
Pursuing abstract goals in the game of Go

A.B. Meijer & H. Koppelaar
Delft University of Technology. Faculty ITS. Section Mediamatics.

Mekelweg 4, P.O.Box 356, 2600 AJ, Delft, The Netherlands.
{a.b.meijer,h.koppelaar}@its.tudelft.nl

August 31, 2001

Abstract
Reasoning and planning at di¤erent levels of abstraction is an important

skill in the game of Go, for both human and computer players. Over the
years, adversarial planning approaches have become increasingly popular for
dealing with large search spaces of two player games such as Go. This article
describes a di¤erent approach to adversarial planning, based on an analysis
of human Go playing. Abstract goals are decomposed by searching the space
of lower level features. Goal checking is done using an abstraction operator.

1 Introduction
The most popular approach to computer game playing is based on ®¡¯ search or
some other game tree search algorithm and position evaluation functions. These so
called data-driven approaches have shown excellent results in games with a modest
search space and for which position evaluation is not too complex. Chess is an
example of a game in which signi…cant successes have been achieved. However, it
has been far less fruitful as a paradigm for solving Go. This is due to the large
branching factor of the game tree of Go. On average, this is around 235 in Go,
compared to around 35 in Chess. Another reason is that position evaluation in
Go is much more di¢cult than in Chess, where the number of pieces on the board
is already an indicative measure. In evaluating a Go position, one has to judge a
complex balance between locally and globally interacting structures.

An alternative to the data-driven approach is goal-driven search, in which an
agent formulates goals and searches the space of possible goal expansions. When
this idea is used to model two opposing agents, it is called adversarial planning.
This method has the important property of greatly reducing the branching factor,
but it has the disadvantage that the space of plans has to be modelled and hand
coded. We propose a method that is both data- and goal-driven and should over-
come this disadvantage, while retaining the advantage of a reduced search space.
It is goal-driven in the sense that goals are formulated that are tried to be de-
composed, but data-driven in the sense that the decomposition method performs
search in the space of abstract moves.



Abstract moves consist of changing the feature vectors, which we use to model
the tactical and strategic aspects of the game. We use a hierarchy of boards and
associated feature vectors that contain properties of the objects on the board at
di¤erent levels of granularity. Such a hierarchy is needed to enhance decomposition
by search and moreover, it can be used in a model of human reasoning about Go.
We wanted to mimic human Go playing, since even amateur Go players are far
superior to the best current computer Go programs.

This paper is organized as follows. Section 2 deals with the way humans reason
e¤ectively about Go. In section 3 we explain adversarial planning and explain our
motivations for an adaptation of this approach. We discuss the board hierarchy and
the feature vectors in section 4 and elucidate our choice for a graph representation.
Our planning method is subject of section 5.

2 A model of human reasoning on Go
Human reasoning on Go is performed at roughly two levels of abstraction, a strate-
gic and a tactical level. In reasoning on the strategic level one considers the whole
board situation and focuses on the global interactions between di¤erent structures
on the board. Tactical reasoning aims at …nding locally good moves. We con-
structed a simple cognitive model of human reasoning on Go, consisting of the
following steps. First (abstraction), the situation on the board is judged. Global
structures called groups are recognized. Weak points in the groups and oppor-
tunities for both sides are investigated. Second (goal formulation), based on the
relative strength of the groups, the most important areas to play in are deter-
mined. Goals are formulated to change the situation in this area. Third (pursuing
goals), one tries to …nd locally a move that satis…es the goal, considering just a few
good ways of resistance by the opponent. It sometimes happens in professional
play that, even though some area is clearly the most important, the player moves
attention to a di¤erent area because he cannot …nd a move that is locally good.
This exception to the rule indicates that professional play indeed resembles this
three step approach.

In order to mimic the e¤ective way of human Go playing, it is also our approach
to separate strategic and tactical reasoning. In order to do so, we will use di¤erent
board representations with an appropriate level of granularity for each type of
reasoning. On the tactical board we represent local objects and features, such as
strings of adjacent stones and their number of liberties. On the strategic board
we only use global objects and features, like groups and their degree of safety.

Besides mimicking human Go playing an advantage of using such a hierarchy
of boards lies in the way of adding knowledge to your program. Abstract board
representations by de…nition contain knowledge. This is either explict knowledge
that has been used to make an abstraction step, or it is implicit in the form of
some search that has been performed in order to deduce an inevitable outcome
of some local situation, for example, stones have been shown to be connectable.
Using abstract boards prevents that too much knowledge of the program is put
in the evaluation function alone, making the program less manageable. Instead



of having to write an evaluation function that performs a whole board analysis
using a concrete board representation, it is possible to use the abstract board for
strategic evaluation. Such an approach …ts in the divide and conquer paradigm.
Although we propose a goal-driven approach, which in principle would make an
evaluation function redundant, an evaluation function will still be used for some
purposes. The main purpose is to check whether achieving a particular goal will
indeed lead to a satisfactory board situation. This will lead to only very few calls
of the evaluation function, compared to ® ¡ ¯ search.

3 Adversarial planning
One goal-driven approach that has been applied to Go is adversarial planning
[3,7]. Adversarial planning is an extension of Hierarchical Task Network (HTN)
planning [1] into the domain of two opposing agents. We will …rst brie‡y discuss
the principles of HTN Planning, loosely following [7], then brie‡y explaining the
extension to adversarial domains.

HTN planning is based on three types of objects: Goals, Operators and Plan
Schemas. Operators are actions which can be performed in the world, such as
playing a move on a Go board. Goals are more abstract aims in the world such as
“Kill enemy group”. Schemas specify the subgoals which must be achieved in order
to satisfy the goal. For example, the following schema expresses the fact that G
can be achieved by a conjunction of subgoals G1; G2 and G3: G ) G1 +G2 + G3.
The Gi should be at a lower level of abstraction that G. Operators are at the
lowest level of abstraction.

Given these three types of object, HTN planning starts with an initial world
state and a set of goals which form the initial abstract plan. The plan is re…ned step
by step by expanding the goals within it. Goals are expanded by selecting one of
possibly many schemas whose antecedent (the G above) matches the chosen goal,
and replacing the instance of G in the current plan by the subgoals (the Gi above).
The process continues until all goals have been expanded into sets of operators and
when possible con‡icts have been resolved. The sequence of operators should, upon
execution in the initial world state, lead to the achievement of the planner’s goals
in the world.

The extension of HTN planning into adversarial domains is non-trivial since
plans are no longer sequences of action but trees of contingencies which take into
account the opponent’s actions. The adversarial planner GoBI [7] models two
opposing agents (named Alpha and Beta). To solve a problem in the domain,
each agent is given a set of input goals to achieve and has the additional task
of preventing the other agent from achieving its goals. A planning step involves
selecting an abstract goal and repeatedly expanding it, just like in HTN planning.
Once one of the agents (Alpha say) has achieved all of its goals, it knows that it
must have satis…ed its top level goals and performs the chosen action in a world
model. The turn is now passed to Beta, which has his own agenda of goals that are
partially expanded by a particular choice between decomposition schemas. Now
that Alpha has achieved his goals, Beta tries to force backtracking by changing



one of his prior choices for a decomposition schema, in order to thwart Alpha’s
plans. It expands newly introduced goals until it …nds a move that satis…es them,
plays this move in the world model and passes the turn back to Alpha. Alpha is
forced to backtrack, because he is now faced with a renewed world model in which
some of his goals have become unresolved.

The backtracking activity explores the various interacting plans Alpha and
Beta have for the situation and creates a contingency tree of moves. The planning
activity comes to searching this tree, whose branching factor is the average number
of di¤erent decomposition schemas that are at hand for a single plan. In general,
this a large reduction compared to ® ¡ ¯ search.

Adversarial planning has a number of advantages. The biggest is the reduction
of the search space. A second advantage is that a lot of Go knowledge is expressed
in proverbs, such as “Death lies in the hane”. This kind of knowledge is well suited
to be encoded in a goal decomposition scheme. A third advantage is that there is
less need for global evaluation functions: full board evaluation reduces to checking
whether low level goals have been achieved.

One major disadvantage of adversarial planning is the fact that the hierarchical
space of plans has to be modelled and hand coded. In order to be able to play a
complete game, this comes down to analyzing all aspects of the game, which is a
di¢cult (if not impossible) and very time consuming task. In practice, the plan
space will be incomplete. This implies that a move cannot be proved to be the best
and as a consequence, some obvious good moves will be overlooked. This danger
is much less when a program is data-driven and considers sequences of moves at
the basis, possibly by using move generators. Another disadvantage is that there
are some types of knowledge which are hard to express in a goal/plan oriented
framework, such as patterns. We propose an approach that should overcome these
disadvantages. The fundamental di¤erence is that we do not use a decomposition
operator, but instead its (more natural) counterpart: the abstraction operator.

4 A hierarchy of boards
Inspired by the way of human reasoning about Go, we adopt a three-layer hierarchy
of boards. The boards have feature vectors which contain properties of the objects
on the board. An abstraction operator models the computation of high level board
from low level ones. The feature vectors and abstraction operator as we designed
them in this section incorporate the most important concepts in Go. However, they
are by no means perfect, but that is not the objective at this stage in our research.
For understanding the planning algorithm it is enough to know a rough working of
the abstraction operator. The modelling of abstract concepts is independent from
the planning process and can be improved later on.

Go is a game of gradually surrounding territory and opponent stones. This is
re‡ected by the fact that the capturing rule is by far the most important rule of
all. It states that a string of stones is captured and removed from the board if all
the neighbouring vertices of the string are occupied by enemy stones. From this
simple rule, one can deduce shapes that are necessary for stones to be safe from



being captured in the future. In other words, it indirectly de…nes dead and living
groups and territory. We feel that the natural board representation for a game of
surrounding is a graph, whose edges represent a neighbourhood relation. Known
representations all su¤er from a rather naive representation of board positions [2].
The board is commonly represented by a simple one- or two-dimensional array.
These representations obviously do not take into account the speci…c nature of the
rules of Go, which refer essentially only to the local neighbourhood structure of
the game.

We propose the following three-layer hierarchy of boards, with increasing level
of abstraction:

² Full Graph Representation (FGR),

² Tactical Feature Graph (TFG),

² Strategic Feature Graph (SFG).

The abstraction operator will be given the necessary knowledge to compute the
TFG and the SFG.

4.1 Full graph representation
The full graph representation (FGR) is a graph with the structure of an N £ N
square grid. It is directly motivated by the visual appearance of the classical Go
board. The nodes of the FGR represent the intersections of the board and the
edges represent the neighbourhood relation. Each node has a label denoting its
coordinates on the board. The objects in the FGR are stones, whose only feature
is a colouring, one of the set fblack,whiteg.

In our planning methodology, the FGR serves as an exact board representation
to play moves on and is input to the abstraction operator, which derives an abstract
board from it. However, it also can easily be transformed into a standard array
representation and be input to existing move generators. This advantage will be
further discussed in section 5.

4.2 Tactical feature graph
The tactical feature graph (TFG) is based on the common fate graph of Graepel et
alii [2]. They observed that adjacent stones of the same colour, a string, will always
have a common fate: either all stones remain on the board or all are captured.
In any case it is possible to represent them in a single node. This is done by
contracting the nodes that the string occupies into one node. This obviously leads
to a reduction of complexity in representation while retaining essential structural
information. Only the shape of the strings is lost, but this can be found in the
FGR.

The objects on the TFG are no longer stones but strings. Common features
of a string are the collection of member_stones, the number of liberties and
an eye_status. We use a generalization of the number of liberties, namely the



number of n-th_dame [6]. This feature contains the number of unoccupied nodes
at distance n and is used in the SFG to estimate the strength of groups.

4.3 Strategic feature graph
The basic objects in the strategic feature graph (SFG) are groups. A group is stan-
dard Go terminology for a number of more or less connected strings and it forms
the basis of attack and defense. For the moment, we use the following six basic fea-
tures of a group: collection of member_strings, solidly surrounded territory, re-
gions of influence (vaguely claimed territory), regions for future_development,
weak_points and group_strength. It is the task of the abstraction operator to
compute these features. The speci…c Go knowledge that is required for this task
lies outside the scope of this article and is not essential to the understanding of
the planning procedure. However, it can be found in all standard Go textbooks,
for instance [4]. A useful estimate of group_strength is given by the possible
omission number [6], the number of moves one can play elsewhere, while being at-
tacked, before one is forced to defend in order to get a living group. The possible
omission number depends on the number of n-th_dame, a feature of the TFG.

Once it has been computed what strings belong to the same group, they can be
represented by a single node. The string nodes and the connecting nodes between
them get contracted, just as the stones that belong to one string in the TFG.
Likewise, nodes that are all part of the same territory or region of influence
get contracted. The two node contracting steps lead to a further reduction of
representational complexity.

5 Pursuing abstract goals
Our planning architecture work in three stages, comparable to human reasoning
about Go, as described in section 2. First, the abstract boards are computed. This
task will be performed by the abstraction operator (of which the Go-theoretical
background is beyond the scope of this article).

The second step is to formulate a goal (or to make a move that was still part of
an older plan that has not yet been fully carried out). According to accepted Go
theory [4], the choice of goal is largely motivated by the balance of territory and
power. The latter is a combination of group_strength, weak_points and regions
of influence. When someone is behind in territory but has strong groups, his
aim could be to deeply invade the opponent’s territory or to make ambitious
extensions to his own territory. When a player is ahead with territory but
low in power, he should best defend his weak_points. One approach that is suited
for this type of reasoning is with a rule-based system. Building such a rule base
should be small task compared to building decomposition schemas for the whole
game, since it only has to contain relatively few strategic rules. One can extract
strategic rules (like the two above) from the well-respected textbook [4], of which
most are stated in terms of the SFG features. The important thing is that goal
formulation is separated from feature extraction. Thus, the rule base and the



abstraction operator can be improved independently from each other, as long as
they keep using the same terms.

The third step is to …nd a move or sequence of moves that satis…es the chosen
goal. In contrast to adversarial planning, this can not be achieved by directly de-
composing a goal into lower level ones. That requires a hand coded decomposition
schema, which is what we wanted to avoid. We solve this problem with an indirect
form of decomposition, which is the main di¤erence between adversarial planning
and our method. Indirect decomposition of a goal at a particular level consists
of searching the space of the features one level lower, in order to satisfy the goal.
During each search step, the abstraction operator computes the features one level
higher to perform goal-checking. When the search succeeds, the result will be a
goal in the form of values of the features at one level lower. The indirect decom-
position will be repeated with these new goal until moves at the lowest level are
found. With our three-level hierarchy this means a two-stage searching strategy.

It is, however, not guaranteed that our indirect decomposition method produces
goals that can ultimately be re…ned to moves. It remains to be seen whether desired
feature values in the TFG can be indeed caused by a move in the FGR. If this is
not the case, it does not mean that the intermediate goal in the TFG is worthless.
It can always be used as a good heuristic to guide the search in the FGR towards
the goal in the SFG.

The last part of the third step is to take into account the possible actions of
the opponent. This is done similar to the adversarial planner GoBI [7], using two
opposing agents Alpha and Beta (see section 3). The main di¤erence lies in the
way how the backtracking activity is cut o¤ which explores the various interacting
plans Alpha and Beta have. In GoBI, a goal can be decomposed as many times as
there are decomposition schemas for it. In our method, the indirect decomposition
method results in a large number of lower level moves that all ful…l the goal to
a certain extent. We restrict the maximum number of indirect decompositions in
order to limit the overall branching factor. This number can be used as a control
parameter in the planning algorithm: if there is limited time to compute a move,
this number will be set low (and vice versa).

An advantage of indirect decomposition is the freedom to use (existing) move
generators to improve the search at the level of the FGR. This overcomes the dis-
advantage of overlooking obvious good moves by (almost unavoidable) incomplete
plan knowledge, see section 3. We can use existing pattern-based move generators
to produce locally good moves. Using the abstraction operator it is possible to
check if this move satis…es the goal. When one uses decomposition schemas, this
freedom is cancelled.

We end with a short example of a possible planning episode. Imagine a sit-
uation where a weak black group without eyes is almost surrounded by strong
white groups, apart from a small gap separating the white groups. In the plan
formulation gaining strength is chosen as the plan on the SFG level. Now, the
planner comes into play. Search in the space of TFG features reveals the following
subgoal: an increase of the number of n-th_dame. The planner now goes on by
searching the space of FGR features (real moves) and considers a move in the
gap, which drastically increases the number of n-th_dame in the TFG (remember



that n-th dame stands for free nodes at distance n, of which there are many lying
behind the gap) and consequently improves the strength of the group. Next,
counter attacks by white are considered. If they prove not fruitful, the move in
the gap is returned by the planner.

6 Conclusions and future work
We modelled human Go playing as a process with three largely independent steps:
extracting tactical and strategic features, formulating a goal and …nding moves
that satisfy the goal. We described a mixed data- and goal-driven planning al-
gorithm for adversaries along these lines. It uses a hierarchy of abstract boards
with features, each representing the state of the game at a di¤erent level of gran-
ularity. The key di¤erence with standard adversarial planning is that we use an
abstraction operator instead of its counterpart, a decomposition operator. In our
method, decomposition is done indirectly by performing search in the space of
feature values on a lower level than the goal. Our method should preserve the
main advantage of adversarial planning, a largely reduced branching factor, while
retaining the freedom of …tting in data-driven knowledge.

Currently, work is carried out to mathematically formalize and implement the
planning algorithm, the abstraction operator and the goal formulation module.

References
[1] K. Erol, D. Nau and J. Hendler. UMCP: A Sound and Complete Planning
Procedure for Hierarchical Task-Network Planning. Proceedings of AIPS-94, June
1994.

[2] T. Graepel, M. Goutrié, M. Krueger and R. Herbrich. Go, SVM, Go. Berlin
University of Technology, 2000. Available at
http://www.markus-enzenberger.de/compgo_biblio/compgo_biblio.html.

[3] S. Hu. Multipurpose Adversary Planning in the Game of Go. PhD thesis,
George Mason University, 1995.

[4] A. Ishida and J. Davies. Attack and Defense. Kiseido Publishing Company,
Tokyo, Japan, 1997.

[5] M. Mueller. Computer Go as a Sum of Local Games: An Application of Com-
binatorial Game Theory. PhD thesis, ETH Zuerich, 1995.

[6] M. Tajima and N. Sanechika. Estimating the Possible Omission Number for
Groups in Go by the number of n-th dame. In H.J. van den Herik and H. Iida,
editors, Computers and Games: Proceedings CG’98, number 1558 in Lecture Notes
in Computer Science, pages 265-281. Springer Verlag, Tsukuba, Japan, 1999.

[7] S. Wilmott, J. Richardson, A. Bundy and J. Levine. An adversarial planning
approach to Go. In H.J. van den Herik and H. Iida, editors, Computers and
Games: Proceedings CG’98, number 1558 in Lecture Notes in Computer Sience,
pages 93-112. Springer Verlag, Tsukuba, Japan, 1999.


