
TOWARDS A PROTOTYPE WEB-BASED
COLLABORATIVE SIMULATION ENVIRONMENT

Andriy Levytskyy and Eugene J.H. Kerckhoffs

Delft University of Technology
Faculty of Information Technology and Systems

Department of Technical Informatics
Zuidplantsoen 4, 2628 BZ Delft, The Netherlands

E-mail: a.levytskyy@cs.tudelft.nl

Keywords

Collaborative environment, Internet, WWW,
agents, discrete-event system simulation,
distributed simulation.

Abstract

The aim of the research discussed in this paper is
to develop and build a generic web-based
distributed collaborative environment, allowing the
registration of data files, simulation models and
simulations in a central modelbase, browsing this
modelbase, the meaningful presentation of
registered data and models, remote execution of
simulations, linking simulations through
appropriate wrappers, a.s.o. The paper gives an
overview of underlying ideas. Agent-like
components are intended to be included to assist
users in their collaborative work. As an illustrative
(but tentative) example the use of trader and
mediator agents are discussed to register data files
and provide a meaningful (e.g., graphical)
presentation of registered data.

1. Introduction

The purpose of the research discussed in this paper
is to support simulations and simulation-related
activities at the different levels (physics, circuitry,
systems) of the so-called NanoComp project, that
investigates the possibilities to achieve
revolutionary better computing-system behaviour
by optimally exploiting hardware based on
quantum devices [DIOC-7]. In the subproject
"Quantum Devices", physical phenomena are
studied and experimental evaluation of SET
devices is done. An appropriate fabrication process
of such devices would be needed to test the
concepts developed in the other subprojects, but
technologically it is not yet feasible to accomplish.
Instead, experimental research may be supported
by simulation: simulated devices can replace

physical devices in the other subprojects. In
general, simulated products in one subproject
could be employed to support the research in the
other subprojects. Figure 1 shows how various
subprojects are linked to form one multi-
disciplinary program. In principle, the same holds
from the viewpoint of underlying simulations and
simulation-related activities. The various
subprojects include simulations on different

architecture levels, of different formalisms, in
different languages and on different computers.
Consequently, providing an appropriate
infrastructure [Coe et al. 1998] to link such
different project levels to distributed hierarchical
compound simulations would be worthy (certainly
in the long run) to allow prototyping of research
ideas, and to answer "what-if" and optimisation
questions.

The described scenario concerns in general a
scientific experimentation, where simulation
programs are just special cases of computational
tools involved in the experimentation. In our
design approach, we assume that the environment
to be developed should make a number of services
available to users through the WWW. These
services include access to computational resources
(e.g., simulation software) and data resources (e.g.,
data storage), that are allocated on various
hardware and software platforms. Experimentation
in such computing environment may involve data
retrievals, running executables on remote

requirements

Devices Circuits Systems

Q-computing

requirements

parameters parameters

Figure 1. Global view on subproject links.

machines, data-flow between computations, data
format conversions, data visualisation, etc. More
than one user is expected to use the system’s
resources at any moment of time. Some resources
might temporarily not be available for some reason
(e.g., because the resource is occupied to its full
capacity, or due to the limitations of external
factors, such as load balancing, license restrictions,
policy considerations to name a few), which may
influence the coarse of the experiment.
Consequently, our goal is a generic environment
(with web-based interface) for experimentation on
distributed heterogeneous resources. The
environment should provide support for distributed
computations and management of resources,
taking into account the above-mentioned external
influencing factors; it should support the project
life-cycle and feature central project data storage
in order to facilitate knowledge exchange inside
and outside the project. The generic system should
be adjustable to cover a concrete situation at hand
(in our case the afore-mentioned NanoComp-
project with its specific resources).

Currently, prototypes of other similar collaborative
environments are available or in development
[Malony et al. 2000, Haupt et al. 2000], however
these focus on different problem aspects (web-
based front ends, support for data collection,
support for running research tools) or
implementation aspects (application of web-related
technologies, OOP, distributed object
technologies, etc.). Our research distinguishes
itself by a different approach to resource
management, and experiment control and
execution.

The paper is organised as follows: section 2 shows
our approach to modelling the experimental
collaborative environment. Then, in section 3 is
described how agent technology is intended to be
applied in our approach. Section 4 provides an
overview of the architecture for the proposed
experimental collaborative environment. Finally,
in section 5, future directions are outlined.

2. Modelling, Simulating and Controlling the
Environment

2.1. View on the real system

First, we distinguish the generic entities that form
the physical aspect of the system (i.e., the
experimental collaborative environment): dynamic
entities – processes, which are activities of users
(entering and after having been served leaving the
system); and static entities - resources, that are
permanent in the system (e.g., computational tools,

DBMS, etc.). Changes in the state of the system
are caused by external events (e.g., an entry of a
user into the system) and internal events (begin or
end of an action). Such system can be described
using the discrete-event formalism.

Resources are intended to provide services to the
users, and users carry out (compound) activities in
which these resources are involved. This leads us
to the information aspect of the system, which
represents the knowledge about activities of users.
An activity may consist of one or more atomic
tasks (actions) grouped together in a way and order
that are crucial to the achievement of the objective
of experimentation. Such tasks form the
information aspect of a certain process and
constitute its body. The latter can be represented as
a sequence:

[t1,t2,…,ti,…,tn]

where ti is a task from a process’ body. If such a
sequence produces good experimental results, it is
important to save it for further reuse. In order to
reflect optimally this aspect of the user’s
behaviour, we apply the process-interaction
worldview (subset of DEVS).

Finally, we distinguish a control aspect , which
provides the control of the interactions of the
components in the system. This is accomplished
by a kernel, which forms the core of the proposed
collaborative environment. Since the kernel
executes control over the two previous aspects, it
inherits the DEVS process interaction formalism.

To summarise, our design approach is based on the
process-interaction worldview on the system:
multiple user-defined processes interact with
resources and compete with each other for
resources’ services in order to realise their
objectives. All the events in the system are
controlled by the environment kernel (see
subsection 2.2).

2.2. Environment kernel

The core of the environment, named Process-
Oriented Kernel (POKer), is implemented in
Python [Lutz 1996]. It is a discrete-event system
solver with the process interaction worldview. The
state of the environment at any moment is
internally represented by the triple (EL, R, D),
where EL is the event list that holds all the
processes scheduled to happen in the system; R is
a set of resources, and D is a set of (declarations
of) process classes and their instances.

All resources are stored in a set as dictionary-like
entities, whose bodies are accessible by their ids.
Currently, a resource’s body consists of an

“availability attribute” (which indicates whether
that resource is available), resource capacity, and a
queue for blocked processes (if any) that have tried
to acquire a busy resource. On the other hand, each
process has an attribute, which holds the id of the
resource (if any) being used by it, thus allowing to
prevent double taking the same resource (and
eventual deadlocking). The kernel’s resources are
proxy objects for “real” resources, and as such,
they reflect the status of their real counterparts.

Every process that exists in the system (and is not
blocked or busy with a resource) is assigned an
event time to schedule the beginning of execution
of its next task, and is accordingly allocated on EL.
This feature is useful since it allows combining
both simulative and real processes in the system.
Besides the event time and the attribute mentioned
above, each process is given a distinctive name
and contains a body, which is a list of tasks to be
accomplished in the system. The body is a process
interaction model that captures the information
aspect of the user actions in the experimental
environment. Consequently, a process is a
“dynamic entity” wrapper around the experiment
model (i.e., model of user experiment as
determined by the process’ body) and also
provides the internal attributes necessary for its
processing inside the kernel. A typical correct
body would consist at least of the following tasks:
seize a resource, do something with the resource or
reschedule itself at ∆t later, release the resource,
create a report on the coarse of the execution.
Additionally, it may include create a new process
class, create an instance of a process class, and
create a new resource. Implementation of these
commands is based on operational semantics study
in [Birtwistle and Tofts 1994].

The dictionary of declarations (D) is implemented
as a set, which contains class definitions for
processes (i.e., their bodies or experiment models).
This allows easy creation of multiple instances
(processes) of already declared process classes. It
also keeps in the same set the ids of already
existing processes.

The above shows how the physical and
information aspects are represented internally.
Furthermore, in controlling the operation of the
environment, POKer relies on a number of
mechanisms. A synchronisation mechanism
controls the access of processes to resources. A
scheduling mechanism manages the processes on
the EL. A gateway mechanism provides the
connectivity to real resources. Finally, POKer
employs a standard discrete-event timing
mechanism to progress its execution (i.e., pop the
next event (process) from EL, initiate the

corresponding event (next task from the process’
body), react to the event according to the system’s
state, and repeat until there are no more future
events on EL). The integrated mechanisms define
possible applications of POKer both as simulator
and controller of the experimental collaborative
environment.

POKer as Environment Simulator
POKer is capable of simulating 'exclusive access
to a limited number of resources' scenarios that
dynamically occur during execution of experiment
models. As such, POKer can be used as a
simulator of our planned experimental
environment. Based on the assumed distribution
function of the users’ arrival times, their process
specifications (experiment models), POKer’s
dictionaries of resources (R) and process
declarations (D), through simulation POKer can
provide information on how tasks are processed
(i.e., their sequence of execution), whether
resources are free or blocked, and, based on this,
the interaction of processes. These simulations can
be used to study and analyse the “real-world”
experimental environment (queues of the
resources, deadlocks, consequences of changes in
the system, etc.).

POKer as Environment Controller
In our research, the emphasis is not on POKer as
experimental environment simulator but on POKer
as experimental environment controller. This
function of the kernel is enabled by providing
processes with a gateway mechanism to external

Mapped Resources (R)

Scheduling

Timing

tasks of the current process

acquire Rnhold…

Real System Resources

kernel

event i

Figure 2. POKer’s mechanisms at work.

event i+1

Synchronization

Gateway

OR

resources (real applications). This mechanism is
fired during execution of the hold command on
the process that has acquired a resource, which is a
proxy object for a real application. This is
demonstrated in figure 2 by the dashed arrow
going through the ‘gateway mechanism’, as
opposed to the solid one denoting simulative use
of the resource. Then the respective module from
the library of proxy modules that wrap “real”
resources, is called. The proxy module controls the
session with the “real” resource, and maintains the
communication with the client-process. Each
wrapper stores the interface definition of the server
application and knows where to find the
implementation of that resource. Currently, custom
wrappers are used. Later, we plan to strengthen
this mechanism by applying one of the object
technology standards [ON].

Since POKer itself is just a running operational
model, it becomes possible to make fast changes to
it, which may influence the operation of the whole
system, thus making the environment more
flexible.

3. Agent-like Approach

Users, working with the proposed software
environment, will have to interact with the parts of
the system, such as environment kernel itself and
the modelbase. This might include, for example,
registration of simulation models and data-files to
be added to a modelbase, browsing the modelbase

and selecting a model or data-file, presenting data
from the selected data-file in a user-specified way,
starting simulation of models under user-specified
conditions, linking distributed simulations, etc.
Previous research [Wong and Hwang 1992],
[Kerckhoffs and Vangheluwe 1996] indicates that
software agent technology can be applied to
provide the user with friendly web-based
interfaces to the system, and AI assistance in the
execution of the wanted activities. Currently, the
system contains trader and mediator agent-like
components. In general, a trader agent keeps
descriptions of available information sources, such
as the type of information, the method of access
and the location of the information source. It offers
the user search mechanisms to identify possibly
interesting information sources. A mediator agent
is positioned between (distributed) information
sources and users (or applications). Tasks that are
associated with mediation are, for instance,
methods to access and merge data from multiple
databases or data-files, and computations that
support abstraction, generalisation and
representation of underlying data. In our system
these agents are accessible from the WWW
through a browser.

The trader agent enables users within the
NanoComp-project and, in general, around the
world to share experimental data: users have the
possibility to register new experimental data and
they can select experimental data. This agent has
access to a modelbase that contains the meta-
information of the registered experimental data
files. Web-users can register an experimental data
file by providing the http-address of the file. The
trader agent then downloads this file from the
provided location and adds all the meta-
information of that file to the model base. The data
itself is not added to the database, because there is
no need for that for the purpose of data file
selection, and furthermore, experimental data files
can be large, which would complicate their
management in a database. Selection of
experimental data is done on the basis of this
meta-information of the registered data file.

Example: figure 3 shows a web page generated by the
trader agent. It summarises the meta-information of
registered experimental data files as pairs of keywords
and values. The latter are presented as ‘select boxes’
and the former as descriptions of the respective boxes.
In the example, the page has boxes with the following
keywords: Project, Experiment, etc. The user selects
‘Quantum Devices’ from the box with the list of
projects, and clicks the ‘Submit’ button to request the
trader agent to return a list of http-addresses from the
available experimental data files, that have Quantum

Figure 3. Data-file selection page.

Devices as value for keyword Project in their meta-
description.

After a user has selected the experimental data-file
s/he wants to have access to, its http-address
becomes the input for the mediator agent. This
agent consecutively retrieves the experimental data
file and provides a meaningful (e.g., graphical)
presentation of these data. The experimental data
will be presented as a graph and the user has the
possibility to change the presentation according to
his/her preferences. The user can:
• change the size of the graph;
• zoom-in/zoom out on a particular part of the

graph;
• choose a data column for the x-axis;
• choose data columns to be plotted;
• pipe data of a column through a function,

before plotting;
• customise graph styles for columns (solid line,

dashed line, or impulses).

The mediator agent will also offer the user a link
to the original data file.

Example: figure 4 demonstrates an example of default
graphical representation of the selected data. Besides the
graphical representation itself, this page provides the
user with meta-information on the data and statistics (the
table above the image). Beneath the picture, a number of
widgets are available to allow the user to customise the
look of the graph. For example, the user altered the
range ([2e-05 : 5e-05]), selected impulse in place of line
chart, etc. Pressing the “Submit” button returns a new

html page with user preferences being applied to the
graphical representation for the same data (see figure 5).

On the basis of user preferences, the mediator
agent writes a plotting–script that is used by the
visualisation tool gnuplot to draw the graph. The
mediator agent in turn includes this graph in the
(HTML) document, which is returned to the user.

The realised tentative agent-like components allow
the user to register, find and visualise data-files.
Further on, if the selected file is an experiment
model, user can execute it on the environment
kernel.

4. Overview of the collaborative environment

The proposed environment consists of three layers
(see figure 6):
q High-level front ends
q Environment kernel
q Distributed heterogeneous (hardware and

software) resources.

As to the first layer, we intend not to restrict users
to particular front-end tools, but to allow them to
use custom front-ends by “plugging” these into the
system. This, however, requires finalising the
specification of the kernel’s interface. This task is
currently in an initial stage. At the moment, the
front-end layer consists of the kernel control
utility, which is an administration tool that
normally is not accessible for usual users, and

Figure 5. Graphical presentation of the selected
experimental data file (continued).

Figure 4. Graphical presentation of the selected
experimental data file.

agents. The latter carry out various functions: they
facilitate the exchange of models and experimental
data between participants from inside and outside
the NanoComp project. Agents are also used to
register experiment models to the model-base and
provide intelligent assistance in browsing through
registered objects in order to select a model for
reuse. Further, a user can proceed with execution
of a selected model without having to deal at low
level directly with the kernel’s API.

The middle layer of the environment consists of
one central persistent kernel, which controls access
to all the resources in the system. When a user
starts an experiment (e.g., via an agent), a low-
level experiment description is sent over a socket
to the listening thread of the kernel, which collects
the incoming data in an internal buffer. POKer
regularly removes any new processes from this
buffer and schedules them on the EL. A process
contains a sequence of events. When an event
occurs, POKer executes its controlling function
and delegates the task of the process to the
respective resource, by binding it with the proxy
module that calls the methods of the target
resource. Currently, these modules are custom
wrappers developed for the applications
concerned. When a user leaves the system or
works with a resource, the connection between the
user and the rest of his/her process is closed, but
the process stays in the system as suspended (i.e.,
it does not influence the queue of events and does
not change the state of the system). Every web-
user is associated with a process by cookies: a
general mechanism which server side connections
(such as CGI scripts) can use both to store and
retrieve information on the client side of the
connection [PCS]. When a user comes back in the

system, s/he is recognised by the cookie, and the
respective process becomes active again (i.e., it is
scheduled as an event notice on the EL).

The back-end layer consists of a number of
applications (currently accessible via CGI-
wrappers). Their state is reflected in their
respective proxy resources. Each experiment
model can involve execution of applications on
different platforms. The output file of one
application in the experiment sequence can be the
input for the next one, after a suitable format
conversion. A CGI-based communication scheme
is used to provide the input and output
information, and to execute the computational
resources. We plan to integrate later on CORBA
[OMG] to facilitate the communication between
middle and back-end layer.

It might be important to collect status information
on the coarse of experiment execution. This would
allow users to analyse their experiments post-
mortem, which might give new interesting
insights. Currently, this is limited to the report
generated by the kernel, and the possibility to
register the produced experimental data to the
modelbase and to visualise the registered data with
help of the mediator agent. Because the kernel
brings the execution of an experiment at a higher
level, it has the potential to facilitate information
gathering with respect to data-flow, actions, and
intermediate states of the experiment. This
facilitates the implementation later on of the
“Virtual Product Lifecycle” (VPL) concept.

Figure 6. Architecture of the system.

Computational resources:
Gnuplot
MatLab

workstations
…

Resources

Data resources:
Modelbase

DBMSs
…

Kernel Control Utility Custom Front EndsAgents

Environment Kernel/Controller

Front Ends

5. Final remarks

The paper presents some tentative results of
research that aims at developing and building a
generic multi-user environment with web-based
interface for running experiments on distributed
heterogeneous resources. We have considered an
approach, in which a process-oriented discrete-
event system kernel is employed to simulate and
especially control the planned collaborative
environment. A first prototype of (trader and
mediator) agents provides users with a front-end to
certain facilities of the system (in particular, the
registration of data files and the graphical
representation of registered data).

Recent experiences in the subject field provided us
with important guidelines on further developments
in the project. Next work will focus on the
integration in the middle layer of one of the
industry standard object technologies, such as
CORBA or DCOM [MS], to deal with the
distribution of objects (resources). Then, the kernel
of the environment shall be a combination of
POKer and an ORB (Object Request Broker). The
front-end layer will be extended by a web-
accessible tool for visual construction of
experiment models. Also, we intend to extend the
simulation experiment potential of the
environment by incorporating HLA (High Level
Architecture) [DMSO] to set up generic
federations for distributed simulations.

Acknowledgement

The research reported in this paper is done in the
framework of the NanoComp-project [DIOC-7],
financially sponsored by the TU-Delft.

References

[Birtwistle and Tofts 1994] G. Birtwistle and
C. Tofts, “An operational semantics of process-
oriented simulation languages: Part 1 πDemos”,
Trans. Soc. Comput. Simul., 10(4), December
1994, pp. 299 - 333

[Coe et al. 1998] P. S. Coe, F. W. Howell, R. N.
Ibbett and L. M. Williams, “Technical note: a
hierarchical computer architecture design and
simulation environment”, ACM Transactions on
Modeling and Computer Simulation, Vol. 8 (4),
Oct. 1998, pp. 431 - 446.

[DIOC-7] NanoComp project homepage:
http://nanocom.et.tudelft.nl/

[DMSO] DMSO - HLA project homepage:
http://www.dmso.mil/portals/hla.html

[Haupt et al. 2000] T. Haupt, E. Akarsu and
G. Fox, “WebFlow: a framework for web based
metacomputing”; Elsevier Science, Future
Generation Computer Systems, Vol. 16 (5) (2000)
pp. 445-451

[Kerckhoffs and Vangheluwe 1996] E. Kerckhoffs
and H. Vangheluwe, “A Multi-Agent Architecture
for Sharing Knowledge and Experimental Data
about Waste Water Treatment Plants through the
Internet”, proceedings of Euromedia, 1996,
pp. 18 - 26. Society for Computer Simulation
International (SCS).

[Lutz 1996] Mark Lutz, “Programming Python”,
O'Reilly & Associates, Inc., October 1996.

[Malony et al. 2000] A. D. Malony, J. E. Cuny,
J. L. Skidmore and M. J. Sottile . “Computational
experiments using distributed tools in a web-based
electronic notebook environment”; Elsevier
Science, Future Generation Computer Systems,
Vol. 16 (5) (2000) pp. 453-464.

[MS] Microsoft's Component Object Model
technologies site: http://www.microsoft.com/com

[OMG] OMG homepage: http://www.omg.com

[ON] Object News: http://www.objectnews.com

[PCS] Persistent Client State - Http Cookies:
http://home.netscape.com/newsref/std/
cookie_spec.html

[Wong and Hwang 1992] Yung-Chang Wong and
Shu-Yuen Hwang, “Knowledge-Based Distributed
Simulation Generator”; ACM, Proceedings of the
25th annual symposium on Simulation, 1992,
pp. 156 - 161.

