

RECOGNISING SITUATIONS IN A FLIGHT SIMULATOR ENVIRONMENT

Patrick A.M. Ehlert, Quint M. Mouthaan and Leon J.M. Rothkrantz
Data and Knowledge Systems Group

 Department of Information Technology and Systems
Delft University of Technology

Mekelweg 4, 2628 CD Delft, the Netherlands

E-mail: P.A.M.Ehlert@its.tudelft.nl, L.J.M.Rothkrantz@cs.tudelft.nl

KEYWORDS
Artificial intelligence, flight simulator, context awareness,

A.I. bot, neural networks, knowledge-based system

ABSTRACT
In this paper we describe our approach to a situation

recogniser system that currently is being developed for a
flight simulator environment. The situation recogniser is
part of a context-aware system and can be seen as a first
step to an artificial intelligent pilot bot. We will address our
explorative data study (PCA analysis), our attempt to
recognise and predict situations with an Elman neural
network, and our choice to use a knowledge-based
production system.

INTRODUCTION
Ever since the first airplane was built by the Wright

brothers the capabilities of aircraft have continuously been
improved. For example, the maximum speed of the average
military fighter plane has gone from approximately 100
Mph in 1920 to over 1500 Mph currently. These high
speeds are responsible for the little time available to pilots
to process information and make decisions. In addition, the
improved range of weapons in military aircraft (missiles can
be fired from 20 km away) reduces the pilot’s decision time
even more. Also, the amount of information available to a
pilot today and the complexity of the contents have
increased significantly. Where earlier planes only had a few
meters, modern aircraft have several hundreds of meters or
information displays, providing the pilot with a wealth of
different information sources.

To help the pilot deal with information processing and

decision-making, and to avoid cognitive overload, a crew
assistant system or intelligent pilot-vehicle interface (PVI)
has been proposed [Mulgund and Zacharias 1996]. The idea
is that such a system would present relevant information to
the pilot at the right moment, depending on the situation, the
status of the aircraft, and the workload of the pilot.

The Data and Knowledge Systems group at the Delft
University of Technology is currently working on a project
called Intelligent Cockpit Environment, or ICE for short.
The main objective of this project is to investigate new
interface techniques and technology for intelligent PVIs.
Part of the ICE project is to design a context-aware system
that can automatically recognise the current situation of the
pilot and aircraft. The first step towards this context-aware
system is to create a situation recogniser module. The
situation recogniser module should be able to determine the
status of the aircraft and the corresponding phase in the
flight plan.

Although the ICE project does not explicitly focus on

creating an A.I. pilot bot capable of reasoning and
recognizing situations in a flight simulator, it should be
possible to use the context-aware system for these purposes.

THE FLIGHTGEAR SIMULATOR
Many sophisticated flight simulator software packages are

available on the market, but most programs are commercial
software that cannot be extended. For the purpose described
above we want to be able to manipulate input data and
adapt our cockpit environment. Therefore, we chose the
open-source FlightGear flight simulator as our experiment
platform (see also Figure 1).

Figure 1: Screen shot of the FlightGear program

mailto:P.A.M.Ehlert@its.tudelft.nl
mailto:L.J.M.Rothkrantz@cs.tudelft.nl

The FlightGear simulator project is an open-source,
multi-platform, cooperative flight simulator project. The
idea for FlightGear was born out of dissatisfaction with
current commercial available PC flight simulators. The goal
of the FlightGear project is to create a sophisticated flight
simulator framework for use in research or academic
environments, for the development and pursuit of other
interesting flight simulations ideas, and an good and
extendable end-user application [Perry and Olson 2001].
The FlightGear platform is open to be expanded and
improved upon by anyone interested in contributing. For
more information on FlightGear visit the website
http://www.flightgear.org

EXPLORATIVE DATA ANALYSIS
We started our research with an explorative data analysis.

The FlightGear simulator allows us to log almost all internal
variables (e.g. altitude, airspeed, gear position, etc). For our
explorative data analysis we selected four variables: pitch,
throttle, acceleration and roll. Figure 2 shows the time graph
of the flight data generated on a sample flight. Note that the
straight flight (part C) was flown using the auto-pilot.

Figure 2: Time graph of selected flight variables during

annotated sample flight

PCA Analysis
The goal of the PCA analysis was to investigate the

possibility to give an automated interpretation of recorded
data; what was the planned action of the pilot and what was
his goal. As a proof of concept we limited ourselves to the
following set of actions: going up, regular (straight) flight,
turning right, turning left, going down, stand still (on the
ground), and taxiing.

Applying principal component analysis (PCA) or

Sammon mapping we were able to project the logged data
and cluster the data in the 7 selected action states. Figure 3
shows two projections of variables’ tracks during our
sample flight. From this figure we conclude that in principle
it should be possible to define states, which will result in
distinct clusters in the space of logged data. By tracking the
(projected) flight we can label the position with the
corresponding label of the cluster. This way we are able to

give an automated interpretation of the flight behaviour
based the logged data as is shown in Figure 4.

Figure 3: Clustering in two PCA projections

Figure 4: Tracking path in the two PCA projections

http://www.flightgear.org/

Elman neural network
We found similar results using recurrent neural networks.

We selected an Elman neural network with one hidden layer
as is shown in Figure 5. As test input we used the same
logged data as before and as output the earlier-mentioned 7
states. We were able to train the neural network for the
automatic recognition of the 7 states. The error rate on a set
of test data was 13.5 %.

We also used neural networks to predict the future values

of the logged parameters. As displayed in Figure 6, for
every variable X, we used at every point k the previous
values (Xk,…Xk-p) to predict X’s future values (Xk+1, Xk+2).
In Figure 7 we show the results using a feed forward
network of two hidden layers (4-5-5-2 architecture) using
window size 5.

Figure 5: Architecture of used Elman neural network

Figure 6: Model of prediction

More results about the PCA analysis and the prediction
with Elman neural networks can be found in [Capkova, Juza
and Zimmerman 2002].

Figure 7: Results of neural network state prediction with

window size 5

KNOWLEDGE BASE
After the explorative data study, we decided to take a

knowledge-based production system as the basis for our
real-time and on-line situation recogniser module. The
advantage of a knowledge based system is that it is much
more transparent how the system makes a decision,
compared to the neural network approach. In addition, it is
possible to make changes to the knowledge base and adapt
the system to new circumstances or environments (e.g. other
aircrafts).

A simple prototype
For our prototype program, we started with designing a

set of rules to recognise situations that can occur while
flying a Cessna 172, the default airplane in FlightGear. We
made rules for the following situations; start-up, taxiing,
hold-short, take-off, aborted take-off, set course to
waypoint, in flight, start-landing, aborted landing, final
approach, touchdown and shutdown. All situations can be
recognised based on a number of parameters such as
airspeed, vertical speed, throttle, brakes status, gear status,
etc. For each state we tried to use as much of the available
variables as possible, since this allows us to still get an
accurate indication of the situation, even if one of the
parameters is not normal for that situation. For example, if
the pilot lowers the gear, it is obvious that he is trying to
land. However, if for some reason the pilot forgets to lower
the gear, we are still able to determine that the pilot is
landing by looking at his airspeed, flaps, vertical speed and
altitude. This allows us to provide feedback to the pilot
about possible mistakes or malfunctions in a latter stage.

To reduce the amount of rules that have to be checked, we

devised a state-transition diagram and implemented this in
the prototype program, which is shown in Figure 8.

Figure 8: Screen shot of the prototype situation recogniser

In almost all on-line test cases, our prototype program
was able to recognise the correct situation in real-time.
However, in some cases the recogniser was a little late in
detecting that the pilot was initiating landing procedures.

Expanding the prototype
Our next step is to expand the prototype situation

recogniser program to accommodate a military aircraft such
as the F16. Not only will this provide us with a more
challenging and interesting domain with other situations, we
also expect that the usage of an intelligent interface, which
is our end goal, will have much more added value in a
military aircraft than in a civilian airplane.

Rules and procedures about flying an F16 are well

documented in two official F16 manuals available on the
Internet [USAF 1996], [USAF 1995] and in the user
manuals of the commercial flight simulator Falcon 4
[Microprose 1998], [Falcon unified team 2001]. These
documents describe many situations that can occur during a
military mission, as well as the actions that should be taken
by the pilot in those cases. In order to have a more generic
recogniser that can be used with multiple airplanes, we
chose to encode the F16 rules and procedures in XML. The
following situations have been described in our XML
knowledge base [Mouthaan 2002]: start-up, taxiing, taking
off, aborted takeoff, normal flight, dogfight, visual attack,
non-visual attack, guided attack, harm attack, taking evasive
action, deep stall, air refuelling, normal landing, flame-out
landing, aborted landing, and shutting down. Since we now
have to recognise a larger number of situations compared to
the Cessna, we decided to use a slightly different approach.
For every situation we designed a set of rules that produce a
probability that that particular situation is occurring. The
probability is calculated based on the state of the aircraft
(FlightGear variables) or the recent events (pilot or
environment). An event can have three sources:

Pilot: Pilot events are actions taken by the pilot, for

example pushing a button or adjusting the throttle.

Aircraft: Aircraft events are changes in the aircraft’s

state, for example a change in altitude or speed.

Environment: An event from the environment can be a

missile that is launched at the aircraft by an enemy SAM
site.

Besides these three sources there is another source of

information that can be used to determine the current
situation, which is the flight plan. The flight plan contains
information about the steer points the pilot should reach

during the flight, but it also contains information about
possible situations that will occur at those steer points (e.g.
attack ground target). If the flight plan is entered in our
system before the actual flight the system should be able to
more accurately predict the current situation.

The rules
The rules are grouped according to the situation they

relate to. Every rule has a value that indicates the
probability that the rule accurately identifies the situation.
When data (FlightGear variables) is passed to the
knowledge base some rules will fire and some will not. A
probability calculator will combine all the probabilities that
are the result of the rules that fire and calculate a new
probability for each situation. The probabilities that are
stored in the knowledge base are fuzzy values from a fuzzy
set. Once the probability calculators have produced a
probability for every possible situation, an overall controller
will evaluate all probabilities and determine if it can decide
with enough certainty that one of the situations is taking
place.

For every situation there are several types of rules:

Action rules: an action rule is a rule that states that a

pilot has to or might perform a certain action during this
situation.

Visual check rules: a visual check rule states that the
pilot should check a certain instrument during the situation.

Conditional rules: the conditional rules can be used to
determine if a situation has been started or if a situation has
been finished.

Additional rules: rules that do not fit in any of the
categories above.

Below we show an example of the XML code describing

a dogfight situation:

<situation name=”Dogfight” timewindow=”30”>
<actions>

<phase name=”ingress”>
<action name=”fcr” priority=”0/1” probability=”vsp”>&ACM;</action>

</phase>
<phase name=”engage”>

<action name=”master arm” priority=”1”
probability=”BP”&MASTER_ARM;</action>

………..
</actions>
<visualChecks>

<instrument name=”HUD”/>
<instrument name=”radio/>

….
</visualChecks>
<constraints startProbability=”SP” end Probability=”BP”>

<constraint name=”IFF” start=”&OFF;” />
<constraint name=”RWR” start=”&ON;” />

………
</constraints>
</situations>

CONCLUSIONS AND FUTURE WORK
We have presented some results of work in progress on an

automatic situation recogniser in a flight simulator. We
experimented with PCA analysis and neural networks to
automatically recognise 7 states. The results were fairly
good, but because of flexibility we decided to implement
the situation recogniser as a knowledge-based production
system. We devised a prototype situation recogniser that
can detect the most common situations when flying a
Cessna airplane. The prototype system also performed very
well, except in some cases it was slow in detecting landing
events. We have also shown our ideas about extending the
existing recogniser to detect more complex situations
(flying an F16) and adding probability values to the
reasoning process.

The situation recogniser is part of a context-aware system

that will be used in future research on intelligent interfaces
in the cockpit. After our implementation of the F16
knowledge base and improved reasoning system, we plan to
add a pilot-state recogniser module that should be able to
assess the pilot’s activities and workload.

Since our experiment platform, the FlightGear simulator,

does not support multiple aircrafts yet, we are currently
working on a multiplayer extension for FlightGear. Once
the multiplayer extension, knowledge base, and pilot state
recogniser are finished we plan to start experimenting with
different intelligent interface strategies.

REFERENCES
Capkova, I., Juza, M. and Zimmerman, K. (2002) “Explorative

data analysis of flight behaviour”. Technical Report, Data and
Knowledge Systems group, Delft University of Technology.

Falcon Unified Team (2001) “Falcon 4 Superpak 3 User
Manual”, Infogames Inc.

Micropose (1998) “Falcon 4.0 user manual”, Infogames Inc.

Mouthaan, Q.M. (2002) “Flying an F16: A knowledge base
describing the situations an F16 pilot might encounter”.
Technical Report DKS-02-03 / ACE 01, Data and Knowledge
Systems group, Delft University of Technology.

Mulgund, S.S. and Zacharias, G.L. (1996) “A situation-driven
adaptive pilot/vehicle interface”, in Proceedings of the Human
Interaction with Complex Systems Symposium, Dayton, OH,
August 1996.

Perry, A.R. and Olson, C. (2001) “The FlightGear flight
simulator: history, status and future”, LinuxTag July 2001,
Stuttgart, Germany.

USAF (1996) Multi-Command Handbook 11-F16 (F16-combat
aircraft fundamentals), Volume 5, May 10, 1996.

USAF (1995) Multi-Command Instruction 11-F16 (Pilot
operational procedures), PACAF Volume 3, April 12, 1995.

	Abstract
	Introduction
	The FlightGear simulator
	Explorative data analysis
	PCA Analysis
	Elman neural network

	Knowledge Base
	A simple prototype
	Expanding the prototype
	The rules

	Conclusions and future work
	References

