
.

.

MMI – AIBO Team

WatchDog

April 27, 2005

Silvia Oana Tanase

.

AIBO: WatchDog

2

AIBO: WatchDog

3

1. Contents

1. Contents __ 3

Preface ___ 5

Chapter 1 Introduction __ 7

1.1 Problem Setting ___ 7

1.2 AIBO as a WatchDog___ 7

1.3 Project Definition __ 8

1.4 Report Overview __ 8

Chapter 2 Literature Study ___ 9

2.1 Security System __ 9

2.2 AIBO __ 9
2.2.1. AIBO Anatomy ___10
2.2.2. Programming the AIBO ___11

2.3 AIBO as a Companion Dog ___ 13
2.3.1. Emotion ___14
2.3.2. Behavior ___14

2.4. AIBO as a Watch Dog ___ 15
2.2.1 WatchDog (For the ERS-7/ERS-7M2 model only)___________________________________17
2.2.2 WatchMan__17

Chapter 3 Design __ 19

3.1 Concept__ 19

3.2 Object Model ___ 20

3.3 Dynamic Model ___ 25

3.4 Interface Design___ 25

Chapter 4 Implementation___ 27

4.1. Choice of language __ 27

4.2 The framework of the AIBO watchdog______________________________________ 31

4.3Client server communication __ 33

Chapter 5 Testing__ 35

5.1 Testing results __ 35

Chapter 6 Conclusion and Recommendation ________________________________ 37

6.1 Discussion__ 37

6.2 Conclusion ___ 37

6.3 Recommendation__ 38

.

AIBO: WatchDog

4

Chapter 7 Appendix __ 41

Appendix A ___ 41

Appendix B ___ 42

Appendix C ___ 45

Appendix D ___ 48

Appendix E ___ 55
1.URBI language ___55
2 URBI library ___60

Appendix F__ 64
Jess__64

Chapter 8 Bibliography ___ 65

AIBO: WatchDog

5

Preface

In this project I have received help from many people. I would like to thank the supervisor of
the project professor Drs. Dr. Leon Rothkrantz, who was the main contributor of the concept
of an AIBO watchdog. My project manager Siska Fitrianie has been given a lot of valuable
help and feedback and also to all the members of the MMI - AIBO team for their support and
collaboration.
I would also like to thank Prof. Dr. Lidia Sangeorzan from the “Transilvania” University of
Brasov for making possible my coming to TU Delft.

.

AIBO: WatchDog

6

AIBO: WatchDog

7

Chapter 1 Introduction

1.1 Problem Setting

Violence in homes and on the streets worldwide devastates economies as well as lives The
UN health agency warned in a report detailing how countries are spending billions a year
dealing with the consequences. Some countries are devoting more than four per cent of their
gross domestic product to arresting, trying and imprisoning violent offenders and providing
medical and psychiatric care to victims of rape, child abuse and domestic violence, as
reported by World Health Organization [1].

Worldwide, 1.6 million people die from violence each year, and millions of others suffer
injuries, lingering physical, mental, sexual or reproductive problems, and lost wages and
productivity, according to the WHO. It said violence remains a leading cause of death among
people aged 15 to 44. In the U.S. alone, the statistics for violent crime are staggering.
According to the FBI, on average a person is murdered every 22 minutes; someone is raped
every four minutes, a robbery is committed every 26 seconds [2].

The result of increasing violence is that it has grown also our need of feeling safe wherever
we are: on the street, at home, at work. Many people had started to find different ways of
protecting themselves: installing alarms, surveillance cameras all over the house, hiring
people to guard their belongings and their life, and getting dogs to watch them. Moreover
society has gradually moved towards an extensive use of computers and automated support,
both in everyday life and in work environments, the role and feasibility of autonomous robots
has grown in importance. The concept of smart homes, with several computer-based systems
making everyday life easier and safer is presently an active research and development subject,
i.e. at Telenor [3]. Another aspect is the inclusion of electronics and robotics for fun and
entertainment in homes such as PC and TV-games and the robot entertainment dog, AIBO.
AIBO walks on four legs and commercial software makes it act like a small pet that walks
around, sings songs or chooses to do nothing. AIBO owners also have the opportunity to
program it to do other and maybe more useful things.

1.2 AIBO as a WatchDog

AIBO thought as a companion dog that entertains us and makes us smile could be also
programmed to do more useful things such as protect us and announce us when he sees an
intruder in our home. You will probably wonder why to buy an AIBO to protect you when
you have a very nice dog that can do all this and he is even nicer than AIBO. The answer is
very simple: AIBO could be a dog, a companion and a surveillance camera and he also has
the capacity of being on duty day and night, 24 hours of 24 hours, 7 days a week.

Recent researches have been done on transforming the AIBO into a watchdog (see chapter 2).
These researches transformed AIBO into a simple camera that has the capacity of barking at
the moving objects and saving an image of the moving object which could be later seen by the
owner.

Our project also inspires to “ train” AIBO ERS-7 dog to be a watchdog. The AIBO will be
able to detect motions and sounds, to bark and save images of moving objects, engage into
investigations, and moreover will be able to “see” the intruder. He could even be used as a
smoke detector: if he "smells” smoke he starts exploring to see if the house is on fire. AIBO

.

AIBO: WatchDog

8

Watchdog will send an alarm via his wireless communication network if there is any threat.
The AIBO Watchdog will act as a live trained dog and maybe in time he will replace the real
ones.

1.3 Project Definition

The phases of this project are as follows:

1. Study literature. In this phase, we collect information, data, journals, papers and
experimental reports about violence, about AIBO in general and about existing languages to
program AIBO-ERS7

2. Seek existing system. In this phase, we compare and study some of the existing systems
that were developed till this moment.

3. Define and design new model. In this phase, we design the global “ ideal” architecture of
a watchdog.

4. Implementation. In this phase, we use an incremental development approach.

5. Analyze and test the prototype. In this phase, we tested the watchdog and analyzed the
results.

1.4 Report Overview

The structure of this report is as follows:

Chapter 1: Introduction provides general information about the project, background and

motivations.

Chapter 2: Literature Study gives a view on what has been done in the field till now.

Chapter 3: Design describes the project context level design, class diagram, dynamic model
and interface design.

Chapter 4: Implementation describes the implementation status.

Chapter 5: Testing presents a test plan for the” watchdog” project.

Chapter 6: Conclusions and Recommendations evaluate and summarize the main results of

this project and give directions for further work.

Appendix

Bibliography

AIBO: WatchDog

9

Chapter 2 Literature Study

2.1 Security System

Security and safety is nowadays the main thing we think about. This is why the security
system had evolved more and more from a simple alarm to a sophisticated security system
with surveillance cameras and sensors for movement, fire and breaking glass. It is debated
whether having an alarm system decreases the chances of a burglary. In theory, if a burglar is
aware a house has a system, he or she might move on to another home. Even if the alarm
system does not keep a burglar from breaking in, the burglar has a tendency to stay a shorter
amount of time. This may decrease the number of items stolen and the extent of damage done.
Most systems rely on a combination of contacts placed at doors and windows and motion
sensors. Motion sensors, however, do not detect someone until they are already in the house.
Glass break sensors are recommended for a good security system.

The problem with security systems is that they do not necessarily stop people from breaking
in. The security system is only activated when the burglar has broken into the house. Also, by
the time the intruder is detected and someone responds to the alarm, there could be enough
time for the intruder to remove items and leave. If the system does not cause visible or audible
alarms to flash or sound at the site, or there is no one nearby to see or hear these site alarms,
the intruder can leave without being seen. Even if you have a sophisticated security system
with surveillance cameras burglars may find a way of tricking the system because a camera is
in a fix place and you could easily go unnoticed. However people tend to be much more
relaxed when they have some security system installed in their home even if they know that
nothing is sure now a days. The main problem of this kind of security system is that it has no
mind of its own. This is why we propose using a robot to watch a house rather than having a
security system. For example the robot could identify if the sound of breaking glass was made
by an intruder or by the wind or whether the homeowner entered the house or it was an
unauthorized person.

2.2 AIBO

AIBO, the robotic pet is an example of such an autonomous robot, developed and
manufactured by Sony. Sony has introduced several different versions of AIBO since their
first launch in 1999. AIBOs can walk, "see", and recognize spoken commands, and they are
considered to be autonomous robots, since they are able to react to external stimuli from their
owner or environment, or from other AIBOs and they have the ability to learn and to mature.

AIBO series:

Ø ERS-110, the 1st generation, has the ability to learn from its environment and express
emotion.
Ø ERS-210 incorporates touch sensors and sound, voice and face recognition.
Ø ERS-311/ERS-312, new shape AIBOs: adorable LATTE and mischievous MACARON.
Ø ERS-220, AIBO with a new hi-tech robot look.
Ø ERS-7, improvement on interaction and wireless internet connectivity.

.

AIBO: WatchDog

10

2.2.1. AIBO Anatomy

The AIBO ERS-7 from Sony has hardware features a faster CPU, a higher resolution camera
and twice as much memory as its predecessors. User can interact via voice and tactile touch
sensors, remotely access the robot and retrieve digital images on a PC via e-mail commands
or an Internet browser (with Wi-Fi connection) [4].

Table 2.1 The features of the AIBO

Dimension: 180(W)x278(H)x319(D) mm

Weight: Approx. 1.65kg (including battery and memory stick)

CPU: 576MHz, 64bit RISC Processor, MIPS R7000

Memory-
SDRAM:

64MB

Program
Storage
Media:

Memory Stick - 1 slot, FAT 16

Moveable
Parts:

Mouth (1 dof), Head (3 dof), 4 Legs (3 dof), 2 Ears (1 dof), Tail (2
dof)

Camera: CMOS Image Sensor 350k pixels

Wireless
LAN Card:

IEEE 802.11b (integrated)

Audio: Miniature microphone
Miniature Speaker 20.8mm 500mW
MIDI
Volume Switch

Built-in
Sensors:

Temperature Sensor, Infrared Distance Sensor (head, body),
Acceleration Sensor, Electric Static Sensor (head, back), Pressure
Sensor (chin, 4 paws), Vibration Sensor

Power: Approx. 7W consumption (Standard operation in autonomous
mode)
Approx. 1.5 hours operation times
Approx. 2.5 hours charging time

LED: Illume Face 28 LED (white 16, red 4, blue 4, green 4)
Ear 2 LED left and right
Head Sensor 2 LED white and amber
Head (wireless LAN on/off) 1 LED (blue)
Back Sensor 16 LED (white 8, red 3, blue 3, orange2)
28 multi-gradation expressions LED lights on the Illume Face by
changing the pattern of the lights and their intensity of brightness.

AIBO: WatchDog

11

Figure 2.1 The anatomy of AIBO: (a) from the front side and (b) from bottom side

Figure 2.2 The combination of LED’s

2.2.2. Programming the AIBO

Three frameworks are available to program the behavior of the AIBO: (1) OPEN-R SDK, (2)
Tekkotsu and (3) URBI.

AIBO owners can teach their pet new behaviors by reprogramming them in Sony's special R-
Code language or Open-R SDK for non-commercial use. AIBO Software Development
Environment can create software that either executes on AIBO or executes on a PC or
controls AIBO by using a wireless LAN. This SDE contains three SDKs (Software
Development Kits) and a motion editor. The three SDKs are Open-R SDK, R-Code SDK, and
AIBO Remote Framework. These development environments are provided free.

(a) (b)

.

AIBO: WatchDog

12

The Open-R SDK is a cross development environment based on gcc (C++) with which
developers can make software that works on AIBO (ERS-7, ERS-210, ERS 220, ERS-210A,
and ERS-220A). The R-Code SDK is an environment with which developers can execute
programs written in R-Code, a scripting language, on AIBO (ERS-7). The AIBO Remote
Framework is a Windows application development environment based on Visual C++, with
which developers can make software that runs on Windows. The software can control AIBO
(ERS-7) remotely via wireless LAN. AIBO Motion Editor can be used with the Open-R SDK,
the R-Code SDK and the AIBO Remote Framework.

Open-R SDK provides a disclosed Open-R API of system layer ("level-2" interface). In this
case, developers only can utilize some AIBO's functions such as:

• moving AIBO's joints
• get information from sensors
• get image from camera
• use wireless LAN (TCP/IP)

The Open-R SDK includes tools to make Open-R objects, sample programs, and memory
stick images that must be copied to a AIBO programmable memory stick. Developers also
may create programs with GNU Tools, e.g. gcc and cygwin. The developers should use the
Open-R API to turn on/off LEDs manually

The developers also can make motions by synchronizing with sounds (MIDI, WAV) and LED
patterns in AIBO Motion Editor. In this case, the MIDI and WAV data are played back by the
PC. MIDI sounds and LED patterns cannot be played back with the Open-R SDK, but they
can be used in the other two SDKs. WAV sounds can be played back with all three SDKs.
Sound files and LED patterns cannot be created by AIBO Motion Editor. Other commercial
application can be used to handle this, such as skitter. The R-Code SDK and the AIBO
Remote Framework can recognize motion files that are made with AIBO Motion Editor.

Tekkotsu is a framework built on top of OPEN-R SDK[5]. This means, that in order to use
Tekkotsu, the OPEN-R SDK also has to be installed. Tekkotsu offers a way to interface with
WLAN. Joints, head movement camera etc. can be controlled via wireless LAN. The
programming model with URBI also holds for Tekkotsu. (Tekkotsu server is also an object
running on OPEN-R).

The advantage of Tekkotsu is that it offers higher level commands (instead of moving
individual joints, one can issue commands like "walk"). Furthermore the Tekkotsu framework
aids people who develop objects intended to work on the Aibo (with Tekkotsu) by adding a
level of abstraction. So instead of having the to know the message passing details of ones
object with other objects (like in the URBI) a Tekkotsu programmer can think in terms of
behaviors (a term that is central in Tekkotsu programming framework tutorials).

Universal Robot Body Interface (URBI) is a scripted command language used to control
robots (AIBO, pioneer)[5]. It is a robot-independent API based on client/server architecture.
In the OPEN-R programming model the URBI server can be viewed as another object. The
developer can make use of the URBI server in two ways: via a computer through the wireless
LAN using the liburbi c++ (external client) or through direct inter-process communication
using liburbi OPEN-R (onboard client).

AIBO: WatchDog

13

In the case of an external client, the communication then takes place through a TCP/IP or IPC
connection. When using URBI over TCP/IP messages are sending to the URBI object via
telnet over port 54000. The URBI Object then sends the appropriate messages to the other
objects on the OPEN-R system to accomplish the given command.

In the case of an onboard client, the client is also an OPEN-R object (containing doinit(),
dostart(), etc.) that runs along in the OPEN-System and sends messages to the URBI server.
Thus, URBI functionality can then be utilized by passing/receiving messages to/from the
URBI object (which of course should also be running).

In the general case: when a message is sent to the URBI server (no matter if this is through an
external client or through an onboard client), the server object will send message(s) to other
objects as a result of this message, thereby hiding the internal message passing details to the
client. Therefore, developers only need to concern themselves with the message passing
details to and from their client to the URBI. Those passing messages that are not supported in
URBI can be sent directly to OPEN-R system. Note however that in this case there will be a
discrepancy between what is possible via Telnet and what is possible in the AIBO -for people
who like to port their software to and from this can be a issue.

Since our implementation would be done under Java it is convenient to work using URBI.
URBI has provided a library that connects between OPEN-R and Java, called liburbi Java.

2.3 AIBO as a Companion Dog

The work of Sony so far has given abilities to AIBO such as moving, "thinking", and
displaying the lifelike attributes of emotion, instinct, learning, and growth. The Mind software
consists in the following abilities:

• In default mode user can interact with a mature ERS-7 but can be reset it to a puppy
stage.

• AIBO can understand and respond to 100+ words and phrases.
• AIBO will perform various autonomous behaviors based on recognition of owners face

and voice. It should be noted however, that upon the experimentations using these
commands, it was found that AIBO microphone is quite poor. Even under very quite
conditions, it is difficult to generate responses from AIBO.

• AIBO has improved self-charging abilities and visual pattern recognition technology
which enables it to respond to its 15 AIBO cards.

• AIBO can bring the AIBOne toy to the user on command and play with the Pink Ball.
With integrated control over the operation of 20 joints in the AIBO body (20 degrees of
freedom), the ERS-7 AIBO provides autonomous behavior and functionality.

• AIBO can better express its emotions and what it is thinking with the 49 multi-color
LEDs. Finally, Illume-Face (using 28 of these LEDs) provides a completely new way for
ERS-7 to show when it is happy, sad, angry, surprised, etc.

• AIBO allows for more organic interaction through the newly developed tactile touch
sensors on the back, head, chin, and paw.

• Using wireless connection, AIBO can connect with other electronic devices, transmitting
photos, sound files and messages. This controls AIBO's behavior and the applications can
be used via PC or a mobile device.

.

AIBO: WatchDog

14

AIBO owners cannot add new motions to the AIBO Mind Software. AIBO Motion Editor
(available in the AIBO SDE) is the motion creation editor for AIBO (ERS-7). Motions that
are created with AIBO Motion Editor can be used with Open-R SDK, and the AIBO Remote
Framework

2.3.1. Emotion

The white LEDs, which are supposed to represent the various different states of AIBO are
incomprehensible and are played too quickly to understand. Our experimental results shows
that user interaction affects the emotional state of AIBO, which will be reflected some
behavioral expressions [4]. The interaction does not affect, however, the overall instinctive
state or behavior of AIBO. AIBO will result in momentary behavioral expression. The change
in the emotional state, therefore, does not have any effects on the overall instinctive state of
AIBO. The different instinctive states produce different behavioral expressions in AIBO.
However, AIBO appear to have only momentous emotional states which are neither lasting
nor remembered. AIBO makes 64-chord MIDI sounds to express its feeling. It cans also
playback pre-recorded voice messages for you. If the user asks AIBO to dance, the funky
music will sound.

AIBO incorporates five instincts and six emotions. The five instincts includes love, curiosity,
movement, hunger (low battery), and sleep and the six emotions include happiness, sadness,
anger, surprise, fear and dislike. These emotions are shown in AIBO's behaviors:

• Happy/joyful: a green LED pattern and wagging the tail sometime flip the ears or give a
happy sound. It may happen when a user strokes its head and back sensor, playing with
AIBOne or pink ball, when the owner response, or while and after charging.

• Anger: a red LED pattern happens when a user taps the third back light.
• Sad/Confused: a purple LED pattern happens when the owner ignore it. Dim cross white

LEDs also means demur.
• Fear: a small white pattern.
• Hungry: a pair of small line white LEDs.
• Joking: one white LED (wink).
• Surprise: a pair of cross white LEDs.
• Find its charge station: a purple-white-green LED pattern.

2.3.2. Behavior

According to our observation AIBO will react always to encouragement or scolding by the
user [4]. When AIBO is hungry, and is in search for the charge station, AIBO will ignore all
other commands or interactions except for when reacting to user's encouragement or scolding.
It will remain faithful in its aim to find the charge station. The AIBO card has priority over all
other instincts or voice commands. AIBO will always follow what the AIBO card commands
despite its instinct (except when hungry) and will ignore all other voice commands when
carrying out what the card commands. AIBO will only sometimes to the voice commands,
even when heard correctly, depending on its instinct.
Recent attempt in developing AIBO as a Companion Dog is currently on going within the
MMI group at TUDELFT. This project proposes a new cognitive model for a companion dog.
The final goal is to develop an AIBO that has human-like behaviors given some specific
situations. As some Artificial Intelligence researches have put attempts on cognitive systems
that model human personality, the project is also trying to accomplish by starting from
applying existing known human cognitive models on the AIBO. In this project the researcher

AIBO: WatchDog

15

tries to develop AIBO’s characters that are not defined by what he learns or randomly
receives from his internal cognitive system but by what the owner decides.

We start developing our own model from scratch trying to design a model that is as close as
possible to a watchdog model. Since we start from scratch we cannot take benefit of all the
sensors and multimodal functionalities SONY has invested the AIBO with. We will use for
the project some abilities developed in the “companion dog” project such as: barking, turning
the head, walking.

2.4. AIBO as a Watch Dog

Sony had developed a type of a watchdog in AIBO mind software 2 for the house sitting
mode [10]:

• capture 15 pictures if object or sound detected
• send the capture image out via email
• record the sound
• turn on/off the mode using email, voice commands, or sensors
• adjust his head up an down

The Followings are a survey of current work in modeling of a watchdog. First, an example of
a watchdog made in OPEN-R (WatchDog), and followed by an example of an autonomous
watchman made in Teckkotsu. Finally, a comparison between the previous works and our
proposal of a Watch Dog is presented in table 2.2.

Table 2.2 Comparison of the three projects

 WatchDog WatchMan My WatchDog

Features

o capture the image if
object detected
o bark at the moving
objects

o makes a little barking
sound if pink ball (seen as
an intruder) is detected,
but he has abnormal
reactions to it, since it
sees pink balls
everywhere, especially in
"noisy" surroundings
(with several objects) or
when there are almost
pink objects around. The
almost-pink objects can
be, for example, an orange
sofa or a red extinguisher.
o plays a sad sound if the
ball is lost after it was
detected
o walks in searching of
the pink ball
o stops and looks right

o Detects image and
sound
o If a sound is too loud
then he will start to
explore in search of
unusual things
o If an intruder is
detected he will bark and
make picture of him and
maybe set alarm.

.

AIBO: WatchDog

16

and left for the ball
o doesn’ t detect the
walls
o turn on/off the mode
by pressing the central tail
button

Can only be
activated on
the station

o No. You can put the
AIBO on the station for
long time watching. You
can also put the AIBO on
the table or floor for short
time watching as long as
the battery lasts.

o No. In fact is necessary
to put the AIBO on the
floor because he will walk
if in watch mode in
searching of the pink ball.

o No. AIBO will
explore the room in
search of unusual sounds
and image.

Max. captured
images

o 300 o 0 o You could select how
many pictures the dog
will take.

Auto gain and
shutter
control

o Yes o Not documented o Not known

Access the
captured
images via
WEB

o Yes. You can also set
the password or change
the configuration using the
browser.

o No o No

View what
AIBO is
watching via
WEB

o Yes o No o No

Download the
captured
images via
FTP

o Yes o No o No

Work with
Mind/Mind 2

o No. You need a
separate memory stick to
run it as the limitation of
OPEN-R SDK

o No o No

Motion
detection
sensitivity

o Auto adjusted. Low in
a light environment and
high in a dark
environment.

o No o Not known

AIBO: WatchDog

17

Background
image re-
initialization

o Auto o No o No

Head angle
adjustment

o No. Move the head
manually

o Adjusts the head left
and right

o Adjusts the head left
and right

2.2.1 WatchDog (For the ERS-7/ERS-7M2 model only)

With this program AIBO ERS-7 or ERS-7M2 dog can be turned into a watchdog [11]. If the
AIBO detects any motions, it will:
• Bark at the moving objects, and

• Save the pictures (in JPEG format) in the memory stick.

The program includes a web browser that provides the following features:
• Basic authentication we have to input the user name and password for accessing the

pictures.

• Web-based configuration settings. We can change the user name, password, watching
image size, etc. settings on the web browser.

• Shows us the image that he is watching, and updates the image periodically and
automatically.

• We can browse the captured images using the web browser.

More information about this watchdog can be found in Appendix A at the end of the report.

2.2.2 WatchMan

This project presents the possibility of automating watchman activities using simple and small
robots such as AIBO’s [6]. He demonstrates through design analysis and implementation how
AIBO can be used as a watchman to keep areas under surveillance. The main focus in this
study is safety, with risk analysis and some implementation as natural parts of the study to
better comprehend the concept of software safety in critical systems. The main result of this
project is the implementation and analysis of AIBO to walk and look around, and detects pink
balls (as potential intruders). Several more requirements have been identified, but they have
not been implemented. As not all requirements and no safety requirements have been
implemented and the testing has been applied in a very informal manner. It would have been
interesting to apply several more increments with implementation, testing and risk analysis, to
give the implemented system more useful and accurate behavior.
The AIBO watchman will monitor a safety area and the correct performance of its action is
therefore critical.

The watchman was developed through a set of phases.

• In phase 1 the goal was to develop software that enables AIBO to autonomous walk
down a corridor in an approximately straight line. If the watchman detects unauthorized
personnel it will make a sound.

.

AIBO: WatchDog

18

• In phase 2 they extended the watchman's abilities to move. AIBO needed to be able
to detect a turn and follow the curve of the turn, and be able to avoid other types of obstacles
but at the end the watchman wasn’ t capable to detect walls. This phase did also include the
ability of AIBO to separate authorized from unauthorized personnel. The unauthorized
personnel is the pink ball. AIBO does detect pink balls, but has abnormal reactions to it, since
it sees pink balls everywhere, especially in "noisy" surroundings (with several objects,) or
when there are almost pink objects around. The almost-pink objects can be, for example, an
orange sofa or a red extinguisher. It can also detect pink balls in other areas, and seem more
sensitive when there are moving objects around it. The source of this problem could be in how
the AIBO codes different color or the camera calibration. A better recognition algorithm, with
edge detection as well as color recognition, was recommended.[6]

AIBO: WatchDog

19

Chapter 3 Design

3.1 Concept

Figure3.1. AIBO model as an agent

The AIBO WatchDog will detect people and then he will try to identify if he knows the
person or not. If he doesn’ t know the person then automatically he will assume that he is an
intruder and he will take pictures and send them through mail to his owner, set the alarm and
start barking angry. If the owner is at home he will be announced and if it’ s not home maybe
the neighbors will hear it and announce the police. The purpose of setting the alarm is to
announce the owner or his neighbors that they have an intruder in the house. On the other
hand if he knows the person than he will let him/her know that he recognizes her and starts
barking happy. If the person detected is the owner he will also be happy to see him/her.

He can also detect motions. When any kind of movement is detected he will take pictures and
send them through e-mail at his owner.

We will use the priority value of tasks as used by the companion dog project within the MMI
group at TUDELFT. That means that if the battery of the watchdog is empty or close to being
empty the dog will not continue with his exploration but he will go and recharge the battery.

The watchdog will “watch” all the time so the user can see every thing the dogs sees in real
time. The dog will be able to make as many pictures as the owner wants. The picture will be
saved in JPEG format. We really think that the watchdog needs to be really similar to a real
one and a real one sees everything that moves in the house and hears everything not only the

Thinking

Bark

Take pictures

Send e-mail

Make video

Set alarm

Breaking glass

Loud sound

Intruder

People

Obstacle

.

AIBO: WatchDog

20

unusual thing for example if there are children playing in the house and they make a lot of
noise he will go and see what happens and sees children playing and laughing and he knows
that every thing is ok.

A robot sometimes can make a “mistake” and he can be easy tricked by men. This is why he
will record every thing and the user can see every thing the dog sees not only the unusual
things.

The AIBO watchdog is like a real dog as we said before but he will also be like a video
camera that saves images of “unusual things” and later on send them through mail at his
owner. So if the owner wants to see if something has been wrong in his house he will only
need to check his mail. The AIBO will bark only if there is let say a minor thing like a glass
broken. If an intruder is found he will bark but he will also take pictures and send them
through e-mail and also if he detects movement he barks but send the picture with the
movement to the owner so he could decide if it is a good or a bad thing happening in the
house. It could probably be a glass falling on the floor or maybe it could be just the wind. But
if the owner is in the house a bark is enough to announce him that something is not right and
he will come and check or he will set the alarm or announce the police.

3.2 Object Model

Figure 3.2 Use-Case Diagram

Companion
Dog

AIBO: WatchDog

21

Table 3.1 Description of use case

1. Name: View output data
Previous condition
Post condition
Exception
Actors
Description

Data has been stored.
Image is showing/Mail was received.
Data is empty.
User and AIBO.
User activates to show image or to check mail.

2. Name Receive event
Previous condition
Post condition
Exception

Actors
Description

Input sensors have been processed.
Sending event to “process event” .
Event unknown.
No event.
AIBO.
Receiving events from the process sensor.

3. Name: Activate command
Previous condition
Post condition
Exception
Actors
Description

Decide what action the dog will execute.
Send the command to the dog and the dog will execute it.
No action.
AIBO.
Describes the series of commands the dog need to
execute.

4. Name: Process Event
Previous condition
Post condition
Exception
Actors
Description

Receive event.
Decide the action to be taken by the dog.
No action associate to this event.
AIBO.
Analyze the events received from “receive event”
component.

A more detailed Uses case diagram is the one from Figure 3.3.

.

AIBO: WatchDog

22

Figure 3.3 Uses Case Diagram

Companion
Dog

AIBO: WatchDog

23

Class Diagram

Figure 3.4 Class Diagram

.

AIBO: WatchDog

24

Description of class diagrams

ActivateCommand Class deals with the execution of commands. By the commands the
functions in OutputBehavior class are called.

OutputBehavior Class contains all the functions that are part of the behavior of the
WatchDog. Many of these functions use functions from the packages RobotOutput and
AIBOException witch are part of CompanionDog project.

Event Class is the event that the dog will receive.

ReceiveEvent class deals with the event received from the dog and send them to the
ProcessEvent class.

ProcessEvent class is in fact the Rete engine. Here the facts are added to Jess knowledge base
from an xml file and also the rules are loaded from a file and fired. We could say that this is
the “mind “of the WatchDog.

Behavior class makes possible to add user-defined functions to Jess such as bark, walk, rest.
This class implements the jess. Userfunction interface. We only need to implement only two
methods: getName() and call(). Having written this class, we can then, in our Java main
program, simply call Rete.addUserfunction() with an instance of our new class as an
argument, and the function will be available from Jess code.

LoadBehavior class implements the jess. Userpackage interface. The jess.Userpackage
interface is a handy way to group a collection of Userfunctions together; so that you don't
need to install them one by one (all of the extensions shipped with Jess are included in
Userpackage classes). A Userpackage class should supply the one method add(), which
should simply add a collection of Userfunctions to a Rete object using addUserfunction().
Nothing mysterious going on, but it's very convenient because we can assemble a collection
of interrelated functions which potentially can share data or maintain references to other
function objects. We can also use Userpackages to make sure that your Userfunctions are
constructed with the correct constructor arguments. All of Jess's "built-in" functions are
simply Userfunctions, although ones which have special access to Jess' innards. Most of them
are automatically loaded by code.

SendMail class deals with the sending of the mail to a specified mail address.

SavePicture class makes possible taking the picture and saving them in a folder image to a
specified path. The picture saved will be than send by e-mail to the owner.

OutputCallBack class implements the interface CallBackListener from liburbi. We only
have to implement the actionPerformed function. This function will be called every time a
message marked with the corresponding tag is received from the server. The parameter of the
method is a URBI event that contains all the necessary information about the received
message. To resume the “actionPerformed” method is the action of the client depending to the
URBI server message.

AIBO: WatchDog

25

Packages RobotOutput and AIBOException witch are part of Companion Dog project. They
are used to implement some parts of the behavior of the watchdog such as barking, crawling,
looking left/right.

Liburbi package is the URBI library for Java providing an URBI client. It handles the TCP
connection with the URBI server, and the dispatching of messages it sends and receives.

3.3 Dynamic Model

Figure3.5. shows a UML activity diagram which offers rich notation to show the sequence of
activities the AIBO watchdog will do. It may be applied to any purpose (such as visualizing
the steps of a computer algorithm), but is considered especially useful for visualizing
processes, or use cases.

Figure 3.5 Watching activity

The activity diagram describes how the dog acts when he receives an event such as a loud
sound, a man in the house or any kind of motion detection. First of all AIBO needs to be in
the watching state by activate the doStart() function. Then he can receive the events and he
passes then to the ProcessEvent component which will add the event as fact in the Rete engine
and from there it will be decided what series of actions the dog will take. After taking action
AIBO will be ready to receive another event or the watchdog can be stopped by calling the
doStop() function.

3.4 Interface Design
Table 3.2 Description of interface

 Input Description of process Output

1. Loud sound Sends the message to the processing component
which decides to explore and see what
happened.

Exploring (walking,
looking around, resting
a few seconds)

2. Obstacle Sends the message to the processing
component.

Sides step

3. Intruder Sends the message to the processing component
which will decide the action to be taken.

Take picture

Send them by e-mail

.

AIBO: WatchDog

26

Start the alarm

Bark angry

4. People unknown Sends the message to the processing component
which decides that if he does not recognize the
person then it must be an intruder.

The same as in the case
of an intruder

5. People known Sends the message to the processing component
which decides to let the person know that he
recognize him/here.

Bark happy

6. Owner Sends the message to the processing component
and the dog will be glad to see his owner.

Bark happy

7. Motion detected Sends the message to the processing component
which will decide the action to be taken.

Take picture

Send them by e-mail

Start the alarm

Bark angry

AIBO: WatchDog

27

Chapter 4 Implementation

4.1. Choice of language

• URBI – liburbi Java

URBI is based on client/server architecture. An URBI server is running on the robot and
a client is sending commands to the server in order to interact with the robot. The channel
between the client and the server can be a TCP/IP connection or direct Inter Process
Communication if the client and the server are both running on the robot. In that latter
case, the latency is expected to decrease significantly. The robot is described by its
devices. Each element of the robot that can be controlled or each sensor is a device and
has a device name. From a programmer point of view, a device is an object. It has some
mandatory methods and variables and a list of device-specific methods. Everything that
can be done on the robot is done via the devices and the available methods associated to
them. The main advantage of using this architecture is the flexibility it allows. The client
can be a simple telnet client or a complex program sending commands over TCP/IP. This
client can run on Linux, Windows or any other system and it can be programmed in C++,
Java, LISP or any language capable of handling TCP sockets. For each new robot type, a
new server has to be written. Once this server is running on the robot, it is straightforward
to command the robot, whatever the robot is or how complex it is, as soon as one knows
the list of devices and their associated methods. This list is made available in the
documentation of the server and it is the only robot-specific piece of information required
to know how to control a previously unknown robot. The syntax used to access the
devices is designed with simplicity in mind.

For the implementation of the watchdog we use URBI-java because of his main
characteristics, which make it different from other existing solutions, and which are:
Ø URBI is a low level command language. Motors and sensors are directly read and

set. Although complex high level commands and functions can be written with
URBI, the raw kernel of the system is low level by essence.

Ø URBI includes powerful time oriented control mechanisms to chain commands,
serialize them or build complex motor trajectories.

Ø URBI is designed to be independent from both the robot and the client system. It
relies on TCP/IP or

Ø Inter-Process Communication if the client and the server are both running onboard.
Ø URBI is designed with a constant care for simplicity. There is no "philosophy" or

"complex architecture" to be familiar with. It is understandable in a few minutes and
can be used immediately.

More information about URBI and liburbi Java will be found in the Appendix E at the
end of the report.

• JESS

More information about Jess in general can be found at the end of the report in Appendix
F.

.

AIBO: WatchDog

28

Ø Adding facts to JESS.

When the AIBO detects any kinds of event such as movement, a loud sound or an
unknown person they will be registered in the XML file. The expert system reads
the XML file and constantly adds facts to the working memory or knowledge base.
Score Board is a collection of facts that have been inputted to it. In Jess, there are
three kinds of facts: ordered facts, unordered facts and definstance facts.

Ordered facts are simply lists, where the first field acts as a sort of category for the
fact. Here is one example of ordered facts:

Unordered facts are useful but they are not structured. In object-oriented languages,
objects have named as fields in which data appears. Unordered facts offer this
capability (although the fields are traditionally called slots.). Rewriting the fact
above to an unordered fact it would look like this:

Before to create unordered facts we have do define the slots they have using
deftemplate construct:

The <deftemplate-name> is the head of the facts that will be created using this
template. There may be an arbitrary number of slots. Each <slot-name> must be a
symbol. The default slot qualifier states that the default value of a slot in a new fact
is given by <value>; the default is the symbol nil. The 'default-dynamic' version
will evaluate the given value each time a new fact using this template is asserted.
The 'type' slot qualifier is accepted but not currently enforced by Jess; it specifies
what data type the slot is allowed to hold. Acceptable values are ANY, INTEGER,
FLOAT, NUMBER, SYMBOL, STRING, LEXEME, and OBJECT. As an
example, defining the following template:

If a fact is defined as above then we can add it to the inference engine of the expert
system base like this:

(robo-mind man known friendly)

(robo-mind (action man) (status known) (value friendly))

(deftemplate <deftemplate-name> [extends <classname>][<doc-comment>]
[(slot <slot-name> [(default | default-dynamic <value>)]

[(type <typespec>)]*))

(deftemplate robo-mind
(slot action)
(slot status)
(slot value))

(assert (robo-mind (action man) (status known) (value friendly)))
(assert (robo-mind (action man) (status unknown)))

AIBO: WatchDog

29

If we don’ t provide a value for a slot and if he doesn’ t have a default value then the
special value nil is used.

Ø Deleting facts from Jess

After a rule had fired for a specific fact and a next event happened then we need
first to delete the previous fact from the score board and add a new one.

To delete facts in Jess we must first know the fact id. As an example of deleting a
fact is shown below:

Ø Rules in Jess

Rules in Jess can generate actions based on the contents of one or more facts. A Jess
rule is something like an if...then statement in a procedural language, but it is
not used in a procedural way. While if...then statements are executed at a
specific time and in a specific order, according to how the programmer writes them,
Jess rules are executed whenever their if parts (their left-hand-sides or LHSs) are
satisfied, given only that the rule engine is running. This makes Jess rules less
deterministic than a typical procedural program.
Rules are defined in Jess using the defrule construct. A rule in Jess looks like
this:

To have a more legible code we used a CPL file. In the CPL file we write all the
rules and functions in Jess. The file is loaded with the bach command from the Java
program. The CPL file can be seen well in Appendix C.

(defrule is-friendly_intruder

 ?id <-(robo-mind (action ?X&:(eq ?X man))(status ?Y&:(eq ?Y unknown))(value ?Z&:(eq
?Z friendly)))

=>

 (retract ?id)

 (assert (robo-mind (action intruder) (status friendly))))

(defrule intruder-detected
 (robo-mind (action ?X&:(eq ?X intruder))(status ?Y&:(eq ?Y nil))(value ?Z&:(eq ?Z
nil)))
 =>

(behavior angry))

.

AIBO: WatchDog

30

• XML

The XML file is the database of the knowledge base. Every event the dog detects through
his sensors is registered and put in the XML file.

XML stands for eXtensible Markup Language and is a language to define structured
information. It is very lightweight, as opposed to a traditional database, and can be edited
relatively easy. All XML files need to obey to certain grammar rules of XML. Also the
file has a predefined structure. These structures can be defined in Document Type
Declaration file or DTD witch define what structures are allowed in the XML file. XML
files use just as HTML tags to separate the structure from data. A tag indicates that
information will follow, at the end of the information needs to be a closing tag.
Everything from the beginning of a tag till its end it is called element. Every element has
to be defined in the DTD and it defines how each element is build up.

For our system we will use a XML file containing the possible scenarios that can appear
while the AIBO is watching the house. The DTD file is defined as follows:

A valid XML file has an element scenariolist, which is the main structure. The
scenariolist can have zero or more scenario as indicated by * . Each scenario has a
scenario_ name, zero or more status and zero or more value. The scenario_name and
value are defined as #PCDATA witch is Parsed Character Data and means it can contain
an arbitrary string of characters. For a complete overview of the used XML file see
Appendix B.

To read the information from the XML file we used a class called MyXMLReader, and create
String from the information we get out of it. After that we insert them into the Rete engine.
Below is shown how we get the facts from the XML file and put them in the Rete.

<!ELEMENT scenariolist (scenario*) >
<!ELEMENT scenario (scenario_name,status*,value*)>
<!ELEMENT scenario_name (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT value (#PCDATA)>

AIBO: WatchDog

31

Reasoning

Breaking glass

Loud sound

Obstacle

Intruder

People

Bark

Take pictures

Send e-mail

Take video

Set alarm

In the event we put the String read from the XML file. For the moment we have more
scenarios in the XML file and every 30 seconds we choose one randomly. In time in the XML
file will be put all the information gathered from the environment and send to the dog through
his sensors.
To have a closer look on how we read the XML file you can look at Appendix D at the end of
the report.

4.2 The framework of the AIBO watchdog

 (a)

 (b)

Figure 4.1 Framework of AIBO watchdog

Because we used liburbi Java we do not have an autonomous robot. The program will be on
the computer and we only connect to the AIBO and send him commands. We can say that the
dog will only execute the commands we send to him. The software we develop can control
AIBO remotely via wireless LAN.

public void addFact(Event event)
 { try
 { engine.reset();
 String jessCode = "";
 String []action = event.getEvent();
 jessCode += "(assert (robo-mind (action "+ action[0]+")";
 if (action.length > 1) jessCode +="(status " +action[1]+")";
 if (action.length > 2) jessCode +="(value " +action[2]+")";
 jessCode += "))";
 engine.executeCommand(jessCode);
 activateCommand();
 }
 catch (JessException je)
 { }
}

WLAN

.

AIBO: WatchDog

32

The input parts in the figure 4.1. (b) are not implemented in the project. In table below is
described the implementation status.

Table 4.1 Implementation status
Requirement Implementation status

R.1 Start WatchDog Finished, it is able to start the watchdog, although the
procedure could be modified, because it will be
desiderated that the WatchDog starts automatically not
only by pushing a button.

R.2 Stop WatchDog Finished, the WatchDog can easily be stopped.
R.3 Move inside the house
without bumping into obstacle

Unfinished, is dependant on R.5.

R.4 Walk forward and
backwards

Finished, but it needs improving because now the
WatchDog has a way of walking we called “crawl” but
the motion is bumpy and some of the sensors (camera)
are not so accurate. For that we need a smoother motion.

R.5 Recognize walls and
obstacles

Unfinished, the robot does not detect walls or other
obstacle.

R.6 Discover intruder Unfinished, the robot does not detect intruder.

R.7 Barking Finished. The dog has 3 ways of barking: a normal bark, a
happy one and angry one.

R.8 Save picture Finished. It could save picture in jpeg format on the
computer to a specified path.

R.9 Send mail Finished. It could send mail with the pictures taken to a
specified address.

R.10 Set alarm Finished. It could set an alarm consisting on playing a
beep sound a couple of times.

R.11 Respond to intruder and
the other threats as motion,
loud sound

Finished. The dog response to the intruder with a bark, an
angry one and takes pictures and sends them through mail
at the owner. And if a loud sound is detected then he will
go to explore and see what is going on. If a motion is
detected he will bark and take picture and also sends mail.

R.12 Reasoning Finished. We modeled the “mind” of the WatchDog. Of
course this mind could suffer improvements.

The current implementation focused on reasoning therefore the input module will be
developed in other project. The project was designed as modular as possible so that it will be
easy to connect with input sensing module. The only thing the input sensing module will need
to do is to transmit some parameters that will be written in the XML file and later on process
them by the reasoning module.

For developing the reasoning module we used JESS and for the output behavior we used
liburbi Java.

AIBO: WatchDog

33

4.3. Client server communication

Client/server is a computational architecture that involves client processes requesting service
from server processes.

URBI is a robot-independent API based on client/server architecture [4]. We can make use of
the URBI server in two ways: via a computer through the wireless LAN using the liburbi java
(external client) or through direct inter-process communication using liburbi OPEN-R
(onboard client).

In the case of an external client, the communication then takes place through a TCP/IP or IPC
connection. When using URBI over TCP/IP messages are send to the URBI object via telnet
over port 54000. The URBI Object then sends the appropriate messages to the other objects
on the OPEN-R system to accomplish the given command.

In the case of an onboard client, the client is also an OPEN-R object (containing doinit(),
dostart(), etc.) that runs along in the OPEN-System and sends messages to the URBI server.
Thus, URBI functionality can then be utilized by passing/receiving messages to/from the
URBI object (which of course should also be running).

In the general case: when a message is sent to the URBI server (no matter if this is through an
external client or through an onboard client), the server object will send message(s) to other
objects as a result of this message, thereby hiding the internal message passing details to the
client. Therefore, we only need to be concerned with the message passing details to and from
our client to the URBI server. The URBI server is on the memory stick on the AIBO and the
client is on the computer. The client communicates with the server through the wireless LAN.

.

AIBO: WatchDog

34

AIBO: WatchDog

35

Chapter 5 Testing

5.1 Testing results

Testing ensures that the system is according to the systems specification, and there should be
a recognizable relationship between requirements and the planned tests. Testing of the product
is necessary to verify that the system's functionality matches the functionality described in the
requirements document of the system.

Many of the requirements such as discovering the intruder and other threats and recognizing
walls have not been implemented and we had to simulate them and because of this the results
of the testing is not conclusive. Moreover due to the limitation of the time we had no time to
test all the things we had implemented. Future testing and validation of the requirements
should at least contain the tests outlined in Table 5.1.When all the requirements would be
implemented a more formal testing should be made.

Table 5.1: Suggested tests for robot watchdog
Requirement Test Repetitions

R.1 Start watchdog The robot starts operating when
the start watching button is
pushed.

5

R.2 Stop watchdog The robot is paused when the
Stop watching button is pressed.

5

R.3 Move inside the house without
bumping into obstacle

The robot is able to move in an
approximately straight line in 8
meters

10

R.4 Walk forward and backwards The robot is able to walk forward 5
R.5 Recognize walls and obstacles The robot detects a wall and an

obstacle when placed in front of
it

5 x 5 different angles

R.8 Discover intruder The robot discovers an intruder
when an intruder is present in the
robot's area of vision

10

R.7 Barking The robot barks. 5
R.8 Saving pictures The robot saves picture on the

computer to a certain path.
5

R.9 Send mail The robot sends a mail to an
certain address mail

5

R.10 Set alarm The robot sets an alarm
consisting on playing a beep
sound a couple of times.

5

R.11 Respond to intruder and any other
threats

The robot response to the
intruder and any other threats
that he knows such as motion
and loud sound

10

R.12 Reasoning The robot must decide what
action should be taken according
with the event received

10

.

AIBO: WatchDog

36

AIBO: WatchDog

37

Chapter 6 Conclusion and Recommendation

In this chapter we evaluates and summarizes the main results of this projects and give
directions for further work

6.1 Discussion

In this section we discuss some of the choices made during the project.

The most discussable choice in this project is the choice of the URBI Java framework. This is
because using URBI we do not have yet the possibility of creating an autonomous robot but
the developers of URBI promised that in time this will not be a problem and we can create
autonomous robot. For now the robot will be manipulated with the help of the computer. The
server is on the robot and the client runs on the computer. Another inconvenience of using
URBI is that it is very new and it has not yet implemented many of important features like
walking, turning and we had to use the one implemented in the Companion dog project.
Motion commands used cause jerky movements in the joints when the robot pauses and then
starts again and when walking the quality of the video is not very good. URBI is a Universal
Robotic Body Interface and allows you to control any robot with a powerful script language
that you can interface with any of your favorite programming language (C++, java, matlab …)
and OS (Windows, Mac, Linux). URBI is designed with a constant care for simplicity. There
is no "philosophy" or "complex architecture" to be familiar with. It is understandable in a few
minutes and can be used immediately. URBI is a low level command language. Motors and
sensors are directly read and set. Although complex high level commands and functions can
be written with URBI, the raw kernel of the system is low level by essence.
Using OPEN-R could have been another possibility but in OPEN-R less functionality would
have been possible to. Another possibility would have been Tekkotsu. But with Tekkotsu we
also have the same problem with the motion commands (at least WalkMC) which can cause
jerky movements in the joints when the robot pauses and then starts again. And moreover
Tekkotsu and OPEN-R are designed only for programming AIBO and not for any other robot
such as URBI.

6.2 Conclusion

The watchdog project aimed to “ train” AIBO ERS-7 dog to be a watchdog. The current dog is
able of receiving randomly possible events from the environment. He has a reasoning module
that makes him capable of “ thinking” and “analyzes” the threats we had “ trained” him to
recognize and take a certain action. The selection of the reactions is done in real time. The
reasoning part is the focus of the project. He is capable of barking, starts the alarm, saves
pictures and sends them through mail at a certain e-mail address. We can see also everything
the dog sees. If the user have a center of surveillance in home he can watch from there what
happens inside the house. He could also walk or better say crawl inside the house and explore
the area but he will bump into walls or any other obstacles because he is not yet capable of
recognizing walls and obstacles.

We developed watchdog system using Java to extract inputted events written in XML
messages. Using XML as an input, we expect the system flexible to be coupled with any input
fusion module. This input fusion module should link to some recognition modules, such as

.

AIBO: WatchDog

38

object recognition, distance recognition and sound recognition, to process different possible
input from environment using AIBO’s sensors, such as: sound, image and gesture. The input
fusion processes the received recognitions and sends to our developed watchdog system using
an XML format. The current watchdog system will process the input as a new event and send
it to the reasoning module.

Jess engine [7] was used to infer the rules to select appropriate behavior. This rule-based
reasoning was developed by listing possible events in a house environment as possible facts
and associating with possible reactions of a real watchdog. The rule-based approach opens up
opportunity to develop the reasoning module incrementally.

URBI [9] has been chosen to provide the system with a library to activate the behavior of
AIBO, such as: motion generation, sound generation, and picture capturing. Client-Server
connection has been used to establish communication between the program and the URBI
server on AIBO through AIBO wireless network using TCP/IP connection. The capabilities of
current developed AIBO are:

Till this moment AIBO has been “ trained” to perform well different tasks such as entertain,
watch-dog, rescue dog [12]. These entire tasks have in common the physical/hardware
components of an AIBO. While some might argue that a watchdog does not need personality,
moods or emotions it is our believe that all these task orientated AIBO’s need to have in
common also a complex personality model [12]. This is why in the future it will be desirable
that all projects developed in MMI group at TUDELFT should be combined in one
framework

6.3 Recommendation

Future work will be required in order to have a real input mechanism from a developed input
fusion module. This work will be developed on the project of developing an AIBO framework
within the MMI group at TUDELFT, which combines the WatchDog, the Companion dog,
and the Cooperate dog. As mentioned earlier, a certain mechanism to reason environment and
behavior for each task for the dog should also be designed and developed. In this case, we will
use task modes with priority. This moment the dog has the thinking and the behavior of one
surveillance dog but not the “seeing” and “hearing” .

Furthermore, field test with real users, real environment and real situations are necessary to
gather the data about how people might react to AIBO and vice versa, how AIBO might react
towards real events, and how people experience this. Therefore the design can cover more
requirements in real context use.

The implementation status of the different requirements is given in Table 4.1. Formal testing
has not been carried out, due to time limitations. The requirements that are unfinished, or can
be improved are discussed. Examples of extensions to the current functionality of the AIBO
watchdog are as following:

R.6 Walk forward and backward

At the current stage the robot is able to walk or better said to crawl forward and backward.
However, the motions are rather bumpy; he does not stand on his paw he only stands on his

AIBO: WatchDog

39

elbows. But with this kind of walk picture and video quality needs to be improved and
therefore we need a smoother walking algorithm. This is a subject for future work.

 R.5 Recognize walls and obstacle

The robot doesn't detect walls or any other obstacle. This also can be made by integrated in
the project the pattern recognition project and also using the distance sensor of the AIBO.
This would be a subject for future work.

R.3 Move inside the house without bumping into obstacle

This requirement depends on the functionality described in the functional requirement R.5.
An algorithm for planning where to walk is necessary if the robot shall move in complex
areas. This is not yet implemented. The robot should be able to turn around corners once a
path finding algorithm and wall recognition has been successfully implemented.
As an improvement the robot could be supplied with the plan of the house. This would extend
the feasibility of the watchdog. With the plan the dog will be able to move inside the house
without bumping into walls so he only needs to recognize obstacles.

R.6 Discover intruder

The dog does not discover the intruder this also because the project of facial recognition is
under construction. This will also be a subject for future work.

R.11 Response to intruder and other threats

The dog is able to respond to the intruder and to other threats that he knows. In the future the
dog should be able “ to learn” new threats and from his behavior to choose one that he
“ thinks” is more suitable. If a new threat appears he would first discover the similarities with
other threat that already exists in his memory and after that decides what kind of behavior to
choose. This it will be very helpful because we do not have to train him from the beginning to
recognize all threats. He will know the basic ones and when he discovers a new one he just
add it to his database and acts as the one who is most similar to. This way we could say that
the AIBO watchdog is able to learn.

R. 12 Reasoning

This part was made using a rule-based expert system. The rules are very clear but they are not
flexible and if an unknown event happens the dog will not react to it in any kind. I think
another expert system will be much better to use for example a fuzzy expert system or maybe
Neural and Adaptive Systems. This will be also a subject of research for future trail of
watchdog prototype.

.

AIBO: WatchDog

40

AIBO: WatchDog

41

Chapter 7 Appendix

Appendix A

The WatchDog stages:

o Start

To start the watchdog you need to copy the program on the memory stick and after that insert
the AIBO memory stick into AIBO. Then boot AIBO.

o Background initialization stage

After booting, AIBO will first needs to initiate his background image. During the initialization
period, AIBO shows the face from the picture. You and any moving objects should not be
viewed by the AIBO during this period. After AIBO finishes the background initialization
stage he will turn off the light and move on to the watching stage.

o Watching stage

While in watching stage if AIBO detects any moving objects, he will bark at the objects and
show his face as the following picture shows.

.

AIBO: WatchDog

42

He will save a picture in the /OPEN-R/MW/DATA/P directory. The captured pictures will be
saved in JPEG format and the file name format will be CAP_NNN.JPG, where the NNN is a
serial number from 000 to 299. If the serial number reaches the maximum number, it will then
begin counting from 0 again. He will also save the last captured picture in the
CAP_LAST.JPG file.

o Background-re-initialization

AIBO will go into the background re-initialization stage if:

§ There are lots of image changes. This case may be caused by the turning on/off the lights,
or moving his head/body.

§ He has continuously barked for more than 10 times.
§ Someone touches his back sensor (rear) for 1 second.

o Auto gain control

This program will automatically change the camera gain (low, middle, or high) based on the
current environment. If you put the AIBO in a dark environment he cannot detect motions.

o Download the pictures via FTP

You can download the picture saved on the memory stick with ftp but first the AIBO wireless
functions should be enabled. And you need to change the directory to DATA/P. The pictures
can be downloaded using the get command.

o WatchDog web functions

This function enables you to browse the captured pictures via a web browser. First the AIBO
wireless functions should be enabled and on the web browser input
http://<AIBO_ip_address>.The home page will show the current watching image,
and the image will be updated periodically and automatically.

Appendix B

The XML file wd.xml:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE wdog [
 <!ELEMENT scenariolist (scenario*) >
 <!ELEMENT scenario (scenario_name,status*,value*)>
 <!ELEMENT scenario_name (#PCDATA)>

AIBO: WatchDog

43

 <!ELEMENT status (#PCDATA)>
 <!ELEMENT value (#PCDATA)>
]>
<scenariolist>
 <scenario>
 <scenario_name>intruder</scenario_name>
 <status>friendly</status>
 </scenario>
 <scenario>
 <scenario_name>intruder</scenario_name>
 <status>unfriendly</status>
 </scenario>
 <scenario>
 <scenario_name>loud_sound</scenario_name>
 <status>behind</status>
 </scenario>
 <scenario>
 <scenario_name>loud_sound</scenario_name>
 <status>front</status>
 </scenario>
 <scenario>
 <scenario_name>loud_sound</scenario_name>
 <status>right</status>
 </scenario>
 <scenario>
 <scenario_name>loud_sound</scenario_name>
 <status>left</status>
 </scenario>
 <scenario>
 <scenario_name>motion_detected</scenario_name>
 </scenario>
 <scenario>
 <scenario_name>obstacle</scenario_name>
 </scenario>
 <scenario>
 <scenario_name>no_obstacle</scenario_name>
 </scenario>
 <scenario>
 <scenario_name>nothing</scenario_name>
 </scenario>
 <scenario>
 <scenario_name>man</scenario_name>
 <status>known</status>
 <value>friendly</value>
 </scenario>
 <scenario>
 <scenario_name>man</scenario_name>
 <status>known</status>
 <value>unfriendly</value>
 </scenario>
 <scenario>
 <scenario_name>man</scenario_name>
 <status>unknown</status>

.

AIBO: WatchDog

44

 <value>unfriendly</value>
 </scenario>
 <scenario>
 <scenario_name>man</scenario_name>
 <status>unknown</status>
 <value>friendly</value>
 </scenario>
 <scenario>
 <scenario_name>man</scenario_name>
 <status>unknown</status>
 </scenario>
</scenariolist>

AIBO: WatchDog

45

Appendix C

The rule.cpl file:

load-package wdog.LoadBehavior)

(deftemplate robo-mind (slot action) (slot status) (slot value
))

(deftemplate robo-state (slot do_action) (slot next_action))

(deffunction start-bark (?bark_type)
 (bark ?bark_type)
)

(deffunction be-unfriendly ()
 (save_picture)
 (start-bark angry)
 (set_alarm)
)

(deffunction explore()
 (look around)
 (crowl_front))
(deffunction turning()
 (turn right)
 (turn right))

(deffunction behavior(?bark_type)
 (save_picture)
 (set_alarm)
 (bark ?bark_type))

(defrule is-owner
 (robo-mind (action ?X&: (eq ?X owner)))
 =>
 (start-bark happy))

(defrule friendly-intruder
 (robo-mind (action ?X&:(eq ?X intruder))(status ?Y&: (eq ?Y
friendly))(value ?Z&:(eq ?Z nil)))
 =>
 (behavior normal))

(defrule unfriendly-intruder
 (robo-mind (action ?X&:(eq ?X intruder))(status ?Y&: (eq ?Y
unfriendly))(value ?Z&:(eq ?Z nil)))
 =>
 (be-unfriendly))

.

AIBO: WatchDog

46

(defrule intruder-detected
 (robo-mind (action ?X&:(eq ?X intruder))(status ?Y&:(eq ?Y
nil))(value ?Z&:(eq ?Z nil)))
 =>
 (behavior angry))

(defrule is-friendly_intruder
 ?id <-(robo-mind (action ?X&:(eq ?X man))(status ?Y&:(eq
?Y unknown))(value ?Z&:(eq ?Z friendly)))
 =>
 (retract ?id)
 (assert (robo-mind (action intruder) (status friendly))
))

(defrule is-unfriendly_intruder
 ?id <-(robo-mind (action ?X&:(eq ?X man)) (status ?Y&:(eq
?Y unknown))(value ?Z&:(eq ?Z unfriendly)))
 =>
 (retract ?id)
 (assert (robo-mind (action intruder) (status unfriendly))
))

(defrule is-intruder
 ?id <- (robo-mind (action ?X&:(eq ?X man))(status ?Y&:(eq
?Y unknown))(value ?Z&:(eq ?Z nil)))
 =>
 (retract ?id)
 (assert (robo-mind (action intruder))))

(defrule is-unfriendly
 (robo-mind (action ?X&:(eq ?X man))(status ?Y&:(eq ?Y
known))(value ?Z&:(eq ?Z unfriendly)))
 =>
 (bark normal))

(defrule is-not-intruder
 (robo-mind (action ?X&:(eq ?X man))(status ?Y&:(eq ?Y
known))(value ?Z&:(eq ?Z friendly)))
 =>
 (bark happy))

(defrule motion-detected
 (robo-mind (action ?X&: (eq ?X motion_detected)))
 =>
 (behavior normal))

(defrule obstacle-detected
 (robo-mind (action ?X&: (eq ?X obstacle)))
 =>
 (look right)
 (turn right))

(defrule no-obstacle

AIBO: WatchDog

47

 (robo-mind (action ?X&: (eq ?X no_obstacle)))
 =>
 (crowl_front))

(defrule nothing
 (robo-mind (action ?X&: (eq ?X nothing)))
 =>
 (default_state))

(defrule sound_detected_front
 (robo-mind (action ?X&: (eq ?X loud_sound))(status ?Y&: (eq
?Y front)))
 =>
 (look ahead)
 (explore))

(defrule sound_detected_right
 (robo-mind (action ?X&: (eq ?X loud_sound))(status ?Y&: (eq
?Y right)))
 =>
 ;(look right)
 (turn right)
 (explore))

(defrule sound_detected_left
 (robo-mind (action ?X&: (eq ?X loud_sound))(status ?Y&:
(eq ?Y left)))
 =>
 ;(look left)
 (turn left)
 (explore))

(defrule sound_detected_behind
 (robo-mind (action ?X&: (eq ?X loud_sound))(status ?Y&: (eq
?Y behind)))
 =>
 (turning)
 (explore))

.

AIBO: WatchDog

48

Appendix D

Here is the code of MyXMLReader where we read from XML file and transform the elements
into String.

package wdog;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;

import java.io.File;

import java.io.IOException;

import org.w3c.dom.Document;

import org.w3c.dom.*;

import java.util.Vector;

public class MyXMLReader

{

 private Document document;

 public MyXMLReader(String filename)

 {

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 try

 {

 DocumentBuilder builder = factory.newDocumentBuilder();

 document = builder.parse(new File(filename));

 }

 catch (SAXException sxe)

AIBO: WatchDog

49

 {

 // Error generated during parsing

 Exception x = sxe;

 if (sxe.getException() != null)

 x = sxe.getException();

 x.printStackTrace();

 }

 catch (ParserConfigurationException pce)

 {

 // Parser with specified options can't be built

 pce.printStackTrace();

 }

 catch (IOException ioe)

 {

 // I/O error

 ioe.printStackTrace();

 }

 }

/**

 *

 * @return the number of scenarios

 * /

 public int getScenario()

 {

 NodeList s = document.getElementsByTagName("scenario");

 return s.getLength();

 }

.

AIBO: WatchDog

50

/**

 * @param sNumber - represent the number of the scenario to return

 * @return an array of Strings with the scenarios from the XML file

 */

public String[] getScenario(int sNumber)

 {

 NodeList s = document.getElementsByTagName("scenario");

 Node s1 = s.item(sNumber);

 NodeList tags = s1.getChildNodes();

 Vector v = new Vector();

 int j=0;

 for (int i = 1 ; i<tags.getLength(); i+=2)

 {

 v.add(tags.item(i).getFirstChild().toString());

 j++;

 }

 String[] tagString = new String[v.size()];

 for (int i = 0; i < tagString.length ; i++)

 tagString[i] = v.get(i).toString();

 return tagString;

 }

Here is the code of MyXMLWriter where we write in the XML file:

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

AIBO: WatchDog

51

import org.xml.sax.SAXException;

import java.io.File;

import java.io.IOException;

import org.w3c.dom.Document;

import org.w3c.dom.*;

import javax.xml.transform.* ;

import javax.xml.transform.dom.*;

import javax.xml.transform.stream.*;

public class MyXMLWriter

{

 private Document document;

 public MyXMLWriter(String filename)

 {

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 try

 {

 File f = new File(filename);

 DocumentBuilder builder = factory.newDocumentBuilder();

 document = builder.parse(f);

 }

 catch (SAXException sxe)

 {

 // Error generated during parsing

 Exception x = sxe;

.

AIBO: WatchDog

52

 if (sxe.getException() != null)

 x = sxe.getException();

 x.printStackTrace();

 }

 catch (ParserConfigurationException pce)

 {

 // Parser with specified options can't be built

 pce.printStackTrace();

 }

 /* catch(TransformerConfigurationException tco)

 {

 tco.printStackTrace();

 }

 catch(TransformerException te)

 {

 te.printStackTrace();

 } */

 catch (IOException ioe)

 {

 // I/O error

 ioe.printStackTrace();

 }

 }

 public void write(String scenarioName, String status, String value)

 {

 Element scenarioList = document.getDocumentElement();

AIBO: WatchDog

53

 Element scenario = document.createElement("scenario");

 scenarioList.appendChild(scenario);

 Element sName = document.createElement("scenario_name");

 scenario.appendChild(sName);

 sName.appendChild(document.createTextNode(scenarioName));

 if (!status.equals(""))

 {

 Element sStatus = document.createElement("status");

 scenario.appendChild(sStatus);

 sStatus.appendChild(document.createTextNode(status));

 }

 if (!status.equals(""))

 {

 Element sValue = document.createElement("value");

 scenario.appendChild(sValue);

 sValue.appendChild(document.createTextNode(value));

 }

 try {

 // Prepare the DOM document for writing

 Source source = new DOMSource(document);

 // Prepare the output file

 File file = new File("wdog\\watch.xml");

 Result result = new StreamResult(file);

.

AIBO: WatchDog

54

 // Write the DOM document to the file

 Transformer xformer = TransformerFactory.newInstance().newTransformer();

 xformer.transform(source, result);

 } catch (TransformerConfigurationException e) {

 } catch (TransformerException e) {

 }

 }

}

AIBO: WatchDog

55

Appendix E

1.URBI language

The main part of URBI is the URBI language which defines how commands can be sent to the
robot, what kind of scripting features are available and the syntax associated. The working
cycle of URBI is to send commands from the client to the server and to receive messages
from the server to the client. Commands can be written directly in a telnet client on port
54000, where the messages will also be displayed or, as we will see later, using a program and
a library.

1.1 Getting and setting a device value

As we said in the introduction, each element of the robot is called a device and has a device
name. For example, in the case of AIBO, here is a short list of devices: legFL1, neck, camera,
speaker, micro, head sensor, accelX, pawLF, and ledF12...The first thing that can be done
with a device is to read its value. This is done with the “val ”method. For example, it can be
done with a telnet client opened at port 54000 on the robot. We start every line with the”>”
sign to show the command prompt but this is not visible in a normal telnet session, nor is it
part of the command syntax. Other lines without”>” are messages from the server:

> neck.val;

[036901543: notag] 15.1030265089

The message returned is composed of a first part between brackets displaying a timestamp in
milliseconds (from the start of the robot) and a command tag. In this case, the command tag is
“notag” since no tag has been specified with the command. The tag can be specified before a
“ :” , preceding the command. With the command tag, it is possible to retrieve the associated
message later, possibly in a flow of other messages from the server:

> mytag: neck.val;

[041307845: mytag] 15.0040114317

This tagging feature is an essential part of URBI and the URBI Java library where callback
functions can be associated to any tag, enabling asynchronous message handling. Error
messages are tagged with the “error” tag when they are not related to a specific command.
This is useful when one wants to implement an error handling function, which will be
triggered each time a message tagged with “error” is received. Warning messages also exists.
The second part of the message is the response of the server. In the case of our example, it
gives the value of the AIBO neck device which is the position of the neck motor in degrees.
The “val” command can be used with any device. The type of data returned depends on the
device and can be checked with the “unit” instruction:
> unit neck;
[041447411: notag] "deg"
Available units are, among others, “deg” , “bool” , “ lum” (luminosity),”cm”, “Pa”
(pressure), “m/s2

 “ (acceleration).
The minimal and maximal range is also available with any device, using the”maxrange” and
“minrange” instructions. For example, in the case of the headPan device:
> therangemax: rangemax headPan; therangemin: rangemax headPan;

.

AIBO: WatchDog

56

[057845441:therangemax] 91.0000000
[057845441:therangemin] -91.0000000
Note that the “valn” method also exists and is similar to “val” except that it handles a
normalized value between 0 and 1, computed from the minrange and maxrange values of the
device. This is useful when one does not know a priori the unit and range of a device or to
write programs which are to certain extend”robot-independent “ .
The “val” method can also be used to set a particular device value. If the device is a motor, it
is going to move to the specified value. In the case of a LED, this will switch it to the
corresponding illumination (between 0 and 1):
> motoron;
> headPan.val = 15; headTilt.val = 20;
The “motoron” command is necessary at the beginning to start the motors of the robot. The
two next commands set the position of the head pan and tilt. Note that, by default, a setting
command does not produce any return message. This can be modified with options associated
to the tag at the beginning of the command, like the “+report” option which tells the server to
be in “verbose” mode. The client will be prompted when the command starts and when it
finishes. With the “error” tag, the server will notify the client if any error occurs (obstruction
on the motor movement for example).
> mycommand +report: legLF2.val = 15;
[058477124: mycommand] ** * start
[058477156: mycommand] ** * stop
Note how meta information regarding the command is prefixed by ** * .This is to make clear
that the message is not a return value and has no type. Command specific error messages and
warning messages are also prefixed by * ** .The tag “mycommand” is compulsory since if one
uses only “+report” it would be difficult in general to know what the “start” and “stop” refers
to when several commands are started at the same time.

1.2. Modificators

The value specified by a “val” command is reached as quickly as the hardware of the robot
allows it. It is however possible to control the speed and other movement parameters using
modificators. The following example commands the robot to reach the value 80 deg for the
motor device headPan in 4500 ms and the value 40 deg for headTilt with a speed of 12.5
degrees per seconds:
> headPan.val = 80 time: 4500;
> headTilt.val = 40 speed: 12.5;
The speed or time modificators are always positive numbers It is possible to specify a speed
without giving a targeted final value by setting the desired value to infinity (inf) or minus
infinity (-inf).For example, in the case of a wheeled robot, one might need to control the right
wheel speed with:
> wheelR.val = inf speed: 120;
If the range of the device is not infinite, the command will stop when the value reaches
maxrange or minrange. Another interesting modificator is “accel” those meaning is to control
the acceleration, and “sin” which tells the robot to reach the value in a specified time and in a
sinusoidal way. This is useful when a circular movement is required. In future versions of
URBI, it is planned to provide a way to define custom modificators, based on any motion
profile and not only sinusoidal trajectories. This will be particularly useful to describe walk
sequences. Modificators can be combined, “ time” being prioritary over “speed” which is
prioritary over “accel” :
> wheelR.val = 150 speed: 120 time: 2000;
This command means that the value 150 must be reached at speed 120.This speed must be
reached in 2000ms (this sets an implicit first phase of acceleration of 60 deg/s 2).The priority

AIBO: WatchDog

57

between modificators tells which modificator is modifying the others in case of a combined
use.
An important point about modificators is that it is not only available to set devices but for any
kind of variable (variables of a device or global variables).
Considering the following example:
> myvariable = 0;
> myvariable = 50 time: 10000;
> myvariable;
[001410040: notag] 2.45471445
> myvariable;
[001412020: notag] 12.35471445
> myvariable;
[001442020: notag] 50.00000000
The first affectation sets the variable to zero and the second one tells the robot to reach the
value 50 in 10 seconds. When the value of “myvariable” is checked over time, we see that it is
evolving from 0 to 50 during this time interval. This is a unique and powerful feature of URBI
compared to other existing languages and which makes it a fundamentally asynchronous and
time-oriented language. It allows creating a dynamics for parameters, useful in many
situations like for example in the design of a “walk” sequence for a legged robot.

1.3. Binary data sending and receiving

Some devices like cameras, speakers or microphones are handling binary data. In the case of
AIBO, the camera device is called camera and its value (the current image) can be retrieved
with a “val” command, just like any other device:
> camera.val;
[004757741: notag] BIN 5347 jpeg 208 160

########### 5347 bytes of binary data ##############...

Binary data always starts with the word “BIN” immediately followed by the number of bytes
that will be received. Extra information follows. In the case of an image, it is the image
encoding type (jpeg or YCbCr for AIBO) and the image height and width. After the carriage
return, the binary data starts. The system switches back to ASCII mode after the last byte is
sent. It is possible to specify in which format the image should be sent (jpeg or YCrCb or, in
future versions, mpeg) with the “ format” method of the camera device. It is also possible to
set the jpeg compression factor, the camera gain, white balance or shutter speed. Here is an
example session:
> camera.format = 0;
> camera.jpegfactor = 80;
> camera.gain = 1;
> camera.wb = 2;
> camera.shutter = 0;
> camera.resolution = 0;
See the specific AIBO URBI server documentation for the precise meaning of the values. This
example is interesting here because it shows how device-specific variables can be set using
other methods than “val” or “valn” . This is illustrating the ease of use of the “device.method”
format chosen for URBI and how extensible it can be to support any kind of device with
particular methods that might exist in future robots. This is an important point if URBI is to
become a standard. In the case of sound, for the AIBO micro device for example, one can
request the incoming sound for 500ms with the following command:

.

AIBO: WatchDog

58

> micro.val(500);
[004857788: notag] BIN 2048 wav 16000 16 2

########### 2048 bytes of binary data ##################
##...

If the parameter 500 is omitted, the sound is streamed without interruption, in small samples
of 32ms (it can be stopped with a “micro.stop” command).The extra information after “BIN
2048” is the sound encoding (wav file in the case of AIBO), sample rate in Hz, encoding
depth in bits and the number of channels. To send sound, the syntax is similar:
> speaker.val = BIN 2048 wav;

########### 2048 bytes of binary data ##################
##...

Note that since the server is waiting for a command terminated by a semicolon, it is right after
the semicolon that the binary data starts. Of course, these binary transfers are not usable when
the client is a telnet client and it is necessary to use a programming interface like the
C++URBI Library to make a full use of these features. As we will see, many functions are
provided to easily and transparently send or receive binary data. Note that it is possible to play
a specific file on the robot with speaker.play (”myfile.wav”) sent from a telnet client.

1.4. Serial and parallel commands

One key feature of URBI is the ability to process commands in a serial or parallel way. When
separated by the “&” separator, two commands will be executed in parallel. Moreover, they
will start at exactly the same time:
> headPan.val = 15 & headTilt.val = 30;
This will move the head pan and tilt together, with both motors starting at the same time. In
the same way, it is possible to serialize commands by separating them with a pipe. In that
case, the second command will start just after the first one is finished, with no time gap.
> headPan.val = 15 | headTilt.val = 30;
This will move the head pan to 15 degrees and only when this value has been reached, and
just after, it will start to move the headTilt motor.
Two commands separated by a semicolon have almost the same time semantics as the serial
” |” : the second will start after the end of the first, but the time gap between the end of the first
and the beginning of the second is not specified. Most of the time, URBI commands will be
separated by semicolons. The main difference in using semicolons is that commands are
interpreted as they arrive, whereas with pipes the chain of commands cannot start until it is
completely received (and terminated by a semicolon for example). Finally, two commands
can be separated by a colon. In that case, the time semantics is close to the parallel operator
“&” except that the two commands don’ t necessarily start at the same time. The meaning of a
colon terminated command is simply to start the command as soon as possible. In particular,
as soon as the command is in the buffer, it will be executed, whereas with “&” the chain of
commands must be integrally received before execution.
The following relationships represent those time dependencies:
a;b : b.start >= a.end
a,b : b.start >= a.start
a&b : b.start == a.start
a|b : b.start == a.end
The operator priority is the following: ; , & |

AIBO: WatchDog

59

These time sequencing capabilities are another specificity of URBI and are very important
features to design and chain complex motor commands or behaviors.

1.5. Loops, conditions, event catching

Several control structures are available, like the classical “ for” , “while” and “ if” . Some extra
control structures like “ loop” which is equivalent to “while (true)”or “ loopn (n)”equivalent to
“ for(i=0 ; i <n; i++)” are also provided for convenience.
The syntax of” for” , “while” and “ if” is the same as in JAVA. Here are some examples:

if (ledF11.val == 1)
{
if (ledF12.val == 0)
ledF12.val=0.254 speed: 0.1;
ledF11.val = 1;
} else
ledF11.val=1 time 1454;
for (i=0;i<100;i++) {
headTilt.val = i/100 sin: 124;
ledF10.val = i/100;
} ;
while (legLF1.val < 12)
legRF1.val = lefLF1.val;
As a specificity of URBI, event catching control structures like “whenever” and “at” are also
available. The instruction “at (test) command “will execute the command only once at the
moment when the test becomes true. It is possible to set a hysteresis threshold associated to
the test so that the test has to be false n times before it can trigger the command again when it
becomes true. This is done with the tilde separator in the test. The following example let the
head move in circles, except when an object is detected in the 25cm short range for an AIBO:

period=2500;
at (distanceNear.val > 25 ~ 3)
scanning: loop {
{ headTilt.val = 90 sin:period |
headTilt.val = -90 sin:period }
&
{ headPan.val = 90 sin:period |
headPan.val = -90 sin:period }
}
else
stop scanning;

In this example, the hysteresis threshold is set to 3, which means that the test must be false 3
times before it can trigger the “ loop” command again. The meaning of the “else” part is
symmetrically identical. The “stop” command, followed by a tag name, means that any
command with this tag will be stopped. This is used here to stop the head circular sweeping.
Note how the serial and parallel operators are used to specify the circular head movement.
The number after the tilde operator can also be a time period. In that case the time unit must
follow the number, like”50ms “ . The instruction “whenever (test) command” will execute the
command as long as the test is true. When the test becomes false, the command is not
restarted once it is finished and the “whenever” instruction waits for the test to become true
again. Without entering into details, we can say that the mechanism used by the URBI kernel

.

AIBO: WatchDog

60

to process commands involves command substitution in the command stack. When executed,
the command “ if (test) command1 else command2 “ is transformed into “command1” if (test)
is true, and “command2” otherwise. In the same way, when the command “while” is
executed, it is immediately replaced by the following command:

while (test) instruction;
<=>
if (test) {
instruction;
while (test) instruction;
}
else noop;
Note that “noop “ is an instruction which take a cycle to execute and does nothing. This
substitution mechanism is computationally efficient and, as a side effect, gives a precise way
to describe the semantics of the instructions. Here is the semantics of “at” and “whenever”as
described in the kernel:

whenever (test) instruction;
<=>
if (test) {
instruction;
whenever (test) instruction
}
else {
noop;
whenever (test) instruction
}
at (test) instruction; <=>
if (test) {
instruction;
at (!test)
at (test) instruction;
}
else {
noop;
at (test) instruction;
}

We are currently working on a more formal mathematical description of the URBI semantics,
but the above description will be used as a reference. Like “else” or the “ if “ instruction, there
is a “else” part for whenever and a “onleave” part for “at” . The semantics of “else” and
“onleave” is symmetrically defined compared to the main body of the instruction.

2 URBI library

2.1 Instantiating a URBI Client

UClient is the main class of the LibURBI Java Project. If you create an instance of UClient,
passing the name of a URBI server host as the first parameter and optionally the port
 as the second parameter, the object will directly connect to the server.

AIBO: WatchDog

61

UClient client = new UClient(“192.169.1.27 ”);

2.2 Sending data

To send a command, you can either use the method ‘send ’ to append the String
 message to a Send buffer or the method ‘effectiveSend ’ which immediately sends data
 through the socket.

client.send(“motoron;”);
client.effectiveSend(“speaker.val;”);

2.3 Receiving data

Some precise messages received from the URBI server are the results of a command
previously sent by a client. The mechanism of URBI tags enables to link a message
 to its reply : each sent command is associated with a tag (if it is not precise in the
 String sent message, the URBI server associated its reply with the ‘notag ’ tag) and this
 tag is repeated in the reply message from the server. LibURBI Java uses the
 performance of the ‘ java.nio ’ API introduced in JDK 1.4. A selector associated with
 the socket channel handles the reception of those (binary or not) messages.

2.4 Implementing Callbacks

One of the most important features of the LibURBI Java Project consists in the ability of
UClient instances to register Callbacks in their Callback container. A Callback object is
 associated with a tag and implements the UCallbackListener interface, defining the
 ‘actionPerformed ’ method. This function will be called each time a message marked with the
corresponding tag is received from the server. The parameter of the ‘actionPerformed’ method
is a URBI event. An URBIEvent object contains all the necessary information about the
received message(Considering an URBIEvent named ‘event ’):

•event.timestamp: the timestamp of the received message

.•event.tag The tag which associates the received message to the corresponding
Callback.

•event.type: the type of the received message. (can be “ jpeg ” , “ raw ” , “wav ”)

•event.binBuffer: the binary received buffer. (is null if the received message does not
contain binary data)

•event.size: the size of the binary data.

•event.cmd: the received command.

•event.height: the height of the binary received data if this one is an image byte array.

.

AIBO: WatchDog

62

•event.width: the width of the binary received data if this one is an image byte
 array.

•event.sampleRate: the sample rate of the binary received data if this one is an audio byte
array.

•event.nbOfBits: the sample size of the binary received data if this one is an audio byte
array.

•event.nbOfChannels: the number of channels of the binary received data if this
 one is an audio byte array.

•event.signed: the signed value of the binary received data if this one is an audio
 byte array.

To register a Callback and associate it with a tag, you simply need to call the
 ‘setCallback ’method of the UClient.

UCallbackListener call = new UCallbackListener();

client.setCallback(call, “call ”);

To remove a Callback, use the ‘deleteCallback’with the corresponding tag.
client.deleteCallback(“call ”);
We implemented the Callback interface in our classes.
Below we gave an example of such a class that makes the saving of the pictures:

public class SavePicture implements UCallbackListener
{ private int nopictureMade;
 private String path = "";
 private int noPicture = 100;
 public SavePicture(String path,int noPicture)
 {
 this.path = path;
 this.noPicture = noPicture;
 nopictureMade = 0;
 }
 public SavePicture(String path)
 {
 this.path = path;
 }
 public SavePicture()
 { }
 public void actionPerformed(URBIEvent event)
 {
 if (event.getBinBuffer() == null) return ;

 int width = event.getWidth();
 int height = event.getHeight();
 ImageUtilities.setWidth(width);
 ImageUtilities.setHeight(height);

Image im = ImageUtilities.blockingLoad(event.getBinBuffer());
 if (im != null){
 BufferedImage buffer = ImageUtilities.makeBufferedImage(im);

AIBO: WatchDog

63

 if (nopictureMade>noPicture)
 OutputBehavior.sw = false;
 else
 nopictureMade++;
 int [] pixels = new int[width * height];
 PixelGrabber pg = new PixelGrabber(im,0,0,width,height,pixels,0,width);
 try
 {
 pg.grabPixels();
 }
 catch(InterruptedException ie)
 {
 ie.printStackTrace();
 }

 buffer.setRGB(0,0,width,height,pixels,0,width);
 //Encode as a JPEG and creates an directory image in the given path
 try
 {
 File dir = new File(path+"\\image");
 FileOutputStream fos = null;
 if (dir.isDirectory())
 fos = new FileOutputStream(dir+"/out"+nopictureMade+".jpg");
 else
 {
 boolean succes = dir.mkdir();
 if (succes)
 fos = new FileOutputStream(dir+"/out"+nopictureMade+".jpg");
 else
 System.out.println("The directory "+dir+" couldn't be created");
 }
 JPEGImageEncoder jpeg = JPEGCodec.createJPEGEncoder(fos);
 jpeg.encode(buffer);
 fos.close();

 }
 catch (Exception e)
 {
 System.err.println(e.getMessage());
 }
 buffer.flush();
 buffer = null;
 im.flush();
 im = null;
 }
 }
}

.

AIBO: WatchDog

64

Appendix F

Jess

Jess-Java Expert System-is a fast, powerful rule engine for the Java platform [7]. Jess
supports the development of rule-based systems which can be tightly coupled to code written
in the powerful, portable Java language. We use Jess to develop our rule based expert system.
The most important modules that make up a rule-based system are shown in the Figure below:

Figure 4.1

The user can interact with the system through a user interface. An inference engine interacts
with both knowledge base and data specific to the particular problem being solved. The expert
knowledge will typically in the form of a set of IF-THEN rules. The case specific data
includes both data provided by user and partial conclusion based on the data. In a simple
forward chaining rule-base system the case specific data will be the elements in the working
memory. Almost expert systems have an explanation subsystem which allows the program to
explain its reasoning to the user. Some expert systems have a knowledge base editor which is
helpful to update and check the knowledge base.

Instead of representing knowledge in a relatively declarative, static way (as a bunch of things
that are true), rule-based system represent knowledge in terms of a bunch of rules that tell you
what you should do or what you could conclude in different situations. A rule-based system
consists of a bunch of IF-THEN rules, a bunch of facts, and some interpreter controlling the
application of the rules, given the facts.

There are two broad kinds of rule system: forward chaining systems, and backward chaining
systems. In a forward chaining system you start with the initial facts, and keep using the rules
to draw new conclusions (or take certain actions) given those facts. In a backward chaining
system you start with some hypothesis (or goal) you are trying to prove, and keep looking for
rules that would allow you to conclude that hypothesis, perhaps setting new sub goals to
prove as you go. Forward chaining systems are primarily data-driven, while backward
chaining systems are goal-driven.

AIBO: WatchDog

65

Chapter 8 Bibliography

[1] WILLIAM J. KOLE, WHO REPORTS ON VIOLENT CRIME

[2] AP, 20 MAY 1994

[3] http://www.fremtidshuset.com/eng/

[4] CHI HYUN ANGELA LEE, NOVEMBER 2004, “ABOUT AIBO”

[5] ZHENKE YANG, JANUARY 2005, PROGRAMMING AIBO

 [6] Ingeborg Strand Friisk, November 28, 2003,” Autonomous AIBO watchman-TDT4735
Software Engineering, Depth Study” ,http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-
2003/fordypning2003-Ingeborg-Strand-Friisk.pdf

[7] http://herzberg.ca.sandia.gov/jess/docs/70/

[8] JEAN-CHRISTOPHE BAILLIE, “URBI: A UNIVERSAL LANGUAGE FOR ROBOTIC
CONTROL “

[9] BASTIEN SALTEL, EDITION DECEMBRE 15, “THE LIBURBI JAVA PROJECT”
2004

[10] http://www.sony.net/Products/aibo/

[11] http://www.aibo.a0soft.com/

[12] Dobai, I., Rothkrantz L. and Charles van der Mast, year 2005, "Personality model for a
companion AIBO"

