

A MULTIMODAL LEGO ROBOT

Guillaume Barraud, Priam Pierret and Léon Rothkrantz
Data and Knowledge Systems Group

 Department of Information Technology and Systems
Delft University of Technology

Mekelweg 4, 2628 CD Delft, the Netherlands
E-mail: L.J.M.Rothkrantz@cs.tudelft.nl

KEYWORDS
Lego robot, multimodal interaction, artificial intelligence.

ABSTRACT
The goal of the project was to develop a robot and a

multimodal user interface. The robot, designed as a digital
cat, can show complex behaviours such as move, speak,
touch, listen, and read. The input command interface is
based on text, icons, and speech. A prototype of the robot is
implemented using the Lego Mindstorms™ System. The
design and implementation of the robot are presented in this
paper.

INTRODUCTION
At Delft University of Technology there is a project on

multimodal communication. At the moment research topics
focus on automatic recognition and generating of facial
expressions, and automatic speech recognition. To develop
new ways of human-computer interaction a test environment
was created: AMAELIA (A Multimodal Application for
Extensible Lego Intelligent Agent). The robot is similar to
the well-known Aibo robot developed by Sony, but unlike
the Aibo we wanted to create an open-source and open-
development environment. To implement the robot we used
Lego Mindstorms ™ System.

Figure 1: The AMAELIA activity diagram

AI Aspect
AMAELIA is an environment for editing, executing and

saving behaviors with a Lego Robot Cat. It can be called an
AI environment because the core of the system is designed
as an intelligent agent, according to the PAGE definition
(Percepts, Actions, Goals, Environment).

Entertaining Aspect
The main use of the application is to interact with a Lego

Robot Cat equipped with Lego Camera, which can move,
play sounds and music, speak, take pictures and capture
videos, but it can also see, watch, touch, listen, read. You
can also teach AMAELIA how to react when it is running,
and all these things can be done at the same time. After
getting used with the Cat Command Language, you can
easily edit more complex behaviors, from the funniest to the
most useful, from the most stupid to the most intelligent.
When your new behaviors are ready for use, you can
demonstrate them by using the speech command.

Components Aspect
AMAELIA has a lot of advanced features like infrared

communication, image processing for color and movement
detection, speech recognition and generation, etc. We used
existing components for most of these advanced features.
The used components are ActiveX components for
Windows operating systems. The AMAELIA program was
written in Visual Basic, which is very efficient for ActiveX
reuse, graphic user interface design and quick development.

ARCHITECTURE OF AMAELIA
The architecture of AMAELIA is designed according to

an object-oriented approach; there are seven main entities,
all of them embed one or several existing ActiveX
components (see also Figure 2).

mailto:L.J.M.Rothkrantz@cs.tudelft.nl

Figure 2: Architecture of AMAELIA

The architecture can be divided into 3 layers:

1. Body components (low layer), which owns three
entities.

2. Brain (middle layer), which is one entity.
3. Commands (high layer), which owns three entities.

The Brain layer has only one entity, which is the core of
the system. All the entities in a same layer (1 or 3) are
equivalents in terms of role in the system.

Body Components layer
The entities in this layer can access the hardware to

produce a physical action: RobotCat is in charge with the
Lego Robot, EyesCat with the Lego Camera, and VoiceCat
with speech generation. These components are also sources
of events (contactPushed, objectSeen, endOfSpeech...). The
events are sent to the BrainCat which is the only entity
allowed to trigger actions on the Body entities.

Brain layer
The Brain entity organizes the execution of the cat

behaviors (structured as a tree) that the user defines with the
entities of the Commands layer. With the Body components,
the Brain entity calls some actions and receives some
events. From this point of view the Brain entity is designed
as an agent.

Commands layer
The entities in the Commands layer are the multimodal

interfaces for the user to give orders with text, icons, and
speech. Icons and speech are translated into text, and then
text is parsed to build an StrTree structure, which is the
command input for the Brain entity.

ROBOTCAT
A couple of years ago, the Lego Company released a new

range of Lego toys called Lego Mindstorms™ System. The
goal of these toys was to give children (and adults) a tool to
learn developing and building robots. The kit allows you to

build a Lego robot and command it from your PC. This new
range uses the pieces of the Lego Technics range, but Lego
adds some special pieces:

Figure 3: The LEGO Mindstorms system

• The RCX or programmable brick: the main yellow

piece in Figure 3 is a big Lego brick with a
microprocessor inside and some inputs and outputs on
the top. It can communicate with the PC via an
infrared port located on the RCX and an infrared
tower that should be connected on the COM port of
the PC.

• The output bricks: motors, lights.
• The input bricks (sensors): to detect contact, rotation,

light and temperature.
• The cable bricks: these are just two small and simple

Lego bricks with electrical contacts and are used to
connect a RCX port to another special brick (inputs
and outputs).

Building
The first stage of the realization of the robot is building it.

It could be almost summarized in three words: connecting
Lego bricks. Indeed, from its nature, Lego offers us such an
easy building way, which gives us a lot of building
possibilities. However we were inspired from one of the
most basic models (and thus one of the most functional) to
build our robot.

One of the major simplifications that we would like to

point out that the robot has ’no legs’. Instead we used
caterpillars and wheels. Our robot can nevertheless use legs
if it is wished (the wheel-caterpillar-legs are
interchangeable) but the accuracy is reduced during moving
and the control is much more random. Two engines are
devoted for moving, using two PBrick outputs. The third
output is used to connect the lamp. For the sensors of the

robot, we equipped it with a rotation sensor allowing it to
measure the distances covered. We also placed two contact
sensors on the front side of the robot on the bumper, which
enables it to detect contact with obstacles on the left and
right independently.

Figure 4: The LEGO cat

Software
There is software included in the Lego box. The program

is called RIS (Robotics Invention System). RIS allows you
to program simple behaviors using the RCX brick by
visually connecting procedures. However, it is too much
limited for our needs, in particular for extensibility and the
possibility of adding external components such as the
Speech API.

The Lego software includes the Spirit.ocx component.
The Spirit component is an ActiveX control with access to
the COM port and the infrared tower connected on it to
communicate with the RCX programmable brick (Pbrick).
You can control the PBrick in two ways, and most of the
Spirit methods are available for both ways:

1. Direct commands: the action is done on the PBrick
when the method is called on the PC.

2. Downloadable commands: the command is downloaded
when the method is called on the PC, the command is
executed in the PBrick when the program has been
started.

To store downloadable commands, the PBrick has 5

programs slot, each of them can contains 10 tasks and 8
subroutines. The ActiveX control can only be accessed from
a programming language, which provides ActiveX dynamic
linking. Common user languages for this are C++ and
Visual Basic. We chose Visual Basic for its advantages of
quick development.

We can group the actions of the Lego robot into four
categories:

1. Moving actions: driveForward, rotate Left
2. Sounds and music actions: play Sound, play Music.
3. Light actions: setLightOn, set LightOff.
4. Systems actions: setPowerMotor, set

PowerDownTime.
The RobotCat cab fire four events from the contact
sensors, they can be left or right contact which is pushed
or released.

EYESCAT
Another kit in the Lego Mindstorms System line is the

Vision Command kit, which provides the Lego Camera and
the Vision Command software. The Vision Command
software allows the user to command the PBrick according
to some camera events fired from colour and movement
detection. The Lego Camera is actually a simple web cam
using the standard QuickCam drivers. Logitech, the
QuickCam provider, offers the QuickCam SDK, which is a
set of ActiveX libraries and controls. EzVidCap is another
free ActiveX control to preview and capture pictures and
videos; it uses the QuickCam SDK. The Lego Camera
Control (LCC) is an ActiveX control which uses EzVidCap
and which makes colour and movement detections
according to a layout of detection zones that the developer
can define.

LCC Detection
The Lego Camera Control provides an efficient way to do

colour and movement detection. We can define up to 64
layers, each of them can contain up to 64 detection zones
for colour or movement. The detection is not done on the
real image but on 16-colours version of this image, this
increase the reliability of colour detection (movement
detection is actually colour-changes detection).

Actions and Events
We had to specify how the system would use the camera,

which means what are the layers that can be useful for the
Robot Cat. The first idea is to put the camera on the Robot
Cat, instead of his eyes, so the camera is looking
horizontally. It would have been nice to put a motor with
the camera to make it rotating up and down, but we are
limited in using motors outputs on the Pbrick; there are only
three outputs available, two are used for driving and one for
the light. So the camera can only move from left to right,
using the rotate driving commands of the whole robot.

Because only one layer is active at the same time, the
actions for Eyes Cat are to set a particular layer, or to set
the inactive layer to prevent the system to receive events
from the camera. Different events are raised according to
the layer.

VOICECAT
In order to give a little more presence to our robot cat, we

equipped it with a voice. For this purpose, we had to use
some classes of the Speech API to develop this small
module of speech generation. This module is based on the
same model as the other cat commands, as will be discussed

in the section iCatBeh. It means that the order "say"
includes ICatBeh interface.

The actions and events module adds the action “say”

which takes a string parameter. It introduces also the
concept of events of beginning and end of word or phrases,
but these events are not available to the AMAELIA user.
They are just used to synchronize the execution (when we
want to do something after saying something).

BRAINCAT

Figure 5: Information flow diagram of BrainCat

Component responsibilities
The Events Manager object listen to events from the Body
entities and also to the doNow event that the Commands
entities use to start execution.

• The ICatBeh interface is implemented by the current
behavior tree, once the execution has been started, it
has to organize its own internal execution of its nodes.
The implementation of the ’Action()’ method should
call specific actions on Body components.

• The Events Context stores all the event-reaction
couples. While executing, the user can change these
couples using a special control command.

• The Knowledge object is the knowledge base of the
system, inside are stored variables of different types
which reflect the mind state of the cat (combination of
Booleans), and also some integer and string values
used for events and actions.

• The CatBehTreeBuilder manages input commands
from the Commands layer to build an ICatBeh tree,
which will be stored in the Events Context. The input
command is already organized into an StrTree.

• The Timers form uses some Timer controls to make a
countdown when an action is executing, in order to
stop it if the end of task event has not been received
(which can happen when the robot goes too far and
loses infrared contact).

ICatBeh interface as a composite model
In order to structure our language, we take as a starting

point a design pattern called Composite. It is a structural
design pattern, which enables us to organize the words of
the language in sentences.

The composite model offers to us a common interface for

all the words of the language, the ICatBeh interface. But
also a structure for the spoken and executed sentences.

In a second part, we introduced some control commands

to enrich the language.
• Three conditional commands: if, while, doWhile.
• An event reaction is possible with the command

"when".
• A sequential command which is the natural alignment

of the words in a sentence.
• A synchronous command: "doBoth".
• A loop command: "repeat"
From a certain point of view, all the orders are equivalent

but at the same time, some control commands may contain
other basic orders or control itself. The customer would like
to process all orders in the same way. For that reason we
consider the basic orders like leaves of the tree of the
sentence and the nodes of the tree are control icons.

In summary, it gives: basic, or complex orders on the

leaves of the tree and the control commands, such as if,
while, doWhile, when, doBoth or a sequence command, on
the nodes of the tree. We note that in the case of some
control icons, the leaves can also be tests (as "if", "while",
or "doWhile" children) or events (as "when" children).
Finally we note that we are also inspired by the Interpreter
design pattern to build the control icons and integrate them
in the tree of language.

Discussion about the execution model
The execution model defines how a tree of ICatBeh

objects is executed (to execute means to call the method
’Action()’ of the interface ICatBeh). There are two
categories of ICatBeh objects as leaves of the tree:

1. Immediate actions: like setLightOn, watchTarget,
stopAll.

2. During actions: like driveForward 10 cm, say “Hello“,
playMusic A5, A5, A6.

The internal nodes of the tree of ICatBeh objects are

necessary controls command like sequence, if, when, while
etc. An internal node can be an immediate or during type
depending of the children of the nodes. Notice one
exception: the when control is always an immediate
command because this control command tells the cat how to
react when an event occurs. The reaction (the child of the
when node) is not executed when the ’ when control’ is
executed, but when the event occurs.

We want to build an execution model, which can execute

a tree of ICatBeh objects regardless of the category of each

object from the sequence (the sequence is a subsequence of
the sequence of all the nodes of the tree in prefix order).

The execution model should satisfy the following two

requirements:
1. Execute an action not before the previous action in the

sequence is finished.
2. Execute a new sequence when an event occurs.

In the same way, we separate events into two categories:
1. ’end of task’ event, which notify that the current action

is just finished, so we can now trigger the next action
in the current behavior tree, these events are not
available at the user level (in the Cat Command
Language)

2. ’environmental events’, which notify a “Cat Event“
from the environment (ex: contactPushed, object seen,
speech recognized...), so we need to stop the current
execution, to change the current tree and to execute
this new tree. These events are available at the user
level (in the Cat Command Language), it means that
the user can define the behavior to execute when an
event occurs.

Our incremental approach of the problem resulted in a

design three different execution models. The features
provided with the two first models are equivalent, but the
first one makes the system call stack growing without
control. This problem is corrected with model 2, which
needs an “executioner“ (an entity different from the “Events
Manager“ which can run and cancel the actions of the
ICatBeh objects). The third model gives the feature of
multitasking, which obviously increases the interactivity of
the robot. Moreover model 3 does not need any
“executioner“.

THE CAT COMMANDS LANGUAGE (CCL)

Figure 6: Icon interface of AMAELIA

The cat command language makes it possible to order the
robot cat quite simply. The user just has to compose a
sentence and to validate it.

This sentence can be written either with the words of the
language, or with command icons. These two languages
(text and icons) are completely equivalent, that is to say
each word of the language text matches an icon.

Basic commands
The basic commands form the primary bricks of the

language of the cat. They are the basic orders of the robot,
which match to its basic functionalities such as going
straight, lighting the lamp or playing some music, taking a
picture or saying something.

Some of these basic commands are followed by some
parameters, not optional for most of them.

State icons
The state icons or test icons represent the states of the

robot cat. They will be used with the keywords "if",
"while" and "doWhile" in order to compose conditional or
repetitive behaviors. When these icons are used, they call
upon the database of the cat (its base of knowledge, its
brain) to know the value of the test and thus to decide the
continuation of the behaviour.

The icons of tests are: isHungry, isSleeping, withCam.

Event icons
Event icons stand for events for which the robot cat is

sensitive, that is to say all the events it can detect and which
are available for the user. These icons will be used with the
keyword "when", thus the user will be able to set up specific
reaction on some event.

Control icons
The control icons make it possible to structure the cat

language in a logical way. It makes it possible to combine
basic icons between them, but also to introduce the events
and the tests in the language.

CONCLUSIONS
AMAELIA is designed as an extensible application, it is

possible to add new actions and events on the existing body
components, but it is also possible to add new body
components, which have their own actions and events. The
input layer is also extensible while the new input can be
translated in CCL.

A very good extension for our cat could have been the
icons recognition by the Lego camera. Indeed we designed
an icon language and we designed a module able to
recognize some icons belonging to CCL. In this way we
could have a fourth way to command the cat.

REFERENCES
[1] Pascal Vaillant: Sémotique des languages d’ icons.

Honoré Champion éditeur. 1999
[2]

http://neuron.eng.wayne.edu:80/LEGO_ROBOTICS/lego_r
obotics.html

http://neuron.eng.wayne.edu/LEGO
http://neuron.eng.wayne.edu/LEGO

	Keywords
	Abstract
	Introduction
	AI Aspect
	Entertaining Aspect
	Components Aspect

	architecture of amaelia
	Body Components layer
	Brain layer
	Commands layer

	RobotCat
	Building
	Software

	EyesCat
	
	LCC Detection
	Actions and Events

	VoiceCat
	Braincat
	Component responsibilities
	ICatBeh interface as a composite model
	Discussion about the execution model

	The Cat Commands Language (CCL)
	Basic commands
	State icons
	Event icons
	Control icons

	Conclusions
	References

