

A RULE-BASED AND A PROBABILISTIC SYSTEM FOR SITUATION
RECOGNITION IN A FLIGHT SIMULATOR

Patrick A.M. Ehlert, Quint M. Mouthaan and Leon J.M. Rothkrantz
Data and Knowledge Systems Group

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4, 2628 CD Delft, the Netherlands

E-mail: {P.A.M.Ehlert, L.J.M.Rothkrantz}@ewi.tudelft.nl

KEYWORDS

situation recognition, artificial pilot, flight simulator,
knowledge based systems.

ABSTRACT

In this paper we describe two situation recognition systems
that have been developed for a flight simulator
environment. The first system uses heuristic rules based on
a state-transition diagram to determine the current stage of a
flight. The second system does the same by calculating the
probabilities of both the start and end of possible situations
and determining the most probable situation. The idea is
that the best situation recognizer system will be used as part
of a more elaborate situation-aware system. This situation-
aware system can be seen as a first step to an intelligent
pilot bot.

1. INTRODUCTION

The Intelligent Cockpit Environment (ICE) project is a
project of the Knowledge Based Systems group of Delft
University of Technology. Originally, the main purpose of
this project was to investigate techniques that can be used to
create a situation-aware crew assistance system [Ehlert and
Rothkrantz 2003]1. Basically, a crew assistance system
functions as an electronic co-pilot looking over the shoulder
of the crew of an aircraft. This system tries to support the
crew by providing useful information or taking over (some
of) the crew’s tasks if necessary. The idea is that this way
the situation awareness of the crew will be improved and
their workload reduced, leading to better and safer
performance [Endsley 1999]. For this purpose we are
investigating methods to create a situation-awareness
module. The function of such a module is to create a
“mental computerized picture” of the current situation. This
mental picture includes aircraft status, flight progress, and
crew performance among others. The situation-awareness

1 More information on the ICE project can also be found via
http://www.kbs.twi.tudelft.nl/Research/Projects/ICE/

module is used by the assistance system to make decisions
when and how to support the crew.
Although, we are still investigating this application, our
attention has also been drawn to artificial pilots that can be
used for simulations. The idea is that the larger part of the
situation-awareness module can just as well be used as the
basis for decision-making of a simulated artificial pilot.
Our first step towards a situation-awareness system was to
investigate the data that is available from a flight simulator
[Ehlert, Mouthaan and Rothkrantz 2002]. Then we designed
and tested some approaches to perform automatic
recognition of situations based on this data. The goal of our
situation recognition subsystem is to determine in real-time
the status of the aircraft and the corresponding phase of the
flight. In this paper we will describe two systems that we
have created for this purpose. The first system uses heuristic
rules embedded in a rule-based system. The second system
uses probabilities to determine the most likely situation.
Before we present both systems we will first discuss the
related literature on artificial pilots.

2. RELATED WORK

We have found two different projects in the literature that
deal with the construction of an artificial pilot, also called
flight bot. The first one is TacAir-Soar. TacAir-Soar is an
intelligent rule-based system that generates believable
human-like pilot behaviour for fixed-wing aircraft in large-
scale distributed military simulations [Jones et al 1999].
Each instance of TacAir-Soar is responsible for controlling
one aircraft and consists of a Soar architecture [Laird,
Newel and Rosenbloom 1987] linked to the ModSAF
simulator. The interface between the Soar architecture and
the simulator regulates the information that each aircraft
receives from its own “sensors” , such as aircraft status,
radar, radio messages, etc. The advantage of using Soar is
that the reasoning and decision-making of the system is
similar to the way humans are generally believed to reason.
The second project dealing with the construction of flight
bots are the intelligent air-to-air combat agents developed
by the Linköping University in collaboration with Saab
Military Aircraft AB in Sweden [Coradeschi, Karlsson and
Törne 1996]. The system is designed specifically for air-to-
air combat experts and allows them to specify the behaviour

and decision-making of the intelligent pilot agents without
the help of a system expert. The agents are modelled by
decision trees. These trees contain production rules that
describe the agent’s dynamic task priorities. During one
decision cycle, several branches of the tree can be
processed in parallel after which all selected actions are
evaluated for priority and compatibility. Due to the dynamic
task priorities, sequential tasks that are spread over multiple
decision cycles can be interrupted if the need arises.
Both TacAir-Soar and Linköping University’s agents focus
primarily on decision-making and both try to simulate
realistic pilot flight behaviour. They do not specify how to
deal with situation recognition or achieve situation
awareness. Although achieving good situation awareness is
not necessary to simulate the behaviour of (a large number
of) artificial pilots, we feel that more realistic flight bots
cannot do without. The better the understanding of the
available data, the better a flight bot can deal with the
current situation. By evaluating the current situation in real-
time the flight bot can show much more flexible behaviour
and come up with problem-solving strategies, resembling
human reasoning.
After an extensive search, we have found one application in
another domain that uses an approach similar to ours.
[Nigro et al. 2002] describes two systems called Intelligent
Driving Recognition with Expert System (IDRES) and
Driving Situation ReCognition (DSRC). The goal of both
systems is to provide support for a driving assistance system
that is to be used in future cars. The DSRC system is able to
recognize certain states of a manoeuvre performed by a car
in a simulator. At a higher level, the second system called
IDRES recognizes transitions between manoeuvres. Both
systems are rule-based. Uncertainty of data is handled using
fuzzy sets and beliefs on hypotheses.

3. THE GENERAL DESIGN

The ultimate goal of the flight bot in the ICE project is to
create an intelligent system that has the knowledge,
understanding and skill to fly an airplane, in the same way a
human pilot does. We have devised a general architecture of
this flight bot, which is shown in Figure 1. The bot uses
decision cycles to read data from the simulator, create a
representation of the current situation and decide which
action to take. The function of the situation awareness
module is to read all data coming from the simulated
aircraft. This data is integrated with previous recorded
information in order to create a representation of what is
going on. Then, this world representation is used by the
decision module to decide which action to take. The
decision module can make use of several planners that are
able to make predictions about future situations, for
example the expected position of other aircraft. After the
decision module has chosen an action to perform, this
action is sent to the aircraft control manager. The aircraft
control manager functions as an interface between the bot
and the simulator. Ultimately, we want to be able to set
certain properties of the flight bot, for example setting the
level of pilot expertise so we can simulate different types of

pilots. This is the function of the system manager, which
forms the interface between the user and the flight bot.
In the next sections of this paper we will discuss two
situation recognition systems that we have devised as part of
the situation awareness module: a rule-based system and a
probabilistic system.

4. THE RULE-BASED APPROACH

One of our first attempts to implement the situation
recognition subsystem was to use a rule-based approach.
Rule-based systems, also known as production systems,
allow simple, understandable, and transparent reasoning
using IF-THEN rules. This makes rule-based system
suitable for rapid prototyping, which is probably also the
reason that they are one of the most popular methods of
reasoning in artificial intelligence.

4.1 Design
The first step in the design of the rule-based situation
recognition system was to gather knowledge on flying.
Since there are many different types of aircraft we decided
to restrict ourselves and start out by looking only at a simple
and standard passenger aircraft: the Cessna 172C Skyhawk.
Different types of situations during a flight were identified
and for every situation the actions the pilot is expected to
perform and typical situation-related variables were defined.
We made rules for the following situations; pre-start, start-
up, taxiing, hold-short, take-off, aborted take-off, set course,
cruise, start-landing, aborted landing, final approach,
touchdown and shutdown. All situations can be recognized
based on a number of parameters such as airspeed, vertical
speed, throttle, brakes status, gear status, etc. For each state

Situation
awareness

module

Decision
module

Aircraft control
manager

actions

Planners

System manager

commands & settings

User

system settings

Simulated
aircraft

predictions

flight plan

aircraft
data

control
commands

Situation
recognizer

Figure 1: General architecture of the flight bot

we tried to use multiple variables since this allows us to still
get an accurate indication of the situation, even if one of the
parameters is not normal for that situation. For example, if
the pilot lowers the gear, it is obvious that he is trying to
land. However, if for some reason the pilot forgets to lower
the gear, we are still able to determine that the pilot is
landing by looking at his airspeed, flaps, vertical speed and
altitude. While normally this is not necessary for an
artificial pilot, it allows us to identify possible malfunctions,
which we plan to add later to our situation awareness
module.
To reduce the amount of rules that have to be checked every
decision cycle, we devised a state-transition diagram, part
of which is shown in Figure 2.

Startup

Aborted take-off

Take-off

Taxing

(ParkBrakes = 0 AND IsThrottleFull) OR
 IsSpeedTakeOff

Climb-out and
Set course

IsVSpeedClimbOut OR
not GearDown OR
IsSpeedClimbOut

(not IsThrottleIdle AND ParkBrakes = 0) OR
(not IsSpeedStandStill)

Brakes = 1
OR

ParkBrakes = 1
OR

IsThrottleIdle

(IsSpeedTaxiing and IsPitchLevel)
 OR

(Brakes = 0 AND ParkBrakes = 0)

Pre-Start

Starter = 1
OR

Magnetos > 0

Figure 2: Partial state-transition diagram containing several
situations of a flight with the Cessna airplane

The system is initialised in the Pre-Start state. Normally,
only the rules belonging to this state are checked, until one
of the rules changes the state to Startup. Then only the rules
belonging to the Startup state are checked, etc. To make the
system more robust, states are changed not only when
evidence is found for a state transition (a new situation has
arisen), but also when there is evidence that the current state
cannot be the correct one. In this case we have to make a
decision which connecting state is most likely.

4.2 Implementation
The rule-based system was implemented with Borland
Delphi 5 and the simulator we used to test the system was
Flightgear, version 0.7.10 [Perry and Olsen 2001]. Newer
versions of the open-source Flightgear simulator are
available, but proved to be less stable.
The rule-based system receives information from the
simulator about the state of the airplane (e.g. airspeed,
altitude, pitch), the actions of the pilot (e.g. setting flaps,
pushing the throttle), and the environment (e.g. wind), all
via a Telnet connection. The rules and state-transition
diagram were hard-coded into our program using IF-THEN
statements. Using hard-coded rules has the advantage that
reasoning can be done very fast. There is less overhead
compared to using a third-party rule-based system such as
CLIPS or JESS. However, it can be difficult to alter rules or
add new rules, especially when the rule-base is large.
Below we show (part of) an example rule corresponding to
the Take-off state in Figure 2:

 procedure StateTakeOff;

 begin
 if IsVSpeedClimbOut(VertSpeed) or
 (not GearDown) or
 IsSpeedClimbOut(AirSpeed)
 then
 State := sSetCourse;

 if IsThrottleIdle(Throttle) or
 (Brakes = 1) or
 (ParkBrakes = 1)
 then
 State := sAbortTakeOff;
end;

Due to some difficulties with the Telnet connection between
our program and Flightgear we were only able to retrieve
data from the simulator about once every 500 ms. This is a
fairly large timeframe and it is possible that the system
misses certain events that have a shorter duration. This is
another reason that we check multiple variables (besides
identifying possible malfunctions which we mentioned
earlier).

5. THE PROBABILISTIC APPROACH

One of the disadvantages of using a rule-based system is
that IF-THEN rules are always deterministic. Either the IF-
condition of the rule is fulfilled or it is not. A certain event
or variable value may be an indication for more than one
situation. For example, a pilot can reduce the throttle if he
wants to land, but also simply to reduce speed and save fuel.
We tried to solve this problem by introducing probabilities
to determine the likelihood of the start and end of each
possible situation.

5.1 Design
Our probabilistic approach extends the rule-based approach
described in the previous section in a sense that now the
rules are not used to detect a situation deterministically, but
to generate probabilities about situation starts and endings.
Since this requires us to check multiple situations at the
same time, the state-transition diagram was abandoned.
However, to reduce the number of rules that need to be
checked, we added preconditions that need to be fulfilled
for each situation. For example, for the taxiing situation to
occur, the landing gear has to be down.
Another extension in our probabilistic system is that we
have added the possibility to load different rules for
different aircraft. The architecture of the probabilistic
situation recognition system is shown in Figure 3.

The knowledge converter converts all the situations
knowledge for a particular aircraft stored in an XML file to
IF-THEN rules. These rules are loaded into the rule base
before the recognition system is started.

The flight plan interpreter converts the information in the
flight plan to a number of rules that are put in the rule base.
These rules can help situation recognition by predicting
which situations will occur in the near future. Just as the
aircraft situations knowledge, the flight plan is loaded
before a flight.

During a flight, the input module receives aircraft data
from the flight simulator and converts this data to facts that
are forwarded to the rule base.

The rule base contains all the rules and facts that have been
generated by the flightplan interpreter and knowledge
converter. When data (facts) from the flight simulator are
added to the rule base, some of the rules will fire and
generate probabilities concerning the start or end of a
situation. These probabilities are then passed to the overall
controller.

The overall controller receives event data and situation
probabilities from the rule base, combines these
probabilities, and calculates for every situation the
probability that it has started or the probability that it has
ended. It then draws a conclusion about the situation that is
most likely to be the current one. Calculating probabilities
is done using a probabilistic network.

5.1.1 The start probability calculator
Figure 4 shows the probabilistic network that is used to
calculate the probability that a situation has started.

Figure 4: Probabilistic network that calculates the probability that

a situation has started

The start conditions for a situation are conditions that must
be satisfied before a situation can possibly have started,
otherwise the probability that the situation is started will be
zero. When the start conditions are satisfied, the probability
of the conditions that is specified in the aircraft situations
knowledge will be the output of this node.

The action probabilities are passed to the probability
network by action rules that are activated when the pilot
performs a particular situation-related action. Action rules
are rules that check if an action has been performed that
belongs to a situation. An action rule can only fire if the
start conditions of a situation have been met. All action

Input moduleFlight simulator

Aircraft
situations
knowledge

Rule base Overall controller

Knowledge
converter

facts probability

probability

probability

situation

rules
XML
data

Flight plan XML
data

rules

time windows
and priorities

Flightplan
interpreter time windows

and priorities

Figure 3: Architecture of the probabilistic situation recognizer

probabilities contribute to the probability that the situation
is occurring (has been started).

The additional rules are rules that fire when the state of the
aircraft changes or when a specific event occurs. They also
include rules similar to the consistency checks used in the
rule-based approach that check if the current state is still the
correct one. When an additional rule fires, it generates a
probability that the situation has started or ended.

The probability calculator (situation-started node in the
figure) combines the probabilities of the nodes that have
been described above using the noisy-OR model.

The previous situation influences the start probability of a
situation. The idea is that the probability that a situation is
occurring increases when the probability increases that one
of the previous situations that can lead to this situation has
ended.

Based on this network the probability that a situation has
started and is occurring can be calculated with the following
formula:

∏∏
==

−−−−=

�
�
�

>
=

=

=

n

j
j

n

i
iscs

sc

sc
cond

sendcondstart

PcrPcaPP

Pif

Pif
P

PPPP

11

))1(*)1(*)1((1

01

00

**

In this formula, Psc is the probability of the start conditions,
Pend is the probability that one of the previous situations has
ended, Pcai is the probability of the i-th action that should
be performed during the situation and Pcrj is the probability
of the j-th event or state change that can occur during the
situation.

5.1.2 The end probability calculator
In Figure 5 the probabilistic network is shown that
calculates the probability that a situation has ended. In this
network we see a lot of the same nodes as in the network for
the start of the situation. The nodes that are different are
discussed below.

The time window for a situation is the maximum duration
of that situation. If the start of a situation has been detected
the probability that it has ended should grow after a certain
time.

The situation-started node produces a 1 if the situation has
started and a 0 if the situation has not yet started. This node
is necessary because we only want to calculate the
probability that the situation has ended, after a (probable)
start of that situation.

Figure 5: Probabilistic network that calculates the probability that

a situation has ended

The probability that the situation is ended can be calculated
with the following formula:

∏
=

−−−−=
n

i
itscend PcrPPP

1

))1(*)1(*)1((1

More details about the design of our probabilistic system
can be found in [Mouthaan 2003].

5.2 Implementation
The probabilistic system was implemented in Java. Unlike
the rule-based system, the rules were not hard-coded since
we wanted to be able to load different rules for different
aircraft. Therefore, we chose to use the JESS rule-based
system [Friedman-Hill 1997]. The system was tested using
Microsoft’s Flight Simulator 2002, which was found to be
more realistic and stable than the Flightgear simulator that
we used earlier with our rule-based recognition system.
Flight Simulator 2002 allows retrieving data from the
simulator by an external program via a shared memory
space. The interface between the simulator and the system
was implemented with C++. We have devised a situations
XML file for the military F-16 aircraft and the civilian
Cessna C172 plane. Using these aircraft, we have
performed several experiments to test the system. The
flightplan interpreter that was described in the design of the
probabilistic system was not implemented yet.

6. EVALUATION

We have evaluated a prototype version of both situation
recognizer systems by performing several flights and
logging the results. The time and name of all detected
situation changes were logged, as well as the time a new
situation started according to the pilot. This allowed us to
check if the systems recognized a situation correctly and in
time. However, one must note that the time a situation starts
is often a bit vague and subjective. For example, the change
between the situations “climb out/set course” and “normal
flight” is difficult to pinpoint precisely. For this reason we
have rounded off all recorded times to whole seconds.

The test results of both the rule-based system and
probabilistic system were fairly good. On average, the rule-
based recognizer detects situations one or two seconds after
they occur. The rule-based system sometimes has some
difficulties detecting the start of the landing situation. The
probabilistic recognizer performs similarly. It has less
difficulty with the landing situation but for some unknown
reason it sometimes detects the normal flight situation
several seconds before it actually occurs. In one of our
experiments we found that the probabilistic system is even
able to correct a mistake immediately in the next reasoning
cycle. The mistake occurred during landing, when the
recognizer inadvertently thought the landing was being
aborted. We suspect the mistake was made due to an error
in the rule base that resulted in keeping a fact in the rule
base for too long.
In Table 1 and 2 we have presented some results of both
systems on one of our simpler flights, which was to fly a
standard circuit with the Cessna 172C. Flying a circuit
means that the pilot has to take-off, circle around to the
beginning of the runway and land again (see also Figure 6).

Figure 6: A standard circuit

The first column in both tables contains the names of the
situations that occurred or were detected by the system. The
second column contains the times at which the pilot
considered the situations to be started. The third column
contains the times at which the situations were detected by
the recognition system. Times are given in seconds from the
moment the program was started. Note that comparing the
two presented tables is not entirely fair since the flights
were flown by different pilots and on different simulators.
However, at the moment we have no better way of
comparing the two systems.
From the tables it can be seen that both systems did not

make any serious errors and were able to recognize most
situations in a matter of seconds. The probabilistic situation
recognizer performed slightly better (less time wrong) than
the rule-based recognizer. We have calculated the error rate
of the flights by dividing the amount of time that a
recognizer was incorrect by the total time of the flight.
However, in this case the pilot of Table 1 took longer to
complete the circuit than the pilot in Table 2, so therefore
the error rate of Table 1 is lower even though the recognizer
was incorrect for a slightly longer amount of time.
Other experiments that were performed showed similar
results. On average the error rate over the performed
experiments for the probabilistic recognizer (4 flights) was
0.08, with 0.05 being the lowest recorded error rate and
0.11 being the highest. The rule-based recognizer reached
an average of 0.09 over 5 flights, with 0.03 as best and 0.15
as worst. As mentioned earlier, the comparison between the
two systems is inconclusive, but the results seem to indicate
that the probabilistic approach performs slightly better than
the rule-based approach.

7. CONCLUSIONS AND FUTURE WORK

We have created two systems that can recognize the current
situation during a flight with a simulated aircraft. The first
system uses a combination of a rule-based approach and
state-transition diagram. The system was able to detect
situations flying the Cessna aircraft. The second system is
based on a probabilistic model. This system can load a
model for a specific type of aircraft before the flight.
Currently we have a model for both the F-16 and the Cessna
aircraft.
Investigating a number of test scenarios, both systems seem
to work fairly well. They make few mistakes and are even
able to correct them immediately. Furthermore they are able
to come to a conclusion about the current situation in real-
time. We have tried to compare the results of both systems,
but this comparison is complicated due to the vagueness of
the exact start of a situation, and the different pilots and
simulators we used. We are currently busy redesigning the
rule-based system to work with the same simulator used in
our experiments with the probabilistic recognizer, so we can
make a more accurate comparison between the two systems.

Table 1: Results of a standard circuit flight with a Cessna
using the rule-based situation recognizer

 Table 2: Results of a standard circuit flight with a Cessna using
the probabilistic situation recognizer

Situation Time
started (s)

Time
detected (s)

 Situation Time
started (s)

Time
detected (s)

Start-up 0 0 Start-up 0 0
Taxiing to runway 16 17 Taxiing to runway 7 10
Taking off 27 29 Taking off 22 27
Normal flight 73 72 Normal flight 61 59
Landing 187 179 Landing 119 121
Taxiing from runway 272 275 Taxiing from runway 220 221
Shutdown 302 302 Shutdown 251 251
Error: 15 seconds (5,0%) Error: 13 seconds (5,2%)

Although the test results of both systems are fairly good, we
are not yet satisfied. It often takes a few seconds to
accurately detect a situation. This is no problem for a
Cessna, but in an F-16 covering more than 500 meters per
second, this can be a problem. Therefore, we would like to
detect situation changes almost immediately. Our future
work will consist of improving and fine-tuning the rules
used by both systems to detect situation changes faster and
increase reliability. One way to do this is to use the flight
plan to help detect the current situation and predict future
situations. However, it is possible that pilots deviate from
the flight plan, so this should be included in the recognition
process. In addition we would like to expand the systems to
include more detailed, synchronous situations and specific
events such as malfunctions. Together with our other efforts
currently underway to implement a decision module and
planner modules, we want to use this improved situation
awareness module to create a human-like intelligent flight
bot.

REFERENCES
Coradeschi, S., Karlsson, L. and Törne, A. (1996) “ Intelligent

agents for aircraft combat simulation” , in Proceedings of the
6th Computer Generated Forces and Behavioral
Representation Conference, pp. 23-25 July 1996, Orlando,
Florida, US

Endsley, M. R. (1999) “Situation awareness in aviation systems” ,
in Human factors in aviation systems, Garland,D.J., Wise,
J.A. and Hopkin, V.D. (Eds.), pp. 257-276, Lawrence
Erlbaum.

Ehlert, P.A.M. and Rothkrantz, L.J.M. (2003) “ The Intelligent
Cockpit Environment Project” , Research Report DKS03-
04/ICE 04, Knowledge Based Systems group, Delft University
of Technology, The Netherlands.

Ehlert, P.A.M, Mouthaan, Q.M. and Rothkrantz, L.J.M. (2002)
“Recognising situations in a flight simulator environment” , in
Proceedings of 3rd Int. Conference on Intelligent Games and
Simulation (GAME- ON 2002), London, Great Britain, pp.
165-169.

Friedman-Hill, E.J. (1997) “ JESS, the rule engine for the Java
platform” , JESS manual for version 6.1, Sandia National
Laboratories, http://herzberg.ca.sandia.gov/jess/docs/61 (link
checked November 6th, 2003)

Jones, R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J., Kenny, P.
and Koss, F.V. (1999) “Automated intelligent pilots for
combat flight simulation” , in AI Magazine, Vol. 20, No.1, pp
27-41.

Laird, J.E., Newell, A. and Rosenbloom, P.S. (1987) “Soar: an
architecture for general intelligence” , in Artificial
Intelligence, Vol. 33, No.1, pp. 1-64

Nigro, J.M., Loriette-Rougegrez, S. and Rombaut, M. (2002)
“Driving situation recognition with uncertainty management
and rule-based systems” , in Engineering Applications of
Artificial Intelligence, Vol. 15, pp 217-228, Elsevier Science
Ltd.

Perry, A.R. and Olson, C. (2001) “ The FlightGear flight
simulator: history, status and future” , LinuxTag July 2001,
Stuttgart, Germany.

Mouthaan, Q.M. (2003) “ Towards an intelligent cockpit
environment: a probabilistic approach to situation
recognition in an F-16” , MSc. thesis, Knowledge Based
Systems group, Delft University of Technology, The
Netherlands

AUTHOR BIOGRAPHY

PATRICK EHLERT has obtained his Master’s degree in
Computer Science at the Delft University of Technology.
There he now works as a PhD student on the ICE project.

QUINT MOUTHAAN has obtained his Master’s degree in
Computer Science at the Delft University of Technology.
He recently started working as an engineer at Force Vision,
a company developing mission-critical systems for the navy.

LEON ROTHKRANTZ has a degree in psychology and
mathematics and is working as a lecturer at the Delft
University of Technology.

