

Integration of Simulation Tools and Models in
a Collaborative Environment

Andriy Levytskyy

Eugene J.H. Kerckhoffs
Delft University of Technology

Faculty of Information Technology and Systems
Mediamatica Department

Mekelweg 4
2628 CD Delft, The Netherlands

a.levytskyy@cs.tudelft.nl

Keywords:
Collaborative environment, metadata, models with different formalisms, heterogeneous distributed tools,

the Internet

ABSTRACT: Scientists in collaborative teams often face technical issues, such as access to and manipulation of
various models and their processing on heterogeneous distributed tools, which actually are irrelevant to the
research and development process itself. In this paper we discuss our approach in achieving a uniform and generic
interface to a set of off-shelf scientific tools, and the transparent sharing and processing of models in different
formats and formalisms.

1. Introduction

This paper presents ongoing research to develop a web-
based collaborative environment supporting reuse and
interoperability of M&S (Modelling and Simulation)
components, created and/or used in a big research
project in which various groups are working together.
The goal of this so-called NanoComp [1] project is to
investigate the feasibility of future electronics based on
quantum devices. To do this it is essential to bring
together various disciplines (physics, circuitry and
systems); M&S components used in the various groups
should be shared and reused through the planned
collaborative environment. Our goal is a generic
environment for collaborative research and development
that shields its users from irrelevant issues in access,
distribution, manipulation and processing of models in
various formats and formalisms on heterogeneous
distributed tools. The generic environment can be
adjusted to cover the concrete situation at hand (in our
case the aforementioned NanoComp project with its
specific scientific tools and models).

Any scientific development process in such
collaborative environments clearly needs infrastructures
for data and tool integration, which involve numerous
access, distribution and computation related issues.
There exist a number of such environments [2 - 5] with
various degrees of collaborative features that address
the above issues. However, the level of abstraction they
provide with respect to data and tools make them more
suitable for scientists working in the same domain.
Users would typically construct a meta-application
using familiar models, data-files, and tools. In case of

multidisciplinary collaborators it is reasonable to expect
less understanding and expertise about each other’s
models1 and tools. In this case, an alternative working
paradigm could be based on working with scientific
concepts related to modelling itself as well as to the
phenomena under investigation as it was demonstrated
in [6]. This research provided us with initial ideas with
respect to abstraction from heterogeneity of models and
tools. Supporting such abstraction requires that
resources (models and tools) be enriched with additional
meta-information to insure proper discovery,
interpretation and processing. In the description of such
networked resources (for sharing purposes) we rely on
the Dublin Core Metadata Initiative [7]. The
environment itself is being developed in Python [8], an
object-oriented scripting language suitable for fast
prototyping. At the lower system level, we employ a
Distributed Object Technology (DOT) to deal with the
distribution of tools. Though there exist already
prominent distributed computing architectures such as
CORBA [9], Java RMI [10] and HLA [11] (each with its
own added value [12]), because of fast prototyping
considerations we have chosen Pyro (PYthon Remote
Objects) [13], which can be extremely easy integrated
with the rest of our system.

In the paper we will consider our approach in achieving
a uniform and generic interface to a set of off-shelf
scientific tools, as well as transparent sharing and
processing of models in different formats and
formalisms. The paper is organised as follows. Section 2

1 We consider everything (i.e., models in various formalisms,
data files in various formats, documents, etc.) as models.

Table 2. ARV Record for Models

NAME: ARV name for the model
ACCESS: Access methods
HOST: Address of the host
FILENAME: Filename at the host
TYPE: ASCII/Binary/etc
TOOL: ARV name of the Tool
ARV_OUT: ARV name for the output

briefly describes how meta-level concepts are used to
shield users from irrelevant low-level system details
about models and tools. In section 3 we provide a
description of the environment's processing platform
that integrates various scientific computing tools.
Section 4 briefly explains aspects of the environment
configuration. Section 5 illustrates the operation of the
environment with a working session example. Finally,
section 6 concludes the paper with final remarks.

2. Metadata

In order to deal with heterogeneity of models and tools,
the environment employs meta-level concepts for model
discovery and model processing. The former (see
subsection 2.1) is crucial for transparent sharing of
models among collaborators and the latter (covered in
subsection 2.2.) is employed to shield the users from
irrelevant execution details and provides a spectrum of
actions applicable to models.

2.1 Model discovery

In order to provide users with extended information,
such as author, description, keywords, etc. with respect
to the available models, every model is accompanied
with metadata. This metadata is a manifestation of the
model’s attributes and is primarily used for model
discovery. The attributes we use to describe models are
based on Dublin Core Metadata Element Set (DCMES)
[14] and constitute a metadata record referred to as
Metadata for Resource Discovery (MRD). Table 1
illustrates a format of this metadata record and describes
its elements.

All models (in various formats and formalisms) are
distributed and maintained at the collaborative sites of

their respective creators. Every model in the
environment is represented and accessible via its MRD
record, which is stored in a central database termed
model base. By summarising the external attributes of a
model and uniquely identifying the associated model,
MRD enables users to publish and discover models by
various criteria.

MRD forms the highest level of metadata, which
facilitates the sharing of models in the environment.
However, MRD is not sufficient to enable users to
access and manipulate models. For that purpose the
environment employs additional meta-level concepts
(for more details see [6]) as dealt with in subsection 2.2.

2.2 Model processing

Every model has a certain amount of low-level details
(such as location of a model, access methods, type of a
model, etc.), which are crucial for user manipulation of
a discovered model. The same holds for the
heterogeneous distributed tools, which are needed
to process the models. The environment encapsulates
these low-level details about models and tools in a
metadata record called Abstract Resource View (ARV).

ARVs are special structures that provide a high-level
schematic view on models and tools. The ARV contains
a complete totality of information pertaining to the
 execution of the model on its respective solver, and
provides an unambiguous identifier to the underlying
resource (a model or a tool). An MRD record
is connected with the metadata for
 model processing via the value of the element
IDENTIFIER, which is the ARV name of the model
 concerned. Each model and tool ARV instance has to
be created by its users.

Table 1. Metadata for Resource Discovery

TITLE : A name given to the model
SUBJECT : The topic of the content of the model
DESCRIPTION : An account of the content of the model
CREATOR : An entity primarily responsible for making the content of the model
CONTRIBUTOR : An entity responsible for making contributions to the content of

the model
PUBLISHER : An entity responsible for making the model available
CONTACT : Contact information on either Creator, or Contributor, or Publisher
IDENTIFIER : An unambiguous reference to the model’s ARV

Table 3. ARV Record for Tools

NAME: ARV name for the tool
ACCESS: Access methods
HOST: Address of the host
FILENAME: Filename at the host
TYPE: Tool
TIMEOUT: Tunable for efficiency
VARIABLES: Execution time variables

Figure 2. Architecture of the system.

Computational resources:
Gnuplot
MatLab

workstations
…

Resources

Data resources:
Modelbase

DBMSs
…

Kernel Control Utility Custom Front Ends Agents

Procesing Platform Controller

Front Ends

Figure 1. User Interface to the Transformation Function “Display” for Gnuplot

There are two separate ARV types for models and tools
(see Tables 2 and 3 for their respective representation).
The meaning of most elements in an ARV record is self-
explanatory. The value of element FILENAME is
assumed to be another ARV name; if finding this ARV
in the ARV library fails then it is assumed to be a
filename. TIMEOUT is used to prevent deadlocks or
blocking that might happen because of incorrect inputs.
Element ARV_OUT is a name of an ARV to be
associated with the produced output.

Performing meaningful actions on ARVs of models
involves interaction with underlying heterogeneous
(scientific) tools, which is accomplished through
abstract high-level functions termed transformations
(see Table 4 for an example). A transformation is
specifically developed for a particular tool and contains
a reference to that tool (the value of element TOOL is
the name of the tool's ARV). A transformation is a
containment for tool's commands (between the begin
and end), which implement an action function of a
transformation and are native to a specific tool. As such,
transformations encapsulate the knowledge about the
tool's user interface and are used to carry out an
interactive session on behalf of remote users.

Transformations consist of two parts: the transformation
itself and a part that is responsible for user interface to
that transformation (if applicable). Such combination
introduces a degree of interactivity into the execution of
transformations. For example, a “Display” action for a
data model (columns of data) is a transformation that
involves the tool ‘Gnuplot’ to draw a graph. There is an
interface counterpart, which provides a user with a web
interface to a subset of ‘Gnuplot’ functionality related to
the action (see Figure 1). This allows the user to
customize default transformation parameters before

initiating a request for the transformation. Table 4
shows the resulting instance of the “Display”
transformation with the concrete parameters provided
by the user. This instance contains a script for the tool
‘Gnuplot’, uses ‘mdl1’ as input data source, and plots
a graph into ‘mdl2’. The resulting file of this
transformation will be associated with the ARV, which
name is indicated in element ARV_OUT of the ARV
record for ‘mdl1’.

Transformations available for a tool form a spectrum of
actions that can be applied by a user to the class of
models (more exactly to their ARVs) associated with
that particular tool. Transformations are relatively small
and simple to code and develop, thereby it is quite easy
to extend the library of actions available to users.

Finally, all the information about a class of models and
the transformations applicable to it is encapsulated in a
metadata structure termed manipulation structures (M-
structure). By putting the ARV and transformation
concepts together, M-structures represent the spectrum
of available transformations applicable to a given class
of models.

3. Processing Platform

In our design of the Processing Platform (PP) we would
like to address the following needs: transparent
operation of heterogeneous off-shelf tools,
sharing/reusing tools, dealing with license restrictions,
workload control, integrity of multiple users’
experiments being executed on shared tools and
automation of routine processes. Crucial in our
approach is the application of a discrete-event
simulation kernel in order to meet our goals as indicated
above. Together with a DOT system, the kernel (further
on referred to as Processing Platform Controller (PPC)
or simply Controller) maintains an abstract view on the
state of the tools in the back-end and synchronises
requests to them.

3.1 Architecture overview

The environment is based on a three-layer architecture
(see Figure 2): (i) front-end layer (high-level front-
ends), (ii) middle layer (Processing Platform
Controller), and finally, (iii) back-end layer (distributed
heterogeneous tools). In this subsection we give a brief
overview of the layers with emphasis on the second and
third layer, which form the Processing Platform.

The front layer consists of a number of client-side front-
ends (e.g., an agent environment). They provide users
with a high level GUI to the system and enable them to
operate in the environment.

Table 4. Represenation of ‘Display’
Transformation Instance for the Tool Gnuplot

Display (mdl1, mdl2)
{
TOOL: Gnuplot
Begin

#gnu script
set terminal pbm color small
set nopolar
set nokey
set size 0.6, 0.5
set xrange []
set yrange []
set xlabel "Time t h"
set label 2 "2" at 148, 1221 right
set output mdl2
plot mdl1 thru x using 1:2 with lines
exit

End
}

The middle layer of the environment consists of one
central persistent Controller (PPC). This Controller
synchronises transformation requests to the tools and
manages queues of requests per tool. There are a few
aspects characteristic to the Controller. First of all, the
core of the Controller is a run-time system for a small
process-interaction simulation language. The former is
referred to as Process Oriented Kernel (POKer), and the
latter as POKer language [15]. The language is used to
model a resource-centric view on the tools in the
environment. Each resource in the Controller’s model
represents a logical view on an actual (scientific) tool in
the back-end. In general, the relation of a resource to a
tool’s instances is one to many. In order to configure a
new tool into the PPC (for more details see section 4),
one has to create a new resource in the Controller’s
model, and configure the resource’s attributes. Most
important of the attributes are the current capacity of the
resource (it shows whether the resource can still serve
more simultaneous requests) and a FIFO queue of
delayed transformation requests on behalf of clients.
The former is influenced by a number of factors, such as
licence restrictions, server configuration (shared,
dedicated) of the tool and workload considerations.
Based on the capacity state of the resource in
the Controller’s model, the Controller synchronises
the clients’ requests to access and perform
transformations on the respective tool in the back-
end. If necessary, blocking occurs. For more details
on the Controller, see [16].

The back-end layer consists of a number of tools
distributed over the network and accessible via a DOT
system to the Controller. There is always a controlled
number of a tool’s instances running for each respective

resource registered to the PPC. The maximum number
of instances allowed for a tool equals the resource’s
capacity for that tool.

3.2 Implementation

The agent environment consists of trader, mediator and
interface agents. Applied to our situation, the trader
agent maintains a model base with MRD records on the
available models and offers users a mechanism to search
them. A mediator agent is positioned between
distributed model sources (at remote hosts) and users.
Tasks that are associated with mediation are, for
instance, accessing, merging models from different
locations, supporting abstraction, generalisation, and
processing the underlying model(s). Finally, the
interface agent provides user interface to the
functionality (services) of the other agents. An overview
of the agent environment is shown in Figure 3.

The PPC was developed in Python [8], a scripting
object-oriented language. The implementation of POKer
was driven by the ideas and operational semantics
behind πDemos [17] – a small process-oriented discrete-
event system simulator.

The DOT system, we have chosen for the time being is
Pyro [13], which closely resembles Java's Remote
Method Invocation [10]. Though Pyro is rather basic
when compared to such general systems as, for
example, CORBA, it is small, simple to set up
(especially if the rest of the system is being developed
with Python), free of charge and provides sufficient

Mediator Agent Trader Agent

Interface Agent

MRD

Model Base

User

‘Discover’ &
'Register'
Services

HTML

'Process'
Service

MRD

M-structures

Models at the sites of collaborators

Models Models

Transform.
name

Access
Models

Access
Models

Processing Platform

Transformation Request

Figure 3. Agent Environment

services. All of the above makes Pyro an attractive
alternative for fast prototyping of distributed systems
within the Python community.

The Processing Platform (PP) is built on distributed
scientific tools (such as, for example the numerical
package MatLab) registered to Pyro Naming Service
(NS) as server objects. These objects are created with
custom wrappers (see wrapper in subsection 4.1) that
have to be developed and tailored for every tool in the
back-end.

Tools in the back-end operate in one of the two server
modes: shared or dedicated. A shared server is shared
by multiple clients and there is never more than
one instance of a shared server running. A
dedicated server is dedicated to a single client.
Each client that requests a connection to a
dedicated server will cause a separate instance of it to
be launched, and that server will not be shared with any
other clients. Therefore, there can be several instances
of a dedicated server running simultaneously.

Communication between the agents relies on the
Common Gateway Interface (CGI). Agents
communicate with the PPC using a custom protocol
through sockets. The Controller communicates with the
Pyro Naming Service in the back-end via a PYRO
protocol (based on top of TCP/IP). All the interactions
between the Pyro server and client objects also use the
PYRO protocol.

4. Configuring the Environment

4.1 Micro-level

The M-structures are in fact models on their own and
they are registered, discovered, and processed just like
any other model by the trader and mediator agents.
Their registration also requires an MRD record, and
their location is not specific to any part of the
environment. However, because of its importance to the
functional operation of the environment, all the M-
structures are typically registered by the administrator
and are stored in a certain controlled location.

Abstract Resource Views are managed in the same way
as M-structures. By default, the mediator agent has
access to at least two simple transformations that enable
users to view ARVs and to create their instances.

Transformations are implementations of useful high
level functions that involve and are developed for a

particular tool. All transformations are stored in a
library local to the PPC, and their interface counterparts
are usually stored local to the agents (Sun and Linux in
Figure 4). Transformations do not necessarily involve
interaction with scientific applications, but may also
execute simple ’helper’ functions.

Wrappers encapsulate the I/O of tools in a generic way
and comply with the DOT system used for a particular
environment instance. In our case, a wrapper consists of
two parts (Python scripts): the server part
(implementation of the encapsulation itself) and the
(very thin) client part. The former creates a server object
and registers it to the DOT system; the latter creates a
dynamic proxy object of the server object on the client
side. The server part is stored local to the respective
tool, and the client part is stored in a library local to the
PPC (WinNT and Sun in Figure 4).

Tools are any software packages or executable programs
that support at least a standard-I/O interface. Most of the
legacy systems fall into this category. The spectrum of
tools can vary from complex applications such as the
numerical package MatLab to home-made executables
that implement simple ‘helper’ functions, like
transforming data from one format to another. Tools can
run on various hardware and software platforms, as long
as the DOT of choice can run there too.

4.2 Macro-level

Adjusting the PP to a concrete project or adding a new
scientific tool can be seen as a two step process. First of
all, for each new tool a wrapper, that would encapsulate
it as DOT object and provide an interface to it, has to be
developed. Secondly, the administrator of the
environment has to install the tool and the wrapper on
one of the environment’s servers, create and register a
new server object to the DOT system, and update the
Processing Platform Controller’s model.

In our case, the above-mentioned wrapper contains a
remote Python class, which implements a Pyro
server object on behalf of the new one. An administrator
creates a Pyro Daemon object (if it doesn’t
exist yet) on the same machine (see WinNT in Figure 4),
and connects an instance of the remote class
to the daemon as server object under a distinct
name (which later will be used by clients to find the
server object). Consequently, the server object is
registered to the NS.

There can be many instances of the same tool running in
the back-end, but only one server object is created and
registered to the Pyro NS. Once this is done, the client
part of the new wrapper can be added to the library of
wrappers local to the PPC and the creator of the wrapper
has to create an instance of ARV for the new tool, as
well as a new ARV class for models supported by that
tool.

As new transformations are being created for the ARVs
of the configured tools, these transformations are stored
in a library local to the PPC. Consequently, the creator
of the transformation has to create and register to the
trader agent a new M-structure, or update an existing
one.

The final step is to update the model of the Controller:
Using the POKer language, the administrator creates a
new instance of a resource class with a desired capacity
and adds it to the model. In case of a shared tool, the
capacity of the respective resource in the PPC should be
set to 1. Then multiple clients working with the shared
tool will be synchronised in time by the PPC to prevent
them from affecting each other’s sessions. In case of a
dedicated tool, it is reasonable to control the workload
caused by the instances a dedicated tool can launch.
Because of the heterogeneity of tools (often legacy

ones), the granularity of control occurs at the level of
tools’ instances. This control is executed by the PPC via
the capacity attribute of the resource. The value of the
capacity defines how many instances of the particular
tool are allowed to run concurrently. The PPC will
immediately grant any incoming requests as long as the
number of the instances is below the capacity limit.
Otherwise, it will synchronise requests like in the case
of a shared tool.

5. Working Example

We now describe an example user session to show how
the environment operates from the top to the bottom
(see Figure 5). The demonstration will involve a
transformation on the tool MatLab and be carried out on
the instance of the environment as shown in Figure 4.

Let us take the situation that a scientist has discovered a
MatLab model (located somewhere on the Internet) via
the trader agent. The model itself is located at a site
maintained in (let us assume) London. The processing
platform with the tool MatLab is located in Amsterdam.
The selected model belongs to the class of ‘MatLab’
models, for which there exists an associated M-
structure, which enables the mediator agent to
automatically provide the user with a list of available

Sun

NS

Server MatlabServer MatlabTransfor-
mations

PPC

Sockets,

Pyro

NS
Daemon

Pyro

Pyro
Daemon

Pyro

Working
directory

Server Matlab

MatLab

Windows NT Linux

Model Base,
M-structures,

ARVs

Web
Server

HTTP

Comm.
Server

Sockets

Agents

html

Register
Select

Process

Figure 4. An Instance of the Proposed Environment

actions applicable to that class of models (Linux in
Figure 4). Upon selection of an action by the user (e.g.,
‘Open’), the agent de-references the ARV name for the
action implementation, a transformation that knows the
appropriate tool and knows what to interact to that tool.
If applicable, an interaction with the user occurs via the
interface part of the transformation, before the agent
initiates a request to the PPC to execute that
transformation on MatLab.

The Controller located on Sun (see Figure 4) reacts to
the request according to the state of the tool that is
addressed by the request: the request is either granted or
delayed until all the previous requests (if any) from the
waiting queue for the tool MatLab have been processed.
Once the state of the resource MatLab in the
Controller’s model becomes free (as the result of
finishing processing all previous requests), our request
is granted: the PPC locates the transformation by its
name in the library of transformations, and processes it
with a Session Manager (SM) in a separate thread.

The SM manages a transformation session with the
target tool MatLab on WinNT machine (see Figure 4). In
this session a MatLab server object is located via the
Pyro NS; the model is downloaded from the remote
location in London and transferred into the temporary
directory local to tool MatLab, and the server object
interactively executes MatLab commands as is indicated
in the transformation body. For transformation ‘Open’,
it would be the following sequence: load, execute, and
save. Respectively, an instance of MatLab loads and
executes the model (the M-file as well as all the other
linked M and MAT-files), saves the resulting workspace
into a temporarily file and clears its workspace for the
next session. This concludes the current session with the
tool MatLab. As the last step, the SM creates an ARV
instance for the output model (a MAT-file), and passes
this instance as an argument to the mediator agent. This
allows the agent to pre-associate available meaningful
actions (derived from the respective M-structure) with
the output model.

The agent provides the user with a web page, which
enlists the actions applicable to the produced output. For
example, the scientist can choose between ‘Display’ and
‘Register’. These actions would initiate execution of the
respective transformations. Steps in the execution of
these transformations are similar to those just outlined
above. The process as is depicted in Figure 5, can be
applied again to the result of the previous iteration. This
can be continued until there are no more ARV’s can be
associated with the output or/and the produced output
becomes very basic (e.g., a jpeg file).

6. Final Remarks

The work considered in this paper aims at developing
and building a generic collaborative environment to
support on-line research and development processes, in
which simulations on distributed solvers, sharing and
reuse of various models in different formalisms and
formats are involved. We have presented an approach in
which meta-level concepts are used to deal with
heterogeneity of models and tools, and a process-
oriented discrete-event system simulator is used to
complement a distributed objects system with access
control to the objects in the back-layer.

Future works will concern further elaboration of the
meta-level concepts in order to accommodate semantic
aspects of models (such as formalism, experimental
frame, etc.), complex experiment scenarios and extend
the functionality of the environment with a modelling
service. On the implementation side, we plan to provide
a user-friendly modelling front-end and consider
moving from Pyro to a more general, system and
language independent, Distributed Object Technology
system.

Transformation Processing

Client-Sever Session

Select a Model

Choose an Action

Transformation Request

Transformation Execution

Execute Model on the Tool

Associate ARV instance with the Output

Discover Service of Trader Agent

Figure 5. Top to Bottom View on the Execution
Process

User Interaction

Acknowledgement

The research reported in this paper is done in the
framework of the NanoComp-project [1], sponsored by
the TU-Delft.

References

[1] NanoComp homepage: http://nanocom.et.tudelft.nl

[2] A. D. Malony, J. E. Cuny, J. L. Skidmore and M. J. Sottile:

“Computational experiments using distributed tools in a web-

based electronic notebook environment” Elsevier Science,

Future Generation Computer Systems, Vol. 16 (5) (2000), pp.

453-464.

[3] T. Haupt, E. Akarsu and G. Fox: “WebFlow: a framework for

web based metacomputing” Elsevier Science, Future

Generation Computer Systems, Vol. 16 (5) (2000), pp.

445-451.

[4] P. S. Coe, F. W. Howell, R. N. Ibbett and L. M. Williams:

“Technical note: A Hierarchical Computer Architecture Design

and Simulation Environment” ACM Transactions on Modeling

and Computer Simulation, Vol. 8, No. 4, pp. 431-446, October

1998.

[5] S.Scherber, K.Wöllhaf, C.Müller-Schloer: “An Industrial

Approach for the Simulation of Complex Heterogeneous

Systems” SCS: paper of the 14th European Simulation Multi-

conference (ESM), pp. 318-322, May 2000.

[6] A. Saran, D. Agrawal, A. El Abbadi, T. R. Smith and J. Su:

“Scientific Modeling using Distributed Resources” Proceedings

of the fourth ACM workshop on Advances on Advances in

geographic information systems, pp. 68 – 75, 1997.

[7] Dublin Core Metadata Initiative Homepage:

http://dublincore.org/index.shtml

[8] Python Homepage: http://www.python.org

[9] CORBA Homepage: http://www.corba.org

[10] Java RMI: http://java.sun.com/j2se/1.3/docs/guide/rmi

[11] High LA Homepage: http://www.dmso.mil/index.php?page=64

[12] A. Buss and L. Jackson: “Distributed Simulation Modelling: a

Comparison of HLA, CORBA and RMI” Proceedings of the

1998 Winter Simulation Conference, pp. 819-825, 1998

[13] Python Remote Objects Homepage:

http://sourceforge.net/projects/pyro

[14] Dublin Core Metadata Element Set:

http://purl.oclc.org/dc/documents/rec-dces-19990702.htm

[15] A. Levytskyy and E.J.H. Kerckhoffs: “A Plain Python

Simulator to Control a Collaborative Environment” SCS: paper

of the 14th European Simulation Multi-conference (ESM),

pp. 719-727, May 2000.

[16] A. Levytskyy and E.J.H. Kerckhoffs: “POKer, a Process-

Interaction Simulator and Controller for use in Collaborative

Simulation” SCS: paper of the 2nd Middle East Symposium on

Simulation and Modelling (MESM), pp. 12-20, August 2000.

[17] G. Birtwistle and C. Tofts: “An operational semantics of

process-oriented simulation languages: Part 1 πDemos” Trans.

Soc. Comput. Simul., 10 (4), pp. 299 – 333, December 1994.

Author Biographies

EUGENE J.H. KERCKHOFFS holds a MSc-degree from Delft

University of Technology (1970, Physical Engineering, thesis on

analog and hybrid computer simulation) and a PhD-degree from the

University of Ghent (1986, Computer Science, thesis on parallel

continuous simulation). Currently, he is an associate professor at Delft

 University of Technology (Faculty “Information Technology and

Systems”, Department “Mediamatica”, Group “Knowledge-based

Systems”). He is also chairholder of the SCS Chair in Simulation

Sciences at the University of Ghent, Belgium.

ANDRIY LEVYTSKYY graduated from Chernivtsi State University,

Ukraine and holds a M.Sc. degree in Computer Science. Currently, he

is a Ph.D student at Delft University of Technology, Faculty

“Information Technology and Systems”, Department “Mediamatica”,

Group “Knowledge-based Systems”.

