=\0=ii3 TU Delft

MAELIA

Multimodal Application for Extensible Lego
Intelligent Agent

TU DELFT
Project Report, April 1st to August 31st 2002

Guillaume BARRAUD & Priam PIERRET

Supervised by Professor Leon Rothkrantz

| Guillaume Barraud — Priam Pierret | Knowledge Based Systems | August 2002]|

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

0. TABLE OF CONTENTS

0. TABLE OF CONTENTS 2
1. ACKNOWLEDGEMENTS 6
2. INTRODUCTION 7
3. PURPOSE 8
3.1 ORIGINAL SUBJECT FROM MR LEON ROTHKRANTZ..........ccccooiiiiiiiicc 8
3.2 UNDERSTANDING THE PROBLEM.......cceiiiiitiiteiiiiieeeitteeeeetteeeessreeessssseeeessssesessssesesssssesesssssssesasssesenns 9
33 SPECIFICATIONS OF MAELIA ..ottt ettt ettt e e e tae e e e abae e e e eraeaeennraeas 9
3.3.1 Hardware REEAEd.....................cc.occvoiiiiiiiiiei ettt 9
3.3.2 SOfIWATE SPECIFICALIONS ...ttt 9
3.3.2.1 Functional REQUITEIMENEScecueeriieriierieeieeieeieesitestteste et ettesseeseeesneeenseeseessaesssesnsesseens 9

3.3.2.2 Non-Functional REQUITEMENLS........c.cecureiiieriieieeiieieeieeree ettt ee et e s eere e 10

34 CONSTRAINTS oeiieeitieeeeeiieeeeetteeeeetteeeeatseeeeassseesaassseeeaasssesasassseesassssesassssesssssssssssssessssssesessnssenenns 10
3.5 ANTICIPATED PROJECT SCHEDULEcccoiuiiiiiiiiniitiiniiiceic sttt ea et sne s 10
4. CONCEPTION 11
4.1 MAELIA: GLOBAL PRESENTATIONccooiiuiiiiiiiiiiiniiiesi ittt ess s s sae e enssnsene s 11
4.1.1 AT ASDOCT ... ettt ettt ettt et et et e et e n 11
4.1.2 ERLert@ining ASDECEooiuiiiii ettt e 11
4.1.3 COMPOREILS ASPECE. ...ttt ettt ettt e 12

4.2 APPLICATION ARCHITECTUREcc0iiiiiiuiiiiiiiitiitiitiieieie ettt sa et eae s 13
4.2.1 DIESCTIDIION ...ttt ettt et ettt et et e et e e 13
4.2.2 DIEAGIAN ...ttt ettt e 13
4.2.3 Responsibilities and CollabOFALIONc.cccovviioiiiiiiieiiiiee sttt 14
4.2.3.1 Body COmMPONENLS JAYET.....c..oouiriiriiriieiirieeieieeteteei ettt sttt sttt s 14
4.2.3.2 BIail JAYET c.uvieiiiiieeiece ettt ettt ettt ettt e st e et enteebe e teesnaeeareeas 14
4.2.3.3 ComMAaNAS LAYET ..c..coueiiiiiiiiiiiieieree ettt ettt sttt st 14

4.3 BODY COMPONENTS....coitiiiiieiititetee e e eeeecctt e e e e e eeecttteaeeeeeeeeeetaareeeeeeeeeeeeatsraseeeeeeeaatsrsseeeeeeeenanrraeeeens 15
4.3.1 RODOICAL ...ttt ettt ettt ettt ettt e enae e enneen 15
4.3.1.1 Lego MIndstorms SYSTEIIceruerieriiriiirierieetenieetentesitente sttt ettt st et b aesbeenee e 15
4.3.1.2 RODOt BUIIAING. c..ceiiiiieiiiieiee ettt ettt s 17

4.3.1.3 Robotics INVENtion SYSEEIMccuiriiriiriiiiiiiiiterieeteei ettt 17
4.3.1.4 SPITIE & VB oottt sttt s 18
43015 NQC ottt b et bbb bt et b e ettt b et sttt et bt enee 18
A.3.1.0 JAVA ottt ettt e e bttt e e e bt e e bte e e bte e sabe e e bt e eebteesbeeene 18
4317 SCRAP ..ottt sttt et sttt st et be st 19

4.3.1.8 Actions and EVENLSccciiiiiiiiiiiieiieeie ettt ettt ettt sttt te e eneeeas 19

4.3.2 EYOSCAL ...ttt 19
4.3.2.1 LegoCam & Vision COmMMANGccccoiriiriiniiriiiniinieienieetene sttt sttt s 20
4.3.2.2 QuickCam SDK, EZVidCap & LCC.......cccoiiriiiriiiiiiiniinieenteeeetee st 20
4.3.2.3 Hit @nd RUN...cooiiiiieii ettt ettt ettt et ettt e sbtesateenteenteeteeas 20
4.3.2.4 LCC DEECHION ..c.uviiiieiietieiietteeite ettt ettt e steesttesatesatesbe e bt e beesstesatesasesnseenseeseesseesseens 21
4.3.2.5 Actions and EVENLScccuiiiiiiiiiiiiiiie ettt st st ettt eas 21

4.3.3 VOICEUAL ...t ettt ettt ettt ettt e e n e n 21
4.3.3.1 Microsoft Speech APTand TTS.......ccoooiiiiiiieeit ettt 21
4.3.3.2 Actions and EVENTScccuiiiiiiiiiiiieiie ettt ettt st sttt 21

| Guillaume Barraud & Priam Pierret | MAELIA | 2/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

44 BRAIN .ottt ettt ettt et sh et b ettt e ae et bbbt bt et b e e et et ebeenenreeneen 22
4.4.1 PUTDOSE ...ttt et ettt e et e e ntb e etaa e 22
4.4.2 Collaboration DIQGIAMcc.c.cccoueeiiuieeieieieiei e eeee et eee e ae et eeebeeeaaeestseesveeesesee e 22
4.4.3 1CatBeh interface as a compoSite MOMELc...ccoevveeiiiiieiiiiaieieieeieeeee e 23
4.4.4 Discussion about the exeCution MOAEL....................c...cccceeveieeeiiiiiiiiiiiee s e 24

4.44.1 Model 1 : synchronous, reentrant, MONOtASK...........cceevvieiieiieiiiieiienee et e see e 25
4.44.2 Model 2 : synchronous, organized, MONOtASKccceueiieiiieriienienie e eae e 26
4.44.3 Model 3: asynchronous, MUItitask...........c..coceeriiiiiiiiiiieiieiie st 26

4.5 THE CAT COMMANDS LANGUAGE (CCL) .ccuttiiiiiieciieeiieeeieeetee ettt e eteeesveeevaeeseveessvasensseessneens 27
4.5.1 BASIC COMMARS ...ttt 27
4.5.2 TOSE ICOMS ..ot ettt ettt e et e et e e e abe e e stb e e s tb e e e sabeesabeeentsaensbeeenseeenns 28
4.5.3 EVONE TCOMS ...ttt ettt e ettt et ebe e et e 29
4.5.4 CORIPOL ICOMNS ..ottt et e e tbe e tb e e etb e e s abeeestaeessseeennseenes 30

4.54.1 QTEPEAL) ICOM.uuicurieiieiireiereeereereesseesteestaeesreeteesseesssesssessseasseesseessesssesssesssesssessssssssesssesssenns 30
T LA U o3 (70 s TS TUSU 31
4543 «while» and « dOWhILE » 1COMS.....ccueiuiiiiriiiieiieiee ettt 31
T B O] 1< 1 NS (¢ o) ST 31
4545 € dOBOth ») 100N ...eiiiiiiiiieiee ettt sttt eae et ne et nes 32
4.5.5 COMPLEX COMMUANAS ..ottt et et e et e e stbe e e aeeesasee e 32

4.6 COMMANDS INPUT INTERFACESoiiiiiitiieeeeieeeeeeiteeeeeteeeeeeateeeeetseseeessseseessseseeassesseanssesesassesaens 33

4.6.1 TEXt INPUE THECTTACE ..ottt ettt ettt 33
4.6.1.1 Parsing text int0 @ BERAVIOTS trEC.......cccviiviiiieriieiieiii et eree et ere e esiresveebeesreesanesrneens 33
4.6.1.2 Need of [anguage TETEIENCEviiviiiiiciiecie ettt e v e ebeesteesraesrbeerbeens 33

4.6.2 LCONS INPUE INECHFACE. ...ttt 33
4.6.2.1 Icons, Symbols, PICLOZIamS...cceeviiiiieiieiiieie ettt see v e eveeve e raestneeene e 33
4.6.2.2 USET fEEADACKeouiieieiei ettt ettt et nes 34
4.6.2.3 Some models of icons representation for the CCL...........cccoeveviiiiiiivienie e, 34

4.6.3 SPEECH INPUL INICTTACE ...t 34
4.6.3.1 Speech Recognition with the Microsoft Speech APIccccooveviiiiiiiiieneceeeeee, 34
4.6.3.2 Grammar Of NOt GTAMIMAT?........coitirierieiie ettt ettt ettt e st e st e saeesateebeesbeesbeesaaesateens 35
4.6.3.3 The model from SCRAP.......ccoiiiiee ettt 36
4.6.3.4 Limitations for the CCL.........ciiiiiiiee ettt s 36

4.7 SUPPORTS FOR THE CCL ..ottt ettt et e ettt e et e e e eata e e e eataeeesasveeeesnsreaeesanes 37
4.7.1 ReAdiNG: REAUCIIONcocuveeiiiiiciiieeiee ettt ettt e e sebae s 37
4.7.2 EXCRANGING: StFTTCE ..ottt ettt e eabae s 37
4.7.3 EXCCUITG: TCAIBEON.........c..ooeeieieee ettt ettt e e eabe e 38
4.7.4 SAVING: XML & DOMcccuooieiiiiiiieee ettt tae e sabeeetbeeenns 38
4.7.5 Documenting: XSL & HTMLcccooooveioiiiiieeiieeeie ettt eeseeerae e 38

5. IMPLEMENTATION 39

5.1 PROGRAMMING IN VISUAL BASIC.......uutiiiiiiiiieeiiiiiieee e eeettree e e e e eeetirrree e e e e seeennraaaesessssnnnnnsnnaeens 39
5.1.1 BASTICS ..ottt e tbeetbeeeans 39
5.1.2 ODbJeCt-OTICNICA fEAUTEScov oottt eve e saaeeaaeen 39
5.1.3 Visual Basic MOt SO QOOccooovieiiiiiiiiiieciieeieeeee ettt ettt 39

5.2 ROBOTC AT ...ttt e ettt e e e e tae e e eeatb e e e eeatbeeeeastsaeeeaasseeeeaassseseansseseeansrenaans 40
5.2.1 SPIFIE JEATUFES ..ottt ettt et eae ettt e e abe b e eaeeetbeease e 40
522 THECESUCE ...ttt ettt ettt ettt ettt en 41

5.3 BRAINCAT ...ttt ettt ettt e e e ettt e e e e tte e e e ataeeeeaatbeeeeantseseeastsaseeansseseeanssseseanssesesansrenaann 42
5.3.1 CLASSES ..ottt et ettt ettt ettt ettt etb e eabeeabeeare e 42
5.3.2 SEGUENCE DIGAGIAM.........cceoeeeieeiie ettt ettt tae et e et eesabeesteeesabeeenns 42

54 CCL GRAMMAR & GOLD PARSERouvvviiiiiiieeeeeeeee et eeeeeeee e e e e eeeaaraeee e e e s seesnnenneeeas 42
54.1 CCL Grammar in BNF 1epreSentation...............cccoccoueeeveeeiuieeiieeiiieeeieesiieesaeeeveeeiaeesivee e 43

| Guillaume Barraud & Priam Pierret | MAELIA | 3/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

54.2 GOLD Parser Builder & Compiled Grammarccocoeevueevieeeceeenieesieeeeeieeeeeee e, 45
5.4.3 GOLD Parser Engine & ReAUCLIONSc...ccoeeveieeeieieiiieeiieeeiee e et 45

5.5 XML & DOM ...ttt ettt ettt ettt et et e n et et e et e teeseenteseere e aeeneenes 46
5.5.1 The DTD for the CCOLcccoooiiieeiieeeiie ettt ettt et eveeeaae e 46
55.2 The Tokens HANAIET................ccoooiuiiiiiiiiiiet ettt 46
5.52.1 Saving N0 XIMLcccuiiiiiiieiiie ettt e ee et e e e te e s b e e e taeetbeesabaeessseesssaeennseeenneen 46

5.5.2.2 Reading from XMLccoooiiiiiiiicieeeeeeeee ettt eab e e reenreees 46

5.6 STRTREE ..ottt sttt sttt ettt et ettt et bt e e bt s bt et e bt sae et e e bt et e naesaeesbesheemaeneseeenee 47
5.6.1 DICSCIIDIION ...ttt et ettt ettt e et e e et e e et e e esbeeetbeestbeeeasseeenns 47
5.6.2 US@ .. ettt ettt et a ettt ettt nean 47

5.7 THE USER INTERFACE : THE MDI WINDOWccceririiiiniinienieneeienieeeentesieenenieeeesnesieennenneseeene 48
5.7.1 The MDI Parent WilAOW............c..ccccueeeiueeiiiieeeieeeiee ettt etee et saee e sasaesbee e saseeenns 48
5.7.2 The MDI Children FOFMSccc.cocvieiiieeeiiieeeeeeeieeeeiee ettt e e st abeesaaeesisaesvaeeseseeenns 50
5.7.2.1 FIMRODOCAL ...ttt sttt et e be e s bt e st st et e e e 50

5.7.2.2 FrMTEXIINPUL....ccccuiiiiiiiiie ettt e ree et e et e e st e e etaeessbeeestaeessseesssaeenssaessseeas 51

5.7.2.3 FIMTIMETS ..uvieiiiiieiieiieiee ettt ettt et ettt et e te e st e aeeseeseeeeeseensesseeneesesneensesseeneans 51

5.7.2.4 FrmICONSINPUL.....ccuiiiiiiiiiiieite ettt eteeeee et e et e et e e e teeestaeessseeessaeessseeessaeesssaesssseessseens 52

5.7.2.5 FIMEYESCALuviiiiiiiciie ettt ettt ettt et e e s beeeseae e ssbeesstaeessaesnseeessseesssaeansseessseean 53

5.7.2.6 FIMBIaiNCAatccueeiiiiiieieiieeee ettt ettt ettt te ettt e aeeaeente e st eneesseeneeaeseeennens 54

5.7.2.7 FIMVOICECAL. ...ttt esae et e e et estese e st ensesseeneesesneensens 55

5.7.2.8 FIMHEIPBIOWSEToiiuiiiiiiiiiciiicieeeeee sttt ettt ev e e av e v e e steestnesebessbeesbeessenenenens 55

5.7.2.9 FrmKNOWIEAZE ...ccoviiiieiiiiiiiciiicieeeete ettt ve et tre v e eabeesbeesbaestnesabessbeenneesseennes 56

5.7.3 THE DIGLOZ BOXES.......cevveeueeeeiieeeiei ettt ettt ettt et e et e e e a e et e e stb e e et e e esbeessbaeentseesnseeenns 57
5.73.1 FrmSaveASXIMIcoouiiuiiiiiieiee ettt ettt ettt et et s r et e teenee e 57

5732 FIMDEIELE ..ottt sttt st e et e e ae e et et e et et et e eseeaeeaeeneens 58

5.7.3.3 FIMSPIASH c.viiiiiiiicicceceee et ettt e ab e s te e s tb e e raeenbeebe e treens 58

5.8 VOICECAT .ottt ettt ettt ettt e ettt e e et e e e e etbaeeeeabeee e e tasaeeeasbaaeeeaseaeeeaassseeesbaaeeaassseeeenntaeeeennsenns 59
5.8.1 Using the Text To Speech (TTS) APc.cccoooiiiiiiiiiiieeiieeee e 59
5.8.2 Following the Speech GEnerationcccccvecieviiiiiiieieieeeiiieeie e 59

5.9 ICONS GRAPHIC INTERFACEceciiittiieeeiiieeeeieeeeeetteeeeetveeeeetseeeessseseessseseeasssseeanssssseansseseeasseneans 60
5.9.1 Visual Basic USEr CONIFOL............cc.cccueevuiiciiieiieiiiieiieee ettt 60
592 DYRAMEC IOAAING. ...ttt ettt et 60
593 DYRAMIC LAYPOUL ...ttt ettt et ettt eaaeeaneen 60
5.94 Translating into CCL-COMPIIANT LEXL...........c...cocovieiiiiieieieiieeieeeiee ettt 60

ST N 0 1 7y A TSRS 61
5.10.1 Defining layers for intelliQent PercePrioncccccvveeveeiueeiuieereeeeeeiieeereeeieeere e 61
5.10.2 LeftMiddIeRIGRTE LAYEF............cccoveeiiiiiiiiieiieie ettt 62
5.10.3 TAUPGELLAYEE ...ttt ettt 63
5.10.4 ReadSymbBOLIAperccc.cccooviiviiiiiiciiciicie ettt 64

5.11 SPEECH INTERFACEcccoiutiiieiitiiieeeitteeeeetieeeeeitateeeeteeeeetaaeaeaasseeeessaeeeaasssseeeassseeesnnsaeeeaansreeeennseens 65
5.11.1 XML format for Speech ReCOGRItion Grammarcc..cc.oevveereeeveeieeeireeereasneeseseseeseesens 65
5.11.2 Some [ittle ProBIEmIS.cccooocviiiiiiiiiiicie et 66

6. EXTENSIBILITY 67
7. CONCLUSION 68
8. GLOSSARY 69
9. BIBLIOGRAPHY . 71
10. ANNEXES 73

| Guillaume Barraud & Priam Pierret | MAELIA | 4177 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

JO.1T USER MANUAL .oottiiiiiiiiiiitiieeeeeteeeeeeee ettt eeeeeeeeeeeeeeeeeee et e seeee e s e e e s as e s e e e s e s e s aeesasesesasasseesasasessssaaaesesseaseaeees 74
10.2 MAINTENANCE MANUALcoottitititiiiititeieeeeeeeeeeeeeeeeeeeeeteeeeesesesttesesesasesetetetesstetttttererateressreeeteereereaaee 75
JO.3 STATISTICS ..eeeeteeieeiiieeeeeeeteeeeeeeteee et eeeee ittt ee e et ea et e e et e et e e e ee e s e s e s e e e e e s ea e s e e e s e e e s e s e s e s e s s s e s e s e s e sesaseseesasaesesseaeeaeees 76

10.4 SOURCE CODE

| Guillaume Barraud & Priam Pierret | MAELIA | 5/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

1. Acknowledgements & Summary

Above all, we make a point of thanking all researchers and students of KBS
department (Knowledge Based Systems) of TU Delft for their reception and their
sympathy.

We thank very particularly and very cordially our Master for training course: Leon
Rothkrantz for its reception, its availability, and its kindness!

We also thank especially Edwin de Jongh, Matthias Heie, Boi Sletterink, Luca
Porzio , Biagio Di Santo, who brought their assistance for the project or our stay to the
Netherlands.

Thank you finally to ENSEIRB administration, which helped us for various steps:
Mr. Paul Y. Gloess, Mr. Bruno Eymas, ... who made possible this training course to
Netherlands.

Abstract :

This project deals with Lego robot, communication human-computer, artifical
intelligence. The purpose of our project was to built a small robot as a cat agent and to
interact with it through different ways of communication.

| Guillaume Barraud & Priam Pierret | MAELIA | 6/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

2. Introduction

We carried out our final project at TU Delft, in the Netherlands, within the
framework of the exchange program Socrates-Erasmus. We worked from April 1 to
August 30, 2002 within the research laboratory of Knowledge Based System in ITS faculty
of TU Delft.

Our mission was at the same time to build a robot according to the model of a cat
and to conceive an application making possible to communicate with this robot and also
making possible to give him "life".

We have been supervised by Leon Rothkrantz, our professor at TU Delft. This
training course had for main objectives :

e To train theoretical and practical knowledge acquired during 3 years at
ENSEIRB ... in particular skills related to the application design (software
engineering).

e To work in an international context: it means to improve our English by using
it both for work and everyday life. But also to discover a country and its culture:
the Netherlands ... but still to meet students coming from the whole world and
particularly from the other countries partners of the European Erasmus program
(Germany, Spain, ltaly, Ireland, Romania, Finland, Belgium ...)

These goals were largely reached during these 5 months. This experiment was
very instructive and enriching for our future work. This project still accentuated our desire
to work in a multicultural and international context ... while allowing us to conclude a
stimulating project at the technical level.

Note that to complete your knowledge about our work, you can visit this following
web site relating all we have done.

http://www.kbs.twi.tudelft.nl/People/Students/G.Barraud/thirdyear/project/project.html?cStyl
e="kbscolor'

| Guillaume Barraud & Priam Pierret | MAELIA | 7/77 |

http://www.kbs.twi.tudelft.nl/People/Students/G.Barraud/thirdyear/project/project.html?cStyle='kbscolor'
http://www.kbs.twi.tudelft.nl/People/Students/G.Barraud/thirdyear/project/project.html?cStyle='kbscolor'

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

3. Purpose

3.1 Original Subject from Mr Leon ROTHKRANTZ

The goal of the project is to design and implement a Lego robot as a

digital animal (pet). There are different ways to communicate with a Lego

robot:

-a speech interface, via the connecting PC. On the PC some speech processing
tool is implemented. Then you can give some commands as go, stop, go two
meters ahead, find the red cookie, find the other robot, explore the

labyrinth. When the systems processed the speech correctly, then some
commands are via the infrared connector transmitted to the Lego robot. The
Lego robot can show some appropriate response.

-some sensors as interface :

When the Logo hits some object, or the infrared sensor is reading some gray
value, some behavior response can be triggered.

-digital camera :

The Lego robot has eyes via a simple WEB cam connected to the PC. On the PC
some image processing software is running. If some object is recognized,

i.e. apply, cup of milk, dog, then again some appropriate behavior

patterns are activated.

The Lego robot can show some behavior as driving forward or backward, go
left or right, go to some specific place, show some flashlights, turning
wheels etc. It is even possible to use speech synthesis on the PC to
generate appropriate sounds.

The Lego has some intelligent module to compute the right response based
on the right input.

The reasoning module has a limited capacity, but a nice option is to do the
reasoning work at the PC and connect with the robot via the infrared sensor.

Once the multimodal interface is designed and implemented two applications
can be designed and a prototype of the system can be implemented:

-design the Lego robot as a communicating agent, model the Lego robot as a
digital cat. So the user can speak to the cat and the Lego robot shows cat
behavior.

-design the Lego robot as a search agent, so that it is able to find his

route in an unknown environment and communicate the results to a colleague
robot.

| Guillaume Barraud & Priam Pierret | MAELIA | 8/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

3.2 Understanding the problem

This was the subject we read and we chose before arriving in Delft. The first month, while
testing separately every possible feature for our project, we understood that it's quite quick to
implement an intelligent behavior on the robot cat, but when it works we always want to implement
something more intelligent, so how make a project with that? We thought with Mr Rothkrantz that it
can be powerful to create an application which offers to the user the possibility of executing
intelligent behaviors with the robot, but also which allows to create new behaviors using a text
language and an icons language; a kind of Al development studio with a Lego Robot Cat. We
enjoyed this idea of creating a whole application, especially because of our specialization in
software engineering.

3.3 Specifications of MAELIA

3.3.1 Hardware needed

e Lego RCX Programmable Brick (PBrick)
e Lego output bricks
o 2 motors for driving
o 1 lamp for light
e Lego sensors
o Contact sensor - one in front-left and one in the front-right for collision control
o Rotation sensor - measurement of distance
IR transmitter - transmission of IR signal
Microphone - speech recognition
Speaker - audio signal (speech, sound) output
Lego camera - vision for the cat
Approx. 120 LEGO bricks
Computer — with both COM and USB ports.

3.3.2 Software specifications

With our supervisor, we outlined the requirements of the application to be designed.

3.3.2.1 Functional Requirements

Execute behaviors on the robot cat

Use sensors to have reactive behaviors
Create a language of behaviors description
Edit behaviors with text

Edit behaviors with an icons language
Save user-defined behaviors for reuse

| Guillaume Barraud & Priam Pierret | MAELIA | 9/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

3.3.2.2 Non-Functional Requirements

Use the Lego Camera

Use speech recognition to input commands

Use speech generation

Displaying language reference when editing behaviors
Make the icons input easier to use than the text input

3.4 Constraints
¢ Robotics Invention system works only with Windows 98.

o Windows NT does not support (by default) USB port, which is used for the Lego camera.

3.5 Anticipated Project Schedule

e Week 1-2: study the Lego tool box, how to build a Lego robot with the tool box, read some
manuals, read some application reports

o Week 3-4: study the report on the speech processing, how to design the speech interface
o Week 5-6: study the report on the Lego cam camera, how to recognize objects

o Week 7-8: design a Lego cat,

o Week 9-12: implement the Lego cat (basic behaviors, simple interface)

o Week 13-14: test the Lego cat and make some improvements

e Week 15-17: implement more advanced behaviors and interface

o Week 18-19: test the advanced prototype and make improvements

o Week 20: write the final report

| Guillaume Barraud & Priam Pierret | MAELIA | 10/77 |

| TU DELFT — ITSKBS | Final Project Report

ENSEIRB |

4. Conception

4.1 MAELIA: Global presentation

4.1.1 Activity diagram

MAELIA : Activity Diagram

Body Cat

4.1.2 Al Aspect

DO wm@®:ZE0 —
Icon seduence (
—= CoL
Speech Keyboard —_— Co rids
Environment Execute Save
(Actions

g —

Events files
) Brain Cat

The Multimodal Application for Extensible Lego Intelligent Agent (MAELIA) is an
environment for editing, executing and saving behaviors with a Lego Robot Cat. It can be called an
Al environment because the core of the system is designed as an intelligent agent, according to

the PAGE definition (Percepts, Actions, Goals, Environment).

4.1.3 Entertaining Aspect

| Guillaume Barraud & Priam Pierret | MAELIA |

11/77 |

| TU DELFT — ITSKBS | Final Project Report | ENSEIRB |

The main use of the application is to interact with a Lego Robot Cat equipped with Lego
Camera, which can move, play sounds and music, speak, take pictures and capture videos, but it
can also see, watch, touch, listen, read and you can teach it how to react it is running, and finally
everything can be done at the same time. After getting used with the Cat Command Language,
you can easily edit more complex behaviors, from the funniest to the most useful, from the most
stupid to the most intelligent. When your new behaviors are ready for use, you can demonstrate
them by using the speech command.

4.1.4 Components Aspect

MAELIA has a lot of advanced features like infrared communication, image processing for
color and movement detection, speech recognition and generation, etc. To make the development
last only five months, we used existing components for most of these advanced features. These
components are ActiveX components for Windows operating systems, so we need a programming
language, which provided ActiveX dynamic linking. Visual Basic is very efficient for ActiveX reuse,
graphic user interface design and quick development, so we used it.

| Guillaume Barraud & Priam Pierret | MAELIA | 12/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.2 Application architecture

4.2.1 Description

The architecture of MAELIA is designed according to an object-oriented approach; there
are seven main entities, all of them embed one or several existing ActiveX components.

The architecture can be divided into 3 layers :
1. Body Components (low layer) which owns three entities
2. Brain (middle layer) which is one entity

3. Commands (high layer) which owns three entities

The Brain layer has only one entity, which is the core of the system. All the entities in a
same layer (1 or 3) are equivalents in terms of role in the system.

4.2.2 Diagram
Architecture of MAELIA
Icons Keyboard Speech
Text Input Command Layer
Brain Cat

Brain Layer

Actions

Body Components
Lavyer

Eyes Robot Voice
Cat Cat Cat

| Guillaume Barraud & Priam Pierret | MAELIA | 13/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.2.3 Responsibilities and Collaboration

4.2.3.1 Body Components layer

The entities in this layer can access to hardware to produce a physical action: RobotCat is
in charge with the Lego Robot, EyesCat with the Lego Camera, and VoiceCat with speech
generation. These components are also sources of events (contactPushed, objectSeen,
endOfSpeech...), these events are sent to the BrainCat which is the only entity allowed to trigger
actions on the Body entities.

4.2.3.2 Brain layer

The Brain entity organizes the execution of the cat behaviors (structured as a tree) that the
user defines with the entities of the Commands layer. With the Body components, the Brain entity
calls some actions and receives some events, from this point of view the Brain entity is design as
an agent, in the sense of an artificial intelligence context.

4.2.3.3 Commands layer

The entities in the Commands layer are the multimodal interfaces for the user to give
orders with text, icons, and speech. Icons and speech are translated into text, and then text is
parsed to build an StrTree structure, which is the command input for the Brain entity.

| Guillaume Barraud & Priam Pierret | MAELIA | 14/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.3 Body components
4.3.1 RobotCat

4.3.1.1 Lego Mindstorms System

Few years ago, the Lego Company released a new range of Lego stuff called Lego
Mindstorms System. The goal of this new range was to give a practical (Lego) support for robotics
development. With this kit you can build a Lego robot and command it from your PC. This new
range uses the pieces of the Lego Technics range, but Lego adds some special pieces:

e The PBrick: the main piece, it is a big Lego Brick, with a microprocessor inside, and some
inputs and outputs on the top. It can communicate with the PC via an infrared port on the
PBrick and infrared tower connected on the COM port of the PC.

e The output bricks: motors, lights.

e The input bricks (sensors): to detect contact, rotation, light and temperature.

e The cable bricks: it is just two small and simple Lego bricks with electrical contacts; it is
used to connect a PBrick port to another special brick, for both inputs and outputs.

The box of RIS Lego Mindstorms System

| Guillaume Barraud & Priam Pierret | MAELIA | 15/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

RCX Infrared Eye

Temporature Sonser

Taueh Sensor

Light Sensar

Output Ports A, B, C

The new bricks of the Lego Mindstorms System.

Infrared communication between PBrick and PC.

| Guillaume Barraud & Priam Pierret | MAELIA | 16/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.3.1.2 Robot Building

First stage of the realization of the robot : its building. It could be almost summarized in
only one word: Lego. Indeed, from its nature, Lego offers us such an easy building way, which
gives us a lot of building possibilities. However we were inspired from one of the most basic
models (and thus one of the most functional) to build our robot.

e One of the major simplifications that we will be able to note initially is 'no legs’
(replaces by caterpillars or wheels). Our robot can nevertheless wear its legs if it is
wished (the wheel-caterpillar-legs are interchangeable) but the accuracy is reduced
during moving and the control is much more random. Two engines are thus
devoted for moving, using two PBrick outputs.

e The third output is used to connect the lamp.

e For the sensors of the robot, we equipped it with a rotation sensor allowing him to
measure the distances covered and with two contact sensors placed on the front
side of the robot on the bumper which enables him to detect contact with obstacles
on the left and on the right independently.

The first robot.

4.3.1.3 Robotics Invention System

A software is provided with the Lego box, it is called RIS (Robotics Invention System). It
makes it possible to program simple behaviors with the robots using the RCX brick. This is due to
building blocs of language matching the basics behaviors such as starting engine A forward,
starting engine B backward...

However, it is too much limited for our needs, in particular for extensibility and the
possibility of adding external components such as the Speech API for example. Let us note that
this software uses also the Spirit.ocx component, which is described in the next section.

| Guillaume Barraud & Priam Pierret | MAELIA | 17/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.3.1.4 Spirit & VB

The Spirit component is an ActiveX control with access to the COM port and the infrared
tower connected on it to communicate with the RCX PBrick. You can control the PBrick in two
ways, and most of the Spirit methods are available for both ways:

e Direct commands: the action is done on PBrick when the methods is called on the PC

e Downloadable commands: the command is downloaded when the method is called on
PC, the command is executed in the PBrick when the program is started

To store downloadable commands, the PBrick has 5 programs slot, each of them can
contains 10 tasks and 8 subroutines. Without having the PC, you can choose the slot and run the
program on it. We use this mode to make the Mouse running (the Mouse is another Lego robot
used only to trigger events on the Cat).

As an ActiveX control, it can be accessed (used) only from a programming language,
which provides ActiveX dynamic linking. Common user languages for this are C++ and Visual
Basic. We choosed Visual Basic for its advantages of quick development.

4.3.1.5 NQC

An alternative to Visual Basic could have been the NQC (Not Quite C), a programming
language especially designed for the RCX based on the syntax of C (from where its name). From
a performance point of view, that doubtless would have been the best choice. But this language is
compiled into native RCX code executable by the PBrick, and we cannot access to PC resources
from it, it is why we did not use it.

4.3.1.6 Java

We could also very well have used Java technology in order to make the interface of
control of our robot. Indeed, when researching at the beginning of the project, we found various
APIs written in Java, allowing to control the RCX PBrick. These different APIs have the same role
as the Spirit component; it plays the role of interface of communication between the RCX and the
PC.

Java could have brought a better programming support to us, particularly for object-
oriented features and also for safe errors management. However, we did not find any Java API for
the Lego Camera. Another significant point is the design of the user interface, so easy with Visual
Basic; it would have become really huge with Java.

| Guillaume Barraud & Priam Pierret | MAELIA | 18/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.3.1.7 SCRAP
SCRAP was the previous project in the KBS department, which uses a Lego Robot.
Mathias Heie, a student from Norway, designed it. It deals with the speech recognition by allowing

the user to command movements to the robot from speech. We were inspired by this project
during our conception in order to provide a speech interface for our application.

4.3.1.8 Actions and Events
We group the actions into four categories, for details see the CCL reference.
1. Moving actions : driveForward, rotateLeft ...
2. Sounds and music actions : playSound, playMusic.
3. Light actions : setLightOn, setLightOff.
4. System actions : setPowerMotor, set PowerDownTime...

The RobotCat can fire four events from the contact sensors, they can be left or right
contact which is pushed or released.

4.3.2 EyesCat

The Vision Command box

| Guillaume Barraud & Priam Pierret | MAELIA | 19/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.3.2.1 LegoCam & Vision Command

Another part of the Lego Mindstorms System is the Vision Command kit, which provides
the Lego Camera and the Vision Command software. The Vision Command software allows the
user to command the PBrick according to some camera events fired from color and movement
detection.

The Lego Camera

4.3.2.2 QuickCam SDK, EzVidCap & LCC

The Lego Camera is actually a simple web cam using the standard QuickCam drivers.
Logitech (QuickCam provider) propose for free the QuickCam SDK, which is a set of ActiveX
libraries and controls. EzVidCap (Ez? Video Capture) is another free ActiveX control to preview
and capture pictures and videos; it uses the QuickCam SDK.

The Lego Camera Control (LCC) is an ActiveX control which uses EzVidCap and which
makes color and movement detections according to a layout of detection zones that the developer
can define.

4.3.2.3 Hit and Run

Hit and Run was the previous project in the KBS department, which uses the Lego Camera
and the LCC ActiveX control. There are two robots moving on a flat square. One robot is moving
autonomously, and the other communicates with the PC on which the Lego Camera is connected.
The camera is above the square, looking at it. The goal is to make the second robot hit the first
one, the camera being the only percept of the second robot. Some colored panels are on each
robot, so by using LCC, we can know where is each robot and what are their orientation.

| Guillaume Barraud & Priam Pierret | MAELIA | 20/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.3.2.4 LCC Detection

The Lego Camera Control provides an efficient way to do color and movement detection.
We can define up to 64 layers, each of them can contains until 64 detection zones for color or
movement. The detection is not done on the real image but on 16-colors version of this image, this
increase the reliability of color detection (movement detection is actually color-changes detection).

Two events can be fired: color and motion, which happen when color or motion is detected
(or no longer detected) in a particular zone of the active layer (only one layer can be active at the
same time).

4.3.2.5 Actions and Events

We need to specify what how the system will use the camera, which means what are the
layers that can be useful for the Robot Cat. The natural idea is to put the camera on the Robot
Cat, instead of his eyes, so the camera is looking horizontally. It would have been nice to put a
motor with the camera to make it rotating up and down, but we missed motors outputs on the
PBrick, there are only three, two are used for driving and one for the light. So the camera can only
move from left and right, using the rotate driving commands of the whole robot.

Because only one layer is active at the same time, the actions for Eyes Cat are to set a
particular layer, or to set the inactive layer to prevent the system to receive events from the
camera. Different events are raised according to the layer. See section 5.10 for details.

4.3.3 VoiceCat

4.3.3.1 Microsoft Speech APl and TTS

In order to give a little more presence to our robot cat, we equip it with the voice. For this
purpose, we have to use some classes of the Speech API to develop this small module of speech
generation. This module is base on the same model that the other cat commands, it means that
the order "say" implements ICatBeh interface.

4.3.3.2 Actions and Events

This module adds the action “say” which takes a string parameter. It introduces also the
concept of events of beginning and end of word or phrases. But these events are not available for
the MAELIA user; they are just used to synchronize the execution (when we want to do something
after saying something).

| Guillaume Barraud & Priam Pierret | MAELIA | 21/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.4 Brain

4.41 Purpose

The Brain is the core of the system, it is in charge of the execution of the commands and it
should react when a Cat Event occurs. The Brain is designed as an agent according to the PAGE
definition (Percepts, Actions, Goals, Environment).

4.4.2 Collaboration Diagram

Brain Cat : Collaboration Diagram

NCW EVENT COMMANDS INPUT [(STRINGS TREE)

L 4

Cat Behaviour Tree Builder

build and store behawviours .
Knowledge Timers

Events Context

et reaction test synchronize
Tg store heh. T I ¥

launch .
» Events Manager [———— Current Cat Behaviour
A
OTHERS CAT EVENTS from ROBEOT, EYE3Z, VOICE and MOUSE "

ACTIONS for ROBOT, EYE3, WOICE and MOUSIE

| Guillaume Barraud & Priam Pierret | MAELIA | 22/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.4.3 Component responsibilities

o The Events Manager object listen to events from the Body entities and also to the doNow
event that the Commands entities use to start execution.

o The ICatBeh interface is implemented by is the current behavior tree, once the execution
started, it has to organize its own internal execution of its nodes. The implementation of the
’Action()’ method from should calls specific actions on Body components.

o The Events Context stores all the event-reaction couples. While executing, the user can
change these couples using special control command.

e The Knowledge object is the knowledge base of the system, inside are stored variables of
different types which reflect the spirit state of the cat (combination of booleans), and also some
integer and string values used for events and actions.

o The CatBehTreeBuilder manages the input command from the Commands layer to build an
ICatBeh tree, which will be stored in the Events Context. The input command is already
organized into an StrTree, which is discussed in section 4.7 .4.

e The Timers form uses some Timer controls to make a countdown when an action is
executing, in order to stop it if the end of task event is not receive (which can happens when
the robot goes too far and loses infrared contact.

4.4.4 ICatBeh interface as a composite model

In order to structure our language, we take as a starting point a design pattern called
Composite. It is a structural design pattern, which enables us to organize the words of the
language in sentences.

The composite model thus offers to us both a common interface for all the words of the
language, the ICatBeh interface. But also a structure for the uttered then executed sentences.

In a second part, we introduce some control commands to enrich the language.

3 conditional commands: if, while, doWhile.

A event reaction is possible with the command "when"

A sequential command which is the natural alignment of the words in a sentence.
A synchronous command: "doBoth".

A loop command: "repeat"”

O 0O O OO

And however, from a certain point of view, all the orders are equivalent and in same time,
some control commands may contain other basic orders or control itself.

And the customer would like to process all orders in the same way.

Then we consider the basic orders like leaves of the tree of the sentence and the nodes of
the tree are the icons controls.

| Guillaume Barraud & Priam Pierret | MAELIA | 23/77]

| TU DELFT — ITSKBS | Final Project Report | ENSEIRB |

In summary, it gives: basic, or complex orders on the leaves of the tree and the control
commands, such as if, while, doWhile, when, doBoth or a sequence command, on the nodes of
the tree.

Let us note that in the case of some control icons, the leaves can also be tests (as "if",
"while", or "doWhile" children) or events (as "when" children).

Also let us note that we are also inspired by the Interpreter design pattern to build the
control icons and integrate them in the tree of language.

4.4.5 Discussion about the execution model

The execution model defines how a tree of ICatBeh objects is executed (to execute means
to call the method ’Action()’ of the interface ICatBeh).

There are two categories of ICatBeh objects as leaves of the tree:

1. Immediate actions : like setLightOn, watchTarget, stopAll ...

2. During actions : like driveForward 10 cm, say “Hello®, playMusic A5, A5, A6 ...

The internal nodes of the tree of |ICatBeh objects are necessary controls command like
sequence, if, when, while etc. An internal node can be immediate or during type depending of the
children of the nodes. Notice one exception: the when control is always an immediate command
because this control command tells to the cat how to react when an event occurs. The reaction
(the child of the when node) is not executed when the ’ when control’ is executed, but when the
event occurs.

We want to build an execution model, which can execute a tree of ICatBeh objects
regardless of the category of each object from the sequence (the sequence is a subsequence of
the sequence of all the nodes of the tree in prefix order).

The execution model should satisfy these two requirements:
> R1: Execute an action not before the previous action in the sequence is finished.

> R2 : Execute a new sequence when an event occurs.

In the same way, we separate events into two categories:

I. ’end of task’ event, which notify that the current action is just finished, so we can now
trigger the next action in the current behavior tree, these events are not available at
user level (in the Cat Command Language)

Il. ’environmental events’, which notify a “Cat Event® from the environment (ex:
contactPushed, object seen, speech recognized...), so we need to stop the current
execution, to change the current tree and to execute this new tree, these events are
available at user level (in the Cat Command Language), it means that the user can
define the behavior to execute when an event occurs...

Our incremental approach of the problem made us design three different execution models.
The features provided with the two first models are equivalent, but the first one makes the system
call stack growing without control. This problem is corrected with model 2, which needs an

| Guillaume Barraud & Priam Pierret | MAELIA | 24177 |

| TU DELFT — ITSKBS | Final Project Report | ENSEIRB |

“executioner” (an entity different from the “Events Manager” which can run and cancel the actions
of the ICatBeh objects). The third model gives the feature of multitasking, which obviously
increases the interactivity of the robot. Moreover the model 3 does not need any “executioner®.

4.4.5.1 Model 1 : synchronous, reentrant, monotask

This model is said to be synchronous because we use function calls to synchronize the
execution. In this way, we consider that the concrete action is finished when the call of the
method 'Action()’ is done, so if we have a control command like 'sequence’ , we just have to call

Action() on every child in the prefix order, and requirement R1. will be completed.

For immediate command, this model is the natural way of implementation, but for during
commands, we need the method ’Action()’ to last the time of the physical action, so we need to
know when the physical action is done.

For example, to implement the driveForward command with a distance parameter, the
Action() method does the following:
Send the parameter from the PC to the PBrick.
Start the moving task on the PBrick.
Wait until we receive the ’end of moving task’ event from the PBrick
Finish the call to trigger the following actions.

POON =

Question: How to listen to events if the execution flow is waiting (sleeping) in the call of Action() ?

First idea: using two threads; the first thread for events listening is running the event loop
and when an event occurs, a new thread is launched with the corresponding Action() method.
When the end of task event arrives, the event loop (first thread) notifies the second thread to finish
this action and to run the following one.

Problem: the Visual Basic standard API does not support any threads implementation. The
only way to use threads is to make dynamic linking with the Win32 library, but there are some
restrictions to respect the OLE model (shared memory between thread is not possible).

Fortunately, Visual Basic offers alternatives for threads, these features are not common in
classic programming, but they can be very powerful.

VB programming is event based programming, it means that the VB compiler takes care of
the events loop, the developer has just to add some code for the events he wants the application
to react. When an event callback function is running, the event loop cannot run because the
application is monothread, but VB provides a way to manage events while running the code of the
developer: there exists a function called DoEvents which manages all the events waiting in the
events queue before give the execution flow back to the code of the developer. This is useful to
not freeze the user graphic interface while running a code, which need several seconds of
execution.

Thus, for the model 1 and 2, every during action is calling DoEvents while waiting for ’end
of task’ notification. In this way the requirement R1 is completed.

Model 1 is said reentrant because when an event occurs, the method ’Action()’ of the
reaction is called inside (via the DoEvents call) the call of the method ’Action()’ of the previous
action, which is interrupted and cancelled. In this way requirement R2 is completed.

| Guillaume Barraud & Priam Pierret | MAELIA | 25/77 |

| TU DELFT — ITSKBS | Final Project Report | ENSEIRB |

From a system point of view, this is a real problem because the system call stack is
growing without control. It is why we change the model to correct this problem.

4.4.5.2 Model 2 : synchronous, organized, monotask

To complete requirement R1, model 2 is the same than model 1. The difference is in the
way to launch a reaction when a 'Cat Event’ occurs.

Model 2 is not reentrant, the call of 'Action()’ for the reaction is done outside the call of
‘Action()’ of the behavior that was running when the event occurred. Model 2 is said to be
organized because an entity (the ’Executioner’) is responsible to launch the reaction after an event
occurred. In model 1, the event notification launch the reaction, in model 2, the event notification
sets the next reaction to execute and cancel the current behavior, then the execution flow comes
back to the Executioner which can now launch the reaction at the same level (in the call stack)
than the previous behavior. To make the model uniform, we launch the initial behavior using an
artificial event: the DoNow event.

4.4.5.3 Model 3: asynchronous, multitask

Once model 2 has been implemented and tested, we could begin to define some intelligent
behaviors with reaction on events, the first example was the “stroll“, a behavior that makes the
robot driving forward and avoiding obstacles. It was working well, but a question comes: how to
make the robot playing music while it is driving forward? In another way, how to make the robot
doing two (or more) things at the same time? In the models 1 and 2, because the actions are
called synchronously, it is not possible to have two actions running at the same time (with only one
execution flow). So we needed to change the model again.

We want to keep the idea that when a tree is executed, it is responsible of its internal
execution; more exactly a parent node is responsible to execute its children. So now in the model
3, when we call "Action()’ for the first time, it launches the physical action on a body component,
and then the call returns. This is enough for immediate commands, but for during commands,
when the ’end of task’ event occurred, the action() method is called again to make the command
notifying its parent node that its action has just finished, in order to the parent to call the next child.

With this asynchronous model, all actions calls are very quick, so the application is more
reactive (the event loop is running most of the time). Moreover, we introduced a new control
command 'doBoth’ which takes two behaviors to be executed at the same time. And finally when
an event occurs, the reaction is always launched but the previous behavior is not stopped and
cancelled, we just keep it running if it is possible. For example, if we want the robot to react to
contact while it is driving, for music reaction both actions will be executes at the same time, but for
another driving reaction, the reaction will overload the previous action. In this ways we define
several exclusives categories of actions (see Implementation section for details).

| Guillaume Barraud & Priam Pierret | MAELIA | 26177

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.5 The Cat Commands Language (CCL)

The cat command language makes it possible to order the robot cat quite simply. You just have to
compose a sentence and to validate it.

This sentence can be written either with the words of the language, or with command icons.
These two languages (text and icons) are completely equivalent, that is to say that to each word of
the language text matches an icon, but we will explain this part a bit further, see chapter 4.6.2.

4.5.1 Basic commands

The basic commands form the primary bricks of the language of the cat. They are the basic
orders of the robot which match to its basic functionalities such as going straight, lighting the lamp
or playing some music, taking a picture or saying something.

Some of these basic commands are followed by some parameters, not optional for the most part
of them.

Available basicCmd list :

Id Image | Source lastModified | Param (optionnal) Unit

driveForward robotCat|1.0 10-05-02 distanceInCm centimeters
driveBack robotCat|1.0 11-05-02 distanceInCm centimeters
rotateRight robotCat|1.0 11-05-02 rotationInDegrees degrees
rotatelLeft robotCat | 1.0 11-05-02 rotationInDegrees degrees
turnRight robotCat | 1.0 29-05-02 none none
turnLeft robotCat|1.0 29-05-02 none none
driveForwardDuring robotCat | 1.0 25-05-02 timelnSeconds seconds
driveBackDuring robotCat | 1.0 25-05-02 timelnSeconds seconds
rotateRightDuring robotCat | 1.0 25-05-02 timelnSeconds seconds
rotateLeftDuring robotCat | 1.0 25-05-02 timelnSeconds seconds
stopMoving robotCat | 1.0 12-05-02 none none
startStroll robotCat|1.0 29-06-02 none none

| Guillaume Barraud & Priam Pierret | MAELIA | 27177

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |
endStroll robotCat|1.0 29-06-02 none none
setLightOn robotCat|1.0 15-05-02 none none
setLightOff robotCat|1.0 15-05-02 none none
setPowerMotor robotCat | 1.0 31-05-02 powerMotor none
setPowerDownTime robotCat | 1.0 01-06-02 powerDownTimelnSeconds | seconds
playMusic robotCat|1.0 02-06-02 toneSequence none
playSound robotCat | 1.0 05-06-02 soundName none
stopMusic robotCat | 1.0 02-06-02 none none
takePicture eyesCat | 1.0 04-07-02 none none
doNothing pcCat 1.0 19-06-02 none none
watchLeftMiddleRight eyesCat | 1.0 11-06-02 none none
watchSymbol eyesCat | 1.0 12-06-02 none none
watchTarget eyesCat | 1.0 13-06-02 none none
stopWatch eyesCat |1.0 13-06-02 none none
autonomous pcCat 1.0 08-08-02 none none
say pcCat 1.0 14-06-02 stringToSay none
wait pcCat 1.0 08-06-02 timelnSeconds seconds
stopWait pcCat 1.0 08-06-02 none none
stopAll pcCat 1.0 16-06-02 none none

4.5.2 State icons

The state icons or test icons represent the states of the robot cat.

They will be used with the

keywords "if", "while" and "doWhile" in order to compose conditional or repetitive behaviors. When

| Guillaume Barraud & Priam Pierret |

MAELIA

28/77|

| TU DELFT — ITSKBS |

Final Project Report

ENSEIRB |

these icons are used, they call upon the data base of the cat (its base of knowledge, its brain) to

know the value of the test and thus to decide the continuation of the behavior.

The icons of tests are : isHungry, isSleeping, withCam, ...

Available test list.

4.5.3 Eventicons

true pcCat |1.0 25-05-02
false pcCat (1.0 25-05-02
isHungry pcCat (1.0 04-06-02
isHappy pcCat |1.0 04-06-02
isTired pcCat |1.0 05-06-02
isSleeping pcCat |1.0 05-06-02
isSleepy pcCat |1.0 05-06-02
isSearching pcCat |1.0 05-06-02
withCam pcCat |1.0 07-06-02
withPC pcCat |1.0 07-06-02

Event icons stand for events for which the robot cat is sensitive, that is to say all the events it can
detect and which are available for the user. These icons will be used with the keyword "when",
thus you will be able to set up specific reaction on some event.

Available event list :

| Guillaume Barraud & Priam Pierret |

MAELIA

29/77|

| TU DELFT — ITSKBS |

Final Project Report

ENSEIRB |

Id Image |Source |Version|lastModified

contactLeftPushed robotCat |1.0 08-06-02
contactLeftReleased robotCat |1.0 09-06-02
contactRightPushed robotCat|1.0 10-06-02
contactRightReleased robotCat|1.0 11-06-02
seeSmthOnLeft eyesCat |1.0 08-06-02
seeSmthOnMiddle eyesCat | 1.0 08-06-02
seeSmthOnRight eyesCat |1.0 09-06-02
distanceTarget eyesCat |1.0 19-07-02
symbolRead eyesCat | 1.0 15-07-02
RCXMouseMessage pcCat 1.0 21-07-02
doNow pcCat 1.0 09-06-02

4.5.4 Control icons

The control icons make it possible to structure the cat language in a logical way.

It make it

possible to combine basic icons between them, but also to introduce the events and the tests in

the language.

To have a look at the exact syntax of this grammar, see the gold grammar, chapter 5.4.

4.5.41 «repeat » icon

The "repeat” keyword makes it possible the cat to make several times the specified action in this

sentence.

Its syntax :

<repeatCmd>

::= repeat <numTimes> <sequenceCmd> end

An example :

repeat four times driveForward 20 cm, rotateLeft 90 end

| Guillaume Barraud & Priam Pierret | MAELIA |

30/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.5.4.2 «if»icon
the « if » keyword makes it possible to have conditionnal orders.

Its syntax :

<ifCmd> ::= if <booleanTest> <thenToken> <sequenceCmd> end
| if <booleanTest> <thenToken> <sequenceCmd> else
<sequenceCmd> end

An example :

if isHungry then startStroll end

4.5.4.3 « while » and « doWhile » icons

With the « while » keyword, you can order the robot cat to repeat the specified action as long as
the test is not true.

Their syntax:

<whileCmd> ::= while <booleanTest> <sequenceCmd> end
<doWhileCmd> ::= do <sequenceCmd> while <booleanTest> end
An example :

while isHappy then rotateRight 10 end

4.5.4.4 « when » icon

The key word "when" makes it possible to specify reactions to him. A sentence beginning with the
key word when does not start actions. It does nothing but set up reactions.

Its syntax:

<whenCmd> ::= when <eventToken> then <sequenceCmd> end

| Guillaume Barraud & Priam Pierret | MAELIA | 31/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

An example :

when contactLeftPushed then driveBack 20 end

4.5.4.5 « doBoth » icon

The "doBoth" keyword makes it possible the cat to make two actions at the same time.
Its syntax :

<doBothCmd> : := doBoth <sequenceCmd> and <sequenceCmd> end

An example:

doBoth driveForward 120 and playSound 2 end

4.5.5 Complex commands

Because of the save function commands sequence, any sentence stated with the cat can be
recorded and re-used thereafter. We will call complex order, any sequence of orders saved by our
application and then being able to be recalled with its identifier (its name).

o A complex order is thus a combination of basic orders, control commands and
possibly others complex orders defined beforehand.

o A complex order is considered in grammar as a basic order, it can for example be
used within control commands.

o A complex order is entirely defined by its ID (its name), which was given to him at
the time of its save. Because of this name, it could be recalled in the language.

| Guillaume Barraud & Priam Pierret | MAELIA | 32/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.6 Commands Input Interfaces

4.6.1 Text Input Interface

The Text Input Interface is responsible of the interpretation of the Cat Command
Language. It owns a text parser compliant with the CCL grammar, which builds an StrTree from a
CCL phrase. It presents a text input window with commands for executing, saving and displaying
help.

4.6.1.1 Parsing text into a behaviors tree

Parsing text is not an easy feature to implement from scratch, fortunately there exists a lot
of existing freeware parsers available as programs, static library, dynamic library, and also ActiveX
components, which are easy to use in Visual Basic. We chose the GOLD Parser because it is
more than a parser, it is also a grammar checker and compiler. The parser is an ActiveX Dynamic
Linking Library, which loads a compiled grammar at runtime, and the GOLD Parser Builder is a
program to edit in clear text your grammar, to check it, and to compile it for the GOLD Parser
component.

4.6.1.2 Need of language reference

Obviously it can be useful to have permanently access to language reference. It is done
with the Help Browser, which displays the user manual. The reference is organized according to
the type of the elements of the CCL: controls, commands, events and tests. Notice that the help is
dynamic, it means that the user-defined behaviors are documented as soon as they are saved,
this is done by generating at runtime HTML documentation from XML Cat Identity files using XSL
transformations.

4.6.2 Icons Input Interface

4.6.2.1 Icons, Symbols, Pictograms...

In order to complete our multimodal interface, we decided to associate a pictogram for
each brick of behavior and thus to create a second language similar to the language of the cat
(CCL) but using icons instead of words.

The book of Pascal Vaillant, "Semiotique des langages d'icones", informs us in detail about
this subject. We learned not to confuse all the symbols: icon, ideogram, letter or pictogram and
also that the concept of icon is based on the resemblance to the represented object. In this
direction, it is different from ideogram which is a sign belonging to a writing system. The ideogram
is defined especially by opposition to the letter like writing symbol. The ideogram does not
suppose anything more, and in particular no iconicity. An ideogram that is also iconic is called a
pictogram.

| Guillaume Barraud & Priam Pierret | MAELIA | 33/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

We thus can separate the symbols in three categories:
e The icons (tables, signs, statues)
e The ideograms (hieroglyphs, Chinese ideograms, symbols of the electric schemas)

e The pictograms (which form also part of the two last categories)

Our language uses icons-pictograms because each icon is carrying a sense.
For that, we complied with certain rules:

- A color is selected for each type of icons in order to facilitate reading of a sentence:
- Yellow for the basic commands
- Green for the events
- Red for the tests
- Purple for the complex commands
- A pictogram is selected for each entity language (its reference is stored in the file which
lists all the words of the language). This pictogram is attempting to evoke the word with
which it is associated.

4.6.2.2 User feedback

To justify the icons input, it needs to be a faster way of input than the text input. The idea is
to presents a palette of valid icons, and by clicking on them, the user put a new icon in the icons
sequence, at the current place of the cursor. The cursor can move using the arrow keys. We also
need a command to delete an icon from the input. Once the icons sequence is finished, it is
translated into text, which has to be a valid phrase of the CCL, and then the text is sent to the
GOLD Parser to built an StrTree for the Brain.

4.6.2.3 Some models of icons representation for the CCL

It was not obvious to find an icon representation for the CCL. The main point was how to
translate the parameters of the commands and the markers for controls (then, else, end ..). For
the two points we hesitated between making them icons or part of the icon (command or control)
which owns them. Finally, to implement the user graphic interface, it was easier to make them
complet icons, but in this way the risk of bad composition of icons is increased, which is not a real
problem because the user is alerted by the parser that the input is grammatically not correct.

4.6.3 Speech Input Interface

4.6.3.1 Speech Recognition with the Microsoft Speech API

| Guillaume Barraud & Priam Pierret | MAELIA | 34/77]

| TU DELFT — ITSKBS | Final Project Report | ENSEIRB |

In order to command our robot by voice, we install the Speech API on our application. The
function of the Speech Recognition (SR) engine is to take a digitalized speech signal as input and
convert that into recognized words and phrases of the CCL. The incoming speech is compared
with a predefined grammar.

The SAPI provides a high level interface between an application and speech engines. The
SAPI notifies the application when a speech event occurs. A speech event might be for instance
the start of a phrase, the end of a phrase or a speech recognition. Microsoft SAPI 5.1 can handle
more than 30 kinds of such speech events. In this system our primary interest is speech
recognition events. When an event occurs, the application will be notified and it receives a
structure with information about the event. Because our grammar is built up hierarchically, the
structure is typically also hierarchically built up.

The application needs a recognizer object to access the SAPI. There are two ways to set
up this object:

e Shared resource instance. This set up allows resources such as recognition engines,
microphones and output devices to be used by several applications on the same time.

e Non-shared resource instance. This set up allows only one application to control the
resources.

The shared resource instance is the preferred option for most desktop applications. In this
way more applications can use the microphone. Therefore shared resource instance is used in this
system.

Initially the speech recognition uses a default voice profile, which perform fair for every
voice. It is possible to configure the speech recognition system to a specific voice. By doing this
the performance is supposed to increase for that specific user. But you also need to have a very
good accent in the recognized language (English in our project), this point gave us many problems
because of our bad English accent.

4.6.3.2 Grammar or not Grammar?
There are two main types of grammar:

e Dictation grammar: In this type of grammar the SR engine will load its own grammar. The
grammar will then typically be very comprehensive. Ideally all allowed phrases in a language
could then be recognized. This leads to a huge number of possible phrases. The advantage of
dictation grammar is that (theoretically) all legal phrases can be recognized without having to
specify the whole grammar first. The disadvantage is that chances of misrecognition will be
very high, at least with today’s technology. The term misrecognition is the case when a phrase
is being recognized as a different phrase.

e Command-and-Control grammar: In this type of grammar we specify our own grammar for
the application. The grammar can then be drastically limited. Only phrases that make sense in
our field of application would be included and the chances of misrecognition would be strongly
reduced. The disadvantage is that the grammar has to be manually specified.

| Guillaume Barraud & Priam Pierret | MAELIA | 35/77]

| TU DELFT — ITSKBS | Final Project Report | ENSEIRB |

MS Speech SDK supports both dictation grammar and command-and-control grammar.
Because our field of application is quite limited, command-and-control grammar is chosen.

There are two types of command-and-control grammar:

e Static grammar: In this type of grammar the grammar is completely predefined and loaded
at execution of the application. It is not possible to change any of the rules during runtime.
However, it is possible to achieve a kind of pseudo dynamic grammar by specifying all
necessary rules and only consider speech events by the rules that should be active at the
moment. But sometimes this is not enough, for instance when the user is allowed to specify
words or names that are not known at development time. It would be possible for the user to
change the contents of the grammar file before execution, but this is not an elegant solution.
During runtime it may not be possible at all.

e Dynamic grammar: In this type of grammar the contents of the grammar can change during
runtime. By allowing this, we solve the problems of static grammar. MS Speech SDK
supports dynamic grammar (and of course also static grammar).

For the constant part of the CCL, we know at design time what phrases we want to be recognized,
so there is no need for a dynamic grammar. Therefore our system uses static grammar.

The grammar for Microsoft Speech SDK is a context-free grammar written to a file in XML format.

4.6.3.3 The model from SCRAP

The SCRAP application (see section 4.3.1.6) uses a static grammar because all valid
phrases and words are known at design time (the SCRAP language is not extensible). It gave us a
good support for our grammar, because some complex things were already done, like how to
translate numbers written with letters into numbers written with figures. It gave us also a first
model to post-process speech recognition.

4.6.3.4 Limitations for the CCL

However, the Speech Recognition does not give good results in our case. Actually the
language cat (CCL) is strongly extensible, which obliges to rewrite grammar each time we add
words, or to choose dictation grammar, but in this case, the probability of misrecognition is very
high. However, combined with the voice synthesis, that opens to us the doors of the vocal dialogue
with the robot.

| Guillaume Barraud & Priam Pierret | MAELIA | 36/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.7 Supports for the CCL

CAT DATA SUPPORTS

VOICE ICONS -t
TEXT - REDUCTION
VARIOUS e — —
e STR. TREE DOM / XL
XSL
— CAT COMMANDER
— > BRAIN
B S BFHAVIOURS
TREE HTML
__{ EXPANDER FROM XL

4.7.1 Reading: Reduction

The GOLD Parser uses a class called 'Reduction’ to store the grammatical tree of the text
input. Each contains the current rule and the text just parsed. When errors occurred, the reduction
is still available, and error informations are stored in the corresponding nodes.

4.7.2 Exchanging: StrTree

The Reduction is not very easy to manipulate, it is why we chose to implement a simple
tree structure called StrTree like tree of strings. Each node contains only one string and a
collection of children. This structure is used to transform Reduction into ICatBeh, and Reduction
into DOM, it is also used for various displays as text phrase, text tree, graphic tree display, etc.

| Guillaume Barraud & Priam Pierret | MAELIA | 37/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

4.7.3 Executing: ICatBeh

The ICatBeh tree is the executable support for the basic commands of the CCL; there is no
ICatBeh support for the complex commands (user-defined commands) because the complex
commands are expanded into StrTree of basic commands before |CatBeh building. This
expansion is done from the XML files, which store the user-defined commands.

4.7.4 Saving: XML & DOM

In order to store some complex commands (sequence of commands), we used the XML
language to describe, identify, preserve and restore more complex behaviors bringing into simple
orders (or even of other complexes).

We chose format XML because it brings many tools to us for checking, structuring and
preserving data in files. The advantages compared to a simple text file are, for example:

e Structure of the language with XML tags.

e Possibility to check if the document is well formed.

e Possibility to check, with the XML parser, the agreement with the DTD, which is the
structural model of any XML file.

e Direct (human) reading in the file in an easy way.

e Multiple possibilities of displays with the XSL style sheets.

Indeed, we needed also a table of the symbols (tables of the tokens) for our compiler, in
order to preserve the words of the source language (and if possible apart from the source code).
Thus the cmdTokens.xml file stores all the information relating to the words of the language.

In addition, in order to satisfy the possibility of preserving certain complex behaviors, we
wrote a DTD (Document Type Definition) for XML files describing the language of the complex
orders. This DTD is the grammar for these XML files that will have to respect it. Each sequence of
orders is saved in an XML file, which bears its name (one gives a name to this sequence of order
when it is saved). Afterwards the saved complex command can be reused constantly.

4.7.5 Documenting: XSL & HTML

And for fun, and also to have a good presentation for the help, and also to have a unique
XML source file, the same source for all components (Help and Application), we use XSL style
sheet language to display XML content in HTML format, on a browser like Internet Explorer
(Netscape, Mozilla et Opera does not support XSL).

| Guillaume Barraud & Priam Pierret | MAELIA | 38/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5. Implementation

The sections in this chapter are described in the chronological order of implementation.

5.1 Programming in Visual Basic...

5.1.1 Basics

Microsoft Visual Basic is a programming language for Windows operating systems. It
provided a powerful development studio, and compiles your source code with the Visual Basic
framework. This framework gives to Visual Basic a event-based programming style. Moreover the
development studio makes you create user graphic interfaces very quickly, and the reuse of
ActiveX components is highly facilitates.

5.1.2 Object-oriented features

Visual Basic is not an object-oriented language. It has the concept of classic module, class
module and forms (which is a class module with a graphic window). One strange feature is the
possibility to execute code while getting or setting a public property of an object. There is no
possibility of inheritance, but the concept of interface exists. A class module can implement one or
several interfaces, and polymorphism is provided for function parameters but not for resolution of
methods name and properties.

5.1.3 Visual Basic not so good

However Visual Basic give us many problems.

Indeed, several aspects of the programming in Visual Basic do not respect the concepts of
oriented object programming. Visual Basic is very few adapted for the object design, even if it can
do it in theory and in practice, that is not really useful because few object-design-relative tools are
accessible in Visual Basic.

Only a concept of interface is available, but polymorphism is also not him not completely
supports because typing in Visual Basic is static and not dynamic as in Java or SmallTalk for
example. Concretely that adds much lines of code and many objects.

So VB is a pretty toy.

| Guillaume Barraud & Priam Pierret | MAELIA | 39/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.2 RobotCat

5.2.1 Spirit features

The ActiveX component Spirit.ocx allows our program to communicate with the RCX
PBrick, via the COM port and the infrared transmission. Its interface has a lot of methods, which
can be direct or downloadable commands, sometimes both. There methods for outputs, sounds,
memory manipulation, etc. When using downloadable commands, we use the Spirit interface like a
programming language with control structures; for example, consider this part of code:

PB.BeginOfTask tStroll
PB.On "O02"
PB.Loop srcConst, 0

PB.If srcSensorValue, iContactLeft, compEqu, srcConst, 1
PB.SetVar va7, srcConst, iContactLeft
PB.GoSub sBackTurnDrive

PB.EndIf

PB.EndLoop
PB.EndOfTask

Here you can see some method call BeginOfTask, If, Loop, which are controls structure for
this downloadable program. When this code is executed, nothing is done on the robot. Actually,
when the BeginOfTask is called, all the following instructions are considered to be downloaded
(some of them could be direct commands otherwise, like On), so they are buffered until
EndOfTask is called, and at that time all the buffered program is downloaded on the PBrick, but
not executed. To execute it, we have to call ’ PB.StartTask tStroll ‘. This is the way to execute
code on the RCX. Our system is using two main tasks:

¢ tComplexMove: this task is used to make a finite movement like driveBackward 20 cm or
rotateLeft 34 deg. The parameters are the directions of each motors (it is why it is the same
task for driving and rotating) and the number of rotation steps to complete before stopping (it
needs the rotation sensor).

e tEventManaging: this task is called the system task because it is started just after
download, and it is responsible to send information about the PBrick to the PC, like the
changes of state for contact sensors, and also, which is very important to synchronize
actions on the PC, it tells the PC when the tComplexMove task has just finished (the is the
source of the end of task event for the robot moves).

We also use some subroutines (it like tasks but subroutine are called synchronously and
tasks asynchronously) but the RCX has no call stack so a subroutine cannot call another
subroutine.

| Guillaume Barraud & Priam Pierret | MAELIA | 40/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.2.2 Interface

We decided to put all features of the RCX robot together, behind a unique interface to
have a unique communication object.

This interface contains all features of the RCX like movements, music, light... but it can
also launch events from the RCX like contactLeftPushed or endOfTask (let us note that the first
event is accessible by the user and the second, not).

This interface is called IRobotCat.
It allows us to have a CRCXRobotCat class, which represents the real robot and a second

class CFacticeRobotCat which allow us to test our application at home without the physical robot.
Both classes implement the IRobotCat interface.

| Guillaume Barraud & Priam Pierret | MAELIA | 41/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.3 BrainCat

5.3.1 Classes

o The Events Manager object listen to events from the Body entities and also to the doNow
event that the Commands entities use to start execution.

o The ICatBeh interface is implemented by is the current behavior tree, once the execution
started, it has to organize its own internal execution of its nodes. The implementation of the
’Action()’ method from should calls specific actions on Body components.

o The Events Context stores all the event-reaction couples. While executing, the user can
change these couples using special control command.

e The Knowledge object is the knowledge base of the system, inside are stored variables of
different types which reflect the spirit state of the cat (combination of booleans), and also some
integer and string values used for events and actions.

o The CatBehTreeBuilder manages the input command from the Commands layer to build an
ICatBeh tree, which will be stored in the Events Context. The input command is already
organized into an StrTree, which is discussed in section 4.7 .4.

o The Timers form uses some Timer controls to make a countdown when an action is
executing, in order to stop it if the end of task event is not receive (which can happens when
the robot goes too far and loses infrared contact.

5.3.2 Sequence Diagram

Brain Cat : sequence diagram

Clents CatBeh TreeBuilder EventsContext Eventshanager current ICatBeh Timers

-

catBeh = |
EuildBehi{strTree) .

| SetDeactionidoNow, catBeh) |

NotifyEvent {doMou) E

: -
! ourrent = !
H IGetReactionI:dc\Now:I H

Aotdioni)

\ ScheduleEnd())
. -
NotifyEndOfTaski) '
B Horify ;
' IsFinishedi) ! ;
i '
' Action()
Actioni)
ot 1
W 5 5 5 5 5
W W W ki W

5.4 CCL Grammar & GOLD Parser

| Guillaume Barraud & Priam Pierret | MAELIA | 42177

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.4.1 CCL Grammar in BNF representation

Here we present the BNF representation of the grammar of the Cat Commands Language,
as we wrote it for the GOLD Parser Builder, the grammar checker and compiler for the GOLD
Parser engine.

| A A e A e A A e

1111111 Grammar Properties !!!!I!I!!1!
rrrrrrrrrrrrrrrrrrrerrrrrrrrrrrrrrrnd

"Name" = Cat Command Grammar

"Author" = Priam PIERRET & Guillaume BARRAUD
"Version" = 1.0.0

"About" = Basic Grammar for Cat Command Language
"Case Sensitive" = True

"Start Symbol"

<sequenceCmd>

{string Ch} = {Printable} - ["]

O O O O O O O O O e e |

1D = {Letter}{AlphaNumeric}*
IntegerNumber = {Digit}+

FloatNumber = {Digit}+'.'{Digit}*
StringLiteral = '"'{String Ch}*'"!

Unit =

meter |centimeter|degree|second|minute|hour |meters|centimeters|degree
s |seconds |minutes|hours|m|cm|deg|sec|min|h

rrrrrrrrrrrrrrrrrrrrrrrrrrnrl

<sequenceCmds> = <gsimpleCmd> ',' <sequenceCmd>
| <simpleCmd>

<controlCmd>

<whenCmd>

<definedCmds>

<defParamCmd>

<simpleCmds>

<whenCmd> ::= when <eventToken> <thenToken> <sequenceCmd> end

| Guillaume Barraud & Priam Pierret | MAELIA | 43/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |
<controlCmd> ::= <ifCmd>
| <repeatCmd>
| <whileCmd>
| <doWhileCmds>
| <doBothCmd>
<ifCmd> ::= 1if <booleanTest> <thenToken> <sequenceCmd> end
| if <booleanTest> <thenToken> <sequenceCmd> else
<sequenceCmd> end
<repeatCmds> = repeat <numTimes> <sequenceCmd> end
<whileCmd> = while <booleanTest> <sequenceCmd> end
<doWhileCmd> ::= do <sequenceCmd> while <booleanTests>
<doBothCmd> = doBoth <sequenceCmd> and <sequenceCmd> end
<definedCmd> ::= ID
| ID <cmdParam>
| ID params <segParam> end
<defParamCmd> = defParam ID
<eventTokens> = ID
<booleanTest> = ID
<thenTokens> = then
<numTimes> = once
twice
IntegerNumber times
IntegerNumber
<cmdParam> = <numbers>
<number> Unit
StringLiteral
ID
<segParam> = <cmdParam> , <segParam>
| <cmdParam>
<numbers> = IntegerNumber
| FloatNumber

| Guillaume Barraud & Priam Pierret |

MAELIA

44/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.4.2 GOLD Parser Builder & Compiled Grammar

After editing the grammar in clear text, the GOLD Parser Builder compute the DFA
(Deterministic Finite Automate), which accept the CCL language, and also the LALR table (Look
Ahead Left Recursive), which is used to choose the current accepting, rule. The compiled
grammar is actually a file containing the DFA and the LALR Table.

5.4.3 GOLD Parser Engine & Reductions

Once you have the compiled grammar, you can load it in the GOLD Parser engine (which
is an ActiveX Dynamic Linking Library) at runtime, but is not possible to change the grammar at
run-time because it needs to be recompiled, and there is no component to do it your own program.

The parsing can be done step by step (it means you can interpret the results step by step)
or you can do it all and then browse the Reduction structure that represents the grammatical tree
of the input sentence. We preferred the second solution because when an error occurs from a
badly formed input sentence, we don’t want to interpret the results, it is why we do the parsing until
an error appears, and if not we build an StrTree from the Reduction.

| Guillaume Barraud & Priam Pierret | MAELIA | 45/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.5 XML & DOM

We easily choose Microsoft XML API because of its simplicity of integration in Visual Basic like
an ActiveX component, and also because it allows to check that the XML input file complies with a
DTD or Schema.

5.5.1 The Tokens Handler

To take care of all tokens of the CCL, we have the cmdTokens.xml file which lists all
tokens of the language. We built a class called TokensHandler, which take care of this file. This
class uses also both ImportXml and ExportXml classes to write or read some complex command
in a xml file.

So the user can add some new complex command as new word of the language (the new
complex command is transformed in an xml file and its name is added to the cmdTokens.xml file).

5.5.1.1 Saving into XML

Saving complex commands in XML is made the ExportXml class, which is able to read a
StrTree and to transform it into an XML file according to the DTD.

5.5.1.2 Reading from XML

Reading XML to extract some complex commands as StrTree is made by the ImportXml
class. We need two kinds of XML reading:

e To load the tokens of the CCL language, to be used in the Icons Interface and to
check the tokens after parsing CCL text. The cmdTokens.xml file contains all this
information.

e To expand a complex command (user-defined command) into a tree of basic
commands. Here there is an XML file for each complex command.

5.5.2 The DTD for the CCL

In order to describe the XML files which contains complex commands, we wrote a DTD
(Document Type Definition) quite similar to the CCL.

Here is the DTD for our xml files :

| Guillaume Barraud & Priam Pierret | MAELIA | 46177 |

| TU DELFT — ITSKBS |

Final Project Report | ENSEIRB |

< !ELEMENT
< !ELEMENT

complexCmd (seq|if|while|doWhile|repeat |doAll |when) >
seq ((definedCmd|if|while|doWhile|repeat|doAll |when)+) >

<!ELEMENT definedCmd (id,param*) >
<!ELEMENT id (#PCDATA) >
<!ELEMENT param (#PCDATA) >
<!ELEMENT if (test,seq,seqg?)>

< !ELEMENT test (id)>

<!ELEMENT while (test,seq)>
<!ELEMENT doWhile (seq,test)>
<!ELEMENT repeat (numTimes, seq) >
< !ELEMENT numTimes (#PCDATA) >
<!ELEMENT doBoth (seq) >
<!ELEMENT when (event, seq) >

< !ELEMENT event (id) >

5.6 StrTree

5.6.1 Description

The StrTree class has no methods and only two properties: the string contained in this
node and a collection of children. It is the simplest tree structure (containing string on each node)

we can implement. So it is easy to build and to browse a StrTree.

5.6.2 Use

We implemented several algorithms for tree structure conversion relative to StrTree:

e Reduction to StrTree

¢ DOM to StrTree

e StrTree to ICatBeh

e StrTree to DOM

e StrTree to text tree

e StrTree to CCL sentence

| Guillaume Barraud & Priam Pierret | MAELIA |

47/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.7 The User Interface

5.7.1 The MDI Parent Window

We chose to design a user graphic interface using a MDI window (Multiple Document
Interface). This kind of interface allows the main window to contain other windows (called child
windows). For the most part of the components of MAELIA, a child window is associated. We
define several layouts corresponding to the different interests that the user can have.

& Cat Robol Command System

Eile Edt Wiew Windows Lepouts Help

HX i en 2ol o=e = 2

28 Cat Commander - Text Input] (B R Haobaot Cat = o) =]
~ Tupe g Cat Con d
Cal Larguags Dowmioad Cles Log - Check ACX Fobol
doBoth -
diiveFaraaid '"'I Processing IntComm and Checking hardware... =]
and L Tawer is coreecled ta PT.
doBolk . Tawer iz Afive.,
whia te PR iz Alve...
seelightOn, wait 1, setlighiDiF, weit 1 nlisRed Range setto Larg BE
erd Starting spstam tash...
and 0K
wehile e Eower Dowe Time 22t ko S min
playbuzic params 4546 end Everi 1: Tack 1 Finished
erd Eob iz divng foovsand
end Eab put light O
and Bob is playing lone A5
Eob iz playing tone A
B o put light OFF
Boh iz plagng bane 45
Bob iz plaging tone A8
[ob put fight OR
Bob iz plaging tone A5
Bl is pladng lane A6
Bob put light OFF
Bob iz plaging lane A5

P@\:\{aﬂtﬂ | Cal ks %/ ailing for Something #1
PCWaLH2 | Tnsclive
PC st #3 | Inactive
FC Thick. | Inachva =l
Stop il Actions | [Pliicks Ready [Bstery Levei 8453 1 |Poes Down Tims S|,
[Bfie/2 310 -

I 1
Hsta] | 4 @ @ | ycaCormanianma| & MDiDesign-Micios, | & replace po - Hypers. [™5 Cot Riobot Comm... | (5)PoiceCartit -Noten | |[ERYES “ G LT s10PM

This layout displays the text input, the RobotCat window and the Timers window.

| Guillaume Barraud & Priam Pierret | MAELIA | 48/77 |

| TU DELFT — ITSKBS | Final Project Report | ENSEIRB |

i@ Cat Robot Command System | [of %]
Fie Edit View Windows Layouls Help
oo Commands o T

- Eveni<-Reastion Current Contest ——— |~ Compase: =
FrsTAEEEEvERD | —— et

Cat Events | ; @

= doMow b-m}'l (P)

& doBoth
- drive forward [infinite]
* wait for 20 sec
- contactleftPushed
- contactleftReleased
- contactRightPushed

||f
- contactRightReleased _. |
- seeSmthOnLeft @ @ @
- geeSmthDnMiddle =

;I8

Eac - .

- geeSmthDnRight
reculell fequarell fbalads

repeatll fwhie § §dotwhi

7

EREL

- digtanceT arget -
symbolRead

b Rl [

ncelarget

=

% Eal Knowledoe

2] e £) 3% Cal Achons Stale |_ o]
isHappy m | L =
R Move: Stop

| | Exent dist

i

isHungry Falze

isSleeping Fake -'ch’maio;.l T B |
isSleepy Fake B = - :
izTired Falze P‘:.-SE'BﬁCh I Inactive SoE |
w"?f;g I.-'I-”IJE PLWait #1 I Cat iz W aiting for Something #1 Stop |
wil ale o = :
izSearching Falze F‘C._W_a!f__#ﬁ,l Inactive | o |
read3ymbol 0 PCWait #3 Inachive T ‘
RCAMousetessagelD i - }I N = _I'I
pictureFolder ACamPicturesh P Think. I Inactive | Sl |
pictureM ame CatPict LI ﬁprAll Aetions |

[BAR/2 [Z06FM P

This another layout display the Icon input, the Events Context, the Knowledge and the
Timers window.

| Guillaume Barraud & Priam Pierret | MAELIA | 49/77 |

| TU DELFT — ITSKBS |

Final Project Report

ENSEIRB |

5.7.2 The MDI Children Forms

5.7.2.1 FrmRobotCat

This window displays all information about the PBrick: communication status, actions and
events on the PBrick, etc. There one command to download our RCX code in the PBrick. There is
another one to Clear the log text area, and the last one check if the robot is accessible, and if not,
we try to give a diagnostic to know where the problem comes from (COM port, IR transmitter or

PBrick).

X A% Hobot Cat

@ Diesrisad ‘ Clet Log |Ehpd.jit:§';ﬂub_n4

= T

Tawer iy coneected bo PCL.
. Tower iz Afve.,
_.PB iz Akve..
InlraFed Range setto Lang 0K
Starting spsam tazk. ..
0K

Fowear Dowe Time 22t ka5 min
Ewert 1: Task 1 Finished
Eob iz divng forveand
Bob put light OM

Eob it playing lane AS
Eob iz playing tone AS
Bob put light OFF

Bob iz plaang tone 45
Eob iz playing tone A8
Bab pul light OM

Bob iz plaging lone AS
Eab i playing lone AR
Eob put light OFF

Bob iz playing bone A5

Procazzing IrtComm and Checking hardwae... :_J

]

| & BBiick iz Ready

| Batery Level 453V | Pomer Down Tima Smn |-

| Guillaume Barraud & Priam Pierret |

MAELIA |

50/77 |

| TU DELFT — ITSKBS |

Final Project Report

ENSEIRB |

5.7.2.2 FrmTextinput

This window allows the user to input CCL-compliant text to be executed or saved. There
are two command buttons to execute and to save, the last command button displays the CCL

reference in the Help Browser window.

&4 Cat Commander - Text Input

= Tupea Cat Command:

doBath
diiveFansand
and
doBalk
whita bz
cetLightOn, wait 1, sstLightOr, wait 1
end
and
vehite bue
plaghuzic params 45, A8 and
end

end
and

5.7.2.3 FrmTimers

This window displays the current actions running. There are 5 categories of actions :
moving, playing music, speaking, waiting (3 available timers) and thinking.

¥ Cal Actions Stals

PCWat 41 | Cal & Wailing for Something #1 Step |
PLWatH2 | Inacte e
P wat i | Inactve S
H:Tml Inactive Sie
Stop il betions. |
| Guillaume Barraud & Priam Pierret | MAELIA | 51/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.7.2.4 Frmlconsinput

The window allows the user to input an icon sequence by clicking on an icons toolbox. Like
the text input window, there are two commands buttons to execute and to save. Here we don'’t

need to display the CCL reference because the icons toolbox already displays all the tokens of the
language.

'+ lcon Domniands Input

— Compose a sequence of icons

L".'Iear | Euecite E.Lr'av_e |

HUWWMWWEH

_”w;qq ﬂMJﬁnnﬁ

HE@

WWWUWﬂﬂ@@NNNUM
) _:;ji;'f.'.;'.-

| Testis5earching

| Guillaume Barraud & Priam Pierret | MAELIA | 52/77 |

| TU DELFT — ITSKBS |

Final Project Report

ENSEIRB |

5.7.2.5 FrmEyesCat

This window display the camera preview, and some others features depending on the

chosen mode:

o Preview: displays just the camera screen.

o Infos: displays the screen and a log text area about camera actions and events.

e Layers: display the original screen and another screen with the active layer.

e Capture: displays the screen and some commands to directly take pictures.

=8 Eyes Cat
Preview

TR

Pict alder

Picture Mame

FPS =10 Laver 3 activated ..

Caplture Picture

Take A Pichare:

ACamPlicturesh
izt Ihdes

(2 Fead S_I,Iml:u:ul -

Here the capture mode is enabled.

| Guillaume Barraud & Priam Pierret |

MAELIA |

53/77]

| TU DELFT — ITS KBS

| Final Project Report

ENSEIRB |

5.7.2.6 FrmBrainCat

This window displays the current Events Context of the Brain. It is possible to artificially fire

some events by selecting them and click the command button “Fire this Cat Event”.

=8 Brain L5l

Fire this Cat Event

Cat Events
=- doMow
5 when contactRightPuzhed
5 sequence of 3
~ start stroll
- wait for 20 zec
E - stopha/ai
=- contactLeftPushed
. take picture
contactLeftReleazed
=- contactRightPushed
= gequence of 3
-~ start strol
- wait for 20 zec
] - stophait
- contactRightR eleased
- zeeSmthOnLaft
=- zeeSmth0nMiddle
- © doMaothing
- zeeSmthOnRight
=- distanceT arget
B repeat 2 times
: say "'my name iz ELIA"
spmbolRead

| Guillaume Barraud & Priam Pierret | MAELIA |

54/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.7.2.7 FrmVoiceCat

To help user better to understand what the cat is saying, we built a small window displaying
the uttered text at the same it's uttered.

User can also use this window to set the volume and the rate of the voice.

=% YoiceCat Hi=l E3
Rate |
p!
Yolurme J
by name iz Bob. ;]

5.7.2.8 FrmHelpBrowser

To provide a constant help for user, we built a browser window able to display all
references about the language and also all information about this work through the web site we
did. This help window is exactly the web browser of Internet Explorer, but the graphic interface is
reduced to the minimum. It's done by using the Web Browser ActiveX control from Microsoft.
Because it is actually Internet Explorer, the XSL style sheets works in our application.

=8 userManual_en.html

&l
IC:\E uillaumesMewSite\thirdpear\ PROJECT \Manualiuzertd anual_en html :j

User Manual XTI

Today, Friday, August 16, 2002 [#] a1 &) [8T [11/THI

Here is the user manual of our robot,

atures
3 cat command language (CCL)
Canclusion

.
.
e Main
.
.

Introduction

This document should allow any person eager to use the application which we developped to be able to
understand the operation of this one and in particular to assimilate process control the language of the robat cat.
{in surmmary: CCL for Cat Language Command),

By traversing this document you will thus find a description of the various functionalities of the robot cat as well
as a precise description of the language of the cat, its syntax, its grammar, its vocabulary..,

=

| Guillaume Barraud & Priam Pierret | MAELIA | 55/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.7.2.9 FrmKnowledge

This window displays the contents of the knowledge base of the system, and it’s all. No
commands are available; it is just for display.

ok Cat Knowledge H=] E3
1D Walue
isHappy _E_
isHungry Falze
125 leeping Falze
iz5leepy Falze
izTired Falze
withCarn True
withPC Falze
izSearching Falze
readSymbal 1]
RCxM ousetd ezzagel D 1]
pictureF alder ACamPicturesh
pictureM ame CatPict

| Guillaume Barraud & Priam Pierret | MAELIA | 56/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.7.3 The Dialog Boxes

5.7.3.1 FrmSaveAsXml

This dialog window allows the user to save a composition of commands that the user
entered in the text input or the icons input.

The user can use this window when he clicks on one of the buttons "Save" of the
FrmTextinput window or of the Frmlconlnput window. The user is then invited to input a name for
this sequence of orders and a description (optional but useful for help).

im. Save this command |
To zave thiz complex command, pleaze chooze a] S
niame and add a descriphion, then preszs OF.

Cancel
 Properties of the complex command
KA gquareZl
Thiz complex command draw a ;i
. SOLIAME.
Enalizh :
Drescription
=
— |lmage
Cette commande deszine un care ;i
de 20 cm de cote.
French _
D escriptian Chooze a icon
.o

| Guillaume Barraud & Priam Pierret | MAELIA | 57/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.7.3.2 FrmDelete

This window allows user to delete some complex commands from the cmdTokens.xml file.
It uses the TokensHandler object. You just have to choose the name of the complex command
you want to delete and press ok.

‘i Drelete Compley Command
- Delete Complex Command from |denitity
Chanse the Compls Command o Delete

| oneSentence > |

caee | ok |

5.7.3.3 FrmSplash

This window is launched during the load of our application, which can take a lot of time in
regard of all components it has to load. It’s just a presentation of MAELIA.

| Guillaume Barraud & Priam Pierret | MAELIA | 58/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.8 VoiceCat

5.8.1 Using the Text To Speech (TTS) API
We simply used the TTS API to generate voice from text.
There are two ways to generate speech from our program:

e Synchronously: the call to the Speak method is done synchronously, so the
following instruction in the code is done after the speech is completely uttered.

e Asynchronously: the call to the Speak method is done asynchronously, so the call
returns immediately, and the only way to know the end of the speech generation is
to listen to the EndStream event.

We chose the Asynchronous way because it respects the existing model for the commands
on the robot cat, which is characterized by two properties: the actions are called asynchronously,
and the Events Manager receives an EndOfTask event (which is EndStream here) to synchronize
with others actions.

5.8.2 Following the Speech Generation

We used some speech event to synchronize others actions with voice and also to underline
the uttered text when it is displayed in the FrmVoiceCat. For the last point we used the Word
event, which occurs every time a word is going to be uttered. This event has two parameters that
indicate the positions in the text of the uttered word (beginning and end).

| Guillaume Barraud & Priam Pierret | MAELIA | 59/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.9 Icons Graphic Interface

5.9.1 Visual Basic User Control

Visual Basic offers the possibility to create your own graphic control, to be reuse as other
classic VB controls in your application. So we designed our graphic control which represent a icon
of the CCL. It is just a square area with a colored border, containing a picture (ICO file format) and
displaying (or not) the name of the command represented. The color of the border represents the
type of the icon (control, basic command, complex command, event or test).

5.9.2 Dynamic loading

Because the CCL is extensible for commands, events and tests, at design time we only
know what are the control icons. All the others type of icons are loaded dynamically, from the
information contained in the file called cmdTokens.xml, which defines the valid elements of the
CCL. We use the TokensHandler class to retrieve this information (see section 5.5.4 for details).

5.9.3 Dynamic layout

Because we don’t know at design time how many icons we need to display in the icon
toolbox, the graphic organization of the icons is done at run-time, and re-done every time the icons
input window is resized. It's organized according to the type of the icons, and a new line of icons is
done for every types.

5.9.4 Translating into CCL-compliant text

Each icon has a name, which is an element (token) of the CCL. When the user input an
icons sequence, it is quite easy to build the corresponding sequence of names, but this sentence
is not CCL-compliant, because in CCL the comma is used as the separator between commands.
So we need to add comma between icon names, but not everywhere, it was not an easy task to
find the correct algorithm, but finally we did and it works pretty well.

| Guillaume Barraud & Priam Pierret | MAELIA | 60/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.10 EyesCat

5.10.1 Defining layers for intelligent perception
Now we can define what layers will be useful, these were our ideas :

1. WatchLeftMiddleRight layer: to know if a moving object is in front of the cat (middle) or on
the sides (left and right). Three events, one for each position.

2. WatchTarget layer: to know if we are close or not from a colored object in front on the cat.
Only one event 'distanceTarget’ fired with a value (1-5), which gives the distance (1 close,
5 far).

3. ReadSymbol layer: to read a black symbol on a white panel. We define very simple
symbols that we can recognize with color detection if the camera is well positioned. One
event 'Symbol Read’ fired with the ID of the symbol just read.

4. Inactive layer: when we use the camera to take pictures, we don’t want some events to be
fired, so we need this inactive layer that makes no detection.

| Guillaume Barraud & Priam Pierret | MAELIA | 61/77]

| TU DELFT — ITSKBS |

Final Project Report

ENSEIRB |

5.10.2 LeftMiddleRight layer

Here is a screenshot of the layer.

Laver 1 actiated ...

The vertical black lines show the different zones in the layer, here there are three zones.

An event is fired when 20% of the pixels of one are changed because of movement.

| Guillaume Barraud & Priam Pierret |

MAELIA

62/77|

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.10.3 Target layer

Here is a screenshot of the layer.

We can see three square zones and two strip zones on the sides, the smallest square zone
has a white border because the red color detection status is true is this zone, it means that more
than 50% of the pixel of this zone are red. When getting closer from this red panel, the status
detection in the other square zones will become true, and new distanceTarget events will be fired.

| Guillaume Barraud & Priam Pierret | MAELIA | 63/77 |

| TU DELFT — ITSKBS |

Final Project Report

ENSEIRB |

5.10.4 ReadSymbol layer

Here are two screenshots of the layer.

feaall e |

FPS =4 Layer 3 activated

| ol Eyes Cat

Layer 3 achivated ...

This layer has the maximum number of detections zones (64). It detects black color, and
then we process the grid to try to recognize symbols. We can see that the symbols are quite well
represented by the white zones on the black zones. When a symbol is recognized, the
ReadSymbol is fired with the ID of the symbol read.

| Guillaume Barraud & Priam Pierret |

MAELIA

64/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.11 Speech Interface

5.11.1 XML format for Speech Recognition grammar

Underneath follows an explanation of the structure of the XML grammar file used in this system.
For a complete documentation on the structure of this XML format, see Microsoft's documentation
on Microsoft Speech SDK.

<GRAMMAR LANGID="409"> Start of grammar. 409 is the language ID of English
<DEFINE> Definition list, where all properties are
<ID NAME="SetLightOn” associated with a value.
VALUE="105"/> A property can be a rule or a sub phrase. In this case
the rule setLightOn are associated with the
...more definitions... ID number 105. The ID numbers are used when the
recognized phrase structure is analyzed by the
</DEFINE> command handler.
<RULE NAME="setLightOn” Rule
TOPLEVEL="ACTIVE"....>
...rule body...
</RULE>
...more rules...
</GRAMMAR> End of grammar

As an example of a rule follows a simplified version of the Move rule, which is used to make the
robot go forward or back

<RULE NAME="Move” Rule header. Attributes: name of the rule (which is
TOPLEVEL="ACTIVE”> associated with a value in the definition list), top level rule
means it can be the start of a phrase (not only a sub rule).
<0O> A (sub) phrase inside <O>...</O> tags is an optional part of
the main phrase.
<L> <L>...<L> contains a list of alternative (sub) phrases.
<P>go</P> <P>...<P> contains a (sub) phrase.
<P>drive</P>
<P>move</P>
</L>
</O>
<RULEREF="Number’> A pointer to a sub rule. Number is a rule that represents a

maximum three-digit number.
<P>centimeters</P>

<L PROPID="Direction”> A list can have a property ID, that will be associated with a
value. This ID and value is used in the analyzing of the
phrase.

<P VAL="0">forward</P> The VAL attribute contains the value the property is
<P VAL="1">back</P> associated with.

</L>

</RULE>

Examples of valid phrases:
“go ten centimeters forward”
- “drive fifty-two centimeters back”
- “two hundred and thirty four centimeters forward”

| Guillaume Barraud & Priam Pierret | MAELIA | 65/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

5.11.2 Some little problems...

However we met a lot of problems with the Speech recognition.

e The first limit was to rewrite the grammar each time we added some new words or new
commands because our grammar in this XML file is static. For example each time you add
a new complex command, you must in theory add it in this grammar to be recognized by
the speech recognition.

e The second was the difficulty to utter good sentences understandable by the computer,
because the technology is not still very efficient.

o The last but not the least was to install the Speech API and to manage to use it.

| Guillaume Barraud & Priam Pierret | MAELIA | 66/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

6. Extensibility

MAELIA is designed as an extensible application, it is possible to add new actions and
events on the existing body components, but it is also possible to add new body components
which own their actions and events. The input layer is also extensible while the new input can be
translated in CCL.

See the Maintenance Manual in the Annexes (section 11.3) for explanations about how to
extend MAELIA.

Some ideas for extensions will be given in this manual.

But a very good extension for our cat could have been the icons recognition by the Lego
camera. Indeed we built a icon language and in a second part, we built a module able to recognize
symbols by the Lego camera. So we thought to combine these two process to be able to
recognize some icons belonging to the CCL. By this way, it could be a fourth way to command the
cat.

| Guillaume Barraud & Priam Pierret | MAELIA | 67/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

7. Conclusion

It was a wonderful project for us. An enrichment on all aspects of our work. This
training period abroad will remain certainly unforgettable.

Our work in TU Delft was really one of the most interesting we have ever done. We
learned a lot about Artificial Intelligence and communication with Intelligent Agent.

We met a lot of people with who we share some knowledge and cultural aspects
and not only from Netherlands but also from entire Europe and from all the planet. That is
because we also lived in a residence with a lot of Erasmus-Socrates students from all
Europe.

We are very glad to have made this project in this university. Thank you Leon.

| Guillaume Barraud & Priam Pierret | MAELIA | 68/77 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

8. Glossary

Al : Artificial Intelligence.

Artificial intelligence : Simulation by computer of the process of the thought. (a Al problem is a
problem requiring the development of an artificial human brain). An example of high technology in
Al is Eliza (or My_elisa made by Sisca), and it is about all. It is also the use of principles of
heuristics and of data bases containing of the rules, to simulate the working procedure brain of an
expert. This definition of the Al gave the "expert system", which can have surprising performances.
An artificial intelligence is known as "Strong" when it is able to think for good as a true brain (that
still holds of the myth).

Artificial life : Discipline cousin of the artificial intelligence, seeking to create artificial alive beings,
in particular organisms able to evolve according to rules which were not written by the initial
creator. It is discussed, especially because it works enormously on the viruses, which are the most
primitive forms of life as well in nature as in the computers.

ASR : Automatic Speech Recognition.

Case Based Reasoning : Method in which we take old solutions, found to regulate similar
problems to that that we study, which we modify to find the solution with the present problem.
(CBR).

Chaining : The postpones chaining and the front chaining consist in connecting logical
deductions, respectively to go to its effect or cause. In practice, that gives things of the kind: "If...
Thus... Then... Because... Thus... If... ". Very much used in artificial intelligence, in the expert
system.

Cognitive : Which relates to the thought. Cognitive sciences. The problem of cognitive sciences is
that they deal with artificial intelligence: many hopes, few achievements, enormously science
fiction.

Detector : There are two types: external sensors and internal sensors. An external detector is a
brick LEGO which can be connected on a input port on a RCX in order to supervise any change of
environment. The contact and light detector are external examples of detector. The infra-red
receptor is an internal detector.

Detector port : On the RCX, one of the three gray plates on which external detectors can be
connected (called input port).

EA : Evolutionary Algorithm.
EP : Evolutionary Programming.

Expert system : Application able to carry out in a field of the logical reasoning comparable with
those which would do of the human experts of this field. It is based on data bases of facts and
knowledge, like on an inference engine, enabling him to carry out logical deductions (chaining
before and back). It is before a whole computerized decision-making system.

Fuzzy logic : Logic in which the veracity of a proposal is a real number of the interval [0,1]. The
"false" Boolean is at (0), "true" Boolean truth at the other (1). With this system, you can say for
example if something is hot or cold. You can also say if this thing is tepid (i.e. hot and cold at the

| Guillaume Barraud & Priam Pierret | MAELIA | 69/77|

| TU DELFT — ITSKBS | Final Project Report | ENSEIRB |

same time!). This idea was proposed for the first time by Lotfi Zadeh. These intermediate states,
between two major statuses, do not exist in traditional logic, so called Boolean logic.

GA : Genetic Algorithm. Type of algorithm, in which vectors of parameters evolve such as the
chromosomes to a solution of a very complex problem, by using the principles of the evolution of
the natural species.

Heuristic : Technique consisting in learning gradually, by taking account of what we previously did
for get closer to the solution of a problem. The heuristics does not guarantee at all that we arrive
at an unspecified solution in a finished time. Opposed to algorithmic.

The heuristics is primarily used in the antivirus, to detect viruses by recognizing them according to
what they are able to make rather than according to a fixed signature.

Inference : The realization of a logical deduction, used by an expert system to appear intelligent.
See also inference engine.

Inference engine : Program carrying out the logical deductions of an expert system starting from
a base of knowledge (facts) and of a base of rules.

Infra-red transmitter : External tower connected to the PC which communicates with the RCX.

Intelligent : Said itself of a system, when it is able to make things which we would not have
expected. And like we do not expect it, after a first good surprise, the problems start...

LIPS : Logical Inference Per Second. Measuring unit used in artificial intelligence, measuring the
number of logical inferences carried out per seconds.

Micro-programs : Here, it is about the process allowing the PC and the RCX to communicate
together. It plays the role of operating system for the RCX.

Operating system : Together basic functions (but sometimes being able to be very advanced),
allowing the use of a computer, and without which nothing is possible.

Output port : On the RCX, one of the three black plates on which output (such as an engine) can
be connected.

RCX (Robotics System Command) : Programmable brick LEGO which makes it possible to store
and to execute programs already downloaded from the PC. Each RCX has three output and three
detector input.

Remote loading : Process to transmit to the RCX a program in RCX code or a micro-program
from the infra-red transmitter.

Shape recognition : Analyze of a whole of data (e.g. an image) in order to find a shape, i.e.
predetermined configurations, like phonemes (voice recognition) or characters (character
recognition).

Test of Turing : Test conceived by Turing Alan Mathison, in order to determine if a computer
thinks: a experimenter-tester on a side, and a machine and a human of the other. If the tester is
made have by the machine and cannot make the difference between the man and the machine,
then the machine thinks. In an alternative of the test, the machine alone must be made stand for a
man.

Voice recognition : Sound analyze to separate the various marked syllables and thus to find the
text which is known as.

| Guillaume Barraud & Priam Pierret | MAELIA | 70/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

9. Bibliography

Icons et communication

Designing Icons and Visual Symbols :
http://www.acm.org/sigchi/chi96/proceedings/tutorial/Horton/wh _txt.htm
http://www.acm.org/sigchi/chi95/Electronic/documnts/tutors/wkh bdy.htm

Sémiotique, phénoménologie et jeux de langage (in french):
http://www.univ-nancy?2.fr/ACERHP/perso/bour/sempheno.html
http://cavi.univ-lemans.fr:8900/public/unesco/m3.4.1/M3413.html

Langage et communication (in french):
http://www.linguistes.com/langue/intro.htm

AlISolutions :
http://www.generation5.org/solutions.shtml

Pascal Vaillant : Sémiotique des langage d'icones. Honoré Champion éditeur. 1999

Technical references

Lego Construction :
http://www.ceeo.tufts.edu/curriculum/index.htm
http://prelude.psy.umontreal.ca/~cousined/lego/

Rcx Technical Support :
http://neuron.eng.wayne.edu/LEGO ROBOTICS/lego robotics.html

RCX Internals :
http://graphics.stanford.edu/~kekoa/rcx/
http://www.crynwr.com/lego-robotics/

Controlling LEGO Programmable Bricks Technical Reference :
http://www.dcs.ex.ac.uk/academics/reverson/outgoing/pbrick.pdf

RCX Sensor Input Page :
http://www.plazaearth.com/usr/gasperi/lego.htm

Microsoft Speech SDK 5.1 :
http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-

files/027/000/781/msdncompositedoc.xml

Visual Basic :
http://www.laltruiste.com/coursvbscript/constante_msgbox.html
http://www.alvbcode.com/

The LegoCam camera

Logitech :
http://www.logitech.com/

| Guillaume Barraud & Priam Pierret | MAELIA |

71/77]

http://www.acm.org/sigchi/chi96/proceedings/tutorial/Horton/wh_txt.htm
http://www.acm.org/sigchi/chi95/Electronic/documnts/tutors/wkh_bdy.htm
http://www.univ-nancy2.fr/ACERHP/perso/bour/sempheno.html
http://cavi.univ-lemans.fr:8900/public/unesco/m3.4.1/M3413.html
http://www.linguistes.com/langue/intro.htm
http://www.generation5.org/solutions.shtml
http://www.ceeo.tufts.edu/curriculum/index.htm
http://prelude.psy.umontreal.ca/~cousined/lego/
http://neuron.eng.wayne.edu/LEGO_ROBOTICS/lego_robotics.html
http://graphics.stanford.edu/~kekoa/rcx/
http://www.crynwr.com/lego-robotics/
http://www.dcs.ex.ac.uk/academics/reverson/outgoing/pbrick.pdf
http://www.plazaearth.com/usr/gasperi/lego.htm
http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-files/027/000/781/msdncompositedoc.xml
http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-files/027/000/781/msdncompositedoc.xml
http://www.laltruiste.com/coursvbscript/constante_msgbox.html
http://www.a1vbcode.com/
http://www.logitech.com/

| TU DELFT — ITSKBS | Final Project Report

ENSEIRB |

Programming with the LEGO Cam :
http://www.generation5.org/aisolutions/rob06.shtml
http://www.plazaearth.com/usr/gasperi/viscommand.htm

SDK QuickCam Developer Program :
http://developer.logitech.com/sdk/

VCS ActiceX :
http://www.snoozysplace.be.tf/

Some projects with the camera :
http://www.nullgel.com/projects.html

EdVidCap ActiveX control :
http://www.shrinkwrapvb.com/
http://www.shrinkwrapvb.com/ezvidcap.htm

Some ideas

Design Patterns (Catalogue des modéles de conception réutilisables).
Erich Gamma, Richard Helm, Ralph Johnson et John Vlissides.
Editions Vuibert, Paris, 1999.

Serious Lego :
http://jpbrown.i8.com/

Publications :
http://www.bartneck.de/publications.html

LegOSs :
http://www.noga.de/legOS/

RCX Command Center :
http://www.cs.uu.nl/people/markov/lego/rcxcc/

A lot of links :
http://www.cs.unc.edu/~lastra/comp006/lego_mindstorm links.html

If we have done it with Java

RCX Java API :
http://www.escape.com/~dario/java/rcx/

RCXPort, Java Interface to the Lego Mindstorms RCX :
http://www.slewis.com/rcxport/

LelOS :
http://lejos.sourceforge.net/

| Guillaume Barraud & Priam Pierret | MAELIA |

72177

http://www.generation5.org/aisolutions/rob06.shtml
http://www.plazaearth.com/usr/gasperi/viscommand.htm
http://developer.logitech.com/sdk/
http://www.snoozysplace.be.tf/
http://www.nullgel.com/projects.html
http://www.shrinkwrapvb.com/
http://www.shrinkwrapvb.com/ezvidcap.htm
http://jpbrown.i8.com/
http://www.bartneck.de/publications.html
http://www.noga.de/legOS/
http://www.cs.uu.nl/people/markov/lego/rcxcc/
http://www.cs.unc.edu/~lastra/comp006/lego_mindstorm_links.html
http://www.escape.com/~dario/java/rcx/
http://www.slewis.com/rcxport/
http://lejos.sourceforge.net/

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

10. Annexes

| Guillaume Barraud & Priam Pierret | MAELIA | 73/77]

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

10.1 User manual

| Guillaume Barraud & Priam Pierret | MAELIA | 74177 |

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

10.2 Maintenance manual

| Guillaume Barraud & Priam Pierret | MAELIA | 75177

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

10.3 Statistics

In this annex you will find the listing of all the files of the source code of MAELIA. There are
several types of source files, for Visual Basic we have CLS, FRM and BAS as file extensions,
respectively for class module, form module and class module. We also counted the XSL files used

to generate HTML from our XML files.

For each file we give the number of lines of code, and the total for each subfolder. At the
end you can see that the final version of source code is more than 15000 lines of codes.

| Guillaume Barraud & Priam Pierret | MAELIA | 76177

| TU DELFT — ITSKBS | Final Project Report ENSEIRB |

10.4 Source code

Because the source code of MAELIA is more than 15000 lines of codes, we compute that
we need more than 300 pages to put it in the report, thus we don'’t give the source code here. If
you want to have a look on it, you can download an archive ZIP file containing all the sources code

of MAELIA, at the following URL.:

http://users.lug.com/gbarraud/Enseirb/thirdyear/project/docs en.html

| Guillaume Barraud & Priam Pierret | MAELIA | 77177

http://users.lug.com/gbarraud/Enseirb/thirdyear/project/docs_en.html

	Table of Contents
	0.	TABLE OF CONTENTS	2
	Introduction
	Purpose
	Original Subject from Mr Leon ROTHKRANTZ
	Understanding the problem
	Specifications of MAELIA
	Hardware needed
	Software specifications
	Functional Requirements
	Non-Functional Requirements

	Constraints
	Anticipated Project Schedule

	Conception
	MAELIA: Global presentation
	Activity diagram
	AI Aspect
	Entertaining Aspect
	Components Aspect

	Application architecture
	Description
	Diagram
	Responsibilities and Collaboration
	Body Components layer
	Brain layer
	Commands layer

	Body components
	RobotCat
	Lego Mindstorms System
	Robot Building
	Robotics Invention System
	Spirit & VB
	NQC
	Java
	SCRAP
	Actions and Events

	EyesCat
	LegoCam & Vision Command
	QuickCam SDK, EzVidCap & LCC
	Hit and Run
	LCC Detection
	Actions and Events

	VoiceCat
	Microsoft Speech API and TTS
	Actions and Events

	Brain
	Purpose
	Collaboration Diagram
	Component responsibilities
	ICatBeh interface as a composite model
	Discussion about the execution model
	Model 1 : synchronous, reentrant, monotask
	Model 2 : synchronous, organized, monotask
	Model 3: asynchronous, multitask

	The Cat Commands Language (CCL)
	Basic commands
	State icons
	Event icons
	Control icons
	«€repeat€» icon
	«€if€» icon
	«€while€» and «€doWhile€» icons
	«€when€» icon
	«€doBoth€» icon

	Complex commands

	Commands Input Interfaces
	Text Input Interface
	Parsing text into a behaviors tree
	Need of language reference

	Icons Input Interface
	Icons, Symbols, Pictograms...
	User feedback
	Some models of icons representation for the CCL

	Speech Input Interface
	Speech Recognition with the Microsoft Speech API
	Grammar or not Grammar?
	The model from SCRAP
	Limitations for the CCL

	Supports for the CCL
	Reading: Reduction
	Exchanging: StrTree
	Executing: ICatBeh
	Saving: XML & DOM
	Documenting: XSL & HTML

	Implementation
	Programming in Visual Basic...
	Basics
	Object-oriented features
	Visual Basic not so good

	RobotCat
	Spirit features
	Interface

	BrainCat
	Classes
	Sequence Diagram

	CCL Grammar & GOLD Parser
	CCL Grammar in BNF representation
	GOLD Parser Builder & Compiled Grammar
	GOLD Parser Engine & Reductions

	XML & DOM
	The Tokens Handler
	Saving into XML
	Reading from XML

	The DTD for the CCL

	StrTree
	Description
	Use

	The User Interface
	The MDI Parent Window
	The MDI Children Forms
	FrmRobotCat
	FrmTextInput
	FrmTimers
	FrmIconsInput
	FrmEyesCat
	FrmBrainCat
	FrmVoiceCat
	FrmHelpBrowser
	FrmKnowledge

	The Dialog Boxes
	FrmSaveAsXml
	FrmDelete
	FrmSplash

	VoiceCat
	Using the Text To Speech (TTS) API
	Following the Speech Generation

	Icons Graphic Interface
	Visual Basic User Control
	Dynamic loading
	Dynamic layout
	Translating into CCL-compliant text

	EyesCat
	Defining layers for intelligent perception
	LeftMiddleRight layer
	Target layer
	ReadSymbol layer

	Speech Interface
	XML format for Speech Recognition grammar
	Some little problems...

	Extensibility
	Conclusion
	Glossary
	Bibliography
	Annexes
	User manual
	Maintenance manual
	Statistics
	Source code

