

An icon based observation tool for crisis
situations modeled with Cougaar

Project report by
Marius Paltanea,

February 3 to May 3,
2005 TU Delft

 2

 3

Acknowledgments

First of all I would like to thank my supervisor from the TU Delft University of
Technology, Dr. Drs. L. J. M. Rothkrantz for his support and confidence in
regard to the development of the project. His ideas and suggestions shaped the
new improved look and functionality of the original IconMap application.

Then, I would like to thank several people belonging to the MMI staff, who
helped me develop the application. They are Bogdan Tatomir, who coordinated
and guided my work throughout the whole period and also kindly offered his
help every time I needed it , Paul Klapwijk, who helped me get past some
technical issues and last but least, Paul Schooneman, whose IconMap
application was the basis on which my whole project was founded upon.

A special thanks goes to Hakan Elgin from the DECIS LAB, who introduced
me with the Cougaar framework and also gave me a lot of useful tips regarding
this state-of-the-art programming environment.

I would also like to thanks Prof. Dr. Livia Sangeorzan from the “Transilvania”
University of Brasov for making possible my coming to TU Delft.

 4

Abstract

Crisis and disasters have always been with us. Time and again they have caught
us unprepared to deal with the rapid and unexpected changes that they are
inducing to the environment. The increasing number of crises and disasters has
motivated more and more academics, consultants, and practitioners to engage
in crisis-related activities. The project on crisis management researched at the
Man Machine Interaction group at TUDelft University is such an activity,
focused on developing tools that can help people better coordinate their efforts
towards resolving a crisis.

The icon based observation tool for crisis situations has been designed as an
alternative means of communication. The graphical interface and the use of
intuitive icons should prove very useful when trying to report about a crisis.

The Cougaar framework was used to wrap the application, giving it the shape
of a distributed agent-based application. Cougaar is an open-source, Java-based
architecture for the construction of highly scalable distributed agent-based
applications. The Cougaar architecture distinguishes itself from other
architectures by its agent model, based on a distributed blackboard.

This paper presents the design and implementation of the icon based
observation tool, insisting on the Cougaar elements used to model it as a
distributed agent-based application.

Table of contents

Acknowledgments... 3

Abstract... 4

I. Preview ... 7

1.1 Overview of the ISME application... 7
1.1.1 Introduction ..7
1.1.2 Interface ..7
1.1.3 Intelligence..8
1.1.4 Notes on design ...8

1.2 Adapting the ISME Application for the Cougaar framework 9
1.2.1 Problem Description ...9

II. Overview of the Cougaar framework .. 11

2.1 Introduction to Cougaar ...11

2.2 Architecture “Quick Look”...12
2.2.1 Top Level: Cougaar Society..12
2.2.2 Zoom In: Cougaar Community ...13
2.2.3 Zoom in: Cougaar Node ...13
2.2.4 Zoom in: Cougaar Agent Internals ...14
2.2.5 Zoom in: Cougaar Blackboard Contents ..15

2.3 Cougaar Communications...16
2.3.1 Agent Naming Services ...16
2.3.2 Name Generation ..17
2.3.3 White Pages ..17
2.3.4 Yellow Pages...18
2.3.5 Local Discovery ..18
2.3.6 Peer-to-Peer Search..18
2.3.7 MessageTransport...18

2.4 Cougaar Servlets ...19

III. The Data Model.. 21

3.1 The Use-Case Diagram..21

3.2 The Class Diagram ..22

3.3 The Sequence Diagram..25

IV. Cougaar Model... 29

4.1 Configuration of the Cougaar society ...29
4.1.1 Defining a community ...29
4.1.2 Virtual Machine parameters ...31
4.1.3 Configuring the agents..33
4.1.4 The MapServer agent ..34
4.1.5 The Observer agent...36
4.1.6 Server configuration ...38

4.2 Notes on Plugin Implementation...39
4.2.1 Plugin - Blackboard relation ..39
4.2.2 The Cougaar ComponentPlugin ...40

 6

4.2.3 Predicates & Subscriptions...41
4.2.4 The Execute Method ..44

4.3 Inter-agent communication...46
4.3.1 Relays & AttributeBasedAdresses...46
4.3.2 Data flow...48

V. Conclusions and Recommendations ... 53

VI. Bibliography ... 55

Appendix... 56

Display of three nodes running on the same host ...56

MapServer agent’s history servlet (shows all the changes in the agent’s blackboard)57

Client applications...58

 7

I. Preview

1.1 Overview of the ISME application

1.1.1 Introduction

The ISME (Icon Based System for Managing Emergencies) is the graduation project of Paul
Schooneman at the Man Machine Interaction group of the faculty Electrical Engineering,
Mathematics and Computer Science at the Delft University of Technology. The research is
done as part of the Combined Systems [Comb] group at DECIS LAB, a collaboration of
Delft University of Technology, University of Amsterdam, THALES Nederland, and TNO.
This collaboration is focused on the research of decision support systems, seeking to order
information in complex and chaotic situations.

The goal of this thesis was to get a structured World Model from a real life crisis situation. A
World Model is composed of objects, characteristic features of the objects, and relations
between the objects. Every observer has his own World Model. Police officers, firemen and
laymen have different views of the world. An observer will look at the situation that is going
on, from this he will form his own ideas of what is happening. Generally, when you get just a
glimpse of a situation, and recognize certain aspects, the brain will automatically start to
make assumptions about what is going on. The brain will construct its own model about the
situation, the mental world model. Thoughts like these are based on what he observes, but
also on his background knowledge.

The agent in the field observes what is going on in the Real World and forms his own
Mental World Model of the situation. He then wants to report his thoughts with the report
tool of the system. The tool will only be able to handle structured information; concepts
represented by icons. Thus the reporter has to concretise his ideas in icons, which he can
then place on the map. Then the Structured World Model gets send to a central server,
which collects reports of all the agents in the field. This server will fuse the ideas and form
its own structured world model that gets send back to the agents, along with suggestions that
the agent might have forgotten to report. The agent will see these suggestions, forcing him
to observe the situation again, to see if he missed anything.

1.1.2 Interface

As said in the introduction communication will be realized by means of placing icons on a
map. Since the application is developed for crisis situations it should be able to run on
handheld computers. This means the application has to fit a certain dimension, making it
rather compact. It’s important for the interface that icons can be easily selected and placed
on the map. Therefore, the icons are grouped in a logical way, so one can find the needed

 8

icon quickly. It is also important that the icons can be placed with some accuracy, which can
be obtained by developing zoom functions for the map.

1.1.3 Intelligence

One of the requirements for the system was to be intelligent, in the sense that it can deal
with icons that are received multiple times, cope with icons that might be missing and icons
that might be placed wrongly.
If icons are received multiple times, the system should be able to handle this on its own,
without human interference. In the other cases however it is very hard and dangerous to let
the system delete, modify or add icons to its world model without human approval.
Therefore the system should be able to ask for feedback to the users, if it detects that errors
might have occurred. Again these errors are based on our own beliefs about crisis situations,
and might be different from reality. Taking this in mind, the Artificial Intelligence module of
the system is dynamic and easily adjustable. Another issue about the intelligence of the
system is its ability to cope with time. Specific events may happen in a strict order.

1.1.4 Notes on design

The following set of requirements was taking into account while designing the original ISME
application:
• To make the system suited for iconic communication in a crisis situation it should use

icons to represent concepts in a crisis and maps of the surroundings to place the icons
on.

• To make the system expressive enough it should use different categories of icons for
people, events, transportation and buildings. Within these categories several icons are
needed for more specific information. Just placing a man on the map doesn’t do much
good, if it’s not specified he is e.g. a fireman. Even when there is a good icon to
represent the concept, there should be a way to add even more information. That’s why
the icons will have several attributes. For instance, in the case of flames these attributes
could be the size of the flames, the intensity and the status (increasing, decreasing, under
control).

• To prevent a lot of errors, the GUI should be intuitive and easy to use. It should be clear
which category and icon is selected and they should be added to the map with just
clicking on the location. To provide extra information, an attribute window will pop up
where the values of the attributes can be given. The values can be selected out of a small
list; this decreases the chance of making a wrong selection, and eliminates the chance to
make an illegal selection. When icons are placed, the user should be able to delete them
again, or to inspect or alter its attributes. To prevent placing icons on the wrong location,
the user should be able to easily zoom in and out of the map, to be able to place the icon
exactly where it should be.

• In order to assemble and maintain a world model all information should be collected at
one server. In order to create a world model out of this, the information could be stored
in some sort of database, which will have to be kept consistent at all times. A client-

 9

server implementation was chosen for this, where the many clients are the reporters of
the crisis, and the server is the part that keeps a consistent world model and distributes
all information among its clients.

• To detect missing, double and wrongly placed icons, there was the need of some
intelligent agent, which should constantly work on the information that has been
gathered. This means it would have to work on the database of collected information.

• In order to make the system dynamic, it’s useful to store all its information about icons
and their rules in some sort of database. The entries of this database should be easy to
edit, and the database should be extendible. If this database is kept in separate files that
are read by the system on start up, it’s possible to adjust rules, and icons in a way that
does not require the entire system to be recompiled.

• The real system, except for the server, has to run in the field during a crisis situation.
This means that the type of hardware needed should be usable in such situations. It is
impossible to let the eventual system run on laptop computers, let alone normal PC’s.
The system has to run on handheld computers.

1.2 Adapting the ISME Application for the Cougaar
framework

1.2.1 Problem Description

The problem which was solved to a certain degree in the ISME thesis work which was
focussed on the interface and intelligence of the system was defined as follows:

Design and implement a system that is suited for iconic communication in a crisis situation, using a map of
the surroundings, which is expressive enough to handle complex and unexpected situations, yet intuitive
enough to use without making (a lot of) errors. The system should be intelligent enough to assemble and
maintain a correct and up to date world model. It should detect possible errors in the form of missing, double
and wrongly placed icons. Furthermore the system should be dynamic in the sense that new concepts and rules
can easily be added.

The work on this current particular project left from the assumption that the ISME system
has been implemented according to the above statement and was meant to solve the
following problem:

Adapt the ISME application so that it can be easily used by agents in a Cougaar framework. The system
should be aware at all times of the users’ position and constantly update them with information about the ever
changing world model. In addition to that, users should be able to communicate directly with each other using
a simple question-answer interface.

As stated above, the goal of this assignment was to transfer the ISME application to Cougaar
in order to simulate the real-time distribution of updates from the central server to the users
of the application. In the case of the original ISME application, a particular user would send
the “field” information from his client application to the application’s server. The server

 10

would then process this information and send back the updates to the user. In the Cougaar
approach, the sending of the “field” information works on the same principle (from client to
server). However, the response of the server is not directed solely towards the sending-user,
but also to all the other users of the client application. This way, all the users will be
constantly updated about the status of the crisis’ development.
In order to achieve this, the main task was to replace the socket-based communication
between the server and the client applications, used in the original ISME application, with
the complex mechanisms of message transmitting implemented by the Cougaar technology.

In addition to that, the Cougaar version had to be designed always bearing in mind the
possible scenarios in which the users of the application would be involved. In regards to this,
for the case of a real crisis situation, knowing the position of a particular user who placed
some icons on the map would prove very useful information. The next logical step would be
to allow users to communicate directly with each other. For instance, a field observer who
has just placed some icons could be contacted by other users, in order to give them some
additional information about the situation he is witnessing.

The idea of assigning roles to users comes soon after. In order to prevent chaos from taking
over the “crisis management system” itself (a situation which could easily happen if all users
would have the right to modify the map as they please) they could be assigned roles. For
instance, field reporters should only be allowed to add, remove or modify icons in the
vicinity of their location. Field coordinators should be people with some experience of
managing a crisis situation and therefore their sent information could be given more credit.
They should also be given the opportunity to get some feedback from other field reporters,
who had just sent their updates. A special category of users should be the central
coordinators, who would not necessarily have to be on the field, but who would have the
important role of monitoring the whole development of the situation. They should be the
ones taking the decisions after having acquired enough information to get a clear picture
about what is happening, either by inspecting the map or by questioning the field reporters
about what they are witnessing.

As some of these new ideas were implemented, the Cougaar version of the Icon Map
application had to suffer some modifications both in the user interface and in the
intelligence of the system.

 11

II. Overview of the Cougaar framework

2.1 Introduction to Cougaar

Cougaar (for Cognitive Agent Architecture) is an innovative software architecture that
enables building distributed agent-based applications in a manner that is powerful,
expressive, scalable and maintainable. In fact, Cougaar is a code baseline that has successfully
demonstrated its utility at constructing dynamic, complex, distributed applications. Perhaps
of even more significance than the software that implements its concepts, Cougaar
represents a methodology, a tried and powerful approach towards designing and building
distributed applications.
Cougaar was developed for DARPA (Defense Advanced Research Projects Agency) under
the Advanced Logistics Program or ALP. The focus of the developers has been to make the
Cougaar platform survivable, that is, to enhance the Cougaar platform with components
offering:

• Robustness: A Cougaar application should survive the loss of any individual
components and/or hardware substrate with minimal loss of functionality. This
includes automatic recovery of lost agents, as well as various mechanisms to
conserve resources and to use redundancies efficiently.

• Security: A Cougaar application should be capable of repelling various sorts of
electronic attacks, should maintain information integrity, and should avoid exposing
communications as much as possible.

• Scalability: The Cougaar infrastructure should not have any intrinsic scalability issues. It
should be possible to implement Cougaar applications which scale to the degree that
the application logic allows.

What kinds of problems are well suited to a Cougaar solution? While Cougaar was developed
to handle a problem with all the complexities listed above, it is of potential value in any
domain bearing any of the above complexities. For example, any of the following problem
categories would benefit from being modeled in Cougaar:

• Problem domains that entail hierarchical decomposition and tracking of complex tasks

• Complex application domains involving integration of distributed separate applications
and data sources

• Domains involving the generation and maintenance of dynamic plans in the face of
execution

• Highly parallel applications with relatively loose-coupling and low-bandwidth
communications between parallel streams

• Domains too complex to model monolithically, best modeled by emergent behavior of
components

 12

We should note that while Cougaar was designed to address the requirements of military
logistics planning, we have seen applications of Cougaar to many different domains—some
only tangentially related to military logistics, others completely separate. Nonetheless, this
document will contain a flavor of military logistics in many of its examples and illustrations,
as this is the domain to which Cougaar has been applied most broadly and successfully. It is
important to keep in mind that the Cougaar technology is a domain independent architecture
for large scale distributed agent systems.

2.2 Architecture “ Quick Look”

In a nutshell, Cougaar is a large-scale workflow engine built on a component-based,
distributed agent architecture. The agents communicate with one another by a built-in
asynchronous message-passing protocol. Cougaar agents cooperate with one another to
solve a particular problem, storing the shared solution in a distributed fashion across the
agents. Cougaar agents are composed of related functional modules, which are expected to
dynamically and continuously rework the solution as the problem parameters, constraints, or
execution environment change.

2.2.1 Top Level: Cougaar Society

A Cougaar Agent is an autonomous software entity that has been given behaviors to model
a particular organization, business process or algorithm. Multiple agents often collaborate as
peers in a Peer-to-Peer (P2P) distributed network. The complexity of each agent can range
from simple embedded sensors to a highly complex artificial intelligence application.
Cougaar is a framework for developing distributed multi-agent applications. The Cougaar
architecture includes components to support agent-to-agent messaging, naming, mobility,
blackboards, external UIs, and additional (pluggable) capabilities. Developer write
components, also called "plugins", which are loaded into agents to define their behavior.

A Cougaar Society is a collection of Agents that interact to collectively solve a particular
problem or class of problems. The problems are typically associated with planning, where
the plan objective and constraints may be continually changing and re-planned in the face of
execution. A Cougaar Community is a notional concept, referring to a group of Agents
with some common functional purpose or organizational commonality. Thus a Cougaar
society can be made of one or more logical communities, with some Agents associated with
more than one community and other Agents not associated with any community. The
society shares a DNS-like Namespace that allows all agents to resolve references to one
another, and which may be monolithic or distributed/redundant. All Agents in a given
society run the same Cougaar core software baseline, written in Java, though different
Agents may contain additional “jars” to give them particular behaviors, model particular
entities, or embody particular capabilities.

 13

 Figure 1 - Cougaar Society

2.2.2 Zoom In: Cougaar Community

When we zoom in on a Cougaar community, things look similar to the view of a society: it is
composed of other communities, perhaps sub-communities, and Agents. A community is
not a software architecture concept, but a notional design concept that helps in designing
and constructing the society out of a logical grouping of pieces. A community tends to speak
a “common dialect,” meaning the Agents in a community may communicate about objects
and issues that only this community knows about and using terms and activities only this
community understands. There is typically a lot of traffic among Agents of a community,
and fairly limited and constrained traffic between communities. A community typically has
some notional interface of what it provides to the society: it performs the following services,
it takes these inputs and produces these outputs, etc. Thus the concept of a community,
during both design and implementation, provides an effective logical circumscription of a
specific domain model and the suite of functionality that operates over that domain model.
Communities need not be distinct: communities are often hierarchical (e.g. as in departments
in an org chart), or overlapping as a given Agent may be a member of any number of
communities, each usually denoting a different semantic grouping.

2.2.3 Zoom in: Cougaar Node

When we zoom in further, we reach a Cougaar node. A Node is a single Java Virtual
Machine (JVM) instance that may contain and maintain multiple Agents. In most cases there
is a 1:1 correspondence between the node and the hardware platform, but this is
configuration efficiency rather than a requirement. The grouping of Agents into a node is
not necessarily domain related, but rather based on equitable sustainable sharing of
computer resource requirements among all Agents. In some cases, Agents from different
communities will share a single machine and node to be efficiently collocated near a shared
data source, like a database. It is often convenient to think of a node as a special class of
unnamed Cougaar communities where the logical grouping is by physical machine locality.

 14

As in other Cougaar communities, the membership can change over time as Agents are
created, moved to other machines, and decommissioned.

All Agents on the same node share the same CPU, the same pool of memory and disk, and
compete for incoming and outgoing bandwidth traffic. The node serves as a router of
messages for the Agents it is hosting: messages to other Agents in the same node are passed
directly within the same JVM, efficiently short-circuiting the message transport layer;
messages to Agents in different nodes pass through a MessageTransport layer that passes the
message through the network to the receiving node which then routes it to the appropriate
Agent within that node.

 Figure 2 - Node Structure

2.2.4 Zoom in: Cougaar Agent Internals

As we zoom in yet further, we view the Agent and its internal components. An Agent
consists of two major components: a partitioned distributed Blackboard, and Plugins.
The Plugins are software components that provide behaviors and business logic to the
Agent’s operations, and operate by publishing content and subscribing to objects on the
Blackboard.
A Blackboard is an agent-local memory store that supports publish/subscribe semantics.
Components within the agent can add/change/remove objects from the blackboard and
subscribe to local add/change/remove notification. Agent domains monitor the local
blackboard and can send messages to other agents and alter the blackboard when the local
agent receives messages.
The primary benefit of an agent blackboard is that it abstracts the message transport from
the plugins. The blackboard defines an asynchronous publish/subscribe API with pluggable
domain-specific behavior. This frees developers to concentrate on the domain-specific issues
of their application.

 15

Cougaar blackboards also support transactions, persistence, rehydration, and dynamic
reconcilliation. Additional details can be found in the Cougaar Architecture Guide.
All access to the Blackboard is transaction-controlled. Blackboard transactions cover only
membership of objects in the logical collection—Transactional safety is not guaranteed for
sub-object changes, only for addition and removal of objects from the Blackboard. In
addition, the mechanism that delivers packages of Add and Remove events also delivers
Change events (with details) which may be used to track sub-object-level changes in-band
with Add and Remove events. Cougaar blackboards are agent-local to assure scalability. A
globally shared blackboard (e.g. JavaSpaces or JMS) is a single point of failure and a
considerable performance bottleneck.
The Blackboard contents are segmented into sets of logically-related objects by Domains. A
Domain is, in effect, a specification of the language used by plugins to communicate with
each other and with related plugins in other Agents. Each Domain has a set of
LogicProviders, which are plugin-like components that act as translators into other
Domains’ business logic and/or Agent messaging.

The Agent is responsible for management of queues containing messages to and from other
Agents, scheduling the execution of Plugins and managing the subscription mechanisms of
Agents.

 Figure 3 - Agent Structure

2.2.5 Zoom in: Cougaar Blackboard Contents

As we zoom in to our finest level of detail, we see the detailed contents of the blackboard.
Plugins publish and subscribe objects to the blackboard. In principle, these could be any
objects, as defined by the application’s business logic. For example, the Cougaar planning
Domain implements the following sorts of objects:

 16

• Tasks represent a requirement or request from one agent to another to perform or plan
a particular operation.

• Assets represent resources to which tasks are allocated. A distinguished type of asset is
an OrganizationalAsset or an EntityAsset, which represents a proxy to another
Agent.

• PlanElements contain dispositions of tasks. Tasks may be allocated (through an
Allocation PlanElement) to an asset resource, or expanded (through an Expansion
PlanElement) into subtasks, or aggregated with other tasks (through an Aggregation
PlanElement).

The blackboard of a Cougaar Agent is part of the distributed blackboard managed in a
distributed fashion by the whole Cougaar society. Each Agent owns its blackboard and its
contents are visible only to that Agent. All sharing of blackboard state is done by explicit
push-and-pull of data through inter-Agent tasking and querying. In this way, Cougaar is able
to maintain fine-grained state in individual Agents while sharing only high-level synopsis
information around the society, making the management of information scalable and
efficient.

2.3 Cougaar Communications

2.3.1 Agent Naming Services

Cougaar includes support for distributed agent naming services. These naming services are
used by the Cougaar message transport to route message over multiple network protocols to
mobile agents. Application developers can also use the naming services to dynamically
discover agents at runtime.
In this section we discuss the five different types of distributed naming capabilities have
been identified:

• “Name Generation” constructs a globally unique agent name.

• The “White Pages” is a table that maps names to network addresses (e.g. DNS).

• The “Yellow Pages” is an attribute-based directory (e.g. a categorized phone book).

• “Local Discovery” uses LAN-based IP multicast to locate nearby agents.

• “Peer-to-Peer Search” allows an agent to search adjacent agents for resources.

 17

2.3.2 Name Generation

All agents in a Cougaar society are required to have a unique name. An agent’s name is used
to route messages to the agent and may hold special meaning in the developer’s application.
Most Cougaar developers select their own agent names to match the role of the agents. For
example, an agent that models the Boston Department of Motor Vehicles may be named
“dmv.boston.ma” by its developer. Note that the Cougaar infrastructure doesn’t assume that
this name has any particular meaning, just like an Operating System doesn’t care what you
name your files so long as they are unique.
A runtime name generator can be used to randomly select a name when the agent is created.
This is typically accomplished by hashing the local host’s IP address with a large random
number. A random name may make sense for an anonymous embedded sensor.

2.3.3 White Pages

The white pages is a distributed table which maps agent names to network addresses. The
primary function of the white pages is to support the Cougaar message transport and other
network-aware components.
For example, a white pages lookup of “AgentX” may return a set of network entries such as
the agent’s RMI message address (rmi://test.com:1234/xyz) and the agent’s servlet port
(http://test.com:8800). This is similar to DNS (Domain Name Service) name-to-address
resolution.
The predecessor of the white pages is the Cougaar Naming Service, which has existed in
different forms over the lifetime of the Cougaar project. The current white pages
implementation is the third full redesign and included several high-level goals:

• Must be scalable, to support thousands of agents, running on hundreds of hosts on a
wide area network.

• Must be robust, with no single point of failure, multiple servers to survive overloads,
and persistence to support restarts

• Must be efficient, utilizing an integrated caching and garbage collection scheme

• Must be cleanly integrated into Cougaar, leveraging the Cougaar message transport for
message protocols, quality of service, and security

Reflection on how the naming service was used prompted us to split the naming service into
two separate services. A phone book analogy was adopted, where the two services are: A
“white pages,” which maps names to network addresses; and a “yellow pages,” which
supports more complex attribute-based searches.
The white pages service has been modeled after DNS. Agent names now support Internet
host name semantics with the ‘.’ separator character. A hierarchical name space will support
better cache control and help distribute the data to multiple naming server agents. The white

 18

pages is now an effectively agent-based application that runs within Cougaar, whose job is to
support the message transport and other Cougaar network-aware components.

2.3.4 Yellow Pages

The Yellow Pages is a directory service that supports attribute-based queries. This service
allows agents to register themselves based upon their application’s capabilities, and allows
agents to discover other agents based upon queries for these capabilities.
For example, an agent that models an inventory warehouse might register in the yellow pages
with an attribute-value pair of ‘role=inventory’. At runtime another agent could query the
yellow pages to list all agents where ‘role=inventory’. This query may be limited by
geographic or other application-specific constraints, such as “I prefer geographically close
entries.”
In prior versions of Cougaar this could be implemented by using the JDNI-based naming
service, which supported both white-pages-style and yellow-pages-style queries. The Yellow
Pages also supports entries with custom data structures with detailed information, as
opposed to the white pages’ limited network-address entries. Lastly, the Yellow Pages often
has multiple application-specific concepts of locality that don’t necessarily match the white
pages’ network-based layout, such as geographic locality as opposed to LAN/WAN locality.

2.3.5 Local Discovery

Local discovery allows an agent to discover other LAN-local agents without knowing their
names or IP addresses. This typically uses LAN-local IP multicast with UDP.
For example, a new node with a couple agents may be started on a rebooted host. The
agents can send a generic “Is anybody out there?” multicast to find the other agents on the
LAN. Each agent on the LAN then replies to the
multicast with its name and network-address information.

2.3.6 Peer-to-Peer Search

Peer-to-peer search allows an agent to discover resources that reside on adjacent (peer)
agents. This typically uses a hop-based search mechanism, analogous to JXTA search or the
Gnutella protocol.
For example, an agent could send out a peer-based request for a specific file named
‘test.mp3’. This request must be scoped by either the “time-to-live,” a peer-based hop count,
or some other limit. The result of the search is a list of etching agents and perhaps additional
information pertaining to this search.

2.3.7 MessageTransport

When a node starts an Agent, it makes available to the Agent a MessageTransportServer
instance that provides MessageTransport and NameServer functionality. The
MessageTransportServer instance is usually constructed on behalf of the node by the static
methods of the Communications class. Communications uses System Properties to
determine the class of MessageTransport to construct, create an instance, and then start it.

 19

The choice of MessageTransport usually implies a single specific related NameServer class
and instance which is, in turn, constructed and started.
The MessageTransport class provides an API for sending messages to arbitrary Agents by
name (MessageAddress, usually a ClusterId) and for registering a MessageTransportClient
(usually an Agent) with the Transport so that it can receive messages from other sources.
MessageTransport implementations are usually fairly complex in order to achieve good
throughput to multiple peers which may vary considerably in distance/latency, bandwidth,
and connectedness (e.g., periodically connected). The default RMIMessageTransport uses
multiple queues served by a pool of threads to guarantee proper, in-order delivery of
messages. Messages are always one-way and asynchronous—any response will be in the form
of another message.

2.4 Cougaar Servlets

Cougaar includes support for handling HTTP and HTTPS requests by invoking user-
developed server-side request handlers, called “servlets”. Developers can use servlets to
generate HTML views for browsers, send binary data back to a remote client, interact with
local or remote Swing-based UI clients through HTTP, and other applications.

Servlets are similar to plugins: each agent has a separate set of servlets that can use a
ServiceBroker to access the Cougaar services within that agent. Servlets are bound within an
agent to a unique URL path, such as “/test”. Agents themselves are registered with a
globally-unique URL-based “/$name”, such as “/$TRANSCOM”, that matches the naming-
services registration. Together these create a globally unique URL-path to that agent's
servlet: “/$TRANSCOM/test”.

All nodes in the society create web-servers with a unique “scheme://host:port” address,
such as “http://foo.com:8800”. A remote HTTP-based client can send the
“/$TRANSCOM/test” path to any server in the society, such as
“http://foo.com:8800/$TRANSCOM/test”, and the request will be redirected to the node
that's running agent “TRANSCOM”.

Components have access to a “ServletService” through the ServiceBroker, which allows the
component to register and un-register servlets. A component can have its servlet as an inner
class or as a separate class. Additionally there are some helper classes included in Cougaar to
simplify the design, such as a component that loads simple servlets.

 20

 21

III. The Data Model

To model our Cougaar observation tool we used UML.UML stands for Unified Modelling
Language and is a system of diagrams that can specify how systems work. System
development focuses on three different models of the system:

a) The functional model is represented in UML by Use Case Diagrams, which specifies
the systems functionality from a users perspective.

b) The object model is represented by Class Diagrams and describes the structure of
the system in terms of objects, attributes, associations, and operations.

c) The dynamic model is represented by sequence diagrams, state chart diagrams, and
activity diagrams. These describe the internal behaviour of the system.

The diagrams presented in this chapter mainly describe how the structure and functionality
of the original application was adapted in order to be plugged in the Cougaar agents. The
communication part, which is the main issue regarding Cougaar, will be properly analyzed in
the next chapter.

3.1 The Use-Case Diagram

The following diagram represents the use case for the observers. They can add icons, delete
icons, inspect or modify icons, enter and modify their position on the map, add other
observers as contacts and talk to them, view the world model, view the suggestions, view the
scenario information, zoom, send and receive. Some tasks, such as adding icons require
some additional actions. To add an icon, the icon that needs to be placed has to be selected,
a location has to be given and the attributes have to be specified. To delete an icon the icon
has to be specified first. To modify or inspect an icon, the icon has to be specified, then the
current attributes will be given, after which the new attributes can be specified. To enter the
position on the map a location has to be given, while in order to change the position also
requires to inspect the observer icon. Finally, to add a new contact, an observer icon needs
to be specified and inspected.

 22

 Figure 4 – Use-case diagram

3.2 The Class Diagram

Class Diagrams are used to describe the structure of the system. The following diagram
highlights the different layers and components of the Cougaar application.

 23

 Figure 5 – Class diagram

 24

The directed relations in this figure can be read as: x has a y. For example IconApplication
has a MyXMLReader. The undirected relations are actually directed in both ways.
IconApplication has a ScenarioWindow and ScenarioWindow has an IconApplication. In
this case the obvious relation is that the IconApplication, which is the main part of the
client, has a ScenarioWindow. The other way around is true as well, because a
ScenarioWindow has to know who its parent is to give back the focus to the parent when
the window is closed.

Note that the IconApplication and the MapServer do not have a direct relationship. The
IconApplication does not have a MapServer and vice versa. They communicate through the
network, using their associated plugins, via the
Cougaar message transport service.

The IconApplication class, which makes up the main part of the client, has a
ScenarioWindow is which the scenario information will be displayed, an AttributeWindow
which is used to specify or show the attributes of a selected icon. It also has a PlacedIcon
which is a class that defines everything we need to know about an icon that is placed
(location, attributes, etc.). Furthermore the IconApplication has a MyXMLReader to help it
read in the information from the XML files. It also has a Map_mouseAdapter, which is a
class that handles the clicks that were made on the map. And finally it has a Map. Map is a
class that stores the background image, the icons that were placed, etc. and it has some
functions for zooming.

The MapServer class also has a Map. This is not the same instance as the Map on the
IconApplication, but via the network these two instances will be kept synchronized. The
ServerThread is the class that handles the connections with the iconApplications. Each
serverThread instance will support the connection with one iconApplication, but the
mapServer can have many different serverThreads (in fact, as many as the computational
power of the server can handle). Finally there is the Rete class. The Rete class is the main
class for the Jess component, all the reasoning is done via this class.

In order to integrate the above classes in Cougaar, plugins were required for loading the
information into the agents. The IconMapServerPlugin uses an instance of the MapServer
class and directs the actions of the server, according to the specifications from the messages
received from the clients.
On the other side, there is an IconMapAppPlugin, which uses an instance of the
IconApplication class, deals with all the messages received from the central server and also
with messages coming from other clients who use the Icon Application. Alternatively, the
IconMapAppPlugin could be divided into two plugins, in order to take care separately of the
two kind of messages mentioned before. The IconMapAppPlugin can be loaded and
unloaded at runtime by the IconMapAppManagerUI, a class which extends a Cougaar servlet
class.
Both the IconMapAppPlugin and IconMapServerPlugin use implementations of the Cougaar
UnaryPredicate class, which basically act as a filter, selecting from an agent’s blackboard only
those entities that pass several imposed constraints.
Another layer of the application is the communication layer. This is composed of two classes
implementing the Cougaar Relay Source and Relay Target classes, which are used for
transporting messages. The messages themselves are contained in objects having the type of

 25

one of the following classes (depending of the context): Request, MapModif and
MapRetrieve. All these three classes have to implement the Serializable interface, since this is
a requirement for any object that is sent via the Cougaar message transport system. An
instance of the Request class is created every time a client IconApplication is loaded and it
needs the map from the server. MapModif objects are used to transmit information about
the changes in the map from the IconApplication to the MapServer. In their turn, the
MapServer’s replies to the IconApplication come in the form of MapRetrieve objects.
More details about all these classes and their functionality can be found in the
implementation chapter.

3.3 The Sequence Diagram

In order to clarify the functioning of the different objects together, the next section
describes two different functions of the system, using sequence diagrams to visualize the
functions and messages which are exchanged between objects.
Usually, sequence diagrams are used to represent the flow of events in a system. The objects
in the system interact with each other by sending messages. When a message is received, this
results in some action at the receiving end. Actions that will be executed are operations that
may result in the sending of new messages to other objects. Arguments may be passed along
with the message to give more detail of what actions need to be undertaken.
The next diagram shows the message flow between the IconApplication and the MapServer.

 26

 Figure 6 – Sequence diagram of sending and receiving from the server

 27

The first thing to be mentioned is that all messages are automatically transported by Relays
(which will be discussed later) through the Cougaar Message Transport Service.

The client application can only be started through the use of the
IconMapAppManagerPlugin (which does not appear on the diagram since it’s not really
involved in message transmitting), a servlet which attaches to the default Cougaar servlet
server. When the user selects to start the application, the IconMapAppPlugin instantly sends
a message to the IconMapServer in the form of a Request object asking for initialization.
The MapServerPlugin queries its agent’s blackboard for received messages containing
Request objects. If it finds entities fitting this description, it asks for the map, placed
observers, placed icons, scenario and icon suggestions that are stored in the MapServer at
that particular moment. This information is gathered in a MapRetrieve object which is
placed on a new message to be sent back to the requestor. When this last message has been
received by the IconMapAppPlugin, the information it contains is being and based on that
the IconApplication is initialized. From this point on, all messages will leave directly from
the IconApplication.

Another step which must inevitably occur in the flow of events is the sending of the user’s
initial position. This is sent as a MapModif object. The procedure is similar to the one
described above for the initialization request with two slight differences: as the
IconMapServerPlugin receives the position of the new user, it transmits it to the MapServer,
which introduces it in the Jess knowledge base; secondly, after the MapServer has made the
corresponding updates, it creates a MapRetrieve object which will be sent to all the other
agents (which have the IconMapAppPlugin) instead of only the sender of the message as in
the case of the request event.

After the two previous steps have been successfully accomplished (the client application has
the map and the position of the owner has been sent) the client can start doing his updates
using the interface of the IconApplication. The map modifications (adding icons, modifying
icons, deleting icons, modifying the owner’s position on the map) are again stored in a
MapModif object which is forwarded from the IconMapAppPlugin to the IconMapServer.
The updates contained in the MapModif object are sent to the MapServer, which reasons
about them using the Rete system and creates the new world model that will be broadcasted
to all the reporters.

The next diagram shows the flow of events which is generated by the communication
between two client applications. As said in the beginning of the chapter, the communication
is not its main concern. However, in order to explain the following diagram, a sneak preview
on Cougaar Relays is required.
Relays consist of two interfaces – Relay.Source and Relay.Target - that blackboard objects
can implement so that data from a source blackboard can appear on target blackboards and
responses from the objects on the target blackboards can appear within the objects on the
source blackboard.

 28

 Fig 7 – Sequence diagramof sending and receiving between clients

A first client (agent) sends a question to a second client (agent) and then expects an answer.
The first client writes the question using the interface provided by the IconApplication. The
IconMapAppPlugin wraps this question in the form of a message – a Source Relay object –
which is sent to the second agent. The corresponding Target Relay object should be available
at the other end – on the second agent’s blackboard. When this happens, the second agent’s
IconMapAppPlugin extracts the question from the Target Relay and sends it to its
IconApplication, where it will be displayed. The question will remain visible till the second
client puts down the answer. The answer is then undertaken by the IconMapAppPlugin,
which updates the Relay object by placing a response on the first agent’s Source Relay.

 29

IV. Cougaar Model

4.1 Configuration of the Cougaar society

The most common way of representing the structure of a Cougaar society is by means of
XML files. The contents of the XML files is read and interpreted by the Cougaar XML
parser at startup.

4.1.1 Defining a community

Usually, Cougaar agents are grouped in communities. In addition to providing a way to
define simple groups of agents, communities and their associated entities may also be
associated with attributes that can be used to select a specific community member or
subgroup.
A Cougaar community consists of one or more Entity objects. An Entity (community
member) may be an agent or another community. Each Entity is constructed from two basic
components, an identifier and optional attributes consisting of JNDI-based name-value-pairs
that can be used to define characteristics such as “Role”. These attributes provide the
foundation for a flexible query and abstract addressing mechanism that is tightly integrated
with the Cougaar blackboard and inter-agent messaging infrastructure.

In this particular application, all agents are members of the community called Observers (so in
this case the society is equivalent to the community, at least at an intuitive level), whose main
purpose is to facilitate the broadcasting of information from the server agent to the observer
agents. This community is automatically created during the startup of the society, using a
community definition file and the CommunityPlugin. The CommunityPlugin within an agent
looks for the standard community definition file called communities.xml on the configuration
path during startup and attempts to join all communities containing the respective agent as a
member.

The communities.xml file has to follow a predefined structure, which can be described by
the following Document Type Declaration (DTD) file:

 30

 Fig 8 – Tthe structure of a community configuration file

The Observers community uses the “CommunityManager” attribute (a community level
attribute) in order to explicitly make the MapServer agent the manager of the community.
This means that the community can only be created / managed by the MapServer, since
without the server application running, the whole system would have no functionality. If
another agent (an Observer agent) starts before the MapServer, its join request will not be
processed until the MapServer agent has started and created the Observers community.
The Observers community is an open community, meaning that virtually every agent can join
it or leave it without restriction. After being created, the community is constantly monitored
by the MapServer agent. Since when a node is terminated, the community is not
automatically updated about the (possible) left agents, the MapServer periodically checks the
state of the community.

Another important attribute (an entity level attribute this time) is the “Role” of the agent in
the community. This is an essential piece of information when messages need to be
broadcasted to multiple agents using the Attribute Based Address mechanism. In this case,
an attribute of this type acts as a filter applied to the members of the community and helps
selecting only the desired agents supposed to receive the message.

This is what the Observers community would look like, should it contain the MapServer
agent and two more Observer agents:

<!DOCTYPE Communities [
<!ELEMENT Communities (Community+)>
<!ELEMENT Community (Attribute+, Entity*)>
<!ATTLIST Community Name CDATA #REQUIRED>
<!ELEMENT AttributeID EMPTY>
<!ATTLIST AttributeID ID CDATA #REQUIRED>
<!ATTLIST AttributeID Access (manager|member|associate|world)
#IMPLIED>
<!ELEMENT Entity (Attribute*)>
<!ATTLIST Entity Name CDATA #REQUIRED>
<!ELEMENT Attribute EMPTY>
<!ATTLIST Attribute ID CDATA #REQUIRED>
<!ATTLIST Attribute Value CDATA #REQUIRED>
]>

 31

 Fig 9 – The “Observers” community file

Another important Cougaar configuration file is the alpreg.ini file, which defines a host and a
port for the naming service. The default host is set as “localhost” but this should be used
only when all the Cougaar nodes are simulated on the same machine. Since the application
can be run with multiple nodes spread across multiple hosts, the alpreg.ini files on each
physical machine should specify the same host (different than localhost).

The following excerpt shows the aspect of the alpreg.ini file:

Fig 10 – The alpreg.ini file

4.1.2 Virtual Machine parameters

Running a Cougaar society also requires the setting of several Java virtual machine
parameters. These can either be specified in the Cougaar script that starts the nodes or in the
Cougaar society configuration file.
In this case , nodes specify Java command line parameters, which are extracted by the
bin/Cougaar script. This duplicates the “-D” system properties in the bin/Cougaar scripts,
but allows easier control over per-node “- D”s, and consolidates configuration management
in the XML file. For example:

[Registry]
address=ahost
alias=AlpFDS
port=8000

<?xml version="1.0" encoding="UTF-8"?>
<Communities>
 <Community Name='Observers' >
 <Attribute ID="CommunityType" Value="Domain" />
 <Attribute ID="CommunityManager" Value="MapServer" />
 <Entity Name="Observer_Alpha">
 <Attribute ID="EntityType" Value="Agent" />
 <Attribute ID="Role" Value="Member" />
 </Entity>
 <Entity Name="Observer_Omega">
 <Attribute ID="EntityType" Value="Agent" />
 <Attribute ID="Role" Value="Member" />
 </Entity>
 <Entity Name="MapServer">
 <Attribute ID="EntityType" Value="Agent" />
 <Attribute ID="Role" Value="Member" />
 </Entity>
</Community>
</Communities>

 32

 Fig 11 – Virtual machine settings for running a node

The settings in the example above are the most common.
The value of “-Dorg.cougaar.society.file” specifies which XML file will be used to load the
society.
The value of “-Dorg.cougaar.node.name” specifies the name of the node
The value of “-Dorg.cougaar.install.path” specifies the path to the the Cougaar directory
The value of “-Dorg.cougaar node.InitializationComponent” specifies which type of file will
be used to load the society (usually XML file)
The “Xms…m” and “Xmx…m” settings are used to configure the memory usage.

There are a lot of optional Cougaar settings that can be specified as VM parameters. In the
example above for instance, the setting
“-Dorg.cougaar.core.logging.log4j.category.org.cougaar.lib.web=DEBUG” specifies that the
logging level should be set as DEBUG (Plugins can obtain a logging service and record their
separate messages at seven different levels: DETAIL – DEBUG – INFO – WARN –
ERROR – SHOUT – FATAL; the default level is WARN, which discards all DEBUG and

. . .
<node name=”anode”>
<vm_parameter> -Dorg.cougaar.society.file=xml_filename </vm_parameter>
<vm_parameter> -Dorg.cougaar.node.name=anode
</vm_parameter>
<vm_parameter> -Dorg.cougaar.install.path=$COUGAAR_INSTALL_PATH
</vm_parameter>
<vm_parameter> -Dorg.cougaar.core.node.InitializationComponent=XML
</vm_parameter>
<vm_parameter>-Xms100m</vm_parameter>
<vm_parameter>-Xmx300m</vm_parameter>
<vm_parameter>
 -Dorg.cougaar.core.logging.log4j.category.org.cougaar.lib.web=DEBUG
</vm_parameter>
<vm_parameter> -Dorg.cougaar.core.mts.destq.retry.initialTimeout=500
</vm_parameter>
<vm_parameter> -Dorg.cougaar.core.mts.destq.retry.maxTimeout=10*1000
</vm_parameter>
<vm_parameter>
-Xbootclasspath/p:$COUGAAR_INSTALL_PATH/lib\javaiopatch.jar
</vm_parameter>
 <vm_parameter>
-Djava.class.path=$COUGAAR_INSTALL_PATH\lib\bootstrap.jar </vm_parameter>
<vm_parameter>
-Dorg.cougaar.system.path = $COUGAAR_INSTALL_PATH\sys
</vm_parameter>
<class>org.cougaar.bootstrap.Bootstrapper</class>
</node>
. . .

 33

INFO statements). The “-Dorg.cougaar.core.mts.destq.retry.initialTimeout” and “-
Dorg.cougaar.core.mts.destq.retry.maxTimeout” are settings for the Message Transport
Service. The first one specifies the initial delay between resending the messages that were not
accepted by their destination, while the second one specifies the maximum amount of time
that can be allocated for trying to resend these messages.

The rest of the arguments in the example above are standard and they specify the location of
the Cougaar JAR files (the COUGAAR_INSTALL_PATH/lib directory) and the third-party
JAR files (the COUGAAR_INSTALL_PATH/sys directory).

4.1.3 Configuring the agents

The second step in configuring the society for the application is to define the structure and
functionality of the agents. The agent is the principal element in the Cougaar architecture.
An agent typically models a particular organization, business process or algorithm.
These are also specified in XML files, which are loaded at society startup. The XML society
configuration files must contain the name of the society, the name of the host(s), the name
of the node(s) running on the host, the names of the agent(s) started by the node, and finally,
the plugin component(s) loaded into the agents.
Usually, each node has its own XML configuration file.

Within an “<agent>” or <“node”> tag, “<component>” tags are used to specify
components. The format is:

 Fig 12 – Configuring a component

 The default INSERTION_POINT point is the standard plugin insertion point
“Node.AgentManager.Agent.Component”.
The default NAME is the CLASS followed by paranthesis around a comma-separated list of
ARGUMENTS, for example “AnyClass(A,B,C)”. Component names are only used to
distinguish two components with identical classnames and argument lists.
A component can specify zero or more “<argument>” tags, which are passed to the
component at runtime through the “steParameter(Object o)” method as a list of Strings. If
zero arguments are specified then “setParameter(Objet o)” method is not called.

The next excerpt shows the general configuration of a Cougaar society.

<component class=CLASS
[insertionpoint=INSERTION_POINT]
[name=NAME]
[priority=PRIORITY]> (<argument>ARGUMENT</argument>)*
</component>

 34

 Fig 13 – General configuration of a society

The Cougaar society modeled for this particular application contains two types of Agents:
the MapServer agent, which loads the server application (MapServer) of the ISME and the
Observer agents, which load the client application (IconApplication) of the ISME. The
Observer agents can have in their turn different roles specified as arguments, according to
which the functionality and looks of the IconApplication would be modified. Loading these
applications into the agents is done according to the Cougaar specifications by plugins.

4.1.4 The MapServer agent

The application makes use at the moment of only one MapServer agent. It is assumed that
the server of the application will be able to run continuously, without disruption. In a real
situation, this agent should be running on a node placed on the physical machine with the
highest connectivity and the least probability to crash. As recommended in the ISME thesis
paper, a great improvement to the security and robustness of the network would be to have
a number of servers that are physically not located near each other. Should a server crash,
the Observer agents could still receive information from the other working servers. These
servers would have to be kept up to date by synchronizing them with the other servers. At
all times, all the servers should have the same information. This requirement would be rather
easily assured by using Cougaar, since the servers could be grouped in the same community.

<society ..>
 <host ..>
 <node ..>
 <agent ..>
 <!-- typical plugin -->
 <component class=”MyPlugin”/>
 <!—an agent-level component with parameters -->
 <component
 class=”AnotherExample”
 insertionpoint=”Node.AgentManager.Agent.Component”
 priority=”HIGH”>

<argument>a=b</argument>
 <argument>green</argument>
 </component>
 </agent>
 <!— optional: node-agent component(s) -->
 <!— optional: agent(s) -->
 </node>
 <!— optional: more nodes -->
 </host>
 <!— optional: more hosts -->
 </society>

 35

This means that the communication between them would be realised in a very elegant and
reliable fashion, through the robust and secure Cougaar infrastructure.

The MapServer agent uses the capabilities of the predefined
org.cougaar.core.agent.SimpleAgent Cougaar class. Functionality is added to the agent by
loading of the following plugins:

� IconMapServerPlugin - the “core” of the MapServer agent
 - gets as an argument the name of the image file that will be loaded as map

- is used to load the MapServer application of the ISME
- monitors the joining / leaving of the agents from the Observers community
- takes care of the received messages from Observer agents
- sends back replies or updates to the Observer agents

� CommunityPlugin – a predefined plugin needed by an agent in order to join a community;
in the case of the MapServer agent (which was nominated as the manager of the
community in the communites.xml file) this plugin is also responsible for creating the
community

� CommunityViewerServlet – a servlet used for monitoring the community activity

� HistoryServlet – a servlet which shows the blackboard changes of the agent

When the node containing the MapServer agent is run, the IconMapServerPlugin
automatically creates an instance of the MapServer class from the ISME application; in other
words, the server starts working.
As stated above, the MapServer agent is also the manager of the whole community.
Therefore, all incoming requests to join the community from Observer agents are
automatically resolved by the Cougaar infrastructure at the level of the MapServer agent.
The configuration of the MapServer agent:

 36

 Fig 14 – The configuration of the “MapServer” agent

4.1.5 The Observer agent

The number of Observer agents is variable. For this simulation, the agents should be run on
different nodes (JVMs), since in a real situation there would be a one-on-one relation
between a node (PDA) and an Agent. Therefore, the Observer agent simulates the field
reporter in a real live crisis situation. He is allowed to start / stop the IconApplication which
is installed on his PDA, if he is registered as a member of the Observers community. His role
in the community is however not specified in the society configuration file but is instead
taken from the community file.

The Observer agent uses the capabilities of the predefined
org.cougaar.core.agent.SimpleAgent Cougaar class. Functionality is added to the agent by
loading of the following plugins:

� IconMapAppManagerUI – a java servlet used for starting / stopping the client application

� IconMapAppPlugin - the “core” of the Observer agent;
 - loaded in the Observer agent at runtime by the IconMapAppManagerUI
 using a special Cougaar service called the AgentContainmentService which

<agent name='MapServer' class='org.cougaar.core.agent.SimpleAgent'>
 <component name='IconMapServerPlugin'
 class='nl.decis.combined.iconmap.IconMapServerPlugin'
 priority='COMPONENT'
 insertionpoint='Node.AgentManager.Agent.PluginManager.Plugin'>
 <argument>map5.jpg</argument>
 </component>
 <component name='org.cougaar.community.CommunityPlugin'
 class='org.cougaar.community.CommunityPlugin'
 priority='COMPONENT'
 insertionpoint='Node.AgentManager.Agent.PluginManager.Plugin'>
 </component>
 <component
 name='org.cougaar.community.util.CommunityViewerServlet'
 class='org.cougaar.community.util.CommunityViewerServlet'
 priority='COMPONENT'
 insertionpoint='Node.AgentManager.Agent.PluginManager.Plugin'>
 </component>
 <component
 name='org.cougaar.pizza.servlet.HistoryServlet'
 class='org.cougaar.pizza.servlet.HistoryServlet'
 priority='COMPONENT'
 insertionpoint='Node.AgentManager.Agent.PluginManager.Plugin'>
 </component>
</agent>

 37

 manages the adding / removal of components into agents.
- loads the IconApplication
- sends messages to the MapServer agent
- interprets messages received from the MapServer agent
- sends messages to other Observer agents
- replies to messages received from other Observer agents

� CommunityPlugin – a predefined plugin needed by an agent in order to join a community

� CommunityViewerServlet – a servlet used for monitoring the community activity

� HistoryServlet – a servlet which shows the blackboard changes of the agent

The configuration of an Observer agent:

 Fig 15 – The configuration of the “Observer” agent

<agent name='Observer_Sigma'>
 <component name='IconMapAppManagerUI'
 class='nl.decis.combined.iconmap.IconMapAppManagerUI'
 priority='COMPONENT'
 insertionpoint='Node.AgentManager.Agent.PluginManager.Plugin'>
 </component>
 <component name='org.cougaar.community.CommunityPlugin'
 class='org.cougaar.community.CommunityPlugin'
 priority='COMPONENT'
 insertionpoint='Node.AgentManager.Agent.PluginManager.Plugin'>
 </component>
 <component
 name='org.cougaar.community.util.CommunityViewerServlet'
 class='org.cougaar.community.util.CommunityViewerServlet'
 priority='COMPONENT'
 insertionpoint='Node.AgentManager.Agent.PluginManager.Plugin'>
 </component>
 <component
 name='org.cougaar.pizza.servlet.HistoryServlet'
 class='org.cougaar.pizza.servlet.HistoryServlet'
 priority='COMPONENT'
 insertionpoint='Node.AgentManager.Agent.PluginManager.Plugin'>
 </component>
</agent>

 38

4.1.6 Server configuration

The servlet server includes many bult-in servlets that are always loaded, providing basic
support for listing servlet paths and locating agents.
Let’s assume that

- the Cougaar society for the application contains two nodes, IconMapNode1 and
IconMapNode2 that will be run on the same JVM on localhost

- IconMapNode1 contains the MapServer agent
- IconMapNode2 contains two Observer agents called Observer_Kappa and

Observer_Sigma (so they contains the internally registered, user-developed servlet
with path /IconMapAppManagerUI)

- IconMapNode1 starts before IconMapNode2
- the Observers community is specified and has three members: MapServer (manager),
Observer_Sigma and Observer_Gamma

By default, two nodes on the same host will race to create a shared local naming registry.
Therefore, at runtime, both nodes will attempt to connect to the default Cougaar Apache
Tomcat server http://localhost:<port>/.
In this context, several system properties are directly responsible on how the nodes will run
on the server.
The scanRange sets a limit for the server’s search for an open port. First the given
HTTP/HTTPS ports are tried, then they are both incremented by one, tried again, etc. This
property has a default value of 100 and can be modified by using it as a VM parameter: -
Dorg.cougaar.lib.web.scanRange=intValue
The default HTTP port is 8800 and can also be modified by using it as a VM parameter: -
Dorg.cougaar.lib.web.http.port=intValue.
Additionally, the HTTPS port can be specified as a VM parameter: -
Dorg.cougaar.lib.web.https.port=intValue (defaults to -1; the typical value is 8400)

So, with the assumption above, IconMapNode1 would start on localhost, port 8800. The
server would then try to find a port for IconMapNode2, which should be 8801 (assuming it’s
not occupied by another node started previously).

Having the two nodes running, the built-in servlets include:

http://localhost:8800 – this URL generates a simple help page, plus links to some built-in
servlets

http://localhost:8800/agents - this URL lists the name of the node running on the 8800
port, as well as all the agents it contains: IconMapNode1 and MapServer; it also has a link to
the list of all agents on the root (agents on localnode IconMapNode1 plus agents from
IconMapNode2)

http://localhost:8801/agents - this URL lists the name of the node running on the 8801
port, as well as all the agents it contains: IconMapNode2, Observer_Kappa and
Observer_Sigma; link to the list of all agents on the root (agents on localnode
IconMapNode2 plus agents from IconMapNode1)

 39

http://localhost:8801/$Observer_Sigma - generates a page for agent Observer_Sigma with
links to other built-in servlets

http://localhost:8801/$Observer_Sigma/list - generates a page (“List of Observer_Sigma
servlets”) which lists the servlet paths that are registered in agent Observer_Sigma. In the
example, both the built-in servlets will be listed (“/agents” and “/list”), as well as the user-
developed servlets loaded in Observer agents (“/IconMapAppManagerUI”,
“/communityViewer”, “/history”)

http://localhost:8801/$Observer_Gamma/IconMapAppManagerUI
- invokes agent Observer_Gamma’s “/IconMapAppManagerUI” servlet. This is how agent-
level servlets are invoked.

http://localhost:8800/$MapServer/communityViewer - generates a page which displays the
existing communities (local and remote); since the MapServer agent is a member of the
Observers community, this community will appear under Local Communities

http://localhost:8800/$MapServer/communityViewer?community=Observers
- lists the members of the Observers community which are currently connected: MapServer,
Observer_Sigma, Observer_Gamma

4.2 Notes on Plugin Implementation

4.2.1 Plugin - Blackboard relation

Plugins are the essential “compute engines” of each Agent. They are self-contained elements
of software that can be loaded dynamically into Agents.
Plugins communicate only with the Agent infrastructure, reacting to the Blackboard events
and publishing results to the Blackboard. Plugins are unaware of other Plugins, and therefore
cannot be dependent on the presence of other Plugins. Plugins may be specialized by
domain so that an Agent operating in a specific domain will use only those Plugins that are
relevant and specific to its operation. Plugins bring functionality to the Agent, while the
society of Agents provides structure and order.

Plugins do not usually communicate directly with the Blackboard. Instead they are given a
proxy object called a Subscriber which manages most of these interactions. This separation
of functionality allows Plugin developers to either extend one of several base classes or to
write their own Plugin classes from scratch without risk of damaging the delicate interactions
between the infrastructure and the Subscriber.

Blackboard Transaction may be represented as a collection of “add object,” “remove
object,” and “change object” messages to be applied atomically to the Blackboard. Rollback
is not supported. Pending change events are not visible even to the entity making the

 40

changes until the end of the Transaction. It is important to note that it is
add/remove/change events which are transaction-controlled, never the internal state of any
blackboard objects. This implies that either blackboard objects should be immutable, or that
the application must be certain that only one component may modify and/or examine
internal state at a time (e.g., via synchronize or transaction-controlled features).

A Subscription is logically a “slice” of the Blackboard as specified by a Predicate that selects
the objects of interest. In addition, most Subscriptions both track changes to the
Subscription’s members since the previous Transaction and maintain a Collection (Java
Collection API) of the subscribed elements.
A Predicate is an implementation of the utility class UnaryPredicate that has an
execute(Object) method which returns true if and only if the object should be considered
part of the set. Predicates are run often—it is a good idea for predicates to exit as quickly as
possible and be as inexpensive as possible. Predicates are only executed once per object
change.

In the following section the application’s two main plugins, IconMapServer and
IconMapAppPlugin will be analyzed.

4.2.2 The Cougaar ComponentPlugin

It is recommended that a plugin should extend the ComponentPlugin, which is an abstract
class that extends BlackboardClientComponent. These two classes provide basic services
and APIs needed by plugins that will use the blackboard.

 Fig 16 – Plugin declaration

Now the plugin should determine what services it needs. Some services are already provided
by the BlackboardClientComponent base class, such as the BlackboardService, (provides
Plugins with the ability to specify and interact with objects / data of specific interest to that
plugin), AlarmService (allows plugins to access the current time of the system as well as set
Alarms to be awoken at a specific system time or after a certain amount of real time),
AgentIdentificationService (allows all components in an agent to discover of which agent
they are a subcomponent), and SchedulerService (provides plugins with a way to register
with a scheduling service to be awoken under specific circumstances). However, other
services must be requested. Services can be requested directly from the plugin’s service
broker or the plugin can rely on load-time introspection to set the services for them.
The plugins for the current application extended from the CombinedComponentPlugin,
which was in turn an extension of the ComponentPlugin with several additional loaded
services: the LoggingService (provides a standardized logging service to all components), the
UIDService (provides unique identifiers – UIDs – for blackboard objects that implement
the UniqueObject interface) and the CommunityService (provides methods enabling a client

import org.cougaar.core.plugin.ComponentPlugin;
public class MyFirstCougaarPlugin extends ComponentPlugin {...

 41

to create / join / leave a community, modify community or member attributes, obtain a list
of communities, search for communities and community members based on attributes) .

Then the plugin should override the state methods provided by the infrastructure where
necessary. These methods include initialize, load, start, suspend, resume, stop, halt and
unload. Note that it is not necessary to override these methods if the plugin does not have
specific work that needs to be done during these states.
The IconMapAppPlugin overrides the load method in order to get the role of the agent in
the Observers community, prior to initializing its IconApplication

Fig 17 – Excerpt from the IconMapAppPlugin’s load method

The load method of the IconMapServerPlugin is where the MapServer application is
initialized.
It should be noted that the load state method is executed immediately after the plugin
component has been inserted in the agent. Considering this, the plugin’s general initialization
settings should be made inside this method, while the setupSubscriptions method (which can
also be seen as an initialization routine since it’s executed only once) should be left only for
subscription initialization. The unload state method is executed when the plugin is being
removed from the agent and it’s generally overridden to unload the loaded services.

4.2.3 Predicates & Subscriptions

Now the plugin is ready to decide what kinds of objects it is interested in or needs to
complete its job. In order to collect a view of interesting objects, the plugin must define a
predicate defining the object(s) of interest. The predicate will allow the infrastructure to fill
in the plugin’s subscription with blackboard objects that pass the predicate restrictions.
Predicates can either be written in the same class as the Plugin or in a separate class
implementing the UnaryPredicate interface.

The IconMapServerPlugin uses two Predicates to subscribe to the MapServer agent’s
blackboard objects:

public void load()
{
 super.load();
 Community comm = comserv.getCommunity("Observers",null);
 …
 if ((comm.hasEntity(this.agentId.getAddress())))
 role = (String)comm.getEntity(this.agentId.getAddress())
 .getAttributes().get("Role").get();
 shout("Role="+role);
 …
 }
}

 42

• RequestSubscrPredicate – queries all incoming Target Relays placed on the
blackboard by Observer agents and collects the ones containing initialization
requests in the form of Request objects

• MapModifPredicate – queries all incoming Target Relays placed on the blackboard
by Observer agents and collects the ones containing messages as MapModif objects

The IconMapAppPlugin uses the following Predicates to subscribe to the Observer agent’s
blackboard objects:

• MapRetrievePredicate – queries all incoming Target Relays placed on the blackboard
by the MapServer agent collects the ones containing messages as MapRetrieve
objects

• QuestionPredicate – queries all incoming Target Relays placed on the blackboard
and selects the ones that were not placed by the MapServer
(the ones that are supposed to contain questions from other Observer agents)

• MessageAnswerPredicate – collects all Source Relays on the blackboard
The following excerpt shows the implementation of a Predicate (the MapRetrievePredicate)

Fig 18 – The implementation of the MapRetrivePredicate

Each class extending the ComponentPlugin must implement its two abstract methods:

• setupSubscriptions () – called only once as a pre-execute
• execute() – called every time changes have occurred on the agent’s Blackboard

The basic principle on which a plugin works can be described as follows:
• the plugin creates subscriptions in its setupSubscription() method;
• when the subscriptions receive updates, the “awken” execute() is called
• execute() does some operations based on the updated subscriptions
• when execute() is finished, it goes back to “sleep” and the BlackboardService

forwards andy changes made to the subscriptions to the rest of the agent

class MapRetrievePredicate implements UnaryPredicate {
 private MessageAddress agentId;
 public MapRetrievePredicate(MessageAddress agentId)
 {
 super();
 this.agentId = agentId;
 }
 public boolean execute(Object o)
 {
 boolean sw = false;
 if (o instanceof IconMapTargetRelay)
 {

sw = ((IconMapTargetRelay) o).getQuery() instanceof
MapRetrieve;

 }
 return sw;
 }};

 43

Subscriptions are requested in the setupSubscriptions method of a plugin. When a
subscription is created, it is immediately filled with objects matching the subscription’s
predicate. Consequently, already existing objects can immediately be enumerated with the
elements() method of the subscription. In addition, some of these objects may be on the
added list of an incremental subscription. Both plugins create in their setupSubscription()
method a subscription for each Predicate mentioned before.

The following diagram shows how the Subscription mechanism really works (taking as an
example the IconMapServerPlugin):

 Fig 19 – The Subscription mechanism

ModifSubscr causes objects that are selected by MapModifPredicate to be placed in
Collection_A;
RequestSubscr causes objects that are selected by RequestSubscriptionPredicate to be placed
in Collection_B.

The following excerpt shows how a subscription is created in the setupSubscription()
method:

 IconMap
ServerPlugin

MapServer
Agents’s

BLACKBOARD

 BLACKBOARD
SERVICE

Collection
A

Collection
B

 RequestSubscrPredicate

 MapModifPredicate

= Target Relay (MapModif)

= Target Relay (Request)

 44

Fig 20 – Setting up subscriptions

4.2.4 The Execute Method

Based on updated subscriptions, the execute() methods of the plugins has to make the
necessary changes. In the case of the IconMapServerPlugin, these changes concern the
managment of the initialization requests and of the updates received from Observer agents.
The execute() method of the IconMapAppPlugin deals with the updates received from the
MapServer as well as with messages from other Observer agents.
The following excerpt from the IconMapServerPlugin code will better show the (usual) way
of implementing the execute() method.

 Fig 21 – Excerpt from the IconMapServerPlugin’s execute method

As can be seen, the result of the RequestSubscr subscription (with the
RequestSubscrPredicate matching the Target Relays containing Request objects) is a
collection of such blackboard objects which is placed in a Enumeration. Since
IconMapTargetRelays (an implementation of a Target Relay which will be discussed in the
communication chapter) objects were expected from the named subscription, the elements
of the Enumeration are converted to this type of object. Then, the sender of the Relay as

protected void execute() {…
 manageRequests();
…}

private void manageRequests() {
 Enumeration new_requests = RequestSubscr.getAddedList();
 while (new_requests.hasMoreElements())
 {
 IconMapTargetRelay requestMes= (IconMapTargetRelay)
 new_requests.nextElement();
 // get the sender of the request
 String requestor = requestMes.getSource().getAddress();
 // get the verb of the request
 Request req = (Request) requestMes.getQuery();
shout("Recieved request "+req.getRequest()+" from "+requestor);
// THE REPLY TO THE “requestor”
. . .}

private IncrementalSubscription mapRetrieveSub;
protected void setupSubscriptions() {…
mapRetrieveSub = (IncrementalSubscription)
 blackboard.subscribe(new MapRetrievePredicate(this.agentId));
…}

 45

well as the Request object contains within the Relay are extracted from the
IconMapTargetRelay object. Having acquired these information, the plugin is then ready to
send back the reply to the agent who asked for the initialization data.

Generally, the “transaction” mechanism for Plugins is defined by the execute() method.
Plugins have “Container level transaction safety” during the scope of the execute() method,
thus, within the execute() method, it is sufficient to simply invoke the subscribe method. In
some circumsctances, a Plugin may need to provide “Container level transaction safety”
outside of execute() cycles.
This also happens is the case of the IconMapAppPlugin, when several transactions need to
be managed outside the execute() method. In order to safely invoke the subscribe method
outside of the execute() cycle, the following code template has to be used, providing
container level transaction safety.

 Fig 22 – Blackboard transaction

Another reason for which a code as the sample above has to be used is that a Plugin may
have multiple active threads of execution which do not rely on the execute() method being
called. To allow other threads safe read and write access to their Subscriptions, the Plugin
must explicitly call openTransaction() and closeTransaction().

Because the community is not automatically updated when an Observer agent has left, the
IconMapServePlugin has to compare from time to time the state of the community. If it
finds discrepancies between the current stored record of connected agents and the list of
community members as received from the Community Service it can decide which agents
must be removed from the community. Since this operation shouldn’t run continuously - in
order to keep the node’s resources free - the IconMapServerPlugin implements a Timer
which periodically launches this operation.
Each Cougaar Agent has two Timers for allowing Plugins to request rescheduling at specific
times: a “real-time” system clock and an “execution-time” planning clock. Plugins can use
real-time Alarms to manage computer resources or to run expensive simulations once every
few minutes. Plugins have simple access to this functionality through the “wake” family of
methods on the standard Plugin base classes. Timers and Alarms have a millisecond-level
granularity, but have no specific variance – that is, a Plugin will be wakened as soon after the
alarm instant as possible as constrained by load, other Plugin function, etc.

myBlackboardService.openTransaction();
mySubscription = myBlackboardService.subscribe(myPredicate);
myBlackboardService.closeTransaction();

 46

4.3 Inter-agent communication

4.3.1 Relays & AttributeBasedAdresses

Under most circumstance, Cougaar developers do not need to be concerned with the
communications needed to support their application, since logic providers handle them.
Cougaar has two features that address this issue: Relays and AttributeBasedAddresses
(ABAs). These mechanisms are independent but frequently used together.

Relays provide a general mechanism for blackboard objects of one agent to have
manifestations on the blackboard of other agents.
A Relay is essentially an object wrapper that can be published to an agent's local blackboard
and then automatically forwarded to the blackboard of multiple remote agents. While the
publisher of a Relay may explicitly identify the recipients, the Relay is often created with an
ABA that targets all members of a named community. When a community-based Relay is
published, each agent that is a member of the specified community will receive a copy of the
Relay payload on its local blackboard. Furthermore, each agent that later joins or leaves the
community will have a copy of the payload added/removed from its blackboard until such
time as the publisher removes the Relay source.

Relays consist of two interfaces that blackboard objects can implement so that data from a
source blackboard can appear on target blackboards and responses from the objects on the
target blackboards can appear within the objects on the source blackboard. Objects on the
source blackboard implement the Relay.Source interface while those on the target blackboards
implement the Relay.Target interface.
The essential features of a Relay.Source are that it has a list of target addresses to which its
content should be sent and that it has content to send. The source must also furnish a
factory that can be used at the target to construct an object to be published to the target’s
blackboard from the content object. The source implementation may also retain responses
from the targets, but that depends on whether responses are necessary.
The essential feature of a Relay.Target is that it represents the content in some way. Beyond
that, the target must furnish a response and the source address if responses are to be used.
The Relay created for the application consists of two classes: IconMapSourceRelay and
IconMapTargetRelay, implementing the Relay.Source and the Relay.Target interfaces.

A sender agent will always place a certain message on an IconMapSourceRelay; the message
will be available at the receiver’s end as the contents of an IconMapTargetRelay.
The Relay mechanism is used in two ways in the application. The first one assumes that the
sender doesn’t expect an answer from the receiver. For instance, when the MapServer agent
agent sends updates to Observer agents, it doesn’t need to get any response from them. In
this case, the two interfaces,
Relay.Source and Relay.Target, could be implemented by the same class.
In the second case, the responder updates the same Relay received by the sender with his
response. This can be exemplified by the communication between two Observer agents.
When an Observer agent wants to pose a question to another Observer agent, it creates a

 47

IconMapSourceRelay containing the question. After the second agent has received the
question (wrapped in a IconMapTargetRelay), it sends back the answer and indicates this by
modifying the state of the IconMapSourceRelay to changed.

AttributeBaseAddresses allow messages to be sent to agents based on their attributes rather
than their names.
Attribute-based Addresses are extensions of MessageAddress objects meant to specify the
recipient(s) of a multicast message based on the attributes of an agent within a community.
Most commonly, the attribute is the agent’s role in that community, but other attributes can
be used. Attribute-based addresses are commonly used with Relay objects especially when
multiple agents might have a given role and want to receive the same message. The
AttributeBasedAddress class is used for this form of Attribute-based addressing, delivering
sensor data among agents in a community. Such an address is constructed from the name of
the community within which the attribute has meaning, the name of the attribute, and its
value. This Attribute information is stored in the NameServer, and must have a
corresponding context for AttributeBasedAddresses mapped to Agent addresses.
AttributeBasedAddresses are ideal for sensor messaging among sensors with the same
attribute in a community.

 48

4.3.2 Data flow

Fig 23 – The application’s data flow

The application makes use of both the Relay and the Attribute Based Addresses. The Relays
are represented by continuous lines. The combination of Relays and ABAs is represented by
the dashed lines.
The communication between the agents of the community submits to one of the following:

• Community join request:

This request is automatically resolved by the CommunityPlugin which was described in a
previous section. This plugin is part of the Cougaar community infrastructure which
provides fine grained asynchronous events to interested agents when changes occur in

Observer B

Observer A

IconMap
ServerPlugin

IconMap
AppPluginn

IconMap
AppPluginn

IconAplication

IconAplication

Observer C

Observer D

 1) Init Request

2) Init data

3) Map changes

4) Updates

4) Updates

Questions/ answers

MapServer

4) Updates

4) Updates

 49

community state. The IconMapServerPlugin registers with its local community service to
receive callbacks when changes in community state occur. Support for distributed
change events is an important scalability feature, as it eliminates polling by agents for the
purpose of detecting changes in community membership or attributes. Scalability is
addressed by fact that the MapServer agent exercises flow control in its dissemination of
community updates. The rate at which status updates are transmitted is throttled to
minimize network traffic during periods of high activity, and all changes generated
between updates are aggregated into a single message.

• Initialization request

As a client chooses to start the IconApplication from the associated servlet, the
IconMapAppPlugin sends a message to the IconMapServerPlugin, thus informing the
MapServer agent that it needs the initialization data. If the server is running, it will
receive the message form the Observer agent in the form of a Target Relay placed on its
blackboard. This Relay is extracted from the blackboard and its queried for its contents.
If the contents is an Request object, then information send back an Object to the client
containing the initialization information.
The following sample code shows the creation and the publishing of the
IconMapSourceRelay object in the IconMapAppPlugin class:

 Fig 24 – Sending a initialization request to the MapServer

It is obvious that the initialization request should be sent only once by the Observer
agent, so that is why this operation is taken care of in the setupSubscriptions() method of
the IconMapAppPlugin. The IconMapSoureRelay constructor gets as parameters an
unique blackboard object identifier, the name address of the receiver (MapServer) and
the contents (the Request object previously created).

• Initialization reply

The MapServer checks its blackboard for IconMapTargetRelays that contain
initialization queries sent by Observer agents. The reply will be also in the form of a

public void setupSubscriptions()
{
 …
 Request req = new Request("init",this.agentId.getAddress());
 IconMapSourceRelay iconMapRelay =
 new IconMapSourceRelay(uids.nextUID(),
 MessageAddress.getMessageAddress("MapServer"),req);
 blackboard.publishAdd(iconMapRelay);
 shout("Initialization request sent to Map Server");
 …
}

 50

source Relay containing the initialization information (the map in its currently updated
state – placed icons and placed observers)

 Fig 25 – MapServer’s response to request initializations

The next initialization request is extracted from the list of IconMapTargetRelays. Then
the sender and the Request object, are in turn extracted from the converted object. The
reply contains a MapRetrieve object.

• Initialization data received

The IconMapAppPlugin queries the blackboard for IconMapTargetRelays that contain
MapRetreive objects wrapping the initialization information expected from the
MapServer.

• Sending map modifications

Map modifications can concern either sending the new/modified reporter position or
the reporting of icons. When the client starts its icon application he must introduce his
location on the map. Then, as he changes his physical location, he should inform the
MapServer about this. Clients report the crisis situation they are witnessing by placing,
modifying, deleting icons on their IconApplication map. All these changes take the form
of a MapModif object that must take the way of the MapServer agent. Again, an
IconMapSourceRelay is used to wrap this information and send it.

…
Enumeration new_requests = RequestSubscr.getAddedList();
while (new_requests.hasMoreElements())
{
// EXTRACTING THE REQUEST
IconMapTargetRelay requestMes= (IconMapTargetRelay)
 new_requests.nextElement();
String requestor = requestMes.getSource().getAddress();
Request req = (Request) requestMes.getQuery();
shout("Recieved request "+req.getRequest()+" from "+ requestor);
…
// SETTING UP THE REPLY
mapRet = new MapRetrieve("init");
…
IconMapSourceRelay replyMes = new
IconMapSourceRelay(uids.nextUID(),
 MessageAddress.getMessageAddress(requestor),
mapRet);
blackboard.publishAdd(replyMes);
}

 51

• Broadcasting updates

The MapServer checks for any updates received from the Observers; if it finds any such
updates, it processes the information received and then broadcasts a message containing
the new updates to all the agents currently connected to the community. In this case, the
Relay mechanism is combined with the AttributeBasedAddress mechanism, meaning
that the reply message is not only being sent to one entity, but to all the members of the
Observers community matching the attribute “Role” = “Member”.

 Fig 26 – Broadcasting the updates to the members of the community

• From Observer agent to Observer agent

We assume there are two clients that want to communicate with each other: client A and
client B. They appear in the Cougaar community as two Observer agents. When client A
wants to contact client B, he writes a question in his IconApplication interface. This
message is passed to the associated IconMapAppPlugin which wraps it in an
IconMapSourceRelay and sends it to Observer B’s IconMapAppPlugin. This pluing
queries the blackboard for IconMapTargetPlugins coming from other Observer agents.
When it finds such a message, it extracts the contained question and places on client B’s
IconApplication. The IconMapSourceRelay is now in a waiting state, expecting to receive
the response from Observer B. When client B eventually places an icon, Observer B’s
IconMapAppPlugin is immediately informed and updates the IconMapSourceRelay with
the response.
Therefore, the IconMapAppPlugin acts both as a sender and receiver depending whether
the agent that acts as a sender or as a receiver.
The following excerpt represents the code that deals with the already updated
IconMapSourceRelays. As can be seen, these are selected from the subscription by the
getChangedList() method.

 Fig 27 – Getting the message replies

Enumeration newMessageReplies = mesReplySub.getChangedList();
IconMapSourceRelay message = (IconMapSourceRelay)

newMessageReplies.nextElement();
// RESOLVE THE “message”
blackboard.publishRemove(message);

mapRet = new MapRetrieve("update");
….
MessageAddress target =
AttributeBasedAddress.getAttributeBasedAddress("Observers","Role","Member");
Relay iconMapRelay = new IconMapSourceRelay(uids.nextUID(), target,
mapRet);
blackboard.publishAdd(iconMapRelay);

 52

 53

V. Conclusions and Recommendations

Cougaar proved to be a very efficient tool in adapting the icon based observation application
as a distributed agent-based application. The implementation and testing of the application
have shown that this framework can be successfully used to wrap swing applications that can
afterwards communicate with each other by means of the Cougaar infrastructure.
A lot of tests have been carried out during the process of building the application: agents
running on a single node on a single, agents running on multiple nodes on a single, agents
running on multiple nodes on multiple hosts. There has also been some successful testing
related to the communication between the Cougaar Icon Map application and the Routing
application. In regard to this, an interesting future work could be to fully integrate the
Routing application to Cougaar. This could be done either by rewriting a Java version of the
Routing application and then adding it as a plugin into a Cougaar agent or by placing the
output data of the Routing application in a Cougaar LDM (Logical Data Module) plugin so
that it could be accessed by the other agents.
Further improvements to the application could concern:

• the decomposing of the Observer agent’s “core” plugin into more specialized
plugins, where they can deal with specific problems

• the specialization of the Cougaar Observer agents according to their functionality in
a real live situation (e.g field observers that can only add icons; field coordinators
that can add, delete icons; remote supervisors that can analyze the whole picture of
the crisis and contact different field agents etc.)

• designing the model with more than one MapServer agent
• port it to PDA’s (assuming that they will be able at some point in the future to

support JDK1.4 as required by the Cougaar version used for the application)

 54

 55

Bibliography

MSc Thesis of Paul Schooneman: Icon based System for Managing Emergencies,
Delft University of Technology
http://www.kbs.twi.tudelft.nl/Publications/MSc/2005-Schooneman-MSc.html

Crisis simulations: Exploring tomorrow’s vulnerabilities and threats, Arjen Boin,
Celesta Kofman-Bos, Werner Overdijk; SIMULATION & GAMING, Vol. 35
No. 3, September 2004
http://sag.sagepub.com/cgi/reprint/35/3/378

BBN Technologies, The Cognitive Agent Architecture (Cougaar) Open Source
Project - CougaarForge
http://cougaar.org

BBN Technologies, Cougaar Architecture Document V11.0, 8 March 2004,
http://www.cougaar.org/

BBN Technologies, Cougaar Developers Guide V11.0,
8 March 2004, http://www.cougaar.org/

BBN Technologies, Cougaar tutorial, 6 December 2004
http://tutorials.cougaar.org/

DECIS Lab, Cougaar forum
http://wiki.decis.nl/combined/project/tiki-index.php?page=Cougaar

DARPA UltraLog, Cougaar Agent Communities, Dr. Douglas C. MacKenzie,
Ronald D. Snyder; Open Cougaar, New York, 2004,
http://www.mobile-intelligence.com/oc04-comm.pdf

BBN Technologies, Firewall support project, Sebastian Rosset, 16 September 2004
http://fwsupport.cougaar.org/index.html

 56

Appendix

Display of three nodes running on the same host

 57

MapServer agent’s history servlet (shows all the ch anges in the
agent’s blackboard)

 58

 Client applications

