
POKer,
a Process-Interaction Simulator and Controller

for use in Collaborative Simulation

Andriy Levytskyy, Eugene J.H. Kerckhoffs

Delft University of Technology
Faculty of Information Technology and Systems

Mediamatica Department
Zuidplantsoen 4, 2628 BZ Delft, The Netherlands

e-mail: a.levytskyy@cs.tudelft.nl

Keywords

Discrete-Event simulation, Process-Interaction
world-view, operational semantics, scripting
languages, Python.

Abstract

In this paper we present the ideas and
implementation of a small process-interaction kernel
and cover its evolution from operational semantics
of process-oriented simulation languages to the
current state of the kernel as (simulation) core of a
collaborative environment controller.

1. Introduction

Simulation as problem-solving methodology has
been widely adopted in many practical domains.
Users are free to select from a number of available
general-purpose simulation software [14, 4] or, in
case of special user requirements, a custom software
system can be developed. The latter scenario has a
potential negative side effect: simulation often
becomes interpreted and applied by developers in a
less formal way. As the result, it becomes more
difficult to reason about properties of such
simulation systems and prove their correctness.

On the other hand, Simulation and Modelling formal
theory provides a reliable framework to support the
entire process of modelling and simulation [18].
There exist formal works dedicated to the study of
simulation languages and simulators for some major
formalisms and world-views [2, 3, 2]. They provide
formally proven semantic backgrounds and
implementation reference for development of
custom simulation systems. One of the widely used
basic formalisms is the discrete event formalism,

and a subset of it, a process interaction world-view
[20], which is of particular interest to us. This world-
view gained its popularity due to the easiness of
mapping real-world processes into this formalism,
and easiness of comprehending the essence of the
process by a human.

The above, as well as special application
requirements for the simulation system we seek,
inspired us to develop our own special-purpose
simulation software while trying to preserve its
connection to the formal background. In this paper
we present the ideas and implementation of a small
process-interaction kernel and cover its evolution
from operational semantics of process oriented
simulation languages to the current state of the
kernel as (simulation) core of a collaborative
environment controller.

2. View on the environment

2.1. Functional overview

In order to understand better the initial requirements
for our custom system, we give a brief functional
overview of the intended environment (for more
information, please see [9]). It is based on a three
layer architecture: (i) front-end layer (high-level
front-ends), (ii) middle layer (environment
controller), and finally, (iii) back-end layer
(distributed heterogeneous hardware and software
resources).

The front layer consists of a number of client-side
front-ends . They provide users with a high level
GUI to the system (e.g., web-based interface),
enable them to operate in the environment,
accomplish background routine jobs necessary for
execution of users’ activities, and finally,
communicate with the middle layer.



The middle layer of the environment consists of one
central persistent environment controller, which
controls and provides access to all the resources
distributed in the environment. A user can
interactively conduct a sequence of activities
involving execution of applications on different
platforms or trust this job to the controller. In the
latter case, the controller uses a special program
called process (which prescribes the sequence of
activities to be accomplished on behalf of the user).
A kind of gateway mechanism is used to provide
connectivity to the external resources. It interacts
with the user via interactive web pages (if additional
input parameters are required to run the resource),
controls the session with the real resource, and
maintains the communication with the web-user.
This mechanism conducts functionality essentially
related to that of Object Request Broker, and thus
has a very high appeal to apply one of the object
technology standards. If the user logs out from the
system, the connection between the user and his/her
program (if any) is closed, but it does not affect the
execution of the program in the system. A user state-
saving mechanism is used by the server-side

connection both to recognise web-users as they log
in the environment, and associate them with their
respective processes.

The back-end layer consists of a number of shared
environment resources  (applications) that are
accessible to the controller and multiple web-users
via, for instance, the Common Gateway Interface.
The state of the real-world resources is represented
within the controller in a set of proxy objects called
resources. A library of proxy modules provides the
gateway mechanism of the controller with standard
subroutines that “wrap” the real-world resources.
Each proxy wrapper is developed for a particular
(often legacy) application and stores the interface
definition of that server application and knows
where to find the implementation of that resource.

Finally, some kind of an inter-process (not to be
confused with user processes!) communication is
needed to support communication between the
software components of this distributed
environment.

Requirements Property Description

Handling external events Many software systems providing the process interaction world-view
do not natively support external events.

Scheduling mechanism should be aware of external and internal events,
and as a result, properly schedule the involved event notices on the
same EL.

Support of both real-time and as-
soon-as-possible time regimes

Transparently processing both types of processes (programs)
intermixed on the same EL.

Adjustments in synchronization
mechanism

Connectivity to environment resources changes operational semantics
of standard simulation synchronisation mechanism.

Programming language Language constructs are needed to support mapping a sequence of
user’s real-world activities into a process.

Transparent support of different
world-views

For users the most natural framework is process interaction. For the
simulator, which deals with resource-oriented scenarios, event
scheduling is more proper.

Freedom of customization We need powerful constructs to represent components of our system
and freedom to adjust them easily for our needs.

Unrestricted monitoring of the
activities in the environment

3rd party systems are often ‘black boxes’ and it would be impossible or
very difficult to make them provide all the time full overview on all
that is happening in the environment.

Easy integration with other
industry technologies

Web, distributed objects, network programming, inter-process
communication, de-facto standard system development languages
(C/C++, Java), multi-platform support, are all needed to develop an
environment as described in section 2.1.

Table 1. List of requirements for the simulation system and description of resulting properties.



2.2. Roles of POKer

We have chosen to base the environment’s middle
layer on a process-oriented simulator (called POKer)
because the authors are charmed by the easiness,
simplicity and naturality of this approach, which
exactly meets our aims (for more information, please
see [9]). In the following we list some major tasks
(controller and simulator related) that such a
middleware has to handle as a part of the intended
environment:
• Resource management (resource integrity and

synchronisation)
• Interactive and off-line operation (real-time/as-

soon-as-possible time management)
• Mapping the history of the user’s activities into

a form of a process
• Programming a sequence of activities for

automated execution
• Handling external requests from multiple users
• User-state integrity
• Object Request Broker functionality, etc…

This list is by no means a complete enumeration of
the requirements. In table 1 these rather low-level
requirements are summarised for brevity into more
general groups and are translated into the desired
properties of the simulator’s part of the controller.
Due to the unique combination of the wanted
properties, existing off-shell simulation languages
and packages [4, 14] do not satisfy all our
requirements. As the result, we were motivated to
develop our custom software system, further on
referred to as environment controller or simply
controller.

The core of the controller is a run-time system for a
small process-interaction simulation language. The
former is referred to as Process Oriented Kernel
(POKer) or kernel, and the latter as POKer language.
In the rest of the paper, we continue our presentation
with the basic semantic definitions of the language
constructs (section 3). It is followed by the
implementation of POKer (section 4). Section 5
covers semantics and syntax aspects of the language.
An overview on execution of an example program is
given in section 6. Then, in section 7 we briefly
discuss Server POKer, an extension to Poker that
constitutes the environment controller. Section 8
concludes our presentation with final remarks.

3. Semantic Background

It is crucial to provide users with the right language
constructs. These constructs support the proper
modelling framework (often referred to as world-
view) and allow users easily construct their
programs. Execution of these constructs in a

program causes the state of the environment (in our
case, synthetic environment) to move (⇒) from
state to state’. The state of the environment is
represented by three components <EL, R, D> (for
more details, please see [10]). EL is an ordered
collection of processes sorted out by the values of
their next event times. R is a dictionary of resources
(proxy objects that represent the real-world
resources). D is a helper component that stores
process classes (generic user processes) definitions
and class instances, and thus forms a declaration
space.

We begin the development of the intended process-
interaction kernel by identifying the operational
semantics of the kernel commands (language
constructs). For that purpose, results provided in the
works of Birtwistle and Tofts [2] give us sufficient
initial background. In the following, we give
descriptions of the currently implemented
commands in the functional-language like notation
adopted from their work.

3.1. decP(classId, classDef)

Informally, it declares a process class by saving the
class definition classDef under name classId .

Semantics:
decP (classId, classDef)
⇒  if classId ∈ D then error else
    let EL’ = current::EL in
    let D’ = D[classId/classDef] in
        main(EL’, R, D’)

3.2. newP(id, classId, dt)

Informally, it creates an instance named id of an
existing class classId , and schedules this instance as
process dt time units later of the current simulation
time. Also, a copy of the process is saved to the
declaration space (D).

Semantics:
newP (id, classId, dt)
⇒  if id ∈ D then error else
    if classId ∉ D then error else
    if dt < 0 then error else
    let classDef = LOOKUP classId D in
    let en = (evt+dt,id,classDef,[],data) in
    let EL’ = current::(ENTER en EL) in
    let D’ = D[id/en] in
        main(EL’, R, D’)

3.3. hold( dt)

Informally, it schedules the next event of the current
process by adding dt to its ‘Next Event Time’
attribute evt and places the current process on the EL
according to the new event time. Alternatively, in a
case dt is  None, this command updates the process
instance in D and triggers a gateway mechanism to
the server-object that is associated with the resource
owned by the current process.



Semantics:
hold(dt)
⇒ if  dt == None
     then
       let D’ = D[C/current] in
         gateway(Attr,data)
         main(EL,R,D’)
     else
       if dt < 0  then error else
       let en = (evt+dt,C,Body,Attr,data) in
       let EL’= ENTER en EL in
         main(EL’,R,D)

3.4. newR(id)

Informally, it creates a new resource object under
name id and initialises it according to the resource
capacity. This object is saved to the dictionary of
resources (R) and its name to D.

Semantics:
newR (id, Cap)
⇒  if id ∈ D then error else
    if Cap < 0 then error else
    let EL’ = current::EL in
    let R’ = R[id/([],Cap,true)] in
    let D’ = D ++ id in
        main(EL’, R’, D’)

3.5. getR(id)

Informally, it requests a resource under name id. If
the resource is free, then it grants ownership to the
calling process, and decreases its capacity value by
1. Otherwise, it delays the process.

Semantics:
getR (id)
⇒ if id ∈ Attr then error else
    case LOOKUP id R of
     ([],Cap,true)
     ⇒ let Attr’ = Attr ++ id    in
        let EL’=(evt,C,Body,Attr’,data)::EL  in
        let Cap’ = Cap – 1   in
        if  Cap’ <= 0
          then let fl = false in
          else let fl = true in
        let R’= R[id/([],Cap’,fl)]   in
          main(EL’, R’, D)

    | (Q,Cap,false)
     ⇒ let Q’ = Q @ [current]   in
          let R’ = R[id/(Q’,Cap,false)]   in
            main(EL, R’, D)

    | anything else ⇒ error

3.6. putR(id)

Informally, it releases resource id. If the resource’s
waiting queue is empty, then its capacity value is
increased by 1. Otherwise, the first delayed process
is released by scheduling it at the same time as the
current process and placing it on the EL after the
current process.

Semantics:
putR (id)
⇒ if id ∉ Attr then error else
   let Attr’ = Attr – id in
   let EL’= (evt,C, Body,Attr’,data)::EL in
     case LOOKUP id R of

       ([],0,false) or ([],Cap,true)
        ⇒ let R’ = R[id/([],Cap+1,true)] in
             main(EL’, R’, D)

     | ( (t1,p1,B1,A1,d1)::Q, Cap,false)
        ⇒ let R’ = R[id/(Q,Cap,false)] in
           let A1’ = A1 ++ id in
           let en = (evt,p1,B1,A1’,d1) in
           let EL’’ = ENTER en EL’ in
            main(EL’’, R’, D)

     | anything else ⇒ error

3.7. close()

Informally, it removes the containing process
instance from D. If such instance does not exist in D,
then a warning is issued.

Semantics:
close()
⇒ let EL’ = current::EL in
   let D’ = D – C in
     main(EL’, R, D’)

Note: hold() is intended to be used as the last
command in a process to clean up the definition space
and to do some other last-minute activities.

3.8. main()

Informally, it continuously executes the processes
from the EL, according to their event times. This
execution is based on the next-event  approach: the
next event to take place is always the execution of
the first command in the body of the current process
(current event notice on the EL).

Semantics:

lines
   main(EL,R,D)
   ⇒ case (EL,R,D) of
        ([],R,D)
         ⇒ sleep()
05
      | ((evt,C,[],Attr,data)::EL,R,D)
         ⇒ if Attr ≠ [] then error else
              main(EL,R,D)

10    | ((evt,C,(b::Body),Attr,data)::EL,R,D)
         ⇒ let timeout = evt – wallclock()    in
            if  timeout > 0
              then
                let Body’=b::Body     in
15              let en=(evt,C,Body’,Attr,data)in
                let EL’ = en::EL     in
                  sleep(timeout)
                  main(EL’,R,D)
              else
20              case b of
                   decP(classId, classDef)
                 | newP(id, classId, dt)
                 | hold(dt)
                 | newR(id, Cap)
25               | getR(id)
                 | putR(id)
                 | close()

Interpretation:

(line 03) If the EL is empty then the kernel goes into
a sleep mode.



(06) Otherwise, if the body of the first process on the
EL is empty, this process is removed.

(10) Otherwise, the kernel executes the first
command from the body of the first process on EL.
It first defines the time left before the next event. For
this purpose, main() contrasts the current time
(wallclock) to the simulation time (time) of the
imminent process (11). If the latter is still ahead, the
kernel goes into a sleep mode (14-17). Otherwise,
the kernel processes that event notice (21-27).

Note: In sleep mode, the kernel waits until a timeout
occurs (if the timeout argument is present and not None)
or until it is notified about any new processes on the EL.
Once awakened or timed out, it continues execution.

4. Implementation

4.1. Functional vs. Imperative language

The chosen semantic background of process
interaction simulation languages was conveyed in
notations adopted from modern functional
languages, and therefore it would have been most
easy to do the implementation also in one of the pure
functional languages. Moreover, an important
feature of pure functional languages (functional
languages with no side-effects) is that they allow
developing software, which is more amenable to
formal methods and easier to reason about. Using a
pure functional language one can make assertions
about programs and prove these assertions to be
correct. It is possible to do the same for traditional,
imperative programs – but just much harder – via
"exhaustive" testing [19], which may be reassuring
but it can never be convincing.

Although the pure functional languages allow to
prove correctness of the program, they lack some
features that make it possible to write more efficient
software, and proof-of-correctness can still be prone
to human errors. As the result, our choice for
prototyping and development of the simulation
language (as well as the proposed environment) goes
to an imperative language: the scripting
programming language Python  (see section 4.2). In
order to isolate side-effects of the program’s parts
from being visible to the rest of the program we are
‘encapsulating’ those parts from changing the global
state of the program in a way similar to [15], and
ensure that the parts of our imperative code have the
same input-output behaviour as their functional
versions.

Programming and reasoning about run-time systems
of discrete-event simulation languages is difficult,
because their operation involves dynamically
changing scenarios. The approach described above
and a good understanding of operational semantics

can facilitate modular prototyping of the system in
development. Given the interactivity of scripting
languages, debugging and testing smaller modular
parts of code for correctness can be even further
facilitated.

4.2. About Python

Python [11] is a modern language, which combines
the usability of traditional scripting languages (such
as Tcl, Scheme, and Perl) and the power of advanced
programming tools typically found in systems
development languages (such as C/C++, Java). It  is
an interpreted, object-oriented, high-level
programming language with clear syntax. Its high-
level built-in data structures, combined with
dynamic typing and dynamic binding, and easiness
of integration into C/C++ systems (and visa-versa),
make it very attractive for rapid application
development, as well as for use as a scripting or glue
language to connect existing components together.

The Python interpreter, extensive standard and 3rd

party libraries (CGI, Sockets, interfaces to
distributed object architectures, etc.) are available in
source or binary form without charge for all major
platforms, and can be freely distributed [13].
Moreover, Python’s de-facto standard GUI package
Tkinter [8] is based on Tcl/Tk, a graphical user
interface toolkit that makes it possible to create
powerful GUIs [12]. Among other Python’s GUIs,
Tkinter is the most commonly used one, and is
almost the only one that is portable between Unix,
Mac and Windows.

The combination of the above-mentioned aspects
and features makes Python extremely suitable for
prototyping in software development projects.

4.3. POKer

Due to the Python’s mature built-in object types,
such as lists, dictionaries, tuples and the availability
of powerful operations to process them, the
implementation process was quite straightforward.
Moreover, there was no need (at least at this stage)
to extend Python’s built-in object types (e.g., by
embedding them into ‘wrap’ classes) in order to
implement the operational semantics of the language
constructs and components (EL, R, D). The
following is a summary of some aspects intrinsic to
the given implementation.

Tuples are written as series of arbitrary objects in
parentheses (any further occurrences of such syntax
in the code imply tuples). Because tuples are
immutable, they provide some integrity and
therefore are well suited to implement POKer



objects with defined structure (e.g., processes,
resources, etc.). Another feature is that argument
lists in Python are also constructed as tuples.

Sets (dictionaries) are written as series of
key:value pairs, separated by commas and
enclosed in curly brackets. Set processing can be
efficiently implemented with the built-in Python
operations.

Lists are written as a series of objects, separated by
commas and enclosed in square brackets. Python’s
list object has already sufficient built-in operations,
such as slicing, concatenation, etc.

POKer’s commands were implemented as modular
referentially transparent subroutines that exhibit
explicit input-output behaviour and are based on the
respective operational semantics definitions. As the
result, it is much easier to verify their correctness by
interactively testing those subroutines in the
command line of the Python interpreter. The effect
of such interactive execution on the state of the
system is immediately obvious and can be easily
compared to the state, determined according to the
operational semantics.

The main routine is framed so that it executes the
first command of the current (first) process on the
EL by calling the respective subroutine. This is
accomplished with the Python built-in function
apply(), by passing the tuple of the subroutine as
argument along with the tuple of the subroutine’s
arguments:

example 1: apply(subroutine, (arg1, arg2, …))

This approach allows executing commands in a
generic fashion, without knowing their names and
arguments ahead of time.

All command subroutines and main() are packed
into a separate module called poker. Besides the
aforementioned subroutines, this module also
contains three more objects:

current()
this class hides some supporting code (related to
such functionality as handling input/output
channels, messages, etc.) that is irrelevant to the

implementation of the language constructs. Users
are free to provide their own implementation of
current.

enter()
this helper function assists entering event notices
on the EL

gateway()
this subroutine provides connectivity to the
environment resources. It looks-up the proper
wrapper from the library of proxy modules and
executes it in a separate thread or process (in the
OS sense), otherwise the overhead associated
with that execution would affect the integrity of
the kernel’s timing mechanism. The above-
mentioned library consists of wrappers
developed for particular resources inherent to the
particular environment at hands. Therefore, users
have to provide their own libraries of wrappers
for applications that are available in the
environment at hand.

5. Syntax and semantics

The definition of a particular language consists of
both syntax (how the various symbols of the
language may be combined) and semantics (the
meaning of the language constructs). Section 3 has
already provided a sufficient coverage of the
semantics. As for the former, it shares a lot with the
original syntax of πDemos, a language demonstrated
by Birtwistle and Tofts, and we direct the readers
looking for a more detailed description to their work
[2]. For our purposes, it would suffice to point out
only the differences introduced by our
implementation.

Commands
As the consequence of using apply (see example 1),
POKer’s commands should be now represented as
compound objects (tuples), and therefore are subject
to the native Python syntax rules for such objects
[16]. A summary of the syntax changes in POKer
commands as contrasted against πDemos commands
is given in table 2.

πDemos POKer Remarks
decP(classId, classDef) (decP,(classId, classDef))
newP(id, classId, dt) (newP,(id, classId, dt))
hold(dt) (hold,(dt,)) Additional argument value: None
newR(id) (newR,(id, Cap)) Capacity is added
getR(id) (getR,(id,))
putR(id) (putR,(id,))
close() (close,())

Table 2. πDemos and POKer commands.



Processes
In contrast to the process structure proposed by
Birtwistle and Tofts (example 2), the nesting
introduced by a compound object PD is removed,
and a new object (attribute data) is added to support
data-flow of a process. This attribute holds a
reference to any intermediate data that is currently
associated with the process (for example, the address
of the file with output data produced by the previous
activity with an environment resource).
Additionally, the order of objects in the process is
changed (example 1):

example 2: (id, PD(classDef, attr, evt))
example 3: (evt, id, classDef, attr, data)

6. Example of  a sample POKer program

In this section we present an example of a POKer
program to demonstrate the usage of the semantics
rules and step by step execution of such a program.
This program creates a generic process class PD and
three instances (P1, P2, P3) of that class are
scheduled on the EL at simulation times 1, 2, 3
respectively. Each of the processes acquires, uses,
and releases the same resource (B) with capacity 2.
For simplicity, the processes simulate activities with
the resource (gateway mechanism is not used) by
hold(3).

The state of the system is:
EL = [(0,'P0',PD0,[],[])],
R = {'B':([],2,'true')},
D = {},
where:
    PD0 = [ (decP, ('PD',[(getR,('B',)),
                          (hold,(3,)),
                          (putR,('B',)),
                          (close,())])),
          (newP, ('P1','PD',1)),
          (newP, ('P2','PD',2)),
          (newP, ('P3','PD',3)),
          (close,()) ]

The execution begins with process P0 declaring a
process body PD as a class (see table 3). Next is to
create instances of processes and schedule them after
all processes already existing on the EL (lines 2-4).
Finally P0 calls close(). Execution of P0 unrolls
in a consecutive manner, for it does not include tasks
that would either reschedule (hold) or possibly
delay (getR) the process. After termination of P0,
EL contains three processes P1, P2, P3. Notice,
that P1 and P2 both were allowed to use resource
concurrently (6 and 8) while P3 became blocked
(line 10) and how the state of the resource is
affected. This demonstrates the effect of capacity
being added to the resource. For the rest execution
of the processes is similar and obvious.

7. Server POKer

7.1. Extending POKer

The application of POKer is intended to operate in
the environment as controller in a way it is described
in subsection 2.1. In order to enable POKer for such
an undertaking, it has to be amended with additional
functionality. This is accomplished in a special
version of POKer, called Server POKer. This
advanced version of POKer is based on the original
POKer and extends its functionality by wrapping it
in a class.

This class does not affect the state of the system, nor
provides any direct functionality to the controlling of
the environment. Its development and
implementation was not based on formal operational
semantics, but rather on usual programming
practice, and available standard and 3rd party
libraries with the needed functionality. As such, it is
more of a helper class that bridges the gap between
the controller’s core (language run-time system) and
the rest of the environment components it has to
interact with. This class is packed into a separate
Python module named ServerPoker .

Lines Run-time messages
01 (0,P0,[]) Declares class PD ==> done
02 (0,P0,[]) Creates instance of PD ==> (1,P1,[]) entered EL
03 (0,P0,[]) Creates instance of PD ==> (2,P2,[]) entered EL
04 (0,P0,[]) Creates instance of PD ==> (3,P3,[]) entered EL
05 (0,P0,[]) Closes itself ==> (0,P0,[]) is removed from EL
06 (1,P1,[]) Gets (B,2,T) ==> (1,P1,B) owns (B,1,T)
07 (1,P1,[B]) waits for 3 ==> (4,P1,B) is rescheduled
08 (2,P2,[]) gets (B,1,T) ==> (2,P2,B) owns (B,0,F)
09 (2,P2,[B]) waits for 3 ==> (5,P2,B)
10 (3,P3,[]) gets (B,0,F) ==> (N,P3,[]) is blocked by (B,0,F)
11 (4,P1,[B]) puts (B,0,F) ==> (4,P1,[]) (B,0,F) freed (4,P3,[B])
12 (4,P1,[]) closes itself ==> (4,P1,[]) is removed from EL
13 (4,P3,[B]) waits for 3 ==> (7,P3,B)
14 (5,P2,[B]) puts (B,0,F) ==> (5,P2,[]) freed (B,1,T)
15 (5,P2,[]) closes itself ==> (5,P2,[]) is removed from EL
16 (7,P3,[B]) puts (B,1,T) ==> (7,P3,[]) freed (B,2,T)
17 (7,P3,[]) closes itself ==> (7,P3,[]) is removed from EL
18 POKer: empty EL – simulation is complete

Table 3. Run-time messages generated by the kernel.



As the result, Server POKer (from the
implementation viewpoint) is a combination of two
modules: poker , which implements the language
run-time system, and ServerPoker, which uses
poker and extends it with “environment”-oriented
functionality. A detailed discussion of Server POKer
is beyond the scope of this paper. In following
subsection 7.2 we give a brief description of the
ServerPoker module.

7.2. Description of ‘ServerPoker’ module

The ServerPoker module consists of one class
ServerPoker, which simplifies the task of setting
up the environment controller (or server, as it is
referred to in this subsection to stress its serving
role). Creating the server requires several steps. First
of all, one must instantiate the ServerPoker
class, passing it the server_address,
state_filename and starting up the listener
and kernel threads. Then, call the
handle_request() or serve_forever()
method of the server object to process one or many
user requests. The following is a description of the
ServerPoker class external methods:
servelet(conn, addr)

Process data from a socket-client (conn,
addr). It receives the request, gets, processes,
and puts the data on the internal buffer.

server_address
The address on which the server is listening. The
format of it is a tuple containing a string giving
the address, and an integer port number:
('127.0.0.1', 80), for example.

setup(state_filename, server_address)
Re-initialise the ServerPoker class.

start_listener()
Start a Socket Server. It starts up a Socket Server
by creating a listener thread that 'listens' for
socket connections at the given
server_address.

state_filename
Full filename. This file contains the state (saved
or initial) of the environment.

terminate_listener()
Terminate Socket Server. It shuts down the
socket binding and terminates normally the
listener thread.

handle_request()
Process a single event notice. The kernel's loop
iterates ones to process the imminent event from
the current process.

POKer()
Process a single POKer command. This is
intended to be an interactive POKer shell.

save_state(state_filename)
Save the state of the kernel to the filename file

serve_forever()
Handle an infinite number of events. It simply
calls method handle_request() in an
infinite loop. In addition, this subroutine
complements the timing mechanism of POKer:
whenever the POKer becomes idle, it would
force the kernel thread into a sleep mode until
it becomes timed out or awakened.  The latter is
caused by arrival of external events signalling
that the wall-clock time has reaches the next
event time (time) or availability of new
processes on the internal buffer.

server_activate()
Activate POKer as server. It starts up the
kernel thread that executes processes from the
EL and looks-up the internal buffer for any new
requests from users.

server_deactivate([save=1, state_filename])
Deactivate POKer. It handles the normal
termination of the kernel thread and calls the
following methods in order:
terminate_listener(), and (optionally)
save_state().

8. Final remarks

Obviously, the ideas behind POKer are not at all
new but based on the research reported in [Birtwistle
and Tofts 1994]. Novel are, however, our
implementation in the scripting language Python and
the use of the resulting process-oriented discrete-
event kernel in the real-world management and
control of our collaborative environment in
development. We have chosen for a simulator as the
core of the collaborative environment in order to
have all the time full overview on all that is
happening in the environment. This should facilitate
later on formal analysis of the environment, resource
management, virtual product life cycle [17], etc.

In this paper we have presented the operational
semantics definition of the process-interaction
language commands and the implementation of the
run-time system. Despite the fact, that conversion of
the semantics into an imperative language was not as
straightforward as it would have been in the case of
a functional one, the implementation benefited from
the available strong data-types and interactivity of
the scripting language. Further, understanding the
semantics of the execution of POKer programs



helped us when proving the correctness of the
implementation by testing. In summary, having a
good semantic background provided us with a clear,
short and unambiguous understanding of the
language constructs, and thus facilitated the
implementation and testing phase. Later on it might
facilitate reasoning about the properties of POKer,
as new features are being added.

All the run-time traces provided in this paper were
generated by the presented kernel. An on-line
demonstration of POKer is available from the
Internet [5]. There is also another on-line demo [6]
that shows the ability of Server POKer to handle
processes from multiple web-users on the same set
of shared resources. However, for that purpose the
server must be started up before one can take part in
a demonstration. Should a reader be interested,
please send your request via e-mail to the first author
of this paper.

Acknowledgement

The research reported in this article is done in the
framework of the NanoComp-project [7], sponsored
by the TU-Delft.

References

[1] O. Balci, The implementation of four conceptual
frameworks for simulation modeling in high-level
languages. Proceedings of the 1988 Winter Simulation
Conference, pp. 287 – 295.

[2] G. Birtwistle and C. Tofts, “An operational semantics of
process-oriented simulation languages: Part 1 πDemos”,
Trans. Soc. Comput. Simul., 10(4), December 1994,
pp. 299 – 333.

[3] A.C.-H. Chow, Parallel DEVS: A parallel, hierarchical,
modular modelling formalism and its distributed simulator.
TRANSACTIONS of the Society for Computer Simulation
International, Volume 13, No. 2, 1996, pp. 55 – 67.

[4] Yoke-Hean Low, Chu- Cheow Lim, Wentong Cai, Shell-
Ying Huang, Wen-Jing Hsu, Sanjay Jain, and Stephen J.
Turner, “Survey of Languages and Runtime Libraries for
Parallel Discrete-Event Simulation”, Simulation 72:3,
1999, pp. 170 – 186.

[5] On-line demo of POKer: http://www.kbs.twi.tudelft.nl/
Research/Projects/CollSim/Software/bin/PI/

[6] On-line demo of Server POKer:
http://www.kbs.twi.tudelft.nl/Research/Projects/CollSim/
Software/bin/index2.cgi

[7] NanoComp project  homepage: http://nanocom.et.tudelft.nl/

[8] Tkinter homepage: http://www.python.org/topics/ tkinter/

[9] A. Levytskyy and E.J.H. Kerckhoffs, “Towards a Prototype
Web-Based Collaborative Simulation Environment”, SCS:
paper of the 5th Euromedia Conference, May 2000,
pp. 60 – 66.

[10] A. Levytskyy and E.J.H. Kerckhoffs, “A Plain Python
Simulator to Control a Collaborative Environment”, SCS:
paper of the 14th European Simulation Multi-conference
(ESM), May 2000, pp. 719 – 727.

[11] Mark Lutz, “Programming Python”, O'Reilly & Associates,
Inc., October 1996.

[12] John K. Ousterhout, “Tcl and the Tk Toolkit”, Addison-
Wesley Publishing Co., 1996.

[13] Python homepage: http://www.python.org

[14] Jerry Banks (Ed.), “Handbook Of Simulation. Principles,
Methodology, Advances, Applications, and Practice”, A
Wiley-Interscience Publication, 1998, pp. 813 – 833.

[15] Jon G. Riecke and Ramesh Viswanathan, “Isolating Side
Effects in Sequential Languages”, Papers of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, 1995, pp. 1 – 12.

[16] Guido van Rossum, Python Tutorial, Release 1.5.2, March
2000: http://www.python.org/doc/current/tut/tut.html

[17] Vangheluwe and Vansteenkiste, Ghislain and Visipkov,
Vladimir and Merkuryev, Yuri and Merkuryeva, Galina
and Teilans, Artis, “Design of a User Friendly Modelling
and Simulation Environment”, International European
Simulation Multi-conference (ESM), June 1994, pp. 282 –
 286.

[18] B.P. Zeigler, H. Praehofer, T.G. Kim, Theory of Modeling
and Simulation. Second Edition. Integrating Discrete Event
and Continuous Complex Dynamic Systems, Academic
Press, 2000.

[19] Ronald C. Van Wagenen, Charles R. Harrell, Achieving
Reliability in Simulation Software. Proceedings of the
1994 Winter Simulation Conference, pp. 695 – 699.

[20] J.S. Carson, Modeling And Simulation Worldviews.
Proceedings of the 1993 Winter Simulation Conference,
pp. 18 – 23.


