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Preface 
 
This thesis is related to our research activities on the development of the Flight 
Gear Simulator Situation Awareness Module (SAM for short) at the Knowledge 
Based Systems (KBS for short) group of the Delft University of Technology.  
We developed the �Flight Gear Situation Awareness Module� for one of the 
projects of the KBS group, which is called the Intelligent Cockpit Environment 
(ICE) project.  
The goal of this thesis is to introduce the reader to situation awareness, explain the 
concept and provide a detailed overview of how SAM is implemented. 
The target audience are computer scientists and the graduation committee. To fully 
comprehend this thesis, some basic knowledge of artificial intelligence and JAVA is 
required. 
 
Richard Harreman, 
Maikel van der Roest, 
Delft, June 2003 
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Summary 
 
Computers and computer programs are becoming more complex as time 
progresses. The digital revolution has also made an entrance into the cockpit of an 
aircraft. A pilot gets more information than ever before in an ever decreasing 
amount of time. This could lead to an �information overload�, which in essence is 
a concept of too much information provided in a very short time. An �intelligent 
cockpit� should solve this problem.  
  
In order to achieve an intelligent cockpit the following project goals are set: 
 

• Literature study 
• Cognitive and system model 
• Artificial Intelligence techniques research 
• Demonstrator 
• Evaluation, tests and validation 

 
All this combined should form a template or framework for future development 
and research in the study of situation recognition. 
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Thesis overview 
 
This report is separated into three parts. The first part, chapters 1 to 3, contains the 
project description and preliminary research in the field of intelligence, 
development tools and different kinds of reasoning techniques. 
The second part, chapters 4 to 6 contains the design by description, schematic 
representations and artificial intelligence.  
The last part, chapters 7 and 8, contains the project review and the evaluation. 
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Used abbreviations 
 
CLIPS  C Language Integrated Production Systems 
DTD  Document Type Definition 
ICE  Intelligent Cockpit Environment 
JESS  Java Expert System Shell 
KBS  Knowledge Base Systems (Group) 
NASA  National Aeronautics and Space Administration 
PERL  Practical Extraction and Report Language 
PHP  PHP: Hypertext PreProcessor 
SAM  Situation Awareness Module 
SDW  System Developer Workbench 
XML  eXtensible Markup Language 
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Chapter 1: Introduction 
 

1.1 Project description 
 
This thesis was written as part of our graduation project at the Hogeschool Rotterdam. 
Our graduation project is part of the Intelligent Cockpit Environment (ICE) project, 
started by Drs. dr. L. Rothkrantz who is appointed at the Delft  University of 
Technology. On of the goals of the ICE project is to gather knowledge and experiment 
with adaptive interfaces for aircrafts. In other words, the research on different methods 
to give a pilot the correct information at the right moment.   
 

 
Figure 1 Part of a cockpit of a Boeing 737. 

As a result of the digital revolution within the aviation industry a pilot gets an increasing 
amount of information in a decreasing amount of time. This could lead to a so-called 
�information overload�. If this is the case, the pilot is so busy, both mentally and 
physically, that he or she misses potentially important information. 
 
The ICE system could help out in these kinds of situations. The system will monitor the 
behavior and the tasks the pilot is performing, analyze what the current situation of the 
aircraft and environment is, and keeps a track on what parts of the flight plan have 
finished. In the event of the pilot missing some potentially important information, or 
when the pilot fails to perform certain tasks, the ICE system issues a warning. In short, 
the final goal of the ICE project is to increase the �situation awareness� of the pilot, and 
to decrease his mental workload. 
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1.2 System overview  
 

To develop a system which is capable of �situation awareness�, the following data is 
needed to make an as accurately as possible assessment of the situation the pilot is in at a 
certain moment: 
 

• The current state of the plane 
• The current state of the environment 
• The current state of the pilot 
• The flightplan 

 
This result in what the system should be able to do. The flight plan is loaded into the 
ICE system, just as the pilot would make a real flight plan that is used in flight. During 
the flight, the state of the aircraft is continuously assessed using the aircraft�s instruments 
and measuring systems. These systems are also used to assess the environment the 
aircraft is in.  
 

 
Figure 2 A system overview of the ICE project. 

 
The assessment and detection of the state the pilot is in, is more complicated. With 
registering and analyzing all input that the pilot gives to the plane, the system can reason 
what the pilot is doing, but it gives very little information about the mental workload of 
the pilot. A possible solution to acquire the information about the mental workload of 
the pilot is, the use of a �gaze tracker� system.  
A gaze tracker is a camera system that uses the reflection of infrared light on someone�s 
eyes to assess what the person is looking at. Simultaneously, the gaze tracker measures 
the size of the pupils and the frequency of the eye-blinking.  
These two factors combined give an indication of the stress level of the pilot.  
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As a third point of information the gaze tracker can also detect the view direction of the 
eyes; this way the system knows what the pilot is looking at. 
 
Once the states of the pilot, environment and the aircraft are known, reasoning can start. 
The short response time of the pilot to situations (for example in an emergency 
situation) has a great influence on the system, which should reason and act in real-time. 
To simplify the problems, and to make parallel processing possible, the project is divided 
into several subprojects. 
 

1.3 Sub-projects 
 
The entirety of the ICE project, has been divided into several subprojects, which all 
contribute to the main project. Currently students are working on the following projects: 
 

• Flight Simulator Artificial Pilot by M. Andriambololona and P. Lefeuvre 
The current project aims at implementing a bot for a flight simulator. By bot, it 
is meant an intelligent virtual player emulating a human player in the game 
environment. The bot requires being able to understand the rules of the game. 
The bot also needs other capabilities like flying through the game environment, 
and facing aircraft failures. 

• Automating the cockpit by M. Tamerius 
The ultimate goal is to develop an autonomous, computer-driven pilot. Such a 
pilot, also called a bot, should be capable of flying an aircraft in a simulated 
environment according a flightplan. In addition, it should be capable of making 
in-flight decisions to adjust the actual flight path to reach the destination of the 
flightplan. 

• Situation Recognizer for F16 fighters by Q. Mouthaan 
To create a system that is able to detect the current situation based on the state 
of the F16 fighter jet and the actions the pilot is performing. This is quite a 
challenging problem because, if the airplane is descending for example, this 
might mean the pilot is landing or that he is descending to the right altitude to 
perform an attack on a ground target. The system must be able to determine in 
real time which of these situations is actually occurring. In this document the 
reasoning process that is used to determine the situation is described. 

• Situation Awareness Module by R. Harreman and M. van der Roest 
The SAM project aims at developing a situation recognizer that works in real-
time. It incorporates the use of knowledge bases and the Java Expert System 
Shell (JESS). Using this technique it will be possible to work with dynamically 
adaptive rule sets to get accurate data about the situation the plane is in. 

• Workload assessment in the cockpit by P. Ehlert 
To help a pilot deal with information processing and decision-making, avoid 
information overload,  and optimize flight performance, a crew-assistant 
system or intelligent pilot-vehicle interface (PVI) has been proposed. To 
correctly assess the amount of information that a pilot can handle we need to 
know his (mental) workload. Therefore, we need to design a workload 
assessment module as part of the PVI system.  
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1.4 Project goal 
 
The goal of the ICE project is to design, test, and evaluate computational techniques that 
can be used in the development of intelligent situation-aware flight crew assistance 
systems. Using methods from artificial intelligence, ICE focuses primarily on the data 
fusion, data processing and reasoning part of these systems. Special issues addressed in 
the ICE project are:  
 

• Situation recognition  
• Mission or flightplan monitoring  
• Attack management  
• Pilot workload monitoring 

 
In the SAM sub-project of ICE we focused on the �Situation recognition� part. This 
resulted into the following goals of our project: 
 

• Literature study 
• Cognitive and system model 
• Artificial Intelligence techniques research 
• Demonstrator 
• Evaluation, tests and validation 
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Chapter 2: Project file 
 

2.1 Description 
 
The project file will describe our approach to the problem setting. In this chapter the 
aspects to the project will be described. Things like the plan of approach, the project 
team and project planning will also be discussed. 
 

2.2 Plan of approach 

 
Constituent: TU Delft 
Approved by:  Ir. M. Abdelghany, Project council 
Date: Hogeschool Rotterdam 
Author:  Maikel van der Roest 
Mark:  �Situation Awareness Module� 
Date:  3/3/2003 
 

2.2.1 Background 
 

After four years of study at the Hogeschool Rotterdam, our career as students was 
coming to an end, as we had to graduate. After a meeting with our graduation council Ir. 
M. Abdelghany, we came in touch with Drs. Dr. L.J.M. Rothkrantz. He invited us over 
to have a meeting with him, regarding the then-called �Adaptive Cockpit Environment� 
(ACE) project. This project was started by Drs. Dr. Rothkrantz, and he suggested that 
we could help out with this project, and so the idea for the SAM project was born. To 
avoid any misconceptions: ACE is the same as ICE. The name was changed to better 
suit the project. 
 

2.2.2 Project description 
 

2.2.2.1 Problem setting 
 
Ever since man has walked on the earth he has dreamt about flying. The discovery of the 
kite by the Chinese started humans thinking about flying. Kites were used by the Chinese 
in religious ceremonies. For many centuries, humans have tried to fly just like birds and 
have studied the flight of birds. 
The results were often disastrous, as the muscles of the human arms cannot move with 
the strength of a bird. Leonardo da Vinci made the first real studies of flight in the 
1480's. He had over 100 drawings that illustrated his theories on bird and mechanical 
flight. 
. 
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Figure 3 A drawing of the Ornithopter of Leonardo Da Vinci. 

 
The Ornithopter flying machine (Figure 3) was never actually created. It was a design 
that Leonardo da Vinci created to show how man could fly. Leonardo da Vinci's 
notebooks on flight were re-examined in the 19th century by aviation pioneers. Based on 
the concept of Da Vinci the Wright brothers made the first successful manned flight in 
1903. It lasted for 12 seconds. 
 
Since those early days of aviation, the technology used in planes has evolved immensely 
whereas the principles of flight have remained the same. Alongside with this immense 
progress in technology used in planes, designed to reduce the skills needed to fly a plane, 
it inevitably also introduced an unexpected problem. The increased amount of 
information available to the pilot has decreased some of the physical workload, but has 
increased the mental workload.  
 

 
Figure 4 Cockpit of the Concorde. 
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Figures 4 and 5 illustrate this problem. As the cockpit of the Concorde has many gauges 
and instruments the pilot should look at, the cockpit of the Boeing 737-700, as show in 
figure 5, uses information displays to feed the pilot with information. Although this is a 
big step forward into information management, and resulted into reducing the people 
needed to fly a plane to two persons, instead of three, the pilot still needs to choose the 
right screens to watch at, and the information available to him/her is much greater, as 
the technology evolves. 
 

 
Figure 5 The glass cockpit of a Boeing 737-700. 

 
2.2.2.2 Project goal 

 
The ultimate project goal is to achieve a prototype system that assesses in real-time the 
situation the pilot is in and the workload of the pilot. The system will use a dynamically 
adaptable rule set to assess the current status of the flight, and predict what situations are 
likely to follow. Also adaptive logic needs to be defined which will be responsible for the 
information the system gives to the pilot. 
To achieve this goal, the project has been divided up into three phases: 
 
1st phase 

• Literature study 
2nd phase 

• Artificial Intelligence techniques research 
• Cognitive and system model 

3rd phase 
• Demonstrator 
• Evaluation, tests and validation 

 
Are more detailed summery of the different phases is the SAM project can be found in 
section 2.2.8.1 of this chapter. 
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2.2.2.3 Project result 

 
The end result of the project should be a software program that works alongside the 
Flight Gear Simulator. This program uses knowledge bases and neural network 
technologies to comprehend and anticipate what the pilot is doing at the current 
moment, and what he or she is going to do in the near future. 
  

2.2.3 Project limits 
 
Taking in consideration the huge scale of the ICE and SAM project, the complexity, and 
the limited time frame, it is likely that the SAM program will not have all the features and 
functions as described in the plan of approach. 
 

2.2.4 Project lifecycle 
 
The project lifecycle describes the steps that need to be completed during the project. 

• Preliminary research 
• Draft of the plan of approach 
• Analysis which results into a time planning 
• Draft of the functional specifications 
• Research into System Awareness 
• Proof of concept SAM model 
• Research into data communication 
• Research into artificial intelligence 
• Research into expert systems 
• Research into further expansion of the SAM 
• Draft of the requirements of the SAM 
• Draft of the knowledge base layout 
• Draft of the system model 
• Visual prototype 
• Programming of the Data server 
• Programming of the Data modeler 
• Programming of the Data client 
• 1st modular prototype 
• Implementation of the knowledge base into the program 
• Implementation of JESS within the program 
• 2nd modular prototype 
• Delivery of SAM 
• Draft report 
• Draft of thesis 
 

Further on in this thesis you can find a detailed time planning which chronologically 
describes which project members are responsible for the different aspects of the SAM 
project. 
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2.2.5 Project organization 
 

2.2.5.1 Tasks and responsibilities 
 
The team should cooperate in creating the Situation Awareness Module as described in 
the project goal 
 

2.2.5.2 Execution conditions and competences 
 
To properly complete the project, the team assumes the following engagements and 
acceptances: 
 

• Each project members is responsible to completely fulfill his tasks. 
• The self-reliant acquiring of information needed for the tasks is also a 

responsibility of the project member. 
• All progress made within a task should be reported on weekly bases to the other 

project members. 
• Applied methods should be discussed with the other project members, before 

they are used. 
• Eventual delay should be reported as once, just as errors that could lead to 

delays. 
• Any adaptations during the construction of the product should only be done by 

the responsible team member. In any other case the team and councils must 
always be consulted first. 

 
2.2.5.3 Time schedule 

 
The project is carried out from 3 October 2002 till 4 July 2003. For this project the hours 
used by the project members are estimated on 840 hours per person. 
 

2.2.5.4 Information and reporting 
 
All information, documents and software are stored on the TU server. This server allows 
the project members to share the new information with the other project members. All 
information is placed in the designated directory, and made public, when the information 
is ready for release. 
 
Reporting the progress of the project is done ad hoc one time a week with the whole 
ICE project group. Every two weeks a progress report is given to the Hogeschool 
Rotterdam. The reporting is done to Ir. M. Abdelghany.  
 
Communication can be done by telephone, e-mail and meetings. Evaluation of the 
project is found in the appendix of this thesis. 
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2.2.6 Projects risks 
 
The following risks are taken into consideration. Per risk measures are taken to prevent 
them from happening. 
 

• Fire 
• Theft 
• Specification which are not conform the end result 
• Failed agreements  
• Environmental disasters 
 

To limit these risks a daily backup is made of all data. 
 

2.2.7 Project budget and costs 
 
Since there is no budget for this project, costs are left out of this thesis. 

 

2.2.8 Project planning 
 
The SAM project is divided in several phases to make an incremental approach of the 
problem setting. Using this incremental approach, the project goal can be adjusted 
during the project, as the project progress is not as planned. 
 
 

2.2.8.1 Definitions 
 

• Preliminary research Initial orientation into the ICE project and 
System Awareness 

• Plan of approach Complete description of the project 
• Project planning Time scheme of the complete project  
• Functional specifications Basic requirements of the Situation 

Awareness Module 
1st phase  

• Research into System 
Awareness 

Research into System Awareness and the 
application of it within the SAM project 

• Proof of concept A preliminary prototype which proves the 
concept described in our plan of approach 

2nd phase  
• Research into data 

communication 
Orientation and research into the 
communication between the SAM program 
and the flight simulator 

• Research into artificial 
intelligence 

Orientation and research into artificial 
intelligence and how it can be used in our 
program 
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• Research into expert systems Orientation and research into expert system 

and how it can be integrated in the SAM 
program 
 

• Draft of system requirements All demands on the SAM program written 
down and fixed 

• Draft of knowledge base 
structure 

The layout and structure of the knowledge 
base written down a separate report 

• Draft of the system model The layout and structure of the SAM 
program defined 

• Visual prototype An extension to the proof of concept, which 
now uses the layout of the final prototype 

3rd phase  
• Programming of the Data server Creation of the code necessary to make the 

Data server 
• Programming of the Data 

modeler 
Creation of the code necessary to make the 
Data modeler 

• Programming of the Data client Creation of the code necessary to make the 
Data client 

• 1st modular prototype A first preliminary version of the program 
based on the functional specification 

• Implementation of the 
knowledge base 

Integration of the knowledge base into the 
SAM program 

• Implementation of JESS Integration of JESS  into the SAM program 
• 2nd modular prototype  A second preliminary version of the program 

which now complies to at least 80% of the 
requirements 
 

 
• Delivery of SAM 

 
A final prototype which complies for at least 
90% to the requirements 

• Draft reports Creation of reports that cover parts of the 
SAM project which stand on them selves 

• Draft of thesis Creation of the final thesis which covers 
every aspect of the SAM project 

 
2.2.8.2 Project time scheme 

 
This is the latest project time scheme based on the original planning. As you can see the 
original date to end the project was March, but that date was too far-fetched for our 
project, as we were not happy with the results. Chapter 8 describes why this happened.  
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 October November December January February March 
Preliminary 
research 
Plan of approach 
Project planning 
Functional 
specifications 
1st phase 
Research into 
System Awareness
Proof of concept 
2nd phase 
Research into data 
communication 
Research into 
artificial 
intelligence 
Research into 
expert systems 
Draft of system 
requirements 
Draft of 
knowledge base 
structure 
Draft of the 
system model 
Visual prototype 
3rd phase 
Programming of 
the Data server 
Programming of 
the Data modeler 
Programming of 
the Data client 

                 

1st modular 
prototype 
Implementation of 
the knowledge 
base 
Implementation of 
JESS 
2nd modular 
prototype  
Delivery of SAM 
Draft reports 
Draft of thesis 
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2.2.8.3 Project research areas and responsible project members 

 
• Preliminary research Maikel and Richard 
• Plan of approach Maikel 
• Project planning Maikel  
• Functional specifications Maikel 

1st phase  
• Research into System 

Awareness 
Maikel and Richard 

• Proof of concept Maikel and Richard 
2nd phase  

• Research into data 
communication 

Richard 

• Research into artificial 
intelligence 

Maikel and Richard 

• Research into expert systems Maikel and Richard 
• Draft of system requirements Maikel 
• Draft of knowledge base 

structure 
Maikel 

• Draft of the system model Maikel 
• Visual prototype Richard 

3rd phase  
• Programming of the Data server Richard 
• Programming of the Data 

modeler 
Richard 

• Programming of the Data client Richard 
• 1st modular prototype Richard 
• Implementation of the 

knowledge base 
Maikel and Richard 

• Implementation of JESS Richard 
• 2nd modular prototype  Richard 
• Delivery of SAM Maikel and Richard 
• Draft reports Maikel and Richard 
• Draft of thesis Maikel and Richard 
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2.2.9 Project activities and to be delivered results 
 
The following overview gives a specification of the tasks of the project group and the 
results that need to be delivered. 
 

2.2.9.1 Tasks 
 

• Drafting the plan of approach 
• Drafting requirements 
• Drafting specifications 
• Drafting a test plan 
• Creation of the knowledge base containing data on the Cessna 172RG 
• Creation of the Data server 
• Creation of the Data client 
• Creation of the Data modeler 
• Creation of prototypes, with increasing complexity 
• Drafting of report on the knowledge base 
• Drafting of report on the final prototype 
• Writing the thesis 
 

2.2.9.2 To be delivered results 
 

• Report which describes the SAM prototype 
• Report which describes the knowledge base 
• Several prototypes of the SAM 
• SAM which complies to the requirements 
• Project thesis 
 

2.3 Team 
 
The SAM project team consists of 2 persons: Richard Harreman 

Maikel van der Roest 
 
The project council at the TU Delft:  Drs. Dr. Leon Rothkrantz 
 
1st Project council of Hogeschool Rotterdam: Ir. M. Mohammed Abdelghany 
2nd Project council of Hogeschool Rotterdam: Ing. Hans Manni 
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Chapter 3: Preliminary research 
 

3.1 Description 
 
This chapter discusses the preliminary research that was done as a primary analysis 
before the project started. Within this preliminary research we focused on the 
technical and reasoning aspects of the project. This preliminary research is used as 
framework for further analysis and has been of great importance for the eventual 
implementation of SAM. Because this chapter just describes the preliminary 
research, it is possible that certain aspects of the project have been discarded, 
which came to light with the draft of the requirements. It is of great importance 
that the final requirements are considered as the project goal. 
 
The first step of the preliminary research is the transposing of the problem-setting 
onto a central question. The central question runs as follows: 
�What demands need to be met for the development and implementation of SAM� 
The objective of the research is to supply a user-friendly and functional model of 
SAM. This model needs to be usable by anyone who has some affinity with system- 
and situation awareness. 
 
To make the initial research more accessible and more focused we have divided the 
central question into three shared questions. The first section of this chapter will 
cover the following shared question: 
1. �What demands need to be met in developing the system model?� 
The second section of this chapter will cover the following question: 
2. �What intelligence demands need to be met by the model, and which aspects are of use to the 
user of the program?� 
The last section of this chapter will address the last shared question, namely: 
3. �What technical demands need to be met by the model, and which aspects are of use for the user 
of the program?� 
   

3.2 System model aspects 
 
Shared question 

�What demands need to be met in developing the system model?� 

3.2.1 Development tools 
 
For the development of SAM we have chosen for a Microsoft Windows 
environment to do the final programming of SAM. One of the main requirements 
of SAM is that it is to be Operating System independent, so it could actually be any 
one Operating System, but for the Windows Operating System the most JAVA 
development tools are available. 
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Figure 6 Development of Data Modeler in J-Builder environment. 

 
The programming of SAM is done with the help of Borland J-Builder. This 
program has many similarities with the other Borland products, which the project 
team has used on many occasions in the past. The choice for J-builder will decrease 
the learning curve of the program, and will make the switch form C to JAVA more 
easy for the developers. 
 
For the system development and analysis of the system in the first phase of the 
project, we have chosen for SDW. As the project progresses we will switch to 
Rational Rose, because SDW has some limits as the system gets more complex. To 
draw the system model we will use Microsoft Visio. 
 

3.2.2 Development environment 
 
As mentioned in the section above, the development environment is mainly 
Microsoft Windows. For the development we will use Windows NT 4.0 SP 6a, 
Windows 2000 and Windows XP, in combination with Borland J-Builder, SDW, 
Rational Rose 2000, JAVA SDK 2.0, Microsoft Visio 2002 and Microsoft Office 
XP.  
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3.2.2.1 Requirements for the user 
 

It is essential not to have too many demands of the user. The main requirement 
of the user of SAM is that he or she has the JAVA Virtual Machine installed. If 
the user wants to do real time analyzing of the data, Flight Gear with at least 
version number 0.91 needs to be installed on the computer of the user. 

 
3.2.2.2 Program testing 
 
Whenever a prototype of SAM is finished, it will be tested. These tests are 
performed to evaluate the performance and accuracy of the prototype, which 
enables the way for improvements in following prototypes. The main points during 
testing are: 
 

• Overall performance of the program 
• Speed of data analysis 
• Accuracy of the system 
• Speed of the data transfer between the simulator and the program 
• Validation of the model 

 

3.2.3 Maintenance 
 
Because of the modular build-up of the program and the use of external XML 
knowledge bases, SAM is relatively simple to maintain and improve. By simply 
changing some values in the knowledge base, the operation of the program can be 
manipulated. The program itself also gives the user the possibility to change certain 
aspects of the program trough the Data Modeler. For the more demanding users 
the source code of the program also uses the modular build-up, so that parts can be 
relatively simply changed, without having to compile the whole program again. 
 

3.3 Intelligence aspects 
 
Shared question 

�What intelligence demands need to be met by the model, and which aspects are of use to the 
user of the program?� 
 

3.3.1 Description 
 
The most important aspect of the �SAM� project is the Artificial Intelligence 
aspect. The focal points for the reasoning are: 
 

• Quality of reasoning 
• Validation 
• Transparency 
• Explanation of results 
• Efficiency 



Chapter 3: Preliminary research 

 
 
Copyright © 2003, Delft University of Technology  

24 

 
In order to accomplish this, the data that enters the system needs to be analyzed, 
and using this data, a situation needs to be recognized using a reasoning algorithm. 
To be able to process and analyze the incoming data a reasoning system is needed. 
Limiting ourselves to the context of our project and the knowledge already present 
at the Knowledge Base Group at TU delft, we had the choice between two 
systems. The following part of the report will cover those two systems and will 
discuss the advantages and disadvantages of the systems. 
 

3.3.2 Neural networks 
 

3.3.2.1 Description 
 
A neural network is either a hardware implementation or a computer program that 
tries to accomplish the processing of data in the same way as its biological 
counterpart does. Usual neural networks are built up with a great number of 
artificially connected neurons. 
 
In contradiction to a normal computer program, a neural network has some extra 
and unique features, like self learning, self organizing, error tolerance, and parallel 
information processing. 
 

3.3.2.2 Operation 
 
Neural networks are self learning because of the way they deal and react to the data 
the network provides it. Instead of telling the network how to react and interpret 
the data, a neural network has the possibilities to sort out the properties of the data. 
The neural network continuously learns when new data is available. When data is 
supplied to the neural network, the neural network organizes its structure to 
visualize the properties of the data it has found. Figure 5 is a representation of a 
feed forward neural network. A neural network like this can be used to train the  
system to find a relation between the input and output it encounters. In most cases 
the meaning of a self learning neural network is as following, the organization of 
data using the strength of connections between the neurons. The way how that 
organization takes place depends on the set learning algorithm.  Differences 
between neural networks can be by different internal structures or the learning 
algorithm. 
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Figure 7 A feed forward neural network, trained by back propagation. 

 
Error tolerance is an important aspect of a neural network. It reflects the property 
of the network to create models using the entered data. In other words, a neural 
network is able to find a generalization within the data.  
 

3.3.2.3 Usability within the SAM project 
 
In the original idea of the SAM project, neural networks would be the ideal choice. 
Nevertheless it was ruled out after the end of the preliminary research. The main 
problem with a neural network is to let it learn if it�s right or wrong. This is on its 
own not a big problem, as long as the number of variables is limited. Within the 
SAM project we incorporate over 80 variables, which makes it at this point in time, 
impossible to use a neural network with the time span of the SAM project. Not 
only that, the simulator cannot provide so many variables on a real-time basis. 
Appendix D contains a example of what the source code of a feed forward neural 
network looks like. 
 

3.3.3 Expert systems 
 

3.3.3.1 Description 
 
An expert system is used to solve problems for people which in normal cases need 
a specialized person to solve the problem, for example a doctor. To be able to 
build an expert system it is necessary to first gather the needed information in 
combination with the human expert. Much of this kind of information is kept up 
to date by the expert, using assumptions instead of actual facts. Especially because 
of this reason it is hard to gain the right information of the expert. There even is an 
own specialty for these experts: �Knowledge Engineer�. A knowledge engineer has 
the task to gather information and to put it into the �knowledge base� of the expert 
system. 
 
The most widely used way to extract knowledge out of an expert system is by the 
use of rules. Usually these rules do not have a specific solution. There is more 
certainty that the solution is right when the conditions do not change. Statistics are  
used to predict the certainty of the solutions of the expert system. Rule based 
expert systems are easy to manipulate because of the use of knowledge bases. 
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Expert systems are used to solve a variety of problems, for example in the areas of 
informatics, law and mathematics. Within each area the expert system can solve 
different sets of problems.  
 

3.3.3.2 Operation 
 
An expert system works by means of reasoning. The expert system matches the 
incoming data against knowledge rules, and then determines which situation the 
user is in. The knowledge rules need to be registered into the expert system before 
it is used. With the use of algorithms the knowledge �rules� in combination with 
the incoming data will be converted into �facts�. 
The simplest algorithm that can be used within an expert system is the �Boolean� 
algorithm. A Boolean is nothing more than an �if� statement. It checks if the stated 
rule is true or false. An expert system is basically based on this way of reasoning. 
The way of how data is interpreted and handled differs per system. The biggest 
advantage of this system is that the conclusion is always correct, as long as the rules 
are stated correctly. The disadvantage of the Boolean approach is that the system is 
not flexible, because the rules are always based on �hard data�.  
 
To give an example within the context of our project: If an airplane is on final 
approach the speed needs to be 70 knots. When the speed is 71, or 69, the system 
will pass the variable as false, and will conclude that the airplane is not on final 
approach. More complex expert system circumvents this disadvantage with 
algorithms and logics, which enables a certain flexibility, but will also decrease the 
certainty factor. 
 

3.3.3.3 Expert Systems 
 
There is a wide variety of expert systems shells available. Within the context of the 
SAM project we have chosen to take a closer look at the following expert systems 
shells. 
 
CLIPS 
 
Clips (C Language Integrated Production System) is an expert system shell 
developed by NASA in 1986. Since those days� CLIPS has improved, and has 
gotten a lot more sophisticated. CLIPS is a �tool� that is designed to make the 
development of assessment systems easier. Outside the fact that CLIPS is a stand-
alone tool, it can also be used as function call within a programming language. 
CLIPS is designed to work with programming languages like C and C++. 
 
JESS 
 
JESS (Java Expert System Shell) is in its original form a clone of CLIPS, developed 
in 1995. Trough time JESS has evolved to a complete stand-alone expert system 
shell. Because JESS is based on CLIPS, it is possible to use CLIPS rules in JESS. 
One of the problems a programmer may encounter is that some facts can activate  
many if-then rules. In order to select the most relevant rule to �fire�, JESS uses the 
Rete algorithm. JESS not only has the complete CLIPS function set, but also some  
extra features of it own, like backwards chaining and memory queries. That makes 
JESS an efficient, small, and one of the fastest expert systems available.  
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3.3.3.4 Usability within the SAM project 

 
After the initial research and rule out of a neural network to use within the SAM 
project, expert system shells came into view. Taking the big amount of variables 
into consideration and that we wanted to be able to follow the reasoning process; 
expert systems were a better solution to our problem. Incorporating the use of 
knowledge bases, it is possible to make a dynamic and accurate system. That left us 
with the question of which expert system shell to use. We had narrowed it down to 
two choices, JESS or CLIPS. The choice between JESS and CLIPS was not a big 
one to make. CLIPS has stopped with further development since 2001, which 
inevitable also rules out any updates in cases of bugs. JESS is still under 
development, and has an active user and support group. 
Therefore, JESS was our choice.  

 

3.3.4 Prototypes 
 
During our preliminary research into artificial intelligence we started to make the 
first prototypes. We made both a PHP based, and a PERL based prototype, 
dependent on the programming skills of the team members. Both prototypes use 
simple if-then statements to do the assessment of the situations. The following 
code example illustrates this: 
 

function Takeoff ($Airspeed,$Rpm,$Throttle,$Brakes,$ParkingBrakes,$Pitch,$VerticalSpeed,$Elevator, $Altitude) 
{ 
//Takeoff functions 
//At takeoff the flaps can be set to 0,10,20 or 30 degrees, depending on the runway situation 
//The elevator needs to increase at about 50 knots(v1), and the takeoff will take place at 70/80 knots(v2) 
if($Brakes == "Off" && $ParkingBrakes == "Off") { 
  //Checking whether we are taxiing or taking off 
  //Implementing of groundlevel is needed, to see if we're of the ground or not 
  //Formula: /enviroment/ground-level-m / /steam/attitude-ft = 3.14 
  //So if the groundlevel == 3.14 then were still cruising on the deck, instead of in-air 
  if($Rpm >= "1200" && $Airspeed >= "20") { 
      $Vertical = round ($VerticalSpeed); 
      echo $Vertical; 
      if($Airspeed <= "50" && Vertical == "0") { 
        echo "Takeoff: Rolling $eol"; 
        } 
        if($Airspeed >= "50" && $Airspeed <= "64" && $Vertical == "0") { 
             echo "Takeoff: V1 speed $eol"; 
             } 
        if($Airspeed >= "65" && $Altitude <= "100") { 
             //For this concept we only work with the kfso airport 
             if($Elevator <= "0" && $Pitch >= 2 && $VerticalSpeed >= 2) { 
                 echo "Takeoff: Taking off $eol"; 
                 } 
             else { 
                 if($Airspeed <= "80") { 
                     echo "Takeoff: V2 speed $eol"; 
                    } 
                 } 
               } 
             } 
           } 
         } 
Figure 8 A PHP code example of the first prototype. 
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The previous code describes the �Takeoff� function. It analyzes the data that was 
inputted into the function, and uses the variables to give back a situation. As you 
can see all the data is hard, which means, it cannot deviate from it. In real life, all  
pilots have to obey the rules, but minor deviations from the rules are allowed. This 
means that a following prototype should have a feature to overcome this problem. 
The connection between the prototype and the simulator was done by a TELNET 
connection. This worked in the following way: 
 

$cfgServer    = "127.0.0.1"; 
$cfgPort    = 5555; 
$cfgTimeOut    = 10; 
//Newlines? <br> or \n 
$eol    = "\n"; 
//Printout the variables? 
$Test = false; 
 
// open a socket 
if(!$cfgTimeOut) 
  // without timeout 
  $fgfs_handle = fsockopen($cfgServer, $cfgPort); 
else 
  // with timeout 
  $fgfs_handle = fsockopen($cfgServer, $cfgPort, &$errno, &$errstr, $cfgTimeOut); 
 
if(!$fgfs_handle) { 
  echo "Connection failed$eol"; 
  exit(); 
  } 
else { 
   echo "Connected $eol"; 
   //sleep(10); 
   echo "Running script, this may take a while $eol"; 
 
   //Switch to raw mode 
   fputs($fgfs_handle, "data \015\012"); 
 
   //Get the Flightdata 
   //Get Airspeed 
      fputs($fgfs_handle, "get /steam/airspeed-kt \015\012"); 
      $Airspeed = fgets($fgfs_handle,1024); 
   //Get Altitude 
       fputs($fgfs_handle, "get /steam/altitude-ft \015\012"); 
       $Altitude = fgets($fgfs_handle,1024); 
   //Get Heading 
       fputs($fgfs_handle, "get /steam/gyro-compass-deg \015\012"); 
       $Heading = fgets($fgfs_handle,1024); 
   //Get Aircraft pitch 
       fputs($fgfs_handle, "get /orientation/pitch-deg \015\012"); 
       $Pitch = fgets($fgfs_handle,1024); 
   //Get Aircraft roll 
       fputs($fgfs_handle, "get /orientation/roll-deg \015\012"); 
       $Roll = fgets($fgfs_handle,1024); 
   //Get Aircraft yaw 
       fputs($fgfs_handle, "get /velocities/side-slip-deg \015\012"); 
       $Yaw = fgets($fgfs_handle,1024); 
   //Get Engine rpm 
       fputs($fgfs_handle, "get /engines/engine/rpm \015\012"); 
       $Rpm = fgets($fgfs_handle,1024); 
   //Get Vertical Speed 
       fputs($fgfs_handle, "get /velocities/vertical-speed-fps \015\012"); 
       $VerticalSpeed = fgets($fgfs_handle,1024); 
   //Get Ground Level 
       fputs($fgfs_handle, "get /fdm/jsbsim/ic/terrain-altitude-ft \015\012"); 
       $GroundLevel = fgets($fgfs_handle,1024); 
Figure 9 The connection between the program and the simulator. 

 
As one can probably see this is a pretty basic function. Although this is an effective 
and easy way to obtain data, the socket connection with Flight Gear was slow.  
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Switching back to an earlier version of Flight Gear solved this problem, but 
reduced the amount of variables, which ruled out that solution. The bug was  
submitted to the Flight Gear user group, and will hopefully be solved in upcoming 
versions of Flight Gear.  
 

3.3.5 SAM reasoning 
 
To conclude the artificial intelligence part of our preliminary research we had to 
make some choices. As neural networks were ruled out quite early, and we chose to 
use an expert system, we did some more research into the use of JESS. A second 
prototype revealed the same problem as we encountered with the first prototype. If 
the situation does not have the ideal variables, it is possible that the system analyzes 
the wrong situation. To minimize the chances for this error, because it�s virtually 
impossible to prevent it from happening, we have taken the following precautions. 
 

3.3.5.1 XML Knowledge base 
 
To keep the program as dynamically as possible and easy maintainable, all 
knowledge needed to reason is contained into a knowledge base. The knowledge 
base itself is written in XML, an easy to learn language, and contains all the 
situations and rules the program can recognize. The report on this knowledge base 
is included in Appendix A. 
 
The idea of the knowledge base was inspired by Quint Mouthaan, who made a 
XML knowledge base for a F-16. This knowledge base contains information about 
which instruments the pilot should look at, and in what situation the plane is. 
Looking at the fact that not all actions will be carried out, but they actually should 
be, all actions are given a priority and probability value. To give a basic example: 
when a pilot is in the �Take Off� phase, it�s most likely that the pilot will open up 
the throttle to 100%, thus the probability is 1, but the chance that the pilot will set 
his transponder to code 1200 is only 0.5. This all has to do with the priority of 
actions. If the pilot wants to take off, he has to open up the throttle, but it is not 
needed to set the transponder at 1200, thus the priority values differs.  
 

3.3.5.2 Temporal reasoning 
 
One of the main additions to the SAM project, as well as the ICE project, should 
be temporal reasoning. This mechanism will be used to check the situation 
analyzed by the expert system shell, and to anticipate on upcoming situations. 
 
The main idea behind temporal reasoning is the human reactions to any kind of 
problem. A pilot knows what to do when he encounters an anomaly or an 
emergency, but a computer program does not. The pilot can also dynamically adapt 
the situation, if his or her solution is not working. Temporal reasoning as thought 
of in the SAM project, is a first setup to try to solve this problem. 
 
The principle behind this is a timeline. A pilot takes off, and lands the plane, which 
can be marked as start- and endpoint. Between these two points he or she will 
complete some tasks, which are predefined in the flight plan. These situations will  
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be converted into a table, which contains a summary of the actions, and the 
following logical actions which can happen after it.  Using a timeline, the system  
can anticipate the logical next situation the pilot will encounter, and the system can 
if necessary advice the pilot. 
 
Parallel to this timeline runs a second table, which contains possible alternatives for 
the standard situations. In this second timeline the program searches for 
environment variables which could have a negative effect on the flight. This 
function runs recursively, and checks the first timeline for any alternatives.  
 
Looking at the fact that a plane can also encounter emergency situations, there is a 
third alternate timeline implemented. In this timeline all emergency situations are 
included, with the possible situations that solve the emergency, as is described in 
the knowledge base. If a situation of this timeline is detected, then the system gives 
it top priority to get back into a normal flight situation as fast as possible. In future 
projects this third timeline can also be used to let the program perform the tasks 
needed, and to deny the pilot access to the flight control systems. 
 
A more detailed description of the temporal recursion system is found in chapter 6. 
 

3.4 Technical aspects 
 
Shared question 

�What technical demands need to be met by the model, and which aspects are of use for the user 
of the program?� 

 

3.4.1 Description 
 
This part of our thesis will cover all the technical aspects involving the SAM 
project. As described in the previous section of this thesis, one of the main focal 
points of the SAM project is �speed�.  In order to meet that demand the program 
itself needs to comply with certain aspects, that enable the quick handling of data.  

3.4.2 Data processing 
 
Data is being delivered by the Flight Gear simulator and will be processed and 
analyzed by the various modules of the program.  
 
The simulator uses two kinds of protocols to deliver data to any kind of program, 
namely HTTP (Web-protocol) and TELNET, respectively on ports 80 and 23. The 
problem we faced quite early on in the project was the �slowness� of the data being 
delivered. If you want for example 40 variables delivered by the simulator it can 
take up to 5 seconds for all variables to be sent. Then of course the program needs 
to �translate� and analyze those variables, which will take some amount of time. In 
the worst-case scenario you will be looking at up to 7 seconds of time that is lost 
every time a request is made of the simulator for data. 
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3.4.3 Real-time analyzing 
 
In order to be able to do real-time analyses within the program so that accurate 
information is given to the pilot, the team counteracted the 7 seconds as stated in  
chapter 3.4.2 by making a selection for the data needed at any given situation in 
flight. After all, when a pilot is taking off, there is no need for the variables that are 
used while taxiing from the runway i.e. the program does not need data from the 
wheel breaks, parking brakes and so on. 
 
To realize this, the team introduced a �time-line� which specifies the natural order 
of flight and all that goes with it. This sped up the program for about 5 seconds, 
which still left the team with 2 seconds delay in the analyses of data supplied by the 
simulator. Since the program (luckily) does not concern a real airplane at this 
period in time, the team decided to discard the 2 seconds. 
This is not to say that the end product will be �behind� in data for 2 seconds 
throughout the entirety of the flight, but means that when a lot of data is needed, 
for instance when the pilot is in transition between descend and landing, the 
program will slow down, to speed up again when you are in mid-flight or when not 
much data is needed. 
 
Another selection made by the team was the use of data protocol. The TELNET 
protocol was preferred above the HTTP protocol, simply because it was faster. The 
TELNET protocol sends the data to the program in ASCII characters while HTTP 
does the same thing but in such a manner that it can be read by Internet Explorer 
or Netscape, which in turn means that entire sentences need to be sent to the 
receiving party. In future versions of the Flight Gear simulator the TELNET 
connection will undoubtedly be faster, since a few programmers have assured the 
team that that piece of software will be looked at in the near future. 
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Chapter 4: System requirements 
 

4.1 Description 
 
The following system requirements will cover all demands of the SAM program. 
SAM is the first concept to fully realize an Intelligent Cockpit Environment. In the 
following system requirements, all aspects will be covered according to subjects. 
 

4.2 Subject 
 
The Intelligent Cockpit Environment (ICE) project focuses on the use of new 
techniques and technology for human-machine interaction within the cockpit. A 
context aware system, like SAM, should monitor the actions of the pilot, the plane 
and the environment. This system should enhance the communication between the 
aircraft (machine) and the pilot (human), by giving the right information at a time 
the pilot needs or requests it. With the use of a context aware system it is also 
possible to take over some of the visual systems of the pilot, and to give him or her 
a warning in case of a defect, pilot error, or upcoming hazard. 
 

4.3 Abbreviations 
 
In the following system requirements some abbreviations are used. The following 
summation will cover those abbreviations: 
 
I.C.E  Intelligent Cockpit Environment 
J.D.K.  Java Developer Kit 
J.E.S.S  Java Expert System Shell 
S.A.  System Assessment 
S.A.M  Situation Awareness Module  
V.M.  Virtual Machine  
X.M.L.   eXtensible Markup Language 
 

4.4 General description 
 
SAM is a prototype system that assesses the situation of the pilot, using real-time 
techniques. The system will be built-up out of several modules, to meet up with the 
specific demands of the user. Using this modular built-up of the program, it is easy 
to change and enhance the program, without having to re-compile the whole 
source code. 
 
The context and situation awareness of the system will be realized with the use of 
JESS. This expert system uses 18 different algorithms after context rules are 
provided to come to a conclusion. In contrary to �normal� expert and reasoning  
systems, which works with the Boolean principle (YES-NO), JESS can also work 
with variables, which comply for a percentage to the rule, without being dismissed.  
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With this �fuzzy logic� technique it is possible to make a first prototype, which 
analyzes and anticipates to human behavior. 
This is specifically of interest in a situation where a pilot has a flight plan, which 
states that normal cruise altitude will be 4500 feet. In real life, 4300 and 4700 feet 
are also acceptable, but when working with the Boolean principle ONLY 4500 feet 
is the correct altitude. 
 

4.5 Context of the product 
 
SAM is an operating system independent program. The program needs to run on 
every operating system, as long as it has a Java Virtual Machine installed on it. In 
order to let the program work as specified in these requirements, at least version 
1.41 of the V.M. needs to be installed, or JDK 2.0. 
 

4.6 Functions 
 
The main function demand is that all application software runs smoothly and 
stable, and that all the modules can communicate with one another. The main 
application needs to obtain its data in the shortest amount of time as possible, and 
analyze it in real-time to generate a conclusion.  
 

4.7 Users 
 
SAM only knows one type of user so far. This user group has all rights within 
SAM. It can manipulate the interface, and load modules. Any user restrictions are 
not implemented in SAM at this time. 
 

4.8 General limitations 
 
Even though SAM must be able to run on every operating system, it is bound to 
some limitations. SAM will only run on a computer if the user has installed a Java 
Virtual Machine, version 1.41 at least. For real-time data analysis SAM depends on 
the input rate of the data. If the data stream fluctuates, real-time analysis is no 
longer possible. I.e. SAM can only perform a static analysis on the supplied data if 
this happens. 
 
The level of advice and conclusion the system generates, depends on the quality of 
the knowledge loaded into the program. SAM uses this knowledge to make rules 
for JESS, which then evaluates those rules. If this data is inaccurate or incomplete, 
the forthcoming advice or conclusion is also inaccurate or incomplete. 
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4.9 Descriptions of the product 
 
The SAM project has to meet up to some specific demands. These demands are 
categorized in the modules of the project. 
 
SAM Modeler 
 
The modeler program of the SAM project visualizes the knowledge inputted in the 
modeler program. It has to have the ability to load, save, edit and visualize the 
knowledge. The SAM modeler should have the following abilities: 
 

• Load Context data 
• Save Context data 
• View Context diagram 
• Parse XML file 
• View variables 
• Clear memory 
• Exit program 
• Context Editor 

 
Load Context data 
 
Using the mouse pointer to open up the file menu, the user sees the �Load 
Context� submenu. Clicking on this item will open up a file browser in which the 
user must input a file containing Context data. The file inputted by the user must 
be a gzipped binary file, containing user data. The program then checks if the file 
complies to the specified layout, and generates an error message if it does not. If 
the inputted file is of the correct format, the program extracts the context data out 
of the file, and passes the variables to the main program. 
 
Save Context data 
 
Using the mouse pointer to open up the file menu, the user sees the �Save 
Context� submenu. Clicking on this item will open up a file browser in which the 
user can save a file containing Context data. The user will enter a filename, and 
thus the program will generate a gzipped binary file, and saves it to the inputted file 
location.  
 
View diagram 
 
Clicking on this item will open up a window which visualizes the context previously 
inputted into the program. The context visualized in this function displays a set of 
inputted situations. Moving over such a situation will display its individual steps 
and its possible new situations that follow this situation. 
Displayed without moving the mouse are several lines that help the user determine 
which logical new situation is run through at the end of any other situation.  
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Parse XML file 
 
Clicking on this item will open up a new window, which displays the rules that are 
run trough in a fixed XML file, called KB_Cessna.xml. This XML file uses a 
separate file called variables.dtd, which incorporates the values for each variable 
that is in the XML file. At the same time the XML file is parsed the main window 
of the modeler displays what situations are being created and how many individual 
steps each situation has. 
The XML file is parsed on a line-by-line bases. As each line is parsed the modeler 
translates it into a language that the modeler and therefore the client understands. 
For example: 
The XML file contains the following line: 
<action name="brakes" priority="1" probability="VSP">&ON;</action> 
The Modeler transforms this line into: 
Add step [parking brakes] on situation [Startup] where [controls/parking-brake==1] 
 
More about the language used by the Data Modeler can be found in the section 
�Context Editor� further on in the chapter. 
 

<situation name="Pre startup" timewindow="20"> 
 <phase name="prestartup"> 
  <action name="parking brakes" priority="1" probability="MP">&ON;</action> 
  <action name="throttle" priority="1" probability="VSP">&IDLE;</action> 
  <action name="ignition switch" priority="1" probability="BP">&OFF;</action> 
  <action name="avionics power" priority="1" probability="BP">&OFF;</action> 
  <action name="master switch" priority="1" probability="BP">&ON;</action> 
  <action name="pitot heat" priority="1" probability="BP">&ON;</action> 
  <action name="avionics master" priority="1" probability="BP">&OFF;</action> 
  <action name="static pressure" priority="1" probability="BP">&OFF;</action> 
  <action name="fuel selector" priority="1" probability="BP">&BOTH;</action> 
  <action name="flaps" priority="1" probability="BP">&FULL;</action> 
  <action name="pitot heat" priority="1" probability="BP">&OFF;</action> 
  <action name="master switch" priority="1" probability="BP">&OFF;</action> 
  <action name="fuel shutoff" priority="1" probability="BP">&ON;</action> 
  <action name="lights" priority="1" probability="BP">&OFF;</action> 
  <action name="beacon" priority="1" probability="BP">&OFF;</action> 
  <action name="strobes" priority="1" probability="BP">&OFF;</action> 
  <action name="nav. lights" priority="1" probability="BP">&OFF;</action> 
  <action name="trim" priority="1" probability="BP">&SET;</action> 
 </phase> 
</situation> 

Figure 10 Snippet from KB_Cessna.xml. 

 
View variables 
 
Clicking on this item displays the variables that need to be set in the server 
program. Without these variables, or parameters if you will, the client cannot get 
the necessary variables from the server to make an accurate guesstimate of the 
situation. 
 
Clear memory 
 
Clicking on this item clears the memory of the program so that a new context can 
be entered or loaded. In essence clicking this item resets the program back to its 
run-state. 
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Exit Program 
 
Clicking on this item exits the program. 
 
Context Editor 
 
Besides the functions that have just been described there is one other function. 
This function allows you to add, edit, and delete rules of an empty or already 
existing context. This is done in a simple �language� to make it easy for the user to 
understand and use. 
The commands used in this language are: 
 
new situation [situation name] 
This command creates a new situation in the memory. 
  
add step [step name] when [boolean expression]  on [situation name] 
This command creates a new step for a given situation. The Boolean expression is 
something in the order of [controls/parking-brake == 1] 
  
change step [step name] when [boolean expresion]  on [situation name] 
This command makes changes to the already existing step in a particular situation. 
  
add direction [direction name] when [boolean expresion]  on [situation name] 
This command adds a direction (such as [Take-off]) on a particular situation when 
a Boolean expression has been reached. 
  
show situation [situation name] 
This command displays an already existing situation.  
  
show step [step name] on [situation name] 
This command displays a step with name [step name] in an already existing 
situation.  
  
show direction [direction name] on [situation name] 
This command displays an already existing direction from an existing situation. 
  
show all 
This command displays everything that is in memory. 
  
clear memory 
This command deletes all rules from memory. 
  
delete step [step name] on [situation name] 
This command deletes a step with name [step name] from a specific situation. 
  
delete direction [direction name] on [situation name] 
This command deletes a direction from a specific situation 
  
delete situation [situation name] 
This command deletes a situation. 
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SAM Data server 
 
The SAM Data Server should gather the data from the flight simulator, store it into 
memory and send it to any number of connections made by any or one Data 
Client. Note however that at this point in time, the Data Server has to be given a 
list of parameters of flight values to get from the flight simulator in order to 
provide data to the client. This is because of the enormous amount of time it would 
take for the Data Server to gather all parameters from the simulator. 
The SAM Data server should have the following abilities: 
 

• Parameters 
• Connect 
• Disconnect & Exit 

 
Parameters 
 
Clicking this item lists a set of fixed built-in parameters which needs to be selected 
in order to provide the variables for the SAM Client. Without these parameters set, 
the program will produce an error-message. 
 
Connect 
 
Clicking on this item opens a TELNET connection to the Flight Gear Simulator 
and extracts all the inputted variables from the Simulator. The IP address and the 
port number of the Simulator can and must be entered in two textboxes. If these 
textboxes are not correctly entered or when no Simulator has been found on the 
provided address, the program will produce an error-message. 
After a successful connection has been made, the parameters button will be 
disabled since there is no more need for it now, and the Server will start polling the 
Simulator at an interval set at 600 milliseconds. Any SAM Client that is connected 
to the SAM Data Server can change this interval. 
Also, after a successful connection has been made, the Server will be able to start 
accepting connections from clients. Every xxx milliseconds (400 if it�s not altered 
by any client) the Data server requests the list of parameters from the Flight Gear 
Simulator and then stores them in memory. 
 
Disconnect & Exit 
 
Clicking this item will disconnect the Data Server from all clients and the Flight 
Gear Simulator and then exits the program. 
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SAM Data Client 
 
The Data Client should do all of the actual processing and determination of the 
situations according to the variables that are provided by the Data Server. 
The Data Client should have the following abilities: 
 

• Load Context 
• Connect 
• Blackboard 

 
Load Context 
The Load Context function opens a file dialog where one can select a context file 
that is to be used in concordance with the Flight Gear Simulator. The context file is 
the file that was saved by the modeler and thus is a gzipped binary file. If some 
variables are missing, i.e. not selected on the server before connecting to the Flight 
Gear Simulator an error message is displayed on the main window along with the 
variables that need to be added. If no connection has been made to the Data Server 
another error message is displayed stating that a connection to the Data Server has 
to be made. 
 
Connect 
The Connect function uses the IP Server textbox as reference for its network 
connection and the Frequency textbox for the interval at which the Data Server is 
supposed to be polling the Flight Gear Simulator for its variables. 
While connected the Frequency can be changed at any time by simply entering a 
number and pressing the ENTER button on the users� keyboard. 
After the IP address for the Data Server has been checked, the Data Client tries to 
open a network connection to the Data Server and requests the variables that the 
Data Server has available. 
Once connected, the Data Client first requests all the variables names and then 
infinitely requests the individual values of each variable. This is done because there 
is no need to keep repeating the variable names over the network again and again 
which would slow down a network and the program because it would constantly be 
busy allocating memory for the variables. 
After all values of the list of variables have been obtained, the program passes the 
values to certain JESS rules and uses the results that JESS returns to draw a 
conclusion. 

 
Blackboard 
 
The Blackboard function opens up a window, which displays the values that have 
been provided by the Data Server. This is done in a table where the x-axis 
represents the variable names and the y-axis the amount of steps that have been 
run through. 
Either clicking the Close button or clicking the �x� at the top-right position closes 
this window. 
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4.10 Functional demands of the product 
 
The following demands need to be met by SAM. These demands are limited to the 
functionality that SAM needs to have towards the user: 
 

• The user must be able to get a advice from the system 
• The user must be able to ask for an advice to the system 
• The user must be able to enter knowledge into the system 
• The user must be able to export knowledge from the system 
• The system must be able to obtain data from the Flight Gear Simulator 
• The Flight Gear Simulator must be able to give data to the system 

 

4.11 Properties of the external connections 
 

4.11.1 Users dialog 
 
SAM 
 
SAM must be presented with a clear and obvious menu structure. The program 
itself needs to consist of three separate modules, which can communicate with one 
another, after user input. The modeler needs to visualize the knowledge that is 
loaded in from an XML file. This knowledge needs to be easily manageable with 
use of graphical tools. All data must have the ability to be saved. 
 
SAM Client 
 
The SAM client needs to give a clear overview of the situation the pilot is in. The 
display and refresh ratio of the situation needs to be as good as real-time, with a 
maximal time-lapse of 1 second. The knowledge needed for the analysis needs to 
be loaded in, by opening the menu. The user dialog needs to be built out of four 
separate boxes with additional information about the situation the pilot is in. This 
additional information can be the following: 
 

• Used variables 
• Conditions that are met 
• Predicted next possible situations 
• Input for the address of the Data Server 
• Frequency rate the data is refreshed 

 
SAM Modeler 
 
The primary task of the SAM modeler is to visualize the knowledge, inputted by 
the user, or loaded in from an XML file. With the means of an input box, the user 
can manipulate the knowledge, or if he or she wants to, enter new knowledge. 
Through a diagram button, the knowledge will be visualized into a clear diagram, 
which will display situations, steps and possible following situations. 
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SAM Data Server 
 
The Data Server module provides an interface in which the user must enter the 
address and port number of the Flight Gear Simulator. The user can select 
variables trough a dialog, which will be requested from the Simulator and in turn 
are sent to the SAM client. The interface itself displays the parsed variables, the 
address of the Flight Gear simulator, and a Connect and, after a connection has 
been made, a Disconnect button. 

 

4.11.2 Apparatus connections 
 
If the user wishes to run a Flight Gear Simulator on a computer other than on the 
computer the Data Server is running on, or when the Data Server runs on another 
Computer than the Data Client, it is necessary to have a network connection 
available.  

4.11.3 Program connections 
 
For the use of the SAM, the following other programs are needed: 

• Operating system 
• Java Virtual Machine or JDK1.2.4 
• Flight Gear 

 
Any other software is not needed. 

4.11.4 Communication connections 
 
To use the SAM program, a computer needs to be equipped with a working 
TCP/IP stack, even when all programs are run on one computer. 

4.11.5 Presentation demands 
 
SAM needs to have a clear and attractive interface, which visualizes the most 
important data in one blink of an eye. By simple steps, the interface needs to be 
able to be manipulated, so that the user can choose what kind of data he or she 
wants to see. 

4.11.6 Design limitations 
 
The most important design limitation of the SAM project is time. 

4.11.7 Apparatus limitations 
 
SAM needs to be able to run on the computer of the user. The minimum 
requirements of SAM are the same as the requirements for the programs SAM 
needs to run, to make SAM able to work on a great variety of computers. 
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4.11.8 Quality criteria 
 
SAM needs to be operating system independent. It should be able to work in any 
environment. The analysis of the data by SAM needs to be an accurate and actual 
representation of the reality.  
 

4.11.9 Maintenance ability 
 
SAM has to have a modular type of built-up, in order to be able to make changes 
or improvements to the program, without having to recompile the source code of 
the entire program. 
 

4.11.10 Portability 
 
SAM needs to be operating system independent, in order to provide portability to 
any computer system that meets up with the program requirements of SAM. 
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Chapter 5: System model 
 

5.1 Description 
 
In this chapter the system model of SAM will be described. The first section (5.2) 
will give an overview on how SAM operates. Section 5.3 will cover the functional 
specification of SAM.  The next 4 sections will describe the techniques used with 
the creation of SAM. 

5.2 System overview 
 
The main goal of SAM is to give an accurate reflection on what situation the pilot 
is in. To achieve this goal, a lot of testing is necessary. After some first prototypes it 
was concluded to make a modular model. Using this way knowledge could easily be 
implemented in the program, and due the modular model, code changes can be 
easily integrated in the project.  
 

5.3 Functional specification 

5.3.1 In general 
 

5.3.1.1 Introduction 
 
The functional specification is part of the graduation project SAM for the 
Technical University of Deft, based on the assignment of Maikel van der Roest and 
Richard Harreman. 
 
The project consists of the research into Situation Awareness, and the following 
implementation of a prototype. This prototype must provide a base into further 
research towards an Intelligent Cockpit Environment. This section of the thesis 
forms the functional basis of SAM and covers the automation configuration and 
the functional specification of the Situation Awareness Module. 
 

5.3.1.2 Functions of SAM 
 
The main task of SAM is that all application software runs stable, and can 
communicate with one another fast and accurate. Application software covers: 
SAM Data server, SAM Data modeler, SAM Data Client. A supplementary task is 
maintenance of the software and knowledge. 
 
The SAM Data server provides a quick and stable flow of simulation data for the 
SAM Client. The Data server also provides the user with the possibility to buffer 
and safe data, so if the connection with the client is lost, the data is not lost. 
 
 
 
 



Chapter 5: System model 

 
 
Copyright © 2003, Delft University of Technology  

44 

 
The SAM Data Modeler gives the user the ability to load XML files which provide 
the program with a context to work with. This context will be visualized on a 
screen. The user has also the ability to make its own contexts in the modeler which 
can be saved to an XML file. 
 
The SAM Data Client is the main application of the SAM project. It provides the 
main functionality. The client uses context models provided by the data modeler to 
analyze simulation data provided by the data server. The client analyzes the 
incoming data and provides the user with a conclusion and predicts what the 
upcoming situations are. 
 

5.3.1.3 System choice 
 
The development of SAM takes place on a Windows NT and 2000 platform. This 
choice was made by the project members based on the facilities of the Technical 
University of Delft. Using JAVA technologies enables the program to run at 
virtually any pc, providing that it has a JAVA Virtual Machine installed. 
 

5.3.2 Automation configuration 
 

5.3.2.1 Introduction 
 
In order to reduce the workload of a pilot, it is necessary for the program to run 
�on it�s own�. This means that once the button is pressed for the situation analysis, 
the pilot only has to look on the screen and do nothing else. In order to achieve 
this, it is vital for the program to be self-sufficient in data gathering and reasoning. 
 

5.3.2.2 System overview 
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Figure 11 A global overview of SAM. 

 
In the above shown picture there are basically three different sources. On the one 
hand there is the Flight Gear Simulator and on the other there is the XML 
knowledge base, which we will call the XML file from here on. 
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To make the SAM program easy accessible and easy to maintain, we split it into 
three parts. The figures below show a representation of the way the information is 
processed in the separate parts. 
 

 
Figure 12 Modules within SAM. 

 
The Data Modeler Parses the XML File to a context which can be written down 
and thereafter read by the Data Client. Once the XML File is parsed it can be 
viewed by the user on a subscreen. This subscreen displays the various situations, 
the links between the situations and the steps within each situation.  
The variables that are needed from the Data Server can also be viewed on a 
separate subscreen. This is very handy, because it is necessary to select them in the 
Data Server. 
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Figure 13 Flowchart of Data Modeler. 
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The Data Server gathers the variables selected in a separate subscreen from the 
Flight Gear Simulator and passes them on to the variable container in its memory. 
From there the Data Client gets the stored variables at a set interval. The variable 
container has been created to prevent data loss in the event of network collisions 
and temporary network severs. 
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Figure 14 Flowchart of Data Server. 

 
The Data client has a direct connection to the Data Server. The context needed for 
the situations has to be loaded from hard drive. The processed data can be viewed 
on a type of blackboard, which is a representation of variables stored in memory. 
The Data Client displays the current situation and the next possible situation. 
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Figure 15 Flowchart of Data Client. 

 
5.3.2.3 Yourdon method 

 
The �Yourdon method� is a technique that has evolved over the last 20 years. 
Almost 200.000 people contributed to the method, making it very usable. 
Nowadays the �Yourdon method� consists of two things: tools and techniques. 
The �tools� are a variety of graphical diagrams, used to visualize and model the 
requirements and architecture of the system. The most commonly known of these 
diagrams is the Data Flow Diagram (DFD) as shown in figure 21.  
Although the DFD is an excellent way to show what functions the software should 
carry out, it says little or nothing about the relationships between data, and time- 
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dependant behavior. Therefore the latest version of the �Yourdon method� also 
includes Entity Relationship Diagrams (ERD), State-Transition Diagrams(STD)  
and Structure Charts(SC). All these diagrams make it easy for future developers to 
further expand the system.  
Although this modeling approach is quite old, and forms the basis for modern 
approaches, like UML, it still suffices for our project. Because of the lack of object 
orientated programming, and the basic simplicity of the model, the Yourdon 
method fulfilled our needs. This results in the following approach: 
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Figure 16 System approach. 
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5.3.3 Functional demands 
 

5.3.3.1 Introduction 
 
According to the Yourdon method of designing SAM has to meet up with some 
functional and non-functional demands. The following demands are deducted of 
the context diagram, found further on in this thesis. 
 

5.3.3.2 Functional demands 
 
SAM has to comply with the following demands. These demands limit themselves 
to the functionality SAM must offer to the user: 
 

• The user must be able to get a system advice 
• The user must be able to ask for a system advice 
• The user must be able to input knowledge 
• The user must be able to input a context 
• The system must be able to obtain data from Flight Gear 
• Flight Gear must be able to deliver data to SAM 
 

 
5.3.3.3 Non-functional demands 

 
SAM has to comply with the following demands. These demands limit themselves 
to the functionality the software must offer under certain circumstances: 
 

• The host machine of SAM must be equipped with a JAVA virtual Machine 
• The communication between SAM Data Client and SAM Data Server 

needs to be with the least latency as possible 
• The communication between SAM Data Server and the Flight Gear 

simulator needs to be with the least latency as possible 
• The user must have a system equipped with Flight Gear 

 

5.3.4 Functional operation 
 

5.3.4.1 Introduction 
 
This section of the thesis will describe the functional operation of the program. 
The Graphical User Interface (GUI) is described, as well as the users known to 
SAM.  



Chapter 5: System model 

 
 
Copyright © 2003, Delft University of Technology  

49 

 
5.3.4.2System Functions 

 
The Data Server 
 
The network connection between the server and the Simulator is established by use 
of TELNET protocol, over TCP/IP. This means that the Data Server is making  
 
requests that are translated to TELNET commands, these commands are sent 
through the outcome flow and finally the Flight Gear Simulator will convert them 
to internal commands. 
The specified parameters are checked and the values are sent back to the server 
through the outcome flow of the Simulator, the equivalent of the income flow of 
the Data Server. 
 

 
Figure 17 Data Server. 

 
The Data Server uses TCP/IP to connect to the Flight Gear simulator by 
connecting to port 23 (TELNET). Specifications on how the TELNET protocol 
works can be found in RFC854 document: http://www.faqs.org/rfcs/rfc854.html 
This Server can be started on any PC in a local area network since local area 
networks usually provide fast enough connection speeds. 
  
Several options can be set once the Server is started.  First, the user has to click the 
button named �Parameters� to get a list of parameters that are pre-programmed 
into the Server.  
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Next, the user has to select several parameters that are going to be needed. This is 
done because if you want to use all parameters as a default, the telnet connection 
with the Flight Gear Simulator will slow-down considerably as to a speed that will 
update all parameters every 40 seconds. The fault for this lies in the Simulator 
program itself. There are no limitations on the amount of data transferred between 
the Data Server and Client. 
 
After the above two steps the user has to give in the ip-address or the Domain 
Name of the PC the simulator is running on. After that, the button �Connect� may 
be clicked and the Server will connect to the simulator and retrieve data from the 
simulator and handle the incoming connections. 
 

 
Figure 18 Parameter selection in Data server. 

 
The Data Client 
 
The Data Client connects to the Data Server to get the values for the parameters 
every few seconds or milliseconds. This depends on what great an interval was set 
in the frequency box. 
 
The Client needs to load a context file written on disk by the Data Modeler. This is 
simply done by clicking the �Load Context� button. If a wrong context file was 
given or when the file is corrupt, nothing will happen. 
 
After that and after the connection with the Data Server is made, the Client will 
run through all possible situations and will compare them internally with the 
provided parameters as they are coming in. From that a possible situation is given 
as to in what stage of the flight the plane is in. i.e.: The plane is taking off or is in 
mid-flight. 
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The communication between the Data Server and Client Server relies on a non-
standard protocol. The communication is done by a stable TCP/IP connection. 
Both the Data Server and the Client Server have two kinds of data streams, namely 
an incoming and an outgoing stream. In this case the communication is based on 
package sending and receiving. So if the Data Server has some new information, it 
builds a package and sends it to a connected client which will use the data from 
there on. A package that is send (or received) contains a code that is a byte value 
and the useful data. 
  

 
Figure 19 Data Client. 

 
The Data Modeler 
  
The Data Modeler, as noted in a previous chapter, parses a XML file in order to 
create some rules that will be written to hard drive as a file. 
 
These rules or definitions if you will, are supposed to resemble as closely as 
possible the reality. The main advantage of such a system is that there will have to 
be made almost no modifications to the source code of the program. 
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Figure 20 Data modeler. 

 
For future advances it would be nice to make a Data Modeler which not only 
parses a given XML file to rules, but make a XML file based on rules given in by 
the user. 
 
An addition that is already implemented in the Data Modeler is the creation of a 
context diagram, which makes it easier for a user to understand the data that is 
processed from the given XML file. 
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Figure 21 Context Diagram within Data modeler. 
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5.4 System analysis 
 

5.4.1 Introduction 
 
This section will show the various diagrams involved in the development of SAM. 
 

5.4.2 Context diagram 
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Data Request Flight Gear Data

Context
Data
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Knowledge
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Figure 22 Context diagram of SAM. 
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5.4.3 Data flow diagrams 
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Figure 23 SAM DFD layer 1. 
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Figure 24 SAM DFD layer 2 XML data. 

 
 

User

Knowledge
base

Regulations

Context
Data

Knowledge
base Aircraft

Data

Process
System Data

Advice

Knowledge
base JESS

Context
Request System Advice

Process Context
Data

Process
Knowledge
base Data

Formulate
Advice

Gather
System DataRequest System Data

XML Aircraft
Data Rules

XML JESS
Context Rules

System Advice
XML Regulations

Rules

System Data

Knowledge
base

Advice
Request

 
Figure 25 SAM DFD layer 2 process system requests. 
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Figure 26 SAM DFD layer 2 check system advice. 
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Figure 27 SAM DFD layer 2 process system data. 
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5.4.4 Entity-relationship diagram 
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Figure 28 ERD diagram of SAM. 
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5.4.5 State transition diagrams 
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Figure 29 The main Data Modeler STD. 
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Figure 30 Make context STD. 
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Figure 31 Load context STD / Parse context STD. 

 
 

5.4.5.2 Data Server 
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Figure 32 Data Server STD. 
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5.4.5.3 Data Client 
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Figure 33 Data Client STD. 
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Chapter 6: Artificial Intelligence 
 

6.1 Description 
 
In this chapter the artificial intelligence and the knowledge base will be described. 
The first section (6.2) will be about the use and background of the knowledge base. 
Section (6.3) will be about expert systems and the use of tools thereof. 
 

6.2 Knowledge base 
 

6.2.1 Description 
 
Knowledge bases are used as a means to quickly and at an interpretable level show 
what information is available for, in this instance, an airplane. 
The knowledge about how to fly an F-16 has been gathered and stored in a 
knowledge base in a preliminary research project by Quint Mouthaan. This inspired 
us to adapt this knowledge to a Cessna type airplane and use it in our modular 
program. The advantage of such a knowledge base is that one does not have to re-
program and re-code the entire program in order to adapt it to his or her specific 
plane to fly in a flight simulator. One simply adapts the XML file in which the 
knowledge is stored and run it through the parser in the Data Modeler. 
 
The contents of the knowledge base will be used to determine which situation is 
most likely to occur at a certain moment in time. The knowledge base has been 
stored as an XML file, which is displayed in Appendix B. 
 

6.2.2 Layout 
 
The knowledge base is divided in a number of situations that we want to be able to 
recognize, for example, taking off and landing the plane. These situations are 
described in section 6.2.6. For every situation there is a set of rules that state the 
probability of the situation dependant on the state of the aircraft or the events that 
are happening. 
An event can have three sources: 
 
Pilot: Pilot events are actions the pilot is taking, for example a button that he 
presses or the yoke that is adjusted. 
 
Aircraft: Aircraft events are changes in the aircraft�s state. For example a change in 
altitude or speed. 
 
Environment: An event from the environment can be another aircraft that is on a 
collision course towards the pilot�s plane or at a low altitude, a tree. For this source 
it is necessary to monitor the plane�s outer range for a set distance. 
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Pilot and environment events are usually related to variables that have discrete 
values whose changes will likely be important. Therefore these values should be 
monitored constantly so that changes will be detected immediately. Aircraft events 
are usually related to variables with continuous values that change often and 
gradually. These continuous values should be sampled at regular intervals.  
 
Next to the events there is another source of information that can be used to 
determine the current situation. This source is the flight plan. The flight plan 
contains information about the steering points the pilot will fly to during the flight, 
just like a normal flight plan, but it also contains information about the situations 
that will occur at those steering points. This enables the program to predict what 
situation should occur at what time.  
 

6.2.3 Rules 
 
As stated before, rules are grouped according to the situation they relate to. Every 
rule will have a value that states the probability of a situation when that particular 
rule is fired. More on the subject of probability will be discussed in section 6.2.4. 
For every situation there are several kinds of rules: 
 
Action rules:  
An action rule is a rule that states that a pilot has to or might perform a certain 
action during that situation. An action from a pilot always has effect on a control or 
instrument of the airplane. For example, moving the stick to the front will result in 
the elevator position becoming negative. An action rule is therefore a rule that 
states with how much probability a particular situation is taking place if at some 
point in the situation a control or instrument is set to a specific value.  Values are 
handled in section 6.2.5. 
An action rule also has a priority value. This priority value has nothing to do with 
probabilities, but with the importance of an action for the situation it belongs to. 
The priority values are values between 0 and 1. A priority value below 0.5 means 
that the action might never be performed during the situation. A priority value of 
0.5 or above means that the action is mandatory. 
A priority value of 1 means that the action is vital for the successful completion of 
the maneuver. If the action is mandatory but the control or instrument is never set 
to the given value during the situation, the pilot might have forgotten to perform 
the action and he might have to be informed about that. 
 
Some situations can be split up into a number of phases which all have a certain set 
of actions that have to be performed during that phase. The actions that have to be 
performed in a phase are all time-dependant in the sense that they must be 
performed in a certain chronological order. There are also time-independent 
actions, which are actions that might be performed at any time during the situation.  
Therefore the set of action rules is split up into two parts, one for every phase and 
one for every time-independent part. If an action in the time-dependant part is 
performed "out of turn", which means it is performed while not all actions that 
should have been performed earlier have been performed yet, this might result in 
two things: 
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The probability value of the rule might become smaller or the pilot might have to 
be informed that he has forgotten to do something. 
 
Visual check rules:  
A visual check rule states that the pilot should check a certain instrument during 
the situation. These rules can be used when a gaze tracking device is used to 
observe the pilot during the flight. When the system detects that a certain situation 
is occurring and the pilot forgets to check an instrument, the system could give the 
pilot a hint that he should check the instrument. 
 
Conditional rules:  
The conditional rules can be used to determine if a situation has started or if a 
situation has finished. These rules apply to the same controls or instruments as the 
action rules. For each control or instrument there are at most two conditions. One 
condition defining the value the control or instrument should have at the start of 
the situation and one condition that states what value the control or instrument will 
have at the end of the situation. The set of start- and end-conditions actually forms 
one rule that states that if the given controls and instruments have the given values 
the probability that the situation has started or ended has a certain value. These 
probability values are predetermined. The end rule can only fire if at some time in 
the past the system has detected the start of the situation. 
 
Additional rules:  
Additional rules are rules that do not fall under one of the above categories, e.g. 
rules that specify maximum or minimum values a control or instrument can have 
during a situation. They might also say something about actions that should not be 
performed during a situation and how much the probability will decrease if such an 
action is performed. 
 

6.2.4 Probability 
 
A probability calculator will combine all probabilities that are the result of the rules 
that fire and calculate a new probability for the situation. Thus, depending on the 
rules that fire, the probability the Cessna is in a certain situation will increase or 
decrease.  
The probabilities which are stored in the knowledge base are fuzzy values from the 
following fuzzy set: VBP (Very Big Positive), BP (Big Positive), MP (Medium 
Positive), SP (Small Positive), VSP (Very Small Positive). The probability calculator 
will combine all the fuzzy values from the rules and produce one fuzzy value which 
represents the probability of the situation it belongs to. Once the probability 
calculators for every situation have produced a probability, an overall controller will 
evaluate all those probabilities and determine if it can say with enough certainty 
which situation is taking place. 
 
How the fuzzy values will be implemented and which combination algorithm 
should be used is not part of this document. For that information we refer to the  
work done by Quint Mouthaan in his document called �Towards an intelligent cockpit 
environment: a probabilistic approach to situation recognition in an F-16�.  
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6.2.5 Values 
 
In the above sections we mentioned values. The values of the controls and 
instruments in the action and conditional rules might be a range of values. This is 
indicated with the mathematical symbols < (smaller than) and > (bigger than). 
Furthermore it is possible that a control or instrument can have more than one 
value or it might be that a control or instrument should not have one or more 
values. This is indicated with the logical operators �|� (OR), �&� (AND) and �!� 
(NOT).  
The operator �|� is used for controls or instruments that may have more than one 
value, �!� is used for controls or instruments that are not supposed to have a certain 
value and �&� is used together with the �!� operator if there is more than one value 
that a control or instrument is not supposed to have.  
 

6.2.6 Situations 
 
In this section all the situations that we will want to recognize are described. In 
describing the situations a lot of terms and abbreviations are used that may be 
unknown to most people. 
The following situations will be described by the knowledge base: 
 

• Startup 
• Taxiing to runway 
• Taking off 
• Aborting take off 
• Normal flight 
• Landing 
• Aborting landing 
• Flame out landing 
• Taxiing to ramp 
• Shutting down 

 
Startup 
 
Startup is the phase in which the plane is made ready to taxi to the runway. All 
systems are switched on, to make starting of the engine possible. The navigation 
beacons and strobes are switched on, to make it visible for the environment that 
the plane is in the startup state.  
 
Taxiing to runway 
 
During this phase the pilot drives the aircraft to the runway, which he will take off 
from. This is considered a different situation than taxiing from the runway after the 
pilot has landed, because the start and end states are switched. The state of the 
airplane at the beginning of this phase should be equal to the state of the airplane 
after starting engine Taxiing is assumed to be finished when the aircraft comes to a  
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halt. It is assumed the pilot will not halt the airplane between the ramp and the start 
of the runway. This is a reasonable assumption because the pilot usually has only a 
limited amount of time for takeoff. The flight controllers generally want to get the 
airplanes in the air as fast as possible. Therefore it is also assumed that if the pilot 
arrives at the runway and is cleared for takeoff by the tower he is not required to 
hold short and can enter the runway immediately. However once on the runway he 
will have to halt to make a final check of his systems. This is why taxiing can still be 
considered to be finished when the aircraft comes to a halt. 
 
Take off 
 
This phase starts with an airspeed of zero, because the pilot will stop at the start of 
the runway to make a final check of the systems. The program will have a very 
good indication that the take off has started when the ground speed exceeds the 
maximum taxi speed. If the plane reaches the minimum altitude for flight then the 
takeoff phase can be considered to be ended once all actions in the action list have 
been performed. Aborting a takeoff can only be done when taking off has already 
started and before it has finished. Therefore the aborting takeoff situation is a 
nested situation. When the system detects that the takeoff is being aborted it will 
consider the taking off situation to be finished. 
 
Normal flight 
 
In the situation normal flight the pilot is flying towards a steering point. This is the 
situation in which the pilot will find himself most of the time. Because this is the 
standard situation we will assume that if no other situation is detected then there is 
a big chance that the aircraft is in normal flight. This is implemented by setting the 
start probability of the normal flight to VBP and the end probability to VSP, 
although there is only a small amount of start and end conditions. Examples of the 
conditions are that the altitude must be bigger than the minimum altitude. There 
are also no real characteristic actions or visual checks the pilot should perform in 
this situation. When the start probability of another situation becomes high 
enough, the normal flight situation will be considered finished. 
 
Landing 
 
When the pilot gets below the minimum altitude, the landing phase starts. The start 
is also marked with actions as extending the flaps, and lowering the speed. When 
the pilot touches down, meaning when the altitude above ground level is zero, he 
or she will have to brake. This marks that the situation is almost ended, as the 
speed drops to taxi speed. 
 
Aborting a landing 
 
Aborting a landing occurs when for some reason the landing cannot continue. In 
order to abort a landing the pilot usually increases throttle and pitches the nose of 
the plane up. Since these two variables are the exact same for a flame out landing 
one other variable is used, namely the altitude. 
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Flame out landing 
 
As stated above, a flame out landing is almost the same as aborting a landing. The 
flame out is used to get the nose up a little more just before touchdown. In order 
to achieve this, the plane has to pick up a little more speed and the nose has to 
have some help from the elevators. What the pilot does at this point, is throttle up 
the engine and pulls on the yoke. This phase will end when the wheels have made 
contact with the ground, i.e. when the altitude above ground level is zero. 
 
Taxiing to ramp 
 
When the pilot has finally landed, he will taxi from the runway. This phase starts 
when flame out landing has ended and the ground speed is below the maximum 
taxi speed. The situation ends when the ground speed is zero and parking brakes 
have been set. 
 
Shutting down 
 
This is the phase in which the pilot shuts down all systems. The most important 
information of this phase is the end state of the airplane, so that the system may be 
able to check if the pilot has not forgotten to shut down a system. 
 

6.3 Expert Systems 
 

6.3.1 Description 
 
Conventional programming languages, such as C and Java, are designed and 
optimized for line-by-line reasoning. Humans, however, often solve complex 
problems using (dependant on the person) very abstract approaches. Although 
abstract information can be modeled in these languages, considerable programming 
effort is required to transform the information to a format that�s usable and takes a 
reasonable amount of time to run through. 
Research in the area of artificial intelligence incorporated the development of 
techniques that allow a higher level of abstraction while modeling information. 
Tools have been developed that allow programmers to develop and maintain at an 
easier level the abstract problems many customers or supervisors provide them 
with. These tools are called expert systems. 

6.3.2 Boolean logic 
 
Boolean logic is the most commonly used logic used by programmers. Boolean 
logic is also the oldest logic around in the programming scene, developed by an 
English mathematician and computer pioneer, George Boole who lived from 1815 
until 1864. Boolean logic is a very simplified means to determine the outcome of a 
given problem, because it uses only two statements, i.e. a statement is either TRUE 
or FALSE.  
A way to integrate these values in a program is to make use of if-then statements 
that check if a variable has reached a certain value (if it has become �TRUE�) and  
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then execute a certain rule provided by the programmer. Subsequently �if� rules can 
be stretched by entering three different operators, namely AND, OR and NOT. 
�AND� operators are used when two or more variables are considered to be correct 
for a rule, �OR� operators are used when either of the two or more variables are 
considered to be correct and  �NOT� operators are used when a variable should not 
have a certain value.  
 

if($Flaps == 0 and $FuelFlow > 1500 and $Airspeed > 70) { 
   print"\t\t\tFlight: Flying\n"; 
   } 
if($Flaps == 0 or $FuelFlow > 1500) { 
   print�\t\t\tFlight: Flying\n�; 
   } 
if($Flaps == 0 and !$FuelFlow > 1500) { 
   print�\t\t\tFlight: Flying\n�; 
   } 

Figure 34 Different 'if' statements. 

 
The first statement in the above figure shows that when the Flaps are in resting 
position and the fuel flow is greater than 1500 and the airspeed is greater than 70 
knots, the plane is considered to be in normal flight. The second statement shows 
that when the flaps are in resting position or the fuel flow is greater than 1500, the 
plane is considered to be in normal flight. The last statements shows that when the 
flaps are in resting position and the fuel flow is not greater than 1500, the plane is 
considered to be in normal flight. 
The problem with this type of programming is that it�s time consuming, it slows 
the program down considerably and it�s not very accurate. By the latter it is meant 
that if there are two separate situations that are almost alike, such as �Taxiing from 
runway� and �Taxiing to runway�, the program will have a hard time determining 
what situation it is actually in. To counteract that the first prototype was built with 
references to upcoming situations, but this was quickly dismissed, because of lock-
ups in situations. Sometimes the plane was in Normal flight, but the program still 
thought it was Taking off. One solution was to look into the basics of Fuzzy logic. 
 

6.3.3 Fuzzy logic 
 
As an alternative to Boolean logic, where one variable is either true or false, Fuzzy 
Logic was introduced by Lotfi Zadeh, a professor at the University of California at 
Berkley, as a way of processing data by allowing partial values rather than crisp set 
values. This approach was not applied to control systems until the 70's due to 
insufficient small-computer capability. The reasoning behind this, was that normal 
humans do not require precise information. This is illustrated in the next example. 
If a computer is told a certain person is �young�, the computer cannot do anything 
with that information, whereas a person regards �young� as an age of 1 to 21, or 
even 30, depending on the person�s own age. 
 
Another example is the Fuzzy Logic used in present cars. Due to environmental 
laws, a car has to produce as little as possible pollution. In order to achieve this, 
computers have been installed in all new cars as a means to regulate the exhaust 
fumes of cars. 
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Figure 35 Exhaust regulation with Fuzzy Logic in a car. 

 
As can be seen in the above illustration, the computer get a signal that the driver 
wants to accelerate. Now with the environmental laws the amount of CO2 should 
be as low as possible and thus the O2 (Oxygen) as high as possible. This is done 
through a sensor, called the Lambda-Sensor, which is situated in the exhaust pipe. 
This sensor sends a signal to the computer, which will adjust the amount of fuel 
injected into the engine in order to achieve a high level of oxygen in the exhaust 
fumes. 
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Figure 36 Response of injection computer to oxygen sensor. 

 
This example can be fitted onto any type of situation. If we were to apply this 
model to an aircraft, you could picture the Fuel flow rate to the altitude of a plane 
where the central line would be the optimum altitude, or given altitude by the flight 
plan, and the curve the current altitude of the aircraft. If an auto-pilot were to be 
switched on, the computer would try to get to the optimum altitude in the shortest 
amount of time and with a minimum amount of discomfort.  
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6.3.4 JESS 
 
The Java Expert System Shell (JESS for short) was developed by Ernest Friedman-
Hill at Sandia National Laboratories as part of an internal research project. The first 
version of JESS was written in late 1995, when JAVA was very, very new.  
JESS is a tool for building a type of intelligent software called Expert Systems. An 
Expert System is a set of rules that can be repeatedly applied to a collection of facts 
about the world. Rules that apply are fired, or executed. Jess uses a special algorithm 
called Rete to match the rules to the facts. Rete makes Jess much faster than a 
simple set of cascading if- then statements in a loop. Jess was originally conceived as 
a JAVA clone of CLIPS, but nowadays has many features that differentiate it from 
its parent. 
As was probably clear already, JESS is written in JAVA. It is compatible with 
CLIPS (See next section) and most JESS scripts are valid CLIPS scripts. JESS has 
some extra functionality over CLIPS. One of these extra functions is that JESS 
makes it possible to communicate with JAVA objects during execution of a JESS 
program. JAVA is renowned for its slowness in comparison to C or C++ 
programs, so real-time applications might not seem as something you want written 
in JAVA. This is where JESS steps in, because JESS takes over the reasoning part 
of the awareness system, which of course it is designed for. Combined with the 
XML parser, which is in a separate program and not in the Data Client, the real-
time analyses of data is possible. 
As stated before, JESS has been around for quite a while and it is constantly 
undergoing updates and fixes. We originally wanted to use version 6.0 first, but 
since that time version 6.1p1 has been released. Unfortunately time was limited to 
us and thus JESS was not implemented in the prototypes. 
 

6.4 Temporal Reasoning 
 

6.4.1 Introduction 
 
As previously described in chapter 3, one of the main problems discovered in the 
prototypes, was the accuracy of the analyzed situations. In normal flight conditions 
the accuracy was quite good, but at the point of an emergency or unexpected 
situation, the program fails to give an accurate advice. One of the solutions to this 
problem is temporal reasoning. The operation of this system is described in the 
following part of this thesis. 

6.4.2 Problem setting 
 
The main problem in analyzing a situation is the way an human react to situations, 
and the way a computer program react. The main difference is, that a computer 
program can only do what it is trained for, and does not know how to react in an 
undocumented situation. There are numerous ways to circumvent this problem, 
but the technologies available at this moment in time are limited. The best solution 
to the problem would be a neural network. But as previously mentioned, the  
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technologies available at this point in time, are too limited. This results into the 
following problem setting: 
 
�How can a situation be accurately detected with technologies and knowledge currently available�  
 

6.4.3 Philosophy 
 
To come to a solution to the problem, we fist took a look on how a human react to 
unexpected situations. Although this is a problem on it�s own, and certainly needs 
some further studying, the basis of this can be extracted by common knowledge 
and own experiences.  
 
The first thing that came to light is the human ability to improvise, an ability a 
computer program lacks. A human person always knows, or improvises with the 
information available at the moment, how to react to an unexpected situation. This 
ability provides a solution to the problem that has occurred. Because a computer 
program lacks this ability it can only react to the situation in the way it is trained to 
do that. This normally results in errors and solutions to the problem that is not 
logical. 
 

6.4.4 Solution 
 
Taking the previously mentioned philosophy in consideration, we have thought of 
the following solution. Humans think in a three, maybe even four dimensional way. 
When a situation occurs he or she knows how to react, based on experience and 
knowledge gained in life. This can be regarded as an alternate timeline running 
parallel to the current timeline. When an alternate situation occurs which is not as 
expected, the person will �enter� the second timeline and react to the situation. If 
the problem is solved as expected, the person will go back to the normal timeline. 
When this is not the case, the person will �enter� the so called third timeline, also 
known as the emergency timeline. 
 

Flight progression

Normal
timeline

Emergency
timeline

Enhanced
awareness

timelineProblem encountered

Problem isn�t handled

Emergency averted

Pr
io

rit
y

 
Figure 37 Different timelines displayed in a diagram. 

 
 



Chapter 6: Artificial Intelligence 

 
 
Copyright © 2003, Delft University of Technology  

73 

 
When a situation occurs which involves the third timeline, a high level of stress can 
be expected. The person will probably discard the pervious timelines, and will do 
all in its power to return to a normal situation. This also characterizes the third 
timeline. Looking as this fact in a more technical way, rather then a psychological 
way, it distinct itself as a different timeline, as the way that the second timeline 
distincts itself from the first. 
 
Taking all of the above into consideration, as described above would be the use of 
timelines. This enables the program to simulate a part of the creative thinking that 
distinct it from its human counterpart. Implementing such a system into the 
program could lead to an improvement of the accuracy. This system would 
improve the accuracy in abnormal situations, and will also improve the accuracy of 
normal situation, as timelines are used, and this result in a relation between 
situations. It enables the program to predict the next possible situations, based on 
what situations that have occurred in the past. 
 

6.4.5 Functional Implementation 
 
The implementation of this idea is done by an extension of the knowledge base. 
The original knowledge base structure by Quint Mouthaan already had some room 
for a following situation, but lacked the structure for possible following situations.  
 
The Data Client itself will make distinction between the timelines. For now the 
program will know three timelines: 
 

• Normal timeline 
• Enhanced awareness timeline 
• Emergency timeline 

 
The implementation in the knowledge base is done by adding a <time constraint> 
tag within the situation tag. Within this tag the possible following situations are 
listed, as well as the situation before the current. The listed situations also get a 
probability value, according to the probability they will happen. These probabilities 
have a direct connection to the timelines. The lesser the probability is of a 
following situation, it will be in a higher timeline. Meaning that the highest 
probabilities will be contained in the normal timeline, as the lowest will be in the 
emergency timeline. As a future implementation, one can choose for to let the 
program override the pilot, if a situation is detected which does not fit in the first 
timeline. 
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Chapter 7: Project results 
 

7.1 Description 
 
This chapter will describe what has happened and what has been achieved during 
the period that was set for this part of the ICE project. This chapter will discuss 
what project results have been achieved and how they correspond to the project 
goals, which were set in Chapter 1 and 2.  

7.2 Literature study 
 
To get ourselves familiar with the ICE project we first studied the journals and 
reports that were available to us through the network of the TU Delft. After the 
conclusion of the preliminary research we made extensive studies into the field of 
expert systems, neural networks and JAVA. 
 

7.3 Coginitive and system model 
 

7.3.1 Cognitive model 
 
As was described in the project goal, one of the main sub goals was the creation of 
a cognitive model, which is able to do real-time assessment of situations, using a 
rule-based system in combination with adaptive logic.  
 

7.3.1.1 Data acquisition 
 
The first stage of creating a cognitive model is the data acquisition. This is done by 
the Data Server and the Data Modeler. The Data Server is responsible for the 
throughput of data. It feeds all variables available for the reasoning process to the 
Data Client.  
 
The Data Modeler provides the user in a graphical way the ability to create their 
own context, or load one in using the XML parser. Because of the way the data is 
presented, it�s easy to understand the context of the data, and how it will be 
interpreted by the system. Because of the use of the XML parser, it is also possible 
to create own contexts with specific characteristics, which can be altered with the 
Data Modeler by the user.  
 

7.3.1.2 Rule based reasoning 
 
Trough use of the Data Modeler the user provides the system with a rule based 
context model. The rules inputted into the system are converted to rules 
interpretable by the program. The program itself does not rely on any native code 
to do the reasoning, so all the situations are assessed by the data provided from the 
modeler. This also makes the system highly adaptable. Using this approach makes it  
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possible for the user, to do the same analyzing process, for different types of 
planes. 
 

7.3.1.3 Adaptive Logic 
 
The program provides the user with the means to use adaptive logic. The current 
version of the SAM program only uses internal reasoning systems, but in future 
releases it can be equipped with external expert systems.  
 

7.3.2 System model 
 
The three layered system model we chose, namely the Modeler, Server and Client 
has been implemented as the model we described in Chapter 5.  
The Data Server and Data Modeler work like we intended them to work. The Data 
Modeler is implemented with hard-coded if-then statements, but is guided by the 
context file the Data Modeler provides. The fuzzy logic expert system is not yet 
implemented in the Data Client; this is intended to be done by another team as a 
graduation thesis. 
 

7.4 Artificial Intelligence techniques research 
 
As stated in section 7.1 extensive studies have been made into different kinds of 
Artificial Intelligence techniques and the tools one can use to implement them in 
self-created applications. We also looked into the possibilities of Boolean logic, 
which is used in the Data Client. The intend was to implement JESS as a Fuzzy 
Logic Expert System, but as stated in section 7.3.2, this goal was not reached. 
 

7.5 Demonstrator 
 
The Data Server and Data Modeler can be considered as finished. The Data Client 
however, still has several bugs in it.  
This is not to say that the entire Data Client does not function, it is only limited to 
a few working functions. 
The functions of the Data Client that do work are listed below: 
 

• Connect and maintain connection to the Data Server. 
• Change frequency of data gathering. 
• Draw conclusions based on manually inputted context run through 

Boolean logic. 
• Display the blackboard and its variables. 
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7.6 Evaluation, tests and validation 
 
During the implementation phase of the project, all software developed went 
trough extensive testing and validation. As a result of these tests, we could 
incorporate the results into future versions of the program, in order to avoid 
recurring defects in the reasoning functions of the program. This approach to the 
programming resulted into to a better understanding of how the program reacted 
to problems given to it. 
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Chapter 8: Evaluation 
 

8.1 Description 
 
In this chapter we will make an evaluation on the work that has been done and 
needs to be done in the future. 
 

8.2 Prototypes 
 
In the tradition of the HR&O we made a jump-start in the programming of our 
very first prototype. This prototype was written in PERL and made use of the now 
infamous if-then statements. The first thing we noticed was not the incorrectness 
of situation recognition, but rather the slowness of the simulator to provide 
variables over the network. This was not because of slow network connections, but 
was totally due to simulator itself and the way it is built. 
 

 
Figure 38 The first prototype running on a Linux operating system. 

 
In order to circumvent these slow-downs, we decided to use a Data Server, which 
could extract the variables and their values, store them into memory and let the 
Data Server provide the values and variables to the prototype. 
 
The next notice was the inability of the prototype to make dissensions between 
Taxiing to runway and Taxiing from runway. In order to solve this, we introduced 
�pointers� to the next possible situations, but this resulted in extensive coding and 
that in turn made the program very slow. Also, on an execution level of the 
program, if a situation had ended without a certain variable was passed on to the 
Data Client, the situation would be reported perpetually and thus would the Client  



Chapter 8: Evaluation 

 
 
Copyright © 2003, Delft University of Technology  

80 

 
be of no further use. The thought of using an expert system came into mind, but 
with the way the program was built, it meant making it ready for an expert system. 
This is when the real problems started, because as it turned out, there were several 
bugs in the program and the source code was poorly documented 
The most of the time available to us went into figuring out what specific functions 
were doing, restyling of the source code and bug tracing, which means that in the 
end the expert system was never implemented. 
We accomplished the task of restyling the source code and making it more readable 
even tough the documentation provided with the source code was very poorly 
arranged, if not non-existent. Also, some bugs were dissolved (mainly because of 
the restyling), but to our frustration, some of the bugs were so deeply engraved in 
the code, it turned out to be an undo-able task in the time that was given us.  
One of those bugs loads the context into the Data Client as provided by the Data 
Modeler�s XML parser in a wrong way, which results in the Data Client stalling 
when it passes its first situation test. 
 

8.3 Proof of Concept 
 
Of course, everybody thinks his or her ideas are the best. What makes the 
difference between a good idea and a good working concept is the way it is thought 
out. If an idea is good, but the background information was already faulty or the 
reasoning process the person used is shaky, the idea may very well never work. 
Now, why do we think the idea is a good one? Basically, because we looked at 
several points of angle to the problem. Ours was more of a �trial and error� 
approach. As stated before we started out with a prototype that made use of a lot 
of if-then statements, with which later on we realized that in order to make it work 
this way, a tremendous amount of programming and testing would be needed. 
Looking at the time we had this meant that at least a year would be needed in order 
to come to a satisfying end.  
 
It is therefore our belief that if-then statements are not the correct approach of this 
problem. The logical next step is the use of �fuzzy� expert systems.  
In the first stage of our project, the program was �dumb�, but with the use of 
expert systems, the program gets a certain level of intelligence. 
  
The introduction of a XML file, is solely done in order to achieve a level 
portability. This portability is not only intended on a operating system-basis, but 
also on an aircraft-basis. An aircraft�s systems and specifications, as well as air 
traffic regulations can be stored in a XML file, which will then be parsed by, in this 
case, the Data Modeler. It is our belief that this is the simplest solution for the 
portability issue. 
 
Different timelines are a way to keep track of special situations, such as collisions 
and emergency landings. Basically these timelines come in effect when an out-of-
the-ordinary event is imminent. For instance, when an aircraft is on a collision 
course with another aircraft, the normal timeline is set aside; the program gives a 
warning and gives possible solutions in order to evade the upcoming aircraft.  
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8.4 Recommendations 
 
The expert system�s intelligence may be enough to reach a satisfactory level of 
situation awareness for Flight Simulators, but in �real life� it is still unacceptable. 
To increase the level of intelligence, it is almost inevitable to look at the use of 
neural networks. Neural networks work with the same concept as the human brain. 
The human brain �trains� itself in order to come up with solutions to everyday and 
specific problems. Neural networks are also trained, but at this point in time, the 
training process of neural networks has not yet been optimized. This means that in  
order to get a self-sufficient and accurate neural network implementation, a lot of 
training is required.  
The way the training is done, is totally up to the people continuing this project, but 
we would like to suggest those people make use of a �real-life� pilot; this to come 
to an as accurately as possible model. It is all fine and well to let a person of the 
project fly an aircraft in a simulator, but it is most certain that that person will 
�neglect� to fulfill some of the steps in a flight plan that are important in real-life.  
 
Neural networks alone are not the total answer to the problem of situation 
awareness in an aircraft. Humans always have an alternate situation in their minds. 
We call this the �just in case� state. When a pilot is flying, he or she is constantly 
aware that something out of the ordinary could happen. A computer system simply 
does not have that ability unless it is specifically implemented in its programming. 
Therefore, to make an as accurate as possible situation awareness program, we 
recommend the implementation of the three timelines. Maybe this could be a 
separate project? 
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Appendix A: The knowledge base in XML 
 

A.1 Description 
 
As said before, the knowledge base will be stored in a XML file. XML is a tag-
based language for structured documents or data. It is not a way to represent data 
like HTML, although it could be used that way. XML is described on the official 
XML website of the World Wide Web Consortium [1] in ten points: 
 
1. XML is for structuring data. 
 
2. XML looks a bit like HTML. 
 
3. XML is text, but is not meant to be read. 
 
4. XML is verbose by design. 
 
5. XML is a family of technologies. XML has been extended by a lot of people with 
all kinds of modules, which makes XML very powerful. 
 
6. XML is new, but not that new. 
 
7. XML leads HTML to XHTML. 
 
8. XML is modular. 
 
9. XML is the basis for RDF (Resource Description Framework) and the semantic 
web. RDF is an XML text format that supports resource description and metadata 
applications. 
 
10. XML is license-free, platform-independent and well-supported. 
 
After all data that should go into the knowledge base had been selected it had to be 
put into a form that could be used by a program to reason with the knowledge. 
We considered languages like CLIPS and JESS, but eventually chose for XML 
because of the following reasons: 
 
� XML is a widely accepted standard. 
� XML is easier to read than a list of rules. 
� XML is very well supported. 
� If the knowledge base is written in XML it can easily be extended. 
� With XML it is possible to define a DTD (Data Type Definition) or a schema 
that defines the structure the XML file should have so that future knowledge bases 
for other aircrafts will have the same generic form. 
� XML data can easily be translated to another desired format like CLISP or JESS. 
� It is easy to write a program to translate the XML data to if-then rules. This way 
we will be able to generate a lot of rules from just a few lines of XML code. 
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The structure of the XML file will have to be very well defined in order to be able 
to describe flying with other aircrafts in the same way as we have done for the 
Cessna. The ideal situation would be that one program could be written that 
detects the current situation in a flight and that that program can be used for 
different aircrafts if a different XML file is used as the knowledge base. We have 
tried to achieve this by specifying the structure the XML file should have in an 
XML schema. 
 

A.2 The schema for a flightplan 
 
As explained in section A.1, a XML schema has been created for defining a flight 
plan. This flight plan can then be used to help determine the current situation in a 
flight. The flight plan schema has been made independent of the aircraft with 
which the flight is flown, just like the XML flight schema. A XML file of a flight 
plan will have the following structure: 
 
� flightplan 

� steerpoint 
� heading 
� altitude 
� TOS (Time Over Steerpoint) 
� action 

� steerpoint 
. 
. 

    
The information that is stored about a steer point is the heading that should be 
flown towards the steer point, the altitude at which the pilot should fly over the 
steer point and the time at which the pilot should reach the steer point (TOS). This 
is all standard information that is also present in real flight plans, however what can 
also be added in this flight plan is the actions a pilot will perform at the steer point.  
 
If there are more that one actions to be performed at a steer point then the actions 
specified at the steer points should be in chronological order, so the first action in 
the XML file should be performed first, then the second and so on.  
 

A.3 The XML flight scheme 
 
There are several ways in which we can define the structure to which the XML files 
for different aircrafts must conform. We can use either a DTD or an XML schema. 
The DTD is older than the XML schemas and therefore has less functionality and 
is less flexible. On the other hand, DTD is much easier to understand and 
implement. Although we could use the DTD because the form in which we will 
store the data in the knowledge base is not too complex, it will make the knowledge 
base much more flexible and easier to expand if an XML schema is used to define 
the structure. Therefore we have chosen to use an XML schema. The complete 
XML schema is given in appendix B. 
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A.3.1 XML specific considerations 
 
When creating a XML file, it is often not clear when to use an element to denote 
information and when to use an attribute. For example the following pieces of 
XML all contain the same information: 
 

<tag name="test"> 
<child name="child1">10</child> 
<child name="child2">1</child> 

</tag> 
 
<test> 

<child name="child1" value="10" /> 
<child name="child2" value="1" /> 

</test> 
 
<test> 

<child1>10</child1> 
<child2>1</child2> 

</test> 
Figure A.1 A XML code example showing the same function. 

 
In the first example tag and child are the elements and name and value are 
attributes. In the second example the tag element has been replaced by a test 
element. These two elements contain the same information. Finally in the third 
example the child element has been split into two different child elements. 
There are no clearly defined rules that say when to use an attribute and when to use 
an element; it often depends on the kind of information and the intention of the 
author of the XML file. Our main consideration in deciding whether to use element 
or attributes is the generality of our XML schema. To make our XML schema 
usable for other aircrafts our tags can not be too specific and we will have to put a 
lot of information in the attributes.  
 

A.3.2 The hierarchy 
 
The hierarchical structure of the XML file as it is defined in the XML schema is the 
following: 
 
� flight 

� situation 
� actions 

� phase 
� action 

. 

. 

. 

. 
� visual checks 

� instrument 
. 
. 

� constraints 
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� constraint 
. 
. 

� time constraints 
� time constraint 
. 
. 

� situation 
. 
. 

 
Every element in this hierarchy will be a tag that can be put in the XML file. The 
tags all have some metadata and a certain meaning.   
 
flight 
 
The flight tag is the root tag of the XML document. It contains the name of the 
aircraft for which the knowledge base has been created.  
 
situation 
  
For every situation there is a separate tag with the name of the situation in it. It also 
has an attribute that contains the time window of the situation. 
 
actions  
 
This tag is the parent tag of the set of action rules for the situation. 
 
phase 
 
This tag is the parent of all actions that are part of a phase in the situation. It has an 
attribute containing the name of the phase. The actions that are the children of this 
phase tag should usually be performed in the order in which they occur in the XML 
file, so the first action of the first phase should be performed first, then the second 
action of the first phase, etc., until all actions of the first phase have been 
performed after which the actions of the second phase should be performed and so 
on. The exceptions are action tags that are children of the phase tag with the name 
�time independent�. These actions may occur at any time during the situation in 
random order. 
 
action 
 
This tag defines an action rule for the situation. It contains the name of the control 
or instrument, the priority value and the fuzzy probability value as attributes. The 
value of the element is the value the control or instrument will get when the action 
is performed. 
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visual checks 
 
This tag is the parent tag for all the instruments that the pilot should visually check 
during the situation. 
 
instrument 
 
This tag is a tag for an instrument that the pilot should check during the situation. 
For now this tag only contains the name of the instrument, but in the future this 
might be extended, in order to contain information for a gaze. 
 
constraints 
 
The constraints tag is the parent tag for all start- and end-constraints on controls 
and instruments for a situation. It has two attributes with fuzzy probability values. 
These are the probability values for the start and end rules.  
 
constraint  
 
This tag contains information about the value a control or instrument will have at 
the start and/or end of the situation. It contains a name attribute with the name of 
the control or instrument, a start attribute with the value the control or instrument 
should have at the start of the situation and an end attribute with the value the 
control or instrument should have at the end of the situation. 
 
time constraints 
 
The time constraints tag is the parent tag for all possible start- and end-constraints 
on controls and instruments for a situation. It has two attributes with fuzzy 
probability values. These are the probability values for the alternate situations.  
 
time constraint  
 
This tag contains information about the value a next situation will have at the start 
and/or end of the situation. It contains a name attribute with the name of the 
situation and an attribute with the possibility value the situation should have at the 
end of the situation containing the chances that that would be the following 
situation. 
 

A.3.3 The values 
 
A lot of the values that will be stored in the knowledge base represent positions of 
switches and buttons in the cockpit. The easiest way to represent these values for a 
computer program is with numbers (e.g. the ON position will get the value 1 and 
the OFF position  will get the value 0). These numbers are not easy to interpret for 
human readers however and since we want the XML file to be readable, such 
values will be represented by variables. In a DTD it is possible to define variables 
the can be a reference for the XML file. The ON and OFF positions could for 
example be defined as: 
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<!ENTITY ON "1"> 
<!ENTITY OFF "0"> 

Figure A.2 XML values described. 

 
They could then be referenced in the XML file by putting the name of the variable 
between a �&� and a �;� (e.g. &ON;). When a parser reads the XML file all 
variables will be replaced by their values. The variables will be defined in a separate 
file so that they can easily be changed. This file will then be specified in the XML 
file as the DTD for the XML file. The DTD is displayed in Appendix D. 
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Appendix B: The knowledge base described in tables 
 

B.1 Prestartup 
 

The Actions 
 
Name Value Priority Probability 
 

Prestartup 
Parking brakes ON 1 Best Probability 
Throttle IDLE 1 Best Probability 
Ignition switch OFF 1 Best Probability 
Avionics 
power switch 

OFF 1 Best Probability 

Master switch ON 1 Best Probability 
Pitot heat ON 1 Best Probability 
Avionics 
master switch 

OFF 1 Best Probability 

Static pressure 
alternate 
source valve 

OFF 1 Best Probability 

Fuel selector 
valve 

BOTH 1 Best Probability 

Flaps FULL 1 Best Probability 
Pitot heat OFF 1 Best Probability 
Master switch OFF 1 Best Probability 
Fuel shutoff 
valve 

ON 1 Best Probability 

Taxi and 
landing lights 

OFF 1 Best Probability 

Beacon OFF 1 Best Probability 
Strobes OFF 1 Best Probability 
Navigation 
lights 

OFF 1 Best Probability 

Trim SET 1 Best Probability 
 

The visual checks 
 

Instrument 
 
Fuel Quantity Indicators 
Annunicator panel 
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The conditions 
 

Name Start  End 
 
Parking brakes  ON 
Ignition switch  OFF 
Pitot heat  Checked 
Navigation light  Checked 
Beacon  Checked 
Strobes  Checked 
Taxi & landing lights  Checked 
Avionic master switch  ON 
Fuel selector OFF BOTH 
Fuel shutoff valve  ON 
Master switch  OFF 
Avionics power 
switch 

 ON 

Flaps RETRACT FULL 
Elevator trim  0 
Rudder trim  0 
Ground speed 0 0 
Altitude 0 0 
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B.2 Startup 
 

The Actions 
 
Name Value Priority Probability 
 

Startup 
Parking brakes ON 1 Best Probability 
Brakes ON 1 Best Probability 
Avionics 
power switch 

OFF 1 Best Probability 

Avionics 
master switch 

OFF 1 Best Probability 

Circuit barkers In 1 Best Probability 
Fuel selector 
valve 

BOTH 1 Best Probability 

Fuel shutoff 
valve 

ON 1 Best Probability 

 

The visual checks 
 

Instrument 
 
Circuit breakers 
Brakes 
Autopilot 
 

The conditions 
 

Name Start  End 
 
Parking brakes ON ON 
Brakes OFF ON 
Circuit breakers OFF ON 
Autopilot  OFF 
Avionics power 
switch 

OFF OFF 

Fuel selector valve BOTH BOTH 
Fuel shutoff valve ON ON 
Elevator trim 0 0 
Rudder trim 0 0 
Ground speed 0 0 
Altitude 0 0 
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B.3 Starting engine 
 

The Actions 
 
Name Value Priority Probability 
 

Starting Engine 
Fuel shutoff 
valve 

OFF 1 Best Probability 

Throttle IDLE 1 Best Probability 
Mixture LEAN 1 Best Probability 
Master switch ON 1 Best Probability 
Auxiliary fuel 
pump 

ON 1 Best Probability 

Ignition switch Start 1 Best Probability 
Ignition switch OFF 1 Best Probability 
Mixture RICH 1 Best Probability 
Auxiliary fuel 
pump 

OFF 1 Best Probability 

Navigation 
lights 

ON 1 Best Probability 

Beacon ON 1 Best Probability 
Radios ON 1 Best Probability 
Flaps RETRACT 1 Best Probability 
 

The visual checks 
 

Instrument 
 
Oil pressure 
Engine instruments 
Radios 
Avionics power 
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The conditions 
 

Name Start  End 
 
Parking brakes ON ON 
Brakes OFF ON 
Avionics master 
switch 

OFF OFF 

Fuel selector BOTH BOTH 
Fuel shutoff valve ON OFF 
Avionics power 
switch 

OFF OFF 

Beacon OFF ON 
Strobes OFF ON 
Navigation lights OFF ON 
Elevator trim 0 0 
Rudder trim 0 0 
Ground speed 0 0 
Altitude 0 0 
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B.4 Taxiing to runway 
 

The Actions 
 
Name Value Priority Probability 
 

Taxing to runway 
Throttle !0 1 Best Probability 
Parking brake OFF 1 Best Probability 
Mixture RICH 1 Best Probability 
Flaps RETRACT 1 Best Probability 
Speed < 20 KIAS 1 Best Probability 
 

The visual checks 
 

Instrument 
 
Brakes 
Directional gyro 
Turn indicator 
Artificial horizon 
 

The conditions 
 

Name Start  End 
 
Speed brakes  >0 
Ground speed 0 <20 
Throttle IDLE !IDLE 
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B.5 Before takeof 
 

The Actions 
 
Name Value Priority Probability 
 

Before takeoff 
Parking brake SET 1 Best Probability 
Mixture RICH 1 Best Probability 
Fuel selector 
valve 

BOTH 1 Best Probability 

Elevator trim SET 1 Best Probability 
Throttle 1800 RPM 1 Best Probability 
Throttle < 1000 RPM 1 Best Probability 
Strobe lights ON 1 Best Probability 
Radios  SET 1 Best Probability 
Autopilot OFF 1 Best Probability 
Flaps SET 0 � 10  1 Best Probability 
Brakes OFF 1 Best Probability 
 

The visual checks 
 

Instrument 
 
Fuel quantity 
Magnetos 
Suction Gauge 
Engine instruments 
Caution panel 
Fuel flow 
Wheel brakes 
 

The conditions 
 

Name Start  End 
 
Parking brake ON OFF 
Brakes ON OFF 
Throttle IDLE <1000 RPM 
Flaps 0  SET 0-10 
Speed 0 0 
Altitude 0 0 
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B.6 Takeoff 
 

The Actions 
 
Name Value Priority Probability 
 

takeoff 
Flaps SET 0-10 1 Best Probability 
Throttle FULL 1 Best Probability 
Mixture RICH 1 Best Probability 
V1 decision Speed > 55 1 Best Probability 
Elevator 0-10 1 Best Probability 
V2 Rotate Speed > 65 1 Best Probability 
 

The visual checks 
 

Instrument 
 
Airspeed 
 

The conditions 
 

Name Start  End 
 
Airspeed 0 >70 
Throttle IDLE FULL 
Altitude 0 >300 
Pitch 0 >0 
Climbing rate 0 >0 
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B.7 Enroute climb 
 

The Actions 
 
Name Value Priority Probability 
 

Climb out 
Throttle FULL 1 Best Probability 
Mixture RICH 1 Best Probability 
Mixture LEAN 1 Best Probability 
 

The visual checks 
 

Instrument 
 
AirSpeed 
Climbrate 
 

The conditions 
 

Name Start  End 
 
Throttle FULL FULL 
Mixture RICH LEAN 
Climbrate >0 >0 
Airspeed >70 <85 
Altitude >300 >3000 
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B.8 Cruise 
 

The Actions 
 
Name Value Priority Probability 
 

Cruising 
Throttle 2000/2400 

RPM 
1 Best Probability 

Elevator 0 1 Best Probability 
Elevator trim SET 1 Best Probability 
Mixture LEAN 1 Best Probability 
 

The visual checks 
 

Instrument 
 
Engine instruments 
Flight instruments 
 

The conditions 
 

Name Start  End 
 
Airspeed >85 !>150 
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B.9 Descend 
 

The Actions 
 
Name Value Priority Probability 
 

Descend 
Throttle <2000 RPM 1 Best Probability 
Mixture RICH 1 Best Probability 
Elevator  <0 1 Best Probability 
Fuel selector BOTH 1 Best Probability 
 

The visual checks 
 

Instrument 
 
Climbrate 
 

The conditions 
 

Name Start  End 
 
Mixture LEAN RICH 
Pitch 0 <0 
Climbing rate 0 <0 
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B.10 Before landing 
 

The Actions 
 
Name Value Priority Probability 
 

Before landing 
Fuel selector BOTH 1 Best Probability 
Mixture RICH 1 Best Probability 
Landing lights ON 1 Best Probability 
 

The visual checks 
 

Instrument 
 
Engine instruments 
Flight instruments 
 

The conditions 
 

Name Start  End 
 
Fuel selector LEFT/RIGHT BOTH 
Landing lights OFF ON 
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B.11 Landing 
 

The Actions 
 
Name Value Priority Probability 
 

Landing 
Airspeed 110 1  Best Probability 
Flaps SET 0-10 1 Best Probability 
Airspeed 85 1 Best Probability 
Flaps SET 10-30 1 Best Probability 
Airspeed 60-70 1 Best Probability 
Flaps FULL 1 Best Probability 
Brakes ON 1 Best probability 
 

The visual checks 
 

Instrument 
 
AirSpeed 
 

The conditions 
 

Name Start  End 
 
Brakes  OFF ON 
Airspeed >110 < 20 KIAS 
Flaps 0 FULL 
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B.12 Taxiing to ramp 
 

The Actions 
 
Name Value Priority Probability 
 

Taxiing to ramp 
Throttle < 1500 RPM 1 Best Probability 
Mixture RICH 1 Best Probability 
Landing lights OFF 1 Best Probability 
Flaps RETRACT 1 Best Probability 
Speed < 20 KIAS 1 Best Probability 
 

The visual checks 
 

Instrument 
 
Engine instruments 
 

The conditions 
 

Name Start  End 
 
Throttle IDLE !IDLE 
Mixture RICH RICH 
Landing lights ON OFF 
Flaps FULL RETRACT 
Speed >0 KIAS <20 KIAS 
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B.13 Shutdown 
 

The Actions 
 
Name Value Priority Probability 
 

Taxing to ramp 
Parking brake SET 1 Best Probability 
Mixture CUT OFF 1 Best Probability 
Avionics 
switch 

OFF 1 Best Probability 

Ignition 
switch 

OFF 1 Best Probability 

Master switch OFF 1 Best Probability 
Fuel selector 
valve 

LEFT/RIGHT 1 Best Probability 

 

The visual checks 
 

Instrument 
 
Engine instruments 
Flight instruments 
 

The conditions 
 

Name Start  End 
 
Parking brake OFF SET 
Mixture RICH CUT OFF 
Avionics switch ON OFF 
Ignition switch ON OFF 
Master switch ON OFF 
Fuel selector valve BOTH LEFT/RIGHT 
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Appendix C: The XML files 
 

Flightplan.xsd 
 
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"  
 xmlns="flightplan" 
 targetNamespace="flightplan" 
 xml:lang="en"> 
 
<xsd:annotation> 
  <xsd:documentation> 
 This is a schema for a flightplan. 
  </xsd:documentation> 
</xsd:annotation> 
 
<xsd:annotation> 
  <xsd:documentation> 
  The root tag containing all steerpoint tags. 
  </xsd:documentation> 
</xsd:annotation> 
 
<xsd:element name="flightplan"> 
 <xsd:sequence> 
  <xsd:element ref="steerpoint" maxOccurs="unbounded" /> 
 </xsd:sequence> 
</xsd:element> 
 
<xsd:annotation> 
  <xsd:documentation> 
  The steerpoint tag contains information about the steerpoint,  
  like heading to fly to the steerpoint, the altitude at which  
  the pilot should fly over the steerpoint and the TOS (Time  
  Over Steerpoint) which is the time at which the pilot should  
  be over the steerpoint. It also contains two attributes, one  
  that says what type of steerpoint it is and one that contains 
  the number of the steerpoint. 
  </xsd:documentation> 
</xsd:annotation> 
 
<xsd:element name="steerpoint"> 
 <xsd:sequence> 
  <xsd:element name="heading" type="xsd:integer"/> 
  <xsd:element name="altitude" type="xsd:integer"/> 
  <xsd:element name="TOS"> 
   <xsd:restriction base="time"> 
    <xsd:pattern value="hh:mm:ss"/> 
   </xsd:restriction> 
  </xsd:element> 
  <xsd:element name="action" minOccurs="0" maxOccurs="unbounded" 
type="xsd:string"/> 
 </xsd:sequence> 
  
<xsd:attribute name="type" type="steerpointType"/> 
 <xsd:attribute name="number" type="xsd:integer"/> 
</xsd:element> 
 
<xsd:annotation> 
  <xsd:documentation> 
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 A steerpoint can be one of the following types: 
   - STPT: This is a normal steerpoint. 
  </xsd:documentation> 
</xsd:annotation> 
 
<xsd:simpleType name="steerpointType"> 
 <xsd:restriction base="xsd:string"> 
  <xsd:enumeration value="STPT"/> 
 </xsd:restriction> 
</xsd:simpleType> 
 
</xsd:schema> 
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Flightplan.xml 
 
<?xml version="1.0"?> 
 
<!-- This is an example of a flight plan for a Cessna 172-R.  
 This flight plan is NOT based on a real flight plan! --> 
 
 
<flightplan xmlns="flightplan"> 
 
 <!-- Departure airfield --> 
 <steerpoint type="STPT" number="1"> 
  <heading>120</heading> 
  <altitude>100</altitude> 
  <TOS>13:10:00</TOS> 
  <action>Pre Startup</action> 
  <action>Startup</action> 
  <action>Start engine</action> 
  <action>Taxiing to runway</action> 
  <action>Before takeoff</action> 
  <action>Taking off</action> 
  <action>Enroute climb</action> 
 </steerpoint> 
 <!-- Navigational steerpoint --> 
 <steerpoint type="STPT" number="2"> 
  <heading>160</heading> 
  <altitude>5000</altitude> 
  <TOS>13:34:30</TOS> 
  <action>Cruise</action> 
 </steerpoint> 
 <!-- Navigational steerpoint --> 
 <steerpoint type="STPT" number="4"> 
 
  <heading>260</heading> 
  <altitude>5000</altitude> 
  <TOS>14:28:00</TOS> 
  <action>Cruise</action> 
 </steerpoint> 
 <!-- Navigational steerpoint --> 
 <steerpoint type="STPT" number="7"> 
  <heading>270</heading> 
  <altitude>5000</altitude> 
  <TOS>14:45:00</TOS> 
  <action>Cruise</action> 
 </steerpoint> 
 <!-- Destination airfield --> 
 <steerpoint type="STPT" number="8"> 
  <heading>135</heading> 
  <altitude>50</altitude> 
  <TOS>15:00:00</TOS> 
  <action>Descent</action> 
  <action>Before landing</action> 
  <action>Landing</action> 
  <action>Taxiing to ramp</action> 
  <action>Securing Airplane</action> 
 </steerpoint> 
</flightplan> 
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KB_Cessna.xsd 
 
  <xsd:documentation> 
  A schema for an XML file that describes a knowledge base for flying  
  with a Cessna 172-R. The XML file will have to conform to the following  
  hierarchy: 
  - flight 
   - situation 
    - actions 
     - phase 
      - action 
       . 
       . 
      . 
      . 
    - visual checks 
     - instrument 
      . 
      . 
    - constraints 
     - constraint 
      . 
      . 
   - situation 
    . 
    . 
 
  </xsd:documentation> 
</xsd:annotation> 
<xsd:annotation> 
  <xsd:documentation> 
  The flight tag that contains an attribute with the name of the  
  airplane that is described by the knowledge base and has situation  
  tags as children. 
  </xsd:documentation> 
</xsd:annotation> 
<xsd:element name="flight"> 
 <xsd:sequence> 
  <xsd:element ref="situation" maxOccurs="unbounded" /> 
 </xsd:sequence> 
 <xsd:attribute name="airplane" type="xsd:string" use="required" /> 
</xsd:element> 
 
<xsd:annotation> 
  <xsd:documentation> 
  The situation tag with an attribute that contains the name of the  
  situation and child elements containing the list of time dependent  
  and time independent actions, the list of visual checks and the  
  list of constraints. 
  </xsd:documentation> 
</xsd:annotation> 
<xsd:element name="situation"> 
 <xsd:sequence> 
  <xsd:element ref="constraints" minOccurs="0" maxOccurs="2"/> 
  <xsd:element ref="actions" minOccurs="0" maxOccurs="2"/> 
  <xsd:element ref="visual checks" minOccurs="0"/> 
 </xsd:sequence> 
 <xsd:attribute name="name" type="xsd:string" use="required" /> 
 <xsd:attribute name="timewindow" type="xsd:integer" use="required" /> 
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</xsd:element> 
 
<xsd:annotation> 
  <xsd:documentation> 
  The actions tag is the parent of a number of phase tags.  
  The actions in the phases can be time dependent actions  
  (which means that they have to be performed in the order  
  in which they occur in the table) or time independent actions  
  (they may be performed in any order). Time independent actions 
  are grouped in a phase called "time independent". 
  </xsd:documentation> 
</xsd:annotation> 
<xsd:element name="actions"> 
 <xsd:sequence> 
  <xsd:element ref="phase" maxOccurs="unbounded" /> 
 </xsd:sequence> 
</xsd:element> 
 
<xsd:annotation> 
  <xsd:documentation> 
  The phase tag is the parent of a number of action tags.  
  </xsd:documentation> 
</xsd:annotation> 
 
<xsd:element name="phase"> 
 <xsd:sequence> 
  <xsd:element ref="action" maxOccurs="unbounded" /> 
 </xsd:sequence> 
 <xsd:attribute name="name" type="xsd:string"/> 
</xsd:element> 
 
<xsd:annotation> 
  <xsd:documentation> 
  The action tag does not have any child tags, but does have three  
  attributes. One containing the name of the control or instrument  
  that action has an effect on. Another containing the priority  
  value of the action. This value is a value between 0 and 1.  
  And finally an attribute containing the fuzzy probability value  
  of the action. 
  </xsd:documentation> 
 
</xsd:annotation> 
<xsd:element name="action" type="xsd:string"> 
 <xsd:attribute name="name" type="xsd:string" use="required" /> 
 <xsd:attribute name="priority" type="priorityValue" use="required" /> 
 <xsd:attribute name="probability" type="fuzzyValue" use="required" /> 
</xsd:element> 
 
<xsd:annotation> 
  <xsd:documentation> 
  The PriorityValue type is a float between 0 and 1. 
  </xsd:documentation> 
</xsd:annotation> 
<xsd:simpleType name="priorityValue"> 
 <xsd:restriction base="xsd:float"> 
  <xsd:minInclusive value="0"/> 
  <xsd:maxInclusive value="1"/> 
 </xsd:restriction> 
</xsd:simpleType> 
 
 



Appendix C: The XML files 

 
 
Copyright © 2003, Delft University of Technology  

110 

 
<xsd:annotation> 
  <xsd:documentation> 
The FuzzyValue must be one of the following values:  
VBP, BP, MP, SP, VSP, VSN, SN, MN, BN, VBN. 
  </xsd:documentation> 
</xsd:annotation> 
 
<xsd:simpleType name="fuzzyValue"> 
 <xsd:restriction base="xsd:string"> 
  <xsd:enumeration value="VBP"/> 
  <xsd:enumeration value="BP"/> 
  <xsd:enumeration value="MP"/> 
  <xsd:enumeration value="SP"/> 
  <xsd:enumeration value="VSP"/> 
  <xsd:enumeration value="VSN"/> 
  <xsd:enumeration value="SN"/> 
  <xsd:enumeration value="MN"/> 
  <xsd:enumeration value="BN"/> 
  <xsd:enumeration value="VBN"/> 
 </xsd:restriction> 
</xsd:simpleType> 
 
<xsd:annotation> 
  <xsd:documentation> 
  The visualChecks tag is the root tag for all instrument tags. 
  </xsd:documentation> 
</xsd:annotation> 
 
<xsd:element name="visualChecks"> 
 <xsd:sequence> 
  <xsd:element ref="instrument" maxOccurs="unbounded" /> 
 </xsd:sequence> 
 
</xsd:element> 
 
<xsd:annotation> 
  <xsd:documentation> 
  The instrument tag is a tag describing an instrument that the  
  pilot should check during a situation. For now it only has one  
  attribute containing the name of the instrument. 
  </xsd:documentation> 
</xsd:annotation> 
<xsd:element name="instrument"> 
 <xsd:attribute name="name" type="xsd:string" use="required" /> 
</xsd:element> 
 
<xsd:annotation> 
  <xsd:documentation> 
  The constraints tag is the parent tag for a set of constraint tags.  
  It contains two attributes, the first contains the start  
  probability, the second contains the end probability value. 
  </xsd:documentation> 
</xsd:annotation> 
 
<xsd:element name="constraints"> 
 <xsd:sequence> 
  <xsd:element ref="constraint" maxOccurs="unbounded" /> 
 </xsd:sequence> 
 <xsd:attribute name="endProbability" type="fuzzyValue" use="required"/> 
 <xsd:attribute name="startProbability" type="fuzzyValue" use="required"/> 
</xsd:element> 
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<xsd:annotation> 
  <xsd:documentation> 
  The constraint tag sets a condition on the value of a control or  
  instrument for the start and/or the end of the situation. It  
  contains one attribute with the name of the control or instrument  
  and two optional attributes for the start and end value of the  
  control or instrument. 
  </xsd:documentation> 
</xsd:annotation> 
<xsd:element name="constraint" type="xsd:string"> 
 <xsd:attribute name="name" type="xsd:string" use="required" /> 
 <xsd:attribute name="start" type="xsd:string"/> 
 <xsd:attribute name="end" type="xsd:string"/> 
</xsd:element> 
 
</xsd:schema> 
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Variables.dtd 
 
<?xml version="1.0"?> 
 
<!-- Generic variables, used for multiple controls and instruments --> 
<!ENTITY OFF "OFF"> 
<!ENTITY ON "ON"> 
<!ENTITY CLOSED "CLOSED"> 
<!ENTITY OPEN "OPEN"> 
<!ENTITY CHECKED "CHECKED"> 
 
<!-- Throttle variables --> 
<!ENTITY IDLE "IDLE"> 
<!ENTITY  FULL "FULL"> 
 
<!-- Flaps variables --> 
<!ENTITY RETRACT "RETRACT"> 
<!ENTITY FULL "FULL"> 
<!ENTITY SET_TAKEOFF "SET_TAKEOFF"> 
<!ENTITY FLAPS_FINAL "FLAPS_FINAL">  
<!ENTITY FLAPS_LANDING "FLAPS_LANDING"> 
 
<!-- Engine variables --> 
<!ENTITY LEFT "LEFT"> 
<!ENTITY RIGHT "RIGHT"> 
<!ENTITY BOTH "BOTH"> 
<!ENTITY START "START"> 
<!ENTITY RICH "RICH"> 
<!ENTITY LEAN "LEAN"> 
<!ENTITY CUT_OFF "CUT_OFF"> 
 
<!-- Airplane variables --> 
<!ENTITY MAXTAXISPEED "MAXTAXISPEED"> 
<!ENTITY MIN_ALT "MIN_ALT"> 
<!ENTITY CRUISE_ALT "CRUISE_ALT"> 
<!ENTITY MAX_APPROACH_SPEED "MAX_APPROACH_SPEED"> 
<!ENTITY MAX_LANDING_SPEED "MAX_LANDING_SPEED"> 
<!ENTITY LANDING_SPEED "LANDING_SPEED"> 
 



Appendix C: The XML files 

 
 
Copyright © 2003, Delft University of Technology  

113 

 

KB_Cessna.xml 
 
 
<?xml version="1.0"?> 
 
<!DOCTYPE variables SYSTEM "variables.dtd"> 
 
<flight aircraft="Cessna 172-R" xmlns="./KB"> 
<situation name="Pre startup" timewindow="20"> 
  <actions> 
   <phase name="prestartup"> 
     <action name="parking brakes" priority="1" probability="BP">&ON;</action> 
     <action name="throttle" priority="1" probability="BP">&IDLE;</action> 
     <action name="ignition switch" priority="1" probability="BP">&OFF;</action> 
     <action name="avionics power switch" priority="1" probability="BP">&OFF;</action> 
     <action name="master switch" priority="1" probability="BP">&ON;</action> 
     <action name="pitot heat" priority="1" probability="BP">&ON;</action> 
     <action name="avionics master switch" priority="1" probability="BP">&OFF;</action> 

     <action name="static press alt source valve" priority="1" probability="BP">&OFF;</action> 
     <action name="fuel selector valve" priority="1" probability="BP">&BOTH;</action> 
     <action name="flaps" priority="1" probability="BP">&FULL;</action> 
     <action name="pitot heat" priority="1" probability="BP">&OFF;</action> 
     <action name="master switch" priority="1" probability="BP">&OFF;</action> 
     <action name="fuel shutoff valve" priority="1" probability="BP">&ON;</action> 
     <action name="taxi & landing lights" priority="1" probability="BP">&OFF;</action> 
     <action name="beacon" priority="1" probability="BP">&OFF;</action> 
     <action name="strobes" priority="1" probability="BP">&OFF;</action> 
     <action name="navigation lights" priority="1" probability="BP">&OFF;</action> 
     <action name="trim" priority="1" probability="BP">&SET;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="fuel quantity indicators"/> 
   <instrument name="annunciator panel"/> 
  </visualChecks> 
  <constraints startProbability="MP" endProbability="BP"> 
     <constraint name="parking brakes" end="&ON;"/> 
     <constraint name="ignition switch" end="&OFF;"/> 
     <constraint name="pitot heat" end="&CHECKED;"/> 
     <constraint name="navigation light" end="&CHECKED;"/> 
     <constraint name="beacon" end="&CHECKED;"/> 
     <constraint name="strobes" end="&CHECKED;"/> 
     <constraint name="taxi & landinglights" end="&CHECKED;"/> 
     <constraint name="avionics master switch" end="&CHECKED;"/> 
     <constraint name="fuel selector" start="&OFF;" end="&BOTH;"/> 
     <constraint name="fuel shutoff valve" end="ON;"/>  
     <constraint name="master switch" end="&OFF;"/> 
     <constraint name="avionics power switch" end="&ON;"/> 
     <constraint name="flaps" start="&RETRACT;" end="&FULL;"/> 
     <constraint name="elevator trim" end="0"/> 
     <constraint name="rudder trim" end="0"/> 
     <constraint name="ground speed" start="0" end="0"/> 
     <constraint name="altitude" start="0" end="0"/> 
  </constraints> 
</situation> 
 
 
 
 



Appendix C: The XML files 

 
 
Copyright © 2003, Delft University of Technology  

114 

 
<situation name="Startup" timewindow="20"> 
  <actions> 
   <phase name="startup"> 
     <action name="parking brakes" priority="1" probability="BP">&ON;</action> 
     <action name="brakes" priority="1" probability="BP">&ON;</action> 
     <action name="avionics power switch" priority="1" probability="BP">&OFF;</action> 
     <action name="avionics master switch" priority="1" probability="BP">&OFF;</action> 
     <action name="circuit breakers" priority="1" probability="BP">&IN;</action> 
     <action name="fuel selector valve" priority="1" probability="BP">&BOTH;</action> 
     <action name="fuel shutoff valve" priority="1" probability="BP">&ON;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="circuit breakers"/> 
   <instrument name="brakes"/> 
   <instrument name="autopilot"/> 
  </visualChecks> 
  <constraints startProbability="MP" endProbability="BP"> 
   <constraint name="parking brakes" start="&ON;" end="&ON;"/> 
   <constraint name="brakes" start="&OFF;" end="&ON;"/> 
   <constraint name="avionics master switch" start="&OFF;" end="&OFF;"/> 
   <constraint name="fuel selector" start="&BOTH;" end="&BOTH;"/> 
   <constraint name="fuel shutoff valve" start="&ON;" end="ON;"/>  
   <constraint name="avionics power switch" end="&OFF;"/> 
   <constraint name="circuit brakers" end="&ON:"/> 
   <constraint name="elevator trim" end="0"/> 
   <constraint name="rudder trim" end="0"/> 
   <constraint name="ground speed" start="0" end="0"/> 
   <constraint name="altitude" start="0" end="0"/> 
  </constraints> 
</situation> 
 
<situation name="Start engine" timewindow="20"> 
  <actions> 
   <phase name="starting-engine"> 
     <action name="fuel shutoff valve" priority="1" probability="BP">&OFF;</action> 
     <action name="throttle" priority="1" probability="BP">&IDLE;</action> 
     <action name="mixture" priority="1" probability="BP">&LEAN;</action> 
     <action name="master switch" priority="1" probability="BP">&ON;</action> 
     <action name="auxiliary fuel pomp" priority="1" probability="BP">&ON;</action> 
     <action name="ignition switch" priority="1" probability="BP">&START;</action> 
     <action name="ignition switch" priority="1" probability="BP">&OFF;</action> 
     <action name="mixture" priority="1" probability="BP">&RICH;</action> 
     <action name="auxiliary fuel pomp" priority="1" probability="BP">&OFF;</action> 
     <action name="navigation lights" priority="1" probability="BP">&ON;</action> 
     <action name="avionics master switch" priority="1" probability="BP">&ON;</action> 
     <action name="beacon" priority="1" probability="BP">&ON;</action> 
     <action name="radios" priority="1" probability="BP">&ON;</action> 
     <action name="flaps" priority="1" probability="BP">&RETRACT;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="oil pressure"/> 
   <instrument name="engine instruments"/> 
   <instrument name="radios"/> 
  </visualChecks> 
  <constraints startProbability="MP" endProbability="BP"> 
   <constraint name="parking brakes" start="&ON;" end="&ON;"/> 
   <constraint name="brakes" start="&OFF;" end="&ON;"/> 
   <constraint name="avionics master switch" start="&OFF;" end="&OFF;"/> 
   <constraint name="fuel selector" start="&BOTH;" end="&BOTH;"/> 
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   <constraint name="fuel shutoff valve" start="&ON;" end="&OFF;"/>  
   <constraint name="avionics power switch" end="&OFF;"/> 
   <constraint name="beacon" start="&OFF;" end="&ON;"/> 
   <constraint name="strobes" start="&OFF;" end="&ON;"/> 
   <constraint name="navigation lights" start="&OFF;" end="&ON;"/> 
   <constraint name="elevator trim" end="0"/> 
   <constraint name="rudder trim" end="0"/> 
   <constraint name="ground speed" start="0" end="0"/> 
   <constraint name="altitude" start="0" end="0"/> 
  </constraints> 
</situation> 
 
<situation name="Taxiing to runway" timewindow="10"> 
  <actions> 
   <phase name="taxiing"> 
     <action name="throttle" priority="1" probability="MP">!&0;</action> 
     <action name="parking brake" priority="1" probability="MP">&OFF;</action> 
     <action name="mixture" priority="1" probability="MP">&RICH;</action> 
     <action name="flaps" priority="1" probability="MP">&RETRACT;</action> 
     <action name="groundspeed" priority="1" 
probability="MP">&MAXTAXISPEED;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="brakes"/> 
   <instrument name="directional gyro"/> 
   <instrument name="turn coodinator"/> 
   <instrument name="artifival horizon"/> 
  </visualChecks> 
  <constraints startProbability="MP" endProbability="BP"> 
   <constraint name="speed brakes" end="&>0"/> 
   <constraint name="ground speed" start="0" end="&<20"/> 
   <constraint name="throttle" start="&IDLE;" end="!&IDLE;"/> 
  </constraints> 
</situation> 
 
<situation name="Before takeoff" timewindow="10"> 
  <actions> 
   <phase name="before takeoff"> 
     <action name="parking brake" priority="1" probability="BP">&ON;</action> 
     <action name="mixture" priority="1" probability="BP">&RICH;</action> 
     <action name="fuel selector" priority="1" probability="BP">&BOTH;</action> 
     <action name="elevator trim" priority="1" probability="BP">&SET;</action> 
     <action name="throttle" priority="1" probability="BP">&1800;</action> 
     <action name="throttle" priority="1" probability="BP">&1000;</action> 
     <action name="strobe lights" priority="1" probability="BP">&ON;</action> 
     <action name="landing lights" priority="1" probability="BP">&ON;</action> 
     <action name="radios" priority="1" probability="BP">&SET;</action> 
     <action name="autopilot" priority="1" probability="BP">&OFF;</action> 
     <action name="flaps" priority="1" probability="BP">&TAKEOFF_SET;</action> 
     <action name="parking brake" priority="1" probability="BP">&OFF;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="fuel quantity"/> 
   <instrument name="magnetos"/> 
   <instrument name="suction gage"/> 
   <instrument name="engine instruments"/> 
   <instrument name="caution panel"/> 
   <instrument name="fuel flow"/> 
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   <instrument name="wheel brakes"/> 
  </visualChecks> 
  <constraints startProbability="MP" endProbability="BP"> 
   <constraint name="parking brakes" start="&ON;" end="&OFF;"/> 
   <constraint name="wheel brakes" start="&ON;" end="&OFF;"/> 
   <constraint name="ground speed" start="0" end="0"/> 
   <constraint name="throttle" start="&IDLE;" end="<1000;"/> 
   <constraint name="flaps" start="&RETRACT;" end="&SET_TAKEOFF;"/> 
   <constraint name="altitude" start="0" end="0"/> 
  </constraints> 
</situation> 
 
<situation name="Taking off" timewindow="5"> 
  <actions> 
   <phase name="takeoff"> 
     <action name="flaps" priority="1" probability="BP">&SET;</action> 
     <action name="throttle" priority="1" probability="BP">&FULL;</action> 
     <action name="mixture" priority="1" probability="BP">&RICH;</action> 
     <action name="airspeed" priority="1" probability="BP">&TAKEOFF_ROT_SPD;</action> 
     <action name="elevator" priority="1" probability="BP">&TAKEOFF;</action> 
     <action name="airspeed" priority="1" probability="BP">&TAKEOFF_CL_SPD;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="airspeed"/> 
  </visualChecks> 
  <constraints startProbability="SP" endProbability="VBP"> 
   <constraint name="airspeed" start="0" end=">70"/> 
   <constraint name="throttle" start="&IDLE;" end="&FULL"/> 
   <constraint name="altitude" start="0" end=">&MIN_ALT;"/> 
   <constraint name="pitch" start="0" end=">&0" /> 
   <constraint name="climbing rate" start="0" end=">&0" /> 
  </constraints> 
</situation> 
 
<situation name="Enroute Climb" timewindow="5"> 
  <actions> 
   <phase name="ascent"> 
     <action name="elevator" priority="1" probability="BP">&CLIMB;</action> 
     <action name="throttle" priority="1" probability="BP">&FULL;</action> 
     <action name="mixture" priority="1" probability="BP">&RICH;</action> 
     <action name="mixture" priority="1" probability="BP">&LEAN;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="climb rate"/> 
  </visualChecks> 
  <constraints startProbability="SP" endProbability="VBP"> 
   <constraint name="air speed" start="&>70" end="&<85"/> 
   <constraint name="Mixture" start="&RICH" end="&LEAN"/> 
   <constraint name="throttle" start="&FULL;" end="&FULL"/> 
   <constraint name="altitude" start=">&MIN_ALT;" end="&CRUISE_ALT;"/> 
   <constraint name="pitch" start=">&0" end=">&0" /> 
   <constraint name="climbing rate" start=">&0" end=">&0" /> 
  </constraints> 
</situation>  
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<situation name="Cruise" timewindow="5"> 
  <actions> 
   <phase name="cruise"> 
     <action name="elevator" priority="0" probability="BP">&0;</action> 
     <action name="throttle" priority="1" probability="BP">&CRUISE;</action> 
     <action name="elevator trim" priority="1" probability="BP">&ADJUST;</action> 
     <action name="mixture" priority="1" probability="BP">&LEAN;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="flight instruments"/> 
   <instrument name="engine instruments"/> 
   </visualChecks> 
  <constraints> 
   <constraint name="air speed" start="&>85" end="!&>150"/> 
  </constraints> 
 
<situation name="Descent" timewindow="5"> 
  <actions> 
   <phase name="descent"> 
     <action name="elevator" priority="1" probability="BP">&<0;</action> 
     <action name="throttle" priority="1" probability="BP">&<2000;</action> 
     <action name="mixture" priority="1" probability="BP">&RICH;</action> 
     <action name="fuel selector valve" priority="1" probability="BP">&BOTH;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="climb rate"/> 
  </visualChecks> 
  <constraints startProbability="SP" endProbability="VBP"> 
   <constraint name="fuel selector valve" end="&BOTH;"/> 
   <constraint name="mixture" start="&LEAN" end="&RICH"/> 
   <constraint name="pitch" start="0" end="<&0" /> 
   <constraint name="climbing rate" start="0" end="<&0" /> 
  </constraints> 
</situation>  
 
<situation name="Before landing" timewindow="5"> 
  <actions> 
   <phase name="approach"> 
     <action name="fuel selector" priority="0" probability="SP">&BOTH;</action> 
     <action name="mixture" priority="1" probability="VSP">&RICH;</action> 
     <action name="landinglights" priority="1" probability="VSP">&ON;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="flight instruments"/> 
   <instrument name="engine instruments"/> 
  </visualChecks> 
  <constraints> 
  <constraint name="landing lights" start="&OFF" end="&ON" /> 
  </constraints> 
</situation> 
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<situation name="Landing" timewindow="15"> 
  <actions> 
   <phase name="landing"> 
     <action name="airspeed" priority="0" probability="SP">&MAX_APPR_SPEED;</action> 
     <action name="flaps" priority="1" probability="BP">&FLAPS_FINAL;</action> 
     <action name="airspeed" priority="0" probability="SP">&MAX_LAND_SPEED;</action> 
     <action name="flaps" priority="1" probability="VSP">&FLAPS_LANDING;</action> 
     <action name="airspeed" priority="0" probability="SP">&LANDING_SPEED;</action> 
     <action name="flaps" priority="1" probability="VSP">&FULL;</action> 
     <action name="brakes" priority="1" probability="VSP">&ON;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="airspeed"/> 
  </visualChecks> 
  <constraints> 
   <constraint name="air speed" start="&>110" end="&<20"/> 
   <constraint name="flaps" start="&0" end="&FULL"/> 
   <constraint name="brakes" start="&OFF" end="&ON"/>  
  </constraints> 
</situation> 
 
<situation name="Taxiing to ramp" timewindow="10"> 
  <actions> 
   <phase name="taxiing"> 
     <action name="throttle" priority="1" probability="BP">!&0;</action> 
     <action name="mixture" priority="1" probability="BP">&RICH;</action> 
     <action name="flaps" priority="1" probability="BP">&RETRACT;</action> 
     <action name="groundspeed" priority="1" probability="BP">&MAXTAXISPEED;</action> 
     <action name="landinglights" priority="1" probability="BP">&OFF;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="engine instruments"/> 
  </visualChecks> 
  <constraints startProbability="MP" endProbability="BP"> 
   <constraint name="ground speed" start="&>0" end="&<20"/> 
   <constraint name="throttle" start="&IDLE;" end="!&IDLE;"/> 
   <constraint name="flaps" start="&FULL" end="&0"/> 
   <constraint name="landing lights" start="&ON" end="&OFF" /> 
  </constraints> 
</situation> 
 
<situation name="Securing Airplane" timewindow="5"> 
  <actions> 
   <phase name="shutdown"> 
     <action name="parking brakes" priority="1" probability="BP">&ON;</action> 
     <action name="avionics power switch" priority="1" probability="BP">&OFF;</action> 
     <action name="mixture" priority="1" probability="BP">&CUT_OFF;</action> 
     <action name="ignition switch" priority="1" probability="BP">&OFF;</action> 
     <action name="master switch" priority="1" probability="BP">&OFF;</action> 
     <action name="fuel selector" priority="1" probability="BP">&LEFT; || &RIGHT;</action> 
   </phase> 
  </actions> 
  <visualChecks> 
   <instrument name="flight instruments"/> 
   <instrument name="engine instruments"/> 
  </visualChecks> 
  <constraints> 
     <constraint name="parking brakes" start="&OFF;" end="&ON;"/> 
     <constraint name="avionics master switch" start="&ON;" end="&OFF;"/> 
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     <constraint name="mixture" start="&ON;" end="&OFF;"/> 
     <constraint name="ignition switch" start="&ON;" end="&OFF;"/> 
     <constraint name="master switch" start="&ON;" end="&OFF;"/> 
     <constraint name="fuel selector" start="&BOTH;" end="&LEFT;" || "&RIGHT;"/> 
  </constraints> 
</situation> 
</flight> 
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Appendix D: Example of a backpropagation neural 
network 

 
<?php 
/* 
 
NOTE: DO NOT RUN THIS THROUGH A WEB INTERFACE!  
 
If you have no previous experience with Neural networks, I suggest you read some 
basic descriptions and tutorials. Here is the resource I used to compose this script - 
Please remember that I was a complete beginner when I started writing this script. 
There may be errors and I still need to add momentum, memory banks, fuzzy logic, 
and jittering. 
 
Here are some definitions: 
 
* -------- The Neuron -------- 
* Takes a number of inputs 
* Multiplies each one by a 'weight' 
* Sums all inputs x weights 
* Applies an activation function to give an output. 
 
* ----- A Neural Network ----- 
* Recognizes patterns and after training should be 
* able to give reasonable predictions as to what the output should be. 
 
* - A Backwards Propogation NN - 
* Working out how far wrong the output is in its current 
* state (the 'error'), and calculating a change in weights 
* backwards through the network to correct this error 
*     Output -> Hidden -> Input 
*/ 
 
set_time_limit(0); 
//This stops PHP from timing out on us 
 
echo "\r\n"; 
define("LEARNING_RATE",0.5); 
//The learning rate is a measure of how much the weights are changed in each 
//training cycle. 
 
class neuron { 
  //These are all different factors of each neuron 
  //Read up on Neural nets to find out what they mean 
  var $bias;  
  var $weights; 
  var $output; 
  var $delta; 
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function neuron() { 
     $bias = 0; 
 $weights[1] = 0; 
 $weights[2] = 0; 
 $output = 0; 
 $delta = 0; 
  } 
} 
 
class nn { 
 var $hl; //Two neurons in the hidden layer 
 var $ol; //One output neuron 
 
 /* 
 We end up with the following structure: 
 A three layer backpropagation network 
  
 Input --- Hidden 
             X         >  Output 
 Input --- Hidden 
 */ 
  
 function nn() { 
  //Initializing the net 
  $this->hl[1] = new neuron; 
  $this->hl[2] = new neuron; 
  $this->ol = new neuron; 
   
  for($i=1; $i <= 2; $i++) { 
   $this->hl[1]->weights[$i] = 0; 
   $this->hl[2]->weights[$i] = 0; 
   $this->ol->weights[$i] = 0; 
  } 
 }  
 function train($input1, $input2, $target) { 
   for($i=1; $i <= 2; $i++) { 
     $this->hl[$i]->output = $this->activation($this->hl[$i]->bias +  
     ($input1 * $this->hl[$i]->weights[1]) +  
     ($input2 * $this->hl[$i]->weights[2])); 
   } 
   //Find the current output for the Hidden Layer Neurons: 
   //Output = Activation(Bias + Input[n] * Weight[n]) 
   
   $this->ol->output = $this->activation($this->ol->bias +  
   ($this->hl[1]->output * $this->ol->weights[1]) +  
   ($this->hl[2]->output * $this->ol->weights[2])); 
   $this->ol->delta = $this->ol->output * (1 - $this->ol->output) *  
   ($target - $this->ol->output); 
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   //The output neuron takes as its input the output from the two hidden  
   //layer Neurons. 
   //So for the output neuron weight(1) is the weight from HiddenNeuron(1), 
   //and weight(2) is the weight for HiddenNeuron(2) 
 
 /* 
        Once we have the delta, it allows us to make an alteration to the 
        weights in the network. The bigger the Delta, the larger the error 
        in the network, and so the larger we want to alter the weights. 
        This enables the network to become better after every training 
         
        The above calculation of OutputNeuron->Delta first multiplies the 
        output by (1- output). This has the effect of providing a larger 
        figure when the output is at 0.5, and a minimum figure when the out 
        put is at either 1 or 0 (do the math to confirm this). I.E. The Delta 
        will be bigger, and so we're going to adjust the weight MORE when 
        the current output is in the middle of the range (i.e. near 0.5). If 
        the output is at either end of the range (i.e. at 1 or 0) then the 
        Delta will come out smaller, and so we want to adjust the weight LESS. 
        This simply has the effect of moving the weights more quickly if 
        the current output from the Neuron is around 0.5 - the weight will 
        be moved less if the neuron output is near 0 or near 1. (Bear in 
        mind usually you'll want to get a more definite answer from 
        a neural network - you want it to say 'Yesor 'No(i.e. 1 or 0) 
        0.5 corresponds to 'Maybe', which is not a very useful answer. 
         
        This figure is then multiplied by (Target - OutputNeuron->Output) 
        This has the effect of making the delta LARGER if the error of the 
        Neuron is larger. 
         
        So overall this math says 'The Delta will be larger the nearer the 
        Neuron output is to 1 or 0, and it will be larger the more wrong 
        the Neuron is'. 
 */ 
 
 
   for($i=1; $i <= 2; $i++) { 
     $this->hl[$i]->delta = $this->hl[$i]->output * (1 - $this->hl[$i]->output) * 
     ($this->ol->weights[$i] * $this->ol->delta); 
     $this->hl[$i]->bias = $this->hl[$i]->bias +  
       (LEARNING_RATE * $this->hl[$i]->delta); 
     $this->hl[$i]->weights[1] = $this->hl[$i]->weights[1] +  
     (LEARNING_RATE * $input1 * $this->hl[$i]->delta); 
     $this->hl[$i]->weights[2] = $this->hl[$i]->weights[2] +  
     (LEARNING_RATE * $input2 * $this->hl[$i]->delta); 
   } 
   
 /* 
        These deltas are the ones for the Hidden Layer. The math is similar 
        here except for the last factor. Remember the Delta for each Neuron 
        is how much we want to correct it by, but for the hidden layer, we 
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        does not have a specific figure of precisely what we want the output 
        to be, so the Delta has to be calculated by how wrong the Output 
        Neuron was (which is its Delta) and the current weight from the 
        Hidden Neuron to the Output one. As far as I can see, the current 
        weight is included as a factor here to reflect how 'important that 
        current weight is - the more important it is - i.e. the more its 
        going to affect the Output Neuron, the more it should be altered. 
         
        So now we have the delta for each Neuron - how much we want to change 
        each Neuron's weights. So we'll use them to update the weights. 
   
        See above how the Weight is altered by the Delta multiplied by the 
        Learning rate - the larger the delta, and the larger the learning 
        rate (which is a constant) - the more we're going to change each 
        weight. But - the important part here is that we alter the weight 
        of the Neuron also in terms of the INPUT. The larger the input was 
        the more important this weight is to alter and so the more we're 
        going to alter it by. - Bear this in mind when you look at how 
        the weights for two neurons can start moving in the same direction 
        initially and then change to moving in opposite directions - this 
        is because of the Delta mainly being applied to a weight when 
        there is a high input on that weight. 
  */ 
 
   $this->ol->bias = $this->ol->bias + (LEARNING_RATE * $this->ol->delta); 
   $this->ol->weights[1] = $this->ol->weights[1] +  
   (LEARNING_RATE * $this->hl[1]->output * $this->ol->delta); 
   $this->ol->weights[2] = $this->ol->weights[2] +  
   (LEARNING_RATE * $this->hl[2]->output * $this->ol->delta); 
   //And the same for the output neuron 
 } 
 
 function activation($value) { 
  //The activation function is used to give us a value between 0 and 1 
  return (1 / (1 + exp($value * -1))); 
 } 
 
 
 function runnetwork($input1, $input2) { 
   //This takes the activation function of the sum of all  
   //the inputs multiplied by their respective weights. 
 
   for($i=1; $i <= 2; $i++) { 
            $this->hl[$i]->output = $this->activation($this->hl[$i]->bias +  
            ($this->hl[$i]->weights[1] * $input1) +  
            ($this->hl[$i]->weights[2] * $input2)); 
     } 
     $this->ol->output = $this->activation($this->ol->bias +  
     ($this->ol->weights[1] * $this->hl[1]->output) +  
     ($this->ol->weights[2] * $this->hl[2]->output)); 
   return $this->ol->output; 
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 } 
} 
 
//This creates an instance of our neural network class and trains it to output 1 
//when it receives 0 and 0 
//This shows how you can create your own logic gates that operate using artificial 
//intelligence 
 
$neural = new nn; 
for($i=1; $i <= 6000; $i++) 
 $neural->train(0, 0, 1); 
print "Trained 6000 times to return 1 on 0, 0 (typical XOR logic)\r\n"; 
print "The system recalls " . $neural->runnetwork(0,0) . " from memory!"; 
?> 
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