A LEARNING ARCHITECTURE FOR THE GAME OF GO

A.B. Meijer and H. Koppelaar
Delft University of Technology. Faculty ITS. Section Mediamatics.
Mekelweg 4, P.O.Box 356, 2600 AJ, Delft, The Netherlands.
{a.b.meijer, h.koppelaar}@its.tudelft.nl

ABSTRACT

In this paper, a three-component architecture of a
learning environment for Go is sketched, which can be
applied to any two-player, deterministic, full informa-
tion, partizan, combinatorial game. The architecture
called HUGO has natural and human-like reasoning
components. Its most abstract component deals with
the selection of subgames of Go. The second component
is concerned with initiative. The notion of gote no
sente (a move that loses initiative but creates new
lines of play that will hold initiative) is formalized. In
the third component, game values are computed with
a new kind of «-g algorithm based on fuzzy, partial
ordering. Our approach leaves some valuable control
parameters and orers ways to apply further machine
learning techniques.

KEYWORDS Combinatorial Games, Uncertainty,
Initiative, Fuzzy Partial Ordering, Game of Go

INTRODUCTION

Two-player, deterministic, complete, information, parti-
zan, combinatorial games form a family of games which
has received a lot of attention from the Al community
over the last decennia. Altough much progress has been
made, resulting in some well-playing chess programs for
example, almost all modern programs for these games
lack (well-formalized) human-like behavior in general
and the notion of initiative in particular. This need not
result in a poor performance, rather it depends on the
domain. We hypothesize that the notion of initiative
is mandatory for writing a good program for the most
notorious of combinatorial games: Go. It’s folklore is
full of terminology concerning initiative and profession-
als play the game at an abstract level of initiative, far
beyond considering just move sequences, as in the com-
monly used «-3 algorithm (or any other minimax-based

search algorithm). Furthermore, the a-G algorithm is
based on some absolute scalar-valued evaluation func-
tion, whereas humans can be said to use an ordering
function to compare two board situations directly with
one another. For example, a professional Go player
could reason that one position is slightly better than
another when his walls look a bit thicker (=stronger).

.
.
20000
990000920
ENENDNENENDND)
000006
OO%%%@OOQ
}E-O _|_‘- [:_.J

Figure 1: An endgame situation in 9 x9 Go.

This paper is organized as follows. In the next two sec-
tions we will give a short introduction to the game of
Go and combinatorial game theory. Then, we formalize
these two human-like concepts that arise in the learn-
ing environment of Go and embed them in an architec-
ture called HUGO. The following three sections further
explain the three components of HUGO. The ..rst com-
ponent deals with the selection of subgames of Go, the
second with initiative and the third with the compu-
tation of game values. We end with some concluding
remarks and future work. Go terminology is written in

small caps.
THE GAME OF GO

Go is an ancient game, originated in China about 4000
years ago. It has infuenced oriental warfare, which
shows oz in the shape of the Great Walls of China and,
very recently in Afghanistan, in the preference for semi-
.xed frontlines between the opposing factions, which
only change hands if there is a broad momentum in
favour of one of the sides. Compare this with Go, where
two players have to embark territory by alternately plac-
ing a stone on a grid, gradually building strongholds and
eventually walls that completely surround one’s terri-
tory. Strongholds will only be given up if the opponent
has created enough infuence (Go term for momentum)
to walk over it.

The rules of Go are very simple in principle (but in ..-
nesse they can vary a lot over dizerent rule sets like the
Chinese, Japanese or mathematical Go rules). The cap-
turing rule is the most important, stating that a string
of stones gets captured if all of its neighboring intersec-
tions are occupied by enemy stones. This rule implies
that the two x’s in ..gure 1 are suicide, which implies in
turn that the white group that surrounds them cannot
be captured (Go terminology: the group lives). The
white group can only be captured if White would co-
operate foolishly and plays on one of the x’s himself.
Black is then allowed to play the “temporary suicide”
of the other x, because this would capture the entire
white group and the suicide is resolved.

The goal of the game is to make living groups that sur-
round more territory than your opponent.

If in the game of ..gure 1 Black were to play, he would
have two good options. The ..rst is to play at d, killing
the white group since it has become impossible for
White to construct two suicide points (eyes) like the
two x’s. The second option is to save his own group in
the bottom right by playing at a. This would result in
two black strings, each having one eye. The strings can
always be connected with White b, Black c or vice versa.
The resulting group lives with two eyes. The best of the
two is a, since there are more stones in this group.

COMBINATORIAL GAME THEORY

This section is a very short introduction to Combi-
natorial Game Theory, loosely following (Cazenave,
1996). It is a mathematical theory for games and num-
bers, developed by J.H. Conway (Conway, 1976) and
adapted to many games by Berlekamp, Conway and Guy
(Berlekamp et alii, 1982).

De..nition 1 A combinatorial game G = {F|O} is
composed of two sets F' and O of combinatorial games.
Every combinatorial game is constructed this way.

In games, F should be seen as the set of options (board
positions) that player Friend can reach with one legal
move. O can be looked at as the options for player
Opponent. F' can have two possible values, W (win for
Friend) or L (loss for Friend, so win for Opponent). If
Friend has a legal move that ensures a win for the whole
game, then the value of F' is W. This gives four possible
outcomes for a combinatorial game: WW, WL, LL and
LW (We will use both WW and W|W as abbreviated
notations for {W|W}). The left half of a game value is
the maximum result that Friend can obtain, the right
half is Opponent’s best result.

WW denotes a game that is won by Friend, irrespective
of who moves ..rst (both player can at best move the
game to W = win for Friend). A Go example is the
white group in the bottom left of ..gure 1, which lives
unconditionally.

WL is an unsettled game, it is won by the player who
moves ..rst. An example is the life status of the white
group in the upper right corner. If White moves ..rst
he can play at d, resulting in a living shape (its terri-
tory contains two eyes, intersections that are suicide for
Black).

LL is a lost game for Friend, so a sure win for Opponent,
even if Friend moves ..rst. Trying to kill the black group
in the upper left corner is a lost game for White (given
correct counterplay from Black)

LW is a somewhat strange equilibrium situation where
the player who moves ..rst will lose the game. An ex-
ample of this situation is known as seki. The triangled
stones in ..gure 1 form a seki: either player who wants
to capture the opponent string of triangled stones and
plays at one of the two shared intersections will imme-
diately be captured himself.

To evaluate a subgame, we de..ne

ValueW) =1, Value(L) = —-1.

In order to evaluate the global position, each subgame
is assigned a numerical importance. A (linear) combina-
tion of the value of the subgames yields an indication of
the balance of power. The precise nature of combination
is a task for component 1.

Now it is possible to de..ne the value of a move:

Value (move) = Value (F) — Value (O).

Value(move) is the value of the move that achieves state
F and thus prevents Opponent from achieving state O.
The value of a seki needs special attention, since usu-
ally there will be no play inside a seki (the value for such
a move is -2 times the numerical importance). Its value
depends on the rules. In Chinese counting one counts
one point for all the stones that live in a seki but no
point for territory, which is natural since no player con-
trols the in-between territory.

Another commonly used term for game value is temper-
ature, which corresponds to the size of the largest play.

As the game progresses, the temperature tends to drop.
Local temperature corresponds to the size of the largest
play in a region of the board. Ambient temperature is
the temperature of the game besides the local region.
In theory, the value of a game has only two values, W or
L. However, it is often intractable to compute the pre-
cise game value. Cazenave therefore extended Conway’s
theory to uncertain outcomes (Cazenave 1996). He in-
troduced a variable U, denoting an uncertain game value
with range [-1, 1]. If halfway a game the position is con-
sidered roughly equal for both players, then it makes
sense to assign this uncertain position the value 0.

U can be seen as a control parameter along the risky-
safe axis, since one is free to de..ne the value of U. A
low value for U would result in conservative play, a high
value models a form of risky play.

THE HUGO ARCHITECTURE

As stated in the introduction, it is our aim to model
human concepts that exist in the folklore of Go. We
have identi..ed three components that are inadmissable
in our approach. The ..rst component is to select rel-
evant subgames and their numerical importances. The
second is an initiative engine and the third computes
game values. We have called the resulting architecture
HUGO (human Go), see ..gure 2.

HUGQ’s input is a board position and some constraints,
for example a time or memory limit. This input goes to
component 1, which outputs a collection of games. This
is the input of the initiative engine, which calls the third
component to calculate the value of every single game.
Knowing all the game values, the initiative engine tries
to ..nd a move that both scores some points and holds
initiative.

COMPONENT 1: CHOICE OF SUBGAMES

The task of this component is to select a collection of
well-de..ned subgames (or simply: games) of Go which
form the basis for further computation. A good choice
of games should have a high discriminative ability: the
player that wins most of the important games should
also win the whole game and vice versa. The problem of
such an approach is that the subgames are not indepen-
dent and thus the value of the whole game is not simply
the sum of the value of the subgames (Berlekamp et alii
1982). However, advanced human Go players constantly
use a variety of games, such as life or death, connection
of stones, territory and more. They do this as a means
to obtain overview in a chaotic board situation and the
result is some sort of a mental model of the state of
the game. For each separate game, they can quite eas-
ily ..nd the (sub-)optimal move. The di¢cult part is
to take the interactions among games into consideration
and to ..nd the optimal move for the whole game. Play-

Board position, time constraint

v

Component 1: Selection of subgames
Ensure high discriminative abilities

Component 2:

Initiative Engine

1. For all subgames: Component 3:

determine desired Compute Game Value
width of game values

LT a-3 search based on

2. Select overall best fuzzy partial ordering
move

!

Figure 2: The HUGO architecture

ing Go at this abstract level means ..nding conficting
interactions all the time and then resolving or exploiting
them.

A good collection of games to start with are (1) life
and death for strings of stones and (2) connection of
strings (the fundamental importance of these games fol-
lows from the importance of the capturing rule). These
two families of games govern tactical play, but are also
inadmissable in strategic play.

One can think of many more games and there is indeed a
lot of work to be done, before this can all be automated.
However, one could also leave this task to an expert. In-
troducing more families of games would enhance more
sophisticated play, but at the cost of a higher computa-
tional ecort.

One further sophistication is to de..ne connections be-
tween groups (clusters of strings that are highly inter-
connected) instead of strings of stones. A clustering
algorithm would be valuable for this task.

COMPONENT 2: INITIATIVE ENGINE

Given a collection of well-de..ned subgames from com-
ponent 1, the task of the initiative engine is to ..nd the
move that yields the most points, preferably while hold-

ing initiative. When one has the initiative, one dictates
the course of the game and one can choose to accumulate
small gains from di=erent subgames.

The ..rst step of this component is to compute the value
of each game. A sophisticated game value should not
only reveal the player how will win a particular game
with which move, but should also tell what are threat-
ening moves in the game. A simple approach to meet
this criterium is to compute the game value for the two
cases that each player once moves ..rst and once moves
second (this is more or less common practice in the more
sophisticated current Go programs). If one wishes to
model threats, s/he must also compute game values for
two cases where each player gets to play twice before
the opponent may respond.

Let us call the number of plays by one player before the
opponent answers the width of a game value. One possi-
ble outcome for a game value with width two is WL|LL.
This is the situation that Friend can move to an un-
settled situation (WL) which he can win if he gets the
chance to play a second move (only when Opponent ig-
nores the ..rst move), whereas Opponent can move to a
won game (LL) if he does answer. Cazenave already de-
rived that this type of game has a threat for Friend only
(Cazenave 1996). In fact, the general representation of
a one-sided threat is WUUU for Friend and UUUL for
Opponent. WUU L is a two-sided threat.

If Friend wishes to play kiku (play to hold initiative)
he can choose to play a series of threatening moves. Al-
though Opponent simply can answer all the threats and
win in all the threatened games, this line of play can
be advantageous to Friend because a move generally
plays in more than one game at the time (multipurpose
moves). If a move is a threat in two games at the same
time, it will be di¢cult (if possible at all) for Opponent
to ..nd a move that resolves both threats at the same
time. The simplest line of follow up play is to answer
the most important threat, but then Friend can win the
other game.

Sometimes there is such a big move that one does not
care about holding initiative but just grabs the points
associated with the move (for example killing a large
group). In general, this should be done when the local
temperature is hotter than the ambient temperature.
Such moves usually end in gote (loss of initiative) and
the resulting game is cold (not much to gain left for
either side). In general, gote play lowers the local tem-
perature, while sente play raises it.

Ryo-sente (two-sided sente) arises when a move is a
two-sided threat. If it arises in important games it is
usually played immediately.

Despite losing initiative, gote moves can develop new
initiative. If a move is gote in one game but creates new
sente moves in another game, then this move is called
gote no sente (gote with sente potential). For ex-
ample, WLLL|LLLL is a lost game for Friend, but he can
change the game to a (lost) game where he does have a

threat (WLLL), whereas Opponent can move to a game
which he has won and leaves no threat (LLLL). So, an
example of a gote no sente mowve is one that is gote
in one game and moves another game from WLLL|LLLL
to WLLL. Gote no sente moves can only be found
if one considers the possible outcomes if a player moves
three times in a row before his opponent starts to answer
(width = 3). None of the current Go programs described
in literature does this. Cazenave uses game values up to
width 2 (but gave a formalization for greater width).
Computing up to width K is twice the cost of computing
up to width K-1. Therefore, one has to know when to do
s0. This task should be dealt with by component 2. One
good possibility is iteratively widening based on game
value feedback from component 3, since it is known from
(Berlekamp et alii, 1982) that one best makes moves in
hot (unsettled) games. So these are the games whose
value one would like to know most precise.

All the current commercial programs lack a well-de..ned
notion of initiative and their advantage in playing
strength can be expected to shrink relative to programs
based on scienti..c research, which do implement Com-
binatorial Game Theory.

COMPONENT 3: COMPUTING GAME VAL-
UES

The task of this component is to compute the game-
theoretic value of a particular game. Once determined
to what width an outcome has to be calculated, one ac-
tually has to calculate the value of the game and the
move(s) that accomplishes this value. In fact, in order
to do so, one has to calculate the value for all the moves
and select the best one. However, at this point it hasn’t
yet been determined in which game is to be played. It
is better not to remember just the best move but all
(good) options, because this leaves the possibility open
to detect multipurpose moves. Such a move might be
suboptimal in all the games it plays in, but can be su-
perior in the combined game compared to any of the
optimal moves in the separate games. Furthermore, re-
membering all good options can oxer a means to prevent
unnecessary recalculations. Imagine you would only re-
member the best option (and also only the best reply)
and your opponent plays in a later stadium a subopti-
mal move in the nearby region, threatening the result
of your best move. You then would need to re-evaluate
this move, whereas you wouldn’t need to, had you re-
membered opponent’s suboptimal moves too.

So the task in this component is to calculate the value of
a game, given some width. An «-3 algorithm (or other
forms of minimax search) can be used to do this, but this
requires some sort of scalar-valued evaluation function
to compare two board positions. This indirect compari-
son has several drawbacks, including the horizon ewect.
Quiescence search has been invented to circumvent this

problem, but does not solve all the problems. This and
other disadvantages of using absolute evaluation func-
tions are well described in (Mdller 2000).

Miller concludes that in many cases partial ordering
is better than absolute evaluation. This makes sense,
since it is more natural and even in a-3 search absolute
evaluation is used for partial ordering in the end.

We hypothesize that «-(search in its current form can-
not handle the multidisciplinary and strategic nature of
Go.

Muller’s alternative was a method that combines par-
tial order evaluation with minimax search, called Par-
tial Order Bounding. In this method one categorizes all
the possible states into a success set or a failure set.
Minimax search is performed to determine which move
guarantees that any leaf node of this move’s subtree be-
longs to the success set. Leaf nodes are evaluated just
by checking whether or not it falls into the success set,
so the minimax values are boolean.

In contrast to this, our approach does not directly use
a success set, rather we bring partial ordering right into
the «-f algorithm itself, so we use no boolean-valued
evaluation function. To be more precise, we will use
fuzzy partial ordering of vector states. Obviously, this
generalization is not possible without considering all
consequences of introducing fuzzyness and partial or-
dering at the same time.

In short, fuzzyness can be dealt with by putting states
that are approximately equal into one cluster. If one
watches out that intra-cluster distances remain (far) big-
ger than inter-cluster distances, it is possible to order
clusters just as if one were ordering single board situa-
tions.

The partial ordering function compares the game value
of two (clusters of) feature vectors a and b and outputs
an ordering such as a = b (a is preferred over b), a =
b (a is by far preferred over b) a ~ b (about equal),
a ~ b (a and b are incomparable), combinations of
these like a - b (a is preferred over or approximately
equal to b) and negations. Notice that incomparable
is dicerent from approximate equality. Two states that
have approximately the same value are incomparable if
one is far hotter (more unstable) than the other.

A traditional o-(algorithm (without speed enhance-
ments) remembers during search just the values « and
(. In comparison, our generalized algorithm has to re-
mind a partially ordered tree of fuzzy clusters of already
evaluated options. We believe that the considerable ex-
tra amount of work (.rm theory plus implementation)
is worthwhile, since it ozers a natural (=human) look
at Go. For example, it enables an ordering between two
moves based on the achievements relative to some shared
parent state, which is really dicerent (and probably eas-
ier) than any scalar-valued board evaluation technique.
The details of this approach will be discussed in a forth-
coming paper, due to shortage of space here. One issue
that will be discussed in great detail and with math-

ematical rigour is omitted here, namely the fact that
game values are looked at as scalars in the above dis-
cussion, whereas they are more like an interval [O,F],
where O is an underbound for the real value (the best
result for Opponent) and F is an upperbound (Friend
best result). The real value is determined as soon as
one of the two players chooses to play in that game. Of
course, the discussion of this section still holds for small
game value intervals (cold games).

CONCLUSIONS AND FUTURE WORK

This paper sketched a human-like learning architecture
for the game of Go, called HUGO, but it uses no game
speci..c knowledge, so it should be possible to apply it
to any two-player, full information, deterministic, com-
binatorial game. HUGO has three major components.
The ..rst component deals with the de..nition and choice
of subgames. The second component is concerned with
initiative. In the third component, game values are com-
puted with a generalized «-3 algorithm based on fuzzy,
partial ordering.

The notion of gote no sente (a move that loses ini-
tiative but creates new lines of play that will hold ini-
tiative) is formalized for the ..rst time.

There are some points where one can apply further ma-
chine learning techniques, for instance a clustering al-
gorithm in the extended a-3 algorithm. Furthermore,
each component has some valuable control parameters.
The iterative widening in component 2 and possible iter-
ative deepening in component 3 could further enhance
real-time behaviour. The value of uncertainty can be
used to control the style of play along a safe-risky axis.
Currently, work is carried out to mathematically for-
malize and implement the a-g algorithm based on fuzzy
partial ordering, having combinatorial game values with
uncertainty as output.

REFERENCES

Berlekamp, E.; J.H. Conway; and R.K. Guy. 1982. Winning
Ways (for your mathematical plays). Academic Press,
New York.

Cazenave T. 1996. Systeme d’Apprentissage par Auto-
Observation. Application au Jeu de Go. PhD thesis,
Université Pierre et Marie Curie, Paris.

Conway J.H. 1976. On Numbers and Games. Academic
Press, New York.

Miiller M. 2000. “Partial Order Bounding: A new Approach
to Evaluation in Game Tree Search.” Technical Re-
port of ETL, TR-00-10. To appear in a special issue on
heuristic search of the Arti..cial Intelligence Journal.

