
SHARING SIMULATION MODELS AND TOOLS WITHIN
A COLLABORATIVE RESEARCH PROJECT

Andriy Levytskyy,
Eugene J.H. Kerckhoffs

Delft University of Technology
Faculty of Information Technology and Systems

Mediamatica Department
Mekelweg 4, 2628 CD Delft, The Netherlands

a.levytskyy@cs.tudelft.nl

Hans Vangheluwe
McGill University

School of Computer Science
 3480 University Street

 Montreal, Quebec, Canada H3A 2A7

KEYWORDS

Collaborative simulation environment, heterogeneous
models, heterogeneous tools, metadata, the Internet.

ABSTRACT

Our research aims at developing and building a generic
collaborative environment to support a research and
development process, in which heterogeneous (in
formalism and format) models are being shared, reused and
executed on distributed heterogeneous tools via the
Internet. In this paper we briefly describe the
implementation of the environment in its current state and
consider the functionality of our environment with respect
to sharing simulation models and tools.

1. Introduction

Research and development in multidisciplinary
collaborative projects is characterised by a number of
particularities. The multidisciplinary teams are distributed
geographically, they are free in their choice of research
tools and their knowledge domains differ substantially. As
the result, there exists significant variety of formats, in
which the data and models are being developed by the
collaborators. It also means that in order to perform any
meaningful actions with such heterogeneous data formats,
collaborators have to access the respective tools and have
the expertise beyond their research domains to deal with
technical idiosyncrasies of those tools.

Our research addresses the needs for a seamless integration
of various simulation tools and seamless representation and
manipulation of models in different formats and
formalisms. The goal of our project is a generic
collaborative “different place and different/same time”
environment for sharing models and simulations. The
environment is intended to support running web-accessible
models on distributed heterogeneous tools, as well as piping
and linking simulations and other applications according to
user specifications, herewith tackling semantic differences
in model formalisms and in interfaces between different
simulations. The final generic system is to be adjusted to

cover any concrete situation at hand (i.e., any concrete
collaborative research project with its specific research
tools).

In this paper we present the functionality of the current
prototype with respect to sharing models and simulation
tools. The paper is organised as follows. Section 2 briefly
describes the architecture and the implementation of the
environment. In section 3 we provide an overview of the
functional abilities of the environment. Finally, section 4
concludes the paper with final remarks.

2. Architecture and Implementation

The proposed environment is based on a three-layer
architecture: (i) front-end layer (high-level front-ends), (ii)
middle layer (controller), and finally, (iii) back-end layer
(distributed heterogeneous hardware and software
resources). For more information we refer the reader to [1].

The front layer consists of a number of client-side front-
ends. They provide users with a high level GUI to the
system and enable them to operate in the environment (as is
shown in section 3). Currently, this layer consists of agent-
like software components: trader and mediator agents.
Applied to our situation, the trader agent maintains a
database with metadata on the available models and offers
users a mechanism to search it. A mediator agent is
positioned between (distributed) model sources (at remote
hosts) and users. Tasks that are associated with mediation
are, for instance, accessing, merging models from different
locations and supporting abstraction, generalisation and
representation of the underlying model.

The middle layer of the environment consists of one central
persistent controller written in Python [2]. There are a few
aspects characteristic to the controller. First of all, the core
of the controller is a run-time system for a small process-
interaction simulation language. The former is referred to as
Process Oriented Kernel (POKer), and the latter as POKer
language [3]. The language is used to model a resource-
centric view on the tools in the environment. Each resource
in the model represents a logical view on an actual
scientific tool in the back-end. In order to configure a new

tool into the environment, one has to (1) create a new
resource in the controller’s model, and (2) configure the
resource’s parameters. The most important of the resource’s
parameters are the current capacity of the resource (it shows
whether the resource can still serve more simultaneous
clients) and the FIFO queue of delayed client’s requests.
Based on the capacity state of the resource in the model,
the controller synchronizes user access to the respective
object in the back-end. Only one client per moment can
use the object associated with the resource. If necessary,
blocking occurs. For more details on the controller, see [4].

The back-end layer consists of a number of applications
distributed over the networks that are accessible via the
Distributed Object Technology system to the controller (in
the middle-layer). The Distributed Object Technology
system, we have chosen for the time being is Pyro (PYthon
Remote Objects) [5], which closely resembles Java's
Remote Method Invocation [6]. Each scientific tool (e.g. the
numerical package MatLab) on one of the servers is
registered to Pyro Naming Service (NS) as server object.
There is always a controlled number of application
instances (per object registered to the NS) running for each
tool registered to the controller. Though Pyro is rather
basic when compared to such general systems as, for
example, CORBA, it is small, simple to set up (especially if
the rest of the system is being developed with Python), free
and provides sufficient services, which makes Pyro an
attractive alternative for fast prototyping of distributed
systems.

3. Functional Overview

In this section we consider the abilities of the environment
to support sharing models and simulations. In order to deal
with heterogeneity of models and tools, the environment
employs meta-concepts. Throughout this paper two types of
metadata will be referenced: Metadata for Resource
Discovery (MRD) and Abstract Resource View (ARV).
The former is a manifestation of the model’s attributes and
is based on Dublin Core Metadata Element Set (DCMES)
[7]; the latter is an encapsulation of low-level details
pertaining to the execution of the model and its respective
solver [8].

The functionalities provided by the environment can be
divided into three major services:

Registration: whenever a user would like to share a model1,
he sends a registration message to the trader agent. The
purpose of this message is to provide metadata for the
model’s MRD and ARV records, which will be used by the
system in the other services. MRD elements (fields) in the
message (see Table 1) are a subset of DCMES. Figure 1
shows the web page used for registration. A user needs
either to provide the URL-address of the file with the
registration message, or fill in the on-line form. As the
result of the registration, the metadata about the model (but
not the model itself) is stored as MRD and ARV records
(see respectively Table 2 and Table 3) in the trader agent’s
database (it’s a special database that stores only metadata
about the models).

Element Value
PUBLISHER Quantum Devices, DIOC-7
TITLE Low temperature Schottky barrier

transistor
SUBJECT Low Temperature Behavior of

Schottky barrier MOSFETs
DESCRIPTION Abstract
CREATOR John Smith
CONTACT John.Smith@utopia.edu
LINK www.utopia.edu/people/J.Smith

Table 2: Metadata for Resource Discovery

Element Value
ACCESS HTTP
HOST www.volga.edu
FILE /data/gatedependance.m
USES /data/sbtparameters.m

/data/sbtsetup.m
/data/calculatebc.m
/data/simpsonint.m
/data/poissonzerotemp.m

FILTER MatLab
TYPE Model # default
FORMAT ASCII
FILEOUT # to be provided for execution
ARVOUT matlabMAT

Table 3: Metadata for Abstract Resource View

1 We consider everything (i.e., models in various formalisms, data
files in various formats, documents, etc.) as models.

Element Meta Name Description
PUBLISHER Project Name An entity responsible for making the model available
TITLE Model Title A name given to the model
SUBJECT Subject The topic of the content of the model
DESCRIPTION Description Short description of the model
CREATOR Author The author primarily responsible for making the content of the model
CONTACT Contact E-mail address of the CREATOR or PUBLISHER
LINK Project Homepage Project Homepage
ACCESS Access Methods Access Methods
HOST Host Address of the remote machine hosting the model
FILE Main File Location of the main model file in the file system of the host
USES Other Files List of other files the model depends on
FILTER Associated solver ARV name for the solver associated with the model
FORMAT Format The physical or digital manifestation of the resource
ARVOUT Output ARV Class ARV class for the output produced by the model

Table 1: Elements required for registration

Figure 2: Model Selection page

Figure 1: Model Registration page

Selection enables users to discover and deference any
model registered in the collaborative projects by standard
search criteria. This service relies on Resource Discovery
Metadata and uses a search mechanism. To use this service,
a user surfs to the ‘selection’ web page. There he can
search all the available models by the values of their
elements in the MRD record. Currently, the user is given
a summary of all the existing (no duplication) values for
each element. The meta-information about all the available
models is presented on the page as pairs of keywords
(corresponding to the elements in the record) and their
values. The latter are presented as ‘select boxes’ and the
former as descriptions of the respective boxes. Figure 2
shows the ‘selection’ web page with selection boxes (only
‘Projects’ and ‘Models’ boxes fit into the screenshot). The
user can specify the search criteria by selecting values from
different ‘boxes’. The result is the inclusive-OR of all the
selected values. Submitting the values will return the list of
models that fit into the search criteria at least by one
keyword.

Processing service allows users to perform various
meaningful actions with selected models. In doing so, it
uses the ARV metadata from the selected models and a
library of small scripts, called transformations that
constitute the spectrum of actions available in this service.
What can be done with a concrete model, depends on what
actions (transformations) are associated with the model’s
ARV. There is always at least one transformation: ‘open’,
which for all different types of models means execution on
the associated solver. For example, ‘open’ on a MatLab
model will execute it with MatLab. ‘Opening’ a ‘flat’ data
file will open the software associated with it (e.g., Gnuplot)
and process the data (e.g., according to the transformation,
the data is converted into an image).

In order to illustrate the current environment’s
functionalities, we consider a number of example sessions
to demonstrate what a user can perform within the
environment. All the examples will start off from the model
selection service. Subsection 3.1 shows how data models
are handled in the environment. In subsection 3.2, we
consider simulation of MatLab models, followed by a
demonstration with a real model from Quantum Physics
domain.

3.1 Manipulation on Data Model

The user selects ‘Quantum Devices’ from the box with the
list of projects, and clicks the “Submit” button to request
the trader agent to return a list of the available models, that
have ‘Quantum Devices’ as value for keyword ‘Project’ in
their metadata.

After a user has selected the model he wants to examine, its
ARV-record becomes the input for the mediator agent.
Based on the value of the element ‘FILTER’ of the model’s
ARV, the agent automatically associates a number of
actions applicable to the selected model, The valid actions
are listed on the action bar above the main frame.
Typically, at least the following actions are available:

‘Open’ and ‘Details’. The user clicks the ‘Open’ button to
view the model.

At this point, the mediator agent receives a command to
execute the model. To do this, the agent uses the Abstract
Resource View (ARV) of the model and respective ‘open’
transformation. In our case, the ”open” transformation uses
application Gnuplot (as it is indicated in the model’s ARV
by the element ‘FILTER’) to create a graph of the model’s
data. The mediator agent retrieves the data model from its
location and executes the transformation (at this point the
controller synchronizes access to the actual tools). This
transformation loads the model into Gnuplot and creates the
graph with default parameters. The resulting picture is
included into a web page that also provides a web-based
interface to Gnuplot (see Figure 3). Besides the graphical
representation itself, this page provides the user with meta-
information on the data and statistics (the table above the
image). Beneath the picture, a number of widgets are
available to allow the user to customize the look of the
graph according to his preferences. The user can:
• change the size of the graph;
• zoom-in/zoom out on a particular part of the graph;
• choose a data column for the x-axis;
• choose data columns to be plotted;
• pipe data of a column through a function, before

plotting;
• customise graph styles for columns (solid line, dashed

line, or impulses).
On the basis of the user preferences, the transformation
script is updated and used by Gnuplot to redraw the graph.
The mediator agent includes this updated graph into the
HTML document, which is returned to the user. For
example, the user may alter the range ([2e-05 : 5e-05]),
select impulse in place of line chart, etc. Pressing the
“Submit” button returns a new web page with user
preferences being applied to the graphical representation for
the same data model.

3.2 Manipulation on MatLab model

The user selects ‘MatLab‘ in ‘Solvers’ box. As the result,
user gets a number of models enlisted on the new web page.
Now the user can either go back to change the search
criteria, or make a final selection and confirm it by pressing
“Submit”. If the latter happens, the user can select an action
on the model. For instance, the user clicks “open” the
model. The agent extracts the value of element ‘FILTER’
and de-references the target file. It can be the application
itself, or the associated ARV. In case of MatLab, it is an
ARV for a script (a custom MatLab wrapper) that knows
the location of MatLab, how to invoke and interact with it.
The next step is to de-reference ‘FILE’ and ‘USES’. After
this everything is ready to ‘open’ the file transparently for
user. The model is downloaded from a remote location and
transferred into the temporary directory on the machine
where MatLab is installed. Then the MatLab wrapper is
executed and locates the MatLab via the Pyro NS, and
interactively executes transformation commands. In the
following we demonstrate an execution of example MatLab
model from Quantum Physics Domain.

Figure 3: Display of a data model

Figure 4: Result of MatLab simulation

Example Application in Quantum Physics

Let us assume that the user selects a model with a title ‘Low
temperature Schottky barrier transistor’ and by clicking
“Submit”, starts up the Mediator agent. This agent
automatically associates a number of actions applicable to
the selected model. The valid actions are listed on the
action bar above the main frame. Typically, at least the
following actions are available: ‘Open’ and ‘Details’. Next,
the user clicks the ‘Details’ button to get a web page that
provides the summary about the chosen model. After
familiarizing him with the descriptions of the model (see
Table 2), the user clicks on ‘Open’ button to simulate the
model.

At this point, the mediator agent receives a command to
execute the model. To do this, the agent uses the Abstract
Resource View (ARV) of the model and a transformation.
The former encapsulates the details about heterogeneous
models and their solvers (see Table 3). The latter is a high-
level function that implements an action on the model. In
our case the transformation is to ”open” a model with the
application MatLab (as it is indicated in the model’s ARV
by the element ‘FILTER’), and reads as follows (see
Example 1). Argument ‘FILE’ is the main model file and
‘FILEOUT’ is a temporary filename for the output (for the
purpose of demonstration let’s name it “output.mat”)

openMatlab (FILE, FILEOUT, path=‘c:\ml\temp’):
{

SOFTWARE: MatLab
Begin
clear
addpath path
FILE
save FILEOUT

End
}

Example 1: “Open” Transformation

The next step is to de-reference the application MatLab
itself. Element ‘SOFTWARE’ of the transformation points to
name “MatLab”. First of all, the agent assumes that it is the
name of the ARV for that application and attempts to look
for it in the ARV library. If this fails, an assumption is
made that “MatLab” is a program. In our case the search
returns an ARV (see Table 4).

Element Value
NAME MatLab
ACCESS HTTP
HOST www.dnepr.edu
FILE /bin/tools/ml.cgi
TYPE Tool

Table 4: An Example of “MatLab” ARV

From this ARV the location of MatLab (actually it is a
script that creates a MatLab client object) is extracted,
started up and the related input files (“sbtparameters.m”,
“sbtsetup.m”, “calculatebc.m”, “simpsonint.m”,
“poissonzerotemp.m” and “gatedependance.m” as is
indicated in the model ARV - see Table 3) are passed to it.
The wrapper carries out the following tasks: (1) it finds the
MatLab server object (via the NS) and creates a client

proxy object for it, (2) it makes the model files accessible to
MatLab, and (3) it executes MatLab commands in a generic
way on the proxy object. The commands are defined in the
transformation body (between the ‘begin’ and ‘end’). In this
way, it becomes very easy to create many transformations
for MatLab and MatLab models that are based on the same
wrapper, but perform different actions: simulation, data
processing, visualization, etc.

As the result, application MatLab in accordance to the
transformation: (1) clears the workspace and sets up the
working directory to that where the files are copied, (2)
loads and executes script “gatedependance.m” (value of
‘FILE’), which also loads up the rest of the scripts; and (3)
saves the resulting workspace into file “output.mat”
(‘FILEOUT’).

Next, the wrapper transfers the output file to the web server
and associates an instance of matlabMAT ARV with it (as it
is indicated in the ARV of the model). matlabMAT is an
ARV class for MatLab matrixes. This instance is initialized
with the new location of the output filename “output.mat”.
Such ‘post-processing’ allows the system to interpret the
newly created file correctly and associate a number of
useful transformations with it (‘actions’ in the terms of the
user interface), for example: displayMAT and registerMAT.
The first transformation allows the data model to be
presented graphically; the other assists the user to register
the data model to the trader agent’s database.

Let us continue our session with the visualisation of the
output data. In this case, “Display” action is selected by the
user, which executes the displayMAT transformation on the
output model’s ARV. The latter is similar to that in Table 3
(notice that ‘FILE’ is now “output.mat”); and the former is
given in Example 2.

displayMAT (FILE, FILEOUT, result,
 path =‘c:\ml\temp’):
{
 SOFTWARE: MatLab
 Begin
 clear
 addpath path
 load FILE
 surf (result)
 print -djpeg –f1 -r100 FILEOUT
 End
}

Example 2: “Display” Transformation

Within this concept, the same MatLab wrapper (de-
referenced via the ‘SOFTWARE’ element of the
transformation) is invoked and interactively manipulates
the MatLab server according to the body of the
transformation. As the result, MatLab (application) receives
commands to (1) load a matrix from the input MAT-file
(“output.mat”), (2) visualise it as a graph using ‘surf’
function, and (3) print the graph into an output file
(‘FILEOUT’). Finally, the output file is transferred to the web
server temporary directory and is inserted into the data
representation page (see Figure 4). This page also allows
users to download (save to a local machine) the model in
question.

After seeing the graphical representation, the user continues
with registration of “output.mat” into the database. She or
he surfs back to the original data model (from which the
graph has been created) by clicking the “Back” button of
the web-browser and selects “Register” from the list of
available actions associated with the model (that is
“Display” and “Register”). This action automatically
executes the registerMAT transformation with the ARV
instance for “output.mat”.

The registerMAT transformation passes the metadata from
the ARV as CGI variables to the CGI script that
implements the user interface for the registration process.
The user is provided with a CGI-form, which fields cover
all the metadata elements needed for the Resource
Discovery Metadata and the Abstract Resource View (see
Figure 1). As the matter of fact, all the fields related to the
ARV come already with filled-in values (extracted from the
temporary ARV that was automatically created with
“output.mat”). The user can add to and edit the content of
the form to his likening. To finish the registration, the user
clicks ‘submit’ button, which sends all the registration
information to the executable, which implements the
registration function of the trader agent. If the supplied
information is valid, the registration is complete and the
data model becomes available to the other users in the
environment.

4. Final Remarks

Our research aims at developing and building a generic
collaborative environment to support research and
development process, in which heterogeneous (in
formalism and format) models are being shared, reused and
executed on heterogeneous distributed tools via the
Internet. In this paper we have demonstrated how users can
transparently share and execute models regardless of their
locations and types, and have outlined the environment’s
implementation in the current state. Future work will
concern further development of the used meta-concepts in
order to accommodate more complex simulation scenarios

and extending the functionality of the environment with a
modelling service. On the implementation side, we plan to
move from Pyro as the platform for distributed calculations
to CORBA or HLA [9]. In particular the latter is very
promising due to its inherent services with support for
distributed simulation.

ACKNOWLEDGEMENT

The research reported in this article is done in the
framework of the NanoComp-project [10], sponsored by the
TU-Delft.

REFERENCES

[1] A. Levytskyy and E.J.H. Kerckhoffs. “Towards a Prototype
Web-Based Collaborative Simulation Environment”. SCS:
paper of the 5th Euromedia Conference, May 2000,
pp. 60 - 66.

[2] Python homepage: http://www.python.org
[3] A. Levytskyy and E.J.H. Kerckhoffs, “A Plain Python

Simulator to Control a Collaborative Environment”, SCS:
paper of the 14th European Simulation Multi-conference
(ESM), May 2000, pp. 719 – 727.

[4] A. Levytskyy and E.J.H. Kerckhoffs, “POKer, a Process-
Interaction Simulator and Controller for use in Collaborative
Simulation”, SCS: paper of the 2nd Middle East Symposium
on Simulation and Modelling (MESM), August 2000,
pp. 12 - 20.

[5] Python Remote Objects Homepage:
http://sourceforge.net/projects/pyro

[6] Java Remote Method Invocation:
http://java.sun.com/j2se/1.3/docs/guide/rmi/

[7] Dublin Core Metadata Element Set:
http://purl.oclc.org/dc/documents/rec-dces-19990702.htm

[8] A. Saran, D. Agrawal, A. El Abbadi, T. R. Smith and J. Su;
“Scientific Modeling using Distributed Resources”,
Proceedings of the fourth ACM workshop on Advances on
Advances in geographic information systems, 1997,
pp. 68 – 75.

[9] The High Level Architecture Homepage:
http://www.dmso.mil/portals/hla.html

[10] NanoComp project homepage: http://nanocom.et.tudelft.nl/

