

 Collected papers on
 the PITA project

 Papers of the Workshop on
 “Intelligent Routing and Travel Information Systems”

Held on June 28th, 2001 at TRAIL Research School, Delft

Mediamatics / Knowledge Based Systems group &

 TRAIL Research School, Delft / Rotterdam / Groningen, June 2001

KBS & TRAIL Workshop, June 2001 I

Program

9:00 - 9:10 Opening and welcome by Prof. Dr. Ir. P.H.L. Bovy
9:10 - 9:20 Introduction by Dr. Drs. L.J.M. Rothkrantz

9:20 - 9:50 Ir. Robert van Vark - “The Personal Intelligent Travel Assistant”

The Personal Intelligent Travel Assistant (PITA) is a handheld device with multi-media capabilities providing
ubiquitous communication between travelers and service providers at any time before or during a trip. The
PITA is targeted at a large group of customers demanding different dialogue styles based on the individual
preferences and experience of users. Due to varying traveler surroundings, like trains and private cars, the
PITA is intended to use multiple modalities, like spoken language and text. Current dialogue systems are
usually targeted at a small and experienced user group or they apply fixed and formal strategies.
Additionally, current systems are mostly unimodal. Dialogue management in PITA needs to go beyond the
current state of the art in the following three areas, due to the wide variety in task complexity, user
preferences and traveler surroundings. Moving beyond fixed and formal dialogues involves adaptive
dialogue strategies depending on the task complexity and history of the dialogue so far.

9:50 - 10:20 Chen-Ke Yang - “Speech interfacing in the Wireless Automotive Messaging Pilot”

The presentation gives an overview the SWAMP project done at CMG Trade Transport & Industry. This
project is an extension of the Wireless Automobile Messaging (WAM) pilot project, in which wireless
services in the field of traffic and transport have been developed. The SWAMP pilot incorporates a
dialogue-based speech user interface on top of the existing WAM application, thus giving speech access to
the developed services.

10:20 - 10:40 Break

10:40 - 11:10 Gerritjan Eggenkamp - “Dynamic multimodal route planning”

Although the highway network in the Netherlands is flooded with cars and is subject to heavy congestion,
no planner is available that finds the optimal route given all congestions in the network. Also, no planner is
available that incorporates different travel modalities using these dynamic data. A prototype of such a
dynamic multimodal route planner has been developed and will be presented. The route planner uses
artificial intelligence to find the optimal route in the highway network. This approach was compared with a
traditional shortest path approach and the results show great potential. Both approaches will be discussed
and a comparison will be made.

11:10 - 11:40 Ronald Kroon - “Dynamic vehicle routing using an Ant Based Control algorithm”

Recently, agents algorithms based on the natural behavior of ants were successfully applied to route data in
telecommunication networks. Mobile agents created the routing tables in the simulated network with
behaviors modeled on the trail-laying abilities of agents. We applied this Ant Based Control (ABC) algorithm
to route cars in a city. The cars send their position to a central system and from that data the actual
congestion is modeled. The agents find the shortest route in time using the actual spare capacity along the
links. The shortest route is sent to the car driver via a PITA device. A prototype is under development to
route car drivers to a parking lot.

11:40 - 12:10 Ir. Patrick Ehlert - “Intelligent driving agents”

Computer traffic simulation is important for making new traffic-control strategies. Microscopic traffic
simulators can model traffic flow in a realistic manner and are ideal for agent-based vehicle control. We
have made a model of an intelligent agent that is used to control a simulated vehicle and is equipped with
different driving styles. The agent is implemented and tested in a prototype traffic simulator. The simulator
consists of an urban environment with multi-lane roads, intersections, traffic lights, and vehicles. In the
simulator every vehicle is controlled by a separate driving agent and all agents have individual behavior
settings. Experiments have shown that the agents exhibit human-like behavior ranging from slow and
careful to fast and aggressive driving behavior.

12:10 - 12:30 Summary and closure

II KBS & TRAIL Workshop, June 2001

KBS & TRAIL Workshop, June 2001 III

Introduction

The Personal Intelligent Travel Assistant (PITA) is a handheld device with multi-media capabilities providing
ubiquitous communication between travelers and service providers at any time before or during a trip.
Providing detailed and personal information will change public transport systems drastically. From
impersonal systems aimed at large customer groups, they will change into personal systems where the
customer gets the impression that the services have been designed for him personally.
Task complexity, user preferences and traveler surroundings diverse drastically, calling for communicating
by multiple modalities. At the moment, spoken language and text interfaces using SMS and WAP are
foreseen. The latter are interfaces developed especially for mobile telephony.
Using the PITA, the traveler can perform the complex task of planning a travel schedule for a future trip
using different transport modalities. In the public transport system envisioned by the "Seamless Multimodal
Mobility (SMM)" program, these travel schedules will also be used to plan transport capacity. The PITA will
guide the traveler by signaling upcoming transfer points and providing information on transfer routes in
nodes. En route, the PITA will also provide the traveler with dynamic information about delays, calamities
and alternative routes, if applicable.

During the last year, researchers from the Knowledge Based Systems group, headed by Prof. Dr. H.
Koppelaar and supervised by Drs. Dr. L.J.M. Rothkrantz, invested much time and effort in PITA related
research. Complementary to research activities going on in the TRAIL research school, the group focused
on artificial intelligence techniques to solve PITA related problems.
The PITA-client-interaction is based on different modalities such as speech, text, touch etc. To handle this
multimodal input and output devices a dialogue-management module has been developed. The multimodal
input to the system is converted to a uniform XML code. The coded information is processed in the dialog-
management module and the module is connected to different databases. To retrieve information from the
WWW, the PITA system is able to launch intelligent search agents to find the requested information in an
automated way.
Search agents also play an important role in dynamic vehicle routing and route planning. Different service
providers offer information about traffic congestion and timetables of public transport via the WWW. These
web pages are designed for human-computer interaction. The search agents have to interact with the same
pages, but they have to extract the information with less visual support.
In another project we used intelligent agents to model human driving. This way, we designed a traffic
simulator with agent car drivers that can interact with each other and simulate various human driving styles.
To summarize, in this workshop we highlight some artificial intelligence tools and techniques used in
research activities in the framework of the PITA project. More specifically, we will present the use of expert
systems in dynamic route planning and the use of intelligent agents in information retrieval.

Ir. P.A.M. Ehlert
Drs. Dr. L.J.M. Rothkrantz

Delft, June 2001

IV KBS & TRAIL Workshop, June 2001

KBS & TRAIL Workshop, June 2001 V

Table of Contents

Program I

Introduction III

1. Adaptive dialog management using multiple modalities 1
R.J. van Vark and L.J.M. Rothkrantz

2. Knowledge based speech interfacing in the SWAMP project 5
C.K. Yang and L.J.M. Rothkrantz

3. Intelligent dynamic route planning 13
G. Eggenkamp and L.J.M. Rothkrantz

4. Dynamic vehicle routing using an ABC-algorithm 21
R. Kroon and L.J.M. Rothkrantz

5. A reactive driving agent for microscopic traffic simulation 29
P.A.M. Ehlert and L.J.M. Rothkrantz

KBS & TRAIL Workshop, June 2001 1

Adaptive dialog management using multiple modalities

R.J. van Vark & L.J.M. Rothkrantz

Department of Knowledge Based Systems

Delft University of Technology, The Netherlands
{R.J.vanVark,L.J.M.Rothkrantz}@cs.tudelft.nl

Abstract
This paper describes the extension of the Alparon
dialog manager to a broader domain and multiple
modalities. To apply the dialog manager in the
multimodal environment of the Personal Intelligent
Travel Assistant (PITA), a multimodal coding
scheme has been designed using dialog acts and
XML. Additionally, the rigid database interface of
the Alparon system has been replaced by a flexible
and adaptive information retrieval system based on
communicating agents.

1 Introduction
Over the last years, information retrieval systems
have shifted from pure voice access to multimodal
access, due to the huge increase in Internet and
wireless communications. Automated speech
processing systems are following this shift by
including other modalities to retrieve the information
[5].

Until recently, the Alparon project at the Delft
University of Technology aimed at developing
automated speech-processing systems. The focus
within the project was on dialog management,
developing dialog management strategies that mimic
strategies found in human-human dialogs.

Currently, the Alparon dialog manager is being
applied in the Personal Intelligent Travel Assistant
(PITA). The PITA is a handheld device that
provides ubiquitous communication using multiple
modalities between travelers and public transport
service providers, such as the Dutch railways and
bus companies.

Migrating the Alparon dialog manager from a
unimodal to a multimodal environment requires
several modifications. This paper describes our
initial approach to realizing these modifications by
applying multimodal fusion as well as the approach
currently applied. The latter approach consists of a
multimodal dialog act coding scheme as well as an
agent-based information retrieval system.

2 Personal Intelligent Travel Assistant
The PITA is a device by which travelers can retrieve
information about public transport at any time before
or during transport. This communication consists of
travel planning and capacity reservation.
Additionally, the PITA will guide the traveler by
signaling upcoming transfer points and providing

information on transfer routes in the nodes. En route,
the Pita will also provide the traveler with
information concerning delays, calamities, and
alternatives routes if applicable. The PITA is a key
component in the Seamless Multimodal Mobility
research program at the Delft University of
Technology.

The PITA provides multiple modalities to
facilitate the communication between traveler and
information system. These modalities can be
described using several characteristics, such as
interaction complexity and the environment in which
the modality is best applied.

2.1 Automated spoken language
Spoken language interfaces can be used in virtually
any environment, although adverse environments,
such as driving a car at high speed, cause a
significantly lower performance. Over the last
decade, speech recognition has improved drastically
making it applicable to a wide range of applications,
among which are complex information retrieval
tasks.

Despite the recent advances, automated spoken
language processing still has several drawbacks. In
contrast to the suggested unconstrained speech,
speech recognizers apply suitably small vocabularies
to prevent large numbers of recognition errors. In
addition, extensive confirmation scenarios are still
needed due to the occurring recognition errors and
misinterpretations due to out-of-vocabulary errors.

Spoken language interfaces are especially suited
to be used in more complex tasks that cannot be
interfaced by using more straightforward text
interfaces, because the amount of information would
be overwhelming when using a (small) text interface.
In the current PITA prototype, automated speech
processing is applied to travel planning as it is the
most complex task. In addition, travel planning can
be performed before taking part in the actual
transportation process.

2.2 Short Message Service (SMS)
SMS is an information service that can be found on
many platforms for mobile telephony. It can be used
to send text messages with a maximum size of 160
characters to other mobile subscribers or information
servers. Human-human conversation based on SMS
messages usually consists of free-formed text, like
"Hi, let's meet at the conference desk at 8 p.m."

Using SMS messages consists of typing complex
commands that have to be memorized by the user.

2 KBS & TRAIL Workshop, June 2001

Although sending SMS messages back and forth can
constitute a dialog, such dialogs are extremely time
consuming. Therefore, SMS is best suited to
straightforward initiation-response scenarios
including short digressions when unclear or
ambiguous information is found. In the PITA
domain, SMS can best be applied to providing
information on upcoming transfers and delays in
transit, especially in crowded environments where
social constraints might limit the use of spoken
interfaces.

2.3 Wireless Application Protocol (WAP)
WAP combines the best of two rapidly evolving
network technologies: mobile data and the Internet.
Most of the technology developed for the Internet
has been designed for desktop and large computers,
medium to high bandwidth and reliable data
networks. WAP is a protocol set making Internet-
like information services available to handheld
devices.

Compared to SMS, information services using
WAP can be much more complex while the interface
is still straightforward to use for an inexperienced
user. However, a WAP dialog is heavily constrained
and system driven. The user has to answer the
questions asked by the system in order to gain access
to the desired information. Diversions of the system
scenario are hardly possible. The environmental
constraints on WAP are approximately the same as
for SMS.

3 Related work
The Alparon dialog manager on which the PITA is
based applies plan-based theory where the basic
assumption is that the linguistic behavior of agents in
information dialogs is goal-directed [3]. To reach a
particular state agents use a plan that is often a small
variation of a standard scenario. The plan structure
resembles the dialog structure. Dialog acts in PITA
dialogs are also assumed to be part of a plan and the
listener is assumed to respond appropriately to this
plan and not only to isolated utterances [8].

Researchers within the Verbmobil project
developed a taxonomy of dialog acts [1]. To model
the task-oriented dialogs in a large corpus, they
assumed that such dialogs could be modeled by
means of a limited but open set of dialog acts.

Another approach of modeling dialogs is based
on the observation that goal-directed dialogs consist
of topical chains that are used to exchange
information [2]. Topical chains are sequences of
utterances that all communicate information about
the same topic. Successive topics are usually related
to each other. Topic transition in a dialog is modeled
as movements across these topic packets. The
relationship between topics is applied in the Alparon
dialog manager.

4 The Alparon dialog manager
The dialog manager was originally designed for
spoken language interaction. The system applies
human-human strategies to structure interaction
between user and information system. The focus
within the project was on adaptive dialog
management taking into account the task complexity
and relative user experience with respect to both the
task and technology. This problem was tackled by
using multiple rule sets to isolate separate dialog
phenomena, such as task structure, response
generation, and user-interruption handling. These
rule sets can be automatically updated to reflect task
complexity and user preferences/behavior.

A modular design was chosen to implement a
flexible system that is easily extended (see Figure 1).
The Alparon dialog manager consists of modules for
disambiguation, context updating, dialog updating,
response generation, and dialog act generation.
Besides these modules, the dialog manager uses a
number of blackboards to store the information
relevant to the ongoing dialog. Examples of such
blackboards are dialog context, dialog history, and
control information.

5 Multimodal fusion
Our first approach to extend the system with other
modalities was to use a multimodal fusion technique
developed for simultaneous multimodal interaction
[6]. Multimodal fusion is a variation of the slot-filler
method, a well-known method in artificial
intelligence. Information necessary for command or
language understanding is often encoded in
structures called frames. A frame in its most abstract
formulation is simply a cluster of facts and objects
that describe some typical fact or situation. In
Alparon frames contain information about
information requests presented by multiple
modalities. The principal objects in a frame are
assigned names (slots), which can be viewed as
functions taking values to instantiate the actual
frame. Thus, a particular frame instance represents a
structured set of knowledge.

The approach to multimodal fusion was to use a
predefined set of frames corresponding to the
possible requests in the current application. A slot
writer-reader method that installs and retrieves slot
values has been implemented as part of a fusion
agent module. It uses the keyword approach
combined with grammar constraints.

An important component of the fusion agent is
the slot buffer. It stores the incoming values for all
possible slots defined by the requested vocabulary.
This is essential because presented information is
often used in the future. Then, the parser fills the
slots in the slot buffer that are designated in the
utterance using the slot-writer method.

KGS & TRAIL Workshop, June 2001 3

rest of ASP system

Context Dialogue

updating
act

generation

Task coordinator

Black board manager

board
status

board board boardboard

database
manager

OVR
database

database

database
interface

database
interface

interface

Database Manager

Black
Board
System

Manager
Discourse

information controlhistory presentation

guation

Disambi−

updating

Dialogue

generation

Response

Internet

database
general

Figure 1 Architecture of the Alparon dialog manager

In this design, the fusion agent interfaces the dialog
manager as soon as all the necessary information is
available. The information may be provided entirely
or partly by any modality.

The instantiation of a particular command frame
is done by analyzing the information in the slot
buffer. As long as the buffer is not filled, the system
will wait for more input, which can be provided
using any modality.

To achieve maximum flexibility, the design
assures that a particular frame contains the minimum
number of slots that are necessary to unambiguously
interface the dialog manager.

Although multimodal fusion works well, there
are some severe drawbacks. Most importantly, the
fusion agent uses knowledge of the dialog state as
the slot buffer is based on the expected response of
the user. The slot buffer only allows responses fitting
this expectation and even waits until a minimum
number of slots is filled. This hardly fits the goal of
the PITA to develop a flexible and adaptive dialog
system as the user cannot divert from the prescribed
dialog structure. Another drawback is the use of
disambiguation knowledge in the fusion agent; this
knowledge was previously applied by the dialog
manager only.

Another approach was taken because of these
drawbacks and the fact that simultaneous use of
multiple modalities is not required in the PITA.

6 The PITA system
As mentioned above, the Alparon dialog manager
has been specifically designed for spoken language
input. When examining the dialog manager’s design
in detail, it is, however, apparent that the designers
have always taken into account a possible inclusion
of other modalities. As the dialog manager uses
dialog acts to communicate with other natural
language components in the system, most modules

are modality independent. Only the disambiguation
module (the first module), which takes care of
disambiguating user input, and the dialog act
generator (the final module), which takes care of
translating the system response into suitable dialog
acts, are dependent on the modality applied in the
information service. Moreover, even their
dependence on dialog modality is limited due to the
use of dialog acts.

Therefore, our approach to develop the PITA
using the flexible Alparon dialog manager consists
of two aspects. First, a multimodal coding scheme
has been designed to be able to represent different
modalities in the dialog manager. Secondly, the rigid
database manager in the Alparon system has been
replaced by a flexible agent-based interface to access
Internet content as well as traditional databases.

6.1 Multimodal coding scheme
The multimodal coding scheme currently applied in
the PITA dialog manager is based on the Alparon
coding scheme [8]. This coding scheme was mainly
focused on analyzing human-human conversation.
Consequently, several concepts have been
introduced that make the coding scheme better suited
for dialog management [9]. Additionally, the coding
scheme adheres to the recommendations of the
MATE-project, a European research project
focusing on the annotation of communicative acts in
dialogs [4].

Utterances are coded as comma-separated dialog
acts that code the type of contribution made by the
utterance, e.g. a request, feedback, etc. Dialog acts
are performed in a certain dialog phase and by using
one of several available modalities. The latter is
important, as some modalities are more error-prone
than others are. The informational content of an
utterance is coded using a hierarchical tree of
information codes.

4 KBS & TRAIL Workshop, June 2001

The representation of the coding scheme has also
been changed from a Prolog-like style using comma-
separated dialog acts and a deeply nested coding of
informational content. This Prolog-like style has
been abandoned in favor of Extended Markup
Language (XML). This has several advantages. First,
XML is becoming a widely applied standard making
the dialog manager portable to many environments.
Secondly, many dedicated tools are available for
dialog analysis, for example the MATE tool bench.
Thirdly, standard XML style sheets can be used to
translate Internet content and natural language into
XML coded utterances and vice versa.

6.2 Agent-based information retrieval
In current information retrieval applications, relevant
information parameters are extracted from the user-
system interaction. Based on these parameters a
query is defined and executed on a database.
However, the PITA does not use one fixed
information source to retrieve its information: it
accesses many different information sources to
retrieve the diverse information it distributes, of
which many are found only on the Internet.

Using the Internet as information source, PITA
has to interface distributed data sources and rapid
changing data structures. When a user wants to
travel from A to B using his car, train, or even a
plane, travel information is needed from different
websites. Information updates concerning delays and
calamities are provided by yet other sources. These
web sources constantly change with respect to
content as well as structure. Therefore, intelligent
search agents have been developed to find the
requested information on the Internet.

Based on the request of the user, the dialog
manager activates a search agent. This search agent
has access to a specific knowledge base containing
specific background knowledge for the current
application. In PITA, this information consists of
relevant concepts as arrival place, departure place,
arrival and departure time, date, flight numbers, etc.
A local database contains related instantiations of
these concepts, such as city names. The agent does
not have any knowledge of the specific structure of
the web pages themselves.

Recently, we have developed a prototype that
uses such search agents to find relevant travel
information on multiple websites. With the relevant
background knowledge the agent can start an
interaction with the sites of the train companies in
Germany, Norway, Italy, Czech Republic, Denmark,
and The Netherlands. The agent is able to extract the
structure of the sites by interacting with the websites,
similar to the KISS method for organizations [7].
Once the structure has been determined, the agent
retrieves the requested travel information using
relevant input parameters. The dialog manager
converts this information into utterances that are
suitable for the communication medium used in the
interaction.

7 Conclusion
The paper described our approach to extending the
Alparon dialog manager with additional modalities.
A multimodal coding scheme suitable for dialog
management has been designed and implemented in
XML. The dialog manager has been modified to be
able to handle multimodal dialog acts by updating
the respective rule sets for disambiguation and
response generation. Additionally, the rigid database
manager has been replaced by a flexible agent-based
retrieval system to be able to provide the large
diversity in information content needed in PITA.

In the near future, we hope to integrate the
described prototypes into a fully functional system.
This system will be used as a prototype to study user
preferences in the PITA domain concerning
interaction characteristics as well as preferences
concerning domain information, especially at the
moment delays and calamities occur in public
transport.

8 References
[1] Alexandersson, J and Reithinger, N., Designing the

dialog component in a speech translation system, A
corpus based approach, In: Workshop on Corpus-
based Approaches to Dialogue Modeling, Twente,
The Netherlands, 35-43, 1995.

[2] Bunt, H.C., Dynamic interpretation and dialogue
theory, In: The structure of multimodal dialog, John
Benjamins Publishing Company, Amsterdam, 1995.

[3] Cohen, P.R., Models of Dialogue, 4th NEC
Research Symposium, NEC & SIAM, 181-204,
1994.

[4] Klein, M., An Overview of the State of the Art of
Coding Schemes for Dialogue Act Annotation, In:
Text, Speech and Dialogue, Lecture Notes in AI
(1692), Springer Verlag, Berlin, 1999.

[5] Marsic, I., Medl, A., and Flanagan, F., Natural
Communication with Information Systems, Proc. of
the IEEE, 88(8), 1354-1366, 2000.

[6] Rothkrantz, L.J.M., and André, M., Redundancy
and Ambiguity in Multimodal Human Computer
Interaction, Euromedia’99, Munich, 1999.

[7] Ton, L. and Rothkrantz, L.J.M., Determining User
Interface Semantics using Communicating Agents,
TSD 2001, submitted.

[8] Vark, R.J. van, Vreught, J.P.M. de, and Rothkrantz,
L.J.M., Classification of Public Transport
Information Dialogues using an information Based
Coding Scheme. In: Dialogue Processing in Spoken
Language Systems, Lecture Notes in AI (1236),
Springer Verlag, Berlin, 1997.

[9] Vark, R.J. van, Designing a Multimodal Coding
Scheme for PITA, TRAIL 5th Annual Congress, 1-
18, 1999.

KBS & TRAIL Workshop, June 2001 5

Knowledge Based Speech Interfacing
in the SWAMP Project

C.K.Yang L.J.M.Rothkrantz

Delft University of Technology, Zuidplantsoen 4, 2628 BZ Delft,
the Netherlands

Abstract

Speech technology is rapidly developing and has improved a lot over the last few
years. Nevertheless, speech-enabled applications have not yet become mainstream
software. Furthermore, there is a lack of proven design methods and methodologies
specifically concerning speech applications. So far the application of speech
technology has only been a limited success. This Paper describes a project done at
CMG Trade Transport & Industry BV. It is called SWAMP and is an example of the
application of speech technology in human-computer interaction. The reasoning model
behind the speech interface is based on the Belief Desire Intention (BDI) model for
rational agents. Other important tools that were used to build the speech user interface
are the Microsoft Speech API 5 and CLIPS.

1. Introduction
Speech is the most common mode of communication between people. Although speech
communication is not a perfect process, we are able to understand each other with a very
high success rate. Research has shown that the use of speech enhances the quality of
communication between humans, as reflected in shorter problem solving times and
general user satisfaction [1]. Furthermore, speaking to humans subjectively seems to be
a relatively effortless task [2]. The benefits mentioned above are some reasons that have
moved researchers to study speech interaction systems between humans and computers.

In September 1999 CMG Trade, Transport & Industry BV started the Wireless
Automotive Messaging (WAM) project. Its purpose was to develop new wireless
services in the field of traffic and transport. The WAM application is based on the
Client-Server model. The server is stationary while the client travels with the user in his
car. Because the clients are mobile, communication is based on wireless techniques.

This paper discusses the SWAMP1 project started in October of the following year.
The purpose of the SWAMP project was to analyse if a speech interface is better suited
for the WAM pilot. Therefore the WAM client is extended with a speech interface: the
SWAMP client. This offers a way for the driver to interact with the system while his
hands and eyes remain free, ideal for car driving situations.

1 SWAMP is an acronym for Speech Interfacing in the Wireless Automotive Messaging Pilot

6 KBS & TRAIL Workshop, June 2001

2. The SWAMP client
Speech interaction between the user and the SWAMP application is based on dialogues.
Generally, the user starts a speech interaction by indicating (via speech) what his desires
are. The system then leads the user through a dialogue in which it tries to retrieve
information regarding these desires. If eventually all the necessary information is
collected, the application takes the appropriate actions to realise the user’s desires.

The general assumption behind the speech interface is that the user wants to
accomplish something with his utterances, i.e. he has a certain goal in mind. The set of
all services the SWAMP application has to offer is just a subset of all the goals the user
can possibly have. Goals that don’t correspond to a service, however are beyond the
domain of the speech interface and are ignored.

The speech interface is divided into 3 components.

1 The speech recognition or ASR component:
 Its function is to recognise the user’s utterance and transform it into a format

that can be processed.
2 The dialogue management component:
 Its function is to process the input from the speech recognition component to

figure out what the user wanted to accomplish and take the appropriate actions
to realise the user’s wishes. This component is the main focus in this paper.

3 The speech synthesis or TTS component:
 Its function is to generate speech output to the user.

Figure 2-1 gives a graphical overview of how the speech interface is implemented.

The main application is the original WAM client modified in such a way that it can
communicate with the dialogue manager.

CLIPS
engine

ASR engine

Dialogue Manager

grammar

CLIPS constructs

TTS engine

SAPI 5

Main
Application

Figure 2-1 Overview of SWAMP implementation

The SWAMP client is implemented in C++ (Microsoft Visual C++ 6.0 enterprise
edition). Initially it was the intention to build the speech interface to run on Windows
CE but due to limitations in software and hardware of handheld computers, Windows
NT was ultimately chosen.

KBS & TRAIL Workshop, June 2001 7

The Microsoft Speech Application Programming Interface 5.0 (SAPI5) is used as
middle-ware between the engines and the SWAMP application. SAPI5 acts as a
communication layer between the dialogue manager and the speech resources (ASR and
TTS engine). It takes care of hardware specific issues such as audio device management
and removes implementation details such as multi-threading. This reduces the amount of
code overhead required for an application to use speech recognition and synthesis.
Another advantage of using middle-ware is that the choice of the final ASR and TTS
engine can be postponed till a later stadium (e.g. until there is more budget for better
engines).

The CLIPS expert system tool is designed to facilitate the development of software
to model human knowledge or expertise. CLIPS is embedded in the SWAMP client. It
can be viewed as the knowledge processing and management unit of the dialogue
manager.

3. Dialogue design
With each initial utterance from the user, the speech interface tries to find the
corresponding service involved. Once the goals of the user are clear it tries to
accomplish the service by checking whether all the information needed is available. If
this is not the case, the speech interface must initiate a dialogue to retrieve the required
information from the user until the task can be performed. All possible dialogues that
the speech interface can be involved in must be designed beforehand. This includes
speech prompts for each situation, and all possible user responses on those prompts.
Furthermore design involves the definition of a grammar that captures the syntax of
whole conversations into a few simple grammar rules.

3.1 Design approach
The goal of the speech interface is to give a user access to the SWAMP services by
means of simple speech interaction. To achieve this, one can choose between two
different approaches: 1) demand a longer learning time for the speech interface and
require the user to adapt his speaking style or 2) make it easy for the user by allowing an
extensive grammar and modelling more and more complex dialogues so that the user
can speak to the system as with another human.

Speech User Interface (SUI) designers have learned that humans are extraordinarily
flexible in their speech and readily adapt to the speaking style of their conversational
partners. This is not a new finding: think about how easily we adjust our speech
depending on whether we are speaking to children or other adults. This flexibility has
useful implications for designing the speech interface: after extensive use of the speech
interface (as the user gets acquainted with the grammar and has more experience) some
dialogues become less and less common. Since the user will adapt his style of
interacting and refrain to only those dialogues that were successful in the past. Because
of this finding and the choice of our typical user (“he is familiar with current computer
technology”) the first approach was chosen: only model the most common utterances
and let the user adapt to it.

8 KBS & TRAIL Workshop, June 2001

3.2 Dialogue representation
Without a proper representation technique, the dialogues can quickly become very
complex and unmanageable. In this project dialogues are represented by flow diagrams
containing nodes representing start/begin points of a dialogue, boxes representing
actions (e.g. an utterance from a user or an action from the system), diamonds
representing decisions point and arcs to connect the nodes, boxes and diamonds. A
dialogue always begins with a start node and ends with an end node. Within these nodes,
the dialogue travels from box to box along the arcs and branching at the decision
diamonds. A successful dialogue corresponds to a path in the flow diagram from the
start node to the end node.

Speech dialogues are context sensitive. In our representation, the context is defined
by the positions within the dialogue flow. Each box represents a certain state or context.
The arcs branching from a box indicate the options available within that context and the
branches leading to a box define how that context can be achieved.

The power of above dialogue representation technique lies in the fact that dialogues
are represented in a generic way. E.g. the (user action) boxes define what the user can
say at that moment in the dialogue, but not how it must be said (this is defined in the
grammar). In this way, a single path in the dialogue flow diagram can represent whole
categories of similar dialogues.

A well-modelled dialogue flow diagram is one where each possible dialogue flow
can fit in. This implicates that common communication errors, such as
misunderstandings, should be modelled as well as mechanisms for correcting and
preventing these errors, such as requests for confirmation and roll back. Table 1 shows
an example dialogue for the kilometre registration (KM registration) service. The flow
of this dialogue fits into the flow diagram in Figure 3-1 (accentuated).

In practice the dialogues can become so complex and the dialogue flow diagrams so
large that it is best to split them up into one main dialogue and several smaller sub
dialogues. For each sub dialogue a separate dialogue flow diagram is designed and
referred to in the main dialogue flow diagram (by means of sub dialogue nodes).
Another use for the dialogue flow diagrams occurs during the testing phase. Since each
path from the start node to the end node corresponds to a successful dialogue. The
correctness of the implementation of the dialogues can easily be verified if all the paths
in the dialogue flow diagrams can be traversed.

Table 1: Example dialogue

 U: Change trip type
S: Is it a business or a private trip?
U: It’s a business trip?
S: OK, what’s the project ID for this business trip?
U: Project ID is SWAMP
S: Do you want to set the project ID to SWAMP?
U: Yes
S: OK, trip type is set.

KBS & TRAIL Workshop, June 2001 9

K M r e g is t r a t io n

U : C h a n g e t r ip t y p e
u t t e r a n c e

U t te r a n c e
c o n t a in s n e w

t r ip ty p e

t r ip t y p e is
b u s in e s s

S : W h a t is th e
t r ip t y p e

S : S e t p r iv a te t r ip ,S : S e t b u s in e s s
t r ip

U : C a n c e l U : ?U : U t t e r s n e w
tr ip t y p e

E n d : K M
r e g is t r a t io n

S : A s k c o n f i r m a t io n

S : S e n d S M S , g iv e
f e e d b a c k

U : y e s U : N o U : C a n c e l

U t te r a n c e
c o n t a in s n o

p r o je c t ID

S : S e t n e w p r o je c t
ID

S : W h a ts t h e
p r o je c t ID

U : P r o je c t I DU : ? U :C a n c e l

3 x n o r e s p o n s e

3 x n o r e s p o n s e

E n d : K M
r e g is t r a t io n

Figure 3-1: Dialogue flow diagram for the KM registration service

3.3 Grammar
The SAPI5 design specification requires the grammar of an application must be a
context-free grammar (CFG) written in a format specified in the SAPI5 grammar
schema. This schema describes the SAPI 5.0 speech recognition grammar format and is
based on the XML framework. The ASR engine uses the CFG to constrain the words
contained in the user's utterance that it will recognise.

Basically the grammar file consists of a set of grammar rules in the grammar schema
syntax. The complete specification of the schema can be found in the SAPI5 online help.
Grammar rules can have an activation state, which can be set to active of inactive.
SAPI5 recognises active rules and conversely does not recognise deactivated ones. The
application may change the state of the rules during execution. So if a rule is no longer
needed, it may be deactivated.

In order to indicate the functional parts of a sentence i.e. the parts that actually
contain relevant information, the CFG can be extended with semantic information
declared inside the grammar. This enables the ASR engine to associate certain
recognised word strings with name/value-meaning representations. The dialogue

10 KBS & TRAIL Workshop, June 2001

manager then applies these meaning representation associations to understand and
control the dialogue with the user.

The grammar rules are derived from a corpus of utterances by hand. Crucial in this
process is the determination where the relevant information is located within an
utterance. Once this is accomplished, the derivation process is straightforward.

4. The reasoning model
In the search for a suitable reasoning model for the dialogue manager: one that is
capable of adequately describing the reasoning behaviour of the dialogue manager, the
Belief-Desire-Intention (BDI) model [3] was chosen. In an implementation of a dialogue
manager according to this model, the dialogue manager continuously executes a cycle of
observing the world and updating its beliefs, deciding what intention to achieve next,
determining a plan of some kind to achieve this intention, and then executing the plan.

There exist a correspondence between concrete CLIPS data structures and the
attitudes in the BDI model. Beliefs in the BDI model are implemented as facts and rules
in CLIPS. Facts are used to construct the dialogue manager’s internal representation of
the world. Facts can be seen as propositions and thus can only consist of a set of literals
without disjunction or implication. Therefore special rules (belief rules) are used to
complete the representation of beliefs. Belief rules represent the general relationship
between facts (e.g. IF utterance=help THEN AlertLevel=high).

One way of modelling the behaviour of BDI reasoning [4] is with a branching tree
structure, where each branch in the tree represents an alternative execution path. Each
node in the structure represents a certain state of the world, and each transition a
primitive action made by the system, a primitive event occurring in the environment or
both. In this formal model, one can identify the desires of the system with particular
paths through the tree structure. The above description of the branching tree structure is
logically similar to the structure of the dialogue flow diagrams described in section 3.2.
In fact, both structures represent exactly the same: a path through the dialogue flow
diagram is a successful dialogue, which is also a desire and therefore a path through the
branching tree of the BDI reasoning model. As a result, the dialogue flows diagrams can
be treated as the structures that describe the behaviour of the dialogue manager. They
are directly implemented in CLIPS rules, each rule corresponds to a branch in the
dialogue flow. Rules are both the means for achieving certain desires and the options
available for the dialogue manager. Each rule has a body describing the primitive sub
goals that have to be achieved for rule execution to be successful. The conditions under
which a rule can be chosen as an option are specified by an invocation condition. The
set of rules that make up a path through the dialogue flow, correspond to a desire.

The set of rules with satisfied invocation conditions at a time T (the set of
instantiated rules) correspond to the intentions of the dialogue manager at time T.
Obviously the intentions of the system are time dependent. The dialogue manager
adopts a single-minded commitment strategy, which allows continuous changes to
beliefs and drops its intentions accordingly. In other words the intentions of the system
can be affected by the utterances of the user in contrast to blind commitment in which a
intention is always executed no matter changes in beliefs.

KBS & TRAIL Workshop, June 2001 11

5. An example
In the previous section it was shown that the desires of the dialogue manager can be
represented by dialogue flow diagrams. The flow diagrams are systematically translated
into an executable system formulated in CLIPS rules. This section discusses the
implementation of the desires. In particular the heuristics used for the translation from
dialogue flow diagrams to CLIPS rules.

 N1
KM registration

B1
U: Change trip
type utterance

D1
Utterance contains

new trip type

D2
trip type is business

B4
S: What is the trip

type

B3
S: Set private trip

B2
S: Set business

trip

Figure 5-1: Part of the dialogue flow diagram for KM registration service

Suppose we must transform a dialogue flow diagram as in Figure 5-1. This dialogue is
initialised when the user utters a phrase that matches the grammar for a change trip type
utterance (box B1). Notice that box B1 has 3 branches (to the boxes B2, B3 and B4),
furthermore we see that the action in B1 is a speech action from the user. From this we
conclude that the dialogue flow should be implemented using 3 speech rules. The
invocation conditions for each rule are the evaluated values of the expressions in the
decision diamonds D1 and D2. The body of each rule contains the actions specified in
the corresponding destination boxes. Furthermore, the body of the rules also contain
actions to anticipate what follows after the action e.g. after box B4 the user must supply
the new trip type so the grammar rules for trip type utterances should be activated.

The CLIPS rule in Figure 5-2 corresponds to the branch from box B1 to B2 (Figure
5-1). The keyword RECOGNISED in line 2 indicates that a user’s utterance is
recognised. The grammar rule that matched the utterance is VID_KMREG_TRIPTYPE.
Furthermore, the property name TripType with value business satisfies condition D1 and
D2. The actions taken satisfy B2 (between the <SAY> tags in line 5) and anticipate
future utterances of the user by activating the VID_YES_NO grammar rule and de-
activating all other main grammar rules. Thereby limiting the user’s input to only
boolean values. The other actions in the rule body are used to update the internal
representation of the world.

12 KBS & TRAIL Workshop, June 2001

1
2
3
4
5
6
7
8
9
10
11
12
13

(defrule KM_Registration_Business
?in<-(RECOGNISED 161 VID_KMREG_TRIPTYPE 50 TripType business)
?pos<-(POSITION MAIN RUNNING)
=>
(printout t "<SAY>Do you want set the triptype to business?</SAY>

<ACT>VID_YESNO</ACT>
<DEACT>"?*Mainrules*"</DEACT>
<REACT></REACT>" crlf)

(retract ?in)
(retract ?pos)
(assert (POSITION MAIN KMREG))
(assert (WANT CONFIRM))
(assert (QUESTION KMREG business))

)

Figure 5-2: CLIPS rule - part of the KM registration service

6. Conclusions
The model presented here allows for man-machine speech interaction. Indeed the speech
interface of the SWAMP application implemented according to this model is capable of
handling simple dialogues with the user. The dialogues are described and visualised as
generic flow diagrams resembling branching tree structures [4]. The chosen
representation technique has also contributed greatly to the containment of the
complexity in the dialogues models. Furthermore it allows an easy translation to
executable CLIPS rules.

References
[1] A. Chapanis, “Interactive Human Communication: Some lessons learned from

laboratory experiments”, In: Shackel, B. (eds). “Man-Computer Interaction:
Human Factor Aspects of Computers and people”, Rockville, MD: Sijthoff and
Noordhoff, page. 65, 1981.

[2] H. Nusbaum, et al., “Using Speech recognition systems: Issues in cognitive
Engineering”, In: Syrdal A. et al. (eds), “Applied Speech Technology”, Boca
Raton, CRC press, page. 127, 1995.

[3] M. Wooldridge, “Reasoning about Rational Agents”, The MIT Press, Cambridge,
Massachusetts, 2000.

[4] A. Rao and M. Georgeff, “BDI Agents: From Theory to Practice”, in Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS-95), 1995.

KBS & TRAIL Workshop, June 2001 13

Intelligent dynamic route planning

G. Eggenkamp L.J.M. Rothkrantz

Delft University of Technology, Zuidplantsoen 4, 2628BZ Delft, the
Netherlands

Abstract

In this paper the possibilities of artificial intelligence and especially of expert systems in
the field of route planning using dynamic traffic data are explored. An expert system that
has been built to perform dynamic routing and a dynamic route planner using a
(traditional) shortest path algorithm are introduced. Using both implementations a
comparison is made between the expert system approach and the shortest path approach.
It is concluded that the expert system shows great potential. It outperforms the shortest
path algorithm in computation time and the routes the expert system finds are indeed the
shortest routes.

1. Introduction
Currently no dynamic route planners are available. Although the highway network in

the Netherlands is flooded with cars and is subject to heavy congestion in both rush hours
no planner is available that finds the shortest route in this (congested) network. The only
option some route planners and car navigation systems offer is to ‘block’ roads that are
congested and to find the best alternative route without using this road. Consequently a
route is advised that might well take longer then the route along the congested road, since
this road is not even considered anymore. Since dynamic data are available from the
MONICA monitoring system (the detection loops under the highways) a study has been
carried out to develop such a dynamic route planner.

When research was carried out to the performance of shortest path algorithms, like
Dijkstra’s algorithm, to find the shortest route while using dynamic data, it showed that
the computation time degrades significantly when dynamic data are incorporated.
Consequently, other possibilities were investigated and since humans are quite well
capable of finding alternative routes in the case of congestion it was decided to study the
feasibility of an artificial intelligence approach. In this paper the feasibility of an expert
system in a dynamic route planner is discussed and a comparison is made with a ‘regular’
shortest path algorithm.

This paper will start with a problem definition (section 2) and an introduction of a
shortest path algorithm that can be used to find the shortest path in a dynamic network
(section 3). In section 4 an introduction of the expert system that was constructed is given,
while in section 5 the results of both approaches are presented. In section 6 some
conclusions are given.

14 KBS & TRAIL Workshop, June 2001

2. Problem definition
The highway network can be represented by a graph, as with static routing problems.

The highway network that was considered in the research is the network that is being
monitored by the MONICA system, since only dynamic data are available of these roads.
In Figure 1 this network is shown. Somehow the dynamic aspect of the data has to be
taken into account. The travel times between different edges (cities, junctions) change in
time, and these changes have to be taken into account and incorporated in the graph.
When, for example, travelling from Amsterdam to Delft in the morning rush hour, a
departure of only 5 minutes later, can affect the travel time by more then 20 minutes, since
major congestion may have occurred along the route during these 5 minutes. For example
an accident might have happened or a sudden peak in cars that want to access the highway
may have occurred.

A space time extended network (STEN) explicitly represents time by having a
complete layer of all nodes of the physical network per time period. The first occurrence
of STEN in literature can be found in [4]. Other applications of space-time expanded
networks can be found in [1,3,6]. In all these publications time expanded networks were
used to solve traffic assignment models, which are dynamic flow problems. In dynamic
route planning only the shortest path has to be found, no dynamic flow problem has to be
solved. Consequently, the same approach can be used, only with a flow of 1 for all links.

Concordant to these publication the space-time expanded network can be constructed
as follows:

• for each period p create a complete layer of all nodes of the physical network,
• for each node in period p (all nodes with the same t), create links to the nodes it is

connected with in the physical network in the corresponding period ‘layer’ p + d,
with d the travel time when starting at period p,

• for each node in period p create a link to the same node in period p + 1 (it is also
possible to stop in a node).

An example of a network constructed this way is shown in Figure 2. The original

graph consisting of nodes A to G is repeated for each time interval. The edges between the
nodes A to G (the lowest graph at t = 10:01) represent which nodes are connected to each
other. For clarity these edges have been kept in the different layers of the graph to show
these connections. The thicker links that intersect the different layers are the actual road
connections. Their length (and thus the layer to which they go) represents the travel time
when starting at the time of the layer in which they start. For each layer for all nodes all
outgoing links are constructed and labelled according to the travel time at that moment. It
should be noticed that in Figure 2 not all the links are shown, since that would have
resulted in a cluttered figure.

3. The extended Dijkstra algorithm
The most secure way to find an optimal route from an origin to a destination at a

specific time of the day would be to find the optimal route in the graph that was
constructed in the previous section. In [4] a proof is given that a dynamic routing problem
that is expanded in the way described can be solved using static shortest path algorithms.

KBS & TRAIL Workshop, June 2001 15

In practice the graph that is proposed in section 2 better can not be constructed, since this
would require a lot of computation time. It would be far more efficient if travel times only
were estimated if they are really needed. Consequently an algorithm was constructed that
finds the shortest path in this 3-dimensional graph and which only estimates travel times if
necessary. When the algorithm was constructed and was reviewed thoroughly, it was
discovered it differs with Dijkstra’s algorithm only slightly. Consequently, it was called
the ‘extended Dijkstra algorithm’. Since the Dijkstra algorithm is widely known, no
explanation is given here. It can be found in [3].

Figure 1. The freeway network that is moni- Figure 2. A space-time expanded network.
tored by the MONICA system.

It should be noticed that no research was done into the estimation of travel times,
which is a very complex process. During this project we focused on one main aspect:
route planning. Consequently, it was assumed travel time estimates were available and a
set of historical data was used as ‘dummy’ data.

4. Expert system
In this section the expert system that has been constructed is introduced. As was stated

in section 2 the problem domain of the expert system is given by the road network that is
given in Figure 1. The expert system should find the fastest route in this network.

4.1 Knowledge elicitation
The knowledge the expert system should possess consists of alternative routes in the case
of congestion along a part of a road. This knowledge can be made explicit in two ways.
Firstly, experts can be interviewed. These experts should be experienced ‘traffic jam
travelers’ that often have tried alternative routes in the case of congestion along a part of
the freeway they normally use. Secondly, the map of the Netherlands combined with
historical traffic data can be investigated, to see which alternatives are reasonable in the

16 KBS & TRAIL Workshop, June 2001

case of a traffic jam. In this project, the second approach was chosen. The reason to do
this was as follows. Travelers are not able to monitor the routes they did not choose.
When they have chosen an alternative, afterwards they do not know if it was faster then
the original route or other alternatives (unless they know another traveler, who tried the
alternative at the same time). Consequently, the perception the traveler has of the quality
of alternatives he tried can be wrong, since it may also be influenced by other incentives
then the shortest travel time.

4.2 Level of detail
For the level of detail in which congestion in the road network is monitored route sections
between junctions where one can change freeways were chosen. Since routes are only
optimised in the freeway network (and not considering secondary roads), only at junctions
the route can be changed. Since secondary roads are not taken into account, it is not
interesting to construct rules on the basis of congestion between two ramps: for all ramps
that are between two junctions, the same rules would be constructed, since only at the first
junction after the ramp it is possible to change the route. In Figure 1 the different road
parts between junctions can be found (the junctions are identified by their names).

4.3 Route representation
The expert system is provided with a number of route parts (trajectories), that each have a
predicate, which can be ‘route’, ‘file’, ‘entrance’ or ‘exit’. These route parts are delimited
by two junctions. An example of such a route can be found in Figure 4. The route on the
map was generated by a static route planner and was translated to a route for the expert
system. Right of the figure the translation of the route can be found.

(entrance coenplein nieuwe_meer)
(route nieuwe_meer badhoevedorp)
(route badhoevedorp burgerveen)
(route burgerveen prins_claus)
(route prins_claus ypenburg)
(exit ypenburg kleinpolderplein)

Figure 4. The route from Amsterdam to
Delft and the format that is given to the
expert system.

It was chosen to keep the choice whether there is congestion along a trajectory, outside the
domain of the expert system. A separate module was constructed in which it is decided if
the delay is significant enough to consider the trajectory congested. This module provides
the expert system the route with its appropriate predicates.

4.4 Construction of the rule base
For each trajectory along the road network rules were made stating which alternative to
take if the trajectory was congested. Since there are 92 edges in the network that is

KBS & TRAIL Workshop, June 2001 17

monitored by the MONICA system (Figure 2) the construction of these rules was a time
consuming task. The alternative route that can be taken when a route part is congested
depends on the direction one is coming from and the direction one is going to: the rules
for alternative roads depend on the previous and following route parts. The different steps,
which are needed to construct the different rules for each trajectory are given in the
following action list.

1. Determine the possible directions where one can be coming from
2. Determine the possible directions where one can be going to
3. Determine the different alternative routes for each possible route, by investigating

the map and historical data.
4. Calculate the ‘detour time’ of each alternative: the time needed to make the detour

in the best case (no congestion along the alternative route).
5. Order the different routes according to this ‘detour-time’.
6. When the ‘detour-time’ is too large, do not use the alternative.
7. Check with reports of car drivers if no routes are missing

The first two steps are very straightforward, the possible directions can be found by
having a look at the map. The third step requires by far the most time: in this step the
different alternative routes have to be chosen. When these routes are known, their travel
times can be computed. The fifth step is important to find the best route as quickly as
possible. This property can be very useful if the dynamic route planner is used in a real-
time environment and there is a time constraint. When alternatives become available very
fast, while searching is continued for better alternatives, the best route found so far can be
used if the time constraint has to be met. Of course, it would be optimal if the first route
found also is the best route and this is examined using this parameter. Consequently, the
order in which the alternatives are searched should depend on the travel times and the
chance of congestion along these alternatives, when there is congestion along the
trajectory for which alternatives are searched.

5. Results
To be able to compare both methods the following four parameters were chosen: 1) the

number of travel time estimates, 2) overall computation time, 3) shortest route found and
4) order of found routes.

The number of travel time estimates parameter was chosen since it gives an indication
of the performance of the algorithm. Since the travel time estimation is the process that
needs the most computational time the number of travel time estimates will strongly
indicate the total computational time needed.

The overall computation time parameter is included to be able to judge the
performance of the expert system. It could be possible, the expert system approach needs
only few travel time estimates, but is very slow itself, since the rule base is very large.

The third variable on which the methods will be compared is the shortest route that is
found. Since it is mathematically proven that the extended Dijkstra algorithm will return
the shortest route this parameter is only applicable to the expert system.

The last variable which will be carefully examined is the order in which alternative
routes are given. This aspect is also only applicable to the expert system, since Dijkstra’s

18 KBS & TRAIL Workshop, June 2001

algorithm does not return any other route then the best one. It should be examined how
many alternatives have to be computed to find the shortest one. As was stated in section
4.4 this can be important in a real-time environment.

5.1 Testing protocol
To test both approaches several departure and destination addresses were chosen between
which the shortest route had to be found. Firstly the routes were searched on a free-flow
network, without congestion. Congestion was created along one of the trajectories in the
shortest route that was found and both algorithms were applied again. Again congestion
was created along one of the trajectories of the newly found route and both algorithm
were applied. This process was repeated until all trajectories were delayed. In Figures 5
and 6 the first two iterations of this process are illustrated. In Figure 5 the free flow route
that was found is shown. Congestion was created between the Prins Claus and
Badhoevedorp junctions and both algorithm were applied. The shortest route found now is
shown in Figure 6. Now congestion was created between the Holendrecht and Diemen
junctions and the same process was repeated. In Table 2 an overview of the results of the
first three steps of this testing procedure for the route between Zoetermeer and Muiden is
given.

Figure 5 and 6. Free flow route and route if there is congestion between the Prins Claus
and Badhoevedorp junctions.

Table 2. Test results of route between Zoetermeer and Muiden.

 exp. syst.
trav. est.

exp. syst.
comp.time

graph alg.
trav. est.

graph alg.
comp.time

order
found

routes are
the same

Original route, A12-A4-A10-
A1 (48’) 0 9500 722 17470 0/0 Yes

Delay between prins claus
and badhoevedorp (A4),
+20’,A12-A2-A9-A1 (53’)

93 10000 1286 34270 1/3 Yes

Delay between holendrecht
and diemen (A9), +15’, A12-
A2-A10-A1 (54’)

94 10490 1285 34880 3/3 Yes

5.2 Results
In Table 3 the results of this testing procedure for different routes are shown. In the most
left column the routes are denoted together with the number of iterations with congested

KBS & TRAIL Workshop, June 2001 19

trajectories that was carried out. Columns 2 to 5 show the average number of travel time
estimations and the average computation time of both methods. In column 6 some kind of
indication is given which alternative of the expert system was the best route. In Table 2
this was indicated as x/6 for each route, which means that 6 alternatives were generated
and the first one of these was the fastest one. The indication that is given in Table 3 is
simply the sum of the total routes found (right number) and the sum of the numbers that
indicate when the route was found (left number). A value of 4/13 indicates that overall
measured the fourth alternative was the right one, given thirteen routes. The last column
indicates the number of correct routes out of the number of total routes found.

Table 3. Average values of testing procedures.

 expert syst.
travtime est.

expert syst.
comp. time

graph alg.
travtime est.

graph alg.
comp.time

order
found

same
routes

Muiden-Amerongen (6) 96 9403 1268 33958 4/13 5/6*
Amerongen-Delft (7) 142 10511 1570 46656 8/15 7/7
Amsterdam-Apeldoorn (7) 203 8457 1436 36744 13/42 7/7
Deventer-Gouda (8) 130 10011 1015 32034 12/29 7/8*
Weesp-Moordrecht (10) 466 14664 1302 33238 21/65 9/10*
Total average 229 10899 1310 36216
* The routes were different, although the travel time was the same.

Table 3 shows the expert system requires significantly less computation time then the
shortest path algorithm. The overall computation time is a factor 3.5 less, while the
difference of the number of travel time estimates is almost a factor 6. Since it is expected
the estimation of the travel time will take (by far) the most computation time in a real-time
estimation it can be expected the expert system will perform even better when used
together with MONICA data: the data the detection loops generate have to be combined
with historical data using some kind of prediction algorithm, which will take a lot more
computation time then currently was needed, since dummy data were used.
In Table 3 it can be seen that the few times the routes were different (three times out of
approx. 60 routes), the travel times were the same. Since different algorithms were used to
find the shortest route both approaches returned a different one, although the other
alternatives were also returned. As a result it can be stated that the quality of the routes
found by the expert system is very good. On the other hand it should also be remarked that
the testing procedure influenced the results a little bit. During the testing procedure no
scenario’s were tried to frustrate the expert system. It would be possible to create such
congestion along all reasonable alternatives that a very strange alternative would become
the best one. When for example travelling from Amsterdam to Utrecht one could create
severe congestion along all ‘normal’ alternative roads such that one would have to travel
via Apeldoorn and Arnhem, back to Utrecht to have the fastest route. Of course such
situations are very rare in reality.
With respect to the order in which the expert system generates alternative routes it can be
remarked the results are quite well. Most of the time one of the first routes that is
generated actually is the fastest route. On the other hand it can be noticed that sometimes
the best route is one of the last routes found. This is a consequence of the unpredictable
behaviour of congestion. As was stated in section 4.4 it was tried to rank the different
alternative routes in such a way that the alternative with the highest chance of being the

20 KBS & TRAIL Workshop, June 2001

best one was tried first. Since a chance guarantees nothing sometimes other routes are
better. Especially when more then one trajectory is congested along a route the best
alternative can be one of the last ones tried. Two or more trajectories are congested, so
two or more file predicates will instantiate different rules. The order in which these rules
fire cannot be regulated in a way the rule with the ‘best’ alternative fires first, since more
then one trajectory is congested and it can not be stated beforehand which alternative will
be most promising in that case. Consequently the alternative that are fired by one rule
might all be tried first after which the second rule fires which contains the best alternative.
The last remark that can be made is concerned with the implementation. In section 4 it
was stated the travel times of each alternative should be computed to prevent the travel
times of alternatives being computed that will not make a chance since their detour time
is larger then the delay due to the congestion. Since the construction of the rule base took
much more time then expected this implementation was not made. Subsequently
sometimes alternatives were tried that should not be tried at all.

6. Conclusion
In this paper the possibilities of an expert system in the field of dynamic route

planning were discussed and a comparison was made between a shortest path algorithm
and the expert system. The expert system showed great potential. Not only performs the
expert system much better with respect to computation time, the routes the expert system
returns are as good as the routes the conventional shortest path algorithm computes and
the expert system shows great possibilities when real time constraints are placed. The
expert first generates all possible solutions and then computes their travel time one by
one. As soon as the travel time of a solution has been computed the solution becomes
available.

The most important drawback of the expert system approach is the construction of the
rules. This is a very intensive process and requires a lot of time.

References
[1] H.K. Chen. Dynamic travel choice models: a variational inequality approach.

Springer, Heidelberg, 1999.

[2] G. Eggenkamp. KRIS: Knowledge based routing information system. Graduation
thesis, TU Delft, 2001.

[3] J.R. Evans and E. Minieka. Optimization algorithms for networks and graphs.
Marcel Dekker Inc., New York, 2nd edition, 1991.

[4] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, New Yersey, 1962.

[5] B. Ran and D.E. Boyce. Modeling dynamic transportation networks: an intelligent
transportation system oriented approach. Springer-Verlag, Berlin, 2nd edition, 1996.

KBS & TRAIL Workshop, June 2001 21

Dynamic vehicle routing
using an ABC-algorithm

R. Kroon, L.J.M. Rothkrantz *

Abstract

In the past years the application of agent algorithms based on the natural behaviour of ants have shown to be
successful in routing data through communication networks. Using the trail-laying abilities of ants the mobile
agents are able to create well performing routing tables. In this paper an Ant Based Control algorithm is applied to
the routing of road traffic trough a city. The algorithm is tested in a simulation environment that makes it possible
to show the effect in different cities and circumstances. The agents do not move through a real city, but use a
model of a city map. This model is supplemented with actual data from the traffic in the city. This enables the
agents to divert traffic from congested routes, which improves travelling-times.

Key words: Routing algorithms, mobile agents, ant-based algorithms, distributed routing

1. Introduction
Road traffic is getting busier and busier each year. Everyone is familiar with traffic congestion on highways and
in the city. And everyone will admit that it is a problem that affects us both economically as well as mentally.
Furthermore finding your way in an unknown city can be very difficult even with a map. Navigation systems like
CARiN can help in such cases. These systems display the route to be followed when the user has entered his
destination. The latest versions are also able to use congestion information to avoid trouble spots. But such
information is only available for highways and not in a city.

This paper addresses the dynamic routing of traffic in a city. We want to set up a routing system for motor
vehicles that guides them through the city using the shortest way in time, taking into account the load on the
roads. Furthermore we want the routing system to be distributed, for more robustness and load distribution.

The routing system uses a routing algorithm based on earlier versions of Ant Based Control-algorithms.
Exact routing algorithms like Dijkstra’s algorithm only apply to central routing. And ant-based algorithms have
proven to be superior to other distributed routing algorithms in [1,2]. In [2] an ant-based algorithm was used for
routing and load balancing in a telephony network. In [3] the algorithm is applied to packet switched networks
with basic ideas taken from [1]. And now we will apply a variant of the algorithm to a traffic network in a city.

2. Theory
This section presents a short introduction to an important aspect of the behaviour of ants and the basic ideas of
ant based control.

2.1 Emergent behaviour of ants
Insects like ants perceive only a very local piece of the world they live in. But it is no coincidence that they do
find their way back to a food source or their nest. When a group of such animals interact they can exhibit a
higher-level behaviour. This behaviour is most often called emergent behaviour. Instead of a central controlling
authority ants interact with their environment to achieve common goals. The resulting behaviour of an ant colony
can be very complex.

The emergent behaviour is enabled by stigmergy. Stigmergy is a way for entities to communicate indirectly
with each other through the environment. An ant colony uses this for finding the shortest route from their nest to
a food source and back. Ants only react to local stimuli from their environment, but they can change some of
those local stimuli. Such a modification will influence future actions of other ants at that location.

The ants lay pheromone, a kind of hormone, as a mutual signalling system. When looking for food, the ants
follow the pheromone trails with a probability proportional to the strength of the trail. They do not necessary

* R. Kroon, L.J.M Rothkrantz

Delft University of Technology, Knowledge Based Systems, Mekelweg 4, 2628 CD Delft,
The Netherlands, E-mail: L.J.M.Rothkrantz@cs.tudelft.nl

22 KBS & TRAIL Workshop, June 2001

follow the track with strongest pheromone trail. There will often be a certain amount of error (or noise). The
strength of the trail sensed by an ant depends on the original strength and the time elapsed since the pheromone
was laid. This is because the pheromone diffuses in time. Several ants can travel the same route, resulting in a
pheromone trail laid by different ants at different times. The pheromone trail sensed by ants is therefore a
composite one. The probability that an ant chooses a particular route depends on the concentration of the
pheromones. A stronger pheromone trail increases the chance an ant chooses the route belonging to that
pheromone trail. This mechanism makes the ants bias towards the shortest paths. It works for the following three
reasons:
• Shorter routes will be completed earlier than longer routes and thus attract other ants earlier.
• The ant density will be bigger at shorter routes when the ants choose the alternatives equally likely, and

more ants produce more pheromone.
• Ants travelling shorter routes will arrive earlier. This causes the pheromone to be stronger, because less of

the pheromone trail has diffused.
This strengthening process may continue until there is no more pheromone on the longer paths.

2.2 Ant-based control for network management
We can use the idea of emergent behaviour of natural ants to build routing tables in any network. We will apply
it in a traffic network in a city, i.e. the composition of the roads and their intersections. This network is
represented by a directed graph. Each node in the graph corresponds to an intersection. The links between them
are the roads. Mobile agents, whose behaviour is modelled on the trail-laying abilities of natural ants, replace the
ants. The agents move across the network between randomly chosen pairs of nodes. As they move, pheromone is
deposited as a function of the time of their journey. That time is influenced by the congestion encountered on
their journey. They select their path at each intermediate node according to the distribution of the simulated
pheromone at each node. Each node in the network has a probability table for every possible final destination.
The tables have entries for each neighbouring node that can be reached via one connecting link. The probabilities
influence the agent’s selection of the next node in their journey to the destination node. The probability of the
agents choosing a certain next node is the same as the probability in the table.

The probability tables only contain local information and no global information on the best routes. Each time
an agent visits a node the next step in the route is determined. This process is repeated until the agent reaches its
destination. Thus, the entire route from a source node to a destination node is not determined beforehand.

Agents are launched at each node with regular time intervals with a random destination node. They travel
around the network using the probabilities in the probability tables. The probabilities per destination are all filled
with equal values for all nodes before the process begins.

3. Design
This section explains the design of the routing system.

3.1 Dynamic data
We want to route the traffic dynamically through a city. Therefore we need dynamic data about the state of the
traffic in the city. This can be gathered from sensors in the road-surface. Such sensors can count vehicles and
measure the speed of the vehicles. That information can be used to compute the time it takes to cover a part of
the road. Another source can be the traffic information services. They can inform the system about congestion,
diversions of the road, roadblocks and perhaps open bridges. And finally the vehicles themselves can provide the
system with information about the path they followed and the time it took them to cover it. The current
technology enables us to fix the position of a vehicle with an accuracy of a few meters. That position can be
communicated to the system along with the covered route.

For our routing system we will at first only use the latter type of information as dynamic data. But of course
the model is open for additional types of dynamic data. The information from the vehicles is handled by a
separate part of the routing system, called the timetable updating system. This subsystem takes care that the
information is processed for use by the ant-based algorithm. This way one vehicle drives a certain route and
sends its performance to the routing system. Another vehicle is able to use that information to choose the shortest
route.

KBS & TRAIL Workshop, June 2001 23

3.2 Architecture
We will now explain the structure of the system from the viewpoint of the vehicle and its driver. A vehicle is

driving through a city and it wants to know the way. The driver enters the address where he wants to go and
expects a routing system to tell him where to go. Besides the destination the routing system needs to know the
location where the vehicle is at the moment. Therefore the vehicle sends a request to a satellite of the GPS
(Global Positioning System). This is shown by arrow A in figure 1. GPS is a system that can determine a
position of the sender with an accuracy of a few meters. So the GPS-satellite answers the vehicle with its current
position (arrow B). This position is measured in latitude/longitude co-ordinates. In the vehicle these co-ordinates
are translated in a position on a certain road with the aid of a digital map of the city. Now the vehicle has enough
information to request the routing system what route to follow. The vehicle sends its position and its desired
destination along with the request for the route to the routing system (arrow D). Arrow E is the answer from the
routing system that contains the route that the vehicle should follow. These steps are pretty obvious, but we have
skipped arrow C. This arrow indicates that the vehicle provides the routing system with information about the
route it has followed since the previous time. The information consists of (1) the location and time at the moment
of the previous update, (2) the location and time at this moment and (3) the route that the vehicle has followed in
between these times and locations. Table 1 shows a detailed enumeration of the information that is send along
the indicated arrows.

Table 1 Communicated data between the different objects
Arrow From To Data
A Vehicle GPS-satellite REQUEST_POSITION
B GPS-satellite Vehicle ANSWER_POSITION,

latitude/longitude co-
ordinates

C Vehicle Routing system UPDATE, previous
time/position, covered
road A, covered road B,
covered road C, …,
current time/position

D Vehicle Routing system REQUEST_ROUTE,
current position,
destination

E Routing system Vehicle ANSWER_ROUTE,
road A, road B, road C,
…

3.2.1 Communication in time

Now we will give an impression of how the communication works in time. Firstly, a REQUEST_POSITION
(arrow A) will be send with some regular time interval, for example every minute. Directly after that an
ANSWER_POSITION (arrow B) will be sent back to the vehicle. The information that is sent with an UPDATE
(arrow C) is most valuable as soon as a new position is known. The fact is that the UPDATE must be sent
together with a current position, and the longer it is delayed the older the data is. Therefore an UPDATE will
always be sent directly after an ANSWER_POSITION. This does not alter the fact that an UPDATE does not
have to be sent after every ANSWER_POSITION. This frequency can for example be lower to reduce
communication. Finally a REQUEST_ROUTE (arrow D) and an ANSWER_ROUTE (arrow E) will also always
succeed an ANSWER_POSITION. When a new route is requested and acquired, the old route is overwritten.
Clearly a REQUEST_ROUTE needs a current position. An old value for the position could cause a vehicle to be
travelling on a road that is no longer in the list of its new route. The interval by which a REQUEST_ROUTE is
sent can differ from the former messages. After the first route is acquired it will mostly be valid for the rest of
the travelling-time. So the frequency can be lower than the frequency of the other messages. Figure 2 clarifies
again which messages succeed each other.

A

D C E

B

GPS-satellite

Vehicle

Routing
system

Fig. 1 Communication of the vehicle

24 KBS & TRAIL Workshop, June 2001

Fig. 2 Succeeding messages

3.2.2 Distributed routing system

The use of the ABC-algorithm allows the routing system to be distributed. This means that the computation is
done on several computer systems that are mutually connected via a network. Distribution of computational
power gives some advantages above a central routing system. Firstly what normally has to be done by one
computer system is now done by several computer systems, which increases the speed and the memory space.
Secondly, when properly implemented the failure of one of the systems does not have to imply a total break
down of the routing system. This does however involve some extra communication necessary for information
that is not available on the concerning computer system. It will eventually depend on the amount of information
that needs to be communicated between the computer systems whether the actual speed will be higher than with
a central routing system. Another possible disadvantage is that the traditional routing algorithms cannot be used.
Those routing algorithms allow for perfect routing, i.e. giving the best routes possible. The ABC-algorithm only
approaches the best routes. But the results of this research will have to show that the ABC-algorithm is
sufficiently accurate to route the traffic.

3.3 Routing problem
The most important problem of this research is solved by the timetable updating system and the route finding
system. These two subsystems together form the routing system. The relations are shown in figure 3. The
function of the route finding system will be clear: we are building a system to route vehicles. The reason why we
need the timetable updating system is the following. The route finding system needs information about the state
of the network. A static route finding system could use a fixed set of data, but we will use a dynamic route
finding system that needs dynamic data. Those data are provided by the timetable updating system. That
information can be for example the load of the parts of the network but a more direct and therefore more
practical type of information is the time it takes to cover a road. Vehicles send information about their covered
route to the timetable updating system. From that information this system computes the travelling-times for all
roads and stores it in the timetable in the memory. Besides the timetable also a history of measurements is stored
in the memory. The reason to keep a history will become clear later in section 3.3.1. The route finding system
uses the information in the timetable to compute the shortest routes for the vehicles. When a vehicle requests
route information, the route finding system sends this information back to the vehicle.

Fig. 3 Design of the routing system

REQUEST_POSITION

ANSWER_POSITION

UPDATE

REQUEST_ROUTE

ANSWER_ROUTE

Time

Vehicle

Routing system

Timetable
updating
system

Memory
Route
finding
system

KBS & TRAIL Workshop, June 2001 25

3.3.1 Timetable updating system

This subsystem could receive its information about the traffic network in the city from different sources. This
could for example be directly from sensors in the road-surface. But the main sources are the vehicles themselves.
They provide the system with information about the path they followed and the time it took them to cover it.
With this information the timetable updating system computes the travelling-times for every part of the road. The
travelling-times are placed in the timetable. This timetable can be seen as a two-dimensional matrix with all
intersections of the traffic network along both axes. When one can go from one intersection directly to another,
there will be an entry in the table that represents an estimate for the time to cover that road. The intersections that
cannot reach eachother unless via another intersection will have no entry in the table. Figure 4 is an example of a
traffic network and table 2 shows its timetable.

 Table 2 The timetable matching figure 4

From:

To: Intersection
1

Intersection
2

Intersection
3

Intersection
4

Intersection 1 25 sec 33 sec
Intersection 2 24 sec 18 sec
Intersection 3 18 sec 20 sec
Intersection 4 31 sec 23 sec

We will now explain how we represent a traffic network in our model. Figure 5 shows a simplified part of a

city map. Figure 6 shows the internal representation of that map. As one can see there is a forward and a
backward link for every part of the road. This represents that the traffic can move in both directions. Furthermore
one can notice that at every point where a driver must choose between more than one road, the road is divided
into separate links.

Fig. 5 A part of a city network

The timetable updating system computes the time for every part of the covered road by using dynamic

information from the vehicles and the static information about the network. Therefore we need the total of the
covered road of a vehicle since the last update of that vehicle to compute an estimate for the time to cover the
separate links:
 �=

l
ldD

 (1)

 ()12 tt
D
dM l

l −=

dl is the covered distance on link l. D is the covered road for the update of this vehicle.
t1 and t2 are the times of the updates. Ml is the measurement of the time for link l.

On quiet roads it is very well conceivable that there will be no vehicles that send route information for a long
time. When there are no updates for a certain part of a road we still want to know an estimate for the time it takes
to travel that way. For that purpose we can use the length of the road, the maximum allowed speed and some
correction factor. The length and speed yield a time estimate for the road. That time can be adjusted a little with

Fig. 6 Internal representation

Fig. 4 A simple traffic network

1

2

3

4

26 KBS & TRAIL Workshop, June 2001

the correction factor to represent that the average speed will be a bit higher (or lower) than the maximum
allowed speed. This yields a default value for the travel time of the road. When we look at a road with a length of
200 meter where the average speed is 50 km/h (= 14 m/s), the default value will be 14 seconds. When at some
time a vehicle covers that road in 20 seconds we want the entry in the timetable to be adjusted so that it
represents a value of about 20 seconds. This way the routing algorithm will less likely use the road for other
vehicles. But half a day later it is useless to know that there has ever been a car that was delayed on that road.
The situation has changed many times since then. In fact information older than an hour is usually obsolete. So
what we really want is that new information gives an impulse to adjust the time, but the effect should gradually
diminish. And after for example an hour the effect of the information should be faded out completely. If closely
after the first a second car provides the system with new information, then we should compute a weighed
average. The information of the first car counts less than the information of the second, because it is older. And
when the information of both vehicles gets a little older the default value should become more important. There
are several ways to accomplish this, but we will use the following function because it is intuitively useful and
easy to adjust.

�

�

−+

⋅−+
=

k
k

k
kk

StW

MStWD
tT

)(1

)(
)(

 with (2)

 httfwtW <≤∀⋅= 0)(
2

 elsetW 0)(=

Here T(t) is the value in the timetable at time t, D is de default value in the timetable, Mk is the result of the
kth measurement acquired from the information of a vehicle, Sk is the start time at which the information is
added. W(t) is the weight of a measurement at time t, w is the weight of the measurement at the start time, f is a
factor that diminishes the weight in time, h is the time that a measurement has any effect on the outcome.

To explain this function: as long as there are no results of a measurement, only the default value D influences
the value in the timetable. When, at time S1, the first measurement is received, that value M1 gets a weight of w
(for example 25). Then the value for the
timetable is a weighed average:

26
251 1MD ⋅+⋅

 The weight of M1 fades in time when f is
positive and less than one, for example 0.99.
With the used function W(t) the result of a
measurement on the value of the timetable
will be shaped like a half bell. This is shown
in figure 7.

After h time a measurement does not have
any effect anymore. So all measurements
must be kept in memory for h time. The
function takes care to average measurements
when there are more than one available for a
certain road. When a new measurement
becomes available the values should be
recomputed. But the values also have to be
recomputed at regular intervals because of the fading effect. Fig. 7 An update gives an impulse to a value in
the timetable

3.3.2 Route finding system

This system uses the earlier mentioned Ant-Based Control algorithm (ABC-algorithm). This algorithm makes
use of forward and backward agents. The forward agents collect the data and the backward agents update the
corresponding probability tables in the associated direction. The algorithm consists of the following steps:

The effect of new information on an entry
in the timetable

0
2
4
6
8

10
12
14
16
18
20
22

time

tim
et

ab
le

 v
al

ue

KBS & TRAIL Workshop, June 2001 27

• At regular time intervals from every network node s, a forward agent is launched with a random destination
d: Fsd. This agent has a memory that is updated with new information at every node k that it visits. The
identifier k of the visited node and the time it took the agent to get from the previous node to this node
(according to the timetable) is added to the memory. This results in a list of (k, tk)-pairs in the memory of
the agent. Note that the agent can move faster than the time in the timetable.

• Each travelling agent selects the link to the next node using the probabilities in the probability table. The
probabilities for the nodes that have already been visited by this agent are filtered out for this agent. Then a
copy of the remaining probabilities is made for this agent and these probabilities are normalized to 1. Only
this agent uses this temporary probability distribution to choose a next node, so the probability table is not
updated yet.

• If an agent has no other option than going back to a previously visited node, the arising cycle is deleted from
the memory of the agent.

• When the destination node d is reached, the agent Fsd generates a backward Bds. The forward agent transfers
all its memory to the backward agent and then destroys itself.

• The backward agent travels from destination node d to the source node s along the same path as the forward
agent, but in the opposite direction. It uses its memory instead of the probability tables to find its way.

• The backward agent with previous node f updates the probability table in the current node k. The probability
pdf associated with node f and destination node d is incremented. The other probabilities, associated with the
same destination node d but another neighbouring node are decremented. The used formulas are given
below.

The probability of the entry corresponding to the node f from which the backward agent has just arrived is
increased using the following formula:

P

PP
P fold

fnew ∆+
∆+

=
1

,
, (3)

Here, Pnew,i is the new probability, Pold,i the old probability and ∆P the probability increase. ∆P should be

inversely proportional to the age of the forward agent. The formula we use is:

 b
t
aP +=∆ (4)

Where a and b are constants and t is the trip-time of the forward agent from this node to the destination node.
This trip-time is the sum of the trip-times from this node to the destination node of the forward agent. We do not
take into account that the conditions of the traffic network can change from the moment that the node is visited
by the forward agent and the updating of the backward agent.

The other entries in the probability table with the same destination but other neighbouring nodes are
decreased using the formula:

 fi
P

P
P iold

inew ≠∀
∆+

= ,
1

,
, (5)

These formulas ensure that the sum of the probabilities per destination remains 1. Probabilities can only

decrease if another probability increases. Probabilities can approach zero if other probabilities are increased
much more often. This is not very desirable, because in time it may appear that the choice associated with that
probability is the best at that time, but the agents will not detect it because they hardly ever take that route. This
problem can be solved after analogy with the natural ants; they do not always use the pheromone trail as their
guide, but sometimes just explore new routes. Therefore we introduce an exploration probability as a minimum
value for each probability. An example could be 0.05 divided by the number of next nodes. After setting this
minimum, the probabilities per destination are normalized to one again. This ensures that none of the entries in
the probability table will approach zero.

For a given value of ∆P, the absolute and relative increase of Pnew is much larger for small values of Pold than
for large values of Pold. This results in a weighted change of probabilities. The formulas were taken from[3]. The
probability tables are initialised with equal values in such a way that all the probabilities for one destination sum
up to 1. The first agents do not have any information about routes, let alone the quality of the routes. The
performance of the routing system will therefore be very bad and cannot be evaluated properly.

The quality of the routes found by the agents improves with time. At first the agents will find many cycles,
but the number of cycles decreases as the probability tables are filled with information that is more accurate.
Appearing congestion causes further adjustments. Finally the vehicles will be routed according to the highest
probabilities in the tables. They do not have to explore other routes. They just want the best route.

28 KBS & TRAIL Workshop, June 2001

4. Implementation
To test the proposed routing system a simulation environment is being developed. The development environment
used is Borland Delphi 5. As well as the routing system also a simulation of traffic in a city is build. The traffic
simulation should provide the dynamic information about the state of the roads in the city. And it also will use
the routing system to route a certain fraction of the vehicles through the city. This simulation environment is still
unfinished. Figure 8 and 9 give an impression of how a map of a city is used as a model in the simulation
environment.

Fig. 8 Map of centre of Delft Fig. 9 Visualisation of the map by the simulation environment

References
[1] G. Di Caro and M. Dorigo. AntNet: distributed stigmergetic control for communication networks. Journal

of Artificial Intelligence Research (JAIR), Volume 9, pages 317-365.

[2] R. Schoonderwoerd, O. Holland, J. Bruten, L.J.M. Rothkrantz. Load balancing in telecommunication
networks, Adaptive Behaviour, 5, 2 , 1997.

[3] L.J.M. Rothkrantz, J.C. Wojdel, A. Wojdel, H. Knibbe. Ant based routing algorithms, Neural Network
World, Volume 10, 2000, pages 455-462.

KBS & TRAIL Workshop, June 2001 29

A REACTIVE DRIVING AGENT FOR
MICROSCOPIC TRAFFIC SIMULATION

Patrick A.M. Ehlert and Leon J.M. Rothkrantz

Knowledge Based Systems Group
 Department of Information Technology and Systems

Delft University of Technology
Mekelweg 4, 2628 CD Delft, the Netherlands

E-mail: P.A.M.Ehlert@its.tudelft.nl, L.J.M.Rothkrantz@cs.tudelft.nl

KEYWORDS
reactive agents, microscopic traffic simulation, multi-
agent systems, driving behaviour

ABSTRACT
Computer traffic simulation is important for making

new traffic-control strategies. Microscopic traffic
simulators can model traffic flow in a realistic manner
and are ideal for agent-based vehicle control. In this
paper we describe a model of a reactive agent that is
used to control a simulated vehicle. The agent is
capable of tactical-level driving and has different
driving styles. To ensure fast reaction times, the
agent’s driving task is divided in several competing
and reactive behaviour rules. The agent is implemented
and tested in a prototype traffic simulator. The
simulator consists of an urban environment with multi-
lane roads, intersections, traffic lights, and vehicles.
Every vehicle is controlled by a separate driving agent
and all agents have individual behaviour settings.
Preliminary experiments have shown that the agents
exhibit human-like behaviour ranging from slow and
careful to fast and aggressive driving behaviour.

1 INTRODUCTION
In the last two decades, traffic congestion has been a

problem in many countries. To reduce congestion, most
governments have invested in improving their
infrastructure and are exploring new traffic-control
strategies. A problem is that infrastructure
improvements are very costly and each modification
must be carefully evaluated for its impact on the traffic
flow. Computer traffic simulations form a cost-
effective method for making those evaluations. In
addition, traffic simulations can evaluate the
improvements not only under normal circumstances,
but also in hypothetical situations that would be
difficult to create in the real world. Obviously, the used
simulation model needs to be accurate in modelling the
circumstances and in predicting the results.

Intelligent agents can be used to simulate the driving
behaviour of individual drivers. The adaptability and
flexibility of intelligent agents allows them to control
various types of vehicles with different driving styles.
Each agent is equipped with its own behaviour settings
to simulate personalised driving behaviour. This way,
the simulated vehicles will behave realistically and the
interaction between multiple drivers can be studied.

This paper describes a model of a reactive agent that
can perform tactical-level driving. Tactical-level

driving consists of all driving manoeuvres that are
selected to achieve short-term objectives. Based on the
current situation and certain pre-determined goals, the
agent continuously makes control decisions in order to
keep its vehicle on the road and reach its desired
destination safely.

2 MICROSCOPIC TRAFFIC SIMULATORS
Many traffic simulators that are used today are

macroscopic simulators. Macroscopic simulators use
mathematical models that describe the flow of all
vehicles. These models are often derived from fluid
dynamics and treat every vehicle the same. Only the
more advanced models can differentiate between
vehicle types (e.g. cars, trucks, and busses) and even
then all vehicles are treated equally within one vehicle
type.

In real life many different types of vehicles are
driven by different kind of people, each with their own
driving style, thus making traffic flow rather
unpredictable. In microscopic simulations, also called
micro-simulations, each element is modelled
separately, allowing it to interact locally with other
elements. For example, every simulated vehicle can be
seen as an individual with the resulting traffic flow
being the emergent behaviour of the simulation.
Microscopic traffic simulators are able to model the
traffic flow more realistically than macroscopic
simulators.

A Multi-Agent System (MAS) [Ferber 1999] can be
used to form the basis of a microscopic traffic
simulator. The main components (agents) of a multi-
agent traffic simulator will be the vehicles. Every
vehicle is controlled by an individual agent. Other
important elements of the simulated environment can
also be modelled as agents, for example a traffic-light
agent that controls a group of traffic lights. In 1992
Frank Bomarius published a report on such a MAS
[Bomarius 1992]. His idea was simply to model all the
used objects as agents that could communicate the
relevant data. Four years later two MSc students at the
University of Edinburgh implemented this idea for
their final MSc project [Chan 1996], [Chong 1996].
Their nameless text-based simulator uses Shoham’s
AGENT-0 architecture [Shoham 1993] to create
multiple agents that function as vehicles or traffic
lights, but also as roads and intersections. As the
emphasis of their project was on creating a MAS-
simulation and not necessarily creating realistic driving
behaviour, all their vehicle agents use very simple rules
based on gap acceptance and speed. More advanced
behaviours like overtaking cannot be modelled due to

mailto:P.A.M.Ehlert@its.tudelft.nl
mailto:L.J.M.Rothkrantz@cs.tudelft.nl

30 KBS & TRAIL Workshop, June 2001

the simplicity of both their agent and simulation
environment.

A more advanced simulation environment is the
SHIVA simulator, which stands for Simulated
Highways for Intelligent Vehicle Algorithms
[Sukthankar et al 1996]. The SHIVA simulator was
especially designed to test tactical-level driving
algorithms and allows fast creation of different test
scenarios. In his PhD thesis Rahul Sukthankar
describes a reasoning system for tactical-level driving
called POLYSAPIENT that was tested with SHIVA
[Sukthankar 1997]. A drawback of the SHIVA
simulator is that it needs a special SGI machine to run
and is not publicly available.

At first glance, the approach we used with our
driving agent resembles the POLYSAPIENT reasoning
system used by Sukthankar, but its implementation is
quite different. First of all, our simulator implements
an urban environment. SHIVA and most other traffic
simulators model highway or freeway traffic. Second,
with our agent multiple behaviour parameters can be
set to produce the desired driving behaviour. Most
other simulators only use one or two driving-behaviour
parameters (usually gap acceptance and preferred speed
or an aggression factor) or none at all. Third, by using
relatively independent behaviour rules our agent’s
functionality can be expanded or altered easily and the
agent can be used in completely different
environments.

3 TRADITIONAL VS. REACTIVE AGENTS
Traditional intelligent agent architectures applied in

artificial intelligence use sensor information to create a
world model [Wittig 1992], [Rao and Georgeff 1995].
The world model is processed by common search-
based techniques, and a plan is constructed for the
agent to achieve its goal. The plan is then executed as a
series of actions. This traditional approach has several
drawbacks. Sensor constraints and uncertainties cause
the world model to be incomplete or possibly even
incorrect, and most traditional planning methods
cannot function under noisy and uncertain conditions.
Furthermore, in complex domains like tactical driving
it is infeasible to plan a complete path from the initial
state to the goal state, due to the large amount of
searchable states and the inability to perfectly predict
the outcome of all possible actions. The amount of
possible states ‘explodes’ if realistic manoeuvres such
as aborted lane changes and emergency braking are
taken into account. As a result a real-time response
cannot be guaranteed, making the traditional planning
methods unsuitable for tactical driving.

Reactive agents, also called reflex or behaviour-
based agents, are inspired by the research done in
robotic control. Their primary inspiration sources are
Rodney Brooks’ subsumption architecture [Brooks
1986] and behaviour-based robotics [Arkin 1998].
Reactive agents use stimulus-response rules to react to
the current state of the environment that is perceived
through their sensors. Pure reactive agents have no
representation or symbolic model of their environment
and are incapable of foreseeing what is going to
happen. The main advantage of reactive agents is that
they are robust and have a fast response time, but the

fact that pure reactive agents do not have any memory
is a severe limitation. This is the reason that most
reactive agents use non-reactive enhancements.

4 DRIVING AGENT MODEL
We have designed a model of a reactive driving

agent that can control a simulated vehicle. The agent is
designed to perform tactical-level driving and needs to
decide in real-time what manoeuvres to perform in
every situation. These decisions are based on the
received input from the agent’s sensors. After the agent
reaches a decision, the instructions are translated into
control operations that are sent to the vehicle.

The driving agent is modular in design. Every part
can be adapted, replaced or otherwise improved
without directly affecting other modules. The agent
consists of: several sensors to perceive the
environment, a communication module, a memory for
storing data and controller for regulating access to the
memory, a short-term planner, multiple behaviour rules
and behaviour parameters, and an arbiter for selecting
the best action proposed by the behaviour rules. A
picture of the agent’s layout is shown in Figure 1.

Sensors

Vehicle status Short-Term
Planner

Input Output

Communication module

Arbiter
Controller

&
Memory

- Aggresiveness
- Preferred speed
- Acceleration & deceleration
 rate
- Gap acceptance
- Reaction time
 etc.

Behaviour parameters
Behaviour rules

Collision
avoidance

Change
direction

Road
following

Overtaking Stop for
traffic light

Car
following

Obey traffic
signs/rules

User commands

Figure 1: Driving agent layout

Our agent uses both traditional and reactive methods
to perform its task, but the emphasis is on the latter
since fast response times are important. Sensor
information is stored in the memory and forms a
temporary world model. Reactive procedures called
behaviour rules or behaviours use the available
information in the memory to quickly generate multiple
proposals to perform a particular action. Planning in
the traditional sense is not applied. The short-term
planner only uses simple linear extrapolation to
calculate the expected positions of moving objects and
the arbiter determines the best available action based
on the priority ratings of the action proposals included
by the behaviour rules. We will discuss the agent’s
reasoning process, behaviour rules and behaviour
parameters in more detail in the next subsections.

KBS & TRAIL Workshop, June 2001 31

4.1 Reasoning
The complete loop from receiving sensor messages

to sending an output message to the vehicle can be
seen as one reasoning cycle. The timing of a reasoning
cycle and the activation of the agent’s parts are done by
the controller that also regulates the access to the
memory. Since we want the driving agent to react in at
least real-time, the agent is able to complete several
reasoning cycles per second. The activation of the
agent’s parts is shown in Figure 2.

get sensor
data

determine action proposals

input

planner

output

reasoning cycle length

behaviours

arbiter

predict position of
moving objects

conflict
resolution

send
output

Figure 2: The reasoning cycle regulated by the agent’s controller

The agent uses two types of sensor information. The
first type gives information about the agent’s
environment, for example the distance and angle to
objects, or the width of the agent’s current lane. The
second sensor type returns information about the
agent’s vehicle. This includes speed, acceleration,
heading, wheel angle, and fuel level. In addition, the
agent can receive orders from the user.

All information that is sent to the agent is received
by the agent’s communication module that contains
knowledge of the used protocols. When a message is
received, the communication module tries to recognise
the message format, the sender and its content. When
the message is ok, the input section of the
communication module temporarily stores it until all
received messages can be written to the agent’s
memory. Temporary storage is necessary since one
does not want data in the memory to be read and
written at the same time. Outgoing messages can be
sent immediately since no conflicts can arise there.
Next, all incoming messages are transferred to the
agent’s memory and the short-term planner makes a
fast prediction of the position of all moving objects in
the environment. Then the actual reasoning of the
agent is performed by the behaviour rules, also called
behaviours. They specify what to do in different
situations. Based on the available data in the agent’s
memory, every behaviour can propose an action. All
action proposals have a tally or priority rating. The
arbiter selects the best proposal based on the priority
ratings and sends it to the communication module.
Finally, the communication module translates the
proposal to control instructions that can be understood
by the vehicle.

4.2 Behaviour rules
The agent’s driving task is divided into several

subtasks that are automated by independent behaviour
rules. This way the agent’s functionality can be
expanded easily without any modifications to the
existing behaviours. The used behaviour rules are very
much dependent of the agent’s environment. Instead of
a highway environment often used in traffic

simulations, we have chosen to let the agent drive in an
urban environment. The reason for this is that an urban
environment is one of the most difficult and complex
traffic scenarios. In a city a lot of unexpected events
can happen and the agent has to deal with many
different situations. This way we can show the
potential of our driving agent concept. Note that the
design of our agent does allow driving in other
environments. Only the agent’s behaviour rules might
need to be adapted or expanded. For our city
environment we designed the following behaviours:
Road following

The road-following behaviour is responsible for
keeping the agent driving on the road. Besides
controlling the lateral position of the agent’s vehicle,
based on the distance to the road and lane edges, the
road-following behaviour also influences the agent’s
speed. It makes sure that it slows down for curves and
on straight roads it will accelerate until the desired
speed set in the agent’s behaviour parameters is
reached.
Intersection / changing directions

If the agent approaches an intersection, its speed is
reduced, precedence rules are applied, and the agent
will choose one of the sideroads. Usually, this direction
is chosen randomly, but it can also be set by the user.
The changing-directions behaviour can be split up into
several sub-behaviours, one for each type of
intersection (e.g. intersections with or without traffic
lights, or a roundabout). This is consistent with the fact
that humans use different strategies to handle different
types of intersections.
Traffic lights

The traffic-lights behaviour makes sure that the agent
stops for red or yellow traffic lights if possible. The
behaviour checks if the sensed traffic light regulates
the agent’s current lane and slows down the vehicle.
The agent’s start-point for braking depends on its
preferred braking pressure (deceleration rate) and is
stored in the behaviour parameters.
Car following

The car-following behaviour ensures that the agent
does not bump into any other vehicle. If another car is
driving in front of the agent, speed is reduced to match
that car’s speed. The precise braking pressure depends
on the speed difference between the agent’s vehicle
and the other vehicle, the distance between them, and
the set gap acceptance of the agent.
Overtaking and switching lanes

Related to the car-following behaviour is the
overtaking-and-switching-lanes behaviour. If a slower
vehicle is in front of the agent, it may decide to
overtake this vehicle. This decision depends on the
velocity difference between the two vehicles and the
available space to overtake the vehicle, both in front
and to the left of the other vehicle.
Applying other traffic rules

Besides traffic lights and precedence rules at
junctions, other traffic rules need to be followed.
Examples are, not driving at speeds above the local
maximum, driving on the right side of the road as

32 KBS & TRAIL Workshop, June 2001

much as possible (in the Netherlands), and no turning
in one-way streets.

For the traffic-rules behaviour it is necessary to keep
track of the traffic signs and restrictions encountered
by the agent. Because the memory of the agent will
clear data on a regular basis to save space, the traffic-
rules behaviour needs to keep track of these signs
itself, in its own private memory space. This memory
space is embedded within the behaviour. Note that the
behaviour also needs to keep track when the signs and
rules apply. Usually, turning onto a new road will reset
most of the current restrictions.
Collision detection and emergency braking

The collision-detection and emergency-braking
behaviour is a special kind of safety measure that is
activated when the agent is on a collision course with
an object. It can be seen as the human reflex to brake if
something pops up unexpectedly in front of the
vehicle. The behaviour tries to ensure that the vehicle
can be halted at all times before it hits an object.
Actions from the emergency-braking behaviour have
the highest priority and always overrule all other
behaviours.

4.3 Behaviour parameters
In order to create different driving styles all

behaviour rules are influenced by behaviour
parameters. One of the most important (visible)
parameter is the driver’s choice of speed. This choice
has a large effect on the different driving subtasks.
Drivers that prefer high speeds are more likely to
overtake other vehicles than slower drivers and usually
brake harder. Another implemented factor is the
distance the driver keeps to other cars, also called gap
acceptance. Aggressive drivers keep smaller gaps than
less aggressive drivers. A third parameter is the
driver’s preferred rate of acceleration or deceleration.
Again, aggressive drivers tend to accelerate faster than
less aggressive drivers.

Besides the above-mentioned behaviour factors,
other aspects can influence an agent’s driving
behaviour, for example the reaction time of an agent
and the range of its sensors. An agent’s reaction time
can be altered by changing the length of its reasoning
cycle. The sensor range determines the visibility of the

agent and can be used to simulate fog or bad weather
conditions.

5 IMPLEMENTATION
We have constructed a prototype traffic simulator

program to test our driving agent design. The
programming language we used to build the simulator
is Borland Delphi 5 Professional for NT. We have
chosen this language in part since we were already
familiar with it, but mainly because Delphi is an easy
language, very suitable for quick prototyping.

Our simulator uses a kinematic motion model that
deals with all aspects of motion apart from
considerations of mass and force. The model
implements smooth motion of vehicles, even during
lane changes. Furthermore, the vehicles can move
along realistic trajectories, but since forces are not
modelled, the vehicles will perform manoeuvres
without slipping.

5.1 The prototype simulator
The simulator program roughly consists of four

elements: a user interface to provide visual feedback, a
simulation controller, an environment containing
simulated objects, and the driving agent model. The
task of the simulation controller is to start, pause or
stop a simulation run, and keep track of the elapsed
time. The controller also initialises, starts and stops the
used driving agents. During simulation, the controller
regularly sends an ‘update’ order to the environment.
The environment then calculates the new values for all
its objects and sends relevant visual feedback to the
screen. This ‘simulation update’ loop is shown in the
left part of Figure 3. By default the update frequency is
about 20 times per second, but this rate can be adjusted
so that the program can be run on slower computers.

The environment is formed by all the simulated
objects together. Different environments can be loaded
via Map Data Files. These files contain a description of
a road network and traffic control systems. Loading a
Map Data File initialises the environment and data
about the simulated objects described in the file is
stored in the environment. Our current simulator
implementation contains multi-lane roads,
intersections, traffic lights, traffic light controllers and
vehicles.

Simulation controller

Timer

User interface

1: update

Environment

Simulated objects

Traffic light
controllers

Traffic lights

Vehicles

Roads

Intersections

Agent

Sensors

Reasoning

Picture of
environment

b: send
 orders

a: get information

c: sleep

2: visual
feedback

Figure 3: Simulation and agent update loops

KBS & TRAIL Workshop, June 2001 33

Figure 4: Screen shot of the prototype simulator used to test the driving agent

5.2 The driving agent
Every vehicle in the environment has its own driving

agent, but there is one agent that has the focus of
attention and can be ‘controlled’ by the user. This
means that the user can change the settings of this
agent’s behaviour parameters and can follow its
reasoning process in the Agent Status Information
window shown in Figure 4.

All agents are implemented as threads, initialised by
the simulation program. The advantage of using
threads is that the simulation can be faster, running
threads in parallel (if the operating system allows it),
and that the agents can run independent of the
simulation program. The disadvantage is that there is a
limit to the number of threads one can use, because the
overhead in managing multiple threads can impact the
program’s performance. The execution loop of an
agent is shown in the right part of Figure 3. After the
agent finishes a reasoning cycle its thread is put asleep
for the rest of its cycle time, which is set by the
simulation controller. This is done to prevent agents
from using all available CPU time. By default an
agent’s cycle time is 200 ms, so the agents will perform
5 reasoning cycles per second.

The implementation of the behaviour rules is done
using if-then rules. All behaviours are divided into
several tasks. Tasks are executed in a serial manner, the
least important task first and the most important task
last. This way the important tasks ‘override’ the action
proposals of less important tasks. The execution of the
behaviour rules is also done consecutively, but in this
case the execution order does not matter since the
arbiter will wait until all behaviours are finished
determining their action proposal.

6 RESULTS AND DISCUSSION
We have presented a model of a reactive driving

agent that can be used to control vehicles in a
microscopic traffic simulator. A prototype simulation
program was constructed to test our agent design.

Although we have not validated the used parameters
yet, preliminary experiments have shown that the
implemented agent exhibits human-like driving
behaviour ranging from slow and careful to fast and
aggressive driving behaviour. Here we present the
results of one of our experiments, done using the first
five behaviour rules discussed earlier in the “behaviour
rules” section. The experiment consists of two different
drivers approaching an intersection and stopping in
front of a red traffic light. Both drivers perform this
task without any other traffic present. The first driver is
a careful driver with a low preferred speed, reasonably
large gap acceptance and a low preferred rate of
deceleration. We call this driver the ‘grandpa’ driver.
The second driver is a young and aggressive driver,
with a high preferred speed, small gap acceptance and
a high preferred rate of deceleration. The drivers start
at the same distance from the intersection. The speed
of both vehicles during the experiment is shown in
Figure 5.

Figure 5: Speed of the grandpa driver (top) and young aggressive

driver (bottom) during the experiment

34 KBS & TRAIL Workshop, June 2001

Since the grandpa driver is driving at a lower speed,
it takes a while before he starts braking, but his braking
start-point (50m) is closer to the intersection than that
of the young aggressive driver (65m), due to his lower
speed. The difference between the used braking
pressures is clearly visible. Both drivers brake with a
relatively stable deceleration (approximately 0.7 m/s2
and 2.7 m/s2), which is consistent with human braking
behaviour.

The experiment was done several times, but in
almost all cases the shown graphs were roughly the
same. Also, the precise stopping positions of both
vehicles were approximately the same in all
experiments. The young aggressive driver had a
tendency to brake relatively late and often came to a
stop just in front or on the stopping line. The grandpa
driver on the other hand always came to a full stop well
ahead of the stopping line. The stopping positions of
both vehicles during one of the experiments is
compared in Figure 6.

Figure 6: Compared stopping positions of the young aggressive

driver (red vehicle) and grandpa driver (blue vehicle)

The aim of our simulation program was to test the
design and functionality of our driving agent, but as a
result its current implementation is rather inefficient
since we did not optimise it for speed. Our main focus
was on the correctness of the agent’s driving behaviour
and reasoning process. The computer used to
implement and test the program is an Intel Pentium III,
450 MHz with 64 MB of RAM, running the Microsoft
NT 4.00 operating system. On this computer we were
able to run experiments with up to 30 vehicles.
Experiments with more vehicles are possible, but result
in a slow-running simulation. For this we are working
on improving the simulator’s memory management and
processing speed.

A drawback of our simulator is that some unrealistic
assumptions were made. Agent perception is perfect.
All agents have a field of view of 360 degrees and
objects are not obscured or covered by other objects.
Further, vehicle actions are atomic. For example,
braking is applied instantly after the action is sent to
the vehicle. In real life this would occur more
gradually. Also, pedestrians, cyclists and crosswalks
are not yet modelled so the agent’s ability to react to
unexpected events was not yet accurately tested.

7 CONCLUSIONS AND FUTURE WORK
The main advantage of agent-based microscopic

traffic simulation over the more traditional
macroscopic simulation is that it is more realistic.
Instead of using general traffic-flow models, traffic
becomes an emergent property of the interaction
between agents. Another advantage is that agent-based
simulation is more flexible. Changes to traffic
scenarios can be made quickly by altering the position
of individual vehicles and changing agent parameters.
A disadvantage is the increase of computational
resources and the higher number of parameters that
need to be set and validated.

Preliminary experiments have shown that our driving
agent exhibits human-like driving behaviour and is
capable of modelling different driving styles, ranging
from slow and careful to fast and aggressive driving
behaviour.

At the moment we are experimenting with different
types of agents in several scenarios. The goal is to
study the current possibilities of our traffic simulator
and agent in order to improve them further. The
simulation environment should be made more realistic
by adding new objects, such as busses, trucks,
emergency vehicles, pedestrian crossings, cyclists,
traffic signs, trees and buildings. Once the simulator is
improved with the new objects the agent’s
functionality must be extended to deal with these
objects. In addition, the simulation environment needs
to be validated. Although we have tried to use realistic
values for vehicle acceleration, turn radius, road size
etc., the used settings might prove to be inaccurate. We
also need to study human driving behaviour more
extensively in order to validate our driving style
models.

The drawback of the proposed improvements will be
that both the simulation environment and the agent will
need more computation time and will run more slowly.
Therefore, we are considering using a distributed
approach in the future so that the driving agents can
run on different computers. The simulation controller
and environment can act as a server and the agents can
be the clients communicating to the server.

REFERENCES
Arkin, R. C. (1998) Behavior-based robotics. The MIT

Press, Cambridge, Massachusetts.

Bomarius, F. (1992) “A Multi-Agent Approach towards
Modelling Urban Traffic Scenarios.” Research Report
RR-92-47, Deutches Forschungszentrum für
Künstliche Intelligenz, September 1992.

Brooks, R.A. (1986) “A robust layered control system for
a mobile robot.” MIT AI Lab Memo 864, September
1985. Also in IEEE Journal of Robotics and
Automation Vol. 2, No. 1, March 1986, pages 14-23.

Chan, S. (1996) Multi-agent Traffic Simulation – Vehicle.
MSc dissertation, Department of Artificial
Intelligence, University of Edinburgh.

KBS & TRAIL Workshop, June 2001 35

Chong, K.W. (1996) Multi-Agent Traffic Simulation -
Street, Junction and Traffic light. MSc dissertation,
Department of Artificial Intelligence, University of
Edinburgh.

Ferber, J. (1999) Multi-agent systems: an introduction to
distributed artificial intelligence. Addison Wesley
Longman Inc., New York.

Rao, A. S., and Georgeff, M. P. (1995) “BDI Agents:
From Theory to Practice.” In Proceedings of the 1st
International Conference on Multi-Agent Systems
(ICMAS-95), San Francisco, USA, June 1995, pages
312-319.

Shoham, Y. (1993) “Agent-oriented progamming.” In
Artificial Intelligence 60, pages 51-92.

Sukthankar, R., Hancock, J., Pomerleau, D. Thorpe, C.
(1996) “A Simulation and Design System for Tactical
Driving Algorithms”. In Proceedings of artificial
intelligence, simulation and planning in high
autonomy systems.

Sukthankar, R. (1997) “Situation awareness for tactical
driving.” Phd Thesis, Technical report CMU-RI-TR-
97-08, Robotics institute, Carnegie Mellon University,
January 1997.

Wittig, T. (1992) ARCHON: an architecture for multi-
agent systems. Ellis Horwood Limited, England.

	Collected papers on the PITA project
	Program
	Introduction
	Table of Contents
	1. Adaptive dialog management using multiple modalities
	Abstract
	Introduction
	Personal Intelligent Travel Assistant
	Automated spoken language
	Short Message Service (SMS)
	Wireless Application Protocol (WAP)

	Related work
	The Alparon dialog manager
	Multimodal fusion
	The PITA system
	Multimodal coding scheme
	Agent-based information retrieval

	Conclusion
	References

	2. Knowledge based speech interfacing in the SWAMP project
	Introduction
	The SWAMP client
	Dialogue design
	Design approach
	Dialogue representation
	Grammar

	The reasoning model
	An example
	Conclusions

	3. Intelligent dynamic route planning
	Introduction
	Problem definition
	The extended Dijkstra algorithm
	Expert system
	Knowledge elicitation
	Level of detail
	Route representation
	Construction of the rule base

	Results
	Testing protocol
	Results

	Conclusion

	4. Dynamic vehicle routing using an ABC-algorithm
	Introduction
	Theory
	Emergent behaviour of ants
	Ant-based control for network management

	Design
	Dynamic data
	Architecture
	Routing problem

	Implementation

	5. A reactive driving agent for microscopic traffic simulation
	Abstract
	Introduction
	Microscopic traffic simulators
	Traditional vs. reactive agents
	Driving agent model
	Reasoning
	Behaviour rules
	Road following
	Intersection / changing directions
	Traffic lights
	Car following
	Overtaking and switching lanes
	Applying other traffic rules
	Collision detection and emergency braking

	Behaviour parameters

	Implementation
	The prototype simulator
	The driving agent

	Results and discussion
	Conclusions and future work
	References

