
STRATEGO EXPERT SYSTEM SHELL

Casper Treijtel and Leon Rothkrantz
Faculty of Information Technology and Systems

Delft University of Technology
Mekelweg 4 2628 CD Delft University of Technology

E-mail: L.J.M.Rothkrantz@cs.tudelft.nl

KEYWORDS
Games, A.I., Multi-agent, Expert systems, Stratego

ABSTRACT
The field of multi-agent systems is an active area of

research. One of the possible applications of a multi-agent
system is the use of distributed techniques for problem
solving. Instead of approaching the problem from a central
point of view, a multi-agent system can impose a new mode
of reasoning by breaking the problem down in a totally
different way.

In this paper we investigate a distributed approach to
playing Stratego. Computational agents that each have their
own field of perception, evaluation and behavior represent
the individual pieces of the Stratego army.

A first prototype of a framework has been developed that
consists of a simulation environment for the agents and an
implementation of the agent’s evaluation function. The
agents have a rule engine that generates behavior that is a
resultant of the environment in which they live.

INTRODUCTION
This paper describes a first attempt to play the Stratego

game with multiple agents. The Stratego game is a board
game where two players battle each other with their armies
of pieces. The object of the game is to capture the enemy
flag, by moving pieces towards the enemy and trying to
capture the enemy pieces. An interesting property of the
game is that the information the players have is incomplete,
because the identity of the opponent's pieces is concealed
until exposed by battles between pieces.

Our motivations for using the multiple agent approach are
as follows. When we consider a human society from a
central point of view we see that it is a very complex
system. A possible attempt to understand the complex
behavior of a human society is to consider it as a system
that is made up of individuals that have their own
characteristics, behavior patterns and interactions with each
other. It is the sum of all the local actions and interactions
that constitutes the overall behavior of the society. This
investigation is an attempt to support this hypothesis by
considering the Stratego game. Specifically we want to
investigate whether a distributed way of playing this game
will provide us with a means to break down the complexity
of playing it.

Our work is based on ideas of multiple agents as
described by J. Ferber (Ferber 1999) and intelligent agents

as developed by P.Maes (Maes 1995) and L.Steels (Steels
1997).

DESIGN
In designing the agents we want to make use of the fact

that each piece in the Stratego army has a certain dedicated
role. These roles originate from their specific ranks and the
rules of the Stratego game. All pieces have secondary goals
as well of which possibly the most important one is to stay
alive. We propose to define some degrees of freedom in our
model of the agent that will allow us to experiment with
different types of agents in the Stratego army. Specifically
we define for each agent:

• The agent's perception range. Depending on the

agent's role in the army the perception will be a
diamond of range one to five, or an n x n square of
fields. Important pieces will have wider perceptions.

• The agent's ‘reactive’ behavior. For every agent we
define four elementary behaviors that are executed
following a reaction in various situations. These
behaviors are attack, flee, random walk, and stay and
do nothing.

• The agent's ‘cognitive’ abilities, for example evaluate
situation, compute optimal next move, form
hypotheses, and make plans.

In our design emotion is modeled as follows. Emotions

are related to parameter settings regarding the agent's
perception and behavior. For example, if an agent gets
upset, afraid or stressed we shrink his field of perception
(tunnel view). And if the agent is angry we increase the
possibility to attack (McCauley 1998; Scheutz 2000).

We designed two levels of communication among agents.
One is communication by means of a blackboard that can
be written to and read from by every agent. The blackboard
is a container of all information of the board situation that is
available. This way all agents can rely on the fact that their
field of perception is in accordance with the current board-
situation. The blackboard contains strictly information
about the board status.

Additionally the agents can use an asynchronous
message-passing structure. Agents can send and receive
messages to each other containing information about the
Stratego battlefield. The communication structure allows
sending messages to all other agents, sending messages to
agents of a certain rank or sending messages to specific
agents. The content of messages can either be known facts,
hypotheses or requests.

mailto:L.J.M.Rothkrantz@cs.tudelft.nl

Because only one piece can move at a time, a mechanism
was designed that decides which agent is allowed to move.
The decision rule was based on scores, where each agent
evaluates its current situation and assigns scores to
preferences of moving. A higher score will indicate a
stronger desire to move and the agent with the highest score
will be allowed to move.

ARCHITECTURE OF THE STRATEGO AGENT
For our Stratego agent we defined a three-layered

architecture, with a sensor, evaluation and effector layer.
These layers relate sensor inputs to actuator outputs. The
actual relation between percepts and actions takes place in
the evaluation layer. There are various possibilities for
filling in the evaluation layer. We discuss the traditional
and the behavior-based approach designed by R. Brooks
(Brooks 1986).

The traditional approaches to model cognitive systems
are based upon a strict functional decomposition of
modules. These approaches result in so-called sense-model-
plan-act frameworks. The cognitive system contains a
number of modules that are built on top of each other, each
performing a dedicated function as a part of the system.

One characteristic of these types of frameworks is that
every module has a specific function that uses input from
the module before it. When applied to the Stratego agent,
the traditional framework takes the form as indicated in
Figure 1. The three layers, (sensors, evaluation and
effectors) are influenced by the motivational and emotional
states that the agent undergoes.

The behavior-based approach has the advantage that new
modules with new behaviors can be added to the system
quite easily. Also, the architecture allows for a combination
of modules that may be based on each other or that may be
conflicting among each other. It is imaginable that some
goals of Stratego agents may very well be conflicting. The
architecture of the behavior-based approach seems to be
very appropriate for our notion of the Stratego agent, in the
sense that for each goal we are able to add a separate
behavior module. The three layers are influenced by the
motivational and emotional states that the agent undergoes.

As is the case in the subsumption architecture, these
modules operate in a considerable autonomous way. The
modules shown in Figure 2 are some behaviors that apply to
a piece in a Stratego environment. Depending on the
situation at hand, one of the behaviors has the overhand and
dictates the overall behavior of the agent.

KNOWLEDGE OF THE AGENTS
Since the agents represent pieces of the Stratego army, we

want them to express behavior that can be seen as ‘rational’
from their point of view. In other words, we want them to
express behavior that will make the agents successful in
achieving their goals. Our approach is based on a rule-set
that explicitly defines what to do for a number of situations.

For each of the Stratego agents we have defined a set of
rules that specify the behavior, according to the current
situation of the agent. We call these rule-sets preference
rules, since they indicate preferences to exhibit behavior
rather than performing explicit actions. The use of
preferences instead of actions in the rules arises from the
desire to allow separate behaviors to be activated
simultaneously.

We will give some examples of preference rules of the set
of 29 preference rules for the “minor”-agent:

Rule 1: This rule will fire the preference “attack” when the
following conditions are met:

• Enemy bombs captured
• I have moved
• My rank revealed
• Enemy with unknown rank present at distance 1

Rule 13: This rule will force the preference “flee” when the
following conditions are met:

• I have moved
• My rank revealed
• NOT enemy bombs captured
• Enemy with unknown rank present at distance 1

Figure 1: Traditional approach to modeling an Stratego

agent based on a functional composition of modules in the
evaluation layer.

Figure 2: Behavior-based model of the Stratego agent with
separate behavior modules in the evaluation layer.

Rule 22: This rule will fire the preference “stay” when the
following conditions are met:

• NOT I have moved
• NOT my rank revealed
• NOT enemy bombs captured
• Enemy with higher rank present at distance 1

Rule 27: This rule will fire the preference “attack” if an
only if an enemy bomb has been spotted at distance 1.

Upon each move, all agents evaluate their situation and

express their desire to act or not. Because of the fact that
only one agent can and has to move at a time, one agent has
to be selected. This is done according to a weighted
function that takes into account all desires of agents. The
agent’s rule engine has been implemented using the notion
of separate behavior patterns that conform to the behavior-
based model (Figure 2). The agent’s behavior can be
explained as being a resultant of all separate behaviors. The
agents show emergent behavior that is caused by the sum of
all separate behaviors.

A great advantage of this type of emergent behavior is
that the agent comes somewhat closer to our notion of an
autonomous system. The agent’s perception, goals,
motivations, etc. all influence the agent’s actions. This
means that we can define different types of rules for the
agent that may harmonize or conflict with each other.

Figure 3: The environment in which the agent playing Stratego

lives

IMPLEMENTATION
In this section we will describe an implementation for a

prototype called Stratesys, as an acronym of the words
Stratego expert system shell. The implementation has been
done using the object-oriented programming language
Java2. In the current version of the Stratesys we have
implemented an agent type that is based on production
systems. For the communication among agents and the

agent rule-engine we have used the JavaSpaces Technology
and an expert system shell called Jess, respectively.

The simulation
According to Russel & Norvig (Russel et all. 1995), an

agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that
environment through effectors (see Figure 3). All agents
have the three layers sensors, evaluation and effectors. See
Figure 4 for a schematic view of the agent. Here we can see
each layer containing the agent’s internals. It also shows the
objects it is related to in its environment.

Figure 4: Schematic view of the agent's implementation

The Agent Player functions as a representative of the
Stratego army formed by agents. It is responsible for
creating all agents upon start-up, initializing them and
positioning them on the Stratego board. Also, the Agent
Player is responsible for maintaining information on the
Blackboard (Cavazza 2000). This is an object that
continuously reflects the actual situation on the Stratego
board, the way the Agent Player sees it. In other words the
Agent Player keeps positions of all pieces and where
possible fills in missing information concerning enemy
ranks.

The Agent Space is the agent's interface to communicate
with its fellow agents (a JavaSpace-service). It is read from
by the Hearing object and sent to by the Talk effector. The
View object provides the agents with visual perception. It is
actually an accurate copy of a small part of the Blackboard.
It continuously checks for recent changes on the
Blackboard, and updates itself whenever necessary.

The Stratego Space is the communication medium for the
Client and the Server. The agent's lifecycle can be viewed
as a number of states and transitions. The most important
state in the cycle is the Evaluate state. Here, the Rete
algorithm is applied using the percepts that have been
received. If the Evaluation leads to an action, it will cause a
transition to the Sleep state. In the Move state a piece can
do an actual move. From the Move state there are two
possible transitions to other states. When a move to an
empty square was done the agent perceives some changes in

its environment and evaluates them. The other possibility is
a battle with an enemy piece. In the Battle state the agent
either wins and notifies all fellow agents of the capture, or
the agent looses and notifies its death.

The Client-Server model
Since we wanted to be able to play human versus human

games, we have created two programs that implement a
Client-Server model. The Client is the main Stratesys
program. The Server runs in the background, continuously
listening for Clients to connect. See Figure 5 for a
schematic view of the Client and the Server.

The communication between the Clients en the Server has
been implemented by a Java Space-service called ‘Stratego
Service Space’. Using the space the Clients and the Server
can exchange information by reading from and writing
messages to the space.

Figure 5: The Client-Server model

The Client is the main Stratesys program. At startup, a
window is positioned on the screen with an empty Stratego
board. The possible ways of playing the game are a human
player playing against an agent army and two human
players playing against each other.

At startup, the players will be registered with the Server.
The human playing Stratego can position his army by
clicking on the squares of the board. A pop-up menu will
appear that will allow the player to choose a piece. When
all pieces have been positioned, the players can begin to
move their pieces. By using mouse-clicks on the squares of
the board the human player can select pieces to move. For
clarity concerning the situation on board we have chosen to
implement the use of animation for each moving piece.
When a correct move has been requested the board draws
an animation of the moving piece from the initial position to
its destination.

Depending on the type of game that is played, one or two
Player objects will be created. Only in the human versus
human mode will the Client create a one Player object.
Naturally this implicates the necessity of another Client in
the network. In the other modes of operation, only one
Client is used which runs both Player objects. The Player
object has both references to its own Pieces and to Enemy
Pieces. The Enemy Pieces are actually only ‘dummy’ Pieces
that are a visual representation of the actual enemy pieces.

From the Player object to the Server and back are messages
to register the player with the board. Messages from Player
to Pieces concern position and move messages. The same
applies to the messages sent from the Pieces to the Server
and back. The Enemy Pieces however only receive
messages from the Server and relay them to the Player
object. This is because of the fact that these objects are only
visual representations, as mentioned before.

Our implementation of the Server can accept two players
wanting to play Stratego. These players can reside in one
Client program or two. The latter case is only for human
versus human games. After the game is over, the Server will
wait for new requests for playing. The Client-Server
communication consists of four phases. These are
registration, positioning pieces, moving pieces and
notifying a game over. For each of the phases we have
defined specific messages, which we call, tickets.

Tickets are sent as requests and received as answers to
that request. The idea behind the concept of a ticket is that a
ticket gives a piece the right to position itself somewhere or
move to a certain square.

Upon starting the game, the Client creates one or two
Player objects, depending on the type of game that is
played. The Players send a Registration Ticket to the Server
to register. After sending the ticket, they will receive an
answer with information about the registration (successful
or not).

When two players have registered to the Server, they can
position their pieces. For each piece to be positioned a
Position Ticket is created and sent to the Server. The Server
checks to see if the requested positions are valid, and send
the tickets back with this information.

EXAMPLE OF A TEST RUN
In this section we will consider two situations where the

sergeant is in the environment as indicated in Figure 6. The
sergeant sees an enemy piece with unknown rank (north
square) and an enemy scout (northeast square). We will
consider the case where the sergeant has already moved and
its rank is known. The JESS output gives:

f-51 (enemy-known north east)
f-52 (enemy-unknown north)
f-54 (flee)
f-54 (update scores 0,–200,50,200,50)
f-55 (attack)
f-56 (update-scores 0,50,-50,-50,50)

Let us consider the computation of the scores (see Figure 7)
in case that the sergeant has a desire to attack:

Score for staying: 0
Score for moving forward: -200
Score for moving left: 50
Score for moving backward: 200
Score for moving right: 50

Figure 6: The sergeant’s environment

+

=

Figure 7: Computation of the scores

In the current implementation of the rule engine, the
evaluation consists of a mapping from enemy location to a
desire to move (for each direction) or to stay, expressed in
scores. In the specific example, the sergeant may want to
flee from the unknown enemy. But it also sees an enemy
scout that can be beaten. Therefore in this particular case
the sergeant’s behavior will be a mixture of the desire to
flee or to attack.

The scores indicated above express relative desires to go
or to attack. Negative scores mean that the agent does not
want to go in the corresponding direction. In the example
the scores are a resultant of the behaviors to attack or to
flee. The fleeing behavior is due to the enemy with
unknown rank. Since the sergeant is a piece with a relative
low rank, the score to move backward is largest and the
sergeant will decide to move backward

CONCLUSION
In this paper we have described a multi-agent approach

for playing the game Stratego. This approach involves
playing the Stratego game with multiple agents that each
represents a piece in the Stratego army. The approach was
based on the hypothesis that for some complex problems
distributing techniques for solving them can result in more
intuitive solutions. We assumed that the Stratego game
could serve as an excellent playground for testing the
hypothesis. Players have incomplete information on the
board status and that results in the high complexity of the
game.

We did not make an analysis of the game. We advocate
using a corpus-based approach to build up a library of
games, which can be used for studies and experiments about
Stratego. The Client-Server model that has been
implemented provides a framework from which several
experiments can be run.

We have tested our prototype program Stratesys by
letting the agents play against a human player. The
experiments have resulted in some valuable ideas about our
multi-agent approach. It proved that playing the game with
multiple agents is an excellent approach to break down the
complexity of the game.

REFERENCES
Brooks, R.A. (1986). A robust layered control system for

a mobile robot, IEEE Journal of Robotics and Automation
RA-2:14-23

Cavazza, M, et al (2000), A real-time blackboard system

for interpreting agent messages, Proc. GAME-ON 2000,49-
55

Ferber, J. (1999). Multi-Agent Systems, An Introduction

to Distributed Artificial Intelligence, Addison Wesley,
England

Maes, P. (1995). Artificial life meets entertainment: Life

like autonomous agents, Communications of the ACM 38,
11:108-114

McCauley, T.L. & Franklin, S. (1998). An architecture

for emotion, AAAI 1998 Fall Symposium “Emotional and
Intelligent: The Tangled Knot of Cognition”, AAAI Press.

Russel, S .& Norvig, P. (1995). Artificial Intelligence-A

modern Approach, Englewood Cliffs, NJ: Prentice Hall

Scheutz, M. et al (2000) Emotional states and realistic

agent behavior, Proc. GAME-ON 2000, 81-87

Steels, L (1997). A selection mechanism for autonomous

behavior acquisition, Robotics and Autonomous Systems
20: 117-131

 -200
50 0 50
 200

 50
-50 0 50

 -50

 -150
 0 0 100

 150

	Abstract
	Introduction
	Design
	Architecture of the Stratego agent
	Knowledge of the agents
	Implementation
	The simulation
	The Client-Server model

	Example of a test run
	Conclusion
	References

