Recognising situations in a flight simulator environment

GAME-ON 2002 Conference Patrick Ehlert, Quint Mouthaan and Leon Rothkrantz November 30, 2002

TU Delft Delft University of Technology

The ICE project

Overview of presentation

The ICE project

- FlightGear simulator
- Explorative data analysis
- Knowledge based approach
- Conclusions and results
- Future work

The ICE project

Intelligent Cockpit Environment (ICE)

Problem:

Increased automation can result in reduced pilot situation awareness and information overload

Solution:

Pilot's assistant, intelligent interface

The ICE project

Ultimate goal:

Create system to experiment with intelligent pilot-vehicle interface

I)e

Subgoals:

- Situation recogniser (SR)
- Pilot workload assessor
- Interface decision-maker

The ICE project

Purpose of SR:

determine current situation using sensor data from:

- **aircraft** (altitude, height, airspeed etc.)
- **pilot** (moving stick, throttle etc.)
- flight plan (expected situations and actions)

SR can be used as first step to A.I. pilot bot

IU Delft

FlightGear simulator

Reasons for using FlightGear

- Open source
- Multi-platform
- Extendable
- Realistic (in most situations)
- Multiple planes and flight dynamics models

1)0

- XML parameter files
- User friendly (mailing-list support)

FlightGear simulator

Explorative data analysis

PCA analysis

8

Clustering of data into states

Elman neural network

Automatically recognise states

[U Delft

Predict future states

Experiment data

PCA clustering

PCA path tracking

Future state prediction

Elman neural network

13

TU Delft

Elman neural network

Knowledge based SR

Real-time, on-line interpretation

Uses state-transitions and production rules

- Easy to adjust
- Interpretation is transparent
- More detailed situation recognition
- Multiple types of airplanes (XML files)

Knowledge based SR

Recogniser output:

- High-level situation(s)
- Expected actions
- Recognised actions

(start, landing, etc.)

(push throttle, set radar,etc.)

Delft

High-level situation: example STD

Expected actions: example rule

Situation: Dogfight

-> Set master arm Check HUD Call on radio Set IFF off

Results and conclusions

Airplane sensor data can be clustered with PCA

Prediction of simple future states with Elman neural network possible

Rule-based system gives excellent and flexible high-level situation recognition

Future work

Add pilot actions recognition

Comparison with flight plan

Add probability values for reasoning about concurrent situations/actions

