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ABSTRACT 

In this paper we describe two situation recognition systems 
that have been developed for a flight simulator 
environment. The first system uses heuristic rules based on 
a state-transition diagram to determine the current stage of a 
flight. The second system does the same by calculating the 
probabilities of both the start and end of possible situations 
and determining the most probable situation. The idea is 
that the best situation recognizer system will be used as part 
of a more elaborate situation-aware system. This situation-
aware system can be seen as a first step to an intelligent 
pilot bot. 

1. INTRODUCTION 

The Intelligent Cockpit Environment (ICE) project is a 
project of the Knowledge Based Systems group of Delft 
University of Technology. Originally, the main purpose of 
this project was to investigate techniques that can be used to 
create a situation-aware crew assistance system [Ehlert and 
Rothkrantz 2003]1. Basically, a crew assistance system 
functions as an electronic co-pilot looking over the shoulder 
of the crew of an aircraft. This system tries to support the 
crew by providing useful information or taking over (some 
of) the crew’s tasks if necessary. The idea is that this way 
the situation awareness of the crew will be improved and 
their workload reduced, leading to better and safer 
performance [Endsley 1999]. For this purpose we are 
investigating methods to create a situation-awareness 
module. The function of such a module is to create a 
“mental computerized picture”  of the current situation. This 
mental picture includes aircraft status, flight progress, and 
crew performance among others. The situation-awareness 

                                                           
1 More information on the ICE project can also be found via 
http://www.kbs.twi.tudelft.nl/Research/Projects/ICE/ 

module is used by the assistance system to make decisions 
when and how to support the crew. 
Although, we are still investigating this application, our 
attention has also been drawn to artificial pilots that can be 
used for simulations. The idea is that the larger part of the 
situation-awareness module can just as well be used as the 
basis for decision-making of a simulated artificial pilot. 
Our first step towards a situation-awareness system was to 
investigate the data that is available from a flight simulator 
[Ehlert, Mouthaan and Rothkrantz 2002]. Then we designed 
and tested some approaches to perform automatic 
recognition of situations based on this data. The goal of our 
situation recognition subsystem is to determine in real-time 
the status of the aircraft and the corresponding phase of the 
flight. In this paper we will describe two systems that we 
have created for this purpose. The first system uses heuristic 
rules embedded in a rule-based system. The second system 
uses probabilities to determine the most likely situation. 
Before we present both systems we will first discuss the 
related literature on artificial pilots. 

2. RELATED WORK 

We have found two different projects in the literature that 
deal with the construction of an artificial pilot, also called 
flight bot. The first one is TacAir-Soar. TacAir-Soar is an 
intelligent rule-based system that generates believable 
human-like pilot behaviour for fixed-wing aircraft in large-
scale distributed military simulations [Jones et al 1999]. 
Each instance of TacAir-Soar is responsible for controlling 
one aircraft and consists of a Soar architecture [Laird, 
Newel and Rosenbloom 1987] linked to the ModSAF 
simulator. The interface between the Soar architecture and 
the simulator regulates the information that each aircraft 
receives from its own “sensors” , such as aircraft status, 
radar, radio messages, etc. The advantage of using Soar is 
that the reasoning and decision-making of the system is 
similar to the way humans are generally believed to reason.  
The second project dealing with the construction of flight 
bots are the intelligent air-to-air combat agents developed 
by the Linköping University in collaboration with Saab 
Military Aircraft AB in Sweden [Coradeschi, Karlsson and 
Törne 1996]. The system is designed specifically for air-to-
air combat experts and allows them to specify the behaviour 



 

 

and decision-making of the intelligent pilot agents without 
the help of a system expert. The agents are modelled by 
decision trees. These trees contain production rules that 
describe the agent’s dynamic task priorities. During one 
decision cycle, several branches of the tree can be 
processed in parallel after which all selected actions are 
evaluated for priority and compatibility. Due to the dynamic 
task priorities, sequential tasks that are spread over multiple 
decision cycles can be interrupted if the need arises. 
Both TacAir-Soar and Linköping University’s agents focus 
primarily on decision-making and both try to simulate 
realistic pilot flight behaviour. They do not specify how to 
deal with situation recognition or achieve situation 
awareness. Although achieving good situation awareness is 
not necessary to simulate the behaviour of (a large number 
of) artificial pilots, we feel that more realistic flight bots 
cannot do without. The better the understanding of the 
available data, the better a flight bot can deal with the 
current situation. By evaluating the current situation in real-
time the flight bot can show much more flexible behaviour 
and come up with problem-solving strategies, resembling 
human reasoning.  
After an extensive search, we have found one application in 
another domain that uses an approach similar to ours. 
[Nigro et al. 2002] describes two systems called Intelligent 
Driving Recognition with Expert System (IDRES) and 
Driving Situation ReCognition (DSRC). The goal of both 
systems is to provide support for a driving assistance system 
that is to be used in future cars. The DSRC system is able to 
recognize certain states of a manoeuvre performed by a car 
in a simulator. At a higher level, the second system called 
IDRES recognizes transitions between manoeuvres. Both 
systems are rule-based. Uncertainty of data is handled using 
fuzzy sets and beliefs on hypotheses.  

3. THE GENERAL DESIGN 

The ultimate goal of the flight bot in the ICE project is to 
create an intelligent system that has the knowledge, 
understanding and skill to fly an airplane, in the same way a 
human pilot does. We have devised a general architecture of 
this flight bot, which is shown in Figure 1. The bot uses 
decision cycles to read data from the simulator, create a 
representation of the current situation and decide which 
action to take. The function of the situation awareness 
module is to read all data coming from the simulated 
aircraft. This data is integrated with previous recorded 
information in order to create a representation of what is 
going on. Then, this world representation is used by the 
decision module to decide which action to take. The 
decision module can make use of several planners that are 
able to make predictions about future situations, for 
example the expected position of other aircraft. After the 
decision module has chosen an action to perform, this 
action is sent to the aircraft control manager. The aircraft 
control manager functions as an interface between the bot 
and the simulator. Ultimately, we want to be able to set 
certain properties of the flight bot, for example setting the 
level of pilot expertise so we can simulate different types of 

pilots. This is the function of the system manager, which 
forms the interface between the user and the flight bot. 
In the next sections of this paper we will discuss two 
situation recognition systems that we have devised as part of 
the situation awareness module: a rule-based system and a 
probabilistic system. 

4. THE RULE-BASED APPROACH 

One of our first attempts to implement the situation 
recognition subsystem was to use a rule-based approach. 
Rule-based systems, also known as production systems, 
allow simple, understandable, and transparent reasoning 
using IF-THEN rules. This makes rule-based system 
suitable for rapid prototyping, which is probably also the 
reason that they are one of the most popular methods of 
reasoning in artificial intelligence. 

4.1 Design 
The first step in the design of the rule-based situation 
recognition system was to gather knowledge on flying. 
Since there are many different types of aircraft we decided 
to restrict ourselves and start out by looking only at a simple 
and standard passenger aircraft: the Cessna 172C Skyhawk. 
Different types of situations during a flight were identified 
and for every situation the actions the pilot is expected to 
perform and typical situation-related variables were defined.  
We made rules for the following situations; pre-start, start-
up, taxiing, hold-short, take-off, aborted take-off, set course, 
cruise, start-landing, aborted landing, final approach, 
touchdown and shutdown. All situations can be recognized 
based on a number of parameters such as airspeed, vertical 
speed, throttle, brakes status, gear status, etc. For each state 
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Figure 1: General architecture of the flight bot 



 

 

we tried to use multiple variables since this allows us to still 
get an accurate indication of the situation, even if one of the 
parameters is not normal for that situation. For example, if 
the pilot lowers the gear, it is obvious that he is trying to 
land. However, if for some reason the pilot forgets to lower 
the gear, we are still able to determine that the pilot is 
landing by looking at his airspeed, flaps, vertical speed and 
altitude. While normally this is not necessary for an 
artificial pilot, it allows us to identify possible malfunctions, 
which we plan to add later to our situation awareness 
module. 
To reduce the amount of rules that have to be checked every 
decision cycle, we devised a state-transition diagram, part 
of which is shown in Figure 2. 
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Figure 2: Partial state-transition diagram containing several 
situations of a flight with the Cessna airplane 

The system is initialised in the Pre-Start state. Normally, 
only the rules belonging to this state are checked, until one 
of the rules changes the state to Startup. Then only the rules 
belonging to the Startup state are checked, etc. To make the 
system more robust, states are changed not only when 
evidence is found for a state transition (a new situation has 
arisen), but also when there is evidence that the current state 
cannot be the correct one. In this case we have to make a 
decision which connecting state is most likely. 

4.2 Implementation 
The rule-based system was implemented with Borland 
Delphi 5 and the simulator we used to test the system was 
Flightgear, version 0.7.10 [Perry and Olsen 2001]. Newer 
versions of the open-source Flightgear simulator are 
available, but proved to be less stable.  
The rule-based system receives information from the 
simulator about the state of the airplane (e.g. airspeed, 
altitude, pitch), the actions of the pilot (e.g. setting flaps, 
pushing the throttle), and the environment (e.g. wind), all 
via a Telnet connection. The rules and state-transition 
diagram were hard-coded into our program using IF-THEN 
statements. Using hard-coded rules has the advantage that 
reasoning can be done very fast. There is less overhead 
compared to using a third-party rule-based system such as 
CLIPS or JESS. However, it can be difficult to alter rules or 
add new rules, especially when the rule-base is large.  
Below we show (part of) an example rule corresponding to 
the Take-off state in Figure 2: 
 
 procedure StateTakeOff; 

  begin 
  if IsVSpeedClimbOut(VertSpeed) or 
    (not GearDown) or 
    IsSpeedClimbOut(AirSpeed) 
  then 
    State := sSetCourse; 
 
  if IsThrottleIdle(Throttle) or 
    (Brakes = 1) or 
    (ParkBrakes = 1) 
  then 
    State := sAbortTakeOff; 
end; 

 
Due to some difficulties with the Telnet connection between 
our program and Flightgear we were only able to retrieve 
data from the simulator about once every 500 ms. This is a 
fairly large timeframe and it is possible that the system 
misses certain events that have a shorter duration. This is 
another reason that we check multiple variables (besides 
identifying possible malfunctions which we mentioned 
earlier). 

5. THE PROBABILISTIC APPROACH 

One of the disadvantages of using a rule-based system is 
that IF-THEN rules are always deterministic. Either the IF-
condition of the rule is fulfilled or it is not. A certain event 
or variable value may be an indication for more than one 
situation. For example, a pilot can reduce the throttle if he 
wants to land, but also simply to reduce speed and save fuel. 
We tried to solve this problem by introducing probabilities 
to determine the likelihood of the start and end of each 
possible situation. 



 

 

5.1 Design 
Our probabilistic approach extends the rule-based approach 
described in the previous section in a sense that now the 
rules are not used to detect a situation deterministically, but 
to generate probabilities about situation starts and endings. 
Since this requires us to check multiple situations at the 
same time, the state-transition diagram was abandoned. 
However, to reduce the number of rules that need to be 
checked, we added preconditions that need to be fulfilled 
for each situation. For example, for the taxiing situation to 
occur, the landing gear has to be down. 
Another extension in our probabilistic system is that we 
have added the possibility to load different rules for 
different aircraft. The architecture of the probabilistic 
situation recognition system is shown in Figure 3.  
 
The knowledge converter converts all the situations 
knowledge for a particular aircraft stored in an XML file to 
IF-THEN rules. These rules are loaded into the rule base 
before the recognition system is started. 
 
The flight plan interpreter converts the information in the 
flight plan to a number of rules that are put in the rule base. 
These rules can help situation recognition by predicting 
which situations will occur in the near future. Just as the 
aircraft situations knowledge, the flight plan is loaded 
before a flight.   
 
During a flight, the input module receives aircraft data 
from the flight simulator and converts this data to facts that 
are forwarded to the rule base.  
 
The rule base contains all the rules and facts that have been 
generated by the flightplan interpreter and knowledge 
converter. When data (facts) from the flight simulator are 
added to the rule base, some of the rules will fire and 
generate probabilities concerning the start or end of a 
situation. These probabilities are then passed to the overall 
controller. 
 
 

 
The overall controller receives event data and situation 
probabilities from the rule base, combines these 
probabilities, and calculates for every situation the 
probability that it has started or the probability that it has 
ended. It then draws a conclusion about the situation that is 
most likely to be the current one. Calculating probabilities 
is done using a probabilistic network. 

5.1.1 The start probability calculator 
Figure 4 shows the probabilistic network that is used to 
calculate the probability that a situation has started. 
 

 
Figure 4: Probabilistic network that calculates the probability that 

a situation has started 
 

The start conditions for a situation are conditions that must 
be satisfied before a situation can possibly have started, 
otherwise the probability that the situation is started will be 
zero. When the start conditions are satisfied, the probability 
of the conditions that is specified in the aircraft situations 
knowledge will be the output of this node. 
 
The action probabilities are passed to the probability 
network by action rules that are activated when the pilot 
performs a particular situation-related action. Action rules 
are rules that check if an action has been performed that 
belongs to a situation. An action rule can only fire if the 
start conditions of a situation have been met. All action 

Input moduleFlight simulator

Aircraft
situations
knowledge

Rule base Overall controller

Knowledge
converter

facts probability

probability

probability

situation

rules
XML
data

Flight plan XML
data

rules

time windows
and priorities

Flightplan
interpreter time windows

and priorities

 
Figure 3: Architecture of the probabilistic situation recognizer 



 

 

probabilities contribute to the probability that the situation 
is occurring (has been started). 
 
The additional rules are rules that fire when the state of the 
aircraft changes or when a specific event occurs. They also 
include rules similar to the consistency checks used in the 
rule-based approach that check if the current state is still the 
correct one. When an additional rule fires, it generates a 
probability that the situation has started or ended.  
 
The probability calculator (situation-started node in the 
figure) combines the probabilities of the nodes that have 
been described above using the noisy-OR model. 
 
The previous situation influences the start probability of a 
situation. The idea is that the probability that a situation is 
occurring increases when the probability increases that one 
of the previous situations that can lead to this situation has 
ended. 
 

Based on this network the probability that a situation has 
started and is occurring can be calculated with the following 
formula: 
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In this formula, Psc is the probability of the start conditions, 
Pend is the probability that one of the previous situations has 
ended, Pcai is the probability of the i-th action that should 
be performed during the situation and Pcrj is the probability 
of the j-th event or state change that can occur during the 
situation. 

5.1.2 The end probability calculator 
In Figure 5 the probabilistic network is shown that 
calculates the probability that a situation has ended. In this 
network we see a lot of the same nodes as in the network for 
the start of the situation. The nodes that are different are 
discussed below. 
 
The time window for a situation is the maximum duration 
of that situation. If the start of a situation has been detected 
the probability that it has ended should grow after a certain 
time. 
 
The situation-started node produces a 1 if the situation has 
started and a 0 if the situation has not yet started. This node 
is necessary because we only want to calculate the 
probability that the situation has ended, after a (probable) 
start of that situation. 

 

 
Figure 5: Probabilistic network that calculates the probability that 

a situation has ended 

The probability that the situation is ended can be calculated 
with the following formula: 
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More details about the design of our probabilistic system 
can be found in [Mouthaan 2003]. 

5.2 Implementation 
The probabilistic system was implemented in Java. Unlike 
the rule-based system, the rules were not hard-coded since 
we wanted to be able to load different rules for different 
aircraft. Therefore, we chose to use the JESS rule-based 
system [Friedman-Hill 1997]. The system was tested using 
Microsoft’s Flight Simulator 2002, which was found to be 
more realistic and stable than the Flightgear simulator that 
we used earlier with our rule-based recognition system. 
Flight Simulator 2002 allows retrieving data from the 
simulator by an external program via a shared memory 
space. The interface between the simulator and the system 
was implemented with C++.  We have devised a situations 
XML file for the military F-16 aircraft and the civilian 
Cessna C172 plane. Using these aircraft, we have 
performed several experiments to test the system. The 
flightplan interpreter that was described in the design of the 
probabilistic system was not implemented yet. 

6. EVALUATION 

We have evaluated a prototype version of both situation 
recognizer systems by performing several flights and 
logging the results. The time and name of all detected 
situation changes were logged, as well as the time a new 
situation started according to the pilot. This allowed us to 
check if the systems recognized a situation correctly and in 
time. However, one must note that the time a situation starts 
is often a bit vague and subjective. For example, the change 
between the situations “climb out/set course”  and “normal 
flight”  is difficult to pinpoint precisely. For this reason we 
have rounded off all recorded times to whole seconds. 



 

 

The test results of both the rule-based system and 
probabilistic system were fairly good. On average, the rule-
based recognizer detects situations one or two seconds after 
they occur. The rule-based system sometimes has some 
difficulties detecting the start of the landing situation. The 
probabilistic recognizer performs similarly. It has less 
difficulty with the landing situation but for some unknown 
reason it sometimes detects the normal flight situation 
several seconds before it actually occurs. In one of our 
experiments we found that the probabilistic system is even 
able to correct a mistake immediately in the next reasoning 
cycle. The mistake occurred during landing, when the 
recognizer inadvertently thought the landing was being 
aborted. We suspect the mistake was made due to an error 
in the rule base that resulted in keeping a fact in the rule 
base for too long. 
In Table 1 and 2 we have presented some results of both 
systems on one of our simpler flights, which was to fly a 
standard circuit with the Cessna 172C. Flying a circuit 
means that the pilot has to take-off, circle around to the 
beginning of the runway and land again (see also Figure 6). 
 

 
Figure 6: A standard circuit 

The first column in both tables contains the names of the 
situations that occurred or were detected by the system. The 
second column contains the times at which the pilot 
considered the situations to be started. The third column 
contains the times at which the situations were detected by 
the recognition system. Times are given in seconds from the 
moment the program was started. Note that comparing the 
two presented tables is not entirely fair since the flights 
were flown by different pilots and on different simulators. 
However, at the moment we have no better way of 
comparing the two systems. 
From the tables it can be seen that both systems did not 

make any serious errors and were able to recognize most 
situations in a matter of seconds. The probabilistic situation 
recognizer performed slightly better (less time wrong) than 
the rule-based recognizer. We have calculated the error rate 
of the flights by dividing the amount of time that a 
recognizer was incorrect by the total time of the flight. 
However, in this case the pilot of Table 1 took longer to 
complete the circuit than the pilot in Table 2, so therefore 
the error rate of Table 1 is lower even though the recognizer 
was incorrect for a slightly longer amount of time.  
Other experiments that were performed showed similar 
results. On average the error rate over the performed 
experiments for the probabilistic recognizer (4 flights) was 
0.08, with 0.05 being the lowest recorded error rate and 
0.11 being the highest. The rule-based recognizer reached 
an average of 0.09 over 5 flights, with 0.03 as best and 0.15 
as worst. As mentioned earlier, the comparison between the 
two systems is inconclusive, but the results seem to indicate 
that the probabilistic approach performs slightly better than 
the rule-based approach.  

7. CONCLUSIONS AND FUTURE WORK 

We have created two systems that can recognize the current 
situation during a flight with a simulated aircraft. The first 
system uses a combination of a rule-based approach and 
state-transition diagram. The system was able to detect 
situations flying the Cessna aircraft. The second system is 
based on a probabilistic model. This system can load a 
model for a specific type of aircraft before the flight. 
Currently we have a model for both the F-16 and the Cessna 
aircraft.  
Investigating a number of test scenarios, both systems seem 
to work fairly well. They make few mistakes and are even 
able to correct them immediately. Furthermore they are able 
to come to a conclusion about the current situation in real-
time. We have tried to compare the results of both systems, 
but this comparison is complicated due to the vagueness of 
the exact start of a situation, and the different pilots and 
simulators we used. We are currently busy redesigning the 
rule-based system to work with the same simulator used in 
our experiments with the probabilistic recognizer, so we can 
make a more accurate comparison between the two systems. 

 

 
 

Table 1: Results of a standard circuit flight with a Cessna 
using the rule-based situation recognizer 

 Table 2: Results of a standard circuit flight with a Cessna using 
the probabilistic situation recognizer 

Situation Time 
started (s) 

Time 
detected (s) 

 Situation Time 
started (s) 

Time 
detected (s) 

Start-up 0 0  Start-up 0 0 
Taxiing to runway 16 17  Taxiing to runway 7 10 
Taking off 27 29  Taking off 22 27 
Normal flight 73 72  Normal flight 61 59 
Landing 187 179  Landing 119 121 
Taxiing from runway 272 275  Taxiing from runway 220 221 
Shutdown 302 302  Shutdown 251 251 
Error: 15 seconds (5,0%)  Error: 13 seconds (5,2%) 

 



 

 

Although the test results of both systems are fairly good, we 
are not yet satisfied. It often takes a few seconds to 
accurately detect a situation. This is no problem for a 
Cessna, but in an F-16 covering more than 500 meters per 
second, this can be a problem. Therefore, we would like to 
detect situation changes almost immediately. Our future 
work will consist of improving and fine-tuning the rules 
used by both systems to detect situation changes faster and 
increase reliability. One way to do this is to use the flight 
plan to help detect the current situation and predict future 
situations. However, it is possible that pilots deviate from 
the flight plan, so this should be included in the recognition 
process. In addition we would like to expand the systems to 
include more detailed, synchronous situations and specific 
events such as malfunctions. Together with our other efforts 
currently underway to implement a decision module and 
planner modules, we want to use this improved situation 
awareness module to create a human-like intelligent flight 
bot. 
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