
MEDIUM VOCABULARY CONTINUOUS AUDIO-VISUAL
SPEECH RECOGNITION

Pascal Wiggers, Jacek C. Wojdel, Leon J. M. Rothkrantz

Data and Knowledge Engineering Group
Delft University of Technology
P.Wiggers@its.tudelft.nl,
J.C.Wojdel@its.tudelft.nl,

L.J.M.Rothkrantz@its.tudelft.nl

ABSTRACT

This paper presents our experiments on continuous audio-
visual speech recognition. A number of bimodal systems using
feature fusion or fusion within Hidden Markov Models are
implemented. Experiments with different fusion techniques
and their results are presented. Further the performance levels
of the bimodal system and a unimodal speech recognizer
under noisy conditions are compared.

1. INTRODUCTION

The performance of large vocabulary continuous speech
recognition systems has now reached acceptable levels.
(Results between 5% and 10% word error rate on a 65k-word
vocabulary have been reported for speaker independent
systems [8].) But this is only the case for speech uttered under
highly controlled laboratory conditions. The performance of
these systems rapidly degrades in more realistic environments.
One of the problems is noise, introduced either by the
transmission channel, as in the case of telephone speech or by

the environment.
As a result, audio-visual speech recognition has attracted a

great deal of attention in the research community [1, 2, 3]
because the visual modality is well known to contain some
complementary information to the audio modality. What is
even more important in this context, it is not affected by any
background noise. But most results presented so far are
limited to isolated word recognition or recognition of simple
utterances like strings of digits. In this paper we present our
experiments with a bimodal recognizer for continuous speech
on Dutch language recordings with a vocabulary of over 1000
words.

In the next sections a brief overview of the baseline
speech recognizer and the technique for extracting lip-features
is given. Then the multi-modal data set that we collected is
described. Subsequently a description of the experiments with
different kinds of bimodal integration is given and the results
are presented. Finally, the performance of a bimodal system
and a speech recognizer under noisy conditions are compared.

2. THE SPEECH RECOGNIZER

The speech recognizer used in our experiments is a simplified
version of our large vocabulary speaker independent
recognizer described in [5]. It uses continuous density Hidden
Markov Models to represent phonemes. Each model has three
states connected in a left to right manner, with single Gaussian
distribution functions attached to the states. There is a total
number of 45 phonemes, which include the phonemes from
the SAMPA set [7] and models for silence, optional pauses
and mouth noises like, loud breath, sniffing or smacking.

The recognizer was trained on a subset of the Dutch
Polyphone database [7]. This is a rather large corpus
containing telephone speech from 5050 different speakers
from all dialect regions in the Netherlands. The utterances
contain all Dutch phonemes in as many phonetic contexts as
the designers of the database could find.

A training set of 22626 utterances was selected from this
database, all read sentences from newspaper articles. The
utterances did not contain any background noise but mouth
noises, like smacking, sniffing, loud breaths were allowed.
All utterances, that were originally in A-law 8-bit wave format,
were encoded to Mel-frequency cepstral coefficient vectors,
using a sampling rate of 10 ms and a segment window of 25
ms. Each vector contains twelve cepstral coefficients with log
energy and delta and acceleration coefficients added, all scaled
around zero by subtracting the cepstral mean from all vectors.
This resulted in 39 dimensional feature vectors. The models
were trained iteratively, using embedded Baum-Welch re-

estimation and Viterbi alignment.

3. AUTOMATIC LIP-READING

The lip-reading part of our recognizer is based on the visual
feature extraction technique described in [10]. It utilizes a lip-
selective color filtering and allows for estimation of both
geometric and intensity related features of the mouth. The
geometry of the mouth initially extracted as a 36 dimensional
vector is further simplified using principal component analysis
(PCA) down to only 5 dimensions that cover 97% of the data
variation. The intensity changes within the mouth image
provided two groups of coefficients describing the visibility
and position of teeth and mouth cavity (see [10] for further



details). The resulting 6 intensity parameters were used without
further processing.
The visual data extracted in this way proved to be sufficiently
accurate to allow for developing a limited vocabulary lip-
reading system. This system performs with 70-80% word
accuracy performance in a concatenated digit recognition task
for a single person. As a natural step further, we tried to apply
the same techniques to develop the automatic lip-reader for our
large vocabulary data set.  With such a system we could build a
bimodal speech recognizer based on the late integration
principle; by combining its outputs with the outputs of the
speech recognizer using a Bayesian approach. However this
method is not very well suited for continuous speech
recognition as integration can only be done after an utterance is
completely spoken, thus introducing a time delay.
Furthermore N-best lists or output lattices are needed to
combine hypothesis from both systems as they may output a
different best hypothesis introducing even more overhead
costs. This excluded the possibility of using late integration
model for our bimodal speech recognizer. In section 5 we
introduce an alternative method.

4. DATA SET

A problem with bimodal speech recognition experiments is the
lack of multi-modal databases containing both audio and
visual information. Of the few databases available, like
M2VTS [9], most contain only single words or digits and as a
result they are not very well suited for the development of
continuous speech processing systems. Therefore we started to
gather our own audio-visual data set. A number of respondents
were asked to read prompts showed on the screen of a laptop
in front of a digital video camera.

The video sequences were stored as MPEG1 stream, with
a frame rate of 25 Hz. The audio was recorded using a
sampling of 44 kHz with 16-bit resolution. For use in these
experiments the audio files were converted to 8 bit A-law
format, the format used by the speech recognizer.

A prompt collection divided in 24 sections is used. Each
section of the prompt set contains a fixed number of different
utterances. The utterances in a section are:

• 1 sentence containing 10 separate small words.

• 10 phonetically rich sentences

• 3 ten-digit sequences. These digits were randomly
generated and have uniform distribution in the whole
prompt set.

• 4 spelled words.

• 5 utterances from a telebanking application.

At the current stage, we have recorded 8 sessions with 8
different subjects. This gives in total over 4 hours of
continuous recordings. The recorded subjects are all native
Dutch speakers. Data from five of these subjects, including the
only female speaker, was transcribed and used in these
experiments. From each subject 4 or 5 sessions were used to
create a training set of approximately 500 utterances from all
speakers and an independent test set containing 40 randomly
chosen utterances from all speakers.

Since the audio in this data set is recorded using a PC
microphone and the speech recognizer was trained on
telephone audio there is a distortion between the speech
vectors produced by the HMMs and the actual data.

To get a baseline system suited for comparison with other
systems that use this database the speech recognizer was
adapted to the new data set using Baum-Welch re-estimation.
Furthermore a bigram language model containing 1050 words
was also trained on this data. This language model was used in
all experiments described in this paper. The recognition results
of the adapted recognizer are shown in table 1.

5. AUDIO-VISUAL RECOGNITION

Audio-visual fusion can be done at several stages in the
recognition process, at the feature level, presented in section
5.1 or at the model level, presented in sections 5.2 and 5.3.

5.1. Feature fusion

In feature fusion the feature vectors from both modalities are
simply concatenated to generate a single vector on which a
regular HMM based recognizer can then be trained. For this
and subsequent experiments video features were extracted for
all utterances of the multi-modal data set using the technique
described earlier. These features were then concatenated to the
corresponding audio feature vectors using linear interpolation
between video frames to get a frame rate of 10 ms.

Because our data set is currently to small to train a robust
continuous speech recognizer, let alone a bimodal recognizer,
a different approach was taken. The multi-modal recognizer
was created by extending the 39 dimensional distribution
functions of the (unadapted) baseline speech recognizer to 50
dimensional distributions. The additional 11 means and
variances of all states of all models were initialized with the
global means and variances calculated over the entire video
data set. Thus the audio part of the system was already
reasonably trained and needed only some adaptation to the
new data set, but the visual part could only be trained on the
multi-modal data set. But as all models initially have the same
parameters for their visual features the distribution of the
feature vectors during Baum-Welch re-estimation will be
guided by the speech features. This way a continuous multi-
modal recognizer can be obtained in a few training cycles with
a limited amount of training data. The speech part of the
models ensure robustness while the video part may give
valuable cues to differentiate between homophones.

To train the video part of the system and adapt the audio
part of the system, the combined models were re-estimated
twice, using the bimodal training data. The models in this
system thus received just as much training as the models in the
adapted speech only system. The recognition results of this
system on the test set are shown in table 1.

Table 1: Recognition results of ASR

system word rec. % accuracy %
speech recognizer 84.24 83.82
feature fusion 83.69 78.61



5.2. Multi-stream phoneme based recognition

The feature fusion system, although attractive because of its
simplicity, was not able to improve upon the speech only
system. This is not a surprise the model is very rigid. One of
the problems with this approach is that is does not take into
account the reliability of the separate streams. The audio
stream is likely to be more reliable than the video stream in
the setup described here, because of the clean audio and the
well-trained speech part.

In model fusion two different data streams are used and
these are combined within the Hidden Markov model. The
multi-stream HMM explicitly models the reliability of its
streams. In its simplest form, the state synchronous multi-
stream model, it uses separate distributions for its streams in
each state. The observation likelihood of the state is the
weighted product of the likelihoods of its stream components,
as shown in formula 1, where γs are the weights.
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A multi-stream recognizer was build using a similar
approach as with the feature fusion model. The models from
the baseline speech recognizer were used for the audio stream
and the distributions in the video stream were initialized with
the global mean and variance of the entire video data set. This
system was also re-estimated twice. A number of recognition
experiments was run on the test set using different weighting
schemes, the results are shown in table 2. The video weights
and audio weights add up to two in all cases.

Table 2:  Multi-stream fusion results

system word rec. % accuracy %
phonemes; equal weights 83.69 78.61
phonemes; audio weight 1.2 84.43 79.41
phonemes; audio weight 1.4 84.22 78.88

By setting the weights so, as to put more emphasis on the
audio stream this system is capable of doing a little better than
the stand-alone speech recognizer. A shortcoming of this
system is that it uses phones as basic units but from a lip-
reading point of view it is hard to distinguish between certain
phonemes, because of similar lip movements.

Table 3: Visemes, using SAMPA notation

Viseme Phonemes Viseme Phonemes
0 sil, sp 9 E, E:
1 f, v, w 10 A
2 s, z 11 @
3 S, Z 12 i
4 p, b, m 13 O, Y, y, u, 2:, o:,

9, 9:, O:
5 g, k, x, n, N, r, j 14 a:
6 t, d 15 h
7 l 16 Ei
8 I, e: 17 mn (mouth noise)

5.3. Multi-stream viseme based recognition

To solve the problem indicated above, it was decided to use
visemes for the video stream. A viseme is basically a phoneme
class; the visemes we adopted are shown in table 3.
The use of different units for the stream was realized by tying
the distribution functions of corresponding states in the second
stream for phonemes that are in the same phoneme class. The
limited training data problem is also partially solved this way,
because there is now more data per model in the second stream
available. As with the previous systems this system was also
re-estimated twice before recognition experiments were
conducted.
Table 4 shows the recognition results of a number of viseme
systems with different weights, once again the audio and video
weights add up to 2. This system is capable of improving upon
the speech recognizer even when both streams have equal
weights. By giving the audio stream higher weight than the
video stream the results show more improvement.

Table 4: Multi-stream models using visemes

system word rec. % accuracy %
visemes; audio weight: 0.9 84.76 80.48
visemes; audio weight: 1.0 85.56 80.28
visemes; audio weight: 1.1 85.92 82.09
visemes; audio weight: 1.2 85.03 80.75

6. NOISE ROBUSTNESS

In the experiments described in the previous section the
improvements the bimodal system realized over the audio only
system remained modest. This can be explained by the fact
that both modalities encode similar information. If the video
stream gives reason to belief that a plosive sound is uttered,
and the speech recognizer had a hard time choosing between
/p/ and /g/ then the bimodal system may correctly pick /p/. But
if the speech recognizer already found that a /p/ was uttered
then the additional information from the video data does not
help much.

Since relatively clean audio was used in the experiments
described so far, the speech recognizer did not need the
additional information from the lip-data, most of the time. But
in a more noise environment the cues given by the video
stream may be more valuable. To verify this hypothesis the
multi-stream viseme system was tested using noisy data. This
was done by adding different levels of white noise to the audio
samples in the test set. The performance of the systems was
measured for signal to noise ratios between 20 dB and –5 dB.

The performance of the speech-only system degrades
rapidly under these conditions as can be seen in figure 1. The
results of the bimodal system are also shown in the figure. At
low noise levels the multi-modal system performs slightly
better than the speech recognizer, but as the noise level
increases the bimodal systems clearly outperforms the
unimodal system. Once again the multi-stream model with
viseme models in the second stream shows the best results. At
a signal to noise ratio of 5 dB the difference is 12%. As the
noise level approaches –5 dB the audio recognition gets so
poor that the visual cues can no longer provide adequate help.



Figure 1: Recognition results for different SNR levels

From figure 1 it can also be observed that the audio stream
is no longer more reliable than the video stream. But is also
proved hard to do better than the system with equal weights
for both streams, by giving the video stream a higher weight.
Our lip reading technique seems to do especially well in
discriminating between consonants (for example /f/ and /s/)
therefore only the weights of the consonant visemes were
increased. Figure 1 shows a system with consonant weights
that were gradually increased as the noise level increased (up
to a noise level of 0.8 dB, for higher levels the weights were
decreased again). This system impressively outperformed all
other systems.

7. CONCLUSIONS

Our experiments showed that adding visual cues to a
continuous speech recognizer results in better performance.
This is especially the case in noisy environments. The best
results so far were obtained by using a multi-stream Hidden
Markov model with phoneme units for the speech stream and
viseme units for the video stream. In the case of clean audio
the speech stream dominates the performance of the system. In
the case of noisy audio the relative performance of the system
get better as the weights of the video stream are gradually
increased according to the noise level. Improvements up to
16% have been reached.

Although the bimodal system performs well there remain
still a number of issues to be solved. Firstly the weights of the
data stream were set in an ad hoc manner depending on
outside knowledge of the noise levels. In a more practical
system this should of course be done automatically on the
basis of some reliability measurement from the incoming data.
But as estimation of the SNR level is not a trivial task it is still
an open question how to achieve this.

Secondly, the experiments described in this paper were
performed using a simple speech recognizer and a small multi-
modal data set. We believe that a robust bimodal system for
continuous speech recognition can be build if a sufficiently
large audio-visual speech corpus is available.

8. REFERENCES

[1] Neti, C. Potamianos, G., Luettin, J. Mattews I., Glotin, H.,
Vergyri, D., Sison, J., Mashari, A., Zhou, J., “Audio-
Visual Speech Recognition”, IBM T.J. Watson Research
Center, Summer Workshop 2000, Final Report.

[2] A. Verma, T. Faruquie, C. Neti, S. Basu, A. Senior, “Late
integration in audio-visual continuous speech
recognition”, Automatic Speech Recognition and
Understanding, 1999

[3]  Dupont, S. Luettin J., “Using the Multi-Stream Approach
for Continuous Audio-Visual Speech Recognition”,
IDIAP Research Report 97-14.

[4] Young, S., Kershaw, D., Odell, J., Ollason, D., Valtchev,
V., Woodland, P., The HTK Book (for HTK version 3.0),
Cambridge University Engineering Department

[5] Wiggers, P, Wojdel J., Rothkrantz, L. “A Speech
Recognizer for the Dutch Language”, Euromedia 2002
Modana, Italy.

[6] Wojdel, J., Wiggers, P., Rothkrantz, L. “The Audio-
Visual Corpus for Multimodal Speech Recognition in
Dutch Language”, submitted to: ICSLP 2002, 2002

[7] Damhuis M., Boogaart T., in 't Veld, C., Versteijlen,
M.,W. Schelvis, W., Bos, L., Boves L., “Creation and
Analysis of the Dutch Polyphone Corpus”, Proceedings
ICSLP '94, pp. 1803-1806, 18-22 September
1994,Yokohama, Japan

[8] Young, S. J., Chase, L. L., “Speech recognition
evaluation: a review of the U.S. CSR and LVCSR
programmes”, Computer Speech and Language (1998)
12, pp. 263-279

[9] S. Pigeon and L. Vandendorpe, "The M2VTS multimodal
face database" in Lecture Notes in Computer Science:
Audio- and Video- based Biometric Person Authentication
(J. Bigun, G. Chollet and G. Borgefors, Eds.), vol. 1206,
pp. 403--409, 1997

[10] Wojdel, J., Rothkrantz, L., Using Aerial and Geometric
Features in Automatic Lip-reading, Proceedings of
Eurospeech 2001, Scandinavia

0

10

20

30

40

50

60

70

80

90

-5 0 5 10 15 20
SNR (dB)

W
o

rd
 R

ec
o

g
n

it
io

n
 (

%
)

Speech Recognizer

Bimodal recognizer

Bimodal recognizer with
consonant weights


