
SSAAMM
Towards a context and situation aware cockpit

Harreman, Richard (0521597)
Roest, Maikel van der (0518922)

Technical Report DKS-03-06 / ICE 06
Version 1.0, 30 June, 2003
Mediamatics / Data and Knowledge Systems group
Department of Information Technology and Systems
Delft University of Technology, The Netherlands

Copyright © 2003, Delft University of Technology

Harreman, Richard R.A. (0521597) (dateq@warhammer.xs4all.nl)
Roest van der, Maikel M. (0518922) (maikel@roparun.nl)

�SAM: Towards a context and situation aware cockpit�

Technical Report DKS-03-06 / ICE 06
Version 1.0, 30 June,

Mediamatics / Data and Knowledge Systems group
Department of Information Technology and Systems
Delft University of Technology, The Netherlands

http://www.kbs.twi.tudelft.nl/Research/Projects/ICE/

Keywords: ICE project, knowledge based system,

mailto:maikel@pixes.net

Preface

Copyright © 2003, Delft University of Technology

I

Preface

This thesis is related to our research activities on the development of the Flight
Gear Simulator Situation Awareness Module (SAM for short) at the Knowledge
Based Systems (KBS for short) group of the Delft University of Technology.
We developed the �Flight Gear Situation Awareness Module� for one of the
projects of the KBS group, which is called the Intelligent Cockpit Environment
(ICE) project.
The goal of this thesis is to introduce the reader to situation awareness, explain the
concept and provide a detailed overview of how SAM is implemented.
The target audience are computer scientists and the graduation committee. To fully
comprehend this thesis, some basic knowledge of artificial intelligence and JAVA is
required.

Richard Harreman,
Maikel van der Roest,
Delft, June 2003

Summary

Copyright © 2003, Delft University of Technology

II

Summary

Computers and computer programs are becoming more complex as time
progresses. The digital revolution has also made an entrance into the cockpit of an
aircraft. A pilot gets more information than ever before in an ever decreasing
amount of time. This could lead to an �information overload�, which in essence is
a concept of too much information provided in a very short time. An �intelligent
cockpit� should solve this problem.

In order to achieve an intelligent cockpit the following project goals are set:

• Literature study
• Cognitive and system model
• Artificial Intelligence techniques research
• Demonstrator
• Evaluation, tests and validation

All this combined should form a template or framework for future development
and research in the study of situation recognition.

Thesis overview

Copyright © 2003, Delft University of Technology

III

Thesis overview

This report is separated into three parts. The first part, chapters 1 to 3, contains the
project description and preliminary research in the field of intelligence,
development tools and different kinds of reasoning techniques.
The second part, chapters 4 to 6 contains the design by description, schematic
representations and artificial intelligence.
The last part, chapters 7 and 8, contains the project review and the evaluation.

Used abbreviations

Copyright © 2003, Delft University of Technology

IV

Used abbreviations

CLIPS C Language Integrated Production Systems
DTD Document Type Definition
ICE Intelligent Cockpit Environment
JESS Java Expert System Shell
KBS Knowledge Base Systems (Group)
NASA National Aeronautics and Space Administration
PERL Practical Extraction and Report Language
PHP PHP: Hypertext PreProcessor
SAM Situation Awareness Module
SDW System Developer Workbench
XML eXtensible Markup Language

Acknowledgements

Copyright © 2003, Delft University of Technology

V

Acknowledgements

This project could not have come into being if it had not been for the help of ir.
Mohammed Abdelghany and Drs. dr. Leon Rothkrantz
Mr. Abdelghany was instrumental in finding an organization for our traineeship
and giving advice. Drs. Dr. Rothkrantz was very helpful as a guidance and advisory
person and for giving us the opportunity to graduate with this project.
We also would like to thank Quint Mouthaan and Patrick Ehlert for their help.

Acknowledgements

Copyright © 2003, Delft University of Technology

VI

(This page has been left blank intentionally)

Table of contents

Copyright © 2003, Delft University of Technology

1

Table of contents

PREFACE .. I

SUMMARY ..II

THESIS OVERVIEW ... III

USED ABBREVIATIONS ... IV

ACKNOWLEDGEMENTS ..V

CHAPTER 1: INTRODUCTION..7
1.1 PROJECT DESCRIPTION..7
1.2 SYSTEM OVERVIEW ..8
1.3 SUB-PROJECTS ..9
1.4 PROJECT GOAL...10

CHAPTER 2: PROJECT FILE..11
2.1 DESCRIPTION ...11
2.2 PLAN OF APPROACH...11

2.2.1 Background ..11
2.2.2 Project description...11
2.2.3 Project limits ...14
2.2.4 Project lifecycle..14
2.2.5 Project organization ..15
2.2.6 Projects risks..16
2.2.7 Project budget and costs ...16
2.2.8 Project planning...16
2.2.9 Project activities and to be delivered results.................................20

2.3 TEAM ..20

CHAPTER 3: PRELIMINARY RESEARCH ...21
3.1 DESCRIPTION ...21
3.2 SYSTEM MODEL ASPECTS ..21

3.2.1 Development tools ..21
3.2.2 Development environment ...22
3.2.3 Maintenance...23

3.3 INTELLIGENCE ASPECTS...23
3.3.1 Description..23
3.3.2 Neural networks...24
3.3.3 Expert systems ..25
3.3.4 Prototypes ..27
3.3.5 SAM reasoning ..29

3.4 TECHNICAL ASPECTS ...30
3.4.1 Description..30
3.4.2 Data processing...30
3.4.3 Real-time analyzing ..31

Table of contents

Copyright © 2003, Delft University of Technology

2

CHAPTER 4: SYSTEM REQUIREMENTS...33
4.1 DESCRIPTION ...33
4.2 SUBJECT...33
4.3 ABBREVIATIONS ...33
4.4 GENERAL DESCRIPTION ...33
4.5 CONTEXT OF THE PRODUCT...34
4.6 FUNCTIONS...34
4.7 USERS ..34
4.8 GENERAL LIMITATIONS ...34
4.9 DESCRIPTIONS OF THE PRODUCT ..35
4.10 FUNCTIONAL DEMANDS OF THE PRODUCT ...40
4.11 PROPERTIES OF THE EXTERNAL CONNECTIONS ..40

4.11.1 Users dialog ...40
4.11.2 Apparatus connections...41
4.11.3 Program connections..41
4.11.4 Communication connections ...41
4.11.5 Presentation demands ...41
4.11.6 Design limitations ..41
4.11.7 Apparatus limitations ..41
4.11.8 Quality criteria ..42
4.11.9 Maintenance ability ...42
4.11.10 Portability ..42

CHAPTER 5: SYSTEM MODEL ..43
5.1 DESCRIPTION ...43
5.2 SYSTEM OVERVIEW ..43
5.3 FUNCTIONAL SPECIFICATION..43

5.3.1 In general..43
5.3.2 Automation configuration ...44
5.3.3 Functional demands ...48
5.3.4 Functional operation ...48

5.4 SYSTEM ANALYSIS..54
5.4.1 Introduction...54
5.4.2 Context diagram ..54
5.4.3 Data flow diagrams ...55
5.4.4 Entity-relationship diagram ..58
5.4.5 State transition diagrams ...59

CHAPTER 6: ARTIFICIAL INTELLIGENCE..63
6.1 DESCRIPTION ...63
6.2 KNOWLEDGE BASE ...63

6.2.1 Description..63
6.2.2 Layout..63
6.2.3 Rules ...64
6.2.4 Probability ...65
6.2.5 Values ...66
6.2.6 Situations ..66

6.3 EXPERT SYSTEMS..68
6.3.1 Description..68

Table of contents

Copyright © 2003, Delft University of Technology

3

6.3.2 Boolean logic..68
6.3.3 Fuzzy logic..69
6.3.4 JESS..71

6.4 TEMPORAL REASONING ...71
6.4.1 Introduction...71
6.4.2 Problem setting..71
6.4.3 Philosophy ..72
6.4.4 Solution ...72
6.4.5 Functional Implementation...73

CHAPTER 7: PROJECT RESULTS..75
7.1 DESCRIPTION ...75
7.2 LITERATURE STUDY..75
7.3 COGINITIVE AND SYSTEM MODEL ...75

7.3.1 Cognitive model...75
7.3.2 System model ..76

7.4 ARTIFICIAL INTELLIGENCE TECHNIQUES RESEARCH....................................76
7.5 DEMONSTRATOR ..76
7.6 EVALUATION, TESTS AND VALIDATION ...77

CHAPTER 8: EVALUATION ..79
8.1 DESCRIPTION ...79
8.2 PROTOTYPES ...79
8.3 PROOF OF CONCEPT ...80
8.4 RECOMMENDATIONS ..81

APPENDIX A: THE KNOWLEDGE BASE IN XML ..83
A.1 DESCRIPTION ...83
A.2 THE SCHEMA FOR A FLIGHTPLAN ...84
A.3 THE XML FLIGHT SCHEME...84

A.3.1 XML specific considerations ..85
A.3.2 The hierarchy ...85
A.3.3 The values ..87

APPENDIX B: THE KNOWLEDGE BASE DESCRIBED IN TABLES89
B.1 PRESTARTUP..89

The Actions ..89
The visual checks..89
The conditions..90

B.2 STARTUP ..91
The Actions ..91
The visual checks..91
The conditions..91

B.3 STARTING ENGINE ..92
The Actions ..92
The visual checks..92
The conditions..93

B.4 TAXIING TO RUNWAY ..94
The Actions ..94
The visual checks..94

Table of contents

Copyright © 2003, Delft University of Technology

4

The conditions..94

B.5 BEFORE TAKEOF ..95
The Actions ..95
The visual checks..95
The conditions..95

B.6 TAKEOFF ..96
The Actions ..96
The visual checks..96
The conditions..96

B.7 ENROUTE CLIMB ...97
The Actions ..97
The visual checks..97
The conditions..97

B.8 CRUISE ...98
The Actions ..98
The visual checks..98
The conditions..98

B.9 DESCEND ...99
The Actions ..99
The visual checks..99
The conditions..99

B.10 BEFORE LANDING ...100
The Actions ..100
The visual checks..100
The conditions..100

B.11 LANDING ...101
The Actions ..101
The visual checks..101
The conditions..101

B.12 TAXIING TO RAMP ...102
The Actions ..102
The visual checks..102
The conditions..102

B.13 SHUTDOWN ..103
The Actions ..103
The visual checks..103
The conditions..103

APPENDIX C: THE XML FILES...105
FLIGHTPLAN.XSD ..105
FLIGHTPLAN.XML ..107
KB_CESSNA.XSD...108
VARIABLES.DTD..112
KB_CESSNA.XML...113

APPENDIX D: EXAMPLE OF A BACKPROPAGATION NEURAL
NETWORK ...121

APPENDIX E: BIBLIOGRAPHY ..127

Table of figures

Copyright © 2003, Delft University of Technology

5

Table of figures

Figure 1 Part of a cockpit of a Boeing 737...7
Figure 2 A system overview of the ICE project. ...8
Figure 3 A drawing of the Ornithopter of Leonardo Da Vinci................................. 12
Figure 4 Cockpit of the Concorde. ... 12
Figure 5 The glass cockpit of a Boeing 737-700. ... 13
Figure 6 Development of Data Modeler in J-Builder environment....................... 22
Figure 7 A feed forward neural network, trained by back propagation. 25
Figure 8 A PHP code example of the first prototype... 27
Figure 9 The connection between the program and the simulator...................... 28
Figure 10 Snippet from KB_Cessna.xml. .. 36
Figure 11 A global overview of SAM. .. 44
Figure 12 Modules within SAM.. 45
Figure 13 Flowchart of Data Modeler. .. 45
Figure 14 Flowchart of Data Server. ... 46
Figure 15 Flowchart of Data Client. ... 46
Figure 16 System approach. .. 47
Figure 17 Data Server. ... 49
Figure 18 Parameter selection in Data server... 50
Figure 19 Data Client. ... 51
Figure 20 Data modeler. .. 52
Figure 21 Context Diagram within Data modeler. .. 53
Figure 22 Context diagram of SAM. .. 54
Figure 23 SAM DFD layer 1. .. 55
Figure 24 SAM DFD layer 2 XML data... 56
Figure 25 SAM DFD layer 2 process system requests.. 56
Figure 26 SAM DFD layer 2 check system advice. ... 57
Figure 27 SAM DFD layer 2 process system data. ... 57
Figure 28 ERD diagram of SAM. .. 58
Figure 29 The main Data Modeler STD... 59
Figure 30 Make context STD. .. 59
Figure 31 Load context STD / Parse context STD. ... 60
Figure 32 Data Server STD. ... 60
Figure 33 Data Client STD.. 61
Figure 34 Different 'if' statements... 69
Figure 35 Exhaust regulation with Fuzzy Logic in a car. ... 70
Figure 36 Response of injection computer to oxygen sensor. 70
Figure 37 Different timelines displayed in a diagram.. 72
Figure 38 The first prototype running on a Linux operating system. 79

Table of figures

Copyright © 2003, Delft University of Technology

6

(This page has been left blank intentionally)

Chapter 1: Introduction

Copyright © 2003, Delft University of Technology

7

Chapter 1: Introduction

1.1 Project description

This thesis was written as part of our graduation project at the Hogeschool Rotterdam.
Our graduation project is part of the Intelligent Cockpit Environment (ICE) project,
started by Drs. dr. L. Rothkrantz who is appointed at the Delft University of
Technology. On of the goals of the ICE project is to gather knowledge and experiment
with adaptive interfaces for aircrafts. In other words, the research on different methods
to give a pilot the correct information at the right moment.

Figure 1 Part of a cockpit of a Boeing 737.

As a result of the digital revolution within the aviation industry a pilot gets an increasing
amount of information in a decreasing amount of time. This could lead to a so-called
�information overload�. If this is the case, the pilot is so busy, both mentally and
physically, that he or she misses potentially important information.

The ICE system could help out in these kinds of situations. The system will monitor the
behavior and the tasks the pilot is performing, analyze what the current situation of the
aircraft and environment is, and keeps a track on what parts of the flight plan have
finished. In the event of the pilot missing some potentially important information, or
when the pilot fails to perform certain tasks, the ICE system issues a warning. In short,
the final goal of the ICE project is to increase the �situation awareness� of the pilot, and
to decrease his mental workload.

Chapter 1: Introduction

Copyright © 2003, Delft University of Technology

8

1.2 System overview

To develop a system which is capable of �situation awareness�, the following data is
needed to make an as accurately as possible assessment of the situation the pilot is in at a
certain moment:

• The current state of the plane
• The current state of the environment
• The current state of the pilot
• The flightplan

This result in what the system should be able to do. The flight plan is loaded into the
ICE system, just as the pilot would make a real flight plan that is used in flight. During
the flight, the state of the aircraft is continuously assessed using the aircraft�s instruments
and measuring systems. These systems are also used to assess the environment the
aircraft is in.

Figure 2 A system overview of the ICE project.

The assessment and detection of the state the pilot is in, is more complicated. With
registering and analyzing all input that the pilot gives to the plane, the system can reason
what the pilot is doing, but it gives very little information about the mental workload of
the pilot. A possible solution to acquire the information about the mental workload of
the pilot is, the use of a �gaze tracker� system.
A gaze tracker is a camera system that uses the reflection of infrared light on someone�s
eyes to assess what the person is looking at. Simultaneously, the gaze tracker measures
the size of the pupils and the frequency of the eye-blinking.
These two factors combined give an indication of the stress level of the pilot.

Chapter 1: Introduction

Copyright © 2003, Delft University of Technology

9

As a third point of information the gaze tracker can also detect the view direction of the
eyes; this way the system knows what the pilot is looking at.

Once the states of the pilot, environment and the aircraft are known, reasoning can start.
The short response time of the pilot to situations (for example in an emergency
situation) has a great influence on the system, which should reason and act in real-time.
To simplify the problems, and to make parallel processing possible, the project is divided
into several subprojects.

1.3 Sub-projects

The entirety of the ICE project, has been divided into several subprojects, which all
contribute to the main project. Currently students are working on the following projects:

• Flight Simulator Artificial Pilot by M. Andriambololona and P. Lefeuvre
The current project aims at implementing a bot for a flight simulator. By bot, it
is meant an intelligent virtual player emulating a human player in the game
environment. The bot requires being able to understand the rules of the game.
The bot also needs other capabilities like flying through the game environment,
and facing aircraft failures.

• Automating the cockpit by M. Tamerius
The ultimate goal is to develop an autonomous, computer-driven pilot. Such a
pilot, also called a bot, should be capable of flying an aircraft in a simulated
environment according a flightplan. In addition, it should be capable of making
in-flight decisions to adjust the actual flight path to reach the destination of the
flightplan.

• Situation Recognizer for F16 fighters by Q. Mouthaan
To create a system that is able to detect the current situation based on the state
of the F16 fighter jet and the actions the pilot is performing. This is quite a
challenging problem because, if the airplane is descending for example, this
might mean the pilot is landing or that he is descending to the right altitude to
perform an attack on a ground target. The system must be able to determine in
real time which of these situations is actually occurring. In this document the
reasoning process that is used to determine the situation is described.

• Situation Awareness Module by R. Harreman and M. van der Roest
The SAM project aims at developing a situation recognizer that works in real-
time. It incorporates the use of knowledge bases and the Java Expert System
Shell (JESS). Using this technique it will be possible to work with dynamically
adaptive rule sets to get accurate data about the situation the plane is in.

• Workload assessment in the cockpit by P. Ehlert
To help a pilot deal with information processing and decision-making, avoid
information overload, and optimize flight performance, a crew-assistant
system or intelligent pilot-vehicle interface (PVI) has been proposed. To
correctly assess the amount of information that a pilot can handle we need to
know his (mental) workload. Therefore, we need to design a workload
assessment module as part of the PVI system.

Chapter 1: Introduction

Copyright © 2003, Delft University of Technology

10

1.4 Project goal

The goal of the ICE project is to design, test, and evaluate computational techniques that
can be used in the development of intelligent situation-aware flight crew assistance
systems. Using methods from artificial intelligence, ICE focuses primarily on the data
fusion, data processing and reasoning part of these systems. Special issues addressed in
the ICE project are:

• Situation recognition
• Mission or flightplan monitoring
• Attack management
• Pilot workload monitoring

In the SAM sub-project of ICE we focused on the �Situation recognition� part. This
resulted into the following goals of our project:

• Literature study
• Cognitive and system model
• Artificial Intelligence techniques research
• Demonstrator
• Evaluation, tests and validation

Chapter 2: Project file

Copyright © 2003, Delft University of Technology

11

Chapter 2: Project file

2.1 Description

The project file will describe our approach to the problem setting. In this chapter the
aspects to the project will be described. Things like the plan of approach, the project
team and project planning will also be discussed.

2.2 Plan of approach

Constituent: TU Delft
Approved by: Ir. M. Abdelghany, Project council
Date: Hogeschool Rotterdam
Author: Maikel van der Roest
Mark: �Situation Awareness Module�
Date: 3/3/2003

2.2.1 Background

After four years of study at the Hogeschool Rotterdam, our career as students was
coming to an end, as we had to graduate. After a meeting with our graduation council Ir.
M. Abdelghany, we came in touch with Drs. Dr. L.J.M. Rothkrantz. He invited us over
to have a meeting with him, regarding the then-called �Adaptive Cockpit Environment�
(ACE) project. This project was started by Drs. Dr. Rothkrantz, and he suggested that
we could help out with this project, and so the idea for the SAM project was born. To
avoid any misconceptions: ACE is the same as ICE. The name was changed to better
suit the project.

2.2.2 Project description

2.2.2.1 Problem setting

Ever since man has walked on the earth he has dreamt about flying. The discovery of the
kite by the Chinese started humans thinking about flying. Kites were used by the Chinese
in religious ceremonies. For many centuries, humans have tried to fly just like birds and
have studied the flight of birds.
The results were often disastrous, as the muscles of the human arms cannot move with
the strength of a bird. Leonardo da Vinci made the first real studies of flight in the
1480's. He had over 100 drawings that illustrated his theories on bird and mechanical
flight.
.

Chapter 2: Project file

Copyright © 2003, Delft University of Technology

12

Figure 3 A drawing of the Ornithopter of Leonardo Da Vinci.

The Ornithopter flying machine (Figure 3) was never actually created. It was a design
that Leonardo da Vinci created to show how man could fly. Leonardo da Vinci's
notebooks on flight were re-examined in the 19th century by aviation pioneers. Based on
the concept of Da Vinci the Wright brothers made the first successful manned flight in
1903. It lasted for 12 seconds.

Since those early days of aviation, the technology used in planes has evolved immensely
whereas the principles of flight have remained the same. Alongside with this immense
progress in technology used in planes, designed to reduce the skills needed to fly a plane,
it inevitably also introduced an unexpected problem. The increased amount of
information available to the pilot has decreased some of the physical workload, but has
increased the mental workload.

Figure 4 Cockpit of the Concorde.

Chapter 2: Project file

Copyright © 2003, Delft University of Technology

13

Figures 4 and 5 illustrate this problem. As the cockpit of the Concorde has many gauges
and instruments the pilot should look at, the cockpit of the Boeing 737-700, as show in
figure 5, uses information displays to feed the pilot with information. Although this is a
big step forward into information management, and resulted into reducing the people
needed to fly a plane to two persons, instead of three, the pilot still needs to choose the
right screens to watch at, and the information available to him/her is much greater, as
the technology evolves.

Figure 5 The glass cockpit of a Boeing 737-700.

2.2.2.2 Project goal

The ultimate project goal is to achieve a prototype system that assesses in real-time the
situation the pilot is in and the workload of the pilot. The system will use a dynamically
adaptable rule set to assess the current status of the flight, and predict what situations are
likely to follow. Also adaptive logic needs to be defined which will be responsible for the
information the system gives to the pilot.
To achieve this goal, the project has been divided up into three phases:

1st phase

• Literature study
2nd phase

• Artificial Intelligence techniques research
• Cognitive and system model

3rd phase
• Demonstrator
• Evaluation, tests and validation

Are more detailed summery of the different phases is the SAM project can be found in
section 2.2.8.1 of this chapter.

Chapter 2: Project file

Copyright © 2003, Delft University of Technology

14

2.2.2.3 Project result

The end result of the project should be a software program that works alongside the
Flight Gear Simulator. This program uses knowledge bases and neural network
technologies to comprehend and anticipate what the pilot is doing at the current
moment, and what he or she is going to do in the near future.

2.2.3 Project limits

Taking in consideration the huge scale of the ICE and SAM project, the complexity, and
the limited time frame, it is likely that the SAM program will not have all the features and
functions as described in the plan of approach.

2.2.4 Project lifecycle

The project lifecycle describes the steps that need to be completed during the project.

• Preliminary research
• Draft of the plan of approach
• Analysis which results into a time planning
• Draft of the functional specifications
• Research into System Awareness
• Proof of concept SAM model
• Research into data communication
• Research into artificial intelligence
• Research into expert systems
• Research into further expansion of the SAM
• Draft of the requirements of the SAM
• Draft of the knowledge base layout
• Draft of the system model
• Visual prototype
• Programming of the Data server
• Programming of the Data modeler
• Programming of the Data client
• 1st modular prototype
• Implementation of the knowledge base into the program
• Implementation of JESS within the program
• 2nd modular prototype
• Delivery of SAM
• Draft report
• Draft of thesis

Further on in this thesis you can find a detailed time planning which chronologically
describes which project members are responsible for the different aspects of the SAM
project.

Chapter 2: Project file

Copyright © 2003, Delft University of Technology

15

2.2.5 Project organization

2.2.5.1 Tasks and responsibilities

The team should cooperate in creating the Situation Awareness Module as described in
the project goal

2.2.5.2 Execution conditions and competences

To properly complete the project, the team assumes the following engagements and
acceptances:

• Each project members is responsible to completely fulfill his tasks.
• The self-reliant acquiring of information needed for the tasks is also a

responsibility of the project member.
• All progress made within a task should be reported on weekly bases to the other

project members.
• Applied methods should be discussed with the other project members, before

they are used.
• Eventual delay should be reported as once, just as errors that could lead to

delays.
• Any adaptations during the construction of the product should only be done by

the responsible team member. In any other case the team and councils must
always be consulted first.

2.2.5.3 Time schedule

The project is carried out from 3 October 2002 till 4 July 2003. For this project the hours
used by the project members are estimated on 840 hours per person.

2.2.5.4 Information and reporting

All information, documents and software are stored on the TU server. This server allows
the project members to share the new information with the other project members. All
information is placed in the designated directory, and made public, when the information
is ready for release.

Reporting the progress of the project is done ad hoc one time a week with the whole
ICE project group. Every two weeks a progress report is given to the Hogeschool
Rotterdam. The reporting is done to Ir. M. Abdelghany.

Communication can be done by telephone, e-mail and meetings. Evaluation of the
project is found in the appendix of this thesis.

Chapter 2: Project file

Copyright © 2003, Delft University of Technology

16

2.2.6 Projects risks

The following risks are taken into consideration. Per risk measures are taken to prevent
them from happening.

• Fire
• Theft
• Specification which are not conform the end result
• Failed agreements
• Environmental disasters

To limit these risks a daily backup is made of all data.

2.2.7 Project budget and costs

Since there is no budget for this project, costs are left out of this thesis.

2.2.8 Project planning

The SAM project is divided in several phases to make an incremental approach of the
problem setting. Using this incremental approach, the project goal can be adjusted
during the project, as the project progress is not as planned.

2.2.8.1 Definitions

• Preliminary research Initial orientation into the ICE project and
System Awareness

• Plan of approach Complete description of the project
• Project planning Time scheme of the complete project
• Functional specifications Basic requirements of the Situation

Awareness Module
1st phase

• Research into System
Awareness

Research into System Awareness and the
application of it within the SAM project

• Proof of concept A preliminary prototype which proves the
concept described in our plan of approach

2nd phase
• Research into data

communication
Orientation and research into the
communication between the SAM program
and the flight simulator

• Research into artificial
intelligence

Orientation and research into artificial
intelligence and how it can be used in our
program

Chapter 2: Project file

Copyright © 2003, Delft University of Technology

17

• Research into expert systems Orientation and research into expert system

and how it can be integrated in the SAM
program

• Draft of system requirements All demands on the SAM program written
down and fixed

• Draft of knowledge base
structure

The layout and structure of the knowledge
base written down a separate report

• Draft of the system model The layout and structure of the SAM
program defined

• Visual prototype An extension to the proof of concept, which
now uses the layout of the final prototype

3rd phase
• Programming of the Data server Creation of the code necessary to make the

Data server
• Programming of the Data

modeler
Creation of the code necessary to make the
Data modeler

• Programming of the Data client Creation of the code necessary to make the
Data client

• 1st modular prototype A first preliminary version of the program
based on the functional specification

• Implementation of the
knowledge base

Integration of the knowledge base into the
SAM program

• Implementation of JESS Integration of JESS into the SAM program
• 2nd modular prototype A second preliminary version of the program

which now complies to at least 80% of the
requirements

• Delivery of SAM

A final prototype which complies for at least
90% to the requirements

• Draft reports Creation of reports that cover parts of the
SAM project which stand on them selves

• Draft of thesis Creation of the final thesis which covers
every aspect of the SAM project

2.2.8.2 Project time scheme

This is the latest project time scheme based on the original planning. As you can see the
original date to end the project was March, but that date was too far-fetched for our
project, as we were not happy with the results. Chapter 8 describes why this happened.

Chapter 2: Project file

Copyright © 2003, Delft University of Technology

18

 October November December January February March
Preliminary
research
Plan of approach
Project planning
Functional
specifications
1st phase
Research into
System Awareness
Proof of concept
2nd phase
Research into data
communication
Research into
artificial
intelligence
Research into
expert systems
Draft of system
requirements
Draft of
knowledge base
structure
Draft of the
system model
Visual prototype
3rd phase
Programming of
the Data server
Programming of
the Data modeler
Programming of
the Data client

1st modular
prototype
Implementation of
the knowledge
base
Implementation of
JESS
2nd modular
prototype
Delivery of SAM
Draft reports
Draft of thesis

Chapter 2: Project file

Copyright © 2003, Delft University of Technology

19

2.2.8.3 Project research areas and responsible project members

• Preliminary research Maikel and Richard
• Plan of approach Maikel
• Project planning Maikel
• Functional specifications Maikel

1st phase
• Research into System

Awareness
Maikel and Richard

• Proof of concept Maikel and Richard
2nd phase

• Research into data
communication

Richard

• Research into artificial
intelligence

Maikel and Richard

• Research into expert systems Maikel and Richard
• Draft of system requirements Maikel
• Draft of knowledge base

structure
Maikel

• Draft of the system model Maikel
• Visual prototype Richard

3rd phase
• Programming of the Data server Richard
• Programming of the Data

modeler
Richard

• Programming of the Data client Richard
• 1st modular prototype Richard
• Implementation of the

knowledge base
Maikel and Richard

• Implementation of JESS Richard
• 2nd modular prototype Richard
• Delivery of SAM Maikel and Richard
• Draft reports Maikel and Richard
• Draft of thesis Maikel and Richard

Chapter 2: Project file

Copyright © 2003, Delft University of Technology

20

2.2.9 Project activities and to be delivered results

The following overview gives a specification of the tasks of the project group and the
results that need to be delivered.

2.2.9.1 Tasks

• Drafting the plan of approach
• Drafting requirements
• Drafting specifications
• Drafting a test plan
• Creation of the knowledge base containing data on the Cessna 172RG
• Creation of the Data server
• Creation of the Data client
• Creation of the Data modeler
• Creation of prototypes, with increasing complexity
• Drafting of report on the knowledge base
• Drafting of report on the final prototype
• Writing the thesis

2.2.9.2 To be delivered results

• Report which describes the SAM prototype
• Report which describes the knowledge base
• Several prototypes of the SAM
• SAM which complies to the requirements
• Project thesis

2.3 Team

The SAM project team consists of 2 persons: Richard Harreman

Maikel van der Roest

The project council at the TU Delft: Drs. Dr. Leon Rothkrantz

1st Project council of Hogeschool Rotterdam: Ir. M. Mohammed Abdelghany
2nd Project council of Hogeschool Rotterdam: Ing. Hans Manni

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

21

Chapter 3: Preliminary research

3.1 Description

This chapter discusses the preliminary research that was done as a primary analysis
before the project started. Within this preliminary research we focused on the
technical and reasoning aspects of the project. This preliminary research is used as
framework for further analysis and has been of great importance for the eventual
implementation of SAM. Because this chapter just describes the preliminary
research, it is possible that certain aspects of the project have been discarded,
which came to light with the draft of the requirements. It is of great importance
that the final requirements are considered as the project goal.

The first step of the preliminary research is the transposing of the problem-setting
onto a central question. The central question runs as follows:
�What demands need to be met for the development and implementation of SAM�
The objective of the research is to supply a user-friendly and functional model of
SAM. This model needs to be usable by anyone who has some affinity with system-
and situation awareness.

To make the initial research more accessible and more focused we have divided the
central question into three shared questions. The first section of this chapter will
cover the following shared question:
1. �What demands need to be met in developing the system model?�
The second section of this chapter will cover the following question:
2. �What intelligence demands need to be met by the model, and which aspects are of use to the
user of the program?�
The last section of this chapter will address the last shared question, namely:
3. �What technical demands need to be met by the model, and which aspects are of use for the user
of the program?�

3.2 System model aspects

Shared question

�What demands need to be met in developing the system model?�

3.2.1 Development tools

For the development of SAM we have chosen for a Microsoft Windows
environment to do the final programming of SAM. One of the main requirements
of SAM is that it is to be Operating System independent, so it could actually be any
one Operating System, but for the Windows Operating System the most JAVA
development tools are available.

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

22

Figure 6 Development of Data Modeler in J-Builder environment.

The programming of SAM is done with the help of Borland J-Builder. This
program has many similarities with the other Borland products, which the project
team has used on many occasions in the past. The choice for J-builder will decrease
the learning curve of the program, and will make the switch form C to JAVA more
easy for the developers.

For the system development and analysis of the system in the first phase of the
project, we have chosen for SDW. As the project progresses we will switch to
Rational Rose, because SDW has some limits as the system gets more complex. To
draw the system model we will use Microsoft Visio.

3.2.2 Development environment

As mentioned in the section above, the development environment is mainly
Microsoft Windows. For the development we will use Windows NT 4.0 SP 6a,
Windows 2000 and Windows XP, in combination with Borland J-Builder, SDW,
Rational Rose 2000, JAVA SDK 2.0, Microsoft Visio 2002 and Microsoft Office
XP.

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

23

3.2.2.1 Requirements for the user

It is essential not to have too many demands of the user. The main requirement
of the user of SAM is that he or she has the JAVA Virtual Machine installed. If
the user wants to do real time analyzing of the data, Flight Gear with at least
version number 0.91 needs to be installed on the computer of the user.

3.2.2.2 Program testing

Whenever a prototype of SAM is finished, it will be tested. These tests are
performed to evaluate the performance and accuracy of the prototype, which
enables the way for improvements in following prototypes. The main points during
testing are:

• Overall performance of the program
• Speed of data analysis
• Accuracy of the system
• Speed of the data transfer between the simulator and the program
• Validation of the model

3.2.3 Maintenance

Because of the modular build-up of the program and the use of external XML
knowledge bases, SAM is relatively simple to maintain and improve. By simply
changing some values in the knowledge base, the operation of the program can be
manipulated. The program itself also gives the user the possibility to change certain
aspects of the program trough the Data Modeler. For the more demanding users
the source code of the program also uses the modular build-up, so that parts can be
relatively simply changed, without having to compile the whole program again.

3.3 Intelligence aspects

Shared question

�What intelligence demands need to be met by the model, and which aspects are of use to the
user of the program?�

3.3.1 Description

The most important aspect of the �SAM� project is the Artificial Intelligence
aspect. The focal points for the reasoning are:

• Quality of reasoning
• Validation
• Transparency
• Explanation of results
• Efficiency

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

24

In order to accomplish this, the data that enters the system needs to be analyzed,
and using this data, a situation needs to be recognized using a reasoning algorithm.
To be able to process and analyze the incoming data a reasoning system is needed.
Limiting ourselves to the context of our project and the knowledge already present
at the Knowledge Base Group at TU delft, we had the choice between two
systems. The following part of the report will cover those two systems and will
discuss the advantages and disadvantages of the systems.

3.3.2 Neural networks

3.3.2.1 Description

A neural network is either a hardware implementation or a computer program that
tries to accomplish the processing of data in the same way as its biological
counterpart does. Usual neural networks are built up with a great number of
artificially connected neurons.

In contradiction to a normal computer program, a neural network has some extra
and unique features, like self learning, self organizing, error tolerance, and parallel
information processing.

3.3.2.2 Operation

Neural networks are self learning because of the way they deal and react to the data
the network provides it. Instead of telling the network how to react and interpret
the data, a neural network has the possibilities to sort out the properties of the data.
The neural network continuously learns when new data is available. When data is
supplied to the neural network, the neural network organizes its structure to
visualize the properties of the data it has found. Figure 5 is a representation of a
feed forward neural network. A neural network like this can be used to train the
system to find a relation between the input and output it encounters. In most cases
the meaning of a self learning neural network is as following, the organization of
data using the strength of connections between the neurons. The way how that
organization takes place depends on the set learning algorithm. Differences
between neural networks can be by different internal structures or the learning
algorithm.

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

25

Figure 7 A feed forward neural network, trained by back propagation.

Error tolerance is an important aspect of a neural network. It reflects the property
of the network to create models using the entered data. In other words, a neural
network is able to find a generalization within the data.

3.3.2.3 Usability within the SAM project

In the original idea of the SAM project, neural networks would be the ideal choice.
Nevertheless it was ruled out after the end of the preliminary research. The main
problem with a neural network is to let it learn if it�s right or wrong. This is on its
own not a big problem, as long as the number of variables is limited. Within the
SAM project we incorporate over 80 variables, which makes it at this point in time,
impossible to use a neural network with the time span of the SAM project. Not
only that, the simulator cannot provide so many variables on a real-time basis.
Appendix D contains a example of what the source code of a feed forward neural
network looks like.

3.3.3 Expert systems

3.3.3.1 Description

An expert system is used to solve problems for people which in normal cases need
a specialized person to solve the problem, for example a doctor. To be able to
build an expert system it is necessary to first gather the needed information in
combination with the human expert. Much of this kind of information is kept up
to date by the expert, using assumptions instead of actual facts. Especially because
of this reason it is hard to gain the right information of the expert. There even is an
own specialty for these experts: �Knowledge Engineer�. A knowledge engineer has
the task to gather information and to put it into the �knowledge base� of the expert
system.

The most widely used way to extract knowledge out of an expert system is by the
use of rules. Usually these rules do not have a specific solution. There is more
certainty that the solution is right when the conditions do not change. Statistics are
used to predict the certainty of the solutions of the expert system. Rule based
expert systems are easy to manipulate because of the use of knowledge bases.

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

26

Expert systems are used to solve a variety of problems, for example in the areas of
informatics, law and mathematics. Within each area the expert system can solve
different sets of problems.

3.3.3.2 Operation

An expert system works by means of reasoning. The expert system matches the
incoming data against knowledge rules, and then determines which situation the
user is in. The knowledge rules need to be registered into the expert system before
it is used. With the use of algorithms the knowledge �rules� in combination with
the incoming data will be converted into �facts�.
The simplest algorithm that can be used within an expert system is the �Boolean�
algorithm. A Boolean is nothing more than an �if� statement. It checks if the stated
rule is true or false. An expert system is basically based on this way of reasoning.
The way of how data is interpreted and handled differs per system. The biggest
advantage of this system is that the conclusion is always correct, as long as the rules
are stated correctly. The disadvantage of the Boolean approach is that the system is
not flexible, because the rules are always based on �hard data�.

To give an example within the context of our project: If an airplane is on final
approach the speed needs to be 70 knots. When the speed is 71, or 69, the system
will pass the variable as false, and will conclude that the airplane is not on final
approach. More complex expert system circumvents this disadvantage with
algorithms and logics, which enables a certain flexibility, but will also decrease the
certainty factor.

3.3.3.3 Expert Systems

There is a wide variety of expert systems shells available. Within the context of the
SAM project we have chosen to take a closer look at the following expert systems
shells.

CLIPS

Clips (C Language Integrated Production System) is an expert system shell
developed by NASA in 1986. Since those days� CLIPS has improved, and has
gotten a lot more sophisticated. CLIPS is a �tool� that is designed to make the
development of assessment systems easier. Outside the fact that CLIPS is a stand-
alone tool, it can also be used as function call within a programming language.
CLIPS is designed to work with programming languages like C and C++.

JESS

JESS (Java Expert System Shell) is in its original form a clone of CLIPS, developed
in 1995. Trough time JESS has evolved to a complete stand-alone expert system
shell. Because JESS is based on CLIPS, it is possible to use CLIPS rules in JESS.
One of the problems a programmer may encounter is that some facts can activate
many if-then rules. In order to select the most relevant rule to �fire�, JESS uses the
Rete algorithm. JESS not only has the complete CLIPS function set, but also some
extra features of it own, like backwards chaining and memory queries. That makes
JESS an efficient, small, and one of the fastest expert systems available.

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

27

3.3.3.4 Usability within the SAM project

After the initial research and rule out of a neural network to use within the SAM
project, expert system shells came into view. Taking the big amount of variables
into consideration and that we wanted to be able to follow the reasoning process;
expert systems were a better solution to our problem. Incorporating the use of
knowledge bases, it is possible to make a dynamic and accurate system. That left us
with the question of which expert system shell to use. We had narrowed it down to
two choices, JESS or CLIPS. The choice between JESS and CLIPS was not a big
one to make. CLIPS has stopped with further development since 2001, which
inevitable also rules out any updates in cases of bugs. JESS is still under
development, and has an active user and support group.
Therefore, JESS was our choice.

3.3.4 Prototypes

During our preliminary research into artificial intelligence we started to make the
first prototypes. We made both a PHP based, and a PERL based prototype,
dependent on the programming skills of the team members. Both prototypes use
simple if-then statements to do the assessment of the situations. The following
code example illustrates this:

function Takeoff ($Airspeed,$Rpm,$Throttle,$Brakes,$ParkingBrakes,$Pitch,$VerticalSpeed,$Elevator, $Altitude)
{
//Takeoff functions
//At takeoff the flaps can be set to 0,10,20 or 30 degrees, depending on the runway situation
//The elevator needs to increase at about 50 knots(v1), and the takeoff will take place at 70/80 knots(v2)
if($Brakes == "Off" && $ParkingBrakes == "Off") {
 //Checking whether we are taxiing or taking off
 //Implementing of groundlevel is needed, to see if we're of the ground or not
 //Formula: /enviroment/ground-level-m / /steam/attitude-ft = 3.14
 //So if the groundlevel == 3.14 then were still cruising on the deck, instead of in-air
 if($Rpm >= "1200" && $Airspeed >= "20") {
 $Vertical = round ($VerticalSpeed);
 echo $Vertical;
 if($Airspeed <= "50" && Vertical == "0") {
 echo "Takeoff: Rolling $eol";
 }
 if($Airspeed >= "50" && $Airspeed <= "64" && $Vertical == "0") {
 echo "Takeoff: V1 speed $eol";
 }
 if($Airspeed >= "65" && $Altitude <= "100") {
 //For this concept we only work with the kfso airport
 if($Elevator <= "0" && $Pitch >= 2 && $VerticalSpeed >= 2) {
 echo "Takeoff: Taking off $eol";
 }
 else {
 if($Airspeed <= "80") {
 echo "Takeoff: V2 speed $eol";
 }
 }
 }
 }
 }
 }
Figure 8 A PHP code example of the first prototype.

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

28

The previous code describes the �Takeoff� function. It analyzes the data that was
inputted into the function, and uses the variables to give back a situation. As you
can see all the data is hard, which means, it cannot deviate from it. In real life, all
pilots have to obey the rules, but minor deviations from the rules are allowed. This
means that a following prototype should have a feature to overcome this problem.
The connection between the prototype and the simulator was done by a TELNET
connection. This worked in the following way:

$cfgServer = "127.0.0.1";
$cfgPort = 5555;
$cfgTimeOut = 10;
//Newlines?
 or \n
$eol = "\n";
//Printout the variables?
$Test = false;

// open a socket
if(!$cfgTimeOut)
 // without timeout
 $fgfs_handle = fsockopen($cfgServer, $cfgPort);
else
 // with timeout
 $fgfs_handle = fsockopen($cfgServer, $cfgPort, &$errno, &$errstr, $cfgTimeOut);

if(!$fgfs_handle) {
 echo "Connection failed$eol";
 exit();
 }
else {
 echo "Connected $eol";
 //sleep(10);
 echo "Running script, this may take a while $eol";

 //Switch to raw mode
 fputs($fgfs_handle, "data \015\012");

 //Get the Flightdata
 //Get Airspeed
 fputs($fgfs_handle, "get /steam/airspeed-kt \015\012");
 $Airspeed = fgets($fgfs_handle,1024);
 //Get Altitude
 fputs($fgfs_handle, "get /steam/altitude-ft \015\012");
 $Altitude = fgets($fgfs_handle,1024);
 //Get Heading
 fputs($fgfs_handle, "get /steam/gyro-compass-deg \015\012");
 $Heading = fgets($fgfs_handle,1024);
 //Get Aircraft pitch
 fputs($fgfs_handle, "get /orientation/pitch-deg \015\012");
 $Pitch = fgets($fgfs_handle,1024);
 //Get Aircraft roll
 fputs($fgfs_handle, "get /orientation/roll-deg \015\012");
 $Roll = fgets($fgfs_handle,1024);
 //Get Aircraft yaw
 fputs($fgfs_handle, "get /velocities/side-slip-deg \015\012");
 $Yaw = fgets($fgfs_handle,1024);
 //Get Engine rpm
 fputs($fgfs_handle, "get /engines/engine/rpm \015\012");
 $Rpm = fgets($fgfs_handle,1024);
 //Get Vertical Speed
 fputs($fgfs_handle, "get /velocities/vertical-speed-fps \015\012");
 $VerticalSpeed = fgets($fgfs_handle,1024);
 //Get Ground Level
 fputs($fgfs_handle, "get /fdm/jsbsim/ic/terrain-altitude-ft \015\012");
 $GroundLevel = fgets($fgfs_handle,1024);
Figure 9 The connection between the program and the simulator.

As one can probably see this is a pretty basic function. Although this is an effective
and easy way to obtain data, the socket connection with Flight Gear was slow.

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

29

Switching back to an earlier version of Flight Gear solved this problem, but
reduced the amount of variables, which ruled out that solution. The bug was
submitted to the Flight Gear user group, and will hopefully be solved in upcoming
versions of Flight Gear.

3.3.5 SAM reasoning

To conclude the artificial intelligence part of our preliminary research we had to
make some choices. As neural networks were ruled out quite early, and we chose to
use an expert system, we did some more research into the use of JESS. A second
prototype revealed the same problem as we encountered with the first prototype. If
the situation does not have the ideal variables, it is possible that the system analyzes
the wrong situation. To minimize the chances for this error, because it�s virtually
impossible to prevent it from happening, we have taken the following precautions.

3.3.5.1 XML Knowledge base

To keep the program as dynamically as possible and easy maintainable, all
knowledge needed to reason is contained into a knowledge base. The knowledge
base itself is written in XML, an easy to learn language, and contains all the
situations and rules the program can recognize. The report on this knowledge base
is included in Appendix A.

The idea of the knowledge base was inspired by Quint Mouthaan, who made a
XML knowledge base for a F-16. This knowledge base contains information about
which instruments the pilot should look at, and in what situation the plane is.
Looking at the fact that not all actions will be carried out, but they actually should
be, all actions are given a priority and probability value. To give a basic example:
when a pilot is in the �Take Off� phase, it�s most likely that the pilot will open up
the throttle to 100%, thus the probability is 1, but the chance that the pilot will set
his transponder to code 1200 is only 0.5. This all has to do with the priority of
actions. If the pilot wants to take off, he has to open up the throttle, but it is not
needed to set the transponder at 1200, thus the priority values differs.

3.3.5.2 Temporal reasoning

One of the main additions to the SAM project, as well as the ICE project, should
be temporal reasoning. This mechanism will be used to check the situation
analyzed by the expert system shell, and to anticipate on upcoming situations.

The main idea behind temporal reasoning is the human reactions to any kind of
problem. A pilot knows what to do when he encounters an anomaly or an
emergency, but a computer program does not. The pilot can also dynamically adapt
the situation, if his or her solution is not working. Temporal reasoning as thought
of in the SAM project, is a first setup to try to solve this problem.

The principle behind this is a timeline. A pilot takes off, and lands the plane, which
can be marked as start- and endpoint. Between these two points he or she will
complete some tasks, which are predefined in the flight plan. These situations will

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

30

be converted into a table, which contains a summary of the actions, and the
following logical actions which can happen after it. Using a timeline, the system
can anticipate the logical next situation the pilot will encounter, and the system can
if necessary advice the pilot.

Parallel to this timeline runs a second table, which contains possible alternatives for
the standard situations. In this second timeline the program searches for
environment variables which could have a negative effect on the flight. This
function runs recursively, and checks the first timeline for any alternatives.

Looking at the fact that a plane can also encounter emergency situations, there is a
third alternate timeline implemented. In this timeline all emergency situations are
included, with the possible situations that solve the emergency, as is described in
the knowledge base. If a situation of this timeline is detected, then the system gives
it top priority to get back into a normal flight situation as fast as possible. In future
projects this third timeline can also be used to let the program perform the tasks
needed, and to deny the pilot access to the flight control systems.

A more detailed description of the temporal recursion system is found in chapter 6.

3.4 Technical aspects

Shared question

�What technical demands need to be met by the model, and which aspects are of use for the user
of the program?�

3.4.1 Description

This part of our thesis will cover all the technical aspects involving the SAM
project. As described in the previous section of this thesis, one of the main focal
points of the SAM project is �speed�. In order to meet that demand the program
itself needs to comply with certain aspects, that enable the quick handling of data.

3.4.2 Data processing

Data is being delivered by the Flight Gear simulator and will be processed and
analyzed by the various modules of the program.

The simulator uses two kinds of protocols to deliver data to any kind of program,
namely HTTP (Web-protocol) and TELNET, respectively on ports 80 and 23. The
problem we faced quite early on in the project was the �slowness� of the data being
delivered. If you want for example 40 variables delivered by the simulator it can
take up to 5 seconds for all variables to be sent. Then of course the program needs
to �translate� and analyze those variables, which will take some amount of time. In
the worst-case scenario you will be looking at up to 7 seconds of time that is lost
every time a request is made of the simulator for data.

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

31

3.4.3 Real-time analyzing

In order to be able to do real-time analyses within the program so that accurate
information is given to the pilot, the team counteracted the 7 seconds as stated in
chapter 3.4.2 by making a selection for the data needed at any given situation in
flight. After all, when a pilot is taking off, there is no need for the variables that are
used while taxiing from the runway i.e. the program does not need data from the
wheel breaks, parking brakes and so on.

To realize this, the team introduced a �time-line� which specifies the natural order
of flight and all that goes with it. This sped up the program for about 5 seconds,
which still left the team with 2 seconds delay in the analyses of data supplied by the
simulator. Since the program (luckily) does not concern a real airplane at this
period in time, the team decided to discard the 2 seconds.
This is not to say that the end product will be �behind� in data for 2 seconds
throughout the entirety of the flight, but means that when a lot of data is needed,
for instance when the pilot is in transition between descend and landing, the
program will slow down, to speed up again when you are in mid-flight or when not
much data is needed.

Another selection made by the team was the use of data protocol. The TELNET
protocol was preferred above the HTTP protocol, simply because it was faster. The
TELNET protocol sends the data to the program in ASCII characters while HTTP
does the same thing but in such a manner that it can be read by Internet Explorer
or Netscape, which in turn means that entire sentences need to be sent to the
receiving party. In future versions of the Flight Gear simulator the TELNET
connection will undoubtedly be faster, since a few programmers have assured the
team that that piece of software will be looked at in the near future.

Chapter 3: Preliminary research

Copyright © 2003, Delft University of Technology

32

(This page has been left blank intentionally)

Chapter 4: System requirements

Copyright © 2003, Delft University of Technology

33

Chapter 4: System requirements

4.1 Description

The following system requirements will cover all demands of the SAM program.
SAM is the first concept to fully realize an Intelligent Cockpit Environment. In the
following system requirements, all aspects will be covered according to subjects.

4.2 Subject

The Intelligent Cockpit Environment (ICE) project focuses on the use of new
techniques and technology for human-machine interaction within the cockpit. A
context aware system, like SAM, should monitor the actions of the pilot, the plane
and the environment. This system should enhance the communication between the
aircraft (machine) and the pilot (human), by giving the right information at a time
the pilot needs or requests it. With the use of a context aware system it is also
possible to take over some of the visual systems of the pilot, and to give him or her
a warning in case of a defect, pilot error, or upcoming hazard.

4.3 Abbreviations

In the following system requirements some abbreviations are used. The following
summation will cover those abbreviations:

I.C.E Intelligent Cockpit Environment
J.D.K. Java Developer Kit
J.E.S.S Java Expert System Shell
S.A. System Assessment
S.A.M Situation Awareness Module
V.M. Virtual Machine
X.M.L. eXtensible Markup Language

4.4 General description

SAM is a prototype system that assesses the situation of the pilot, using real-time
techniques. The system will be built-up out of several modules, to meet up with the
specific demands of the user. Using this modular built-up of the program, it is easy
to change and enhance the program, without having to re-compile the whole
source code.

The context and situation awareness of the system will be realized with the use of
JESS. This expert system uses 18 different algorithms after context rules are
provided to come to a conclusion. In contrary to �normal� expert and reasoning
systems, which works with the Boolean principle (YES-NO), JESS can also work
with variables, which comply for a percentage to the rule, without being dismissed.

Chapter 4: System requirements

Copyright © 2003, Delft University of Technology

34

With this �fuzzy logic� technique it is possible to make a first prototype, which
analyzes and anticipates to human behavior.
This is specifically of interest in a situation where a pilot has a flight plan, which
states that normal cruise altitude will be 4500 feet. In real life, 4300 and 4700 feet
are also acceptable, but when working with the Boolean principle ONLY 4500 feet
is the correct altitude.

4.5 Context of the product

SAM is an operating system independent program. The program needs to run on
every operating system, as long as it has a Java Virtual Machine installed on it. In
order to let the program work as specified in these requirements, at least version
1.41 of the V.M. needs to be installed, or JDK 2.0.

4.6 Functions

The main function demand is that all application software runs smoothly and
stable, and that all the modules can communicate with one another. The main
application needs to obtain its data in the shortest amount of time as possible, and
analyze it in real-time to generate a conclusion.

4.7 Users

SAM only knows one type of user so far. This user group has all rights within
SAM. It can manipulate the interface, and load modules. Any user restrictions are
not implemented in SAM at this time.

4.8 General limitations

Even though SAM must be able to run on every operating system, it is bound to
some limitations. SAM will only run on a computer if the user has installed a Java
Virtual Machine, version 1.41 at least. For real-time data analysis SAM depends on
the input rate of the data. If the data stream fluctuates, real-time analysis is no
longer possible. I.e. SAM can only perform a static analysis on the supplied data if
this happens.

The level of advice and conclusion the system generates, depends on the quality of
the knowledge loaded into the program. SAM uses this knowledge to make rules
for JESS, which then evaluates those rules. If this data is inaccurate or incomplete,
the forthcoming advice or conclusion is also inaccurate or incomplete.

Chapter 4: System requirements

Copyright © 2003, Delft University of Technology

35

4.9 Descriptions of the product

The SAM project has to meet up to some specific demands. These demands are
categorized in the modules of the project.

SAM Modeler

The modeler program of the SAM project visualizes the knowledge inputted in the
modeler program. It has to have the ability to load, save, edit and visualize the
knowledge. The SAM modeler should have the following abilities:

• Load Context data
• Save Context data
• View Context diagram
• Parse XML file
• View variables
• Clear memory
• Exit program
• Context Editor

Load Context data

Using the mouse pointer to open up the file menu, the user sees the �Load
Context� submenu. Clicking on this item will open up a file browser in which the
user must input a file containing Context data. The file inputted by the user must
be a gzipped binary file, containing user data. The program then checks if the file
complies to the specified layout, and generates an error message if it does not. If
the inputted file is of the correct format, the program extracts the context data out
of the file, and passes the variables to the main program.

Save Context data

Using the mouse pointer to open up the file menu, the user sees the �Save
Context� submenu. Clicking on this item will open up a file browser in which the
user can save a file containing Context data. The user will enter a filename, and
thus the program will generate a gzipped binary file, and saves it to the inputted file
location.

View diagram

Clicking on this item will open up a window which visualizes the context previously
inputted into the program. The context visualized in this function displays a set of
inputted situations. Moving over such a situation will display its individual steps
and its possible new situations that follow this situation.
Displayed without moving the mouse are several lines that help the user determine
which logical new situation is run through at the end of any other situation.

Chapter 4: System requirements

Copyright © 2003, Delft University of Technology

36

Parse XML file

Clicking on this item will open up a new window, which displays the rules that are
run trough in a fixed XML file, called KB_Cessna.xml. This XML file uses a
separate file called variables.dtd, which incorporates the values for each variable
that is in the XML file. At the same time the XML file is parsed the main window
of the modeler displays what situations are being created and how many individual
steps each situation has.
The XML file is parsed on a line-by-line bases. As each line is parsed the modeler
translates it into a language that the modeler and therefore the client understands.
For example:
The XML file contains the following line:
<action name="brakes" priority="1" probability="VSP">&ON;</action>
The Modeler transforms this line into:
Add step [parking brakes] on situation [Startup] where [controls/parking-brake==1]

More about the language used by the Data Modeler can be found in the section
�Context Editor� further on in the chapter.

<situation name="Pre startup" timewindow="20">
 <phase name="prestartup">
 <action name="parking brakes" priority="1" probability="MP">&ON;</action>
 <action name="throttle" priority="1" probability="VSP">&IDLE;</action>
 <action name="ignition switch" priority="1" probability="BP">&OFF;</action>
 <action name="avionics power" priority="1" probability="BP">&OFF;</action>
 <action name="master switch" priority="1" probability="BP">&ON;</action>
 <action name="pitot heat" priority="1" probability="BP">&ON;</action>
 <action name="avionics master" priority="1" probability="BP">&OFF;</action>
 <action name="static pressure" priority="1" probability="BP">&OFF;</action>
 <action name="fuel selector" priority="1" probability="BP">&BOTH;</action>
 <action name="flaps" priority="1" probability="BP">&FULL;</action>
 <action name="pitot heat" priority="1" probability="BP">&OFF;</action>
 <action name="master switch" priority="1" probability="BP">&OFF;</action>
 <action name="fuel shutoff" priority="1" probability="BP">&ON;</action>
 <action name="lights" priority="1" probability="BP">&OFF;</action>
 <action name="beacon" priority="1" probability="BP">&OFF;</action>
 <action name="strobes" priority="1" probability="BP">&OFF;</action>
 <action name="nav. lights" priority="1" probability="BP">&OFF;</action>
 <action name="trim" priority="1" probability="BP">&SET;</action>
 </phase>
</situation>

Figure 10 Snippet from KB_Cessna.xml.

View variables

Clicking on this item displays the variables that need to be set in the server
program. Without these variables, or parameters if you will, the client cannot get
the necessary variables from the server to make an accurate guesstimate of the
situation.

Clear memory

Clicking on this item clears the memory of the program so that a new context can
be entered or loaded. In essence clicking this item resets the program back to its
run-state.

Chapter 4: System requirements

Copyright © 2003, Delft University of Technology

37

Exit Program

Clicking on this item exits the program.

Context Editor

Besides the functions that have just been described there is one other function.
This function allows you to add, edit, and delete rules of an empty or already
existing context. This is done in a simple �language� to make it easy for the user to
understand and use.
The commands used in this language are:

new situation [situation name]
This command creates a new situation in the memory.

add step [step name] when [boolean expression] on [situation name]
This command creates a new step for a given situation. The Boolean expression is
something in the order of [controls/parking-brake == 1]

change step [step name] when [boolean expresion] on [situation name]
This command makes changes to the already existing step in a particular situation.

add direction [direction name] when [boolean expresion] on [situation name]
This command adds a direction (such as [Take-off]) on a particular situation when
a Boolean expression has been reached.

show situation [situation name]
This command displays an already existing situation.

show step [step name] on [situation name]
This command displays a step with name [step name] in an already existing
situation.

show direction [direction name] on [situation name]
This command displays an already existing direction from an existing situation.

show all
This command displays everything that is in memory.

clear memory
This command deletes all rules from memory.

delete step [step name] on [situation name]
This command deletes a step with name [step name] from a specific situation.

delete direction [direction name] on [situation name]
This command deletes a direction from a specific situation

delete situation [situation name]
This command deletes a situation.

Chapter 4: System requirements

Copyright © 2003, Delft University of Technology

38

SAM Data server

The SAM Data Server should gather the data from the flight simulator, store it into
memory and send it to any number of connections made by any or one Data
Client. Note however that at this point in time, the Data Server has to be given a
list of parameters of flight values to get from the flight simulator in order to
provide data to the client. This is because of the enormous amount of time it would
take for the Data Server to gather all parameters from the simulator.
The SAM Data server should have the following abilities:

• Parameters
• Connect
• Disconnect & Exit

Parameters

Clicking this item lists a set of fixed built-in parameters which needs to be selected
in order to provide the variables for the SAM Client. Without these parameters set,
the program will produce an error-message.

Connect

Clicking on this item opens a TELNET connection to the Flight Gear Simulator
and extracts all the inputted variables from the Simulator. The IP address and the
port number of the Simulator can and must be entered in two textboxes. If these
textboxes are not correctly entered or when no Simulator has been found on the
provided address, the program will produce an error-message.
After a successful connection has been made, the parameters button will be
disabled since there is no more need for it now, and the Server will start polling the
Simulator at an interval set at 600 milliseconds. Any SAM Client that is connected
to the SAM Data Server can change this interval.
Also, after a successful connection has been made, the Server will be able to start
accepting connections from clients. Every xxx milliseconds (400 if it�s not altered
by any client) the Data server requests the list of parameters from the Flight Gear
Simulator and then stores them in memory.

Disconnect & Exit

Clicking this item will disconnect the Data Server from all clients and the Flight
Gear Simulator and then exits the program.

Chapter 4: System requirements

Copyright © 2003, Delft University of Technology

39

SAM Data Client

The Data Client should do all of the actual processing and determination of the
situations according to the variables that are provided by the Data Server.
The Data Client should have the following abilities:

• Load Context
• Connect
• Blackboard

Load Context
The Load Context function opens a file dialog where one can select a context file
that is to be used in concordance with the Flight Gear Simulator. The context file is
the file that was saved by the modeler and thus is a gzipped binary file. If some
variables are missing, i.e. not selected on the server before connecting to the Flight
Gear Simulator an error message is displayed on the main window along with the
variables that need to be added. If no connection has been made to the Data Server
another error message is displayed stating that a connection to the Data Server has
to be made.

Connect
The Connect function uses the IP Server textbox as reference for its network
connection and the Frequency textbox for the interval at which the Data Server is
supposed to be polling the Flight Gear Simulator for its variables.
While connected the Frequency can be changed at any time by simply entering a
number and pressing the ENTER button on the users� keyboard.
After the IP address for the Data Server has been checked, the Data Client tries to
open a network connection to the Data Server and requests the variables that the
Data Server has available.
Once connected, the Data Client first requests all the variables names and then
infinitely requests the individual values of each variable. This is done because there
is no need to keep repeating the variable names over the network again and again
which would slow down a network and the program because it would constantly be
busy allocating memory for the variables.
After all values of the list of variables have been obtained, the program passes the
values to certain JESS rules and uses the results that JESS returns to draw a
conclusion.

Blackboard

The Blackboard function opens up a window, which displays the values that have
been provided by the Data Server. This is done in a table where the x-axis
represents the variable names and the y-axis the amount of steps that have been
run through.
Either clicking the Close button or clicking the �x� at the top-right position closes
this window.

Chapter 4: System requirements

Copyright © 2003, Delft University of Technology

40

4.10 Functional demands of the product

The following demands need to be met by SAM. These demands are limited to the
functionality that SAM needs to have towards the user:

• The user must be able to get a advice from the system
• The user must be able to ask for an advice to the system
• The user must be able to enter knowledge into the system
• The user must be able to export knowledge from the system
• The system must be able to obtain data from the Flight Gear Simulator
• The Flight Gear Simulator must be able to give data to the system

4.11 Properties of the external connections

4.11.1 Users dialog

SAM

SAM must be presented with a clear and obvious menu structure. The program
itself needs to consist of three separate modules, which can communicate with one
another, after user input. The modeler needs to visualize the knowledge that is
loaded in from an XML file. This knowledge needs to be easily manageable with
use of graphical tools. All data must have the ability to be saved.

SAM Client

The SAM client needs to give a clear overview of the situation the pilot is in. The
display and refresh ratio of the situation needs to be as good as real-time, with a
maximal time-lapse of 1 second. The knowledge needed for the analysis needs to
be loaded in, by opening the menu. The user dialog needs to be built out of four
separate boxes with additional information about the situation the pilot is in. This
additional information can be the following:

• Used variables
• Conditions that are met
• Predicted next possible situations
• Input for the address of the Data Server
• Frequency rate the data is refreshed

SAM Modeler

The primary task of the SAM modeler is to visualize the knowledge, inputted by
the user, or loaded in from an XML file. With the means of an input box, the user
can manipulate the knowledge, or if he or she wants to, enter new knowledge.
Through a diagram button, the knowledge will be visualized into a clear diagram,
which will display situations, steps and possible following situations.

Chapter 4: System requirements

Copyright © 2003, Delft University of Technology

41

SAM Data Server

The Data Server module provides an interface in which the user must enter the
address and port number of the Flight Gear Simulator. The user can select
variables trough a dialog, which will be requested from the Simulator and in turn
are sent to the SAM client. The interface itself displays the parsed variables, the
address of the Flight Gear simulator, and a Connect and, after a connection has
been made, a Disconnect button.

4.11.2 Apparatus connections

If the user wishes to run a Flight Gear Simulator on a computer other than on the
computer the Data Server is running on, or when the Data Server runs on another
Computer than the Data Client, it is necessary to have a network connection
available.

4.11.3 Program connections

For the use of the SAM, the following other programs are needed:

• Operating system
• Java Virtual Machine or JDK1.2.4
• Flight Gear

Any other software is not needed.

4.11.4 Communication connections

To use the SAM program, a computer needs to be equipped with a working
TCP/IP stack, even when all programs are run on one computer.

4.11.5 Presentation demands

SAM needs to have a clear and attractive interface, which visualizes the most
important data in one blink of an eye. By simple steps, the interface needs to be
able to be manipulated, so that the user can choose what kind of data he or she
wants to see.

4.11.6 Design limitations

The most important design limitation of the SAM project is time.

4.11.7 Apparatus limitations

SAM needs to be able to run on the computer of the user. The minimum
requirements of SAM are the same as the requirements for the programs SAM
needs to run, to make SAM able to work on a great variety of computers.

Chapter 4: System requirements

Copyright © 2003, Delft University of Technology

42

4.11.8 Quality criteria

SAM needs to be operating system independent. It should be able to work in any
environment. The analysis of the data by SAM needs to be an accurate and actual
representation of the reality.

4.11.9 Maintenance ability

SAM has to have a modular type of built-up, in order to be able to make changes
or improvements to the program, without having to recompile the source code of
the entire program.

4.11.10 Portability

SAM needs to be operating system independent, in order to provide portability to
any computer system that meets up with the program requirements of SAM.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

43

Chapter 5: System model

5.1 Description

In this chapter the system model of SAM will be described. The first section (5.2)
will give an overview on how SAM operates. Section 5.3 will cover the functional
specification of SAM. The next 4 sections will describe the techniques used with
the creation of SAM.

5.2 System overview

The main goal of SAM is to give an accurate reflection on what situation the pilot
is in. To achieve this goal, a lot of testing is necessary. After some first prototypes it
was concluded to make a modular model. Using this way knowledge could easily be
implemented in the program, and due the modular model, code changes can be
easily integrated in the project.

5.3 Functional specification

5.3.1 In general

5.3.1.1 Introduction

The functional specification is part of the graduation project SAM for the
Technical University of Deft, based on the assignment of Maikel van der Roest and
Richard Harreman.

The project consists of the research into Situation Awareness, and the following
implementation of a prototype. This prototype must provide a base into further
research towards an Intelligent Cockpit Environment. This section of the thesis
forms the functional basis of SAM and covers the automation configuration and
the functional specification of the Situation Awareness Module.

5.3.1.2 Functions of SAM

The main task of SAM is that all application software runs stable, and can
communicate with one another fast and accurate. Application software covers:
SAM Data server, SAM Data modeler, SAM Data Client. A supplementary task is
maintenance of the software and knowledge.

The SAM Data server provides a quick and stable flow of simulation data for the
SAM Client. The Data server also provides the user with the possibility to buffer
and safe data, so if the connection with the client is lost, the data is not lost.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

44

The SAM Data Modeler gives the user the ability to load XML files which provide
the program with a context to work with. This context will be visualized on a
screen. The user has also the ability to make its own contexts in the modeler which
can be saved to an XML file.

The SAM Data Client is the main application of the SAM project. It provides the
main functionality. The client uses context models provided by the data modeler to
analyze simulation data provided by the data server. The client analyzes the
incoming data and provides the user with a conclusion and predicts what the
upcoming situations are.

5.3.1.3 System choice

The development of SAM takes place on a Windows NT and 2000 platform. This
choice was made by the project members based on the facilities of the Technical
University of Delft. Using JAVA technologies enables the program to run at
virtually any pc, providing that it has a JAVA Virtual Machine installed.

5.3.2 Automation configuration

5.3.2.1 Introduction

In order to reduce the workload of a pilot, it is necessary for the program to run
�on it�s own�. This means that once the button is pressed for the situation analysis,
the pilot only has to look on the screen and do nothing else. In order to achieve
this, it is vital for the program to be self-sufficient in data gathering and reasoning.

5.3.2.2 System overview

Situation Awareness Module

FlightGear

Pilot

Airplane

Environment

XML
Knowledgebase

Names

Constraints Time
Recursion

Actions Additional
Rules

Time
Windows

Si
tu

at
io

n

Figure 11 A global overview of SAM.

In the above shown picture there are basically three different sources. On the one
hand there is the Flight Gear Simulator and on the other there is the XML
knowledge base, which we will call the XML file from here on.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

45

To make the SAM program easy accessible and easy to maintain, we split it into
three parts. The figures below show a representation of the way the information is
processed in the separate parts.

Figure 12 Modules within SAM.

The Data Modeler Parses the XML File to a context which can be written down
and thereafter read by the Data Client. Once the XML File is parsed it can be
viewed by the user on a subscreen. This subscreen displays the various situations,
the links between the situations and the steps within each situation.
The variables that are needed from the Data Server can also be viewed on a
separate subscreen. This is very handy, because it is necessary to select them in the
Data Server.

ModelerXML File

Context
Diagram

Used Variables

Load/Save

Display Variables

Display Context Diagram

Parse XML File Context File

Figure 13 Flowchart of Data Modeler.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

46

The Data Server gathers the variables selected in a separate subscreen from the
Flight Gear Simulator and passes them on to the variable container in its memory.
From there the Data Client gets the stored variables at a set interval. The variable
container has been created to prevent data loss in the event of network collisions
and temporary network severs.

Data ServerFlight Gear
Variables

Variable Selector

Data Client
Data

Data Request Interval

Selected Variables

Stored
Variables

Data

Figure 14 Flowchart of Data Server.

The Data client has a direct connection to the Data Server. The context needed for
the situations has to be loaded from hard drive. The processed data can be viewed
on a type of blackboard, which is a representation of variables stored in memory.
The Data Client displays the current situation and the next possible situation.

Data ClientData Server
Data Context FileContext Data

Situations

Situation Data

Blackboard

Processed Data

Figure 15 Flowchart of Data Client.

5.3.2.3 Yourdon method

The �Yourdon method� is a technique that has evolved over the last 20 years.
Almost 200.000 people contributed to the method, making it very usable.
Nowadays the �Yourdon method� consists of two things: tools and techniques.
The �tools� are a variety of graphical diagrams, used to visualize and model the
requirements and architecture of the system. The most commonly known of these
diagrams is the Data Flow Diagram (DFD) as shown in figure 21.
Although the DFD is an excellent way to show what functions the software should
carry out, it says little or nothing about the relationships between data, and time-

Chapter 5: System model

Copyright © 2003, Delft University of Technology

47

dependant behavior. Therefore the latest version of the �Yourdon method� also
includes Entity Relationship Diagrams (ERD), State-Transition Diagrams(STD)
and Structure Charts(SC). All these diagrams make it easy for future developers to
further expand the system.
Although this modeling approach is quite old, and forms the basis for modern
approaches, like UML, it still suffices for our project. Because of the lack of object
orientated programming, and the basic simplicity of the model, the Yourdon
method fulfilled our needs. This results in the following approach:

Survey

Analysis

Design

Implementation

Quality
assurnance

Installation

System
requirements

Project planRestrictions

Specifications Essential
model

Procedure
description

Reports
and

manuals

Test cases

Accepted
system

Installed
system

Figure 16 System approach.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

48

5.3.3 Functional demands

5.3.3.1 Introduction

According to the Yourdon method of designing SAM has to meet up with some
functional and non-functional demands. The following demands are deducted of
the context diagram, found further on in this thesis.

5.3.3.2 Functional demands

SAM has to comply with the following demands. These demands limit themselves
to the functionality SAM must offer to the user:

• The user must be able to get a system advice
• The user must be able to ask for a system advice
• The user must be able to input knowledge
• The user must be able to input a context
• The system must be able to obtain data from Flight Gear
• Flight Gear must be able to deliver data to SAM

5.3.3.3 Non-functional demands

SAM has to comply with the following demands. These demands limit themselves
to the functionality the software must offer under certain circumstances:

• The host machine of SAM must be equipped with a JAVA virtual Machine
• The communication between SAM Data Client and SAM Data Server

needs to be with the least latency as possible
• The communication between SAM Data Server and the Flight Gear

simulator needs to be with the least latency as possible
• The user must have a system equipped with Flight Gear

5.3.4 Functional operation

5.3.4.1 Introduction

This section of the thesis will describe the functional operation of the program.
The Graphical User Interface (GUI) is described, as well as the users known to
SAM.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

49

5.3.4.2System Functions

The Data Server

The network connection between the server and the Simulator is established by use
of TELNET protocol, over TCP/IP. This means that the Data Server is making

requests that are translated to TELNET commands, these commands are sent
through the outcome flow and finally the Flight Gear Simulator will convert them
to internal commands.
The specified parameters are checked and the values are sent back to the server
through the outcome flow of the Simulator, the equivalent of the income flow of
the Data Server.

Figure 17 Data Server.

The Data Server uses TCP/IP to connect to the Flight Gear simulator by
connecting to port 23 (TELNET). Specifications on how the TELNET protocol
works can be found in RFC854 document: http://www.faqs.org/rfcs/rfc854.html
This Server can be started on any PC in a local area network since local area
networks usually provide fast enough connection speeds.

Several options can be set once the Server is started. First, the user has to click the
button named �Parameters� to get a list of parameters that are pre-programmed
into the Server.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

50

Next, the user has to select several parameters that are going to be needed. This is
done because if you want to use all parameters as a default, the telnet connection
with the Flight Gear Simulator will slow-down considerably as to a speed that will
update all parameters every 40 seconds. The fault for this lies in the Simulator
program itself. There are no limitations on the amount of data transferred between
the Data Server and Client.

After the above two steps the user has to give in the ip-address or the Domain
Name of the PC the simulator is running on. After that, the button �Connect� may
be clicked and the Server will connect to the simulator and retrieve data from the
simulator and handle the incoming connections.

Figure 18 Parameter selection in Data server.

The Data Client

The Data Client connects to the Data Server to get the values for the parameters
every few seconds or milliseconds. This depends on what great an interval was set
in the frequency box.

The Client needs to load a context file written on disk by the Data Modeler. This is
simply done by clicking the �Load Context� button. If a wrong context file was
given or when the file is corrupt, nothing will happen.

After that and after the connection with the Data Server is made, the Client will
run through all possible situations and will compare them internally with the
provided parameters as they are coming in. From that a possible situation is given
as to in what stage of the flight the plane is in. i.e.: The plane is taking off or is in
mid-flight.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

51

The communication between the Data Server and Client Server relies on a non-
standard protocol. The communication is done by a stable TCP/IP connection.
Both the Data Server and the Client Server have two kinds of data streams, namely
an incoming and an outgoing stream. In this case the communication is based on
package sending and receiving. So if the Data Server has some new information, it
builds a package and sends it to a connected client which will use the data from
there on. A package that is send (or received) contains a code that is a byte value
and the useful data.

Figure 19 Data Client.

The Data Modeler

The Data Modeler, as noted in a previous chapter, parses a XML file in order to
create some rules that will be written to hard drive as a file.

These rules or definitions if you will, are supposed to resemble as closely as
possible the reality. The main advantage of such a system is that there will have to
be made almost no modifications to the source code of the program.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

52

Figure 20 Data modeler.

For future advances it would be nice to make a Data Modeler which not only
parses a given XML file to rules, but make a XML file based on rules given in by
the user.

An addition that is already implemented in the Data Modeler is the creation of a
context diagram, which makes it easier for a user to understand the data that is
processed from the given XML file.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

53

Figure 21 Context Diagram within Data modeler.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

54

5.4 System analysis

5.4.1 Introduction

This section will show the various diagrams involved in the development of SAM.

5.4.2 Context diagram

Situation Awareness ModuleUser

Flight Gear

Flight Gear
Data Request Flight Gear Data

Context
Data

Advice

Knowledge
base

Advice
Request

Figure 22 Context diagram of SAM.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

55

5.4.3 Data flow diagrams

Context
Data

User

Flight Gear

Flight Gear Data

Advice

Check
System
Advice

Reason
Expert
System

Process System Data

Process System
Requests

Process XML
Data

System
Advice
Data

Validated
System Advice

Generated
Expert System

Rules

Expert
System

Data

Request System Advice

System Advice

Request
Context Variables

Knowledge
base JESS

Context

Knowledge
base Aircraft

Data

Knowledge
base

Regulations

XML
JESS

Context

XML JESS
Context Rules

XML
Aircraft
Data

XML
Flight Regulations

XML Aircraft
Data Rules

XML Regulations
Rules

Context
Variables

Flight Gear
Data Request

Knowledge
base

Advice
Request

Figure 23 SAM DFD layer 1.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

56

Knowledge
base Aircraft

Data

Process
System Data

Knowledge
base

Regulations

XML
JESS

Context

Knowledge
base JESS

Context

Request
Context Variables

Process
System
Context

Determine
Context

Variables

System
Rules

Context

System
Request
Context

Dissect XML
Data

XML Data
Request

XML
Data

Context
Variables

XML
Aircraft
Data

XML
Flight Regulations

Figure 24 SAM DFD layer 2 XML data.

User

Knowledge
base

Regulations

Context
Data

Knowledge
base Aircraft

Data

Process
System Data

Advice

Knowledge
base JESS

Context
Request System Advice

Process Context
Data

Process
Knowledge
base Data

Formulate
Advice

Gather
System DataRequest System Data

XML Aircraft
Data Rules

XML JESS
Context Rules

System Advice
XML Regulations

Rules

System Data

Knowledge
base

Advice
Request

Figure 25 SAM DFD layer 2 process system requests.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

57

Process

System Data

System
Advice
Data

Split data

SA Timeline
Data

SA Timeline Data

SA Flight
Data

SA Flight Data

Compare
System Data

Request
Compare

Data

Timeline Data

Flight Data

Validated
System Advice

Figure 26 SAM DFD layer 2 check system advice.

Process XML
Data

Reason
Expert
System

Flight Gear

System Advice

Process
System

Requests

Flight Gear Data

Check
System
Advice

Generated
Expert System

Rules

System
Advice
Data

Request
Context Variables

Request System Advice

Process
Context

Variables

Process
Flight Gear

Data

Generate
Rules

Processed
FG Data

Processed
Context Variables

Generate
System
Advice

Validated
System Advice

Context
Variables

Flight Gear
Data Request

Expert
System

Data

Figure 27 SAM DFD layer 2 process system data.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

58

5.4.4 Entity-relationship diagram

User connects

Flight Gear

System advice

feeds data

XML
Knowledge

base

SAM Data
Server

SAM Data
Modeler

SAM Data
Client

opens

Gives

Figure 28 ERD diagram of SAM.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

59

5.4.5 State transition diagrams

5.4.5.1 Data Modeler

Parse context

Parse context
Show parse context dialog``

�Exit� pressed

Waits for
choice

Wrong context loaded
Clear screen

Make new
context Load context

Show choices menu

Load context
Show load context dialog

Parse context
Show parse context dialog

�Cancel� pressed

Passive

Figure 29 The main Data Modeler STD.

Input context

Wait for choice

Wrong context inputted
Clear screen

Edit context

Show diagram

Save context

Context inputted
Show choice menu

Context validated
Show edit menu

Context validated
Show save menu

�Cancel pressed�
Show choice menu

Context accepted
Show save menu

�Edit� pressed
Show edit menu

�Show diagram� pressed
Show diagram menu

�Save� pressed
Show save menu

�Cancel� pressed
Show choice menu

�Show diagram� pressed
Show diagram menu

Figure 30 Make context STD.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

60

Waits for input

Waits for
choice

Show diagram

Save context

Context validated
Show edit menu

Context validated
Show save menu

�Cancel pressed�
Show choice menu

Context accepted
Show save menu

�Edit� pressed
Show edit menu

�Show diagram� pressed
Show diagram menu

�Save� pressed
Show save menu

�Cancel� pressed
Show choice menu �Show diagram� pressed

Show diagram menu

Edit context

Invalid context
Show inputbox

Input accepted
Show choice menu

Figure 31 Load context STD / Parse context STD.

5.4.5.2 Data Server

Passive

�Exit� pressed
Clear screen

Waits for input

Show input boxes

Select
parameters

�Close� pressed
Clear screen

�Parameters� pressed
Show parameters screen

Wait for
connection

input

Parameters selected
Show connection screen

System polls
data

�Disconnect and exit� pressed
Clear screen

�Disconnect and exit� pressed
Clear screen

Figure 32 Data Server STD.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

61

5.4.5.3 Data Client

Passive

Load Context

�load� context
Show load context dialog

�Disconnect� pressed

Waits for
choice

Wrong context loaded
Clear screen

Connect Blackboard

Show opening screen

Blackboard pressed
Draw blackboard screen

Connect pressed
Show system screen

�Disconnect�
pressed

Context loaded
Clear screen

Figure 33 Data Client STD.

Chapter 5: System model

Copyright © 2003, Delft University of Technology

62

(This page has been left blank intentionally)

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

63

Chapter 6: Artificial Intelligence

6.1 Description

In this chapter the artificial intelligence and the knowledge base will be described.
The first section (6.2) will be about the use and background of the knowledge base.
Section (6.3) will be about expert systems and the use of tools thereof.

6.2 Knowledge base

6.2.1 Description

Knowledge bases are used as a means to quickly and at an interpretable level show
what information is available for, in this instance, an airplane.
The knowledge about how to fly an F-16 has been gathered and stored in a
knowledge base in a preliminary research project by Quint Mouthaan. This inspired
us to adapt this knowledge to a Cessna type airplane and use it in our modular
program. The advantage of such a knowledge base is that one does not have to re-
program and re-code the entire program in order to adapt it to his or her specific
plane to fly in a flight simulator. One simply adapts the XML file in which the
knowledge is stored and run it through the parser in the Data Modeler.

The contents of the knowledge base will be used to determine which situation is
most likely to occur at a certain moment in time. The knowledge base has been
stored as an XML file, which is displayed in Appendix B.

6.2.2 Layout

The knowledge base is divided in a number of situations that we want to be able to
recognize, for example, taking off and landing the plane. These situations are
described in section 6.2.6. For every situation there is a set of rules that state the
probability of the situation dependant on the state of the aircraft or the events that
are happening.
An event can have three sources:

Pilot: Pilot events are actions the pilot is taking, for example a button that he
presses or the yoke that is adjusted.

Aircraft: Aircraft events are changes in the aircraft�s state. For example a change in
altitude or speed.

Environment: An event from the environment can be another aircraft that is on a
collision course towards the pilot�s plane or at a low altitude, a tree. For this source
it is necessary to monitor the plane�s outer range for a set distance.

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

64

Pilot and environment events are usually related to variables that have discrete
values whose changes will likely be important. Therefore these values should be
monitored constantly so that changes will be detected immediately. Aircraft events
are usually related to variables with continuous values that change often and
gradually. These continuous values should be sampled at regular intervals.

Next to the events there is another source of information that can be used to
determine the current situation. This source is the flight plan. The flight plan
contains information about the steering points the pilot will fly to during the flight,
just like a normal flight plan, but it also contains information about the situations
that will occur at those steering points. This enables the program to predict what
situation should occur at what time.

6.2.3 Rules

As stated before, rules are grouped according to the situation they relate to. Every
rule will have a value that states the probability of a situation when that particular
rule is fired. More on the subject of probability will be discussed in section 6.2.4.
For every situation there are several kinds of rules:

Action rules:
An action rule is a rule that states that a pilot has to or might perform a certain
action during that situation. An action from a pilot always has effect on a control or
instrument of the airplane. For example, moving the stick to the front will result in
the elevator position becoming negative. An action rule is therefore a rule that
states with how much probability a particular situation is taking place if at some
point in the situation a control or instrument is set to a specific value. Values are
handled in section 6.2.5.
An action rule also has a priority value. This priority value has nothing to do with
probabilities, but with the importance of an action for the situation it belongs to.
The priority values are values between 0 and 1. A priority value below 0.5 means
that the action might never be performed during the situation. A priority value of
0.5 or above means that the action is mandatory.
A priority value of 1 means that the action is vital for the successful completion of
the maneuver. If the action is mandatory but the control or instrument is never set
to the given value during the situation, the pilot might have forgotten to perform
the action and he might have to be informed about that.

Some situations can be split up into a number of phases which all have a certain set
of actions that have to be performed during that phase. The actions that have to be
performed in a phase are all time-dependant in the sense that they must be
performed in a certain chronological order. There are also time-independent
actions, which are actions that might be performed at any time during the situation.
Therefore the set of action rules is split up into two parts, one for every phase and
one for every time-independent part. If an action in the time-dependant part is
performed "out of turn", which means it is performed while not all actions that
should have been performed earlier have been performed yet, this might result in
two things:

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

65

The probability value of the rule might become smaller or the pilot might have to
be informed that he has forgotten to do something.

Visual check rules:
A visual check rule states that the pilot should check a certain instrument during
the situation. These rules can be used when a gaze tracking device is used to
observe the pilot during the flight. When the system detects that a certain situation
is occurring and the pilot forgets to check an instrument, the system could give the
pilot a hint that he should check the instrument.

Conditional rules:
The conditional rules can be used to determine if a situation has started or if a
situation has finished. These rules apply to the same controls or instruments as the
action rules. For each control or instrument there are at most two conditions. One
condition defining the value the control or instrument should have at the start of
the situation and one condition that states what value the control or instrument will
have at the end of the situation. The set of start- and end-conditions actually forms
one rule that states that if the given controls and instruments have the given values
the probability that the situation has started or ended has a certain value. These
probability values are predetermined. The end rule can only fire if at some time in
the past the system has detected the start of the situation.

Additional rules:
Additional rules are rules that do not fall under one of the above categories, e.g.
rules that specify maximum or minimum values a control or instrument can have
during a situation. They might also say something about actions that should not be
performed during a situation and how much the probability will decrease if such an
action is performed.

6.2.4 Probability

A probability calculator will combine all probabilities that are the result of the rules
that fire and calculate a new probability for the situation. Thus, depending on the
rules that fire, the probability the Cessna is in a certain situation will increase or
decrease.
The probabilities which are stored in the knowledge base are fuzzy values from the
following fuzzy set: VBP (Very Big Positive), BP (Big Positive), MP (Medium
Positive), SP (Small Positive), VSP (Very Small Positive). The probability calculator
will combine all the fuzzy values from the rules and produce one fuzzy value which
represents the probability of the situation it belongs to. Once the probability
calculators for every situation have produced a probability, an overall controller will
evaluate all those probabilities and determine if it can say with enough certainty
which situation is taking place.

How the fuzzy values will be implemented and which combination algorithm
should be used is not part of this document. For that information we refer to the
work done by Quint Mouthaan in his document called �Towards an intelligent cockpit
environment: a probabilistic approach to situation recognition in an F-16�.

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

66

6.2.5 Values

In the above sections we mentioned values. The values of the controls and
instruments in the action and conditional rules might be a range of values. This is
indicated with the mathematical symbols < (smaller than) and > (bigger than).
Furthermore it is possible that a control or instrument can have more than one
value or it might be that a control or instrument should not have one or more
values. This is indicated with the logical operators �|� (OR), �&� (AND) and �!�
(NOT).
The operator �|� is used for controls or instruments that may have more than one
value, �!� is used for controls or instruments that are not supposed to have a certain
value and �&� is used together with the �!� operator if there is more than one value
that a control or instrument is not supposed to have.

6.2.6 Situations

In this section all the situations that we will want to recognize are described. In
describing the situations a lot of terms and abbreviations are used that may be
unknown to most people.
The following situations will be described by the knowledge base:

• Startup
• Taxiing to runway
• Taking off
• Aborting take off
• Normal flight
• Landing
• Aborting landing
• Flame out landing
• Taxiing to ramp
• Shutting down

Startup

Startup is the phase in which the plane is made ready to taxi to the runway. All
systems are switched on, to make starting of the engine possible. The navigation
beacons and strobes are switched on, to make it visible for the environment that
the plane is in the startup state.

Taxiing to runway

During this phase the pilot drives the aircraft to the runway, which he will take off
from. This is considered a different situation than taxiing from the runway after the
pilot has landed, because the start and end states are switched. The state of the
airplane at the beginning of this phase should be equal to the state of the airplane
after starting engine Taxiing is assumed to be finished when the aircraft comes to a

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

67

halt. It is assumed the pilot will not halt the airplane between the ramp and the start
of the runway. This is a reasonable assumption because the pilot usually has only a
limited amount of time for takeoff. The flight controllers generally want to get the
airplanes in the air as fast as possible. Therefore it is also assumed that if the pilot
arrives at the runway and is cleared for takeoff by the tower he is not required to
hold short and can enter the runway immediately. However once on the runway he
will have to halt to make a final check of his systems. This is why taxiing can still be
considered to be finished when the aircraft comes to a halt.

Take off

This phase starts with an airspeed of zero, because the pilot will stop at the start of
the runway to make a final check of the systems. The program will have a very
good indication that the take off has started when the ground speed exceeds the
maximum taxi speed. If the plane reaches the minimum altitude for flight then the
takeoff phase can be considered to be ended once all actions in the action list have
been performed. Aborting a takeoff can only be done when taking off has already
started and before it has finished. Therefore the aborting takeoff situation is a
nested situation. When the system detects that the takeoff is being aborted it will
consider the taking off situation to be finished.

Normal flight

In the situation normal flight the pilot is flying towards a steering point. This is the
situation in which the pilot will find himself most of the time. Because this is the
standard situation we will assume that if no other situation is detected then there is
a big chance that the aircraft is in normal flight. This is implemented by setting the
start probability of the normal flight to VBP and the end probability to VSP,
although there is only a small amount of start and end conditions. Examples of the
conditions are that the altitude must be bigger than the minimum altitude. There
are also no real characteristic actions or visual checks the pilot should perform in
this situation. When the start probability of another situation becomes high
enough, the normal flight situation will be considered finished.

Landing

When the pilot gets below the minimum altitude, the landing phase starts. The start
is also marked with actions as extending the flaps, and lowering the speed. When
the pilot touches down, meaning when the altitude above ground level is zero, he
or she will have to brake. This marks that the situation is almost ended, as the
speed drops to taxi speed.

Aborting a landing

Aborting a landing occurs when for some reason the landing cannot continue. In
order to abort a landing the pilot usually increases throttle and pitches the nose of
the plane up. Since these two variables are the exact same for a flame out landing
one other variable is used, namely the altitude.

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

68

Flame out landing

As stated above, a flame out landing is almost the same as aborting a landing. The
flame out is used to get the nose up a little more just before touchdown. In order
to achieve this, the plane has to pick up a little more speed and the nose has to
have some help from the elevators. What the pilot does at this point, is throttle up
the engine and pulls on the yoke. This phase will end when the wheels have made
contact with the ground, i.e. when the altitude above ground level is zero.

Taxiing to ramp

When the pilot has finally landed, he will taxi from the runway. This phase starts
when flame out landing has ended and the ground speed is below the maximum
taxi speed. The situation ends when the ground speed is zero and parking brakes
have been set.

Shutting down

This is the phase in which the pilot shuts down all systems. The most important
information of this phase is the end state of the airplane, so that the system may be
able to check if the pilot has not forgotten to shut down a system.

6.3 Expert Systems

6.3.1 Description

Conventional programming languages, such as C and Java, are designed and
optimized for line-by-line reasoning. Humans, however, often solve complex
problems using (dependant on the person) very abstract approaches. Although
abstract information can be modeled in these languages, considerable programming
effort is required to transform the information to a format that�s usable and takes a
reasonable amount of time to run through.
Research in the area of artificial intelligence incorporated the development of
techniques that allow a higher level of abstraction while modeling information.
Tools have been developed that allow programmers to develop and maintain at an
easier level the abstract problems many customers or supervisors provide them
with. These tools are called expert systems.

6.3.2 Boolean logic

Boolean logic is the most commonly used logic used by programmers. Boolean
logic is also the oldest logic around in the programming scene, developed by an
English mathematician and computer pioneer, George Boole who lived from 1815
until 1864. Boolean logic is a very simplified means to determine the outcome of a
given problem, because it uses only two statements, i.e. a statement is either TRUE
or FALSE.
A way to integrate these values in a program is to make use of if-then statements
that check if a variable has reached a certain value (if it has become �TRUE�) and

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

69

then execute a certain rule provided by the programmer. Subsequently �if� rules can
be stretched by entering three different operators, namely AND, OR and NOT.
�AND� operators are used when two or more variables are considered to be correct
for a rule, �OR� operators are used when either of the two or more variables are
considered to be correct and �NOT� operators are used when a variable should not
have a certain value.

if($Flaps == 0 and $FuelFlow > 1500 and $Airspeed > 70) {
 print"\t\t\tFlight: Flying\n";
 }
if($Flaps == 0 or $FuelFlow > 1500) {
 print�\t\t\tFlight: Flying\n�;
 }
if($Flaps == 0 and !$FuelFlow > 1500) {
 print�\t\t\tFlight: Flying\n�;
 }

Figure 34 Different 'if' statements.

The first statement in the above figure shows that when the Flaps are in resting
position and the fuel flow is greater than 1500 and the airspeed is greater than 70
knots, the plane is considered to be in normal flight. The second statement shows
that when the flaps are in resting position or the fuel flow is greater than 1500, the
plane is considered to be in normal flight. The last statements shows that when the
flaps are in resting position and the fuel flow is not greater than 1500, the plane is
considered to be in normal flight.
The problem with this type of programming is that it�s time consuming, it slows
the program down considerably and it�s not very accurate. By the latter it is meant
that if there are two separate situations that are almost alike, such as �Taxiing from
runway� and �Taxiing to runway�, the program will have a hard time determining
what situation it is actually in. To counteract that the first prototype was built with
references to upcoming situations, but this was quickly dismissed, because of lock-
ups in situations. Sometimes the plane was in Normal flight, but the program still
thought it was Taking off. One solution was to look into the basics of Fuzzy logic.

6.3.3 Fuzzy logic

As an alternative to Boolean logic, where one variable is either true or false, Fuzzy
Logic was introduced by Lotfi Zadeh, a professor at the University of California at
Berkley, as a way of processing data by allowing partial values rather than crisp set
values. This approach was not applied to control systems until the 70's due to
insufficient small-computer capability. The reasoning behind this, was that normal
humans do not require precise information. This is illustrated in the next example.
If a computer is told a certain person is �young�, the computer cannot do anything
with that information, whereas a person regards �young� as an age of 1 to 21, or
even 30, depending on the person�s own age.

Another example is the Fuzzy Logic used in present cars. Due to environmental
laws, a car has to produce as little as possible pollution. In order to achieve this,
computers have been installed in all new cars as a means to regulate the exhaust
fumes of cars.

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

70

Computer
Accelerate

High Fuel
Rate

Low Fuel
Rate

Exhaust

Oxygen Level
Figure 35 Exhaust regulation with Fuzzy Logic in a car.

As can be seen in the above illustration, the computer get a signal that the driver
wants to accelerate. Now with the environmental laws the amount of CO2 should
be as low as possible and thus the O2 (Oxygen) as high as possible. This is done
through a sensor, called the Lambda-Sensor, which is situated in the exhaust pipe.
This sensor sends a signal to the computer, which will adjust the amount of fuel
injected into the engine in order to achieve a high level of oxygen in the exhaust
fumes.

Fu
el

 F
lo

w

High Fuel Rate

Low Fuel Rate

Time
Figure 36 Response of injection computer to oxygen sensor.

This example can be fitted onto any type of situation. If we were to apply this
model to an aircraft, you could picture the Fuel flow rate to the altitude of a plane
where the central line would be the optimum altitude, or given altitude by the flight
plan, and the curve the current altitude of the aircraft. If an auto-pilot were to be
switched on, the computer would try to get to the optimum altitude in the shortest
amount of time and with a minimum amount of discomfort.

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

71

6.3.4 JESS

The Java Expert System Shell (JESS for short) was developed by Ernest Friedman-
Hill at Sandia National Laboratories as part of an internal research project. The first
version of JESS was written in late 1995, when JAVA was very, very new.
JESS is a tool for building a type of intelligent software called Expert Systems. An
Expert System is a set of rules that can be repeatedly applied to a collection of facts
about the world. Rules that apply are fired, or executed. Jess uses a special algorithm
called Rete to match the rules to the facts. Rete makes Jess much faster than a
simple set of cascading if- then statements in a loop. Jess was originally conceived as
a JAVA clone of CLIPS, but nowadays has many features that differentiate it from
its parent.
As was probably clear already, JESS is written in JAVA. It is compatible with
CLIPS (See next section) and most JESS scripts are valid CLIPS scripts. JESS has
some extra functionality over CLIPS. One of these extra functions is that JESS
makes it possible to communicate with JAVA objects during execution of a JESS
program. JAVA is renowned for its slowness in comparison to C or C++
programs, so real-time applications might not seem as something you want written
in JAVA. This is where JESS steps in, because JESS takes over the reasoning part
of the awareness system, which of course it is designed for. Combined with the
XML parser, which is in a separate program and not in the Data Client, the real-
time analyses of data is possible.
As stated before, JESS has been around for quite a while and it is constantly
undergoing updates and fixes. We originally wanted to use version 6.0 first, but
since that time version 6.1p1 has been released. Unfortunately time was limited to
us and thus JESS was not implemented in the prototypes.

6.4 Temporal Reasoning

6.4.1 Introduction

As previously described in chapter 3, one of the main problems discovered in the
prototypes, was the accuracy of the analyzed situations. In normal flight conditions
the accuracy was quite good, but at the point of an emergency or unexpected
situation, the program fails to give an accurate advice. One of the solutions to this
problem is temporal reasoning. The operation of this system is described in the
following part of this thesis.

6.4.2 Problem setting

The main problem in analyzing a situation is the way an human react to situations,
and the way a computer program react. The main difference is, that a computer
program can only do what it is trained for, and does not know how to react in an
undocumented situation. There are numerous ways to circumvent this problem,
but the technologies available at this moment in time are limited. The best solution
to the problem would be a neural network. But as previously mentioned, the

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

72

technologies available at this point in time, are too limited. This results into the
following problem setting:

�How can a situation be accurately detected with technologies and knowledge currently available�

6.4.3 Philosophy

To come to a solution to the problem, we fist took a look on how a human react to
unexpected situations. Although this is a problem on it�s own, and certainly needs
some further studying, the basis of this can be extracted by common knowledge
and own experiences.

The first thing that came to light is the human ability to improvise, an ability a
computer program lacks. A human person always knows, or improvises with the
information available at the moment, how to react to an unexpected situation. This
ability provides a solution to the problem that has occurred. Because a computer
program lacks this ability it can only react to the situation in the way it is trained to
do that. This normally results in errors and solutions to the problem that is not
logical.

6.4.4 Solution

Taking the previously mentioned philosophy in consideration, we have thought of
the following solution. Humans think in a three, maybe even four dimensional way.
When a situation occurs he or she knows how to react, based on experience and
knowledge gained in life. This can be regarded as an alternate timeline running
parallel to the current timeline. When an alternate situation occurs which is not as
expected, the person will �enter� the second timeline and react to the situation. If
the problem is solved as expected, the person will go back to the normal timeline.
When this is not the case, the person will �enter� the so called third timeline, also
known as the emergency timeline.

Flight progression

Normal
timeline

Emergency
timeline

Enhanced
awareness

timelineProblem encountered

Problem isn�t handled

Emergency averted

Pr
io

rit
y

Figure 37 Different timelines displayed in a diagram.

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

73

When a situation occurs which involves the third timeline, a high level of stress can
be expected. The person will probably discard the pervious timelines, and will do
all in its power to return to a normal situation. This also characterizes the third
timeline. Looking as this fact in a more technical way, rather then a psychological
way, it distinct itself as a different timeline, as the way that the second timeline
distincts itself from the first.

Taking all of the above into consideration, as described above would be the use of
timelines. This enables the program to simulate a part of the creative thinking that
distinct it from its human counterpart. Implementing such a system into the
program could lead to an improvement of the accuracy. This system would
improve the accuracy in abnormal situations, and will also improve the accuracy of
normal situation, as timelines are used, and this result in a relation between
situations. It enables the program to predict the next possible situations, based on
what situations that have occurred in the past.

6.4.5 Functional Implementation

The implementation of this idea is done by an extension of the knowledge base.
The original knowledge base structure by Quint Mouthaan already had some room
for a following situation, but lacked the structure for possible following situations.

The Data Client itself will make distinction between the timelines. For now the
program will know three timelines:

• Normal timeline
• Enhanced awareness timeline
• Emergency timeline

The implementation in the knowledge base is done by adding a <time constraint>
tag within the situation tag. Within this tag the possible following situations are
listed, as well as the situation before the current. The listed situations also get a
probability value, according to the probability they will happen. These probabilities
have a direct connection to the timelines. The lesser the probability is of a
following situation, it will be in a higher timeline. Meaning that the highest
probabilities will be contained in the normal timeline, as the lowest will be in the
emergency timeline. As a future implementation, one can choose for to let the
program override the pilot, if a situation is detected which does not fit in the first
timeline.

Chapter 6: Artificial Intelligence

Copyright © 2003, Delft University of Technology

74

(This page has been left blank intentionally)

Chapter 7: Project results

Copyright © 2003, Delft University of Technology

75

Chapter 7: Project results

7.1 Description

This chapter will describe what has happened and what has been achieved during
the period that was set for this part of the ICE project. This chapter will discuss
what project results have been achieved and how they correspond to the project
goals, which were set in Chapter 1 and 2.

7.2 Literature study

To get ourselves familiar with the ICE project we first studied the journals and
reports that were available to us through the network of the TU Delft. After the
conclusion of the preliminary research we made extensive studies into the field of
expert systems, neural networks and JAVA.

7.3 Coginitive and system model

7.3.1 Cognitive model

As was described in the project goal, one of the main sub goals was the creation of
a cognitive model, which is able to do real-time assessment of situations, using a
rule-based system in combination with adaptive logic.

7.3.1.1 Data acquisition

The first stage of creating a cognitive model is the data acquisition. This is done by
the Data Server and the Data Modeler. The Data Server is responsible for the
throughput of data. It feeds all variables available for the reasoning process to the
Data Client.

The Data Modeler provides the user in a graphical way the ability to create their
own context, or load one in using the XML parser. Because of the way the data is
presented, it�s easy to understand the context of the data, and how it will be
interpreted by the system. Because of the use of the XML parser, it is also possible
to create own contexts with specific characteristics, which can be altered with the
Data Modeler by the user.

7.3.1.2 Rule based reasoning

Trough use of the Data Modeler the user provides the system with a rule based
context model. The rules inputted into the system are converted to rules
interpretable by the program. The program itself does not rely on any native code
to do the reasoning, so all the situations are assessed by the data provided from the
modeler. This also makes the system highly adaptable. Using this approach makes it

Chapter 7: Project results

Copyright © 2003, Delft University of Technology

76

possible for the user, to do the same analyzing process, for different types of
planes.

7.3.1.3 Adaptive Logic

The program provides the user with the means to use adaptive logic. The current
version of the SAM program only uses internal reasoning systems, but in future
releases it can be equipped with external expert systems.

7.3.2 System model

The three layered system model we chose, namely the Modeler, Server and Client
has been implemented as the model we described in Chapter 5.
The Data Server and Data Modeler work like we intended them to work. The Data
Modeler is implemented with hard-coded if-then statements, but is guided by the
context file the Data Modeler provides. The fuzzy logic expert system is not yet
implemented in the Data Client; this is intended to be done by another team as a
graduation thesis.

7.4 Artificial Intelligence techniques research

As stated in section 7.1 extensive studies have been made into different kinds of
Artificial Intelligence techniques and the tools one can use to implement them in
self-created applications. We also looked into the possibilities of Boolean logic,
which is used in the Data Client. The intend was to implement JESS as a Fuzzy
Logic Expert System, but as stated in section 7.3.2, this goal was not reached.

7.5 Demonstrator

The Data Server and Data Modeler can be considered as finished. The Data Client
however, still has several bugs in it.
This is not to say that the entire Data Client does not function, it is only limited to
a few working functions.
The functions of the Data Client that do work are listed below:

• Connect and maintain connection to the Data Server.
• Change frequency of data gathering.
• Draw conclusions based on manually inputted context run through

Boolean logic.
• Display the blackboard and its variables.

Chapter 7: Project results

Copyright © 2003, Delft University of Technology

77

7.6 Evaluation, tests and validation

During the implementation phase of the project, all software developed went
trough extensive testing and validation. As a result of these tests, we could
incorporate the results into future versions of the program, in order to avoid
recurring defects in the reasoning functions of the program. This approach to the
programming resulted into to a better understanding of how the program reacted
to problems given to it.

Chapter 7: Project results

Copyright © 2003, Delft University of Technology

78

(This page has been left blank intentionally)

Chapter 8: Evaluation

Copyright © 2003, Delft University of Technology

79

Chapter 8: Evaluation

8.1 Description

In this chapter we will make an evaluation on the work that has been done and
needs to be done in the future.

8.2 Prototypes

In the tradition of the HR&O we made a jump-start in the programming of our
very first prototype. This prototype was written in PERL and made use of the now
infamous if-then statements. The first thing we noticed was not the incorrectness
of situation recognition, but rather the slowness of the simulator to provide
variables over the network. This was not because of slow network connections, but
was totally due to simulator itself and the way it is built.

Figure 38 The first prototype running on a Linux operating system.

In order to circumvent these slow-downs, we decided to use a Data Server, which
could extract the variables and their values, store them into memory and let the
Data Server provide the values and variables to the prototype.

The next notice was the inability of the prototype to make dissensions between
Taxiing to runway and Taxiing from runway. In order to solve this, we introduced
�pointers� to the next possible situations, but this resulted in extensive coding and
that in turn made the program very slow. Also, on an execution level of the
program, if a situation had ended without a certain variable was passed on to the
Data Client, the situation would be reported perpetually and thus would the Client

Chapter 8: Evaluation

Copyright © 2003, Delft University of Technology

80

be of no further use. The thought of using an expert system came into mind, but
with the way the program was built, it meant making it ready for an expert system.
This is when the real problems started, because as it turned out, there were several
bugs in the program and the source code was poorly documented
The most of the time available to us went into figuring out what specific functions
were doing, restyling of the source code and bug tracing, which means that in the
end the expert system was never implemented.
We accomplished the task of restyling the source code and making it more readable
even tough the documentation provided with the source code was very poorly
arranged, if not non-existent. Also, some bugs were dissolved (mainly because of
the restyling), but to our frustration, some of the bugs were so deeply engraved in
the code, it turned out to be an undo-able task in the time that was given us.
One of those bugs loads the context into the Data Client as provided by the Data
Modeler�s XML parser in a wrong way, which results in the Data Client stalling
when it passes its first situation test.

8.3 Proof of Concept

Of course, everybody thinks his or her ideas are the best. What makes the
difference between a good idea and a good working concept is the way it is thought
out. If an idea is good, but the background information was already faulty or the
reasoning process the person used is shaky, the idea may very well never work.
Now, why do we think the idea is a good one? Basically, because we looked at
several points of angle to the problem. Ours was more of a �trial and error�
approach. As stated before we started out with a prototype that made use of a lot
of if-then statements, with which later on we realized that in order to make it work
this way, a tremendous amount of programming and testing would be needed.
Looking at the time we had this meant that at least a year would be needed in order
to come to a satisfying end.

It is therefore our belief that if-then statements are not the correct approach of this
problem. The logical next step is the use of �fuzzy� expert systems.
In the first stage of our project, the program was �dumb�, but with the use of
expert systems, the program gets a certain level of intelligence.

The introduction of a XML file, is solely done in order to achieve a level
portability. This portability is not only intended on a operating system-basis, but
also on an aircraft-basis. An aircraft�s systems and specifications, as well as air
traffic regulations can be stored in a XML file, which will then be parsed by, in this
case, the Data Modeler. It is our belief that this is the simplest solution for the
portability issue.

Different timelines are a way to keep track of special situations, such as collisions
and emergency landings. Basically these timelines come in effect when an out-of-
the-ordinary event is imminent. For instance, when an aircraft is on a collision
course with another aircraft, the normal timeline is set aside; the program gives a
warning and gives possible solutions in order to evade the upcoming aircraft.

Chapter 8: Evaluation

Copyright © 2003, Delft University of Technology

81

8.4 Recommendations

The expert system�s intelligence may be enough to reach a satisfactory level of
situation awareness for Flight Simulators, but in �real life� it is still unacceptable.
To increase the level of intelligence, it is almost inevitable to look at the use of
neural networks. Neural networks work with the same concept as the human brain.
The human brain �trains� itself in order to come up with solutions to everyday and
specific problems. Neural networks are also trained, but at this point in time, the
training process of neural networks has not yet been optimized. This means that in
order to get a self-sufficient and accurate neural network implementation, a lot of
training is required.
The way the training is done, is totally up to the people continuing this project, but
we would like to suggest those people make use of a �real-life� pilot; this to come
to an as accurately as possible model. It is all fine and well to let a person of the
project fly an aircraft in a simulator, but it is most certain that that person will
�neglect� to fulfill some of the steps in a flight plan that are important in real-life.

Neural networks alone are not the total answer to the problem of situation
awareness in an aircraft. Humans always have an alternate situation in their minds.
We call this the �just in case� state. When a pilot is flying, he or she is constantly
aware that something out of the ordinary could happen. A computer system simply
does not have that ability unless it is specifically implemented in its programming.
Therefore, to make an as accurate as possible situation awareness program, we
recommend the implementation of the three timelines. Maybe this could be a
separate project?

Chapter 8: Evaluation

Copyright © 2003, Delft University of Technology

82

(This page has been left blank intentionally)

Appendix A

Copyright © 2003, Delft University of Technology

83

Appendix A: The knowledge base in XML

A.1 Description

As said before, the knowledge base will be stored in a XML file. XML is a tag-
based language for structured documents or data. It is not a way to represent data
like HTML, although it could be used that way. XML is described on the official
XML website of the World Wide Web Consortium [1] in ten points:

1. XML is for structuring data.

2. XML looks a bit like HTML.

3. XML is text, but is not meant to be read.

4. XML is verbose by design.

5. XML is a family of technologies. XML has been extended by a lot of people with
all kinds of modules, which makes XML very powerful.

6. XML is new, but not that new.

7. XML leads HTML to XHTML.

8. XML is modular.

9. XML is the basis for RDF (Resource Description Framework) and the semantic
web. RDF is an XML text format that supports resource description and metadata
applications.

10. XML is license-free, platform-independent and well-supported.

After all data that should go into the knowledge base had been selected it had to be
put into a form that could be used by a program to reason with the knowledge.
We considered languages like CLIPS and JESS, but eventually chose for XML
because of the following reasons:

� XML is a widely accepted standard.
� XML is easier to read than a list of rules.
� XML is very well supported.
� If the knowledge base is written in XML it can easily be extended.
� With XML it is possible to define a DTD (Data Type Definition) or a schema
that defines the structure the XML file should have so that future knowledge bases
for other aircrafts will have the same generic form.
� XML data can easily be translated to another desired format like CLISP or JESS.
� It is easy to write a program to translate the XML data to if-then rules. This way
we will be able to generate a lot of rules from just a few lines of XML code.

Appendix A

Copyright © 2003, Delft University of Technology

84

The structure of the XML file will have to be very well defined in order to be able
to describe flying with other aircrafts in the same way as we have done for the
Cessna. The ideal situation would be that one program could be written that
detects the current situation in a flight and that that program can be used for
different aircrafts if a different XML file is used as the knowledge base. We have
tried to achieve this by specifying the structure the XML file should have in an
XML schema.

A.2 The schema for a flightplan

As explained in section A.1, a XML schema has been created for defining a flight
plan. This flight plan can then be used to help determine the current situation in a
flight. The flight plan schema has been made independent of the aircraft with
which the flight is flown, just like the XML flight schema. A XML file of a flight
plan will have the following structure:

� flightplan

� steerpoint
� heading
� altitude
� TOS (Time Over Steerpoint)
� action

� steerpoint
.
.

The information that is stored about a steer point is the heading that should be
flown towards the steer point, the altitude at which the pilot should fly over the
steer point and the time at which the pilot should reach the steer point (TOS). This
is all standard information that is also present in real flight plans, however what can
also be added in this flight plan is the actions a pilot will perform at the steer point.

If there are more that one actions to be performed at a steer point then the actions
specified at the steer points should be in chronological order, so the first action in
the XML file should be performed first, then the second and so on.

A.3 The XML flight scheme

There are several ways in which we can define the structure to which the XML files
for different aircrafts must conform. We can use either a DTD or an XML schema.
The DTD is older than the XML schemas and therefore has less functionality and
is less flexible. On the other hand, DTD is much easier to understand and
implement. Although we could use the DTD because the form in which we will
store the data in the knowledge base is not too complex, it will make the knowledge
base much more flexible and easier to expand if an XML schema is used to define
the structure. Therefore we have chosen to use an XML schema. The complete
XML schema is given in appendix B.

Appendix A

Copyright © 2003, Delft University of Technology

85

A.3.1 XML specific considerations

When creating a XML file, it is often not clear when to use an element to denote
information and when to use an attribute. For example the following pieces of
XML all contain the same information:

<tag name="test">
<child name="child1">10</child>
<child name="child2">1</child>

</tag>

<test>

<child name="child1" value="10" />
<child name="child2" value="1" />

</test>

<test>

<child1>10</child1>
<child2>1</child2>

</test>
Figure A.1 A XML code example showing the same function.

In the first example tag and child are the elements and name and value are
attributes. In the second example the tag element has been replaced by a test
element. These two elements contain the same information. Finally in the third
example the child element has been split into two different child elements.
There are no clearly defined rules that say when to use an attribute and when to use
an element; it often depends on the kind of information and the intention of the
author of the XML file. Our main consideration in deciding whether to use element
or attributes is the generality of our XML schema. To make our XML schema
usable for other aircrafts our tags can not be too specific and we will have to put a
lot of information in the attributes.

A.3.2 The hierarchy

The hierarchical structure of the XML file as it is defined in the XML schema is the
following:

� flight

� situation
� actions

� phase
� action

.

.

.

.
� visual checks

� instrument
.
.

� constraints

Appendix A

Copyright © 2003, Delft University of Technology

86

� constraint
.
.

� time constraints
� time constraint
.
.

� situation
.
.

Every element in this hierarchy will be a tag that can be put in the XML file. The
tags all have some metadata and a certain meaning.

flight

The flight tag is the root tag of the XML document. It contains the name of the
aircraft for which the knowledge base has been created.

situation

For every situation there is a separate tag with the name of the situation in it. It also
has an attribute that contains the time window of the situation.

actions

This tag is the parent tag of the set of action rules for the situation.

phase

This tag is the parent of all actions that are part of a phase in the situation. It has an
attribute containing the name of the phase. The actions that are the children of this
phase tag should usually be performed in the order in which they occur in the XML
file, so the first action of the first phase should be performed first, then the second
action of the first phase, etc., until all actions of the first phase have been
performed after which the actions of the second phase should be performed and so
on. The exceptions are action tags that are children of the phase tag with the name
�time independent�. These actions may occur at any time during the situation in
random order.

action

This tag defines an action rule for the situation. It contains the name of the control
or instrument, the priority value and the fuzzy probability value as attributes. The
value of the element is the value the control or instrument will get when the action
is performed.

Appendix A

Copyright © 2003, Delft University of Technology

87

visual checks

This tag is the parent tag for all the instruments that the pilot should visually check
during the situation.

instrument

This tag is a tag for an instrument that the pilot should check during the situation.
For now this tag only contains the name of the instrument, but in the future this
might be extended, in order to contain information for a gaze.

constraints

The constraints tag is the parent tag for all start- and end-constraints on controls
and instruments for a situation. It has two attributes with fuzzy probability values.
These are the probability values for the start and end rules.

constraint

This tag contains information about the value a control or instrument will have at
the start and/or end of the situation. It contains a name attribute with the name of
the control or instrument, a start attribute with the value the control or instrument
should have at the start of the situation and an end attribute with the value the
control or instrument should have at the end of the situation.

time constraints

The time constraints tag is the parent tag for all possible start- and end-constraints
on controls and instruments for a situation. It has two attributes with fuzzy
probability values. These are the probability values for the alternate situations.

time constraint

This tag contains information about the value a next situation will have at the start
and/or end of the situation. It contains a name attribute with the name of the
situation and an attribute with the possibility value the situation should have at the
end of the situation containing the chances that that would be the following
situation.

A.3.3 The values

A lot of the values that will be stored in the knowledge base represent positions of
switches and buttons in the cockpit. The easiest way to represent these values for a
computer program is with numbers (e.g. the ON position will get the value 1 and
the OFF position will get the value 0). These numbers are not easy to interpret for
human readers however and since we want the XML file to be readable, such
values will be represented by variables. In a DTD it is possible to define variables
the can be a reference for the XML file. The ON and OFF positions could for
example be defined as:

Appendix A

Copyright © 2003, Delft University of Technology

88

<!ENTITY ON "1">
<!ENTITY OFF "0">

Figure A.2 XML values described.

They could then be referenced in the XML file by putting the name of the variable
between a �&� and a �;� (e.g. &ON;). When a parser reads the XML file all
variables will be replaced by their values. The variables will be defined in a separate
file so that they can easily be changed. This file will then be specified in the XML
file as the DTD for the XML file. The DTD is displayed in Appendix D.

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

89

Appendix B: The knowledge base described in tables

B.1 Prestartup

The Actions

Name Value Priority Probability

Prestartup
Parking brakes ON 1 Best Probability
Throttle IDLE 1 Best Probability
Ignition switch OFF 1 Best Probability
Avionics
power switch

OFF 1 Best Probability

Master switch ON 1 Best Probability
Pitot heat ON 1 Best Probability
Avionics
master switch

OFF 1 Best Probability

Static pressure
alternate
source valve

OFF 1 Best Probability

Fuel selector
valve

BOTH 1 Best Probability

Flaps FULL 1 Best Probability
Pitot heat OFF 1 Best Probability
Master switch OFF 1 Best Probability
Fuel shutoff
valve

ON 1 Best Probability

Taxi and
landing lights

OFF 1 Best Probability

Beacon OFF 1 Best Probability
Strobes OFF 1 Best Probability
Navigation
lights

OFF 1 Best Probability

Trim SET 1 Best Probability

The visual checks

Instrument

Fuel Quantity Indicators
Annunicator panel

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

90

The conditions

Name Start End

Parking brakes ON
Ignition switch OFF
Pitot heat Checked
Navigation light Checked
Beacon Checked
Strobes Checked
Taxi & landing lights Checked
Avionic master switch ON
Fuel selector OFF BOTH
Fuel shutoff valve ON
Master switch OFF
Avionics power
switch

 ON

Flaps RETRACT FULL
Elevator trim 0
Rudder trim 0
Ground speed 0 0
Altitude 0 0

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

91

B.2 Startup

The Actions

Name Value Priority Probability

Startup
Parking brakes ON 1 Best Probability
Brakes ON 1 Best Probability
Avionics
power switch

OFF 1 Best Probability

Avionics
master switch

OFF 1 Best Probability

Circuit barkers In 1 Best Probability
Fuel selector
valve

BOTH 1 Best Probability

Fuel shutoff
valve

ON 1 Best Probability

The visual checks

Instrument

Circuit breakers
Brakes
Autopilot

The conditions

Name Start End

Parking brakes ON ON
Brakes OFF ON
Circuit breakers OFF ON
Autopilot OFF
Avionics power
switch

OFF OFF

Fuel selector valve BOTH BOTH
Fuel shutoff valve ON ON
Elevator trim 0 0
Rudder trim 0 0
Ground speed 0 0
Altitude 0 0

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

92

B.3 Starting engine

The Actions

Name Value Priority Probability

Starting Engine
Fuel shutoff
valve

OFF 1 Best Probability

Throttle IDLE 1 Best Probability
Mixture LEAN 1 Best Probability
Master switch ON 1 Best Probability
Auxiliary fuel
pump

ON 1 Best Probability

Ignition switch Start 1 Best Probability
Ignition switch OFF 1 Best Probability
Mixture RICH 1 Best Probability
Auxiliary fuel
pump

OFF 1 Best Probability

Navigation
lights

ON 1 Best Probability

Beacon ON 1 Best Probability
Radios ON 1 Best Probability
Flaps RETRACT 1 Best Probability

The visual checks

Instrument

Oil pressure
Engine instruments
Radios
Avionics power

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

93

The conditions

Name Start End

Parking brakes ON ON
Brakes OFF ON
Avionics master
switch

OFF OFF

Fuel selector BOTH BOTH
Fuel shutoff valve ON OFF
Avionics power
switch

OFF OFF

Beacon OFF ON
Strobes OFF ON
Navigation lights OFF ON
Elevator trim 0 0
Rudder trim 0 0
Ground speed 0 0
Altitude 0 0

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

94

B.4 Taxiing to runway

The Actions

Name Value Priority Probability

Taxing to runway
Throttle !0 1 Best Probability
Parking brake OFF 1 Best Probability
Mixture RICH 1 Best Probability
Flaps RETRACT 1 Best Probability
Speed < 20 KIAS 1 Best Probability

The visual checks

Instrument

Brakes
Directional gyro
Turn indicator
Artificial horizon

The conditions

Name Start End

Speed brakes >0
Ground speed 0 <20
Throttle IDLE !IDLE

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

95

B.5 Before takeof

The Actions

Name Value Priority Probability

Before takeoff
Parking brake SET 1 Best Probability
Mixture RICH 1 Best Probability
Fuel selector
valve

BOTH 1 Best Probability

Elevator trim SET 1 Best Probability
Throttle 1800 RPM 1 Best Probability
Throttle < 1000 RPM 1 Best Probability
Strobe lights ON 1 Best Probability
Radios SET 1 Best Probability
Autopilot OFF 1 Best Probability
Flaps SET 0 � 10 1 Best Probability
Brakes OFF 1 Best Probability

The visual checks

Instrument

Fuel quantity
Magnetos
Suction Gauge
Engine instruments
Caution panel
Fuel flow
Wheel brakes

The conditions

Name Start End

Parking brake ON OFF
Brakes ON OFF
Throttle IDLE <1000 RPM
Flaps 0 SET 0-10
Speed 0 0
Altitude 0 0

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

96

B.6 Takeoff

The Actions

Name Value Priority Probability

takeoff
Flaps SET 0-10 1 Best Probability
Throttle FULL 1 Best Probability
Mixture RICH 1 Best Probability
V1 decision Speed > 55 1 Best Probability
Elevator 0-10 1 Best Probability
V2 Rotate Speed > 65 1 Best Probability

The visual checks

Instrument

Airspeed

The conditions

Name Start End

Airspeed 0 >70
Throttle IDLE FULL
Altitude 0 >300
Pitch 0 >0
Climbing rate 0 >0

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

97

B.7 Enroute climb

The Actions

Name Value Priority Probability

Climb out
Throttle FULL 1 Best Probability
Mixture RICH 1 Best Probability
Mixture LEAN 1 Best Probability

The visual checks

Instrument

AirSpeed
Climbrate

The conditions

Name Start End

Throttle FULL FULL
Mixture RICH LEAN
Climbrate >0 >0
Airspeed >70 <85
Altitude >300 >3000

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

98

B.8 Cruise

The Actions

Name Value Priority Probability

Cruising
Throttle 2000/2400

RPM
1 Best Probability

Elevator 0 1 Best Probability
Elevator trim SET 1 Best Probability
Mixture LEAN 1 Best Probability

The visual checks

Instrument

Engine instruments
Flight instruments

The conditions

Name Start End

Airspeed >85 !>150

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

99

B.9 Descend

The Actions

Name Value Priority Probability

Descend
Throttle <2000 RPM 1 Best Probability
Mixture RICH 1 Best Probability
Elevator <0 1 Best Probability
Fuel selector BOTH 1 Best Probability

The visual checks

Instrument

Climbrate

The conditions

Name Start End

Mixture LEAN RICH
Pitch 0 <0
Climbing rate 0 <0

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

100

B.10 Before landing

The Actions

Name Value Priority Probability

Before landing
Fuel selector BOTH 1 Best Probability
Mixture RICH 1 Best Probability
Landing lights ON 1 Best Probability

The visual checks

Instrument

Engine instruments
Flight instruments

The conditions

Name Start End

Fuel selector LEFT/RIGHT BOTH
Landing lights OFF ON

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

101

B.11 Landing

The Actions

Name Value Priority Probability

Landing
Airspeed 110 1 Best Probability
Flaps SET 0-10 1 Best Probability
Airspeed 85 1 Best Probability
Flaps SET 10-30 1 Best Probability
Airspeed 60-70 1 Best Probability
Flaps FULL 1 Best Probability
Brakes ON 1 Best probability

The visual checks

Instrument

AirSpeed

The conditions

Name Start End

Brakes OFF ON
Airspeed >110 < 20 KIAS
Flaps 0 FULL

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

102

B.12 Taxiing to ramp

The Actions

Name Value Priority Probability

Taxiing to ramp
Throttle < 1500 RPM 1 Best Probability
Mixture RICH 1 Best Probability
Landing lights OFF 1 Best Probability
Flaps RETRACT 1 Best Probability
Speed < 20 KIAS 1 Best Probability

The visual checks

Instrument

Engine instruments

The conditions

Name Start End

Throttle IDLE !IDLE
Mixture RICH RICH
Landing lights ON OFF
Flaps FULL RETRACT
Speed >0 KIAS <20 KIAS

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

103

B.13 Shutdown

The Actions

Name Value Priority Probability

Taxing to ramp
Parking brake SET 1 Best Probability
Mixture CUT OFF 1 Best Probability
Avionics
switch

OFF 1 Best Probability

Ignition
switch

OFF 1 Best Probability

Master switch OFF 1 Best Probability
Fuel selector
valve

LEFT/RIGHT 1 Best Probability

The visual checks

Instrument

Engine instruments
Flight instruments

The conditions

Name Start End

Parking brake OFF SET
Mixture RICH CUT OFF
Avionics switch ON OFF
Ignition switch ON OFF
Master switch ON OFF
Fuel selector valve BOTH LEFT/RIGHT

Appendix B: The knowledge base described in tables

Copyright © 2003, Delft University of Technology

104

(This page has been left blank intentionally)

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

105

Appendix C: The XML files

Flightplan.xsd

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="flightplan"
 targetNamespace="flightplan"
 xml:lang="en">

<xsd:annotation>
 <xsd:documentation>
 This is a schema for a flightplan.
 </xsd:documentation>
</xsd:annotation>

<xsd:annotation>
 <xsd:documentation>
 The root tag containing all steerpoint tags.
 </xsd:documentation>
</xsd:annotation>

<xsd:element name="flightplan">
 <xsd:sequence>
 <xsd:element ref="steerpoint" maxOccurs="unbounded" />
 </xsd:sequence>
</xsd:element>

<xsd:annotation>
 <xsd:documentation>
 The steerpoint tag contains information about the steerpoint,
 like heading to fly to the steerpoint, the altitude at which
 the pilot should fly over the steerpoint and the TOS (Time
 Over Steerpoint) which is the time at which the pilot should
 be over the steerpoint. It also contains two attributes, one
 that says what type of steerpoint it is and one that contains
 the number of the steerpoint.
 </xsd:documentation>
</xsd:annotation>

<xsd:element name="steerpoint">
 <xsd:sequence>
 <xsd:element name="heading" type="xsd:integer"/>
 <xsd:element name="altitude" type="xsd:integer"/>
 <xsd:element name="TOS">
 <xsd:restriction base="time">
 <xsd:pattern value="hh:mm:ss"/>
 </xsd:restriction>
 </xsd:element>
 <xsd:element name="action" minOccurs="0" maxOccurs="unbounded"
type="xsd:string"/>
 </xsd:sequence>

<xsd:attribute name="type" type="steerpointType"/>
 <xsd:attribute name="number" type="xsd:integer"/>
</xsd:element>

<xsd:annotation>
 <xsd:documentation>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

106

 A steerpoint can be one of the following types:
 - STPT: This is a normal steerpoint.
 </xsd:documentation>
</xsd:annotation>

<xsd:simpleType name="steerpointType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="STPT"/>
 </xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

107

Flightplan.xml

<?xml version="1.0"?>

<!-- This is an example of a flight plan for a Cessna 172-R.
 This flight plan is NOT based on a real flight plan! -->

<flightplan xmlns="flightplan">

 <!-- Departure airfield -->
 <steerpoint type="STPT" number="1">
 <heading>120</heading>
 <altitude>100</altitude>
 <TOS>13:10:00</TOS>
 <action>Pre Startup</action>
 <action>Startup</action>
 <action>Start engine</action>
 <action>Taxiing to runway</action>
 <action>Before takeoff</action>
 <action>Taking off</action>
 <action>Enroute climb</action>
 </steerpoint>
 <!-- Navigational steerpoint -->
 <steerpoint type="STPT" number="2">
 <heading>160</heading>
 <altitude>5000</altitude>
 <TOS>13:34:30</TOS>
 <action>Cruise</action>
 </steerpoint>
 <!-- Navigational steerpoint -->
 <steerpoint type="STPT" number="4">

 <heading>260</heading>
 <altitude>5000</altitude>
 <TOS>14:28:00</TOS>
 <action>Cruise</action>
 </steerpoint>
 <!-- Navigational steerpoint -->
 <steerpoint type="STPT" number="7">
 <heading>270</heading>
 <altitude>5000</altitude>
 <TOS>14:45:00</TOS>
 <action>Cruise</action>
 </steerpoint>
 <!-- Destination airfield -->
 <steerpoint type="STPT" number="8">
 <heading>135</heading>
 <altitude>50</altitude>
 <TOS>15:00:00</TOS>
 <action>Descent</action>
 <action>Before landing</action>
 <action>Landing</action>
 <action>Taxiing to ramp</action>
 <action>Securing Airplane</action>
 </steerpoint>
</flightplan>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

108

KB_Cessna.xsd

 <xsd:documentation>
 A schema for an XML file that describes a knowledge base for flying
 with a Cessna 172-R. The XML file will have to conform to the following
 hierarchy:
 - flight
 - situation
 - actions
 - phase
 - action
 .
 .
 .
 .
 - visual checks
 - instrument
 .
 .
 - constraints
 - constraint
 .
 .
 - situation
 .
 .

 </xsd:documentation>
</xsd:annotation>
<xsd:annotation>
 <xsd:documentation>
 The flight tag that contains an attribute with the name of the
 airplane that is described by the knowledge base and has situation
 tags as children.
 </xsd:documentation>
</xsd:annotation>
<xsd:element name="flight">
 <xsd:sequence>
 <xsd:element ref="situation" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="airplane" type="xsd:string" use="required" />
</xsd:element>

<xsd:annotation>
 <xsd:documentation>
 The situation tag with an attribute that contains the name of the
 situation and child elements containing the list of time dependent
 and time independent actions, the list of visual checks and the
 list of constraints.
 </xsd:documentation>
</xsd:annotation>
<xsd:element name="situation">
 <xsd:sequence>
 <xsd:element ref="constraints" minOccurs="0" maxOccurs="2"/>
 <xsd:element ref="actions" minOccurs="0" maxOccurs="2"/>
 <xsd:element ref="visual checks" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:attribute name="timewindow" type="xsd:integer" use="required" />

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

109

</xsd:element>

<xsd:annotation>
 <xsd:documentation>
 The actions tag is the parent of a number of phase tags.
 The actions in the phases can be time dependent actions
 (which means that they have to be performed in the order
 in which they occur in the table) or time independent actions
 (they may be performed in any order). Time independent actions
 are grouped in a phase called "time independent".
 </xsd:documentation>
</xsd:annotation>
<xsd:element name="actions">
 <xsd:sequence>
 <xsd:element ref="phase" maxOccurs="unbounded" />
 </xsd:sequence>
</xsd:element>

<xsd:annotation>
 <xsd:documentation>
 The phase tag is the parent of a number of action tags.
 </xsd:documentation>
</xsd:annotation>

<xsd:element name="phase">
 <xsd:sequence>
 <xsd:element ref="action" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"/>
</xsd:element>

<xsd:annotation>
 <xsd:documentation>
 The action tag does not have any child tags, but does have three
 attributes. One containing the name of the control or instrument
 that action has an effect on. Another containing the priority
 value of the action. This value is a value between 0 and 1.
 And finally an attribute containing the fuzzy probability value
 of the action.
 </xsd:documentation>

</xsd:annotation>
<xsd:element name="action" type="xsd:string">
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:attribute name="priority" type="priorityValue" use="required" />
 <xsd:attribute name="probability" type="fuzzyValue" use="required" />
</xsd:element>

<xsd:annotation>
 <xsd:documentation>
 The PriorityValue type is a float between 0 and 1.
 </xsd:documentation>
</xsd:annotation>
<xsd:simpleType name="priorityValue">
 <xsd:restriction base="xsd:float">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="1"/>
 </xsd:restriction>
</xsd:simpleType>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

110

<xsd:annotation>
 <xsd:documentation>
The FuzzyValue must be one of the following values:
VBP, BP, MP, SP, VSP, VSN, SN, MN, BN, VBN.
 </xsd:documentation>
</xsd:annotation>

<xsd:simpleType name="fuzzyValue">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="VBP"/>
 <xsd:enumeration value="BP"/>
 <xsd:enumeration value="MP"/>
 <xsd:enumeration value="SP"/>
 <xsd:enumeration value="VSP"/>
 <xsd:enumeration value="VSN"/>
 <xsd:enumeration value="SN"/>
 <xsd:enumeration value="MN"/>
 <xsd:enumeration value="BN"/>
 <xsd:enumeration value="VBN"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:annotation>
 <xsd:documentation>
 The visualChecks tag is the root tag for all instrument tags.
 </xsd:documentation>
</xsd:annotation>

<xsd:element name="visualChecks">
 <xsd:sequence>
 <xsd:element ref="instrument" maxOccurs="unbounded" />
 </xsd:sequence>

</xsd:element>

<xsd:annotation>
 <xsd:documentation>
 The instrument tag is a tag describing an instrument that the
 pilot should check during a situation. For now it only has one
 attribute containing the name of the instrument.
 </xsd:documentation>
</xsd:annotation>
<xsd:element name="instrument">
 <xsd:attribute name="name" type="xsd:string" use="required" />
</xsd:element>

<xsd:annotation>
 <xsd:documentation>
 The constraints tag is the parent tag for a set of constraint tags.
 It contains two attributes, the first contains the start
 probability, the second contains the end probability value.
 </xsd:documentation>
</xsd:annotation>

<xsd:element name="constraints">
 <xsd:sequence>
 <xsd:element ref="constraint" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="endProbability" type="fuzzyValue" use="required"/>
 <xsd:attribute name="startProbability" type="fuzzyValue" use="required"/>
</xsd:element>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

111

<xsd:annotation>
 <xsd:documentation>
 The constraint tag sets a condition on the value of a control or
 instrument for the start and/or the end of the situation. It
 contains one attribute with the name of the control or instrument
 and two optional attributes for the start and end value of the
 control or instrument.
 </xsd:documentation>
</xsd:annotation>
<xsd:element name="constraint" type="xsd:string">
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:attribute name="start" type="xsd:string"/>
 <xsd:attribute name="end" type="xsd:string"/>
</xsd:element>

</xsd:schema>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

112

Variables.dtd

<?xml version="1.0"?>

<!-- Generic variables, used for multiple controls and instruments -->
<!ENTITY OFF "OFF">
<!ENTITY ON "ON">
<!ENTITY CLOSED "CLOSED">
<!ENTITY OPEN "OPEN">
<!ENTITY CHECKED "CHECKED">

<!-- Throttle variables -->
<!ENTITY IDLE "IDLE">
<!ENTITY FULL "FULL">

<!-- Flaps variables -->
<!ENTITY RETRACT "RETRACT">
<!ENTITY FULL "FULL">
<!ENTITY SET_TAKEOFF "SET_TAKEOFF">
<!ENTITY FLAPS_FINAL "FLAPS_FINAL">
<!ENTITY FLAPS_LANDING "FLAPS_LANDING">

<!-- Engine variables -->
<!ENTITY LEFT "LEFT">
<!ENTITY RIGHT "RIGHT">
<!ENTITY BOTH "BOTH">
<!ENTITY START "START">
<!ENTITY RICH "RICH">
<!ENTITY LEAN "LEAN">
<!ENTITY CUT_OFF "CUT_OFF">

<!-- Airplane variables -->
<!ENTITY MAXTAXISPEED "MAXTAXISPEED">
<!ENTITY MIN_ALT "MIN_ALT">
<!ENTITY CRUISE_ALT "CRUISE_ALT">
<!ENTITY MAX_APPROACH_SPEED "MAX_APPROACH_SPEED">
<!ENTITY MAX_LANDING_SPEED "MAX_LANDING_SPEED">
<!ENTITY LANDING_SPEED "LANDING_SPEED">

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

113

KB_Cessna.xml

<?xml version="1.0"?>

<!DOCTYPE variables SYSTEM "variables.dtd">

<flight aircraft="Cessna 172-R" xmlns="./KB">
<situation name="Pre startup" timewindow="20">
 <actions>
 <phase name="prestartup">
 <action name="parking brakes" priority="1" probability="BP">&ON;</action>
 <action name="throttle" priority="1" probability="BP">&IDLE;</action>
 <action name="ignition switch" priority="1" probability="BP">&OFF;</action>
 <action name="avionics power switch" priority="1" probability="BP">&OFF;</action>
 <action name="master switch" priority="1" probability="BP">&ON;</action>
 <action name="pitot heat" priority="1" probability="BP">&ON;</action>
 <action name="avionics master switch" priority="1" probability="BP">&OFF;</action>

 <action name="static press alt source valve" priority="1" probability="BP">&OFF;</action>
 <action name="fuel selector valve" priority="1" probability="BP">&BOTH;</action>
 <action name="flaps" priority="1" probability="BP">&FULL;</action>
 <action name="pitot heat" priority="1" probability="BP">&OFF;</action>
 <action name="master switch" priority="1" probability="BP">&OFF;</action>
 <action name="fuel shutoff valve" priority="1" probability="BP">&ON;</action>
 <action name="taxi & landing lights" priority="1" probability="BP">&OFF;</action>
 <action name="beacon" priority="1" probability="BP">&OFF;</action>
 <action name="strobes" priority="1" probability="BP">&OFF;</action>
 <action name="navigation lights" priority="1" probability="BP">&OFF;</action>
 <action name="trim" priority="1" probability="BP">&SET;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="fuel quantity indicators"/>
 <instrument name="annunciator panel"/>
 </visualChecks>
 <constraints startProbability="MP" endProbability="BP">
 <constraint name="parking brakes" end="&ON;"/>
 <constraint name="ignition switch" end="&OFF;"/>
 <constraint name="pitot heat" end="&CHECKED;"/>
 <constraint name="navigation light" end="&CHECKED;"/>
 <constraint name="beacon" end="&CHECKED;"/>
 <constraint name="strobes" end="&CHECKED;"/>
 <constraint name="taxi & landinglights" end="&CHECKED;"/>
 <constraint name="avionics master switch" end="&CHECKED;"/>
 <constraint name="fuel selector" start="&OFF;" end="&BOTH;"/>
 <constraint name="fuel shutoff valve" end="ON;"/>
 <constraint name="master switch" end="&OFF;"/>
 <constraint name="avionics power switch" end="&ON;"/>
 <constraint name="flaps" start="&RETRACT;" end="&FULL;"/>
 <constraint name="elevator trim" end="0"/>
 <constraint name="rudder trim" end="0"/>
 <constraint name="ground speed" start="0" end="0"/>
 <constraint name="altitude" start="0" end="0"/>
 </constraints>
</situation>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

114

<situation name="Startup" timewindow="20">
 <actions>
 <phase name="startup">
 <action name="parking brakes" priority="1" probability="BP">&ON;</action>
 <action name="brakes" priority="1" probability="BP">&ON;</action>
 <action name="avionics power switch" priority="1" probability="BP">&OFF;</action>
 <action name="avionics master switch" priority="1" probability="BP">&OFF;</action>
 <action name="circuit breakers" priority="1" probability="BP">&IN;</action>
 <action name="fuel selector valve" priority="1" probability="BP">&BOTH;</action>
 <action name="fuel shutoff valve" priority="1" probability="BP">&ON;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="circuit breakers"/>
 <instrument name="brakes"/>
 <instrument name="autopilot"/>
 </visualChecks>
 <constraints startProbability="MP" endProbability="BP">
 <constraint name="parking brakes" start="&ON;" end="&ON;"/>
 <constraint name="brakes" start="&OFF;" end="&ON;"/>
 <constraint name="avionics master switch" start="&OFF;" end="&OFF;"/>
 <constraint name="fuel selector" start="&BOTH;" end="&BOTH;"/>
 <constraint name="fuel shutoff valve" start="&ON;" end="ON;"/>
 <constraint name="avionics power switch" end="&OFF;"/>
 <constraint name="circuit brakers" end="&ON:"/>
 <constraint name="elevator trim" end="0"/>
 <constraint name="rudder trim" end="0"/>
 <constraint name="ground speed" start="0" end="0"/>
 <constraint name="altitude" start="0" end="0"/>
 </constraints>
</situation>

<situation name="Start engine" timewindow="20">
 <actions>
 <phase name="starting-engine">
 <action name="fuel shutoff valve" priority="1" probability="BP">&OFF;</action>
 <action name="throttle" priority="1" probability="BP">&IDLE;</action>
 <action name="mixture" priority="1" probability="BP">&LEAN;</action>
 <action name="master switch" priority="1" probability="BP">&ON;</action>
 <action name="auxiliary fuel pomp" priority="1" probability="BP">&ON;</action>
 <action name="ignition switch" priority="1" probability="BP">&START;</action>
 <action name="ignition switch" priority="1" probability="BP">&OFF;</action>
 <action name="mixture" priority="1" probability="BP">&RICH;</action>
 <action name="auxiliary fuel pomp" priority="1" probability="BP">&OFF;</action>
 <action name="navigation lights" priority="1" probability="BP">&ON;</action>
 <action name="avionics master switch" priority="1" probability="BP">&ON;</action>
 <action name="beacon" priority="1" probability="BP">&ON;</action>
 <action name="radios" priority="1" probability="BP">&ON;</action>
 <action name="flaps" priority="1" probability="BP">&RETRACT;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="oil pressure"/>
 <instrument name="engine instruments"/>
 <instrument name="radios"/>
 </visualChecks>
 <constraints startProbability="MP" endProbability="BP">
 <constraint name="parking brakes" start="&ON;" end="&ON;"/>
 <constraint name="brakes" start="&OFF;" end="&ON;"/>
 <constraint name="avionics master switch" start="&OFF;" end="&OFF;"/>
 <constraint name="fuel selector" start="&BOTH;" end="&BOTH;"/>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

115

 <constraint name="fuel shutoff valve" start="&ON;" end="&OFF;"/>
 <constraint name="avionics power switch" end="&OFF;"/>
 <constraint name="beacon" start="&OFF;" end="&ON;"/>
 <constraint name="strobes" start="&OFF;" end="&ON;"/>
 <constraint name="navigation lights" start="&OFF;" end="&ON;"/>
 <constraint name="elevator trim" end="0"/>
 <constraint name="rudder trim" end="0"/>
 <constraint name="ground speed" start="0" end="0"/>
 <constraint name="altitude" start="0" end="0"/>
 </constraints>
</situation>

<situation name="Taxiing to runway" timewindow="10">
 <actions>
 <phase name="taxiing">
 <action name="throttle" priority="1" probability="MP">!&0;</action>
 <action name="parking brake" priority="1" probability="MP">&OFF;</action>
 <action name="mixture" priority="1" probability="MP">&RICH;</action>
 <action name="flaps" priority="1" probability="MP">&RETRACT;</action>
 <action name="groundspeed" priority="1"
probability="MP">&MAXTAXISPEED;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="brakes"/>
 <instrument name="directional gyro"/>
 <instrument name="turn coodinator"/>
 <instrument name="artifival horizon"/>
 </visualChecks>
 <constraints startProbability="MP" endProbability="BP">
 <constraint name="speed brakes" end="&>0"/>
 <constraint name="ground speed" start="0" end="&<20"/>
 <constraint name="throttle" start="&IDLE;" end="!&IDLE;"/>
 </constraints>
</situation>

<situation name="Before takeoff" timewindow="10">
 <actions>
 <phase name="before takeoff">
 <action name="parking brake" priority="1" probability="BP">&ON;</action>
 <action name="mixture" priority="1" probability="BP">&RICH;</action>
 <action name="fuel selector" priority="1" probability="BP">&BOTH;</action>
 <action name="elevator trim" priority="1" probability="BP">&SET;</action>
 <action name="throttle" priority="1" probability="BP">&1800;</action>
 <action name="throttle" priority="1" probability="BP">&1000;</action>
 <action name="strobe lights" priority="1" probability="BP">&ON;</action>
 <action name="landing lights" priority="1" probability="BP">&ON;</action>
 <action name="radios" priority="1" probability="BP">&SET;</action>
 <action name="autopilot" priority="1" probability="BP">&OFF;</action>
 <action name="flaps" priority="1" probability="BP">&TAKEOFF_SET;</action>
 <action name="parking brake" priority="1" probability="BP">&OFF;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="fuel quantity"/>
 <instrument name="magnetos"/>
 <instrument name="suction gage"/>
 <instrument name="engine instruments"/>
 <instrument name="caution panel"/>
 <instrument name="fuel flow"/>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

116

 <instrument name="wheel brakes"/>
 </visualChecks>
 <constraints startProbability="MP" endProbability="BP">
 <constraint name="parking brakes" start="&ON;" end="&OFF;"/>
 <constraint name="wheel brakes" start="&ON;" end="&OFF;"/>
 <constraint name="ground speed" start="0" end="0"/>
 <constraint name="throttle" start="&IDLE;" end="<1000;"/>
 <constraint name="flaps" start="&RETRACT;" end="&SET_TAKEOFF;"/>
 <constraint name="altitude" start="0" end="0"/>
 </constraints>
</situation>

<situation name="Taking off" timewindow="5">
 <actions>
 <phase name="takeoff">
 <action name="flaps" priority="1" probability="BP">&SET;</action>
 <action name="throttle" priority="1" probability="BP">&FULL;</action>
 <action name="mixture" priority="1" probability="BP">&RICH;</action>
 <action name="airspeed" priority="1" probability="BP">&TAKEOFF_ROT_SPD;</action>
 <action name="elevator" priority="1" probability="BP">&TAKEOFF;</action>
 <action name="airspeed" priority="1" probability="BP">&TAKEOFF_CL_SPD;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="airspeed"/>
 </visualChecks>
 <constraints startProbability="SP" endProbability="VBP">
 <constraint name="airspeed" start="0" end=">70"/>
 <constraint name="throttle" start="&IDLE;" end="&FULL"/>
 <constraint name="altitude" start="0" end=">&MIN_ALT;"/>
 <constraint name="pitch" start="0" end=">&0" />
 <constraint name="climbing rate" start="0" end=">&0" />
 </constraints>
</situation>

<situation name="Enroute Climb" timewindow="5">
 <actions>
 <phase name="ascent">
 <action name="elevator" priority="1" probability="BP">&CLIMB;</action>
 <action name="throttle" priority="1" probability="BP">&FULL;</action>
 <action name="mixture" priority="1" probability="BP">&RICH;</action>
 <action name="mixture" priority="1" probability="BP">&LEAN;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="climb rate"/>
 </visualChecks>
 <constraints startProbability="SP" endProbability="VBP">
 <constraint name="air speed" start="&>70" end="&<85"/>
 <constraint name="Mixture" start="&RICH" end="&LEAN"/>
 <constraint name="throttle" start="&FULL;" end="&FULL"/>
 <constraint name="altitude" start=">&MIN_ALT;" end="&CRUISE_ALT;"/>
 <constraint name="pitch" start=">&0" end=">&0" />
 <constraint name="climbing rate" start=">&0" end=">&0" />
 </constraints>
</situation>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

117

<situation name="Cruise" timewindow="5">
 <actions>
 <phase name="cruise">
 <action name="elevator" priority="0" probability="BP">&0;</action>
 <action name="throttle" priority="1" probability="BP">&CRUISE;</action>
 <action name="elevator trim" priority="1" probability="BP">&ADJUST;</action>
 <action name="mixture" priority="1" probability="BP">&LEAN;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="flight instruments"/>
 <instrument name="engine instruments"/>
 </visualChecks>
 <constraints>
 <constraint name="air speed" start="&>85" end="!&>150"/>
 </constraints>

<situation name="Descent" timewindow="5">
 <actions>
 <phase name="descent">
 <action name="elevator" priority="1" probability="BP">&<0;</action>
 <action name="throttle" priority="1" probability="BP">&<2000;</action>
 <action name="mixture" priority="1" probability="BP">&RICH;</action>
 <action name="fuel selector valve" priority="1" probability="BP">&BOTH;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="climb rate"/>
 </visualChecks>
 <constraints startProbability="SP" endProbability="VBP">
 <constraint name="fuel selector valve" end="&BOTH;"/>
 <constraint name="mixture" start="&LEAN" end="&RICH"/>
 <constraint name="pitch" start="0" end="<&0" />
 <constraint name="climbing rate" start="0" end="<&0" />
 </constraints>
</situation>

<situation name="Before landing" timewindow="5">
 <actions>
 <phase name="approach">
 <action name="fuel selector" priority="0" probability="SP">&BOTH;</action>
 <action name="mixture" priority="1" probability="VSP">&RICH;</action>
 <action name="landinglights" priority="1" probability="VSP">&ON;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="flight instruments"/>
 <instrument name="engine instruments"/>
 </visualChecks>
 <constraints>
 <constraint name="landing lights" start="&OFF" end="&ON" />
 </constraints>
</situation>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

118

<situation name="Landing" timewindow="15">
 <actions>
 <phase name="landing">
 <action name="airspeed" priority="0" probability="SP">&MAX_APPR_SPEED;</action>
 <action name="flaps" priority="1" probability="BP">&FLAPS_FINAL;</action>
 <action name="airspeed" priority="0" probability="SP">&MAX_LAND_SPEED;</action>
 <action name="flaps" priority="1" probability="VSP">&FLAPS_LANDING;</action>
 <action name="airspeed" priority="0" probability="SP">&LANDING_SPEED;</action>
 <action name="flaps" priority="1" probability="VSP">&FULL;</action>
 <action name="brakes" priority="1" probability="VSP">&ON;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="airspeed"/>
 </visualChecks>
 <constraints>
 <constraint name="air speed" start="&>110" end="&<20"/>
 <constraint name="flaps" start="&0" end="&FULL"/>
 <constraint name="brakes" start="&OFF" end="&ON"/>
 </constraints>
</situation>

<situation name="Taxiing to ramp" timewindow="10">
 <actions>
 <phase name="taxiing">
 <action name="throttle" priority="1" probability="BP">!&0;</action>
 <action name="mixture" priority="1" probability="BP">&RICH;</action>
 <action name="flaps" priority="1" probability="BP">&RETRACT;</action>
 <action name="groundspeed" priority="1" probability="BP">&MAXTAXISPEED;</action>
 <action name="landinglights" priority="1" probability="BP">&OFF;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="engine instruments"/>
 </visualChecks>
 <constraints startProbability="MP" endProbability="BP">
 <constraint name="ground speed" start="&>0" end="&<20"/>
 <constraint name="throttle" start="&IDLE;" end="!&IDLE;"/>
 <constraint name="flaps" start="&FULL" end="&0"/>
 <constraint name="landing lights" start="&ON" end="&OFF" />
 </constraints>
</situation>

<situation name="Securing Airplane" timewindow="5">
 <actions>
 <phase name="shutdown">
 <action name="parking brakes" priority="1" probability="BP">&ON;</action>
 <action name="avionics power switch" priority="1" probability="BP">&OFF;</action>
 <action name="mixture" priority="1" probability="BP">&CUT_OFF;</action>
 <action name="ignition switch" priority="1" probability="BP">&OFF;</action>
 <action name="master switch" priority="1" probability="BP">&OFF;</action>
 <action name="fuel selector" priority="1" probability="BP">&LEFT; || &RIGHT;</action>
 </phase>
 </actions>
 <visualChecks>
 <instrument name="flight instruments"/>
 <instrument name="engine instruments"/>
 </visualChecks>
 <constraints>
 <constraint name="parking brakes" start="&OFF;" end="&ON;"/>
 <constraint name="avionics master switch" start="&ON;" end="&OFF;"/>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

119

 <constraint name="mixture" start="&ON;" end="&OFF;"/>
 <constraint name="ignition switch" start="&ON;" end="&OFF;"/>
 <constraint name="master switch" start="&ON;" end="&OFF;"/>
 <constraint name="fuel selector" start="&BOTH;" end="&LEFT;" || "&RIGHT;"/>
 </constraints>
</situation>
</flight>

Appendix C: The XML files

Copyright © 2003, Delft University of Technology

120

(This page has been left blank intentionally)

Appendix D: Example of a backpropagation neural network

Copyright © 2003, Delft University of Technology

121

Appendix D: Example of a backpropagation neural
network

<?php
/*

NOTE: DO NOT RUN THIS THROUGH A WEB INTERFACE!

If you have no previous experience with Neural networks, I suggest you read some
basic descriptions and tutorials. Here is the resource I used to compose this script -
Please remember that I was a complete beginner when I started writing this script.
There may be errors and I still need to add momentum, memory banks, fuzzy logic,
and jittering.

Here are some definitions:

* -------- The Neuron --------
* Takes a number of inputs
* Multiplies each one by a 'weight'
* Sums all inputs x weights
* Applies an activation function to give an output.

* ----- A Neural Network -----
* Recognizes patterns and after training should be
* able to give reasonable predictions as to what the output should be.

* - A Backwards Propogation NN -
* Working out how far wrong the output is in its current
* state (the 'error'), and calculating a change in weights
* backwards through the network to correct this error
* Output -> Hidden -> Input
*/

set_time_limit(0);
//This stops PHP from timing out on us

echo "\r\n";
define("LEARNING_RATE",0.5);
//The learning rate is a measure of how much the weights are changed in each
//training cycle.

class neuron {
 //These are all different factors of each neuron
 //Read up on Neural nets to find out what they mean
 var $bias;
 var $weights;
 var $output;
 var $delta;

Appendix D: Example of a backpropagation neural network

Copyright © 2003, Delft University of Technology

122

function neuron() {
 $bias = 0;
 $weights[1] = 0;
 $weights[2] = 0;
 $output = 0;
 $delta = 0;
 }
}

class nn {
 var $hl; //Two neurons in the hidden layer
 var $ol; //One output neuron

 /*
 We end up with the following structure:
 A three layer backpropagation network

 Input --- Hidden
 X > Output
 Input --- Hidden
 */

 function nn() {
 //Initializing the net
 $this->hl[1] = new neuron;
 $this->hl[2] = new neuron;
 $this->ol = new neuron;

 for($i=1; $i <= 2; $i++) {
 $this->hl[1]->weights[$i] = 0;
 $this->hl[2]->weights[$i] = 0;
 $this->ol->weights[$i] = 0;
 }
 }
 function train($input1, $input2, $target) {
 for($i=1; $i <= 2; $i++) {
 $this->hl[$i]->output = $this->activation($this->hl[$i]->bias +
 ($input1 * $this->hl[$i]->weights[1]) +
 ($input2 * $this->hl[$i]->weights[2]));
 }
 //Find the current output for the Hidden Layer Neurons:
 //Output = Activation(Bias + Input[n] * Weight[n])

 $this->ol->output = $this->activation($this->ol->bias +
 ($this->hl[1]->output * $this->ol->weights[1]) +
 ($this->hl[2]->output * $this->ol->weights[2]));
 $this->ol->delta = $this->ol->output * (1 - $this->ol->output) *
 ($target - $this->ol->output);

Appendix D: Example of a backpropagation neural network

Copyright © 2003, Delft University of Technology

123

 //The output neuron takes as its input the output from the two hidden
 //layer Neurons.
 //So for the output neuron weight(1) is the weight from HiddenNeuron(1),
 //and weight(2) is the weight for HiddenNeuron(2)

 /*
 Once we have the delta, it allows us to make an alteration to the
 weights in the network. The bigger the Delta, the larger the error
 in the network, and so the larger we want to alter the weights.
 This enables the network to become better after every training

 The above calculation of OutputNeuron->Delta first multiplies the
 output by (1- output). This has the effect of providing a larger
 figure when the output is at 0.5, and a minimum figure when the out
 put is at either 1 or 0 (do the math to confirm this). I.E. The Delta
 will be bigger, and so we're going to adjust the weight MORE when
 the current output is in the middle of the range (i.e. near 0.5). If
 the output is at either end of the range (i.e. at 1 or 0) then the
 Delta will come out smaller, and so we want to adjust the weight LESS.
 This simply has the effect of moving the weights more quickly if
 the current output from the Neuron is around 0.5 - the weight will
 be moved less if the neuron output is near 0 or near 1. (Bear in
 mind usually you'll want to get a more definite answer from
 a neural network - you want it to say 'Yesor 'No(i.e. 1 or 0)
 0.5 corresponds to 'Maybe', which is not a very useful answer.

 This figure is then multiplied by (Target - OutputNeuron->Output)
 This has the effect of making the delta LARGER if the error of the
 Neuron is larger.

 So overall this math says 'The Delta will be larger the nearer the
 Neuron output is to 1 or 0, and it will be larger the more wrong
 the Neuron is'.
 */

 for($i=1; $i <= 2; $i++) {
 $this->hl[$i]->delta = $this->hl[$i]->output * (1 - $this->hl[$i]->output) *
 ($this->ol->weights[$i] * $this->ol->delta);
 $this->hl[$i]->bias = $this->hl[$i]->bias +
 (LEARNING_RATE * $this->hl[$i]->delta);
 $this->hl[$i]->weights[1] = $this->hl[$i]->weights[1] +
 (LEARNING_RATE * $input1 * $this->hl[$i]->delta);
 $this->hl[$i]->weights[2] = $this->hl[$i]->weights[2] +
 (LEARNING_RATE * $input2 * $this->hl[$i]->delta);
 }

 /*
 These deltas are the ones for the Hidden Layer. The math is similar
 here except for the last factor. Remember the Delta for each Neuron
 is how much we want to correct it by, but for the hidden layer, we

Appendix D: Example of a backpropagation neural network

Copyright © 2003, Delft University of Technology

124

 does not have a specific figure of precisely what we want the output
 to be, so the Delta has to be calculated by how wrong the Output
 Neuron was (which is its Delta) and the current weight from the
 Hidden Neuron to the Output one. As far as I can see, the current
 weight is included as a factor here to reflect how 'important that
 current weight is - the more important it is - i.e. the more its
 going to affect the Output Neuron, the more it should be altered.

 So now we have the delta for each Neuron - how much we want to change
 each Neuron's weights. So we'll use them to update the weights.

 See above how the Weight is altered by the Delta multiplied by the
 Learning rate - the larger the delta, and the larger the learning
 rate (which is a constant) - the more we're going to change each
 weight. But - the important part here is that we alter the weight
 of the Neuron also in terms of the INPUT. The larger the input was
 the more important this weight is to alter and so the more we're
 going to alter it by. - Bear this in mind when you look at how
 the weights for two neurons can start moving in the same direction
 initially and then change to moving in opposite directions - this
 is because of the Delta mainly being applied to a weight when
 there is a high input on that weight.
 */

 $this->ol->bias = $this->ol->bias + (LEARNING_RATE * $this->ol->delta);
 $this->ol->weights[1] = $this->ol->weights[1] +
 (LEARNING_RATE * $this->hl[1]->output * $this->ol->delta);
 $this->ol->weights[2] = $this->ol->weights[2] +
 (LEARNING_RATE * $this->hl[2]->output * $this->ol->delta);
 //And the same for the output neuron
 }

 function activation($value) {
 //The activation function is used to give us a value between 0 and 1
 return (1 / (1 + exp($value * -1)));
 }

 function runnetwork($input1, $input2) {
 //This takes the activation function of the sum of all
 //the inputs multiplied by their respective weights.

 for($i=1; $i <= 2; $i++) {
 $this->hl[$i]->output = $this->activation($this->hl[$i]->bias +
 ($this->hl[$i]->weights[1] * $input1) +
 ($this->hl[$i]->weights[2] * $input2));
 }
 $this->ol->output = $this->activation($this->ol->bias +
 ($this->ol->weights[1] * $this->hl[1]->output) +
 ($this->ol->weights[2] * $this->hl[2]->output));
 return $this->ol->output;

Appendix D: Example of a backpropagation neural network

Copyright © 2003, Delft University of Technology

125

 }
}

//This creates an instance of our neural network class and trains it to output 1
//when it receives 0 and 0
//This shows how you can create your own logic gates that operate using artificial
//intelligence

$neural = new nn;
for($i=1; $i <= 6000; $i++)
 $neural->train(0, 0, 1);
print "Trained 6000 times to return 1 on 0, 0 (typical XOR logic)\r\n";
print "The system recalls " . $neural->runnetwork(0,0) . " from memory!";
?>

Appendix D: Example of a backpropagation neural network

Copyright © 2003, Delft University of Technology

126

(This page has been left blank intentionally

Appendix E: Bibliography

Copyright © 2003, Delft University of Technology

127

Appendix E: Bibliography

[] CLIPS: A tool for building expert systems
http://www.ghg.net/clips/CLIPS.html

[] Cessna Aircraft Company (1996) Pilot�s operating handbook for a Cessna 172R,
172RPHUS-02 Cessna Aircraft Company

[] Ehlert, P.M. and Rothkrantz, L. J. M. Intelligent agents in an Adaptive Cockpit
Environment, Internal Report, Data and Knowledge Systems group, Faculty of
Information Technology and Systems, Delft University of Technology

 [] Flight Gear Flight Simulator
http://www.flightgear.org

[] JESS: The Expert System for the JAVA platform
http://herzberg.ca.sandia.gov/jess/

 [] Mouthaan, Q.M. (2003) Flying an F16: A knowledge base describing the situations an
F16 pilot may encounter, Technical Report DKS03-03 / ICE 03, Data and Knowledge
Systems group, Faculty of Information Technology and Systems, Delft University
of Technology
http://www.kbs.twi.tudelft.nl/Publications/Report/2003-Mouthaan-DKS03-03.html

[] Yourdon, E. (1991) Modern Structured Analysis, Prentice-Hall/Academic Service

[] Unknown. Introduction to Backpropagation Neural Networks, Cortex
http://cortex.snowseed.com/neural_networks.htm

[] World Wide Web Consortium
http://www.w3c.org/

http://www.ghg.net/clips/CLIPS.html
http://www.flightgear.org/
http://herzberg.ca.sandia.gov/jess/
http://www.kbs.twi.tudelft.nl/Publications/Report/2003-Mouthaan-DKS03-03.html
http://cortex.snowseed.com/neural_networks.htm
http://www.w3c.org/

	Preface
	Summary
	Thesis overview
	Used abbreviations
	Acknowledgements
	Chapter 1: Introduction
	Project description
	System overview
	Sub-projects
	Project goal

	Chapter 2: Project file
	Description
	Plan of approach
	Background
	Project description
	2.2.2.1 Problem setting
	2.2.2.2 Project goal
	2.2.2.3 Project result

	Project limits
	Project lifecycle
	Project organization
	2.2.5.1 Tasks and responsibilities
	2.2.5.2 Execution conditions and competences
	2.2.5.3 Time schedule
	2.2.5.4 Information and reporting

	Projects risks
	Project budget and costs
	Project planning
	2.2.8.1 Definitions
	2.2.8.2 Project time scheme
	2.2.8.3 Project research areas and responsible project members

	Project activities and to be delivered results
	2.2.9.1 Tasks
	2.2.9.2 To be delivered results

	Team

	Chapter 3: Preliminary research
	Description
	System model aspects
	Development tools
	Development environment
	Maintenance

	Intelligence aspects
	Description
	Neural networks
	3.3.2.1 Description
	3.3.2.2 Operation
	3.3.2.3 Usability within the SAM project

	Expert systems
	3.3.3.1 Description
	3.3.3.2 Operation
	3.3.3.3 Expert Systems
	3.3.3.4 Usability within the SAM project

	Prototypes
	SAM reasoning
	3.3.5.1 XML Knowledge base
	3.3.5.2 Temporal reasoning

	Technical aspects
	Description
	Data processing
	Real-time analyzing

	Chapter 4: System requirements
	Description
	Subject
	Abbreviations
	General description
	Context of the product
	Functions
	Users
	General limitations
	Descriptions of the product
	Functional demands of the product
	Properties of the external connections
	Users dialog
	Apparatus connections
	Program connections
	Communication connections
	Presentation demands
	Design limitations
	Apparatus limitations
	Quality criteria
	Maintenance ability
	Portability

	Chapter 5: System model
	Description
	System overview
	Functional specification
	In general
	5.3.1.1 Introduction
	5.3.1.2 Functions of SAM
	5.3.1.3 System choice

	Automation configuration
	5.3.2.1 Introduction
	5.3.2.2 System overview
	5.3.2.3 Yourdon method

	Functional demands
	5.3.3.1 Introduction
	5.3.3.2 Functional demands
	5.3.3.3 Non-functional demands

	Functional operation
	5.3.4.1 Introduction
	5.3.4.2System Functions

	System analysis
	Introduction
	Context diagram
	Data flow diagrams
	Entity-relationship diagram
	State transition diagrams
	5.4.5.1 Data Modeler
	5.4.5.2 Data Server
	5.4.5.3 Data Client

	Chapter 6: Artificial Intelligence
	Description
	Knowledge base
	Description
	Layout
	Rules
	Probability
	Values
	Situations

	Expert Systems
	Description
	Boolean logic
	Fuzzy logic
	JESS

	Temporal Reasoning
	Introduction
	Problem setting
	Philosophy
	Solution
	Functional Implementation

	Chapter 7: Project results
	Description
	Literature study
	Coginitive and system model
	Cognitive model
	7.3.1.1 Data acquisition
	7.3.1.2 Rule based reasoning
	7.3.1.3 Adaptive Logic

	System model

	Artificial Intelligence techniques research
	Demonstrator
	Evaluation, tests and validation

	Chapter 8: Evaluation
	Description
	Prototypes
	Proof of Concept
	Recommendations

	Appendix A: The knowledge base in XML
	Description
	The schema for a flightplan
	The XML flight scheme
	XML specific considerations
	The hierarchy
	The values

	Appendix B: The knowledge base described in tables
	Prestartup
	The Actions
	The visual checks
	Instrument

	The conditions

	Startup
	The Actions
	The visual checks
	The conditions

	Starting engine
	The Actions
	The visual checks
	The conditions

	Taxiing to runway
	The Actions
	The visual checks
	The conditions

	Before takeof
	The Actions
	The visual checks
	The conditions

	Takeoff
	The Actions
	The visual checks
	The conditions

	Enroute climb
	The Actions
	The visual checks
	The conditions

	Cruise
	The Actions
	The visual checks
	The conditions

	Descend
	The Actions
	The visual checks
	The conditions

	Before landing
	The Actions
	The visual checks
	The conditions

	Landing
	The Actions
	The visual checks
	The conditions

	Taxiing to ramp
	The Actions
	The visual checks
	The conditions

	Shutdown
	The Actions
	The visual checks
	The conditions

	Appendix C: The XML files
	Flightplan.xsd
	Flightplan.xml
	KB_Cessna.xsd
	Variables.dtd
	KB_Cessna.xml

	Appendix D: Example of a backpropagation neural network
	Appendix E: Bibliography

