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ABSTRACT:  Scientists in collaborative teams often face technical issues, such as access to and manipulation of 
various models and their processing on heterogeneous distributed tools, which actually are irrelevant to the 
research and development process itself. In this paper we discuss our approach in achieving a uniform and generic 
interface to a set of off-shelf scientific tools, and the transparent sharing and processing of models in different 
formats and formalisms. 
 
1. Introduction 
 
This paper presents ongoing research to develop a web-
based collaborative environment supporting reuse and 
interoperability of M&S (Modelling and Simulation) 
components, created and/or used in a big research 
project in which various groups are working together. 
The goal of this so-called NanoComp [1] project is to 
investigate the feasibility of future electronics based on 
quantum devices. To do this it is essential to bring 
together various disciplines (physics, circuitry and 
systems); M&S components used in the various groups 
should be shared and reused through the planned 
collaborative environment. Our goal is a generic 
environment for collaborative research and development 
that shields its users from irrelevant issues in access, 
distribution, manipulation and processing of models in 
various formats and formalisms on heterogeneous 
distributed tools. The generic environment can be 
adjusted to cover the concrete situation at hand (in our 
case the aforementioned NanoComp project with its 
specific scientific tools and models). 
 
Any scientific development process in such 
collaborative environments clearly needs infrastructures 
for data and tool integration, which involve numerous 
access, distribution and computation related issues. 
There exist a number of such environments [2 - 5] with 
various degrees of collaborative features that address 
the above issues. However, the level of abstraction they 
provide with respect to data and tools make them more 
suitable for scientists working in the same domain. 
Users would typically construct a meta-application 
using familiar models, data-files, and tools. In case of 

multidisciplinary collaborators it is reasonable to expect 
less understanding and expertise about each other’s 
models1 and tools. In this case, an alternative working 
paradigm could be based on working with scientific 
concepts related to modelling itself as well as to the 
phenomena under investigation as it was demonstrated 
in [6]. This research provided us with initial ideas with 
respect to abstraction from heterogeneity of models and 
tools. Supporting such abstraction requires that 
resources (models and tools) be enriched with additional 
meta-information to insure proper discovery, 
interpretation and processing. In the description of such 
networked resources (for sharing purposes) we rely on 
the Dublin Core Metadata Initiative [7]. The 
environment itself is being developed in Python [8], an 
object-oriented scripting language suitable for fast 
prototyping. At the lower system level, we employ a 
Distributed Object Technology (DOT) to deal with the 
distribution of tools. Though there exist already 
prominent distributed computing architectures such as 
CORBA [9], Java RMI [10] and HLA [11] (each with its 
own added value [12]), because of fast prototyping 
considerations we have chosen Pyro (PYthon Remote 
Objects) [13], which can be extremely easy integrated 
with the rest of our system. 
 
In the paper we will consider our approach in achieving 
a uniform and generic interface to a set of off-shelf 
scientific tools, as well as transparent sharing and 
processing of models in different formats and 
formalisms. The paper is organised as follows. Section 2 

                                                           
1 We consider everything (i.e., models in various formalisms, 
data files in various formats, documents, etc.) as models. 



   

  

Table 2. ARV Record for Models 

NAME: ARV name for the model
ACCESS: Access methods
HOST: Address of the host
FILENAME: Filename at the host
TYPE: ASCII/Binary/etc
TOOL: ARV name of the Tool
ARV_OUT: ARV name for the output

briefly describes how meta-level concepts are used to 
shield users from irrelevant low-level system details 
about models and tools. In section 3 we provide a 
description of the environment's processing platform 
that integrates various scientific computing tools. 
Section 4 briefly explains aspects of the environment 
configuration. Section 5 illustrates the operation of the 
environment with a working session example. Finally, 
section 6 concludes the paper with final remarks. 
 
2. Metadata 
 
In order to deal with heterogeneity of models and tools, 
the environment employs meta-level concepts for model 
discovery and model processing. The former (see 
subsection 2.1) is crucial for transparent sharing of 
models among collaborators and the latter (covered in 
subsection 2.2.) is employed to shield the users from 
irrelevant execution details and provides a spectrum of 
actions applicable to models. 
 
2.1 Model discovery 
 
In order to provide users with extended information, 
such as author, description, keywords, etc. with respect 
to the available models, every model is accompanied 
with metadata. This metadata is a manifestation of the 
model’s attributes and is primarily used for model 
discovery. The attributes we use to describe models are 
based on Dublin Core Metadata Element Set (DCMES) 
[14] and constitute a metadata record referred to as 
Metadata for Resource Discovery (MRD). Table 1 
illustrates a format of this metadata record and describes 
its elements.  
 
All models (in various formats and formalisms) are 
distributed and maintained at the collaborative sites of 

their respective creators. Every model in the 
environment is represented and accessible via its MRD 
record, which is stored in a central database termed 
model base. By summarising the external attributes of a 
model and uniquely identifying the associated model, 
MRD enables users to publish and discover models by 
various criteria. 
 
MRD forms the highest level of metadata, which 
facilitates the sharing of models in the environment. 
However, MRD is not sufficient to enable users to 
access and manipulate models. For that purpose the 
environment employs additional meta-level concepts 
(for more details see [6]) as dealt with in subsection 2.2. 
 
2.2  Model processing 
 
Every model has a certain amount of low-level details 
(such as location of a model, access methods, type of a 
model, etc.), which are crucial for user manipulation of 
a discovered model. The same holds for the 
heterogeneous   distributed  tools,   which  are  needed 
to process the models. The environment encapsulates 
these   low-level   details about models and tools in a 
metadata record called Abstract Resource View (ARV). 
 
ARVs are special structures that provide a high-level 
schematic view on models and tools. The ARV contains 
a complete totality of information pertaining to the 
 execution  of  the model on its respective solver, and 
provides an unambiguous identifier to the underlying 
resource  (a    model   or a    tool).   An   MRD   record 
is connected   with   the   metadata   for 
 model  processing via the  value  of  the element 
IDENTIFIER, which is the ARV  name  of  the  model 
 concerned. Each model and tool ARV instance has to 
be created by its users. 

Table 1. Metadata for Resource Discovery

TITLE : A name given to the model
SUBJECT : The topic of the content of the model
DESCRIPTION : An account of the content of the model
CREATOR : An entity primarily responsible for making the content of the model
CONTRIBUTOR : An entity responsible for making contributions to the content of

the model 
PUBLISHER : An entity responsible for making the model available
CONTACT : Contact information on either Creator, or Contributor, or Publisher
IDENTIFIER : An unambiguous reference to the model’s ARV

Table 3. ARV Record for Tools 

NAME: ARV name for the tool
ACCESS: Access methods
HOST: Address of the host
FILENAME: Filename at the host
TYPE: Tool
TIMEOUT: Tunable for efficiency
VARIABLES: Execution time variables



   

  

Figure 2. Architecture of the system. 
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Figure 1. User Interface to the Transformation Function “Display” for Gnuplot 



   

  

 
There are two separate ARV types for models and tools 
(see Tables 2 and 3 for their respective representation). 
The meaning of most elements in an ARV record is self-
explanatory. The value of element FILENAME is 
assumed to be another ARV name; if finding this ARV 
in the ARV library fails then it is assumed to be a 
filename. TIMEOUT is used to prevent deadlocks or 
blocking that might happen because of incorrect inputs. 
Element ARV_OUT is a name of an ARV to be 
associated with the produced output. 
 
Performing meaningful actions on ARVs of models 
involves interaction with underlying heterogeneous 
(scientific) tools, which is accomplished through 
abstract high-level functions termed transformations 
(see Table 4 for an example). A transformation is 
specifically developed for a particular tool and contains 
a reference to that tool (the value of element TOOL is 
the name of the tool's ARV). A transformation is a 
containment for tool's commands (between the begin 
and end), which implement an action function of a 
transformation and are native to a specific tool. As such,  
transformations encapsulate the knowledge about the 
tool's user interface and are used to carry out an 
interactive session on behalf of remote users. 
 
Transformations consist of two parts: the transformation 
itself and a part that is responsible for user interface to 
that transformation (if applicable). Such combination 
introduces a degree of interactivity into the execution of 
transformations. For example, a “Display” action for a 
data model (columns of data) is a transformation that 
involves the tool ‘Gnuplot’ to draw a graph. There is an 
interface counterpart, which provides a user with a web 
interface to a subset of ‘Gnuplot’ functionality related to 
the action (see Figure 1). This allows the user to 
customize default transformation parameters before 

initiating a request for the transformation. Table 4 
shows the resulting instance of the “Display” 
transformation with the concrete parameters provided 
by the user. This instance contains a script for the tool 
‘Gnuplot’, uses ‘mdl1’ as input data source, and plots 
a graph into ‘mdl2’. The resulting file of this 
transformation will be associated with the ARV, which 
name is indicated in element ARV_OUT of the ARV 
record for ‘mdl1’.  
 
Transformations available for a tool form a spectrum of 
actions that can be applied by a user to the class of 
models (more exactly to their ARVs) associated with 
that particular tool. Transformations are relatively small 
and simple to code and develop, thereby it is quite easy 
to extend the library of actions available to users.  
 
Finally, all the information about a class of models and 
the transformations applicable to it is encapsulated in a 
metadata structure termed manipulation structures (M-
structure). By putting the ARV and transformation 
concepts together, M-structures represent the spectrum 
of available transformations applicable to a given class 
of models. 
 
3. Processing Platform 
 
In our design of the Processing Platform (PP) we would 
like to address the following needs: transparent 
operation of heterogeneous off-shelf tools, 
sharing/reusing tools, dealing with license restrictions, 
workload control, integrity of multiple users’ 
experiments being executed on shared tools and 
automation of routine processes. Crucial in our 
approach is the application of a discrete-event 
simulation kernel in order to meet our goals as indicated 
above. Together with a DOT system, the kernel (further 
on referred to as Processing Platform Controller (PPC) 
or simply Controller) maintains an abstract view on the 
state of the tools in the back-end and synchronises 
requests to them. 
 
3.1 Architecture overview 
 
The environment is based on a three-layer architecture 
(see Figure 2): (i) front-end layer (high-level front-
ends), (ii) middle layer (Processing Platform 
Controller), and finally, (iii) back-end layer (distributed 
heterogeneous tools). In this subsection we give a brief 
overview of the layers with emphasis on the second and 
third layer, which form the Processing Platform. 
 
The front layer consists of a number of client-side front-
ends (e.g., an agent environment). They provide users 
with a high level GUI to the system and enable them to 
operate in the environment. 

Table 4. Represenation of ‘Display’ 
Transformation Instance for the Tool Gnuplot 

Display (mdl1, mdl2)
{
TOOL: Gnuplot
Begin

#gnu script
set terminal pbm color small
set nopolar
set nokey
set size 0.6, 0.5
set xrange []
set yrange []
set xlabel "Time t h"
set label 2 "2" at 148, 1221 right
set output mdl2
plot mdl1 thru x using 1:2 with lines
exit

End
}



   

  

The middle layer of the environment consists of one 
central persistent Controller (PPC). This Controller 
synchronises transformation requests to the tools and 
manages queues of requests per tool. There are a few 
aspects characteristic to the Controller. First of all, the 
core of the Controller is a run-time system for a small 
process-interaction simulation language. The former is 
referred to as Process Oriented Kernel (POKer), and the 
latter as POKer language [15]. The language is used to 
model a resource-centric view on the tools in the 
environment. Each resource in the Controller’s model 
represents a logical view on an actual (scientific) tool in 
the back-end. In general, the relation of a resource to a 
tool’s instances is one to many. In order to configure a 
new tool into the PPC (for more details see section 4), 
one has to create a new resource in the Controller’s 
model, and configure the resource’s attributes. Most 
important of the attributes are the current capacity of the 
resource (it shows whether the resource can still serve 
more simultaneous requests) and a FIFO queue of 
delayed transformation requests on behalf of clients. 
The former is influenced by a number of factors, such as 
licence restrictions, server configuration (shared, 
dedicated)  of  the  tool  and  workload  considerations. 
Based  on  the  capacity   state   of   the   resource   in 
the  Controller’s   model, the Controller synchronises 
the clients’ requests to access and perform 
transformations on  the  respective  tool  in  the  back-
end.  If  necessary, blocking  occurs.  For more details 
on the Controller, see [16]. 
 
The back-end layer consists of a number of tools 
distributed over the network and accessible via a DOT 
system to the Controller. There is always a controlled 
number of a tool’s instances running for each respective 

resource registered to the PPC. The maximum number 
of instances allowed for a tool equals the resource’s 
capacity for that tool. 
 
3.2 Implementation 
 
The agent environment consists of trader, mediator and 
interface agents. Applied to our situation, the trader 
agent maintains a model base with MRD records on the 
available models and offers users a mechanism to search 
them. A mediator agent is positioned between 
distributed model sources (at remote hosts) and users. 
Tasks that are associated with mediation are, for 
instance, accessing, merging models from different 
locations, supporting abstraction, generalisation, and 
processing the underlying model(s). Finally, the 
interface agent provides user interface to the 
functionality (services) of the other agents. An overview 
of the agent environment is shown in Figure 3. 
 
The PPC was developed in Python [8], a scripting 
object-oriented language. The implementation of POKer 
was driven by the ideas and operational semantics 
behind πDemos [17] – a small process-oriented discrete-
event system simulator. 
 
The DOT system, we have chosen for the time being is 
Pyro [13], which closely resembles Java's Remote 
Method Invocation [10]. Though Pyro is rather basic 
when compared to such general systems as, for 
example, CORBA, it is small, simple to set up 
(especially if the rest of the system is being developed 
with Python), free of charge and provides sufficient 
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Figure 3. Agent Environment 



   

  

services. All of the above makes Pyro an attractive 
alternative for fast prototyping of distributed systems 
within the Python community.  
 
The Processing Platform (PP) is built on distributed 
scientific tools (such as, for example the numerical 
package MatLab) registered to Pyro Naming Service 
(NS) as server objects. These objects are created with 
custom wrappers (see wrapper in subsection 4.1) that 
have to be developed and tailored for every tool in the 
back-end. 
 
Tools in the back-end operate in one of the two server 
modes: shared or dedicated. A shared server is shared 
by  multiple  clients  and  there  is  never  more  than 
one   instance   of   a   shared server running. A 
dedicated   server   is   dedicated   to a single client.  
Each   client   that   requests   a connection to a 
dedicated   server   will cause a separate instance of it to 
be launched, and that server will not be shared with any 
other clients. Therefore, there can be several instances 
of a dedicated server running simultaneously. 
 
Communication between the agents relies on the 
Common Gateway Interface (CGI). Agents 
communicate with the PPC using a custom protocol 
through sockets. The Controller communicates with the 
Pyro Naming Service in the back-end via a PYRO 
protocol (based on top of TCP/IP). All the interactions 
between the Pyro server and client objects also use the 
PYRO protocol. 
 
4. Configuring  the Environment 
 
4.1 Micro-level 
 
The M-structures are in fact models on their own and 
they are registered, discovered, and processed just like 
any other model by the trader and mediator agents. 
Their registration also requires an MRD record, and 
their location is not specific to any part of the 
environment. However, because of its importance to the 
functional operation of the environment, all the M-
structures are typically registered by the administrator 
and are stored in a certain controlled location. 
 
Abstract Resource Views are managed in the same way 
as M-structures. By default, the mediator agent has 
access to at least two simple transformations that enable 
users to view ARVs and to create their instances. 
 
Transformations are implementations of useful high 
level functions that involve and are developed for a 

particular tool. All transformations are stored in a 
library local to the PPC, and their interface counterparts 
are usually stored local to the agents (Sun and Linux in 
Figure 4). Transformations do not necessarily involve 
interaction with scientific applications, but may also 
execute simple ’helper’ functions.  
 
Wrappers encapsulate the I/O of tools in a generic way 
and comply with the DOT system used for a particular 
environment instance. In our case, a wrapper consists of 
two parts (Python scripts): the server part 
(implementation of the encapsulation itself) and the 
(very thin) client part. The former creates a server object 
and registers it to the DOT system; the latter creates a 
dynamic proxy object of the server object on the client 
side. The server part is stored local to the respective 
tool, and the client part is stored in a library local to the 
PPC (WinNT and Sun in Figure 4). 
 
Tools are any software packages or executable programs 
that support at least a standard-I/O interface. Most of the 
legacy systems fall into this category.  The spectrum of 
tools can vary from complex applications such as the 
numerical package MatLab to home-made executables 
that implement simple ‘helper’ functions, like 
transforming data from one format to another. Tools can 
run on various hardware and software platforms, as long 
as the DOT of choice can run there too. 
 
4.2 Macro-level 
 
Adjusting the PP to a concrete project or adding a new 
scientific tool can be seen as a two step process.  First of 
all, for each new tool a wrapper, that would encapsulate 
it as DOT object and provide an interface to it, has to be 
developed. Secondly, the administrator of the 
environment has to install the tool and the wrapper on 
one of the environment’s servers, create and register a 
new server object to the DOT system, and update the 
Processing Platform Controller’s model. 
 
In our case, the above-mentioned wrapper contains a 
remote   Python   class,  which implements a Pyro 
server object on behalf of the new one. An administrator 
creates   a   Pyro   Daemon   object   (if   it   doesn’t 
exist yet) on the same machine (see WinNT in Figure 4), 
and   connects   an   instance   of   the    remote    class 
to  the  daemon  as  server  object  under  a distinct 
name (which later will be used by clients to find the 
server object). Consequently, the server object is 
registered to the NS.  



   

  

There can be many instances of the same tool running in 
the back-end, but only one server object  is created and 
registered to the Pyro NS. Once this is done, the client 
part of the new wrapper can be added to the library of 
wrappers local to the PPC and the creator of the wrapper 
has to create an instance of ARV for the new tool, as 
well as a new ARV class for models supported by that 
tool. 
 
As new transformations are being created for the ARVs 
of the configured tools, these transformations are stored 
in a library local to the PPC. Consequently, the creator 
of the transformation has to create and register to the 
trader agent a new M-structure, or update an existing 
one.  
 
The final step is to update the model of the Controller: 
Using the POKer language, the administrator creates a 
new instance of a resource class with a desired capacity 
and adds it to the model. In case of a shared tool, the 
capacity of the respective resource in the PPC should be 
set to 1. Then multiple clients working with the shared 
tool will be synchronised in time by the PPC to prevent 
them from affecting each other’s sessions. In case of a 
dedicated tool, it is reasonable to control the workload 
caused by the instances a dedicated tool can launch. 
Because of the heterogeneity of tools (often legacy 

ones), the granularity of control occurs at the level of 
tools’ instances. This control is executed by the PPC via 
the capacity attribute of the resource. The value of the 
capacity defines how many instances of the particular 
tool are allowed to run concurrently. The PPC will 
immediately grant any incoming requests as long as the 
number of the instances is below the capacity limit. 
Otherwise, it will synchronise requests like in the case 
of a shared tool. 
 
5. Working Example 
 
We now describe an example user session to show how 
the environment operates from the top to the bottom 
(see Figure 5). The demonstration will involve a 
transformation on the tool MatLab and be carried out on 
the instance of the environment as shown in Figure 4. 
 
Let us take the situation that a scientist has discovered a 
MatLab model (located somewhere on the Internet) via 
the trader agent. The model itself is located at a site 
maintained in (let us assume) London. The processing 
platform with the tool MatLab is located in Amsterdam. 
The selected model belongs to the class of ‘MatLab’ 
models, for which there exists an associated M-
structure, which enables the mediator agent to 
automatically provide the user with a list of available 
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Figure 4. An Instance of the Proposed Environment 



   

  

actions applicable to that class of models (Linux in 
Figure 4). Upon selection of an action by the user (e.g., 
‘Open’), the agent de-references the ARV name for the 
action implementation, a transformation that knows the 
appropriate tool and knows what to interact to that tool. 
If applicable, an interaction with the user occurs via the 
interface part of the transformation, before the agent 
initiates a request to the PPC to execute that 
transformation on MatLab. 
 
The Controller located on Sun (see Figure 4) reacts to 
the request according to the state of the tool that is 
addressed by the request: the request is either granted or 
delayed until all the previous requests (if any) from the 
waiting queue for the tool MatLab have been processed. 
Once the state of the resource MatLab in the 
Controller’s model becomes free (as the result of 
finishing processing all previous requests), our request 
is granted: the PPC locates the transformation by its 
name in the library of transformations, and processes it 
with a Session Manager (SM) in a separate thread. 
 
The SM manages a transformation session with the 
target tool MatLab on WinNT machine (see Figure 4). In 
this session a MatLab server object is located via the 
Pyro NS; the model is downloaded from the remote 
location in London and transferred into the temporary 
directory local to tool MatLab, and the server object 
interactively executes MatLab commands as is indicated 
in the transformation body. For transformation ‘Open’, 
it would be the following sequence: load, execute, and 
save. Respectively, an instance of MatLab loads and 
executes the model (the M-file as well as all the other 
linked M and MAT-files), saves the resulting workspace 
into a temporarily file and clears its workspace for the 
next session. This concludes the current session with the 
tool MatLab. As the last step, the SM creates an ARV 
instance for the output model (a MAT-file), and passes 
this instance as an argument to the mediator agent. This 
allows the agent to pre-associate available meaningful 
actions (derived from the respective M-structure) with 
the output model. 
 
The agent provides the user with a web page, which 
enlists the actions applicable to the produced output. For 
example, the scientist can choose between ‘Display’ and 
‘Register’. These actions would initiate execution of the 
respective transformations. Steps in the execution of 
these transformations are similar to those just outlined 
above. The process as is depicted in Figure 5, can be 
applied again to the result of the previous iteration. This 
can be continued until there are no more ARV’s can be 
associated with the output or/and the produced output 
becomes very basic (e.g., a jpeg file). 
 
 

 
6. Final Remarks 
 
The work considered in this paper aims at developing 
and building a generic collaborative environment to 
support on-line research and development processes, in 
which simulations on distributed solvers, sharing and 
reuse of various models in different formalisms and 
formats are involved. We have presented an approach in 
which meta-level concepts are used to deal with 
heterogeneity of models and tools, and a process-
oriented discrete-event system simulator is used to 
complement a distributed objects system with access 
control to the objects in the back-layer. 
 
Future works will concern further elaboration of the 
meta-level concepts in order to accommodate semantic 
aspects of models (such as formalism, experimental 
frame, etc.), complex experiment scenarios and extend 
the functionality of the environment with a modelling 
service. On the implementation side, we plan to provide 
a user-friendly modelling front-end and consider 
moving from Pyro to a more general, system and 
language independent, Distributed Object Technology 
system. 
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