∗  height(WPB); center(WP6) = P6t1 
P8: maximum of f” between P7 (P7” if exists) and P9; WP7: 4 ∗∗∗∗  width(WPB) ×××× 8 ∗∗∗∗  height(WPB); center(WP7) = P7t1 
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: Definitions of the feature points P and the related search windows WP  given in the order in which the points 
are extracted from the profile contour function f defined for frame t. Legend: t1 denotes the first frame and 
f” denotes the 2nd order derivative of f.
 we extract the feature points in the particular order 
). To handle possible inaccuracies in feature points’ 

ion caused by inaccuracies in the segmentation of 
ce profile region (e.g., like in frame 91 shown in Fig. 
 exploit both the knowledge about facial anatomy 
formation from the previous frames. To wit, for 
eature point P, a standard “search” window WP has 
defined with respect to the possible directions and 
tudes of the motion on the skin surface affecting the 
ral location of P. For instance, non-rigid movements 
 eyebrows (raised and/or frowned eyebrows) cause 
d and/or outward movement of P2 and the upward 
f the skin along the nose (i.e. wrinkled nose) causes 
rd and downward movement of P2. This and the fact 
o facial muscle activity can push the eyebrow arcade 
 to the nasal bone or to the middle of the forehead, 

define the size and the positioning of the search window 
WP2 given in Fig. 6. The feature point Pt is determined 
further for frame t such that it represents a specific zero 
crossing (Fig. 5, 6) of the 1st order derivative of the profile 
contour function defined for frame t and, at the same time, 
belongs to the WP set around the location of Pt1 discerned 
for frame t1. If Pt cannot be defined, Pt-1 is used instead.  

 
4. Parametric feature representation 

Each AU of the FACS system is anatomically related 
to contraction of a specific facial muscle [5]. Contractions 
of facial muscles produce motion in the skin surface and 
deform the shape and location of the facial components 
(eyebrows, mouth, chin, etc.). Some of these changes in 
facial expression are observable from the changes in the 
tracked face profile contour and the related feature points. 
To classify detected changes of the face profile contour in 
terms of facial muscle activity (i.e., in terms of AUs of the 
FACS system), these changes should be represented first 
as a set of suitable feature parameters.  

We defined 6 mid-level feature parameters in total: two 
describing the motion of the feature points, two describing 
their state, and two describing shapes formed by a set of 
feature points. The definitions of the parameters, which 
are calculated for each frame, are given in Fig. 7.  

Feature points motion 
own (P) = yPt1 – yPt 
/down(P) < 0, point 
es up. 

in/out(P) = xPt1 – xPt 
If in/out(P) > 0, point moves 
outward. 

Feature points state 
 equals P7, absent(P9). 

ere is no maximum of f” 
een P5 and P7, 
nt(P6).  
ilarly for P7’, P7” and P8 
 Fig. 5). 

increase/decrease(AB) = 
ABt1 – ABt, where AB = 

( ) ( )22
BABA yyxx −+−  

If increase/decrease(AB) < 0, 
distance AB increases. 

Shapes formed by feature points 
r a set of points P = {pi | i ∈  {1,n}, p1=A, pn=B} 
j, pk ∈  P | 1<j<<n, 1<<k<n) | (∀  pl, j ≤ l ≤ k, xpl = xpl+1),    
 angular(AB) = true. The physic meaning of this 
meter is shown in Fig. 8. 
r a set of points P = {pi | i ∈  {1,n}, p1=A, pn=B} 
_x(Pt) < min_x(Pt1), where min_x(P) is the minimal x-
dinate value that the points from P can have, then 
eased_curvature(AB) = true. The physic meaning of this 
meter is shown in Fig. 8. 
g. 7: Parametric representation of face-profile-

contour features for AU recognition 

Fig. 8: Physic meanings of the “shape” mid-level 
feature parameters 



5. Facial mimics recognition 
The last step in automatic facial mimics analysis is to 

translate the extracted facial expression information (i.e., 
the calculated feature parameters) into a description of 
shown facial changes such as the AU-coded description of 
shown facial expression. To achieve this, we utilize a rule-
based method that encodes 20 AUs occurring alone or in a 
combination in the current frame of the input sequence.  

 
5.1. Utilized rule-based method 

Motivated by the rules of the FACS system, each of the 
rules utilized for AU recognition is defined in terms of the 
predicates of the mid-level representation (Fig. 7) and 
each encodes a single AU in a unique way according to 

the relevant FACS rule. The FACS rules for 20 AUs to be 
recognized and the pertinent rules utilized by our method 
are given in Fig.9. 

To represent the relations between the utilized rules, 
we apply a relational list (R-list). The utilized R-list is a 
four-tuple list, where the first two columns identify the 
conclusion clause of a certain rule that forms the premise 
clause of another rule identified in the next two columns 
of the R-list. Based on this R-list, the rule-based method 
proposed for AU recognition applies fast direct chaining 
as the inference procedure. To wit, the procedure starts 
with the first internally stored rule and then searches the 
R-list to find if the conclusion of the fired rule forms a 
premise of another rule that will be fired in the next loop. 

AU1 
rule 1 

Pulls the inner portion of the eyebrows upward, causes the skin in the centre of the forehead to wrinkle horizontally. 
IF up/down(P2) < 0 THEN AU1 

AU4 
rule 2 

Pulls the eyebrows closer together, produces a bulge between the eyebrows, lowers the eyebrows slightly. 
IF in/out(P2) > 0 AND increase/decrease(P2P3) ≤ 0 THEN AU4 

AU8 
rule 3 

Pulls the lips towards each other, parts the lips. 
IF NOT (AU9 OR AU12 OR AU15 OR AU17 OR AU18 OR AU20) AND angular(P6P8) = true THEN AU8 

AU9 
rule 4 

Wrinkles the nose, lowers the brows, produces a bulge between the brows and the root of the nose, raises the upper lip. 
IF in/out(P2) > 0 AND increase/decrease(P2P3) > 0 THEN AU9 

AU10 
rule 5 

Raises the upper lip, deepens the nasolabial furrow, does not wrinkle the nose. 
IF increase/decrease(P2P3) ≤ 0 AND increase/decrease(P5P6) > 0 AND in/out(P6) > 0 THEN AU10 

AU12 
rule 6 

Pulls the lip corners upward obliquely. 
IF in/out(P6) < 0 AND in/out(P8) < 0 AND increase/decrease(P5P6) > 0  THEN AU12 

AU15 
rule 7 

Pulls the corners of the lips downward, stretches the lips slightly, flattens the skin of the chin boss. 
IF up/down(P6) > 0 AND up/down(P8) > 0 AND increased_curvature(P5P6) = false THEN AU15 

AU16 
rule 8 

Pulls the lower lip downward laterally, causes the lower lip to protrude. 
IF increase/decrease(P8P10) > 0 AND up/down(P8) > 0 AND in/out(P8) > 0 THEN AU16 

AU17 
rule 9 

Pushes the chin boss and the lower lip upward and stretches the skin on the chin boss. 
IF NOT (AU28 OR AU28t OR AU28b) AND in/out(P10) < 0 THEN AU17  

AU18 
rule 10 

Pushes the mouth forward medially, de-elongates the mouth, causes the lips to protrude forwards (as by saying “fool”).  
IF in/out(P6) > 0 AND in/out(P8) > 0 AND increase/decrease(P5P6) ≤ 0 AND increase/decrease(P8P10) ≤ 0 AND 
increase/decrease(P6P8) < 0 THEN AU18 

AU19 
rule 11 

Causes at least the tip of the tongue to be visible. 
IF absent(P7’) = false AND absent(P7”) = false THEN AU19 

AU20 
rule 12 

Pulls the lips backward laterally, flattens the skin of the lips and the chin boss. 
IF in/out(P6) < 0 AND in/out(P8) < 0 AND increase/decrease(P5P6) ≤ 0 AND increase/decrease(P6P8) ≤ 0 AND 
increased_curvature(P5P6) = false THEN AU20 

AU23 
rule 13 

Tightens the lips slightly making the lips appear more narrow. 
IF NOT (AU28 OR AU28t OR AU28b) AND increase/decrease(P6P8) > 0 AND increase/decrease(P6P8) < ½P6t1P8t1 

AU24 
rule 14 

Presses the lips together, tightens and narrows the lips to a small extent. 
IF NOT (AU28 OR AU28t OR AU28b) AND increase/decrease(P6P8) > 0 AND increase/decrease(P6P8) ≥ ½P6t1P8t1 

AU25 
rule 15 

Parts the lips, does not parts the jaws. 
IF increase/decrease(P6P8) > 0 AND increase/decrease(P4P10) ≥ 0 THEN AU25 

AU26 
rule 16 

Parts the lips, parts the jaws, does not stretches the mouth. 
IF increase/decrease(P4P10) < 0 AND increase/decrease(P4P10) > -½height(WP10) THEN AU26 

AU27 
rule 17 

Stretches the mouth as lower jaw is pulled down. 
IF increase/decrease(P4P10) < 0 AND increase/decrease(P4P10) ≤ -½height(WP10) THEN AU27 

AU28,t,b 
rule 18 

AU28: lips sucked into the mouth. AU28t: Upper lip sucked into the mouth. AU28b: Bottom lip sucked into the mouth. 
IF absent(P6) AND absent(P8) THEN AU28. IF absent(P6) THEN AU28t. IF absent(P8) THEN AU28b. 

AU29 
rule 19 

Pushes the jaw forward making the chin to stick out and the lower teeth to extend in front of upper teeth. 
IF in/out(P10) > 0 THEN AU29 

AU36t,b 
rule 20 

AU36t: Pushes the tongue under the upper lip, causes a bulge above the upper lip. AU36b: Pushes the tongue under the 
lower lip, causes a bulge below the lower lip. 
IF increased_curvature(P5P6) = true THEN AU36t. IF absent(P9) THEN AU36b. 

Fig. 9: The descriptions of 20 AUs to be recognized and the related rules utilized for AU recognition 



If such a relation does not exist, the procedure tries to fire 
the rule that in the internal storage comes after the rule 
that has fired last. A rule is fired only if all clauses of the 
rule’s premise are true. To prevent firing of a rule more 
than once, we utilize a list of fired rules (LFR). If a rule 
has fired, the rule number is added to the LFR. 
 
5.2. Test data set and recognition results 

Although AU-coded facial expression image databases 
are available in general, these databases contain portraits 
or nearly frontal-views of human faces. Since these data 
are not suitable for testing our face-profile-based AU 
encoder, we generated our own test data.  

The test data set has been created with the help of 5 
certified FACS coders drawn from college personnel. The 
acquired face-profile image sequences represent a number 
of demographic variables including ethnic background 
(European, Asian and South American), gender (60% 
female) and age (20 to 35 years). The subjects were asked 
to perform series of facial expressions that included single 
AUs and combinations of those. Forty image sequences of 
variable length (110 to 240 frames) of nearly left-profile 
view of subjects’ faces were recorded by utilizing a CCD 
digital PAL camera. The size of the face region in each 
frame was 135×175 pixels or more. Each sequence began 
with a neutral expression with no head rotation. 

Metadata were associated with the acquired test data 
given in terms of AUs scored by 4 certified FACS coders 
(other than the coder captured in the judged sequence). As 
the actual test data set, we use 32 image sequences for 
which the overall inter-coders’ agreement about displayed 
AUs is above 75%. The AU-coded descriptions of shown 
facial expressions obtained by human FACS coders were 
compared further to those produced by our method. The 
results of this comparison are given in Table 1. Most of 
misidentifications arise from confusions between similar 
AUs (e.g., AU10 and AU18) and from subtle activations 
that remained unnoticed by human observers (e.g., AU26 
behind the closed mouth, AU24 instead of AU23). 
Table 1: Recognition results for the upper face AUs (AU1, 
AU4, AU9), the AUs affecting the mouth and those affecting 
the jaw (AU17, AU26, AU27, AU29): # denotes the number of 
AUs’ occurrences, C denotes correctly recognized AUs’ 
occurrences, M denotes missed AUs’ occurrences, IC denotes 
incorrectly recognized AUs’ occurrences. 

 # C M IC Rate 
upper face 18 15 1 2 83.3%
mouth 82 66 5 11 80.5%
jaw 36 33 1 2 90.9%
Total: 136 114 7 15 84.9%

 
6. Conclusions 

In this paper, we introduced an automatic system for 
analyzing subtle changes in facial expression based on 
changes in face profile contour tracked in a nearly left-

profile-view image sequence. The significance of this 
contribution is in the following: (1) it extends the state of 
the art in automatic facial mimics visual analysis in 
several directions, including the number of AUs, the 
difference in AUs and the facial view handled, and (2) it 
provides the basics of how to achieve automatic AU 
coding in face profile image sequences upon which further 
research on facial mimics analysis from multiple facial 
views can be based.  

However, the algorithm presented in the paper may be 
refined. For instance, once the referential points have been 
located, they can be used for stabilizing the face profile 
region yielding a more robust face profile tracking. Also, 
although the developed system demonstrates concurrent 
validity with manual FACS coding of test data set, more 
extensive field trials and more elaborate quantitative 
validation studies are necessary to confirm this finding. 
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