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 Preface 

The research presented in this thesis was conducted within the Knowledge Based 
Systems Department of TNO Building and Construction Research. Working on the 
development of knowledge and information systems, the research of this department 
is directed to facilitating this process by the development of dedicated tools and 
techniques. This provides the practical background of the research described in this 
thesis. 

Within this context the problem with knowledge system development felt most 
directly was the difficulty with which a knowledge model could be brought from an 
initial prototype to a professional system that would conform to the expectations of 
the end-users. Furthermore, the problem of maintaining and updating the knowledge 
contained in such a system was seen as just as great a problem as it was to acquire it 
in the first place.  

Being in a practical context meant sometimes pragmatism and theory conflicted. 
Priority was given to the practical approach. This will be mentioned in the text. The 
applied nature of the research environment was felt as an essential factor in the 
development of the ideas in this thesis.  

My thanks �  

The word expert will be used to denote the �owner� of the knowledge. Nowadays, this 
person is not necessarily an expert, but the term succinctly states what kind of person 
or role is intended. To show exactly how inconsistent present nomenclature is, the 
term �expert system� has evolved into �knowledge system�, to stress the fact that the 
intent is that the system contains knowledge, rather than attempt to be an expert in 
some field. This thesis therefore discusses knowledge systems based on the 
knowledge of experts that are not necessarily experts in their field.  

Furthermore, and more generally, it may occur within this thesis that �man�, �he�, �his� 
or �him� term is used. I second the motion made by the now late Herbert Simon, that 
these pronouns should be seen as androgynous nouns encompassing both sexes, just 
as man denotes mankind, both male and female (Simon 1982, pg. 4). A side-effect of 
this approach is that by changing the meaning of these words, the current literature of 
the world can also be reinterpreted to have been politically correct all-along. That this 
also fits with the situated view on meaning and knowledge is of course beside the 
point. 

On a typographical subject, quotations will be surrounded �with double quotes�, 
while single quotes will be used to accentuate or �stress� certain terms. 
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Chapter 1 
Introduction 

The beginning is the most important part of the work.  

 � Plato 

Life on earth depended solely on DNA to carry information from one generation to 
the next for a very long time. Then, in the animal kingdom parents started passing 
experience to their offspring by teaching the skills needed for survival and through 
culture. Human kind found ways to communicate knowledge through speech and 
writing. This has created our ability to retain knowledge and pass it on through time 
without direct contact. Starting with stories told by the fireplace, later written down in 
books, and eventually placed as hypertext on the Internet, our knowledge made us 
human. The essence of this, the scientific enterprise is based on this free 
dissemination of ideas, to enable us to make sense of the world around us. Our 
outlook on the world and methods of problem solving are based on the discoveries 
made by our ancestors, sometimes many hundreds of years ago. In that same time, a 
great deal of knowledge has been lost. Knowledge systems provide a new medium to 
retain and spread knowledge, and to pass on what has been discovered by others.  

In this introductory chapter, a short background on knowledge systems and 
knowledge engineering is given as well as some insight into the research described in 
this thesis. To this end, a problem statement is formulated and the research goal is 
defined. This is discussed as to its practical and scientific content. In addition, the 
structure of the research program is provided. Finally, an overview of the remainder 
of the thesis is given. 

1.1 Knowledge Engineering 
Knowledge systems differ from all earlier media to retain and disseminate knowledge 
devised before. Knowledge contained in stories, books as well as scientific theories 
has to be acquired through training, study and reading. A knowledge system is a 
software system that makes a body of knowledge operational to solve problems using 
a separate representation of knowledge that can be employed dynamically. This aspect 
provides a great deal of flexibility and allows a knowledge system to approach a 
broad category of problems, without each of the problems being foreseen or 
enumerated in advance. This allows them to be used to solve problems that would 
require humans experience or training. In many cases, the origin of the knowledge lies 
with human experience and learning. To some researchers this is a defining aspect for 
knowledge systems (e.g. van den Herik, 1988). 

Knowledge engineering  is the discipline of developing knowledge systems using 
sound and principled methods. Perhaps because it is a relatively new field, the term 
�engineering� is used to stress its relationship with other engineering disciplines. It 
evokes an image of trust and professionalism, and is meant to denote that it employs 
centuries of knowledge passed on and refined over time, on the development of 
artefacts. Using methods of design, implementation, deployment and maintenance, it 
is similar to the approaches found in construction and other engineering disciplines. 
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For their use within knowledge engineering, these methods have been adapted for the 
special needs of knowledge.  

Knowledge engineering focuses on the relationship to engineering practices, in much 
the same way as software engineering has, which has also been a natural influence. 
Most current knowledge engineering approaches follow an engineering metaphor that 
approach a knowledge system as a finished product, for which the knowledge can be 
designed as part of the specification. This leads to a perspective on knowledge 
engineering that is constructivist in nature.  

The problems found in knowledge engineering are often approached from the 
perspective afforded by that same engineering metaphor. Pure engineering solutions 
are used to overcome the problems caused in part by the nature and origin of 
knowledge. The view proposed in this thesis is that the root cause of these problems 
lies in the strict adoption of the engineering metaphor, because it goes against the 
dynamic nature of knowledge and its origin in learning.  

All human knowledge has arisen slowly over time. Nature employs a different type of 
engineering. In line with this, a solution to some of the practical problems is therefore 
searched for at the level of a metaphor or more correctly, a shift in metaphor. Using a 
scientific metaphor, the shift is towards a continuous knowledge engineering process 
based on increasing insight, mirroring the learning in scientific development. In this 
perspective, the knowledge model is comparable to a scientific model to transparently 
retain a body of knowledge. This model can be invalidated by failed predictions or be 
replaced by a more elegant version. The knowledge system is more aptly described as 
a medium to make the knowledge model available to others. It is then still a product 
but the ongoing development is towards the improvement of the knowledge model 
over time. 

1.2 Problem Statement  
Knowledge has a substantial economic significance as a key resource for many 
existing and new companies. Increased awareness to the role and the importance of 
knowledge has led companies turning to knowledge management to improve the 
efficiency and effectiveness of their use of knowledge. In turn, this strengthened the 
attention for knowledge engineering and boosted the need for professional, industrial 
strength knowledge systems as a medium to retain knowledge and make it more 
readily available.  

Developing knowledge systems is by no means an exceptional deed. The first 
knowledge systems were developed in the early 60s. Knowledge systems have since 
then been seen as AI�s most successful commercial spin-off (e.g. Giarratano & Riley, 
1994)). Other scientists have been quoted to say that there are �1000s of successful 
knowledge systems� (Lenat & Feigenbaum 1989), and some knowledge systems have 
shown to deliver enormous benefits, for example XCON (Bachant & McDermott 
1984) which has saved DEC many millions of dollars. Most war-stories talk of 
prototypes knowledge systems that never got the chance to prove they could also 
provide such benefits (Crofts et al. 1989). And, as of yet, there are no known 
knowledge systems to date that rate in the category of killer-apps. 

Knowledge systems suffer from a bottom-line problem.. This problem refers to the 
fact that the benefits of knowledge systems are often unclear, and coupled to a high 
cost and risk. The main benefit of a knowledge system is the explicit form of 
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knowledge and the availability of the knowledge. Either can only be measured 
through the use of the knowledge. The costs derive from the complexity of the 
systems and involvement of experts and knowledge engineers. Development of a 
knowledge system is in the majority of cases exploratory in nature, which has an 
associated risk.  

There are different problems that can be targeted as root causes of the bottom-line 
problem. Following the terminology of Brooks (1987), these problems can be divided 
into intrinsic and accidental difficulties associated with the enterprise of knowledge 
system development. The intrinsic problems are fundamental and relate to the nature 
and origin of knowledge, as well as the complexities of software development. There 
are no quick fixes or even guaranteed solutions for these problems. The question is 
even whether such problems will ever see a solution. Accidental problems are those 
that have to do with inadequacies in current methods and tools, that may be solved in 
due time.  

A knowledge system naturally depends heavily on the knowledge of the problem 
domain, often deriving from human experts. One of the root problems of the cost and 
risk associated with knowledge engineering is the intrinsic difficulty of formulating 
and formalizing knowledge. This is also known as the  knowledge acquisition 
bottleneck. As this problem extends to the maintenance of knowledge systems as well, 
it is referred to within this thesis as the knowledge acquisition and maintenance 
problem. Most knowledge systems are developed by specialised knowledge 
engineers. They are well versed in interviewing techniques, analysing the experts, and 
additional material containing the pertinent information. By their training are also 
well prepared to enter such knowledge into a knowledge representation. Both 
knowledge engineer and expert need to work very hard at developing a good model of 
the necessary knowledge. Such a process is both time-consuming and expensive, and 
success cannot be guaranteed. 

Even then, many knowledge systems never reach the point at which they are actually 
used by the people the system was intended for. Of a successful knowledge model or 
knowledge system prototype cannot be said that it will translate to a successful end 
product. There remains to be a great gap between a prototype and a commercial 
knowledge system, especially in the visualisation of knowledge systems, as compared 
to what users have become accustomed to in standard software (Crofts et al. 1989). 
For want of a better term, this is dubbed the gap problem. The acceptance of 
knowledge systems is not easy, as they do not restrict themselves to providing a 
service, but effect changes in the organisation and balance of knowledge. Knowledge 
is power, as the slogan goes. 

The brittleness problem is a further challenge with knowledge systems. A knowledge 
system performs badly when confronted with problems just outside of its domain. 
This is compounded by not knowing when they might be wrong, or speaking outside 
of their scope. This effect is so strong that it is also called the knowledge precipice. 
The knowledge system performs well enough on the plateau, but very badly just 
outside of that. Some think this is caused by lacking depth in the knowledge that these 
systems have, others consider the missing part to be a large store of common 
knowledge. 

Software systems are complex artefacts that are inherently difficult to develop. 
Knowledge systems represent a software system that in many cases is required to 
perform tasks that require more than a straight algorithmic approach or fixed 
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solutions. This makes knowledge system development the construction of solutions 
for difficult problems. This complexity problem places the development of a 
knowledge system firmly in same league as complex software. 

This makes a demanding enterprise all the more difficult, as the introduction of such 
systems is already under pressure from fears of people that they are to be driven out of 
their jobs, neo-Luddite techno-phobia and other misconceptions. Combined with the 
uncertainty of the financial benefits to be gained, knowledge systems often have only 
limited commitment from the organisation. This means that management can easily 
kill knowledge systems when they do not produce results quickly enough. Different 
researchers cite company-wide commitment as a critical success-factor (Schreiber et 
al. 1999, de Hoog 1998, Stefik 1995, Steels 1992). Even XCON was cancelled by 
DEC three times during its life-cycle (McDermott 1982, 1980). 

These problems combine to produce a bad bottom-line situation for knowledge 
systems, and give them even now a reputation of being experimental technology. The 
total effect of all of this is that knowledge systems have not made a great impact on 
the world as yet. Certainly not as much as was thought some 20 years ago, when 
knowledge systems were heralded as the expert-in-a-box. Knowledge systems were 
the perfect receptacle for mining the jewels in the minds of expensive experts, their 
valuable knowledge safeguarded by the organisation, and copied infinitely.  

The bottom-line problem and its root causes are central issues to the future of 
knowledge systems application and research. There is a great need to �sell� knowledge 
system technology to the greater public as a viable solution to practical knowledge 
problems. The research should focus on translating the possibilities of today to the 
applications of tomorrow. Increasing the profitability of knowledge systems, and 
making this clear improves acceptance of knowledge systems. Providing approaches 
and tools that can be used to realise the systems as cost-effective, high-quality 
solutions, strengthens both the science of knowledge engineering and the underlying 
science of AI. 

By having more knowledge systems, there will be more knowledge on building 
knowledge systems. The cry for innovation will become greater as increasingly more 
complex and critical tasks are tackled, leading to new research initiatives. Research 
into the reasons behind the problems this poses and their possible solutions will 
remain important for improving the state-of-the-art in knowledge engineering.  

A greater utilisation of knowledge technology will also lead to better understanding of 
what knowledge is and what role it can play in intelligent behaviour. From such a 
practical experience, general lessons may be gleaned and our knowledge of our 
technology and ourselves can be increased. Knowledge systems are partial models of 
human reasoning and apply this on artefacts that embody this theory. By examining 
the differences and similarities, new insights can be gained into what knowledge is, 
how it comes into being, and how it is used. In some way, these insights tell us of who 
we are and how we ourselves operate. In time this may allow us to create fully 
intelligent constructs but examining how our current, limited knowledge has already 
changed what we consider intelligence and what not, shows how important these 
questions really are.  

Some researchers see this role of knowledge systems as models of human reasoning 
less as part of the field. They distance the field of knowledge engineering from the 
encompassing field of artificial intelligence, e.g. Stefik (1995). This seems to become 
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somewhat of a tradition for fields of study originating in AI to dissociate themselves 
from their roots. This also finds its resonance in one of the definitions of AI: 
�Artificial Intelligence is the study of those things humans can, but computers cannot 
do (yet).� In other words, if a computer can do it, it is not intelligent behaviour. For 
example, chess now no longer requires intelligence, just a powerful enough calculator. 
Therefore, if a difficult problem has a (partial) solution, it is not AI. Still AI can gain 
valuable knowledge from knowledge engineering research. 

Knowledge engineering research can prove to be an excellent example of the needs of 
the practical engineering aspects and the forward oriented nature of scientific research 
meeting in the middle. To further knowledge engineering and AI both in terms of 
applications and science, there is a definite need to translate what is possible now into 
useful solutions for corporations and individuals today.  

1.3 Research Goal 
The practical objective for this thesis is to address the bottom-line problem. From that 
point of view, the question is simply: what kind of changes can be introduced to 
improve and clarify benefits, as well as reduce cost and risk of knowledge system 
development? The answer to this question can remain simple, limited to treating these 
symptoms of underlying problems. These solutions will however be limited in effect, 
if not based on understanding of these problems. 

Therefore, to be able to deal with the bottom-line problem, its root causes must be 
addressed. The problems in knowledge engineering were described as: 

• The knowledge acquisition and maintenance problem  
• The gap problem  
• The brittleness problem 
• The complexity problem 

These are seen as the main culprits in the respect of cost, risk and lack of benefits, as 
well as lack of clarity as to the benefits. The scientific objective is therefore to explain 
these problems and devise solutions to them leading the questions: what causes each 
of these problems, and what can be done to alleviate or remove these problems? 

These problems are not new or unknown. In fact, they have been present in one form 
or another in knowledge engineering from the beginning. Current approaches for 
dealing with the problems are inspired by an engineering metaphor. They aim to 
address the symptoms of these core problems by methodological methods. With 
added control and decomposition the cost and risk are reigned in and made 
manageable. While these approaches have been able to reduce the effects of the 
problems to an extent, the problems remain to pose a threat to knowledge engineering.  

The alternative approach to address each of these problems is to solve or alleviate 
each of them individually. To take but one example, reuse of knowledge is perceived 
as a possible solution to the knowledge acquisition and maintenance problem. The 
idea is that removing one of these problems is responsible for a certain part of the 
bottom-line situation. A successful solution should have a partial effect on the 
bottom-line. The practical success of these approaches is limited.  

A possible explanation for the limited success of both the symptom-directed and 
problem-directed approaches is that there is a further problem beyond the four root 
problems. Without that in mind, and without having solutions to the individual 
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problems acting in concert, current scientific approaches are merely addressing 
second order symptoms.  

This hypothesises a problem that is related to the manner in which knowledge, 
knowledge systems and knowledge engineering are perceived and acted upon under 
the engineering metaphor. Behind the roles of people, the approach to management of 
projects, the views of the products, the process that is employed to tie these together, 
and the tools that are used to support all of these exists a world of assumptions and 
preconceptions. This sets the stage for a singular perspective shared by the vast 
majority of professionals engaged in the research and development aspects of 
knowledge engineering. This sees a knowledge system as a final product of a 
grounded, principled process performed by professionals, using tools made for these 
professionals. The ingrained nature of this metaphor probably even means that any 
mention of the adverse effects of engineering as the backbone of knowledge system 
development will most likely be met with instant disbelief.  

The direction that this research has examined these practical and scientific problems 
has consequently been more global than these individual problems or their symptoms. 
The causes are searched for in current assumptions and approaches stemming from 
preconceptions present in this engineering metaphor underlying knowledge 
engineering. The research in this thesis embraces the philosophy that knowledge 
systems are open-ended, dynamic artefacts that must evolve in response to their 
environment. The direction that the global solution is looked for is to organise 
knowledge engineering around scientific metaphor, as an insight-based learning 
process.  

The scientific metaphor sees the development of a knowledge system as a continuous 
process of insight, change, and application leading to further insights. It will serve as 
the basis for an approach for the development of knowledge systems called 
continuous knowledge engineering (CKE). The goal for this thesis is to examine the 
ability to apply that approach as a continuous, learning approach to knowledge 
engineering and determine whether this approach constitutes a solution for the main 
scientific problems as well as the practical bottom-line problem. The research in this 
thesis therefore aims to address the problems both from a practical and scientific 
perspective. 

The alternative scientific metaphor that is used will change the view taken on these 
problems and in directing the search for a solution based on these explanations. The 
areas for which adaptations are sought for are in: 

• People: the roles that people play,  
• Project: the view of projects that exists,  
• Product: the product that is the result of the activity,  
• Process: the kinds of processes used,  
• Tools: the tools employed in the development itself.  

It is not the intent to excommunicate all approaches and techniques used within the 
engineering metaphor. A synthesis of these elements with new approaches is used to 
compose an alternative approach to knowledge engineering in its classic sense. Both 
aspects of the development method and the evaluation of different features possessed 
by knowledge system development tooling will be prominent aspects of the research 
shown in this thesis. 
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1.4 Research Program 
This section describes the organisation of the research activities. As an abstraction of 
the activities performed, it aims to add clarity and structure to the portrayal of the 
research.  

1.4.1  An Experimental Scientific Program 
Human knowledge grows through the problems experienced by mankind and the 
attempts to solve them. The explanations for these problems allow understanding of 
the world surrounding us and guide the search for novel solutions. Realising these 
solutions and verifying the results gives better tools. Furthermore, it corroborates the 
explanations that were used. With increased structure and transparency, the 
knowledge to be extracted can be more easily found and verified.  

Theoretical steps: 
• Identify the problem. 

• Design a method for solving it. 

Engineering steps: 
• Implement the method in a computer program. 

• Demonstrate the power of the program (and thus of the method). 

Analytical steps: 
• Analyse data collected in demonstrations. 

• Generalize the results of the analysis. 

Figure 1-1 An Experimental Scientific Program (Buchanon 1989) 
For that purpose, an experimental research program was explicitly used to improve 
the quality of the research in a practical setting. Beyond merely structuring the task at 
hand, the adherence to such a program is considered to make the results and the 
manner in which they were created more transparent and easier to understand. Such 
an experimental scientific program was proposed by Buchanon (1989), shown in the 
above Figure 1-1. Combining theory, engineering, and analysis this research attempt 
to make a solid contribution to the knowledge of knowledge engineering. This 
program is not unlike that of earlier proposals from Popper, Kuhn and Lakatos, but is 
a derivative more suited to problem solving. 

However, it must also be stressed that the program is a framework for an iterative 
approach. This is a first step towards an alternative way of developing knowledge 
systems. No purely theoretical advances are envisioned, but rather an attempt to 
develop a viable approach to knowledge engineering with a different perspective in 
mind.  

1.4.2  Theoretical Steps 
The first part of the research will concern itself with the theory and practice of 
knowledge engineering, to identify the problems more clearly and come to an 
explanation of those problems. The basic problems that will be examined are the four 
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root problems: the knowledge acquisition and maintenance problem, the gap problem, 
the brittleness problem and the complexity problem.  

The clarification of the problems and the determination of their causes is performed 
based on the examination of the assumptions underlying the field of knowledge 
engineering. In this examination, different aspects of knowledge engineering are 
discussed. The first subject is the cognitive model that is used to link knowledge 
systems to general intelligent behaviour. This is followed by a concise account of 
their history as well as their basic architecture. Another subject that is examined is the 
methods of knowledge representation that are used. Finally, the way that knowledge 
systems are developed is considered. For each of these areas, some attention is given 
to alternative approaches that exist in each of the examined areas.  

This identifies an underlying metaphor at work that sees a knowledge system as an 
artefact that like any other can be designed, implemented, deployed and maintained. It 
is the assumptions that follow from this metaphor to describe, perform and improve 
knowledge engineering that are seen as the actual cause of the problems.  

Based on the explanation a solution direction is proposed in the form of an alternative 
metaphor for knowledge engineering that seeks to adapt the current approaches to a 
more continuous form that is directed as a process of constant insight development 
and knowledge acquisition. This makes use of many of the features of the alternative 
views that exist in each of the described areas. 

To enable assessment of the quality of the realisation of this solution an evaluation 
program is devised to allow the analysis of the proposed solution. These criteria seek 
to reveal whether the proposed effects do indeed take place. Furthermore, they aim to 
differentiate the current metaphor from the alternate metaphor proposed in this thesis.  

1.4.3  Engineering Steps 
The engineering steps aim to implement and demonstrate the proposed solution. Such 
an implementation aims to show at the very least an existence proof that a realisation 
is possible. In addition, it makes it possible to carry out demonstrations of the 
implementation in experiments, applications and case-studies. Demonstrations can 
take many forms and can provide different levels of support for claims that are made 
about the method. The most elementary question to be answered is whether the 
proposed solution works at all. Another question is the scope of problems for which it 
presents a workable solution.  

The implementation in this case means developing method and tools to realise the 
requirements set out in the theoretical phase. There are many different ways to 
implement these requirements and create an implementation. In the course of this 
thesis, the implementation of two knowledge modelling tools will be shown. Each is 
based on a different philosophy, and thereby implements a different subset of the total 
requirements.  

The first tool, the Knowledge Base Editor (KBE), is simplistic in nature, focussing on 
visual knowledge representations. The second one named Intelligent Objects (IO) 
expands the accomplishments of the first tool and introduces some more advanced 
concepts, such as object orientation. This allows us to answers questions on which 
features support which part of the continuous knowledge engineering approach. 

Many researchers do not report on early implementations that failed, or previous 
versions of developed tool and what is left unrecorded is doomed to be repeated. 
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Comparing such pairs of tools is made extra difficult because of �our present inability 
to sort out essential from non-essential attributes� (Buchanon 1989). It is tedious to 
collect data and it is not obvious what is worth measuring.  

To be able to compare the two tools the demonstrations also needs to show which 
features of these tools beget the benefits in combination with different realisations of 
the method get what results and come to some general conclusions about this. Pairs of 
implementations of the same program of requirements can provide interesting data for 
comparisons.  

Data collection can be carried out by active experimentation or by passive 
observation, or by variations on either. The experimental nature of knowledge 
engineering is made more difficult by it being near impossible to perform controlled 
experiments (cf. (Lethbridge 1998, 1994)). It is hard to create similar experiments as 
the field of application and the skill levels of the participants is an important factor in 
the end result. The results of such controlled experiments therefore must be viewed 
with a critical eye. To eliminate these influences one would need great numbers of 
participants and a great number of projects to get the confidence levels needed. This is 
in most cases not a realistic option. 

Because of this, but in majority due to the practical setting of the research it was not 
possible to organise case studies that were specifically geared towards the evaluation 
of the notions in this thesis. As this was anticipated, an approach was chosen where a 
number of candidate applications could be used to demonstrate different aspects of the 
tools and the approach. The number of projects so performed and analysed is 
therefore greater than would have been the case when the selection process was more 
directed. Five distinct knowledge systems that were developed at TNO realised with 
the tools are described in this thesis. These are examined as demonstrations of both 
tools and method. Each shows a different configuration of methods used incorporating 
different aspects of the continuous knowledge engineering approach, and different 
ways of employing the tools in the realisation of the knowledge systems. These case 
studies were examined through passive observation, which was the only option in this 
environment.  

1.4.4  Analytical Steps 
The analytical steps need to evaluate the cases and attempt to generalize the results of 
the evaluation. The result of the analytical steps should be some answers to the 
questions that were posed in this thesis, but could also be new problems for the 
subsequence theoretical or engineering steps. This is the goal for this research: to 
complete at least one such cycle and come back to the origin. The aim is to take the 
first steps toward continuous knowledge engineering. 

Therefore, one of the questions to which an answer is sought is whether the notions 
proposed in this thesis can work at all, in other words, can its base principles be 
realized. By examining the two tools, we can gain more insight in the factors that 
determine success and get more data as to the ability to realise each of these 
principles. The second question is whether it is a viable approach, that can be used to 
develop knowledge systems practically. The applications made using the two tools 
give us more insight into the practical ability to create knowledge systems. Finally, 
what is the scope of problems on which it can be used and what aspects of a problem 
determine what the benefits of employing continuous knowledge engineering are. Are 
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there limitations to the benefits and what factors determine these limitations, in other 
words, what benefits are realised in what circumstances. 

1.4.5  On Science, Practice and Pragmatism 
Considering the steps that were discussed just now, commercially speaking a 
successful implementation of the demonstrations in terms of benefits, cost and risk 
would suffice. Scientifically speaking one would like to complete all six steps to make 
advances in the underlying understanding. Given the practical context of the research 
then the latter steps are the hardest to execute. Partially this is due to the difficulty 
with which knowledge systems can be developed under controlled conditions, 
mentioned earlier. However, much is also due to the lack of control that can be 
exerted when projects� main goal is a practical one.  

The projects used as case studies were selected on the basis of pragmatism. This 
means that they were used when it was both economically and practically possible, 
more than whether the project posed important scientific questions. The cases are as 
inclusive as possible and are quite representative of the work performed at the 
Knowledge Based Systems Department.  

While the practical aspects can be seen as a weakness, it is also perceived as a 
strength. In keeping with the program described by Rodney Brooks (1991, pg. 139): 
�We must incrementally build up the capabilities of intelligent systems, having 
complete systems at each step of the way and thus automatically ensure that the pieces 
and their interfaces are valid. At each step we should build complete intelligent 
systems that we let loose in the real world with real sensing and real action. Anything 
less provides a candidate with which we can delude ourselves.�  

It is the contention of this thesis that the core of this program for researching and 
developing intelligent systems extends to developing knowledge systems and applies 
just as well to research into knowledge system development. If it is important to 
position the results of research into practice, why not do so continually. And, if the 
beginning is so important, then why not begin all the time. 

1.5 Thesis Overview 
This thesis describes research into the knowledge engineering and knowledge systems 
development. The chapters follow the description of the research program presented 
earlier: 

Chapter 2 reviews knowledge system background, current development methods 
and knowledge representation techniques. Furthermore, it discusses the main 
problems in knowledge engineering.  

Chapter 3 describes an alternative approach to knowledge engineering, called 
continuous knowledge engineering, and formulates a series of requirements for 
tools to support the approach. In addition, an evaluation program is defined. 

Chapter 4 presents the KBE as a knowledge system development tool, aimed to 
support the CKE approach by providing an easy, visual knowledge representation 
format and support for knowledge system development 

Chapter 5 describes IO as an object oriented modelling knowledge system 
development tool. It incorporates features of the KBE, but is more advanced and 
aims to provide a more complete, vivid knowledge modelling language. 
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Chapter 6 reports on a number of real life case studies. This provides a 
demonstration of the tools and different elements of the continuous knowledge 
engineering approach.  

Chapter 7 collates and analyses the results of the case studies, by following an 
evaluation program. Consequently, a number of conclusions are reached 
concerning the effects of the method and the tools. 

Chapter 8 summarises the main conclusions of this thesis and points out some 
directions for future research. In addition, the contributions of this thesis are 
summed up.  

Parts of the research described in this thesis have previously been published in 
(Schilstra & Spronck 2000, Spronck & Schilstra 2000, Aarts et al. 1999). 
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Chapter 2 
Problems in Knowledge Engineering 

The beginning of knowledge is the 
discovery of something we do not understand.  

� Frank Herbert  

The term engineering in knowledge engineering was included to emphasize that the 
development of knowledge systems should follow established scientific method for 
the creation of complex artefacts. The treatment of different aspects of knowledge 
engineering shows an ingrained reliance on an engineering metaphor for the 
development of knowledge systems. This metaphor in its different aspects supplies 
the basic assumptions behind the current approaches. It gives rise to the current 
explanations of problems that are experienced and provides the inspiration for the 
attempts at solving these problems. This chapter examines the state-of-the-art in 
knowledge engineering and identifies its main problems from a practical and 
scientific point of view as being the result of this singular reliance on an engineering 
perspective of knowledge systems.  

The first section discusses two cognitive models that each gives a foundation of 
knowledge systems as intelligent systems. In the second section, the knowledge 
system and its fundamental components are defined, going on to provide some 
examples of knowledge systems and an overview of their advantages and 
disadvantages. The third section discusses the roles of knowledge representation and 
assesses a number of knowledge representation techniques. In the fourth section the 
approaches to developing a knowledge system are discussed, the rapid prototyping 
approaches �of old�, and the current methodological approaches. The fifth section then 
collates the main problems that face knowledge engineering and discusses their 
background and causes. Finally, in the sixth section, some conclusions are reached 
and a global solution to these problems is proposed. 

2.1 Symbolic vs. Situated Cognition 
AI is concerned with the complex behaviour of agents in non-trivial environments. An 
agent is an autonomous entity able to sense and act, and capable of making changes in 
the environment that are in some way beneficial to the agent. This definition covers 
natural agents such as humans and animals, and unnatural agents such as machinery 
and computer viruses. The study of AI is concentrated on the different cognitive 
mechanisms are considered as responsible for mapping senses onto actions. Different 
models of cognition are explored to explain for human and other intelligence. These 
models are also used as the basis of the development of intelligent technologies.  

The symbolic and situated models of cognition constitute two of the most influential 
ones. The symbolic model proposes some form of symbol processing as the basis of 
rational behaviour. The situated model perceives a more low-level mapping of inputs 
and outputs, determined by a tuning of the agent to the environment. The importance 
of the position taken on the mechanism underlying the operation of any intelligent 
system or agent is profound. It determines the basic assumptions of any approach to 
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create an intelligent system, and thereby structures the methods of realising such 
system, in a sound and practical way. 

2.1.1  Symbolic Cognition 
The symbolic model of cognition sees an explicit representation of knowledge as the 
basis of the mechanisms for choosing the best action. For this it uses the principle of 
rationality (Newell 1982): �If an agent has knowledge that one of its actions will lead 
to one of its goals, then the agent will select that action�. This is also known as the 
Maximum Rationality Hypothesis. Simply stated, the symbolic model of cognition is 
based on a view of the mechanism as a rational one, with rational behaviour as the 
ability to use sensory information and knowledge to produce actions beneficial to an 
agent in a goal-directed way.  

In this view, knowledge is the medium by which agents can determine their next 
action. It feeds searching for the best action by telling the mechanism which action is 
best, rather than having to search for an action. This knowledge principle can be 
likened to compiled thought as it negates the need to think (search) about such a 
choice, when the best choice is �known�, also known as �knowledge is power�. 

Stefik defines knowledge as �the codified experience of an agent� (Stefik 1995). This 
statement implicitly states that knowledge is acquired through learning. This 
emphasises the importance of the activity that involves the knowledge and leads to 
new knowledge. In addition, the term codified indicates that there is some medium 
holding the knowledge in some form or representation. On the other hand, it does not 
say that something will be using the knowledge. It is knowledge by virtue of its 
encoding and its basis in experience. 

Knowledge Level 

Figure 2-1 Levels of Description of Intelligent Systems 
To clarify the distinction between rational behaviour and the representational issues 
Newell proposed a new and distinct computer systems level which he called the 
knowledge level (Newell 1982). An agent is said to be a knowledge level system when 
it rationally brings to bear all its knowledge onto every problem it attempts to solve. 
Thus, knowledge is the medium of transaction at the knowledge level and the 
behavioural law is the principle of maximum rationality.  

Humans and other systems embedded in the real physical world can only attain 
bounded rationality. Bounded rationality means as rational as possible, taking into 
account constraints such as limitations in time and resources, but also in the inherent 
uncertainty and incompleteness of the available sensory information. There are 
therefore differences between a pure knowledge level system and a human that give 
telltale signs of the underlying human cognitive machine. 

Knowledge Level

Symbol Level

Physical Level
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At the knowledge level, the behaviour of a rationally acting agent can be determined 
by examining the knowledge that an agent has, without regard to the particular 
representation of that knowledge or the implementation issues of a mechanism that 
employs this knowledge. In other words, an intentional agent�s �behaviour may be 
predicted by the method of attributing beliefs, designs and rational acumen.� (Dennett 
1987). 

Symbol Level 
The symbol level provides an implementation for a knowledge level system. At the 
knowledge level, there is no information or assertion about what kind of symbol 
system must support it. The implicit assumption is that a knowledge level system can 
be realised by many different kinds of symbol system.  

A symbol is a representation of an entity or concept in the environment of the agent. A 
constellation of symbols, or symbol patterns can be combined to create a model of the 
world. A model is seen in this view as reconstruction of a reality from a specific 
perspective that contains the relevant issues for that purpose. It is akin to a scientific 
theory or mathematical model. By manipulating the symbols in the model in 
accordance with laid out rules, additional information can be derived of the model, 
and thereby of the environment, without the need to sense. This makes it possible for 
a symbol system to predict the future if a certain action would be undertaken or to 
look back into the past. As long as current information and the rules used are correct, 
this should hold true. 

This resounds in what is undoubtedly the hallmark of good old-fashioned AI 
(GOFAI), the Physical Symbol System Hypothesis formulated by Newell and Simon 
(1976). This hypothesis states that: �A physical symbol system has the sufficient and 
necessary requirements for rational behaviour.� It asserts that rational behaviour is 
achieved through:  

1. symbol patterns to represent significant parts of the problem domain,  
2. operations on these patterns to generate potential solutions, and 
3. search to select a solution from the possibilities.  

In other words, this hypothesis states that some form of physical symbol manipulation 
can be discerned in all rational systems, and if it cannot be discerned then the system 
is not a rational system. The physical symbol system hypothesis restates the earlier 
relation between knowledge and symbol level in a more strict way. 

The physical symbol system hypothesis also makes clear that any system that can 
implement the right symbol patterns is capable of rational behaviour. Computers are 
capable of implementing any effectively described symbolic process. The transistors 
and electronics circuits act as the physical level, implementing the symbol level 
within a computer. The development of intelligent systems based on this hypothesis 
involves a knowledge level model translated into a symbol level model on a 
computer. Therefore, properly programmed computers are capable of achieving 
intelligence. This hypothesis is a theory of cognition that explains the basic 
mechanism of intelligent behaviour and which makes an intimate link between 
cognition and a Turing machine as a symbol pattern manipulation engine. No small 
wonder that this hypothesis has been the mould for many AI researcher in search for 
intelligence, and is likened to absolute truth by some.  
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In humans, neurons are apparently capable of acting as the physical level for a symbol 
level system, in a way as yet unknown to us. The knowledge level of the human is the 
ability to work in rational ways, however bounded. This view emphasises human 
logical and analytical capabilities. In fact, it the symbolic theory of cognition �models� 
humans almost exclusively as rational beings, marking other attributes as 
implementation issues or irrelevant. 

Role in Knowledge Systems 
This philosophy of intelligence and rational behaviour underlies the majority of the 
research into knowledge systems and many other types of intelligent systems. These 
systems embody the symbolic theory of human cognition. Many successful and 
practical systems have been created in this way, which is considered evidence of the 
veracity of the theory.  

Knowledge in the systems originates in experience and is either �acquired from 
external sources of expertise or learnt through problem solving� (Motta 1999). The 
question here is whether the first form is not seen to imply learning. This perhaps is 
what is sometimes vexing about this symbolic theory of cognition: it says nothing 
whatsoever about the way in which the symbols get into the system, or how these 
symbol patterns may change over time. There seems to be no need for learning from 
experience, as alluded to by Stefik. The assumption is that the system performs 
intelligently in an objective, time-independent way. If it is intelligent today implies it 
will be intelligent tomorrow.  

There is also a tendency to view these systems from an almost mathematical 
viewpoint, where they operate based on a form of logic and can be proved to be 
sound, complete and tractable (Nilsson 1998). This is considered an essential and 
useful aspect of knowledge systems. This is strengthened by the fact that the 
knowledge in the majority of knowledge systems concerns mental tasks, such as law, 
medicine, engineering, etc. The work in many of these fields can be seen as either 
synthesis or analysis (Clancey 1985). These are overall deductive, model-based tasks. 
In these tasks, the link to reality is relatively tentative, with abstract sensory 
information (e.g. light-on) and abstract actions (turn-light-off). This fits 
well with the chosen application fields, and allows us to forget these peripheral issues 
such are real sensors and actuators. The assumption is that these could be added later.  

2.1.2  Situated Cognition  

Figure 2-2 Sussman�s Anomaly 
Many AI approaches have been tested on so-called �toy domains�. A toy domain is a 
simple environment for which certain basic problems could be formulated to be 
solved by a system. An example of a toy domain is the Blocks World, stacking block 
on top of one another. Sussman�s Anomaly characterises a specific problem of goal 
interaction (Sussman 1975). To reach the end-goal, the action that immediately 
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realises one of the goals On(B, C) must not be chosen (see Figure 2-2). The running 
assumption was that if one could create a system that could solve an abstract version 
of some problem in an artificial world, that solution would translate and scale to a real 
world solution. Of course, as can now be safely said with perfect hindsight, the story 
is more complicated than that (Minsky 1988). The term toy domain since has been 
used to deride a certain application area as too simple to contain a relation to the real 
world. For example, scale Sussman�s Anomaly to a robot driving a forklift truck and 
see what the real problems then would be. 

From the problems with translating solutions from toy domains to the real-world 
originate AI approaches employing the situated theory of cognition. Situated 
cognition emphasizes the situation or context of the agent as determining much of the 
appropriateness of behaviour and determining the beneficial nature of action, where 
the symbolic theory of cognition attempts to abstract away from. Context refers to the 
context and environment, the history, and all other physical aspects of the perception, 
mental state, and behaviour of an agent. This is analogous to the view of Kuhn (1962), 
who argues that scientists� experimental observations presuppose their tacit ability to 
use their experimental equipment and to apply their frameworks of hypotheses and 
theory. The philosophical foundations of situated cognition theory are said to be laid 
out by Heidegger (1927), the first to point out the role of tacit pre-understanding and 
to elaborate its implications. 

Situated cognition redefines knowledge as the ability to behave interactively with the 
environment. Within this framework, knowledge is no longer seen as the sum of all 
the concepts and relationships within the head. The knowledge can be taken out of the 
context, but the context cannot be taken out of the knowledge. To counter some of the 
naïve interpretations, it is not about the environment enabling the agent to act 
intelligent nor is it about the world containing knowledge outside of the agent like 
words on a sign. It is also not about a large body of common-sense knowledge that 
must be present and shared.  

Situated cognition offers a different perspective on cognition. It sees the mechanism 
that any agent uses to determine it actions as specialised in the shape and form of the 
agent and in the specifics of the environment that it inhabits. This context includes all 
the real senses and actuators involved, and even the activations of the brain that could 
be only in part due to the perception itself, for example memory and emotive states. 
This takes away from the mental aspects of cognition, as the �implementation� details 
of the activity are an integral part of the experience. In turn, this means that the 
peripheral issues cannot be forgotten but are essential. 

Every human thought and action is adapted to the environment in which it is applied: 
�[W]hat people perceive, how they conceive of their activity, and what they physically 
do develop together� (Clancey 1999). Situated cognition sees knowledge as linked to 
the context in which it is acquired and applied: �Human knowledge development as a 
means of coordinating activity within activity itself.� Even using knowledge, or 
thinking about knowledge or modelling knowledge changes the knowledge. The very 
act of creating and using a knowledge model leads people to reinterpret what they 
mean and to adapt the ideas to new situations. In some sense �every action is 
automatically an inductive, adjusted process� (Clancey 1987, pg. 238).  

The neural structures and processes that coordinate perception and action are created 
during activity, not retrieved. Neural organizations arise in the course of activity, they 
are always new, and they are not retrieved from storage. According to situated 
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cognition, concepts, procedures, etc. are not neutralized, abstracted, de-contextualised 
pieces of symbolic information, retained in ones head and retrieved when needed.  

For a knowledge system, a consequence is that knowledge loses its eternal quality. 
The knowledge that is developed and used is intrinsically woven with the social, 
cultural and material context in which it is employed and learnt. As the scientist finds 
the world changed by starting to measure, so the knowledge engineer can find the 
knowledge changes because a knowledge system is developed. This entails that 
knowledge is by nature and origin fluid and experiential, and that it can retain its 
quality only by continuous adaptation through application in the environment.  

This resounds in the Situated Cognition Premise that �[H]uman cognition cannot be 
accurately modelled by context independent assertions�. Situated cognition (SC) 
claims that knowledge is context-dependent and that symbolic descriptions elicited 
prior to direct experience are less important than functional units developed via direct 
experience with the current problem. Proponents of situated cognition argue widely 
different views that can be roughly divided in two camps according to (Menzies 
1998): Weak Situated Cognition and Strong Situated Cognition. 

Strong Situated Cognition states that �since the influence of the environment is so 
great, we must use pure reactive systems that interact directly with the environment 
without reflecting over some symbolic descriptions�. This strong situated cognition 
position would seem to state that the relationship to the environment or context is so 
strong as to make it impossible or very difficult to use any symbolic processes. 
Explicit symbolic thought processes in themselves constitute a reaction to an internal 
subsymbolic context. From this stance come approaches to the development of 
intelligent systems grounded in their environment that do not employ any 
representation or symbolic reasoning. This excludes knowledge systems as 
resembling their current form.  

This form of situated cognition therefore states that symbolic approaches cannot lead 
to cognitive models, and denies the physical symbol hypothesis. Proponents of the 
strong approach include Rodney Brooks (1991a, 1991b) and Drew McDermott 
(1987). A similar attitude is found in the critique of AI made by Dreyfuss (1979) and 
Searle (1980). They contend that a computer system can never be intelligent like a 
human, because they do not share the same context.  

A compromise position is formulated as Weak Situated Cognition:�[t]he inferences of 
a symbolic model interacting with its environment are heavily constrained/ 
controlled/changed by the inputs from that environment. That is, using knowledge in a 
particular context will significantly change that knowledge.� 

This leads to a view of knowledge as a connected representation of solving problems, 
as they are experienced in a certain context and forms a consistent whole within this 
context. However, the knowledge changes when it is examined or applied. In other 
words, knowledge modelling is limited and knowledge models are inaccurate 
renditions of a temporary state of mind, which fluctuates even more when examined. 
Evidence of this would be that knowledge systems on static domains would still be 
seen to change, as they have been reported to do (Menzies 1998, Compton et al. 1992, 
Compton & Jansen 1990).  

The situated premise states that human knowledge must take into account the context 
in which it originates. It says that all knowledge is context-specific, i.e. a rule is as 
good as the situations it has been applied to. The rule only contains knowledge as far 
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as no exceptions to it have been found, and (unexpressed) assumptions have not been 
falsified. It therefore does not propose that maintenance is an extra problem to be 
dealt with, but a fundamental issue. It is �an instance of the fundamentally fluid nature 
of knowledge� (Compton & Jansen 1990). It shows the direct influence of activity on 
the development of knowledge and how using knowledge changes knowledge. It 
illustrates that modelling knowledge requires constant synchronisation with 
experiences from applications. 

Marvin Minsky has in a way defended the weak situated premise. He sees symbolness 
as a matter of degree. This can be taken to mean that symbols are a useful abstraction, 
and that neither is completely wrong or right. Different tools may be required on 
different problems. and where one sees a forest, others see trees. In many cases this 
means that for any connectionist system, an equivalent symbol system can be 
constructed which is a satisfactory model of an entity�s behaviour (Minsky 1990, 
1988). This satisfies the physical symbol system hypothesis as an analytical 
perspective for an outside observer. Furthermore, it leaves the door open for 
connectionist, situated and other representation-less or subsymbolic approaches. 

Role in Knowledge Systems 
This philosophy for the mechanism of the agent is not used in many systems beyond 
those that employ inductive techniques and automated learning. A good example of 
these systems are Brooks� subsumption hierarchies. In these systems a behaviour, say 
avoidance, is hardwired into an agent. After trying it out in a specific environment, 
other behaviours are grafted on top of the existing ones to modify and extend the 
existing behaviour. One of these behaviours cannot be taken from the agent and 
simply placed in another body, they are tailored to the one agent. Because these 
behaviours can also change the environment, certainly when populated by several 
such agents, the emergence of benefits from specific behaviour can also be due to the 
agent emergence and co-evolution with their environment.  

Situated cognition is a challenge to current state-of-the-art knowledge system 
development strategies based on the physical symbol hypothesis. The weak situated 
cognition position indicates an alternate approaches for knowledge system 
development. Based on its assumptions, design and knowledge modelling becomes 
less important, because the situation changes as a rule. Grounded activity must lead to 
new knowledge and adaptation in existing knowledge. The context that the knowledge 
system inhabits leads to specialised knowledge models specific to that situation.  

For example, a knowledge engineering methodology that acknowledges situated 
cognition must offer details about creating and changing a knowledge base. A review 
of the knowledge engineering literature suggests that most of the effort is in 
knowledge analysis and not knowledge maintenance (exceptions: XCON (Bachant & 
McDermott 1984) and Garvan ES-1 (Compton & Jansen 1990)). In the remainder of 
this chapter, the state-of-the-art in knowledge engineering is examined with this 
scientific controversy in mind and with a view towards making knowledge 
engineering a discipline directed towards learning and change. 

2.1.3  Conclusions 
The two different cognitive models presented above roughly conform to two attitudes 
in computer science. The symbolic approach is akin to �inventionism� that argues that 
all information is interrelated and that any new information must be reconciled with 
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the existing: information has eternal validity. The situated approach has �adaptivistic� 
tendencies and shares the attitude of full interrelation, but the latter recognizes that 
there is a growth process: new information may cause old information to be replaced 
(Jongeneel 1996). 

Without siding with either camp, it is clear that considering the development of 
knowledge in humans, to assume that knowledge is static in knowledge systems is an 
indefensible position. When accepting the weak situated cognition, knowledge 
engineering must move away from design-focused approaches towards maintenance-
focused approaches. It implicitly states that many real world domains may only be 
understood through exploratory methodologies. It is possible to adopt weak situated 
cognition and retain the physical symbol system hypothesis, but only if it can be 
demonstrated that the knowledge engineering approach can manage changes to our 
descriptions of knowledge with ease.  

The controversy makes clear that the assumptions derived from the symbolic model of 
cognition should at least be questioned, and productive alternatives should be 
examined. The symbolic cognitive model is the foundation of many of the features of 
knowledge systems and the process of their development. This discussion has shown 
there to be room for other perspectives.  

2.2 What is a Knowledge System? 
This section examines in more detail what a knowledge system is. In part to provide 
some consistent terminology and definitions for later discussions but also to show the 
way that a knowledge system already incorporates a basic strategy to deal with 
changing knowledge. Furthermore, some examples of historical systems are provided 
and the advantages and disadvantages of knowledge systems are discussed. 

2.2.1  Definition 
A knowledge system was defined earlier on page 1 as �a software system that makes a 
body of knowledge operational to solve problems using a separate representation of 
knowledge that can be employed dynamically�. As this definition differs in some 
respects to other definitions, some explanation is given here.  

To split the definition into its constituent parts, a knowledge system: 

• � is a software system (class), 

• � makes a body of knowledge operational to solve problems (function), 

• � has a separate representation of knowledge (structure), 

• � uses represented knowledge dynamically (process). 
The first part of the definition states that a knowledge system is a software system. It 
is a set of software components developed to perform a certain task or function, using 
a computer of some kind. This part of the definition places knowledge systems within 
the category of software systems.  

The second part of the definition says the knowledge system makes a body of 
knowledge to solve problems operational. In this context, operational means that it 
makes the knowledge able to be put it to practice immediately. No effort to absorb or 
integrate the knowledge on the part of the users is expected. Furthermore, the body of 
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knowledge is a consistent whole, specific to one or more related domains or tasks. It 
is not a collection of isolated elements. In this way, the knowledge is embodied by the 
system in such a way that it can be employed immediately by the system to solve a 
problem. This is the function of a knowledge system.  

In the third part of the definition a structural difference is mentioned. As a software 
system the fact the knowledge is separated from the system proper sets knowledge 
systems apart. This does not mean other systems are not based on knowledge or have 
knowledge in them, but these have the knowledge enmeshed in different parts of the 
system. According to software = procedures + data, this would mean that non-
knowledge systems have the knowledge in the procedures rather than the data. For 
knowledge systems the equation is different, knowledge system = inference engine + 
knowledge model + data. This describes the structure of a knowledge system. 

Finally, the fourth part mentions a more important aspect of the separation of the 
knowledge, namely the ability employ the knowledge dynamically. The knowledge is 
represented as separate parts that can be used in many different combinations. In most 
cases, these parts have triggers that assert whether the knowledge applies in the 
current situation. This means that the knowledge can be employed specific to the 
situation. The use of knowledge emerges from the description of the problem 
situations, which creates the ability to work with a great deal of flexibility. It allows a 
knowledge system to approach a broad category of problems, without each of the 
problems being foreseen or enumerated in advance. This is perhaps the most 
important aspect of the knowledge system�s ability to solve problems. While normal 
software is equipped with procedures and other deterministic means of problem 
solving, a knowledge system adjusts itself to the problem situation based on the 
knowledge it contains. In other words, �expert systems have capabilities and potential 
beyond those of conventional programs� (Crofts et al. 1989). 

What the definition does not mention is the human aspect of a knowledge system nor 
does the definition use any anthropomorphic words attached to the processing of the 
knowledge. A knowledge system can be defined as �a computer system that emulates 
the decision-making ability of a human� (Giarratano & Riley 1989) to �... solve 
problems that are difficult enough to require significant human expertise for their 
solution� (Feigenbaum 1982). The human component is missing in the definition 
presented in this thesis not because it is irrelevant or otherwise negligible. The origin 
of the knowledge in an knowledge system is in the overall majority directly or 
indirectly human. Exceptions to this are few and far between, but advances in 
automated learning begin to show what arguably is machine knowledge. This 
however is not of interest to the question whether or not a system is a the knowledge 
system. If the knowledge derive from a non-human source, it would still be a 
knowledge system. The ability to understand the knowledge as it is represented is 
important (e.g. the Human Frame as suggested by van den Herik (1988)).  

2.2.2  Architecture 
In this section the architecture of the knowledge system is described. As the 
architecture is similar yet different for many researchers, this description attempts to 
sketch the default architecture while introducing some consistency in terminology. 
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Figure 2-3 Knowledge System Architecture 
The figure above shows the basic knowledge system architecture. The knowledge 
system is divided into a knowledge component (the dark grey section) and its 
visualisation through the consultation interface on the right. The knowledge 
component is an abstract software component that performs computations but not 
necessarily has a visualisation. It holds the knowledge model, case model and 
inference mechanism.  

The consultation visualisation provides the user with the functions of the knowledge 
system. On the left side the modeller using an editor interface makes changes to the 
knowledge component. This is the tooling side, in this thesis termed a knowledge 
system development environment. This may contain tools to develop consultation 
interfaces as well. In a knowledge system there often is a distinction between the 
representation and visualisation of the knowledge. The visualisation through the 
consultation interface can also allow another software system to employing the 
knowledge one of its components. 

The most notable feature of the architecture of a knowledge system is the separation 
between the domain-independent inference mechanism and domain-dependent 
knowledge and case model. This is one of its defining features (Motta 1999). This 
enables the system to be changed by making adjustments in the reasoning knowledge 
without having to modify other parts of the system. Any system that uses the 
knowledge base component, will therefore be guarded from modifications in the 
knowledge. 

Knowledge Model 
The knowledge model consists of individual quanta of knowledge that can be 
employed individually, in combination with others. It is separate from the rest of the 
systems, among other reasons because it is the part that changes most over time. The 
knowledge model contains representations of knowledge, used to assert new facts 
from the existing facts.  

if temperature > 20 then heat := off
if temperature < 10 then heat := on

Figure 2-4 Heating System Knowledge Model 
In a standard knowledge system, it contains production rules. An example is displayed 
above. It states that if the temperature in the room is higher than a threshold value, the 
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heating must be turned off. Conversely, if the temperature falls under a minimum 
threshold it must be turned back on. The model, implicitly contained in these rules, 
consists of two facts: temperature and heat. The total of the rules uses parts of the 
domain model, to define interconnections of the system.  

Inference Engine 
The inference engine applies the reasoning knowledge to the facts to assert new facts, 
towards the determination of the end-goal. The rule in the knowledge base can be 
used in two main ways. When the temperature is higher than the threshold value, the 
heating can be turned on. Alternatively, to answer the question whether the heater 
must be turned on, a check whether the temperature is actually higher than the 
threshold value is required. The first approach is called forward chaining, based on 
the information that is already present we fire those rules whose condition is satisfied. 

function Infer( Goal ): Value
if goal is asserted then
result := goal

else
begin
ruleset := find rules with goal in consequents;
for all rules in ruleset do
if all antecedents is true then

fire rule; //asserts goal
end

Figure 2-5 Backward Chaining Inference 
The second approach is called backward chaining, where a goal is attempted to be 
proven, by checking whether rules exist that assert the goal, whose condition is 
satisfied. The latter is an approach used when a user must answer questions on the 
facts used in the conditions. 

Case Model 
The case modelcontains facts that are asserted during a consultation to describe the 
current case or problem situation (Steels, 1992). A consultation is a single usage of 
the system to solve one problem situation.  

temperature : Integer
heat : Boolean

Figure 2-6 Heating System Case Model 
In many early systems, there is no explicitly modelled case model, but merely a 
storage where facts are asserted and retracted at run-time. This is why the discussions 
of the architecture does not feature as a separate part of the system, it is integrated 
into the inference mechanism. In these systems there is an implicit case model 
contained in the knowledge system, by virtue of the facts mentioned in, for example, 
the production rules in the reasoning knowledge (compare the knowledge model in 
Figure 2-4). 
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Many current systems use a more explicit model that constitutes part of the modelled 
knowledge. Knowledge of important concepts, their attributes and interrelationships 
between these concepts can hold important information. These models can be of 
different complexity. In some systems, they are as simple as a list of attribute value 
pairs as in Figure 2-6. Others have highly structured or object-oriented models 
organising concepts and their relationships. In this way, it contains knowledge about 
concepts, attributes and relationships in the domain. As the case model becomes more 
explicit and structured as well as more interlinked with the knowledge model proper, 
researchers tend to include the case model into the knowledge model. In the 
remainder of this thesis the term knowledge model will be taken to include the case 
model, and serve as synonymous for all the explicitly modelled aspects of a domain.  

An architecture for change 
The lines drawn in this design are not always as clear as all this and different authors 
use different terms. However, the different responsibilities of each of the parts are 
discernable as a separation of concerns. The break-up of a knowledge system into 
different parts shows a design meant to introduce watersheds to deal with change by 
separating the mutable parts. The first division is to separate out the knowledge per 
domain into a knowledge model, while the inference engine remains fixed. The 
second division is to allow changes in the presentation of the system without changing 
the knowledge, by splitting the knowledge system into a knowledge component and a 
visualisation. This also makes it possible to present knowledge in a different way to 
different users. This improves the ability to bridges possible gaps between the user�s 
background knowledge and the level of expertise expected in the knowledge model. 

2.2.3  A Historical Perspective 
Over time, an evolution of systems can be seen that all conform roughly to the 
description of knowledge systems given above. Some important differences between 
them do exist however. 

Early Systems 
The beginning of knowledge systems can be traced back to the beginnings of AI 
itself. In a way, the General Problem Solver (GPS) system was one of the first to treat 
logic as knowledge that could be employed to state things about the world, namely 
state facts and prove of disprove new facts (Newell & Simon 1963). It was based on 
the assumption that much of problems solving could be attacked from logic and 
automated proof from first principles. It therefore implicitly emphasized a deep 
knowledge approach, but by its knowledge representation�s limitation in representing 
different levels of knowledge, was crippled in approaching it in that way. 

One of the first systems �that employed large amounts of domain specific knowledge� 
is DENDRAL (Feigenbaum, et al. 1971, Lindsay et al. 1980) originating in the 
Stanford Heuristic Programming Project of 1965. DENDRAL (DENDRitic 
ALgorithm), is a system for predicting the structure of organic molecules given their 
chemical formulas and mass spectrogram analyses. It reportedly �surpasses all 
humans at its task and, as a consequence, caused a redefinition of the roles of humans 
and machines in chemical research� (Turban 1990). Based on the industry standard of 
the production system it encodes its knowledge as production rules.  
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Another system also quoted as one of the first expert systems, when defined as a 
system that endeavours to act at a level of competence of an expert, is MYCIN 
(Shortliffe 1976). MYCIN is a medical diagnosis program. It diagnoses diseases such 
as meningitis and makes recommendations of treatment with antibiotics, based on 
examinations of symptoms evidence, test results and knowledge of treatments. By 
combining the knowledge of several experts in the field, it attained a level of 
competence similar to that of experienced physicians (Clancey 1985). 

Based on the MYCIN system EMYCIN was extracted from the code to form an 
empty shell. The word shell denotes that the knowledge is meant to �fill� the empty 
shell. The shell contains the inference engine and an empty knowledge model. Many 
other knowledge systems have been realized using EMYCIN and it was the 
inspiration for significant number of development tools. Many of its architectural and 
conceptual contributions can still be recognized in knowledge systems today.  

First Generation 
The early systems and shells extended into what are now known as first generation 
knowledge systems. First generation systems employ shallow heuristic rules, using a 
clear distinction between the domain knowledge and a domain-independent reasoning 
procedure. For example, �If both rapid heart beat and fine finger tremor are observed 
in a patient, suspect the possibility of hypothyroidism with confidence 0.7 and 
proceed to ask for lab tests� (Shapiro 1987). This rule does not build on a complete 
causal model or different levels of reasoning, but instead uses a �rule of thumb� or 
heuristic. The heuristic is sufficient to make useful conclusions, in about the same 
manner a doctor would. The domain independent inference mechanism merely needs 
to apply such rules mechanically. It can remain oblivious to the meaning of the 
elements mentioned in the rule, such as differences between symptoms and 
hypotheses.  

The initial transfer assumption was that the experts could be asked to provide their 
heuristics which would then be transferred directly into the knowledge system. This 
transfer process assumed that the knowledge was already there and only needed to be 
collected. It turned out that the experts did not possess the rules such as those above in 
that form in their head, nor did they find it easy to formulate or formalize their 
knowledge as such. It became clear for the first time that knowledge acquisition was a 
difficult task.  

Furthermore, first generation systems ran into trouble because of their reliance on 
heuristics. The rules failed or produced inconsistent results when drastically new or 
unanticipated situations are encountered, leading to a knowledge system�s brittleness. 
In addition, they cannot explain their reasoning very well, but can only show a trace 
of their assertions. This arguably made them too weak to solve large and extended 
problems. First generation systems also suffered from problems in scaling from initial 
prototypes to actual systems, as they were hard to maintain. 

Second Generation 
From the problems experienced by the first generation, a second generation arose. 
Second generation knowledge systems  main distinguishing feature is the use of 
deeper knowledge models that utilise rich representations of the domain. They employ 
a model of their problem domain that is declarative as opposed to a procedural form 
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(van de Velde 1986)1. This means that the knowledge is approached as distinct from 
its use. The knowledge representation also distinguished between different types of 
knowledge, and makes the problem solving approach explicit.  

Consider a system like MYCIN for medical diagnosis. A first generation system only 
has a collection of undifferentiated heuristic associations that it applies to arise at a 
conclusion. A second generation system distinguishes between problems, symptoms 
and hypotheses. Its inference procedure is specialised for the task type, for example a 
cover-and-test approach, explicitly using the symptoms to determine which of the 
hypotheses are plausible, by testing each of them. Within a second-generation system 
the problem solving approach is explicit and part of the description of the knowledge. 
In first generation is has been weaved through the rules, by the influencing of the 
inference process by tweaks such as clause order, usage of resolution mechanisms, 
etc. Making the underlying model explicit enables both understanding of the model, 
as well as allowing the model to be scrutinised for correctness and completeness. This 
generation of knowledge systems led to the explicit modelling of knowledge used to 
construct comprehensible, controllable and maintainable systems. 

Attempting to by-pass the difficulties of knowledge acquisition, the second generation 
systems approach it as a modelling process. The modelling assumption asserts that the 
expert can not access all of his knowledge directly as it is hidden in his skills. This 
�hidden� knowledge has to be built up and structured during the knowledge 
acquisition phase (Studer, Benjamins & Fensel 1998).  

Because a second generation knowledge system has a deep model of knowledge it can 
also provide a better explanation of its reasoning. It can explain that its current 
question is required to prove or disprove a specific hypothesis, rather than print the 
current rule that is being processed. Furthermore, because it employs a deeper model, 
it can fall back on more general rules, whenever a situation occurs that is not within 
its scope, degrading more gracefully than failing completely.  

In current systems, a combination of shallow and deep knowledge is seen. According 
to Clancey (1985) the distinction between deep and shallow knowledge is 
unconvincing. He instead states that examination of all knowledge as a form of 
heuristic classification brings clarity and comparability of different knowledge system 
approaches.  

2.2.4  Advantages and Disadvantages 
The main goal for knowledge systems is to provide more effective and efficient use of 
knowledge in an organisation, as this is currently the base factor in determining the 
success of most companies (Schreiber et al. 1999).  

The advantages for using a knowledge system are summed up in Table 2-1. The 
benefits of a knowledge system are different per situation, but are in many cases 
derived from the advantages mentioned in the table above. The main reason to employ 
a knowledge system is because the user is not capable of performing some tasks 
without this knowledge. 

                                                 
1 Some have proposed parallel knowledge systems as the second generation of knowledge 
systems (van den Herik 1986). 
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Uniformity The knowledge system will produce the same result in the same 
situation, because it is not subject to the preconceptions and 
prejudices that humans display.  

Reproducible The knowledge systems can be reproduced easily, by making 
copies of the knowledge system or reusing the knowledge model 
in another knowledge system.  

Effectiveness Where the knowledge may have been inaccessible or scarce it 
can now be made easily accessible, and duplicated. This allows 
the same knowledge to be used more intensively. 

Consistent, 
Transparent and 
Documented 

The inferences made by the knowledge system can be 
monitored, documented and explained in terms of the 
knowledge. The decision process becomes transparent to the 
user of the system. 

Efficiency A knowledge system can increase productivity and decrease 
costs by more effective use of knowledge in an organisation, 
resulting in a more efficient business process.  

Capture Scarce 
Expertise 

The knowledge system may be a way to capture and make 
explicit valuable and scarce expertise, which could otherwise be 
lost.  

Reliability A knowledge system is more reliable than a human, as it can be 
used 24 hrs a day, needs no sleep, and never gets sick.  

Education A knowledge system and the knowledge it contains can be used 
to educate novices in the field. It can teach problem solving 
methods, and deep domain knowledge. A knowledge system 
further has a training effect on users through usage. 

Breadth The knowledge of multiple human experts can be combined to 
give a system more breadth that a single person is likely to 
achieve. 

Timeliness Knowledge can be acquired just-in-time, instead of acquired 
(through training) just-in-case. 

Completeness The system can perform large numbers of tasks completely, 
where humans must limit themselves to a small number of 
examples, or to statistical analyses. 

Quality A knowledge system can be used to consolidate limited, low 
quality knowledge and provide a vehicle for improvement and 
knowledge development. 

Table 2-1 Advantages of Knowledge Systems (based on (Turban 1990)) 
In most cases, the availability of the knowledge is the problem to be solved. Some 
experts exist that possess the knowledge, but these experts are hardly ever available. 
In a similar situation the expertise can be distributed among different experts and is 
therefore not accessible at a central location. The main problem here is not the 
complexity of the knowledge but merely the fact that some knowledge cannot be 
accessed in the support of some task. The users in this case are not experts in the task 
themselves but regularly require support from these experts. Features looked for in 
such knowledge systems are availability and reliability. In other situations a 
knowledge system may be developed because there is the need to collate, archive and 
inspect the knowledge to improve the quality of the knowledge. Features looked for in 
this type of knowledge system are consistency and quality. In either case it is not easy 
to enumerate the benefits in terms of direct financial benefits or savings. 
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The disadvantages attached to the use of a knowledge system are summed up in Table 
2-2 below. Some see far worse disadvantages and question the entire enterprise of 
developing a knowledge system. Others see it as a doomed enterprise, never leading 
to any useful results. To take but one example, the Dreyfus brothers argue that 
knowledge systems could reach competence in narrow domains but could certainly 
not reach proficiency or expertise, which requires common sense and possibly 
�holistic mental processes� (Dreyfus 1987). 

Common sense  Knowledge systems lack common sense which makes them 
vulnerable when queried outside of their narrow scope. In 
addition to a great deal of technical knowledge, human experts 
have common sense.  

Creativity  Knowledge systems lack the ability to improvise or come up with 
novel solutions. 

Learning  Human experts adapt to changes in their environments and expand 
their knowledge automatically; knowledge systems must be 
explicitly updated. Some methods to incorporate learning into 
knowledge systems exist (e.g. case based reasoning and neural 
networks). 

Sensory 
Experience  

Human experts have available to them a wide range of sensory 
experience; knowledge systems depend on symbolic input. 

Brittleness  Knowledge systems are not good at recognizing situations where 
no answer exists or where the problem is outside their area of 
expertise. 

Table 2-2 Disadvantages of Knowledge Systems 
Beyond the disadvantages mentioned, the cost and risk associated with knowledge 
systems are substantial. The cost is considerable because of the expense of the people 
involved. Both expert and knowledge engineer are expensive and the activity can be 
quite time consuming. The exploratory nature of the development means that the risk 
is great that no system will ever be produced. With unclear benefits and high cost and 
risk, the commitment from an organisation based on this kind of bottom-line is often 
ambiguous. This places the project under additional strain.  

2.3 Knowledge Representation 
Forms of knowledge representation are numerous, as many different approaches to 
represent knowledge are possible. Some of these are common to knowledge systems, 
such as procedural, logic and structured representations. Others appear predominately 
in other areas of AI, such as connectionist and case-based representations. The 
discussion in this section will start with the roles that knowledge representations play 
and should play in knowledge engineering. This is a starting point for an examination 
of knowledge representations found in knowledge systems and in other fields within 
AI. A succinct description of the representations is given, as more extended 
descriptions can found in literature. Some specific representations with features 
relevant to the research in this thesis are given some additional attention. 

2.3.1  Roles for Knowledge Representation 
Knowledge representations plays different roles in knowledge engineering and these 
roles have influenced the way that researchers and developers have addressed and 
used the different available knowledge representations. In (Davis, Shrobe & Szolovits 
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1993) five different but important roles for a knowledge representation are described. 
An additional sixth role is added as it is considered especially important in the context 
of this thesis. It is in fact an elaboration of the maintenance of knowledge systems and 
how knowledge representations support changes in the knowledge.  

• Surrogate � it is a substitute for the world, which can be used to reason about the 
world rather than acting in it, 

• Set of ontological commitments � what terms does the representation offer to 
describe the world, 

• Fragmentary theory of intelligent reasoning � it tells us how the knowledge can 
be used, i.e. what inferences are sanctioned and what inferences are 
recommended, 

• Medium for pragmatically efficient computation � besides being a 
representation of knowledge it must also serve as the basis of computation, 

• Medium for human expression � the models made in the knowledge 
representation also serve to support the discussion of the knowledge itself, 

• Medium for learning and change � the models constructed in the representation 
must be mutable/maintainable to allow for the dynamic nature of knowledge. 

Any representation of knowledge must position itself along these six dimensions, and 
make the choices that are made one way or the other explicit. 

Surrogate 
By surrogate, it is meant that the knowledge that is represented serves as a model of 
the world. Instead of acting in the real world, the model is used to make predictions 
about the possibilities to attain certain goals and examine the effect of actions in the 
real world. As a model, it is a replicate that is adequate for that purpose. In actuality, 
this is more the role that the knowledge plays, than the knowledge representation that 
enables it. Nevertheless, anything represented in a knowledge representation must 
fulfil this task.  

Set of Ontological Commitments 
As a set of ontological commitments, the knowledge representation describes the 
types of elements that can be used to create models of the world. In a rule-based 
paradigm, the world consists of facts and rules defining relationships between those 
facts. The ontological commitments therefore limit the possibilities for modelling 
certain realities. In this way they also structure the manner in which such models can 
be made. This kind of ontological commitment is present in ourselves as well. The 
choice of knowledge representation �will bias our dispositions about which objects to 
consider more or less similar� and this �affects how we apply knowledge to achieve 
goals and solve problems� (Minsky 1990). 

The ontological commitments therefore define what is recognized by the 
representation and what will be delegated to the background. With a hammer in your 
hand, you are more likely to appreciate the nail-like character of objects around you. 
Humans are predisposed to learn certain types of concepts and relationships better 
than others. For example, people are prepared to characterize colours in a certain 
ways, favouring certain break-up into predetermined categories. The cause of this lies 
in the biophysical makeup of the visual cortex and the structure of the visual brain 
centres (Wilson 1998). Minsky together with Papert calls this �prepared learning� 



2.3 Knowledge Representation 29 

  

(Minsky 1989). This probably also extends to the concept of causality. Humans 
endeavour to find the causes of things, science being the pinnacle of this endeavour. 
Sometimes this search for causes goes so far that causes are invented or irrational 
causal links are proposed leading to individual and mass superstitions. A knowledge 
representation can function as a similar bias in the model�s view of reality. 

Fragmentary Theory of Reasoning 
A knowledge representation further embodies a theory of intelligent reasoning. It 
shows the possible use of the knowledge in the form of the inferences that are 
sanctioned by the theory, or those that the knowledge representation proposes. Some 
feel that such a theory must be psychologically viable, i.e. correspond to a model of 
human reasoning and have similar traits and flaws. Others generalise from this and 
search for viable models of general intelligent or rational action, without reference to 
the human context. Representation and reasoning are intertwined; they cannot be 
understand separately. 

Medium for Pragmatically Efficient Computation 
One of the roles of a knowledge representation is the ability to execute or make 
operational models made in it. A representation must not be handicapped just for the 
sake of the speed of execution, but at the same time must not develop a representation 
that is too inefficient to compute. The critique by Davis is that the attention of 
designers of knowledge representation languages was in majority unconcerned by the 
efficiency with which calculations and inferences were performed. This is not always 
a concern in systems that aim at representing informal knowledge or knowledge in 
natural language (Lethbridge 1994). 

Medium for Human Expression 
A very important role from the perspective taken in this thesis is the ability to express 
knowledge in a representation, to communicate this knowledge with others and with 
computers. This means that a knowledge representation can support the expression of 
concepts and relationships of different categories, or how easy is it for use to �talk� or 
think in that language. Some knowledge representations exist that are not meant to be 
an expression rather a facility for storage of knowledge, in for example connectionist 
systems. It is tied in with the roles discussed before, but the �distance� between a 
knowledge representation and human conceptions of a domain is directly related to 
the understandability of given knowledge representation.  

Medium for Learning and Change 
The expressibility and understandability of a knowledge representation is very 
important in respect to the last role: the role of a knowledge representation as a 
medium for learning and its amenability to change. In part this is also where the 
support that a knowledge representation language gives to support the process of 
knowledge modelling, from inception and conceptualisation through development up 
to and including maintenance. It must therefore be a pragmatically efficient medium 
for expressing and maintaining knowledge models.  

The representation must allow the user of the representation to easily change the 
represented knowledge without incurring too great a penalty. If this does occur then 
the representation is not suitable for representing knowledge that cannot be 
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guaranteed to be correct, nor can it be used in the development of systems in 
evolutionary methodologies. 

To be able to change a knowledge representation, the represented knowledge must be 
understandable. It must support knowing what and where to change the 
representation. This is why a knowledge representation must also allow a global 
insight into its structural and specific content to those who attempts to understand and 
change it. If possible, the knowledge representation must actively support the creation 
of new knowledge by creating opportunities for the discovery of new insights.  

2.3.2  Procedural representations  
Procedural representations are not seen as a proper form of knowledge representation 
by all researchers. Some of the controversy that arose in the mid-1970s concerning 
whether knowledge is procedural or declarative is still felt (van der Velde 1986, 
Winograd 1975). Procedures contain knowledge in the form of a fixed control 
structure allowing execution of actions, making it possible to perform linear, cyclic or 
conditional actions. They represent an ossified solution such as a recipe or protocol. 
Such knowledge cannot be used dynamically, as the knowledge is compiled into a 
monolithical form. The procedure can only deal with aspects considered in the 
development of the procedure. Nevertheless, in knowledge systems procedural 
representations still have an important role to play. In approaches such as 
CommonKADS and others, they are featured as Problem Solving Methods (PSMs).  

Figure 2-7 Default Diagnosis PSM 
A PSM is a procedural form of knowledge that represents an archetypal solution to a 
specific kind of problem. For example, the PSM displayed in Figure 2-7 above is an 
inference structure for default diagnostic method (Schreiber et al. 1999, pg. 140). 
Dividing the domain into hypotheses, symptoms and tests is a perspective that can be 
used by many different diagnostic PSMs. PSMs are related to design patterns, as 
abstract solutions to a problem, without a reference to an actual domain in which it 
occurs (Gamma et al. 1994). 

By classifying a task that has to be performed by a knowledge system into one of a 
hierarchy of abstract tasks, one of the PSMs methods associated with that task can be 
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used. The main division used for these abstract tasks is synthesis/analysis. Diagnosis 
falls under the category of analysis PSMs. 

Beyond the representation of the global task that a knowledge system performs, such 
as in a PSM, a procedural representation represents tasks performed at lower level of 
detail within the knowledge model. For example, a procedure to optimise a 
combination of compounds to locate the best mixture is often more efficiently 
represented using a procedural representation. Some tasks performed by an expert are 
only known in a procedural form. 

Surrogate 
A procedural representation can make predictions about the world. It can embody a 
formula or recipe which when executed makes assumptions about the state of the 
world. As an algorithm, they are quite adept at describing behaviour of a system as a 
dynamic set of relationships between elements. The actual predictions depend on the 
quality of the total set of operations.  

Ontological Commitment 
Perceiving the world only through loops, conditionals and actions, procedural 
representations are myopic in respect to static relationships and concepts. Casting the 
world in a procedure to be followed can sometimes be the right perspective, but can 
also mean re-describing it in a form unsuitable or unnatural for the material at hand.  

Fragmentary Theory of Cognition 
Procedural representations form only a weak, partial theory of cognition, and are not 
focused on providing as a fragmentary theory of intelligent reasoning. Finite state 
machines deriving from procedures as a more general mechanism have been used for 
reactive agents however.  

Medium for Pragmatically Efficient Computation 
The efficiency of procedural representation is an important aspect to their use. 
Because the reaction in each situation is embedded and in many cases without 
requiring sensor input, it is clear which action to take.  

Medium for Human Expression 
It is quite easy to devise a procedure for a certain action, once the task is well-
understood and there have been many experiences with the task. In many cases where 
knowledge is an issue, such a procedure is not yet available. To communicate with 
procedures is possible, but often this is not sufficient, as the procedure does not have 
the rationale behind it attached to it. Humans do use procedures quite often to 
communicate knowledge however, and are quite successful with it.  

Medium for Learning and Change 
Because of their ossified nature and lack of rationale procedures are hard to learn 
from. Additionally, without proper understanding of their context and intent, they can 
be exceedingly hard to understand (McConnell 1993). When procedures require 
change, the modeller is required to re-interpret the meaning of the algorithm, and 
based on that created understanding make the changes. Procedural algorithms do not 
structure or restrict their content; therefore, only domain independent and basically 
semantic support can be given. 
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Changing and gaining insight from procedures can be quite hard because they do not 
support jumping to conclusions. They have no direct support for learning and change, 
and go on the assumption that the formalised procedure is correct. 

2.3.3  Rules 
In this category fall approaches that have a fixed procedure for deducting facts using a 
separate representation for the rules that are processed. Each of these different rule 
types has a condition and a consequence part, i.e. a trigger and an action. Rules and 
related knowledge representations are all considered to be natural, precise, flexible 
and modular. 

Logic 

human (a) → mortal (a)

human (Socrates)

∴ mortal (Socrates) 

Figure 2-8 Socrates� Mortality 
Logic is the first and foremost representation of knowledge as knowledge. From 
axioms and basic propositions, additional propositions about the world can be proven 
using the rules of deduction. It was initially thought that such logic could represent 
any and all aspects of intelligence. The GPS was the first example of a system built 
along these principles (Newell & Simon 1963). Based in essence on positivism, it was 
thought that any knowledge could be represented in some form of logic. Nilsson 
offers John McCarthy (McCarthy 1968) as the first to propose that predicate logic as a 
representation of knowledge. Languages like Lisp and Prolog are extensions of this 
frame of thought. 

Production Rules 
Production rules are a more open-ended form of rules. Initially a production rule was 
an extension of procedural representations where a condition was a trigger for some 
procedural knowledge. This only allowed use in forward chaining inference. The 
procedure could assert new facts that would lead to other production rules to be 
triggered. Eventually more strict representations became the norm, only allowing the 
action to assert new facts, which allowed backward chaining approaches.  

Special purpose extensions to these rules also exist. Two specific ones, ripple-down-
rules and decision-tables are described in the next two sections.  

Ripple-down rules 
The ripple-down-rule approach is similar in way to the production rule system 
described above (Compton et al. 1992, Compton & Jansen 1990) The difference lies 
in the format of the rules. Instead of having a list of rules, the rules are organised in a 
tree. Each rule consists of a condition, an action, and an exception-clause. The 
exception-clause allows other rules to override the rule.  

Ripple-down-rules are made for ease of maintenance. A system starts with a single 
rule. If a problem solution produced by the system is flawed according to the expert, 
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the last fired rule is the context to which knowledge to adjust the solution is added as 
an exception. This is in some way a reification of Minsky�s exception principle 
(Minsky 1988). 

This new rule is given the new problem and solution as its �cornerstone� case, its 
origin. The cornerstone cases linked to each of the rules allow retesting the system 
against problems for which the solution is known in advance. This counts as 
verification and validation after a mutation of the knowledge. After each change, all 
the test cases can be verified, allowing for the detection of interferences. The 
approach has a drawback in that duplicate knowledge exists indifferent parts of the 
rule-tree. Changes to one rule are then not proliferated to the other. Only further 
experience will show from whether or not that would have been necessary. 

Decision-table  
The decision-table format is a visual presentation of a number of related rules. 
Decision tables have a long history, albeit not as a knowledge representation format 
(Mors 1993, Verhelst 1980, Montelbano 1973). Among other purposes they were 
employed as tools in software engineering to formulate the different test condition and 
the associated outcomes. Additionally, they have also been used to produce test plans 
for electronic schema. Their use is not widespread but in knowledge engineering, 
there are some known uses in tools such as Wisdom, PrologA and AIONDS, as well 
as the two tools described in Chapter 4 and 5.  

 
Figure 2-9 An Example Decision-table 

A decision table consists of four types of elements: conditions, condition-alternatives, 
actions and action-alternatives. The conditions represent the relevant parameters that 
are the antecedents of the decision-table. In the above table, the conditions are main
course and turkey is served.  

The value of a condition is compared to the values represented in the condition-
alternative. These values describe an exclusive and exhaustive domain of the 
condition. The condition-alternative where this comparison is true is the valid 
alternative. The sub-tree below that alternative is the chosen logic for the remainder of 
the consultation of the decision-table. For example, the main course in this setting 
is poultry. This is repeated for all the conditions until finally, the last condition-
alternative is chosen (R2).  

To finish, the actions in the chosen column perform the assignment with the value in 
the action-alternative. In this case, the left-most column only contains a single action 
wine type and the value inferred for the wine type in this decision-table is red
wine by the action alternative.  

The condition-alternatives under consideration at any time form an exhaustive and 
exclusive set of values. This assists in the verification of the completeness and 
correctness of the rules represented in the decision-table. Missing alternatives become 
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clear as they do not appear in the condition-alternatives and action-alternatives with 
no values can be clearly marked as gaps in the knowledge.  

Surrogate 

Rules define relationships between symbols, with a connection to objects in the real 
world. These relationships can be calculated with and the symbols manipulated. The 
rules of deduction, or of plausible inference, thereby allow predictions about the 
world to be made. This can be used to derive new facts and predict new information. 
Depending on the perception of these rules, these new inferences can be provably 
consistent and correct, but in many knowledge systems, such guarantees are neither 
required nor supplied. The heuristic value of the relationship is sufficient in most 
cases. 

Ontological Commitment 
In their base form, rules divide the world into facts and relationships between those 
facts. These relationships between objects are either seen as representations of real 
laws governing nature, or as useful abstractions enabling pragmatic action. 
Regardless, in either view they see the world as defined by causality. Logic brings a 
view of the world as consistent and correct governed by absolutes. A normal 
production rule states a relationship that should always hold, except when rule with 
higher priority exists. Ripple-down rules divide explicitly between the norm and 
exceptions, whereas decision-tables present knowledge as internally consistent, in 
exclusive and exhaustive form. Each of these forms brings a different slant to the 
world view, but at their basis lies a view where each result has a cause.  

Fragmentary Theory of Cognition 
Rules are direct descendants of the symbolic theory of cognition. The theory that they 
profess is that of symbol pattern manipulation as necessary and sufficient for any 
intelligent system. 

Computational Efficiency 
A rules computational efficiency is dependent on the complexity of the rule base, and 
the possibilities of the inference mechanism. The main problem is to locate the rules 
affected or required for a certain fact, but the Rete algorithm provides a good efficient 
solution to locate the set of rules that should fire under certain circumstances.  

Medium for Human Expression 
Rules can be easily recognised as a human form of expression. Legislation is but on 
form where principles and laws are laid down for all to comprehend and implement. 
In the form of logic, it has provided an almost disambiguated form of communication. 
Humans have found it natural to express themselves in terms of rules and logic. 
Especially in the form as rules of thumb, the ability to use heuristics usefully was not 
lost on mankind, as is evidenced by our use of proverbs. 

Medium for Learning and Change  
The inherent modularity of a rule based representation means that it is quite simple to 
add, remove or change an individual rule. Ripple-down rules incorporate support for 
this intrinsically into the representation. Decision-tables offer similar features, but 
extend this by providing opportunities for discovering new insights from the 
representation of knowledge itself. Inconsistencies such as a missing alternative are 
easily spotted, leading to immediate feedback on the represented knowledge. 
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The problems lies in the scalability. It is impossible to extract a complete view of the 
role of a single rule within a set of rules. The interactions between rules can not be 
seen in the content of the rule itself. The sum of the rules is larger than the value of 
the individual rules. It becomes even more complicated when the rules are 
implemented to take advantage of proprietary behaviour of the inference mechanism 
(e.g. (McDermott 1982)). At that point it is only possible to understand the set of rules 
by analysing its response to large numbers of test-cases, as incorporated in the ripple-
down rule approach.  

2.3.4  Structured representations 
Under structured representation fall a number of techniques that have influenced each 
other quite heavily. The three major ones used in knowledge representation are 
semantic networks, frame systems and object-oriented representations. The structural 
representations are different from procedures and rules, which allow the formulation 
of specific relationships between the values of certain facts. Structural representations 
impose structure on the facts themselves, by allowing the introduction of relationship 
between two facts, other than the heuristic association. They employ the principle of 
localisation, which means placing related items in close physical proximity to each 
other.  

Semantic networks 
A semantic network aims to represent the concepts between symbols by mapping the 
relationships in which they feature. A network made up of nodes joined by links, 
where nodes represent concepts, like a STONE, and the links represent relationships 
like PART-OF house or HAS-COLOUR red. The meaning of stone is derived from its 
relation to other concepts. Semantic networks may be loosely related to predicate 
calculus by substituting terms by nodes and relations by labelled directed arcs. 
Initially, semantic networks were employed to drive language understanding systems, 
now their role is seen as more general. 

Figure 2-10 A Semantic Network for Default Reasoning (from Nilsson 1998) 
Their nature as a network allows them to be visually represented and certain 
consequences can be arrived at from examining the diagram. For example in the 
network in the Figure 2-10 above, a kind of diagrammatic reasoning is possible: what 
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kind of energy source does R2D2 have, or what kind of robot is R2D2. By following 
the different links, meaningful inferences can be made.  

The labelled links such as IS-A and PART-OF can be ambiguous especially if the 
same word is used in different ways. For examples, R2D2 IS-A DELIVERY means 
that the individual robot R2D2 is a delivery robot, a type to individual relationship. 
However DELIVERY IS-A ROBOT means that DELIVERY is a subset of ROBOT, a 
type to type relationship. This controversy and other have been the source of many 
different formats of semantic network with sometimes very little in common 
(Ringland & Duce 1998). The format above for example includes different types of 
IS-A as well as a version of override-able default reasoning. The network described 
that all office machines have a wall outlet as their source of energy, except for robots 
that derive their energy from a battery. 

Frames 
The frame representation originates in a single paper by Marvin Minsky (Minsky 
1975). Although little of the intent of the frame systems survived in the frames as they 
are presented here, the legacy of the paper is evident in many parts of knowledge 
engineering and other areas. Object orientation itself can trace its origins back to that 
paper, and so can case-based reasoning, both discussed in later in this section. 

Frame systems and semantic networks have more than surface similarities. Frames or 
schemata are structured objects consisting of a collection of related facts, or slots as 
they are known as in frame terminology. A slots is a name-value combination and can 
contain a default value. Slots can also contain links to other frames in relationships 
such as IS-A and HAS-A. An example of a frame is shown below. Frames employ the 
principle of encapsulation which means the packaging of a collection of items. This 
takes localisation to the next level. 

Figure 2-11 A Small Frame System (Ringland & Duce 1988) 
Frame-based representations encourage jumping to possibly incorrect conclusions 
based on matches, expectations or defaults. They therefore are not proven to deliver 
correct actions. A prime example is the form of concise notation used in frames by 
leaving out those elements shared by two frames that have an IS-A relationship, as 

FRAMENAME
Slot 1
Slot 2
Slot 3

MAMMAL
Bodycover : Fur
Birth : Live
Sex : Male or Female

FRAMENAME
Slot 1
Slot 2
Slot 3

DOG
Is-A : Mammal
Offspring : Puppies
Vocalisation: Bark

FRAMENAME
Slot 1
Slot 2
Slot 3
Slot 4
Slot 5

DOG
Bodycover : Fur
Birth : Live
Sex : Male or Female
Offspring : Puppies
Vocalisation: Bark
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illustrated in Figure 2-11. This is also called inheritance. The child frame, the Dog in 
the image, is assumed to have the same content as any mammal, except when stated 
otherwise. Therefore a dog can be queried as to its bodycover, yielding the answer fur.  

Another example, frames employ default values that apply unless they are displaced 
by information to the contrary. The normal colour of an elephant is grey, but white 
elephants also exist. In understanding a sentence like �At the circus, the elephants 
were made to walk on their hind legs�, there is no reason to assume that there is 
anything exceptional about the elephants, so the defaults apply. Logic representations 
do not handle such defaults very well, as it means that a value once was determined 
�grey�, is displaced by �white�. This requires extensions on first order predicate logic.  

The force of the statement is �in the absence of any evidence to the contrary assume 
the elephant is grey� (Ringland & Duce 1988). Frame systems emphasize a practical 
aspect of reality, namely that it has norms and exceptions, and that it is practical to 
make use of norms, even though this may sometimes lead to errors. In the long run, 
the strategy works efficiently. These systems make these assumptions explicit and can 
reason about them, whereas many other (e.g. logic) systems do not. 

Object orientation 
Object orientation describes the world as a collection of objects. An object is �[a] 
discrete entity with a well-defined boundary and identity that encapsulates state and 
behaviour� (Rumbaugh, Jacobson & Booch 1998). A set of objects with the same 
structure and behaviour is described using a class. For example, different persons all 
have a name, a gender and other attributes. Many people are employed by a company. 
There are many different types of companies. A company in turn has a name, a slogan 
and owns a set of assets, like machines and buildings. 

Figure 2-12 Assets, Companies, and People in UML 
In an object oriented model, this is visualised as in the above Figure 2-12, following 
the Unified Modelling Language (UML). The triangle shape indicates inheritance, 
meaning that a Machine also has the same attributes as any other Asset. This is 
analogous to inheritance in Frames. The diamond indicates aggregation, meaning that 
the Assets like Buildings belong to the Company. The 0..* indicates 0 or more assets 
are owned by one Company. The line connecting the Person and the Company has a 
label �employs, which means that this user-defined association needs to be read as �a 
Company employs many Person� or equally �a Person is employed by a Company�.  

In many ways object orientation is the culmination of semantic networks and frame 
systems. Object oriented models also consist of concepts linked together through 
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Asset
cost

Company
name
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employsis owned by
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address
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different relationships, denoting inheritance, ownership and user-defined associations. 
Object orientation employs and extends the modularity of frames and its inheritance. 
It transformed a variety of different yet equal relations between concepts from 
semantic networks to a number of predetermined and user-defined relationships. Each 
of these types of relationship has limitations and specific semantics attached to it.  

One of the important aspects that object orientation adds to encapsulation is 
information hiding, meaning that certain aspects are hidden from outside parties. 
Sometimes encapsulation and information hiding are seen as the same thing, but 
hiding adds concepts such as private and public parts of a class interface. This 
separates what an object does from how that is achieved. This form creates the ability 
to for abstraction, which is a mechanism for focusing on the essential details of a 
concept, while ignoring the inessential details. For example, a modeller is allowed to a 
Building and a Machine object as the same kind of object at the level of Asset. Both 
have cost as an attribute.  

Taken together this allows object oriented models that offer primitives to express 
structured concepts, attributes of concepts, instance-type relationships, part-of, and 
kind-of relationships. Object orientation stresses the modelling aspect of 
representation. Beyond a receptacle a model also is meant to function similarly to a 
specific viewpoint on reality. The models that can be constructed have a high degree 
of match to the perception that a person has of a domain.  

Object orientation is a direct representation, representing concepts that are also found 
in reality. In addition, when an element in a model is acted upon in some way, it is 
supposed to react analogously to a similar act on a similar element in reality. Insights 
gained through simulations with the model then have a matching effect in the real 
world. 

Surrogate 
A structural representation has most often a direct resemblance to a domain, as seen 
from the perspective of participant in the domain. It emphasises the relevant concepts 
and leaves out residual issues, that do not feature in the perspective. It therefore 
strongly emphasis the surrogate aspect, especially seen in object orientation. 

Ontological Commitment 
As an ontological commitment a structural representation shows a world consisting of 
concepts and relationships, i.e. a conceptual view of the world, as position opposite 
from the procedural knowledge. It describes static relationships, and separates the 
world into elements with boundaries and identities. A concept is a composite of facts, 
with state and behaviour, that derives much of its meaning from the relationships it 
has to other structures. 

Fragmentary Theory of Cognition 
In part, the structured representations also stem from the symbolic theories of 
cognition, as increasingly more defined symbols and concepts. Seen as such they 
perceive concepts in the mind as structured and related. Navigating and examining 
these structures, new facts can be derived through examination of the concepts and 
relationships. A very strong role is played by reasoning based on norms and 
exceptions, which is treated as a natural, even if not always guaranteed to deliver 
correct results. 
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Computational Efficiency 
The incorporation of structured representations into AI and software engineering has 
shown that they can be realised quite efficiently and can provide further efficiency for 
other representations incorporated into it. The decomposition allowed by structural 
representations, allows division of the set of all rules into smaller sets localised within 
each construct. This provides far more efficient derivation of new facts. 

Medium for Human Expression 
Structured representations are quite good at representing human forms of knowledge. 
Concepts and relationships come easy to them as abstractions or models of reality. 
Abstracting away from unnecessary detail is perhaps one of the most human cognitive 
capabilities. Many forms of model used to describe artefacts or constructs are made in 
this form. Especially object-oriented diagrams have proven their worth as means to 
communicate complex ideas succinctly and understandably. 

Medium for Learning and Change 
The direct connection to a certain reality in structured representations allows the 
modeller to go back and forth between the model and reality. Therefore, a missing 
concept or inconsistency between the model and reality is easily spotted. This aids the 
formulation and understanding of such models, the localisation of where such changes 
need to be made and the discovery of new insight. 

The decomposition and encapsulation assist by dividing the problems that exist. This 
helps to focus the effort, and localises any problems that are found. Changes can be 
limited to within a certain class for example, and because of its encapsulated nature 
the how may be changed, without affecting what the class does.  

2.3.5  Case-based reasoning 
Case-based reasoning is an approach to reasoning that emphasis the use of memory. 
�A case-based reasoner solves new problems by adapting solutions that were used to 
solve old problems� (Riesbeck & Schank 1989). A doctor who diagnoses a patient by 
recalling another patient that exhibited similar symptoms is using case-based 
reasoning.  

Case-based reasoning has been formalized as a four-step process (Aamodt & Plaza 
1994):  

1. RETRIEVE the most similar case or cases 

2. REUSE the information and knowledge in that case to solve the problem 

3. REVISE the proposed solution 

4. RETAIN the parts of this experience likely to be useful for future problem solving 

A case-based reasoning system has access to a collection of cases, describing 
previously experienced problems and their solutions. Facing a new problem the 
system locates the case that is most similar to the current situation. In many cases this 
means calculating the similarity between the current problem and each of the cases in 
memory. The best case is used to provide the solution, which is adapted to the current 
problem situation. This new experience is stored in memory, so that it can be used 
again.  
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The initial concepts that form the basis of case-based reasoning originate in Schank 
and Abelson (1977) who looked at the human mind as composed of memories of 
previous experiences. They rejected the hypothesis that human cognition depends on a 
set of reasoning principles or rules and introduced so called �scripts�. The scripts 
constitute much larger chunks of knowledge to be used as primary knowledge 
structures. Such a script can describe an event like �visiting a restaurant� or �waiting 
in a doctor�s reception�. Thinking then means finding an available script to use, that is 
right for the current situation and applying that script, rather than generating ideas 
from first principles. 

The cases are described in most case-based reasoning systems in ways similar to 
frame- and object oriented systems (Hammond 1989). As sets of attribute-values pairs 
a case merely describes a series of facts. For example, a medical system might 
represent its cases as patients with certain attributes like age and gender as well as the 
symptoms and final diagnosis. Systems using monolithical structures like frames are 
very common, but composition of case structures are also known (Redwood 1993). 

If sufficient similar problem situations occur repeatedly over time, the experiences 
can collate to form more general or abstract experiences, referred to as prototype or 
ossified cases (Riesbeck & Schank 1989). These general principles are also thought to 
form part of the way experiences are retrieved (Kolodner 1993). They can be 
perceived as a set of norms or rules, but are formed as an aggregation of similar cases, 
grounded in a stream of experiences.  

Surrogate 
A case-based reasoning system assumes the world to behave as it did before. It 
predicts new facts about the world based on previous experience. The system is 
therefore as good the memory of its experiences. In many cases, this provides an 
adequate model of reality.  

Ontological Commitments 
From the viewpoint of data, a case-based reasoning approach divides the world into 
structural entities, like frame-based and object oriented approaches. These describe 
how experiences are recognized and stored. From the point of view of reasoning, the 
only inferences that are sanctioned and proposed are those that can be supported by 
previous experience. These inferences are not provably sound, and may be 
inconsistent. They are however, tied to the actual behaviour of the system in reality. 

Fragmentary Theory of Cognition 
Case-based reasoning proposes a theory of cognition that centres on retrieval of 
previous experiences from memory. It explains problem solving as based on a 
heuristic relationship between surface similarities describing individual cases. This 
does not require a deep model consisting of rules, but merely exploits history�s 
tendency to repeat itself. As a theory of cognition it also integrates certain rule-based 
aspects, which it incorporates as ossified cases.  

Computational Efficiency 
The efficiency of a case-based reasoning system can be limited, as the complete case-
base needs to be examined for similarity in basic schemes. This makes the efficiency 
of retrieval fall with increasing experience. This is an active area of current research 
(Smyth & McKenna 2000).  
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Medium for Human Expression 
From the point of view of expressing knowledge, there are few approaches that are 
more natural to humans than discussing and describing individual cases. As medical 
case-histories, jurisprudence, or war-stories to be found in almost all walks of life, 
humans like to express themselves through examples and analogies.  

Medium for Learning and Change 
This also means that case-based reasoning systems are quite easy to change as it only 
requires addition of new cases. Changing old cases may not always be as easy. 
Extracting more meaningful insights from the model requires additional facilities, 
akin to data-mining. It therefore does not automatically lead to new insights. 

2.3.6  Connectionism 
Connectionism is a blanket term that covers a number of approaches characterised as 
stimulus response systems. Neural networks are perhaps the best known examples of 
these systems. Neural networks have been given their name because of their 
relationship to biological neural systems, but the semblance to the natural form is 
superficial at best.  

Connectionist systems calculate the output from input signals modified by a set of 
adjustable weights. Adjusting the weights will give a different result when given the 
same input. This allows a connectionist system such as a neural network to be 
tweaked to give a specific output for a certain input configuration. Different 
algorithms exist which allow such a configuration of weights to incorporate a 
mapping between many input-output pairs. After exposure to a set of samples 
problems paired with the output that would be appropriate for each the inputs such a 
system can be said to have learned a mapping between an input and an output.  

Most connectionist systems have characteristics that allow them to have a good 
probability to give an approximately correct answer when confronted with unseen 
input patterns, when their training set is representative of the inputs the system is 
likely to receive. The essence of these systems is a stimulus response approach in 
which the knowledge, if one can speak of such a thing, is represented in a distributed 
form over the different connected parts (i.e. the weights) of the system. 

These systems cannot be constructed based on an account from an expert, but have to 
learn the relationships from actual data examples. While this is also not considered to 
be a knowledge representation in a true sense, because it leaves the knowledge 
implicit, it can fulfil the same functions as the other representations.  

Surrogate 
Connectionist representations such as neural networks specifically make predictions 
about the world, based earlier experiences and on a current description of the 
surroundings (inputs and outputs). As a black box the may deserve the term surrogate, 
but their internals do not allow inspection and do not symbolically represent the 
problem..  

Ontological Commitments 
Analogous to a case-based reasoning system, all its knowledge is experiential in 
nature, deriving purely from its training set. Connectionist systems cannot be 
described in term of ontological commitment, unless one attempt to appreciate their 
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subsymbolic nature as mapping simple input signals to output signals. There is no 
representation of intermediary concepts or inference process using the representation 
to plan ahead or make conjectures on evidence. The system acts on signals in ways it 
has been taught to act.  

Fragmentary Theory of Cognition 
As a theory of intelligent reasoning it stays close to the strong situated form of 
cognition, where the entire system arranges itself to the current situation, reconstructs 
itself if you will, and through its activity allows intelligence to emerge. A 
connectionist system is a representation modelled on the same implementation 
hardware as humans.  

Computational Efficiency 
As a truly compiled form of knowledge or information, a neural network, is extremely 
efficient in use. It replaces all kinds of inference process, by a simple additive and 
multiplicative formula, from which the answer is derived.  

Medium for Human Expression 
Direct manipulation of the distributed representation is not possible, or at the very 
least impractical. Therefore, it expressiveness is limited to the provision of a training 
set. This means it is not in a true sense amenable to human expression of knowledge.  

Medium for Learning and Change 
A connectionist system is in its configuration a black box. Although it is trained to 
operate based on different cases presented to it, the exact training of a system remains 
to be an art form, and is not yet an exact science. Changes to its training set may have 
the desired effect, but the exact effects are hard to ascertain.  

The maintenance of connectionist systems can be different for each of the approaches. 
Most approaches apply some form of off-line learning, whereas others apply on-line 
learning. The craft of training connectionist systems is still a dark art at times, as 
experienced people are needed to configure the system.. Semi-automated approaches 
to this configuration problem also exist (Spronck 1996, Boers & Kuijper 1992). 

2.3.7  Conclusions 
This section has shown a variety of ways to express, make operational, communicate 
and learn knowledge in different forms of representations. Many seem to have a 
certain degree of overlap but several categories can be discerned. Each of these 
representation arises from its own particular background which means it focuses on 
one or more of the roles to the detriment of others. All six roles feed into the ability of 
a knowledge representation to embody certain quanta of knowledge. The roles also 
make clear that even though some of the representations may be equivalent, even 
provably so, this fails to capture the �mindset� and the insight behind such an 
approach.  

Special attention was given to the aptitude of knowledge representations to support 
expression and change. This shows that these representations are perhaps good for 
expressing knowledge, but do not always have sufficient support for changing and 
extending knowledge models. This can be taken as further evidence of the attention of 
knowledge engineers and researcher for building knowledge systems rather than 
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changing and maintaining them. The focus seems to be on representing existing 
knowledge without attention to discovering the knowledge in the first place. 

The authors of the original article only discussed five roles: Surrogate, fragmentary 
theory of reasoning, ontological commitments, medium for expression, medium for 
learning and change. The sixth role is missing because the authors approach 
knowledge as static even though they are quite explicit about their view of knowledge 
as dynamic. Even they are susceptible to the assumptions of knowledge representation 
as an �after the fact occurrence�, without truly appreciating its ability to empower 
human to discover knowledge.  

From the examination of the different knowledge representations used in the 
development of knowledge systems one can conclude that the major representations 
used are made for expressing knowledge are logical oriented and structured. There is 
much attention for the analysis of that knowledge as to its correctness and 
completeness. These representations heavily influenced by symbolic assumptions. 
They aim to embody knowledge as is and demonstrably verify and validate that it is 
what was required in the first place. 

Two knowledge representation techniques fared especially well in terms of supporting 
the development of new insights as well as their changeability: decision-tables and 
object-oriented models. The would fit well within a situated approach to knowledge 
system development. 

One aspect has remained outside of the discussion until now, which is the aspect of 
fitting knowledge representations to the knowledge. Each of the knowledge 
representations was approached individually. However, no single representation has 
the flexibility to represent the full spectrum of human knowledge. To enable the 
representation to remain transparent, to show and make clear the content of the 
knowledge, it is probable that different representations have to be used. An integrated 
framework for different knowledge representations is required to capture to full extent 
and intent of our knowledge. Therefore a knowledge development requires integrated 
knowledge representation architectures, or risk mangling certain aspect of a domain to 
fit the chosen representation. The further a representation of some knowledge 
distances itself from reality the harder it is to derive new lessons from it that also have 
meaning in the world they represent.  

2.4 Engineering Knowledge Systems 
This section describes the history and state-of-the-art of knowledge engineering as the 
process of knowledge system development. It starts by an overview of the history of 
knowledge engineering. This is followed by a general introduction into the different 
tasks that are found in knowledge engineering. It then goes on to discuss how these 
are employed in the different approaches.  

2.4.1  From Art to Discipline 
In the early years of knowledge system development ad-hoc and rapid-prototyping 
approaches were the only approaches known. This allowed early knowledge engineers 
to create systems where little pieces of knowledge are added piecemeal. It is even 
questionable whether at that stage it could be dubbed engineering. The systems were 
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developed as throw-away prototypes2. Like early plane builders, a new contraption 
was built, pushed off a cliff, and after watching it crash, the process was started over 
again.  

Rapid prototyping is an approach characterized by short iterations over a system, each 
time adding a new feature or some new knowledge. The goal of rapid prototyping 
goal is to produce practical results quickly. Based on the result of each cycle, the 
direction for the next cycle can be determined or the result of the last cycle can be 
reversed. In a number of iterative cycles, the improvement in each cycle is based on 
the lessons learnt in the previous cycle. This makes it highly adaptable and 
experimental. It works well in exploratory development methodologies, and 
prototypes are still developed to gather requirements for an eventual product.  

Early knowledge systems were very successful in applying rapid prototyping, because 
of their fixed shell vs. flexible rule-set architecture, enabling this quick turn-around 
time. Where software was being created through an arduous process, knowledge 
engineers were blessed with tools that enabled very fast development of a working 
system. Adding a single rule was often enough to create a basic system. Adding more 
rules was the trick. This approach was also seen as a benefit to extract the relevant 
knowledge during each iteration, until such a time that the knowledge was considered 
sufficient for the target system. From conception to adolescence, knowledge systems 
are typically constructed through an iterative, exploratory process. �While other large 
software systems may also grow by accretion, for expert systems this [iterative] style 
of construction seems inescapable.� (Buchanon et al. 1983).  

After initial successes and increasing numbers of failures, a need was felt to convert 
the dark art into something more tangible, i.e. manageable, plan-able and predictable. 
In the same period when DENDRAL and MYCIN came into existence, the term 
software engineering was coined and advances were made in controlling the process 
of software development (Endres 1996). The notion of software engineering implied 
that software manufacture should be based on the types of theoretical foundations and 
practical disciplines that were established in the traditional branches of engineering. 
This need was motivated by the so-called �software crisis�. 

Moreover, people started to recognize that there is more to knowledge system 
development than just knowledge acquisition. This was the start of approaches that 
attempted to copy some of methodological developments in software engineering. 
The art of knowledge system development was beginning to show progress towards a 
discipline. Examples from software engineering that inspired knowledge system 
development were the waterfall- and later also the spiral models of software 
engineering (Boehm 1988). Adaptations were needed because traditional 
methodologies were not entirely suited to the special needs of knowledge systems, 
just as software engineering found that there were important differences between 
traditional engineering and software engineering. This led to methodologies 
specifically suited to the development of knowledge systems. Knowledge acquisition 
is of course one of the main differences with standard software engineering.  

This is the time that second-generation knowledge systems came into existence. 
Attempting to solve the problems with knowledge acquisition based on knowledge 

                                                 
2 Quite literally, in (Buchanon et al. 1983) there is a maxim for constructing a knowledge 
system that says �Throw away the Mark-I [prototype] system�. 
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models: increasing the model complexity to include more elaborate modelling 
constructs and by offering far more elaborate inference capabilities. This mirrored 
some of the advances made in software engineering using design based approaches to 
create complex artefacts. 

2.4.2  Development Tasks and Phases 
The advent of second generation knowledge systems as gave rise to the use of 
development methodology, i.e. a more structured process and ordered task-structures. 
Different researchers have different approaches to the development life-cycle. The 
iterative character of development is found in all approaches, but centres on different 
aspects. If we examine the partitions used by other developers of knowledge systems 
we see a number of recurring types of tasks over time. These are used to give a 
general view of the development process.  

The tasks in the development of a knowledge system are split by (Hayes-Roth et al. 
1983) into: Identification, Conceptualisation, Formalization, Implementation, and 
Testing. As a corollary, they state that �[a]n expert system evolves gradually�. This in 
turn means that they perceive this development as a design-based iterative process. In 
fact, the direction of this work is towards a final goal, which is approached iteratively.  

Steels (1992) sees Preparation, Construction, Product Development and Evaluation. 
This division is different because of the explicit attention for the development of a 
product based on a knowledge model, separating the concern of the system from those 
of the knowledge acquisition and representation.  

CommonKADS has the most elaborate of phases: Analysis, Design, Implementation, 
Installation, Use, Maintenance, and Knowledge Refinement (Schreiber et al. 1999). 
Of these, CommonKADS seems to spare most room for pre-knowledge system and 
post-design activity. Another important aspect is the iterativity of the development, 
through their use of a spiral development model.  

Phase Description 
Inception  Identification of the problem, description of the problem, 

examination of possible problem solutions. 
Design  Creation of model of solution and acquisition of required 

knowledge. 
Implementation Transformation of model to implemented system using the 

design as a specification of the target system. 
Deployment Deploying the system and training the users of the system 

towards use. 
Maintenance Adjusting the system for flaws and errors, perhaps slightly 

extending the system�s functionality. 

Table 2-3 Development Phases 
This simplified division is not to propose a new development phasing, as it is more 
general than one for actual use, it serves to elicit and equalize some of the concerns of 
the different approaches. In a way, this is a counterpart to the earlier architecture of a 
knowledge system, which is a structural sketch, whereas this is a behavioural sketch. 
It serves as an analytical tool. These phases may occur in a straight waterfall model, 
or in a spiral development methodology. 
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Inception 
In this phase the problem is identified, an analysis of the problem is made and 
possible solution methods are examined. This examination is not necessarily part of 
knowledge engineering, but is more properly placed under knowledge management. 
This is also the phase in which choices are as to what functionality to add, or in a 
spiral model, what part of the knowledge model to change and expand.  

Design 
In earlier years, knowledge systems were mainly seen as stand-alone systems, 
performing a single task. Later integration of such a system with existing 
infrastructure became more important, eventually leading to the use of knowledge 
technology as a component of other systems. This makes the design of the systems 
and its relationship to other systems more important.  

While other concerns therefore can play a considerable role in the design of a 
knowledge system, what sets the design of a knowledge system apart from that for a 
normal software system is the knowledge acquisition. The modelled knowledge can 
be seen as a specification for the implementation at a later date. This division can be 
seen as analogical to split the knowledge level vs. symbol level.  

Knowledge Acquisition 
The internals of a knowledge system are to an overwhelming degree a result of 
knowledge acquisition. The basic model for knowledge acquisition has been one 
where a knowledge engineer is a mediator between the expert, and the knowledge 
model. The knowledge engineer elicits, encodes and refines the model in 
collaboration with the expert to achieve acceptable performance. This makes 
knowledge acquisition the process of examining knowledge sources or collaborating 
with experts to devise a knowledge model that reflects an operational perspective on 
the knowledge required to perform a certain task. It has been found to be hard to 
extract knowledge in a computer usable form existing knowledge sources, such as 
experts. The knowledge acquisition process is therefore seen as the bottleneck in the 
construction of knowledge systems (Feigenbaum 1977).  

There are many different tools at the disposition of the knowledge engineer, to assist 
in teasing out the knowledge. Some are structured, whereas others are more freeform. 
A number of examples are: 

• Interview-techniques 
• Brainstorm-sessions 
• Case-research/-sorting 
• Protocol analysis 
• Structured walkthrough 
• Thinking-aloud sessions 
• Data-mining 
• Observation 
• Prototyping 
• Repertory Grids 

These methods aim to explore the knowledge of the expert where he is incapable of 
expressing it himself directly. Beyond this the knowledge engineer and the expert can 
use the knowledge model and discuss it together and come to changes and new 
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insights by discussing it. This requires the models to be transparent to the expert. In 
addition, by examining the operation of the system of different cases, the expert can 
ascertain the quality of its solutions, providing further insights and localize possible 
flaws in the reasoning. This is what can be achieved by prototyping. 

In the early days of knowledge system development, knowledge acquisition was seen 
as a process of transfer. The knowledge engineer took the knowledge from the head 
of the expert in the form of rules. The knowledge engineer would literally ask the 
expert for rules that would apply in certain situations. These rules would then be 
translated into a formalized computer representation, ideally based on some form of 
logic. Experts were however unable to produce useful rules in this way. This 
difficulty was initially explained as a communication problem between the knowledge 
engineer and the expert, and a mismatch between human and computer 
representations (Buchanon et al. 1983).  

In software engineering, design and role of methodology increasingly enabled 
successful development in the face of the problems experienced during the software 
crisis. Models were used to create a vehicle for discussion as much as to develop 
requirements for an eventual system. In reaction to the problems and due to influences 
from software engineering, knowledge acquisition evolved into a modelling approach. 
In the modelling view of knowledge acquisition, the role of the knowledge engineer is 
to structure the domain knowledge, to identify and formalise important concepts and 
relationships. The knowledge engineer creates a theory of the domain and then makes 
that theory operational. This constructive process is supported by the expert that can 
inform the knowledge engineer. The expert can be presented with specific cases and is 
queried for the solutions for such specific problems. 

The change in attitude to knowledge acquisition has affected it much, as the 
knowledge model is seen as separate from the way a human expert would approach it. 
The psychological adequacy of the approach is relinquished, and there is no 
assumption that the knowledge in humans is representational as well.  

Many of the problems that make knowledge acquisition hard still persist. The first 
problem is the tacit nature of much of our knowledge. Tacit knowledge is often highly 
personal or weaved through the cultural background. Such knowledge is almost 
impossible to explain or impart via typical teaching methodologies. Usually it is 
conveyed through apprenticeships, where a student can absorb the knowledge as it is 
being applied and expanded, thus developing ownership of the knowledge through 
use. Knowledge acquisition is therefore in many cases concerned with turning the 
unspoken into explicit, formalised axioms. Understandably this can be hard to 
impossible to accomplish in a single movement. 

A second problem is the lack of knowledge on the part of the knowledge engineer. 
The initial vocabulary used by the knowledge engineer is inadequate to discuss the 
problem solving and the knowledge engineer. This causes many communications 
problems for the knowledge engineer in his role as mediator. It also means there is a 
considerable lead time before the knowledge engineer can hold meaningful discussion 
with the experts.  

A third problem lies in the fact that experts employ the notions and ideas about their 
domain in a certain way, which may not be easily translated to a formal 
representation. The conceptual difference can be great, when considering the 
formality of the rules that can be employed. A model constructed on a certain domain 
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must contain conceptualisations that are recognizable to an expert. It must become in 
a way a map of the territory. Although Clancey is determined that the map is not the 
territory; the map must resemble the territory in recognisable ways for the expert to 
tell where it is wrong, or to translate insights gained when developing the model back 
to the expert�s own knowledge of the domain. 

This is also related to the tools and technologies used, which are often limited in the 
number of knowledge representations that are offered. The knowledge representations 
used can be limited in expressive capabilities, which make it more difficult to 
translate the knowledge in a knowledge model to an implementation. This increases 
the mismatch between an expert�s view and the knowledge model�s view on the 
domain. This can make the model truly unintelligible for an expert, making it 
impossible for him to comment upon the content directly. 

Knowledge acquisition itself is in the view of most researchers an iterative process 
itself. The knowledge acquisition process must create the knowledge model with the 
expert, by an interactive synthesis. The constructions devised by the knowledge 
engineer, are scrutinized by the expert, based on whose comments adjustments may 
be made.  

Some solutions have been examined to solve the problems. Reuse of knowledge is an 
important approach to offset the cost and risk of knowledge acquisition. Reuse is 
another approach originating in the static and absolute nature of knowledge. It enables 
the cost of development to be shared over difference knowledge systems making the 
enterprise more economically attractive. To some the development of reusable 
libraries is a �conditio sine qua non for improving the state of the art in knowledge 
engineering� (Schreiber et al. 1999, pg. 124). But even in software engineering, the 
benefits of reuse are yet to be clearly demonstrated (Menzies 1998, 1997, 1995), 
especially reuse without adaptation or change. There is certainly no reason to assume 
that the situation is more amenable for knowledge systems. 

The reuse of knowledge is most clearly seen in the CYC project, which attempts to 
make a multifunctional �cyclopaedia of common-sense knowledge. This large-scale 
knowledge base is meant to be reused by many different systems, and has been under 
development for over 10 years (Lenat & Feigenbaum 1989). It seems that the 
company is currently poised to present the knowledge base to potential customers. It 
is currently being used to power a new search engine for the Internet. The goal of the 
CYC project is to break the �software brittleness bottleneck� once and for all by 
constructing a foundation of basic common sense knowledge. 

Among other solutions explored is automatic knowledge acquisition, as in 
TEIRESIAS (Davis 1980) and the SBF framework (Marques et al. 1992). Here the 
knowledge system automatically queries for new knowledge when an inconsistency or 
hiatus is found. Beyond these examples there the approach is not found in any 
practical knowledge system implementations. 

Machine learning is seen as an alternative solution, e.g. (Langley & Simon, 1995). By 
placing less reliance upon the existence of human expertise and the competence of 
knowledge engineers it has the potential of being a very powerful solution indeed. 
The ability to create a knowledge system directly from experiences and automatically 
keep it up to date would most certainly. To date not all fields have been amenable to 
such approaches, which limits the applicability of machine learning. 
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Implementation 
In this phase, the design is translated into a working system. The design includes any 
formalisations of knowledge that may have been devised through knowledge 
acquisition. Whereas in software engineering this may mean the actual 
implementation and the first time a working system may be present, in knowledge 
engineering things are a bit different. Many shells and development environments 
exist that allow the designs to be executed immediately. These may have been shown 
to the expert and some of the intended users. This was seen in the rapid-prototyping 
approaches earlier, but such systems are still available. 

The higher regard for design and proper methodology has meant that such tools are 
not the immediate choice. Approaches to knowledge system development therefore 
separate the implementation from the design more strictly. For example, 
CommonKADS has seen some development of tools that allow the models to be 
operational. It describes an implementation as a structure preserving transformation to 
some system. It seems to propose an implementation in any substrate, be it a standard 
programming language or a dedicated environment for developing knowledge 
systems, such as AIONDS. Implementation can therefore mean many different things. 

As seen in Steels subdivision of tasks however, there can be considerable work to be 
done to translate the knowledge model into a software system. This can entail 
integration with other systems as well as fitting the knowledge system with an easy to 
use, appealing graphical user-interface. There is not always very much attention to 
this, especially when these systems are made as prototypes or proof of concept 
systems. The technical possibilities to add user interface niceties are not present in all 
tools that are developed. Or it is implemented in such a way that there is a marked 
difference between a knowledge system and a standard software system, for example 
by realising the user interface with a proprietary set of buttons and forms. The cost of 
not developing a system customised to the needs of the users will be directly noticed 
in the phase deployment following implementation. 

Deployment 
In this phase, the system is deployed to its users. Education may be provided to 
introduce and train people in using the system. The introduction of the system is a 
short but difficult period, where the users are for the first time confronted by the 
system. In earlier phases, some ambassador-users may have been present in the 
development of the systems content and form, which can greatly improve the quality 
of the system and the acceptance by the users. Deployment also occurs when an 
updated version of existing software is published to the existing user community. 

Deployment is a risky enterprise as the ideas if the development team are pitted 
against the expectations of the client. It is very hard to change the preconceptions 
based on a first encounter with a system. The time it takes for a development team to 
produce their first release version is constantly at risk of being killed as soon as they 
unveil their creation. In most cases working towards an earlier release has 
considerable payoff.  

Maintenance 
The maintenance phase is where the system is in use and feedback from the users can 
be expected. While many of these bugs can be logged and used to steer a following 
phase of activities, some of them may require immediate action, to repair possibly 
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critical errors from the system. This is normally seen as a phase where the system is 
not entirely in line with the requirements. There will be errors, which when 
discovered need to be repaired, and there may be some extensions which may have to 
be added to the existing knowledge.  

Maintenance is stated by many researchers to be time consuming, perhaps even more 
so than the development itself. In the early days of KADS (the predecessor of 
CommonKADS), the problems in maintenance were attributed not so much to the 
frequent changes in the knowledge itself, but due to the lack of transparency and 
structure. These make it hard to know where the changes and enhancements should be 
made (Breuker & Wielinga 1986). 

Reports of fielded and maintained knowledge system are rare (Menzies 1998). Two 
systems have been described in detail as to their maintenance and operation over a 
significant period. XCON has been deployed at DEC for several years. The effort in 
building it stands in bleak comparison to the effort need to keep the system 
operational. Over half the rules in the system are replaced on a yearly basis (Bachant 
& McDermott 1984). The second system is the GARVAN ES-1 system developed 
using ripple-down-rule technology (Preston, Edwards & Compton 1993, Compton et 
al. 1992, Compton & Jansen 1990). 

A further example detailing some of the maintenance activities and employing the 
CommonKADS methodology is FraudWatch (Killin 1993). There are no known 
follow up articles however. Killin first mentions the need for maintenance to improve 
the effectiveness of the system (capture more fraud, reject more genuine transactions). 
This goes into deepening the models classification hierarchy and acknowledges the 
drift in fraud patterns through changes in the environment. 

There really is or should be no real difference between knowledge acquisition, and 
maintenance. The tasks and purposes are pretty much the same, and to make an 
explicit distinction is counter-productive. Stefik (1995) concurs in detecting what he 
calls the hand-off assumption. A strict product-oriented view of knowledge system 
development characterises the process as development followed by maintenance, 
where a completed system is handed over to a maintenance team. This maintenance 
team adjust and extends the system over time. He goes on to state �It is more useful to 
this of the process as including a structured transition from a phase where the system 
is undeployed and definitely under development, through a phase where the system is 
deployed but still undergoing important changes in response to initial experiences, to 
a phase where the system is undergoing constant and sometimes large-scale 
evolution�. 

2.4.3  Conclusions 
On the one hand, there is a history of successes gained by rapid prototyping 
approaches. The problems experienced are the knowledge acquisition problem and the 
gap between prototypes and professional knowledge systems. On the other hand, there 
is an increase of design and structure in the methodological approaches to knowledge 
engineering. One question that we should ask ourselves is whether we can now build 
systems that are more complex. Another question that is equally valid is can we now 
build simple systems easier, faster and with less effort. Do current mature approaches 
improve upon our ability to develop knowledge systems, compared to the earliest 
rapid prototyping approaches?  
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All in all, considering early rapid prototyping approaches and current spiral 
methodologies, there is an increase in model-based development, and structure-
preserving implementation, whereby the earlier prototype can be retained. Iterations 
are dispersed differently, as more attention goes to getting the design right, than 
getting the system right. Nevertheless, there seems to be less feedback from this 
approach, and the time from first rule to working system is greater than before. The 
appreciation that knowledge is gained through experience is not lost on these 
scientists, but they consider the interaction with the knowledge source to be the 
experience. Now the system is not thrown aside, instead the design is changed to 
accommodate the adjustments.  

The development of knowledge systems is model or design based with the clear 
purpose of delivering a product, when looking at either the rapid prototyping 
approaches of old or the mature methodological approaches currently in vogue. 
Knowledge systems are approached as software products, that can be designed, 
constructed and maintained as software. So knowledge systems are perceived as 
artefacts that are designed similarly like software, and can be constructed by an 
iterative process and finalized. Any remaining activities such as adjusting for flaws 
and coping with incompleteness in the knowledge model are seen as the purpose of 
the maintenance. 

To illustrate the limits of what the current methodologies see as an iterative 
development strategy, an example. A description of a realistic case on a knowledge 
system for nuclear reactor noise analysis featured in the last textbook on 
CommonKADS shows how the development iterativity �quite typically� works 
(Schreiber et al. 1999). While the first phases are used to incrementally develop the 
design, ��[f]rom the third cycle onward, the project life cycle became rather 
predictable, and could be more and more managed in the waterfall form��. This 
shows the proclivity to use many cycles for design and then go directly for waterfall 
strategies. 

2.5 Problems and Challenges 
This section examines the discussions in the previous sections to summarize the 
problems. The question being asked here is what are the problems facing knowledge 
engineering and what causes these problems. From a practical perspective, the direct 
economic aspects of knowledge systems play an important role. From a more 
scientific perspective, these practical problems are influenced by other problems 
intrinsic to knowledge engineering. These problems are discussed after which a 
number of conclusions are stated. 

2.5.1  The Bottom-Line Problem 
Knowledge systems are both commercially and practically successful, and have been 
said to be AI�s most successful spin-off. Some knowledge systems have shown to 
deliver enormous benefits, for example XCON (Bachant & McDermott 1984) which 
has saved DEC many millions of dollars. But despite these successes, which some 
researchers quote to numbers above and beyond a thousand successful knowledge 
systems (Lenat & Feigenbaum 1989), many war stories talk of prototype knowledge 
systems that never got the chance to prove they could also provide such benefits 
(Crofts et al. 1989). Yet, there are no known knowledge systems to date that rate in 
the category of killer-apps, used by a great number of people. 
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A practical threat to knowledge system development is the high cost and risk 
associated with knowledge system development and a severe lack of clarity when it 
comes to the return of knowledge systems. The cost and risk originate in the intrinsic 
difficulties of knowledge system development and accidental problems exacerbating 
these difficulties. The benefits of such a knowledge system is often vague or 
incomplete. The goal of knowledge system development is to increase the 
effectiveness with which knowledge is used in an organisation, and people involved 
in these projects seem to see this as a realised benefit in many cases (Schreiber et al. 
1999). But the return is in many cases only in part measurable, because the return is 
often found at the level of the organisational efficiency and sometimes even stated in 
humanitarian grounds (e.g. more interesting jobs fit for people). In addition, in the 
current approach the development of knowledge system, they require a considerable 
investment upfront. 

This creates a situation of uncertainty, which is not the best basis for the development 
of a system as its economic benefit is the reason for its existence. In the case of 
XCON the lack of visible return and the cost of the system�s development has led to 
the project being cancelled three times before reaching its current status (Bobrow, 
Mittal & Stefik 1986). Currently however, XCON is seen as a great cost saver. It now 
generates returns in excess of its initial investment. PROSPECTOR (Duda et al. 1979) 
helped find in 1983 a deposit of molybdenum in Washington State, and then another 
in Alberta worth $100 million. In most cases the actual return of a knowledge system 
is more indirect, hard to measure and far more difficult to predict in the inception 
phases of a project. 

This bottom-line problem prevents organisations from seeing knowledge technology 
as a viable approach to solve their problems. The cost, risk, and lack of a clear return 
cause them to label knowledge systems as experimental technology, as it does with 
many techniques in AI. This limits the application of knowledge systems and makes 
companies refrain from using knowledge systems in mission critical applications. 
XCON in this sense is a tremendous exception, but also one that shows what the 
benefits can be when that risk is taken.  

This is a predicament that knowledge engineering finds hard to get out from. The 
problems have not merely consequences for knowledge engineering�s applications, 
but also negatively affect the science behind it and the cognitive research that lies 
behind the conception of knowledge systems. Changing this situation must be one of 
the most important goals for knowledge engineering research, from both a 
commercial and a scientific point of view.  

Some of problems that underlie the risk and the cost of knowledge system 
development have been discussed shortly in the previous sections. In the following 
section, these problems are summarized and discussed as to their cause. 

2.5.2  Knowledge Acquisition and Maintenance Problem 
�Because the physical symbol hypothesis works so well it has become not one 
philosophy among others but an absolute viewpoint among AI workers. Thus the 
conventional explanation of the difficulty in acquiring knowledge is that experts don�t 
communicate the knowledge very well.� (Compton & Jansen 1990). 

The difficulties associated with knowledge acquisition and maintenance have been 
mentioned above. In the basic model for knowledge acquisition, a knowledge 
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engineer fills a role as intermediary, a scribe between an expert and a knowledge 
mode. The difficulties are attributed in part to the communication and the 
representation mismatch between human and computer representations. 

Knowledge modelling itself seems to function best if approached as an iterative 
process, using a construct-review-feedback cycle. There seems to be no way around 
this inherent incremental nature. The feedback and ability to attack the defining of the 
knowledge by constructing and reconstructing is an essential part of the development. 
By perceiving the development of the knowledge model as a process of learning, the 
perception of the effort and tasks changes. When humans learn it is also in small 
increments The piece of knowledge is integrated into our existing knowledge and 
makes us better at what we do and provides a stepping-stone to more knowledge in 
that field. It is appreciated that the majority of knowledge, and more so, the 
knowledge that makes us true experts is acquired through application of knowledge, 
through practical experience. 

This also explains why the acquisition and maintenance of knowledge systems is such 
an arduous task, requiring a great amount of work. The nature of knowledge does not 
allow knowledge models to be created into existence but requires them to be 
rediscovered and explored as it were. This apparently is even necessary when the 
domain itself is static. Most of the development strategies mentioned seems to take 
the view that at a point in time, the knowledge system is completed and the remainder 
of the effort can be approached as maintenance. Studies of systems that have 
monitored and studied the maintenance of the knowledge models show that this 
maintenance changes and expands the knowledge considerably, beyond reach 50% of 
the total knowledge in the system a year. This indicates that contrary to the though of 
maintenance as a period where flaws are removed and incompletenesses adjusted for, 
it constitutes the period for a knowledge system where the actual effort is only just 
begun.  

This can be a considerable effort when this is compared to the effort of for example 
XCON. More than half of the thousands of rules are changed every year (Soloway, 
Bachant & Jensen 1987). The adjustments made to XCON are in part necessary as the 
environment changes. New products require new rules and adjustments and 
extensions to existing ones. New situations require different and novel solutions. The 
evolution of the environment must be reflected in such a knowledge system. Changes 
in that environment will also have their effect on the configuration of existing 
products. This will be true for all knowledge systems, and that type of infrastructure 
will be necessary for such systems. This also lends support to the perspective of a 
learning process. 

The GARVAN ES-1 system shows a different principle at work (Preston, Edwards & 
Compton 1993). Working on a static domain, the knowledge systems rules keep 
expanding and evolving. This system shows proof of the principle that using 
knowledge changes knowledge. These are not errors that are taken out of the 
knowledge system, but are categorised as knowledge discovery.  

Knowledge systems require a support structure that will update and maintain the 
knowledge system. This situation can be compared to that with databases. A database 
is not just created and then left to its own resources, it is maintained and kept in line 
with reality, in part automatically by its use. Special personnel are dedicated to the 
guard the quality of these systems, to ensure its consistency and quality. 
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In any case, the result from both knowledge acquisition and maintenance both show a 
problem with creating correct knowledge model, which has over time necessitates the 
use of iterative strategies. The assumption that the root cause of this must be found in 
the nature and origin of knowledge seems to be warranted. It would seem that current 
approaches have not paid this sufficient heed. 

2.5.3  Gap Problem 
A further problem lies in the development of user-friendly, industrial strength 
knowledge systems based on a knowledge model. There remains to be a great gap 
between a prototype and a commercial knowledge system, especially in the 
visualisation of knowledge systems, as compared to what users have become 
accustomed to in standard software (Crofts et al. 1989). This gap problem is a very 
serious concern for knowledge systems.  

Even after a successful knowledge model has been developed, the ability to translate 
this model into an application acceptable to the end user is tenuous. Besides 
misconceptions and neo-Luddite technophobe sentiments, the users often find the 
level of such applications to be below par. The acceptance of knowledge systems is 
not easy, as they do not restrict themselves to providing a service, but effect changes 
in the organisation and balance of knowledge. For knowledge systems this is perhaps 
even more true than for normal software systems. 

�It is too easy for us, the [knowledge-based systems] community, to bask in the 
technical ingenuity of our problem-solving solutions, and to forget that the whole 
system may be judged a business failure if the printer doesn�t work, or the 
communications software is incorrectly set up.� (Killin 1993). The quote nicely sums 
up what the critical nature of this gap is. Integration is one part of this equation where 
as the user interface is another important aspect. 

User interfaces are very important in knowledge systems for generally they are highly 
interactive and can involve clients with little or no computer experience. The design 
of the interface in consultation with experts and clients is an important part of 
knowledge acquisition. Since most knowledge is fairly transient, knowledge bases are 
important aspects of system operation. The interface for those maintaining and 
enhancing the knowledge model also needs careful attention. 

The effort to develop user-interfaces of a quality that most users have grown 
accustomed to and inclusion of auxiliary facilities such as integration with existing 
information systems can require even more work than the total effort of developing 
the knowledge model. This is discussed in literature (Crofts et al. 1989) but also has 
been observed in applications developed in practice in the context of the Knowledge 
Based Systems Department at TNO. The percentages seem to show that this 
additional development constitutes from 50% to 70% of the total development. The 
attention given by CommonKADS in modelling the environment as organisation and 
the technical environment is therefore certainly not misplaced. Usage of knowledge 
systems as components of larger systems is in this regard also an important aspect. 

The design- or model-based approaches mentioned earlier make it difficult to build 
systems fast, as a long track must be completed before the users can view the system 
and make comments on its form and content. This has as a side-effect that knowledge 
systems are cancelled before they can even make clear some of the benefits that they 
could have, before even a single user has seen it. The term �time-to-market� is perhaps 
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seen eyed with suspicion as it may seem only a commercial concern of developers, 
but it is nevertheless one of the important factors determining the potential success of 
failure of any software system. Moreover, as will be discussed later it has 
consequences beyond the commercial.  

This lack of acceptance and the long period before a first system or new increments 
are complete complicates the realisation of a learning process, as it increases the 
distance between the model on which the system is based, and the actual experiences 
that might be gained by the application of that model. This is in addition to the 
problems that arise from the dated knowledge when maintenance is not performed 
continuously that affects the quality of the system and therefore the use of the system.  

2.5.4  Brittleness Problem 
The brittleness problem is a further challenge in the development of knowledge 
systems. A knowledge system performs badly when confronted with problems just 
outside of its domain, and does not have the knowledge to handle. The knowledge 
precipice means that the system performs well enough on the plateau, but very badly 
just outside of that. Some think this is caused by lacking depth in the knowledge that 
these systems have, others consider the missing part to be a large store of common 
knowledge. 

The brittleness of knowledge systems, as explained as the fact that a knowledge 
system�s performance drops dramatically when confronted with problems outside of 
the normal domain of the system. This is seen as a difficult problem, for a knowledge 
system as application but also for the cognitive questions this problem raises. This 
problem does not affect the economics of knowledge system development in an 
important way. 

This brittleness displays the way knowledge systems are built, they contain sets of 
heuristic connections that allow conclusions to be reached based on known and 
inferred values. For example, if the Gram stain of an organism is negative then the 
bacteria causing the disease are encephalitis. This rule shows a bit of compiled 
knowledge. There are underlying causes why a stain is evidence for that type of 
bacteria. Nevertheless, the causal connection displayed here enables a medical 
diagnostic system to operate quite well. However, if the stain would be of another 
type or of an unknown type, a system employing these kinds of heuristic 
classifications (Clancey 1985) would not be able to dig deeper.  

One of the solutions to the brittleness is the creation of deep models of knowledge. 
This was already discussed in relation to second-generation systems. These systems 
get extensive models of their domain, going beyond the heuristic association. This 
enables them to fall back on such reasoning when necessary, and further allows them 
to explain their inferences in more detail. An extension of this solution is to create a 
large base of common sense knowledge. During a lifetime, a great deal of knowledge 
is acquired, to an overwhelming degree through hands-on experience on different 
fields. At many points in life, this exercises our commonsense. Therefore, through our 
application on many different fields do we acquire deep knowledge, grounded in large 
amounts of common-sense knowledge that connect the different areas of expertise.  

A variation on other reuse strategies, the CYC project aims to provide a knowledge 
base filled with all things both trivial and important that can be used as common 
sense. CYC is an approach to enable this deep reasoning, by providing a vast 
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knowledge base of facts and relations about all kinds of conceivable common sense 
reasoning (Guha & Lenat 1990). For example the statement �when it rains wear an 
umbrella� implies that �the performer is not dead� or that �the performer is human� 
(Lenat 1998). This is a form of default reasoning seen earlier in frame systems. 
Knowledge was entered by �handcrafting and spoon-feeding CYC with a couple of 
million important facts and rules of thumb.� By virtue of this knowledge, any system 
could access this knowledge base and assist the system in understanding certain 
things, proving a broader basis for action and understanding. 

Commonsense knowledge is created and required when one system crosses from one 
domain into another. Then such overlapping knowledge becomes more important. 
Therefore, this knowledge is learned as well and in this way. Could we function 
without this knowledge? On narrow domains, we probably can, and this is shown by 
many expert systems and by systems currently competing in Turing tests. Therefore, 
as knowledge systems start to cross domain borders, the need for such knowledge 
may become indeed crucial. Even then, it is added because it is required, not because 
it is a requirement for all systems. 

Thus, for symbolic approaches to knowledge engineering the brittleness of knowledge 
systems is seen as a problem, which it aims to solve by constructing deep reasoning 
models and/or immense caches of knowledge containing the largest amount of trivia 
ever compiled. From a situated approach, one could safely say that it is a non-
problem, as the environment to which the knowledge system is coupled may indeed 
require it to delve into issues previously not part of the systems range. This indicates a 
reason to change and add the missing knowledge, to let the system rise to the occasion 
later.  

2.5.5  Complexity Problem 
It was already said that knowledge systems are built to have �capabilities beyond 
those of conventional software� (Crofts et al. 1989). Knowledge systems operate on 
problems and support tasks that would require humans to have considerable training 
and experience to perform. Taken a different way, this means that knowledge systems 
beyond the problems already mentioned, fall prey to the fact that in many cases the 
problems they are required to support are complex.  

The complexity may surface in different ways, but there is not a set solution to be 
followed for the system, otherwise a knowledge system would not be required. The 
knowledge in many cases is incomplete or susceptible to change. It may not be 
possible to make clear-cut or consistent choices. This may even be due to matter that 
are not easily captured in fixed structures, such as company policy or political 
considerations. 

The problem may also have special requirements on what constitutes a good solution. 
For example, medical diagnostic systems such as MYCIN need to provide guarantees 
as to the quality of their diagnosis and cannot be seen to make lethal mistakes. A 
system to support that task with a 80% hit rate may be acceptable in some situations, 
but not in these situation. Other such requirements, such as the timeliness of the 
solution, further complicate an already difficult job.  

In addition, the fact that these system cross a border in tasking on roles normally 
reserved for humans, makes the need to tread carefully in developing the system and 
its presentation to its users all the more important. Furthermore, because of the nature 
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of the problems that these systems support the system are often one of a kind, with 
idiosyncratic issues and project specific aspects. This adds to the difficulty already 
experienced.  

2.5.6  Conclusions 
The economic and fundamental problems play havoc on the field of knowledge 
engineering, which until now has not been able to truly cash in on its success and 
enter the mainstream of software development. Each of the fundamental problems 
plays its part in the economic aspect of the problem. The main culprits are the 
knowledge acquisition and maintenance bottleneck, and the gap between a successful 
knowledge model and a professional, industrial strength knowledge system. These 
two problems define the majority of the risk and cost associated with knowledge 
system development.  

The approaches found in knowledge engineering literature show that most of the 
attention to these problems has been at the level of methodological solutions. This is 
concentrated on attacking the economic problem directly. This has led to solutions 
primarily directed to the method of knowledge engineering. By use of proper 
methodology and design, the problems may not be solved, but can be rendered 
controllable and predictable. It allows spreading the cost and risk, and thereby creates 
at least more clarity in the investment side of knowledge engineering.  

Approaches to solving the fundamental problems have been singularly unsuccessful in 
reaching any results but to rein them in. The knowledge acquisition and maintenance 
problem is treated as an intrinsic, even defining, part of knowledge engineering. 
Problems with translating a knowledge model to a successful system are seen as 
accidental, not the responsibility of the science of knowledge engineering but that of 
the tools builders.  

The conclusion is that the usage of the symbolic model of cognition combined with 
the product-based engineering view on the development of knowledge systems are 
complementary in their needs and qualities, but both run counter to dynamic nature of 
knowledge and its origin in learning. Current approaches to dealing with these 
problems are directed towards overcoming this character rather than indulging it. 
They orient themselves towards solutions of a pure engineering character, by 
employing schemes though risk-driven iterative methodologies.  

2.6 Summary and Analysis 
This section summarises the different aspects of knowledge engineering that were 
presented. This shows the ingrained nature of the use of the symbolic theory of 
cognition and the engineering view of knowledge system development. The problems 
of knowledge system development are however not solved by current approaches 
stemming from this background. This section therefore proposes an alternative 
direction based on this analysis of the problems. 

2.6.1  State-of-the-art 
The view given by the previous shows a current set of best practices that combined a 
theory of cognition, an architecture, a series of knowledge representation techniques 
and a process for developing a knowledge system. Two main assumptions lie behind 
this, first the physical symbol systems theory of cognition, second trust in engineering 
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as a provider of trustworthiness, efficiency, effectiveness and professionalism. These 
two assumptions determine much of what is now the state-of-the-art in knowledge 
engineering.  

The basic architecture of the earliest and first-generation knowledge systems was 
constructed for change, compartmentalising the changeable part. The architecture 
used for many of the current second-generation systems is no longer based on this 
division, but is created per project, much like conventional software. Ever more like 
software engineering, each of these systems is created based on a knowledge level 
model, independent of the implementation platform. This further distances the design 
from the realisation.  

Analysis of the knowledge representation techniques that are used show that the 
techniques used are well suited to building knowledge systems. They provide support 
for creating and developing different models, and formalising concepts and ideas. 
Support for changing the knowledge represented in these different forms is limited, 
and in many cases they do not scale well. Some examples of alternatives that do 
provide this are given but these are outside of the mainstream. The representations 
allow formulation of knowledge and really only allow for intermittent removal of 
errors, not large scale change and evolution. The representations are also deficient in 
the support for the discovery of new knowledge. The focus clearly is on modelling an 
existing, static situation, rather than supporting a quest for improved understanding. 

An additional complication here is the use of a singular knowledge representation 
technique forces translation of concepts as seen by the expert into an interpretation in 
that one format. This forces the use of a professional proficient in that representation, 
and excludes direct involvement of domain experts in discussing and improving the 
knowledge model. 

Knowledge engineering approaches show a progression from ad-hoc and rapid-
prototyping towards methodological sound procedure. This coincides with the move 
towards second-generation systems. In part, this move was pushed through a crisis in 
knowledge system development. On the other hand, developments in software 
engineering already had taken this path, stressing methodological control and 
specification of software using design. The field of software development had gone 
through a period of crisis too, and had taken the ideals from other engineering fields 
to improve the product that it delivered and the process used to develop it to change 
into software engineering (Endres 1996). Much faith is placed in ability of 
methodological advances to solve the problems that are experienced.  

The current state-of-the-art in knowledge engineering has seen limited success in 
solving the current problems, and subsequently has failed to make significant inroads 
into mainstream software development. The main practical problem is the precarious 
and unclear economic situation concerning the development of knowledge systems. 
This problem hinders the use of knowledge systems as viable technology for many 
organisations. This problem is caused mainly by four fundamental problems in 
knowledge system development, namely the knowledge acquisition and maintenance 
problem, the gap between a successful knowledge model and a professional industrial 
strength knowledge system, the brittleness of knowledge systems and the intrinsic 
difficulty of many of the tasks they are employed for. 

The brunt of the effort to overcoming these difficulties in knowledge engineering 
addresses the practical economic problem. The measures are aimed to improve the 
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bottom-line by reducing the cost and limiting the risk. These measures derive from 
approaches to solve similar problems in other engineering disciplines. Introduction of 
prefabricated models and stressing reuse of knowledge aims to cut cost of modelling. 
Skilled professionals produce the models and system effectively and efficiently. 
Improved development methodology aims to make the development more 
standardised, transparent and most of all, manageable. Risk management strategies, 
such as risk-driven incremental development, limit the effects of the risks that are 
experienced. These measures are in part inspired by the physical symbol systems 
hypothesis, and partly by engineering disciplines, especially software engineering. 

Coming to a final identification of the problem, it would seem that the total of 
assumptions that underlie the current state-of-the-art in knowledge engineering have 
been held for fact for too long. But rather than faulting the researchers involved in 
ardently trying to further the science and practice of knowledge engineering, the 
problem seems not to lie with one single element, or with the combination of each of 
the individual approaches.  

Rather, the assumptions underlying knowledge engineering that inspire the current 
explanations of the problems and the solutions derived from them are at fault. 
Knowledge is treated as alike to the natural laws of the universe. It is absolute, precise 
and unfaltering. Once jotted down, the can remain much the same. This is not an 
explicit statement on the part of the professionals but stems from their reliance on the 
symbolic theory of cognition, which defaults to such assumptions. A moving target also 
falls outside the parameters of most engineering, which tries to fix as much as possible.  

When knowledge system development is treated as the development of an artefact, for 
example a building, as a design based engineering approach, then these assumptions 
come as natural. The development of a building, where an architect spends many 
hours creating designs and drawings, talking with the client, introducing vision and 
using models to strengthen the conviction of the client that this is indeed that what is 
required. Building such a house, introducing technical finesse and other realistic 
concerns, leads to a finalised product that can be kept in a good state of repair for 
years to come. This is how knowledge system development is treated today. Of 
course, new additions can be made to the house. Making changes or creating a 
framework where additions can be made over time is also possible, as far as specific 
types of change can be predicted. However, prediction requires knowledge of the 
future and such knowledge is in many cases in short supply during the design phases 
of a knowledge system. Perhaps, the development of a knowledge system is not 
comparable to the development of other engineering products. 

2.6.2  Alternative Directions 
An alternative perspective is provided by the situated cognition which combined with 
a de-emphasising of the engineering gives a view of knowledge system development 
more akin to the kind of development found in science. The development of a model 
as a current best theory on knowledge is approached as a never-ending exploration 
and search for more insight. The scientific theory is a vehicle for clarifying the inner 
working of a domain as much as it provides a basis for products as embodiments of 
that theory. �Constructing a knowledge [model] is often a scientific effort of 
empirically constructing and testing models� (Clancey 1997, pg. 39). 

The direction that a solution according to this perspective must therefore be sought is 
an approach that allows the nature and origin of knowledge as dynamic and open-
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ended to be indulged rather than overcome. In other words, knowledge engineering 
must be made into a learning process. It is not possible to transpose knowledge out of 
one knowledge model into another one, without changing the meaning of that 
knowledge. Therefore such an act creates new knowledge in a sense unrelated to the 
previous incarnation. The consequence of this is that the assumption that any 
knowledge existed a priori must be relinquished, and that every new knowledge must 
be learnt anew. A part of this can be finding a brand new form for tacit knowledge 
based on the bias already present in the explicit knowledge at that point. 

Perceiving learning as a requirement for the creation of any knowledge model and 
placing this at the forefront of any approach to knowledge engineering created new 
possibilities. For one, the possibilities to exploit this character of knowledge are 
opened up rather than solely constituting an opposing force to be overcome.  

According to Menzies (1998, 1996a) weak situation cognition means a knowledge 
system development methodology must focus on how knowledge models are built and 
changed. This opening move perhaps is in the right direction but not strong enough. 
Knowledge engineering must be seen as steering and managing a knowledge 
acquisition process, with the occasional release of knowledge system as a product, but 
the actual product in the making will be an evolving model of knowledge. The 
knowledge system then becomes only the medium by which this model is made 
available to its users. The focus must be on making knowledge engineering a process 
of insight, reformulation, change and application leading to further insights.  
Knowledge engineering must be inspired by another kind of metaphor, towards the 
discovery of new insight. This should be the global direction for a solution to the 
problems, at all levels in knowledge engineering. 

While this involves some major adjustments, these adjustments are start in adopting a 
different perspective. Many of the techniques that are employed to create models of 
knowledge are in principle sound, but they may have to be employed in other ways. 
This may well have consequences for current research approaches into reuse based 
strategies and design based approaches. Beyond discussing how these models can be 
called forth to bolster the productive in constructing knowledge models, it is also 
necessary to examine how such initial structures and designs can be adapted and 
evolved to follow the change of the tide.  

Further adjustments are necessary in the methodologies used, to strengthen their 
learning character, in the roles that are played by the different people involved in 
knowledge system development and the tools that are employed. This to allow them 
to not only express knowledge but also change these models over time, reach insights 
into the modelled knowledge and develop professional applications with them. 

The situated nature of knowledge is only a possible explanation for the problems that 
are currently experienced. Accepting it entails a different outlook on knowledge 
systems and a different approach to knowledge engineering. To differentiate between 
these two perspectives it is necessary to be able to verify the correctness of the 
proposed explanation of the problems. To do that it is necessary to ascertain whether 
an approach to knowledge engineering based on insight, learning, and science enables 
the circumvention of these problems. 
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2.7 Conclusions 
This chapter realises the first step in the program from the first chapter: identify the 
problem and provide a direction for a solution. In the previous sections of this chapter, 
the field of knowledge engineering was reviewed, discussing cognitive models, 
elaborating the properties of knowledge systems, examining knowledge 
representation techniques and exploring approaches for knowledge system 
development. In part, this enabled a discussion of the problems in knowledge 
engineering, and supported the analysis leading to an explanation of these problems. 
In addition, alternative views were voiced to prepare the formulation of a direction for 
a solution to these problems.  

The main culprit behind the problems that are experience is seen to be the reliance on 
an engineering metaphor to inform and inspire the field of knowledge engineering. 
This causes knowledge engineering professionals and scientists to continue to employ 
approaches from software engineering and other engineering field to solve the 
problems to do with the bottom-line of knowledge engineering. The underlying causes 
are fundamental difficulties with the nature and origin of knowledge that disallow 
approach that attempt to create knowledge into existence. Therefore, a solution is 
proposed that aims to augment the accomplishments of the engineering metaphor with 
those inspired by a scientific metaphor, to make of knowledge engineering a learning 
process.  
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Chapter 3  
Towards Continuous Knowledge Engineering 

One cannot attain the limits of craftsmanship, 
And there is no craftsman who acquires his total mastery. 

� Ptahhotep, c. 2350 BC  

The previous chapter identified the problems of knowledge engineering and targeted 
the underlying engineering metaphor as a common thread in these problems. Instead, 
it offered an insight discovery based on science metaphor as a suitable replacement. 
This chapter describes the continuous knowledge engineering approach inspired by 
that metaphor.  

The first section covers the use of metaphors, and its role in knowledge engineering. 
Section two gives an outline of the proposed solution showing how it aims to generate 
and support the discovery of insight, by proposing a number of guiding principles. 
The third section describes the path from this global view to a number of realisable 
measures. It asks what the consequences are for different aspects of knowledge 
engineering. Continuous knowledge engineering changes the roles of people involved, 
the view on the character of the project, the generated products, and the manner in 
which the development is structured and managed. This leads to a number of 
requirements for the development tools, to support in making these changes practical 
and viable. Following in the fourth section, techniques and technologies are described 
that can be used to implement these changes at the tool level. The fifth section 
describes an evaluation program to enable a validation of the method through a 
demonstration in a number of case studies. The last section summarises the subjects in 
this chapter, paying special attention to the elements that will be the basis of the next 
chapters.  

3.1 Metaphors 
Science uses metaphors frequently to facilitate explanation of new concepts or even 
steer the incursion into new territory. This section discusses the role of metaphors in 
knowledge engineering and explains the difference between the engineering metaphor 
and the scientific metaphor for knowledge engineering. 

3.1.1  Role of Metaphors 
In a metaphor such as �the world�s a stage�, the statement modifies the normal 
meaning of �world�. The metaphor focuses the attention on certain prototypical 
aspects of the modifier and projects them onto the subject. This concentrates on their 
intrinsic similarity or asserts that a similarity exists. By the juxtaposition of concepts a 
metaphor conveys a shared body of knowledge by adjusting the meaning normally 
associated with the words. This facilitates the rapid transfer of information. Perhaps 
for this reason, humans are quite adept at using analogy and metaphor, expressing 
themselves in sentences that convey more than their literal meaning. This implies a 
strong, shared context.  
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In general, the power of metaphors is that they are direct and can be grasped as 
conceptual wholes. The unspoken implications of the analogy facilitate explanation of 
ideas as a whole. By application to known elements to create a they focus on a 
particular aspect, such as �men are pigs�. They can function as an analytical tool to 
bring certain important aspects to the fore, by a simple modification of an original 
subject. 

A metaphor also allows new unknown ideas to be expressed, like a �horse-less 
carriage�, explained in terms that are known. This assists in the communication and 
helps understanding such new ideas. In fact, in this role, metaphors are also used to 
structure and inform new approaches, as is evidenced by the early beginnings of the 
development of flight. The metaphor of the bird inspired the first flying machines, 
although now there is only a superficial semblance between airplanes and birds. In the 
beginning however, different inventors and scientists would not hear of any attempt of 
flight that did not share significant features with birds. The inspiration of the bird was 
an important factor in the starting the eventual development of flight, by providing 
preliminary answers to questions that were unanswerable at the time. 

In software engineering and knowledge engineering alike, metaphors have also been 
used to make sense of areas that are little known and have only tenuous connections 
to concepts familiar to the normal physical world. The role of metaphor in this context 
has been subject of many discussions. �A software metaphor is more like a searchlight 
than a roadmap. It does not tell you where to find the answer; it tells you how to look 
for it. A metaphor serves more as a heuristic than it does as an algorithm.� Software 
engineering for one has been compared to penmanship, building, farming and oyster 
farming (McConnell 1993). Even the term software is a metaphor (Bryant 2000a). 

The strength of a metaphor depends on a number of things. First, there is the number 
of features that the metaphor shares with the actual subject. Secondly, a metaphor can 
be especially appealing. Finally, merely repeating a metaphor can turn it into a self-
fulfilling prophecy. This further depends on the measure that a metaphor can support 
the rallying of people under a common flag. The strongest metaphors are those that 
relate well-known things to things that are relatively unknown. These allow making 
immediate jumps towards new insights. 

Sometimes areas of inquiry are proposed that turn out to have been misleading, in 
which case the metaphor has been overextended. Of course, a metaphor should not be 
treated as complete literal truth, as without attachment to reality it soon acquires the 
features of a myth. This can occur by mere repetition or appeal. Metaphors can also 
start to lead a live of their own where their function as a guide into the unknown is 
starting to be taken literal, evolving to ever-greater rigidity (LaFrance 1997). A 
metaphor used for a long time can seem like truth, familiar as it is in connotations and 
implications.  

Therefore, while a metaphor can be a strong tool, and provides for easy 
communication, focus on important aspects, and informs approaches into the 
unknown, they also pose a danger. The momentum associated with a metaphor as 
inspiration for an approach can create a long lasting allegiance to the metaphor. This 
may lead a metaphor to be followed well after its time is up.  

The history of science can be described as a series of substitutions of one metaphor 
with another one (Kuhn 1970). This substitution is not one from wrong to right, but 
changes from �worse� metaphors to �better� ones, towards more inclusive and 
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suggestive ones. In fact, many models that have been replaced by better models are 
still useful. Engineers still solve most engineering problems by using Newtonian 
mechanics even though, theoretically, Newtonian dynamics have been supplanted by 
Einsteinian theory (McConnell 1993).  

3.1.2  Engineering Metaphor 
Artificial intelligence relies heavily on metaphors, both to explain the conceptual 
approach underlying different techniques and to inspire new approaches to 
computational intelligence. Metaphors are productive because many concepts in AI 
are hard to explain and understand. Often based on biological counterparts, like neural 
networks, artificial immune systems, genetic algorithms, etc. (for example, see 
(Timmis 2000)), it provides a grounding for such new approaches.  

Knowledge engineering also is fraught with the use of metaphor, because the terms 
used in their pure sense mean so little to others. Even the term itself contains a 
metaphor with the engineering known from other disciplines. Knowledge acquisition 
has been likened to mining (Hayes-Roth et al. 1983), knowledge system development 
equated to the crafting of a ship (Waters & Nielsen 1988) and a knowledge system 
compared to an expert in a box or on a disk (Laurie 1992).  

Engineering is designing and making artefacts to have desired properties (Simon 
1982). The design entails a detailed specification of an artefact that conforms to the 
specification in a justified manner, including matters of economics and practicality. 
Sound engineering principles mean to ensure that the specifications are correct and 
that the development of the artefact based on the specification remains to be justified 
and of good quality.  

In engineering fields such as structural engineering, a thorough analysis of the 
intended project leads to the creation of a detailed design. This complete design is a 
blueprint that specifies every nut, bolt, dimension and material for every part of the 
artefact to be developed, including detailed projections of the entire construction 
process. These blueprints are created before one nut is attached to a single bolt, and 
are considered fixed throughout the realisation of the plan. This way of creating an 
artefact based on detailed specifications is not amenable to dealing with change, or 
support for discovering the actual specifications. The process of creating such a 
detailed specification is a very lengthy and expensive process, and can consume as 
much (or more) time and money as the actual construction of the system.  

Furthermore, the work towards this artefact is finite, and is performed by 
professionals that are specialists in their engineering field and have knowledge of 
these engineering principles. Different specialists may be involved in different stages 
of the project. The process of development can be incremental in approach, and apply 
risk-driven methodologies, but this is a measure solely aimed at dividing the work in 
controllable parts and compartmentalisation of the work that is done. Verification of 
the products quality is in relation to the specification, as its objective measure of 
quality. 

What this shows is an engineering practice that is skilled at creation, but ill-equipped 
to manage change. In the meantime, the world turns, and directions and needs may 
change. The engineering approach is therefore less suited to mutable specifications, 
and changing conditions in the world. It most certainly does not fare well when the 



3.1 Metaphors 65 

  

operations used to map requirements onto specifications that were good yesterday, are 
bad tomorrow. 

In the previous chapter, different aspects of the practice and science of knowledge 
engineering were discussed. The conclusion was reached that there is an engineering 
metaphor that underlies the current state-of-the-art in knowledge engineering. The 
cognitive models, architecture of current systems, aspects of the knowledge 
representation techniques and the view of the process of knowledge engineering all 
clearly have this aspect. There are many shortcomings in using the engineering 
metaphor to develop the methodology for knowledge system development. While 
some of the problems may be perceived as intrinsic or peripheral, within the view 
provided by the metaphor, they change in character. 

The term knowledge engineering combines scientific, technological and 
methodological elements (Hayes-Roth, Waterman & Lenat 1989) derived from 
software engineering. Software engineering has mimicked many of the attributes of 
other engineering fields such as structural engineering (Endres 1996). Even software 
engineering is experiencing the backlash of adopting pure engineering measures to an 
artefact that is not analogous in form, function and development needs (Fowler 2000, 
Bryant 2000a, 2000b). This has led to several lightweight methodologies that aim to 
follow the change in requirements, and use it to improve the product, rather than resist 
it and force development in a preset direction, e.g. DSDM (Dynamic System 
Development Method) described in (Stapleton 1997), Extreme Programming (Jeffries, 
Anderson & Hendrickson 2001), etc. 

Differences in the character of a knowledge system when compared to other man-
made artefacts show it up-to-now to be far less clear what the requirements are. This 
makes it hard to describe them upfront, and likely to be far more susceptible to 
change. Within the engineering metaphor view, knowledge is treated as a static 
commodity that needs to be used as a semi-manufactured product. The engineering 
metaphor�s interpretation of a knowledge system starts to break down, and measures 
to attack the problems in knowledge engineering that are solely inspired by 
engineering metaphor and associated thoughts, will not be guaranteed to solve these 
problems. The shift away from the engineering metaphor is rendered difficult because 
of the pervasive assumptions regarding the nature of engineering and the role of the 
engineer.  

3.1.3  Scientific Metaphor 
In a simple view of science, scientific models formulate experiences and observations 
about the world. These models are valuable because they describe observed patterns 
and predict future phenomena in detail. Furthermore, they have engineering value, 
enabling us to devise artefacts with known attributes. Therefore, an important aspect 
of a scientific theory is to allow development of the theory, permitting inspection, 
questioning and changing of these scientific models. The value of a theory is not 
simply in how well it corresponds to past practice, but in how well it serves to guide 
and develop future practice. 

Learning is changing ones behaviour based on previous episodes to improve 
performance on later episodes. It is considered an important aspect of intelligence, 
and some it equate with intelligence. Much of what humans do is arranged to create 
opportunities to learn. Science can be sees as a human invention to support learning, 
and catch faults the justification of our actions based on current understanding. 
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Science learns by modifying theories that try to explain the world around us, and that 
are tested against the environment. A change in theory allows new predictions to be 
made, leading to new tests to verify it further and drive its development, in a form of 
co-evolution. While some tests lead to minor change, like adding an additional 
decimal to some physical constant, the most important ones advances are made 
through the discovery of a new insight. Testable theories are required because they 
incorporate learning opportunities explicitly, at the current boundary of knowing and 
predicting.  

in-sight (in�sit�) n. 
1. clear or deep perception of a situation 
2. a feeling of understanding 
3. the clear (and often sudden) understanding of a complex situation 
4. grasping the inner nature of things intuitively 

Figure 3-1 Dictionary Entry for Insight (WordNet 1997) 
The word insight is almost strange in this context and has connotations that are related 
more to religion than to science. An insight is the feeling, the process and the result of 
coming to understand something. Insight provides a consistent and complete view of a 
system from seeing only some of the parts. It constitutes a moment of clarity, as a 
sudden spark of immediate comprehension, recognising the inner consistency of 
things. Insight is one of the fundamental building blocks in the development of human 
understanding of its surroundings and itself. Scientific progress is dependent on new 
insights to originate new avenues to explore, to create the very stepping-stones for 
generations to come.  

A new insight then means discovering new abilities and understanding, a deepening 
of knowledge. Perhaps more even than undirected creativity, a sudden insight can 
provide many new lessons. Learning continues from recognition of events, of 
realisations of some structure or pattern. Those expectations realised and those failed, 
from the perception of anomalies and incongruities, of exceptions and serendipitous 
events. The discovery and generation of insight requires a continuous process of 
successive adjustments and critical feedback (Kuhn 1970). 

This can be taken to mean that a scientific theory only provides for insight discovery 
when it is falsified or justified. This view does not explain why theories are 
sometimes supplanted by others theories identical in predictive strength, but 
considered more elegant than its predecessor. Rather the theory that provides most 
opportunities to move forward, to gain additional insight will be favoured. Every 
phase in the development of a scientific theory, not merely the moment of falsification 
can give rise to new insights. Opportunities to discover new insights are present 
throughout. Multiple viewpoints on the same material can clarify inconsistencies.  

Scientific models thrive through application of their ideas, both to justify and falsify 
their content as well as to derive practical value from them. A scientist examines the 
results of these applications and is able to verify the scientific theory used. It can be 
adjusted when predictions made by the theory do not fit reality. When sufficient 
adjustments are needed, a restructuring of the model may be necessary. From the 
failures of the model as well as the subsequent adjustments and restructuring, a new 
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insight will spring forth that must be incorporated and justifies the restructuring as 
well as give it its future direction. In this way, old knowledge gives way to the new. 

3.2 What is Continuous Knowledge Engineering? 
In the previous section the scientific metaphor and the notion of insight discovery was 
deepened. From this continuous knowledge engineering is posited as an alternative 
approach to knowledge engineering inspired by this metaphor, based on a number of 
guiding principles.  

3.2.1  Interpreting the Metaphor 
Since applying the scientific metaphor to knowledge system development implies 
several things at once, this section attempts to unravel some of the more important 
aspects. At the same time, some of the intrinsic aspects and requirements of 
knowledge system development are addressed.  

Science is gathering knowledge, derived from observation, study, experimentation 
and the development of artefacts with the intent of determining the nature or 
principles of the subject that is studied. It is a continuous process of successive 
adjustments and critical feedback (Kuhn 1970). The purpose is to increase insight and 
understanding of the world that surrounds us in the form of a theory, that others to its 
veracity can inspect and provides a basis for further improvement. From this 
understanding, artefacts based on this understanding are created, for example through 
engineering. Beyond the practical use of these applications, this can also be a source 
of new insight, feeding into the theory. 

Applying the scientific metaphor to the development of knowledge systems changes 
the perspective from devising an artefact, to facilitating the development of deeper 
understanding and putting this into a model that can be applied. In this view, 
knowledge system development is as a learning process, starting from nothing. The 
knowledge model is made from scratch, with knowledge discovered through insight, 
deriving from working with and applying the models. To embrace the character of 
knowledge, the development of knowledge system therefore needs to be arranged as 
learning a domain anew, grow from nothing to competence, and then maintain this 
level of ability.  

In effect, this means turning knowledge system development into sustained 
knowledge acquisition. It makes knowledge engineering a process of learning, by 
supporting the ability to discover new aspects of knowledge and model a changing 
corpus of knowledge. The insight discovery aspect of the scientific metaphor makes 
knowledge engineering a process of successive change and application with the intent 
on generating feedback for further changes. Knowledge in this view is not excavated, 
captured, courted, or created, but discovered. This involves the development of 
knowledge models which, if they are to explain inconsistencies which exist with 
respect to earlier knowledge models, must go beyond existing knowledge and 
therefore require a leap of the imagination. With every change, a possibility to learn 
more is created, and provides for the discovery of new insights. Every failed test can 
provide new knowledge. 

Voices from the past also go towards what is being expressed in this chapter. Bachant 
and McDermott (1984) argue that an �expert system will never have all the 
knowledge it needs and that it is essential to introduce a system into routine use in 
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order to uncover the inadequacies in its knowledge�. Lenat and Feigenbaum come to 
similar conclusions: ��standard software design methodology cannot build a 
program �in one pass� to perform the task. However, as the developing [knowledge] 
system makes mistakes, the experts can correct them, and those corrections 
incrementally accrete the bulk of the hitherto unexplicated rules. In this manner the 
system incrementally approaches competence and even expertise� (Lenat & 
Feigenbaum 1989). These statements were made before the second wave in 
knowledge engineering was felt.  

The consequences from the metaphor also influence the perception of the knowledge 
system itself, changing to a mere application of modelled knowledge. In this view, a 
knowledge system is more properly divided into the knowledge model and the 
knowledge system that applies the knowledge. The knowledge model is the abstract, 
formalised, current state of knowledge on the domain, as an operational theory. The 
knowledge system allows the application of that knowledge model; the hypotheses 
and assumptions contained in the knowledge tested each time the system is used. Any 
comment on the system, immediately is a comment on the knowledge model and an 
opportunity to learn and move forward. Furthermore, the knowledge system then also 
has two kinds of users, the system-user who apply the knowledge to a task using the 
knowledge system, and the model-users who use the knowledge system to further 
their knowledge and improve the knowledge model. This requires the knowledge 
model to be both operational and remain comprehensible. 

3.2.2  Principles of Continuous Knowledge Engineering 
The alternative approach to knowledge engineering proposed in this chapter 
concentrates on continuity, which it perceives as the essence of this interpretation of 
the scientific metaphor. Full understanding cannot be attained at once. From inception 
to decommissioning, a knowledge system should be successively adjusted and 
reviewed critically. Each successive adjustment should accommodate the latest 
insights. These changes should be open to critical review, both from the side of the 
model as well as the application. Therefore, from early on a model should be created 
and made operational in a knowledge system. Verification and testing can then be 
used to make sure knowledge does not get lost rather than validate the knowledge, 
although a use it or lose it principle does apply. 

While the metaphor inspires this approach, the needs and requirements of developing 
a usable knowledge system in an economic fashion, to a number of desired properties 
also plays an important role. To make the approach viable and practical, an attempt is 
made to use current techniques and technologies but within an alternative perspective. 
The concept of continuous knowledge engineering combines some of the notions 
from scientific method and other learning systems with the current understanding of 
knowledge engineering and software engineering. 

Continuous knowledge engineering is a common set of ideas that facilitate a learning 
process. It involves a change of perspective on the deployment of current 
methodologies, tools and techniques. The goal of this approach is to change the 
conceptualisation of knowledge engineering from a constructive process with a fixed 
end goal, to one of continuous development. The intent is not to replace current 
practices, but to augment them and deploy them in a different way.  
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3.2.3  Cyclic Development 
Engineering often applies divide-and-conquer techniques on tasks by splitting them 
up into meaningful parts and planning with these smaller elements. Different 
approaches exist to spread the effort in any project over several different phases, each 
with its own timeframe and goals. The basic models of software development are 
code-and-fix, waterfall, transformation, evolutionary, and spiral models of 
development (Boehm 1988). The methods differ in the way that they divide the work 
and order the different kinds of steps.  

The essence of the approaches can be divided into incremental and iterative. 
Incremental approaches divide the task into smaller sections that can be seen as 
independent additions, e.g. waterfall approaches. Iterative schemas go through all the 
motions each iteration, e.g. evolutionary approaches. In the latter category, the 
difference is in the size of each iteration. The spiral model of development is an 
approach that mimics the other models, using a risk driven approach and based on the 
dynamism of the situation.  

Iterative development means that each step is based on a previous step. Lessons 
learned in the current iteration better enable and inform the tasks in next ones. This is 
the reason why many so-called evolutionary or incremental software engineering 
methodologies favour it to enable risk- or functionality driven approaches (Jacobson, 
Booch & Rumbaugh 1998, Stapleton 1997). As was discussed in the previous there is 
already a tendency to employ iterative strategies in other approaches to knowledge 
engineering. However, in these approaches the iteration mainly takes place in the 
design phases, and not through cycles of implementation, application and design. 

The principle of cyclic development means each of the changes made is translated to 
the knowledge model, and immediately deployed into the knowledge system. The 
term cyclic is introduced to denote approaches that are capable of running though all 
the motions for each single change, leading to many, very small increments. In many 
situations a solution to a problem cannot be created, but must be revealed through 
experimentation and exploration. In addition, many solutions are formed in reaction to 
practical problems. These problems give focus and direct the development of 
knowledge through experience. Furthermore, only when the knowledge is made 
explicit can certain epiphanies take place, clarifying and illuminating old problems in 
a new light. Only by positioning the knowledge models in the real world, where they 
are confronted with real problems and real solutions can we be assured of the quality 
of that model and gain experience leading to novel insights. Anything less than this 
may provide a candidate with which we can delude ourselves. These statements hark 
back to the grounded program defined by Brooks (Brooks 1991a).  

The ability to incrementally develop and ripen a knowledge model to increasingly 
incorporate new knowledge and improve on the knowledge, as it is already present in 
the system is the pivotal element in the approach. Knowledge builds on knowledge, 
like in real-life. True insights can only be gained working and testing our incomplete 
models of the world and discovering imperfections in its understandings. The focus of 
continuous knowledge engineering is therefore on fast and frequent delivery of the 
knowledge system. In this way, the approach becomes based on the knowledge model 
and the knowledge system, rather than on requirements or models. This is more 
flexible as the system does not have to constitute a complete solution, as long as it 
demonstrate evolution and can be used a basis for evaluation of the progress and 
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direction of the development. To converge on an accurate solution it is necessary to 
use iterative and incremental development strategy.  

To work with confidence in a cyclic strategy it is important that changes that are made 
can be reversed. It must be possible to accept sometimes that a wrong path has been 
taken, and that it is necessary to return to an earlier point in the development. In some 
cases, this may lead to a concern that much work is discarded. The safety of being 
able to return to an earlier point in the process creates a freedom of movement during 
development that encourages experimentation, exploration and discovery. In addition, 
because of the relative regularity of the increments, the size of the setback may be 
small. This in particular will ensure that only recent work needs redoing.  

3.2.4  Active Participation 
The principle of active participation means that the community of stakeholders, i.e. 
the experts and users, are involved directly in the development of the knowledge 
model. Therefore, it moves away from development solely by trained professionals, 
such as knowledge engineers are. Rather than transfer the domain knowledge to a 
knowledge engineer, it transfers knowledge engineering knowledge to the modellers 
and users. 

Active participation focuses on getting the experts to be actively involved in 
modelling knowledge. This can be in unison with a knowledge engineer, but the 
ultimate intent is to get them working directly on the knowledge model. The wish to 
have experts to participate in the knowledge engineering has existed for long as it 
represents certain financial and practical realities (Shapiro 1987). The idea itself is as 
old as McCarthy�s advice taker (McCarthy 1968).  

Being involved in the modelling of knowledge yields additional insight in that which 
is modelled. The current person engaged in this role is the knowledge engineer. The 
practical experience of the expert should give the expert a better basis to learn and 
discover new lessons. It makes the expert the person best able to appreciate the 
possible insights to be gained from the development and application of the knowledge 
model. The expert is grounded in the field and brings practical experiences to bear 
upon the model. The expert will also gain the most benefit from interacting with the 
model. Making the understanding of the task and the domain explicit will aid the 
expert and deepen his own knowledge. 

The knowledge engineer should focus on the structuring of the knowledge system and 
facilitating the development of the system. Furthermore, the cyclic way of working 
would require the knowledge engineer to be either constantly connected to this single 
project. This would be possible if the effort was small but regular or when the 
knowledge model would be large enough to warrant such singular attention. This 
would not constitute effective use of such high priced and rare individuals.  

Knowledge modelling by the expert is not a common approach in AI. The work on 
RDR systems mentioned earlier comes closest. To a great degree, the experts have 
maintained these systems, for a few minutes each day. They were involved in all 
activities concerning knowledge formulation and formalisation (Compton et al. 1989; 
Compton & Jansen 1990, Compton et al. 1992; Preston, Edwards & Compton 1993). 
A similar endeavour plays a part in the Spark-Burn-Firefighter (SBF) experiment 
(Marques et al. 1992). The Spark system selects a task framework with the user. The 
Burn system then specialises the framework and places default knowledge into the 
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tasks of the framework, based on choices made by the user. The Firefighter then tries 
to acquire new knowledge from the user and locate errors to iterate further with Spark 
and Burn. The whole SBF framework aims to ease the task of the �non-programmer� 
to create and specialise programs and maintain them.  

3.2.5  Direct Application 
The principle of direct application means two things: a knowledge models should be 
consultable at any moment in its development and the knowledge system developed 
around a knowledge model should be a professional, industrial strength solution. 

In the first sense, this means that at any point the knowledge system must be able to 
be consulted, to verify the system through testing and running cases through it. The 
second sense is quite comparable, but directed towards development. Then direct 
application means that the knowledge model can be deployed to its intended users 
early in the development and after that with each new increment. Simply said, this 
means that a system based on a single rule should be both consultable and deployable 
with ease, and that changes to the knowledge model are published in rapid succession. 
Furthermore, the quality of the systems should be such that it is acceptable to its 
users.  

One of the main priorities in development of knowledge systems is that someone will 
use the system � it has, at least, to meet with interface standards that end-users are 
expecting from traditional application programs (Crofts et al. 1989). The fitness of the 
knowledge system to the expectations of the users is an essential criterion for the 
acceptance of the knowledge system and the knowledge it contains. This kind of focus 
on �business purpose� also features in other incremental or evolutionary development 
methodologies such as DSDM (Stapleton, 1997). There is no reward for delivering the 
best product, just for the delivering the right solution.  

3.2.6  Practical concerns 
When discussing the approach based on a scientific metaphor and detailing the 
principles on which it should be based, this was mostly forwarded from the concept of 
applying another metaphor. Other, more practical concerns also play a role. The 
question is whether a continuous approach to knowledge engineering is better capable 
to deal with the character of knowledge in real life, as well as with the practical and 
economic concerns of knowledge system development.  

The continuous knowledge engineering approach favours easing into development. 
The knowledge model can be development through exploration and discovery. This 
supports the formulation and formalisation of knowledge. This can even be true for 
static domains of knowledge (cf. GARVAN ES-1 (Preston, Edwards & Compton 
1993, Compton et al. 1992)). Acquisition of knowledge is eased considerably as it is 
spread over a longer period. It is based on needed adaptations, rather than obscure 
completeness goals. 

As was mentioned considerable effort goes into developing the visualisation and 
auxiliary facilities for a knowledge systems as well as integrating the system with 
existing information systems or as a component of a larger system. Both of these 
benefit from a cyclic approach with direct application. First of all, systems can be 
developed without these facilities at first. Secondly, introduction of these facilities can 
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be done as needed, in an incremental fashion. Especially interfacing with existing 
systems can benefit from an exploratory approach. 

The experts are more likely to remain involved and feel less threatened by the system. 
It also can improve the quality of the expert, as they adopt a more analytical attitude 
towards the domain and can become more proficient. This may provide to be a very 
important benefit, as the assumption that the knowledge system can exist without an 
expert is left behind. The users will also be more easily and more effectively trained 
in the use of the system. By being confronted with the system early and by getting 
new features in small increments, the users themselves easily grow accustomed to the 
system. Starting with simple, basic functionality they grow with the system as it gains 
new functions with time. As these functions are more likely to be based on user 
wishes as they have more time to propose new additions. 

One of the criticisms that is aimed at most iterative and by extension cyclic 
development strategies by �often-unrealistic assumptions that this operational system 
will be able to accommodate these changes, without addressing long-range 
architectural considerations.� (Boehm 1988). This is an important concern, which the 
remainder of this thesis must address.  

3.2.7  Conclusions 
From the previous, it is clear that a scientific model for development runs counter to 
an engineering model, as it changes the perspective on different aspects quite 
drastically. From the initial realisation that knowledge system development concerns 
the development of an open-ended, dynamic artefact, other consequences flow 
automatically. Such an artefact is not created into existence; it will be developed over 
an indefinite time period. In that case, it requires a permanent organisation of 
stakeholders to guard it, rather than a temporary team of professionals. Furthermore, 
approaches must be found to deploy such as system into use early on and with each 
increment, rather than intermittently. Continuous knowledge engineering implies 
continuous development, continuous participation, continuous application and 
continuous testing. Each of these forms a high-level abstract principle completing the 
description of the approach.  

By keeping the system small in size initially, it does not require a great investment. 
When the system is seen to incur a certain profit or becomes more intensively used, 
the organisation can use this information to determine whether they should continue 
the development and direct the development towards what is considered essential 
features. These investments are based on the benefits already seen, rather than those 
predicted or supposed. This solves the bottom line problem. 

A further practical benefit is that the risk of building the wrong system is reduced. By 
constant testing of the products, the direction of the development is verified and the 
focus is on developing a system for the users. Instead of conforming to a set of 
formalised requirements, it focuses on added user-value. The final system is therefore 
more likely to conform to users expectations and therefore will be more acceptable to 
the users. In addition, as the system�s development is influenced by their comments, 
they are more likely to assert ownership, and see the system as something they have 
participated in.  
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3.3 From Principles to Requirements 
The next question is what the effects are of these principles of cyclic development, 
active participation, and direct application. The continuous knowledge engineering 
method affects many aspects of the development of a knowledge system. The 
remainder of this section discusses these effects according to a categorization used by 
Jacobson, Booch & Rumbaugh (1998). This discusses these effects as they apply to 
people, project, product, and process, before going into the tools support that this 
approach requires.  

3.3.1  People  
The people are those involved in different roles in the project, towards the 
development of the knowledge model and knowledge system.  

Figure 3-2 Roles in Knowledge Engineering (Schreiber et al. 1999) 
The image above is a graphical view of the six process roles in knowledge 
engineering and management from CommonKADS (Schreiber et al. 1999, pp. 21). It 
shows the six main roles that can be discerned in a knowledge engineering project. If 
one removes all references to knowledge, it becomes clear that this is basically an 
engineering approach to the development of a system for a non-specialist client for 
non-specialist user by trained a number of specialised professionals.  

A scientist is an expert in a domain first, followed by being versed in the method of 
science. Philosophers or others that generally know a great deal about scientific 
method, do not perform the task of building scientific models based on the expertise 
of scientists in the field. Scientists do so themselves. Taking this idea, the proposed 
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change for continuous knowledge engineering entails moving from a team of 
professionals making use of clients and experts, to a team of stakeholders supported 
by professionals. Continuous knowledge engineering therefore entails significant 
changes in the roles adopted by different categories of people. The roles themselves 
will also change, as there will be a shift in responsibilities and intensity of 
involvement of the roles.  

Knowledge Provider/Specialist 
This is the �owner� of the knowledge, in other words the expert. The expert is a 
specialist in the domain or has access to part of the knowledge that is required for the 
knowledge system. This is the role most seriously affected by the changes.  

Normally, the expert is a subject for study. In the new setting, the expert is involved in 
the content of the model as much as the knowledge engineer, be it with a different 
intent. The expert must extricate new lessons from the knowledge modelling effort, and 
be directly working with the model. It is his role to come to changes and adaptations. 
While the expert may not necessarily be the party responsible for making the changes 
(see the role of knowledge system developer), it is considered positive for his ability to 
locate new insights if he does. 

Changes are made continuously to the knowledge model, either in response to feedback 
on the knowledge system or from personal insight into some matters in the knowledge 
model. These pass to the user of the knowledge by deploying the changes. Again, this 
may be performed by mediation of the knowledge engineer, or directly by the expert. 

Knowledge Engineer/Analyst 
The role of the traditional knowledge engineer is split in two different roles in the 
model in Figure 3-2, the knowledge analyst and the knowledge system developer. The 
knowledge analyst is normally responsible for developing the knowledge model based 
on investigation of the domain, and acquiring the required knowledge from the 
�knowledge owner�. 

As a support for the expert, the activity �elicits knowledge from� changes to 
�supports�. The role of knowledge analyst may still include developing high-level 
analyses and designs, but these are made in cooperation with the expert. One could 
also stay within the division proposed by the model, and merely place the expert in 
the knowledge analyst role. This would not make it possible to make the activity of 
support explicit, not would it make clear that the communication between the 
�provider� and �analyst� is reversed to a degree. The expert is no longer an actual 
provider for another party. 

The role of the knowledge analyst changes as less work is done in the deepest 
recesses of a knowledge model. Instead, more effort must be given to structuring and 
aiding the development process, meaning that many actual modelling activities are 
placed outside of this role. This is either by preparing developments in the domain, or 
by guiding the developments made by the knowledge owner into more professional 
levels, as a mentor to the development of the knowledge specialist.  

Knowledge System Developer 
The knowledge system developer is ordinarily responsible for the development of the 
knowledge system based on the specification of the knowledge analyst. This is a role 
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that is comparable to a software engineer and in smaller projects is often also 
performed by the knowledge analyst.  

In a continuous setting, the knowledge system developer is more likely to be a role 
played by the expert. Sharing this role with the knowledge analyst is also a possibility. 
In addition, the knowledge analyst may still provide guidance and prepare designs in 
unison with the expert. In part this is to make a cyclic development process possible, 
and in part because the expert needs to be involved with the model to acquire new 
insights. 

Knowledge User 
The �knowledge user� uses the knowledge system. In traditional software engineering 
and knowledge engineering methodologies, the user is only a part of the development, 
during introduction and afterwards originates much of the effort in maintenance. In 
recent approaches, the user is much more involved in the development, e.g. DSDM 
(Stapleton 1997) or Rational Unified Process (Jacobson, Booch & Rumbaugh 1998). 
The role of the ambassador-user is one as part of the development team. 

In continuous knowledge engineering, as in other iterative development strategies 
make a finished system available to the user as early as possible. All users will gain 
access to the knowledge system earlier than normal, and will have to deal with an 
application that may be incomplete but can be steered by them towards further 
completeness.  

Project Manager 
The project manager normally manages personnel developing the system during a 
finite amount of time, measured in months or years, after which a product is relegated 
to a maintenance organisation.  

In continuous knowledge engineering there is no final moment of development, or in 
another sense, the system goes into maintenance almost from the beginning. The 
length of involvement, although less intense, is much longer. A project manager may 
have many different small-scale knowledge systems in development with only a 
knowledge provider present to build first prototype system. This may evolve into a 
larger scale effort, where many people are involved in updating and maintaining the 
quality of the system. Such efforts therefore run counter to the expectations of project 
manager today.  

Knowledge Manager 
The knowledge manager is not part of the project team, per se. This person is in 
charge of knowledge strategy for the organisation, and initiates different projects to 
solve problems in this area. This may include the initiatives for knowledge system 
development, but other organisational measure may also be part of the initiatives 
undertaken by the knowledge manager.  

The knowledge manager may see the different continuous knowledge engineering 
driven projects as a development similar to venture capitalist efforts. One of out ten 
knowledge systems of smaller scale may proof their worth and develop into a large-
scale mission-critical application. Others can at least prove worthy of keeping up to 
date and proliferation to a limited population. 
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Development affects people 
The development process affects people as their accomplishments are measured using 
the standards set by the process. People involved in a project require understanding 
what the project is all about. This becomes easier when each increment is smaller, and 
by getting frequent feedback from the cycles of the project, a sense of 
accomplishment is created. They can discuss the schedule of their task that they can 
understand and influence. The effect on morale of these approaches was signalled as 
early as in Brooks (1987). 

The tool support for non-computer scientist to participate in modelling is limited. In 
most cases, the tools are created for professionals that have gone through extensive 
training. For a change in roles to take place, either the tools need to support the users 
in adopting different roles, within the process, or dedicated solutions must be created 
within the project to allow them to participate. The first will require changing in 
existing tools to be usable by non-specialists. The latter entails customisable versions 
of a knowledge system development environment, specific to a certain project.  

3.3.2  Project 
The project represents the undertaking as a whole, consisting of a mission and 
resources with which to attain that goal. The project is the organisational element that 
manages the development of the knowledge system. In most cases, a project is a 
temporary affair, charged with the realisation of a goal, for example, the construction 
of an office building or the development of a new car. Afterwards, the project is 
dissolved, and control over the people, products and resources is relinquished. The 
results of the project are transferred to others for upkeep and maintenance, and often 
this is then seen as distinct from the project. When the development effort becomes a 
serious extension or revision of the system to warrant the existence of such an 
organisational element a new project is started. 

When one goes from product based projects to continuous knowledge engineering the 
notion of a project changes in character. As a long-lived and continuous organisation, 
it is responsible for the existence of the system and it continued upkeep and 
upgrading. This requires an organisation comparable to that now in play for large-
scale information systems, also seen in financial institutions. In these cases, the 
product drives the project, rather than the other way around.  

It is the question whether the term project should still be used, as this term is normally 
associated with temporary efforts. The project assumes the guise of stewardship, 
placed in charge of the affairs of the knowledge system for its lifetime; supervised, 
kept from harm, watched over and protected. The project exists just as long as the 
system does. This requires continuity of commitment and operation. This precludes 
the use of temporary professionals, but long-lived participation from different parts of 
the organisation, incorporating the expert and the user. Affected parties and 
stakeholders must play a meaningful role in setting goals, defining priorities, and 
crafting policies. Consensus building is a slow and arduous process, but more time 
and resources spent up front can mean greater savings and real solutions further down 
the road. Also, compare this to recent developments where users are included in the 
design and development of software such as DSDM and Extreme Programming. 

These project organisations require plasticity as their composition may change over 
time. They need to be conscious of changes around them to align the project to 
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perhaps changing objectives emanating from a fluctuating organisational context. 
Furthermore, they must remain informed about the status of the knowledge model and 
knowledge system.  

This stewardship can also be taken up for more than one knowledge system. Families 
of knowledge systems could be created when the infrastructure for their development 
and introduction has been set-up. This would even out the initial cost of that 
infrastructure. From such families of knowledge systems flows a more evolutionary 
thought. Such approaches may lead to the development of venture knowledge 
systems. This inept term aims to describe the development of several knowledge 
systems, to locate the one killer-app between them. Although the term venture may 
seem to mean that each should be positioned as a commercial product, one could see 
such an approach working at smaller scales as well. 

3.3.3  Product 
The products are the artefacts created during the lifetime of a project. While the main 
product is the system that is the goal of the project, this can further include models, 
source code, documentation, etc. Some approaches also include trained users as a 
product, and within this context that could also include an improved expert. The goal 
of the project is to create the target product. It is often described using a series of 
requirements to be pursued. This is similar to the state of affairs in software 
engineering, where the outcome of a project is seen to be a released product, followed 
by maintenance track (Jacobson, Booch & Rumbaugh 1998). 

One of the aspects that often surfaces in software- and knowledge engineering is that 
the �users keep changing their mind�. This recurring change of heart originates in two 
factors. First, as time elapses, things change, the environment and organisation align 
to new concerns. Requirements therefore have an inbuilt expiry date. Secondly and 
more importantly, when users are involved in a project they are educated during the 
project to their wishes. The users become better users. This is in fact one of the most 
important results. The product in a standard method is an end-goal to be attained, not 
a running goal to be guarded. Science is not interested in finding the ultimate theory, 
but in improving understanding along the way. It pursues a running goal.  

The products developed using continuous knowledge engineering (or other 
incremental, participatory approaches) are approached differently. One starts with 
simple systems and tries to evolve them to larger systems. This growth factor will 
initially allow system development with minimal means. Because their growth is 
continuous, the investment done is more gradual and can follow the impact and 
importance of the system. In this respect, it is important that those involved in the 
decision-making should have an extended perspective on these systems, as their true 
value may only show after considerable time (see stewardship). 

A consequence of this is that there may be products, but there are no finished 
products, no final version, much like there is no final scientific theory. The knowledge 
model is always under construction. The users work with the most recent release of 
the system, not just a final version. On the other hand, this means that there should 
always be a working product. At every moment in time, during development, testing, 
etc. the knowledge system should be consultable. 

From a pure product-based perception of a knowledge system, these issues are 
difficult to unite. A change of perspective on the knowledge system and knowledge 
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model is therefore required to shed some light on the matter. The knowledge system is 
treated as a viewer for the knowledge model, a medium for its publication. Much like 
an Internet browser, it is able to show and provide access to a store of information, a 
knowledge system browser a specific knowledge model. The Internet changes every 
day, but the browsers stay relatively static. 

This view allows for the inherent dynamism of a changing knowledge model, and the 
idea of a fixed yet adaptive means of getting access to the latest knowledge. And 
while the knowledge model may be under development, this is not a reason for it not 
being used. The Internet is not put on hold, while one of the users updates a part of it.  

3.3.4  Process 
A knowledge engineering process is a definition of the complete set of activities 
needed to transform users� requirements into a product. A process is a template for 
creating projects. It describes the different phases that are distinguished and the 
manner in which they are traversed. 

Many different approaches exist. Linear processes go through each of the phases one 
by one, while an incremental process divides each of the phases into increments. An 
iterative process goes through all the phases for a single increment and then repeats. A 
cyclic process is a specialisation of iterative processes, where each small change goes 
through all the phases. As the process becomes cyclic, it is best characterised as a 
feedback loop. The tasks seen in most development projects over a period of months 
could occur within days. This means the tasks such as described in the previous 
chapter all have to be performed frequently and in a relatively short time-span. 

While the frequency of these tasks normally would be overwhelming, the work 
associated with each step is much smaller than usual. Accidental problems may make 
the passing through each of the phases in rapid succession a problem, but these can be 
amended. In a normal process, one of the main aspects of these phases is providing 
documentation of the process. The documentation and design models must be kept in 
line with the changes that are made. Alternatively, the development can follow a 
design-less approach, abandoning control and making management of the process 
hard or impossible. However, other possibilities may also exist, in finding a way to 
automatically generate documentation and update the design models used, like for 
example with executable specifications. 

In addition, most processes are geared towards forward engineering, transforming 
models into implementation. This makes turning back or reverse engineering very 
difficult. Moving backwards is not possible. In fact, in many situations, 
documentation and product are not in line and the source code or knowledge model is 
the only accurate description of the system (e.g. McConnell 1993).  

The most technically demanding question is the frequency of the updates that have to 
be made available to the users. At every cycle, a new product is released onto the 
users. This can prove problematic, as this is most definitely not standard. The 
common form for a knowledge system, as for other types of software, is as a 
standalone application deployed when a release candidate is created. The number of 
releases versions is kept down because distribution of the software and installing the 
new version involves considerable overhead.  

Schemes that are more flexible exist. An example of this could be the automatic 
updates used by virus checkers. This update requires access to the Internet. Even these 
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update their system only on a monthly basis. Other possibilities also use the Internet 
as the medium to reach the users. This is in most cases a scalable solution. What is 
needed is technological support to make this both feasible and practical.  

One of the most important challenges is the ability to test each deployed versions. 
Because of the frequency of deployment it is essential that this is both easy and cheap. 
Most likely approaches are corner-stone cases such as those in ripple-down systems 
(Compton et al. 1992) or automated testing such as the unit testing found in Extreme 
Programming (Jeffries, Anderson & Hendrickson 2001) 

3.3.5  Conclusions 
The impact of the scientific metaphor in the incarnation of a continuous knowledge 
engineering method pervades many of the aspects of knowledge engineering. The 
roles of people change and require stakeholders to perform tasks normally in the 
hands of trained, skilled professionals. The timeframe of attention to the development 
switches from a temporary job to a long-lasting stewardship effort. The perspective on 
the product of knowledge engineering is transformed from an artefact to a model of 
knowledge for which a knowledge system is the medium for its communication. The 
process by which this product is updated and improved is cyclic, meaning many small 
sized changes need to be released regularly to the users. 

3.4 Fundamental Method, Essential Tools 
The intention of this section can be found in this quote from (Jacobson, Booch & 
Rumbaugh 1998): �� to develop a [method] without thinking about how it will be 
automated is academic. To develop tools without knowing what [method] 
(framework) they are to support may be fruitless experimentation. There has to be 
balance between process and tools.� The aim of this section is therefore to examine 
the way that some steps can be made to go towards continuous knowledge 
engineering by developing the method and the tools in balance. Method has a 
profound effect on the perception and perspective that one has on what one is doing, 
and why. Many methods share certain tasks and models, but differ in their perspective 
and intent.  

The software tooling that is used to automate the activities defined in the process is an 
essential factor in making the transition to continuous knowledge engineering 
possible, viable and practical. In real world situations, the support from the tools 
determines the practical interpretation of the method. Tools make a method viable and 
practical. This section continues where the previous discussion of the effects left of, 
by enumerating requirements for tools and method along the division of the principles 
of continuous knowledge engineering. Although some of these requirements support 
more than just one of these principles or aspects, an attempt was made to create a 
meaningful categorisation. These requirements strive to propose a path towards 
realisation of the continuous knowledge engineering method by defining the interface 
between the method and tools that could support it.  

In another man�s words, �[t]his support must provide facilities to make it convenient 
(reasonably easy, safe and efficient) to use that style. Such a tool does not support a 
technique if it takes exceptional effort or skill to write such programs; it merely 
enables the technique to be used. For example, you can write structured programs in 
Fortran and object-oriented programs in C, but it is unnecessarily hard to do so 
because these languages do not support those techniques.� (Stroustrup 1991, p. 14). 
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Therefore, this section concerns the changes that should be made to the aspects 
people, project, product and process and the requirements this places on the tools to 
provide active support for the continuous style of knowledge engineering.  

The converse of the statement made by Stroustrup is also true. A tool focuses to 
support one or more styles of use. Each of these is weaved as an idea through the 
presentation of the facilities. While C++ allows its usage as if only C was present, this 
does not constitute best usage. Many of the aims and intent of a tool or language can 
be lost in that way.  

3.4.1  Participatory Modelling Requirements 
The following requirements concern the knowledge modelling capabilities and the 
ease of use of these representation systems for non-specialist users. In the list some of 
the requirements overlap, but they each have different shades of meaning that are 
valuable. 

Understandability 
Each of the knowledge representations, individually and in conjunction, have to 
support the ability to understand the knowledge model. The knowledge has to be 
readable. It must for example, not be necessary to have knowledge of the entire model 
to understand one particular facet. For instance, the intent of an individual rule can 
readily understood looking at the rule, without regard to other rules. However, when 
adding a new rule, it is unknown how this will influence the conjunction of rules. This 
makes it hard to ascertain the impact of such a change and makes it hard to understand 
a model�s behaviour.  

Often when a design model, the implementation requires a translation. This can 
remove the natural structure of the design with one optimised for a computer. All the 
names of symbols in a knowledge model can be renamed to the form M0008, and the 
system will still be functional to its users. To the modellers, a significant function of 
the model will have been lost. 

Understanding is the pivotal element for verifying, locating, expressing, changing and 
testing, in other words, all the activities involving the representation of knowledge. 
An expert should be able to verify the knowledge as to its correctness and 
completeness, but a layman or novice should also be able to understand the working 
of the represented knowledge even if the reasons why, behind the represented 
knowledge, are beyond him. 

Locatability  
One of the aspects of understanding a knowledge model is to provide a notion of 
navigation and locating parts of the knowledge model. The structure of a knowledge 
model must allow whoever is making changes or merely navigating the model to 
comprehend it, to find what they are looking for. Related parts of the model should be 
in the same physical proximity. When a certain aspect requires verification, change or 
extension it should not require an inordinate amount of time to find that particular 
aspect. 
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Expressibility 
An untrained person must be able to express knowledge in the formats chosen, and be 
able to know what the effect is of changes made to the representation. Besides the 
earlier ability to understand the model to a level, making it becomes possible to 
express to the knowledge engineer what should be done with the knowledge, the 
expert should be able to create and develop a knowledge model without the 
knowledge engineer. The expression of knowledge should provide support for finding 
inconsistencies and incompleteness if possible. 

Changeability 
The aspect of changeability concerns the extent to which a knowledge representation 
remains mutable. Knowledge models can ossify, because certain changes cannot be 
made without incurring a great or overwhelming cost. This causes incorrect or 
incomplete structures to be tolerated and worked around in new additions and 
subsequent changes. Eventually this leads to an un-maintainable knowledge model, 
where the only avenue of approach remaining is to start over.  

One of the reasons behind a lack of changeability are the hidden assumptions and 
implicit knowledge in a knowledge model, which is weaved through a model and 
provides an important support structure. These cannot be easily removed once they 
are in place and make it impossible for any individual part to be used separate from 
the remainder of the knowledge model. An approach that requires the plasticity of its 
components requires separation between the elements of which it consists. 

Extendibility 
In order to grow a knowledge model into a level of maturity and allow it to follow the 
needs of the times, the knowledge model will have to be extended from time to time. 
Extension means providing functionality beyond that described in the initial 
specification. In some languages, it is possible to distinguish extension points in a 
model, where the design has prepared for some aspects to be elaborated in the future. 
This kind of extendibility is very important. Another form of extension is required 
where functions and system or model behaviour that was not predicted in advance 
have to be added. This can be harder and is connected to the changeability discussed 
before. 

3.4.2  Project Stewardship Requirements 
These requirements specify the support that can be given to the continued stewardship 
of a knowledge system development. The steward is the guardian of the knowledge 
system, keeping the knowledge model and knowledge system from harm, managing 
further development, monitoring the status and taking action when necessary. The 
term steward implies care and responsibility, but of property that does not belong 
rightly to the stewards. 

In industry and other parts of society, the responsibility of the producer of certain 
products with an environmental impact has been extended beyond the moment at 
which the product is delivered to include usage and decommissioning. This translates 
within knowledge systems to form a development process that incorporates usage as a 
step in the development.  
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This requires the released product to be somehow still under the control of the 
producer, after deployment. For example, the project management could know each of 
the users, and maintain a record of their usage information. This and other user 
monitoring may violate common rules on privacy, which must be resolved. However, 
this would not go far beyond what is considered normal in monitoring Internet users. 

As a requirement for tools, this is a weak form of requirement. It would be served by 
a centralised form of deployment, instead of a distributed, non-integrated form such as 
deployment through stand-alone software. As such the stewardship aspect has a 
limited effect on the tool requirements, but parties, involved in the management and 
monitoring of a knowledge system development, do require information from the 
system and model development as well as usage. The development information may 
provide insight in realised functionality, in addition to the status of known issues with 
the knowledge model. The latter may for example include metrics, bug reports, etc. 
Other software can also provide this kind of functionality. 

Usage Information 
Usage information is required to know the status and provide feedback on the usage 
of the knowledge model. If possible, such information should include data on the 
usage of different aspects of the knowledge model. This can give insight into the areas 
of the knowledge model that require fleshing out. 

The case histories that are created thanks to the use of the system also provide an 
essential source of information. This can show hotspots, i.e. areas that are used 
predominantly by the users, and dead areas. It can also provide feedback on the 
quality of certain consultation results. This may show areas where knowledge is 
lacking or provide information on lacunas in the required knowledge. Data-mining 
approaches may also be able to glean important patterns in the usage. The results 
should at least provide information to ascertain the quality of the solution being 
offered and critical feedback on the knowledge exercised by the different 
consultations.  

Metrics 
Metrics are widely professed in software engineering as means to understand and 
monitor complexity of systems as well as measure progress. The most well-accepted 
are probably Lines of Code and McCabe�s cyclomatic complexity measures (McCabe 
1976).  More recent ones aim at object oriented specific metrics, and concepts such as 
function points  

Most metrics can be divided into three classes: raw measures of size, measures of 
various attributes of complexity, and compound measures intended to assess 
productivity. Metrics can be used to: 

• Estimate completeness of a knowledge model, or part of a model.  
• Judge the overall volume of knowledge in a knowledge model. 
• Indicate how difficult a knowledge base might be to navigate or modify. 
• Enable subjective comparison of knowledge models to see how domains differ, in 

order to inform the estimation of future knowledge modelling and development 
tasks. 

These types of measurements can give an idea of underlying subjective phenomena 
and can provide an approximation of the core notions of interest to developers, 
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managers and researchers. Within knowledge engineering, such approaches are less 
common, a notable exception being (Lethbridge 1998, 1994).  

Such information can be provided in part by the development tools that are employed. 
While these can be used to compare different knowledge models developed using the 
same tool, across tools such comparisons are much harder. This is caused by the lack 
of uniformity of representation found in these tools. 

3.4.3  Application as Medium Requirements 
These requirements detail the need to be able to develop professional industrial 
strength knowledge systems, and the auxiliary issues that are associated with this. An 
important aspect originating in the continuous knowledge engineering method is the 
view of the knowledge system as a medium for the communication of knowledge. 

Operational Knowledge Models 
As the knowledge model is continuously changing it is constantly under construction. 
For the knowledge system, it is important that the latest available knowledge is used. 
To have a continuously operating system, it is therefore not acceptable to be un-
operational, and when lots of small increments are added, it is essential that they can 
be deployed to the user as soon as possible. Therefore, the requirement that is placed 
on the tools is to have an operational model at all time. 

In a sense, this is a common requirement for knowledge system development 
environments. Rule-based systems often conform to this requirement. Adding a new 
rule does not require reworking the whole system. 

The requirement makes it possible to create a working system directly from a 
knowledge model, and with little effort. A trivial system, e.g. a system that consists of 
a single rule, should be usable at a minimum in effort and auxiliary issues. Even 
though this may not produce a useful system, it illustrates the need for being able to 
create a tiny system with little or no fuss. There should be no threshold for knowledge 
systems to be developed based on a knowledge model.  

Design-to-implementation strategies are therefore not acceptable as-is. With respect to 
cyclic development, it is important because the transformation of a change in a 
design-model to a change in the knowledge system as presented to its users is 
normally involved. Testing of a change can only occur after implementation of the 
feature. This longer turn-around time is detrimental to change, and therefore an 
impediment to cyclic development. 

Incrementally, Modifiable User Interface 
It must be possible to change the user interface of the system to create an easier 
system to use, and one that is more palatable to the user. This ability should be given 
in such a way that it is possible to create these user-interfaces in small bits, rather than 
require a complete effort, as soon as one deems it necessary to develop or adapt the 
user interface. It should not be necessary to develop a user interface upfront. 

Differential Visualisation 
A knowledge model must be usable by several user groups, with different skills and 
facilities. Based on a single model, it must be possible to create different visual 
representations of the knowledge system. This may go as far as offering different 
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functionality to mediate differences in the knowledge level of the user. This requires 
allowing different user interfaces working with the same knowledge models. This 
requires similar facilities as the previous, but must also allow different visualisations 
to co-exist and be developed in parallel. 

Dedicated Solutions 
At the other end of the spectrum is the development of a dedicated solution. A 
dedicated solution means being able to create system especially for a specific purpose 
and customised to its needs and requirements. It must therefore be possible to use a 
knowledge model in a variety of ways and create a system tailor-made, using 
advanced visualisations techniques and with the possibility of integrating the system 
with many different information and knowledge facilities. 

Integration 
The integration of knowledge systems will become more important and more an issue 
for knowledge system development over time, both in terms of process and of 
product. Knowledge systems may currently be seen as primarily standalone 
applications, this will change over time. In part, knowledge technology will become 
as special but unified technology within software engineering. The development 
processes used require that their modelling languages and those employed in 
knowledge system development match. This is a similar situation to that in database 
technology, these occupy a special position within software engineering and efforts 
are made to allow software engineering processes to discuss structure and access of 
databases on the same footing as other systems within a product. 

This is also true for the development of a knowledge system itself. Initially, the need 
to integrate a knowledge system with other systems may be latent but as a knowledge 
system matures, integration becomes a paramount issue. This goes in three directions: 
integration into other systems, incorporation of other systems and communication 
between systems as equals. 

3.4.4  Cyclic Development Requirements 
The requirements aim to realize the ability to operate continuously and in a cyclic, 
iterative manner on the development of a knowledge model and knowledge system.  

Start Minimal 
The first system that can be developed and released onto the user community ought to 
be realisable in a very short period. This minimal system should present as small an 
effort as possible and still be meaningful to the user. The size of the first increment 
determines the threshold that exists between not having a system and having a system.  

Small increments 
This requirement concerns the granularity of the changes and extensions made. The 
changes that can be made and have to be made and can be deployed in the content of a 
knowledge model have to be able to be small in granularity. It must be possible to 
deploy a single change in a rule, with little or no cost. Within Extreme Programming� 
these are called �small atomic bits of functionality� (Jeffries, Anderson & 
Hendrickson 2000). 
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Revoke changes 
It must be possible to revoke changes to a knowledge model, and return to an earlier 
version of the model. In part, such functionality can be realised using version control 
systems, therefore this criterion only concerns the development within the modelling 
environment, for example an undo/redo mechanism. 

Scalable from Small to Large 
The system has to support the scalability of a knowledge system from very small scale 
to larger systems. This means that the method and tools must allow sustain small 
systems, just as well as medium and large systems, and support the transition through 
each of these phases. 

Gradual Integration 
Another consideration in this respect is the ability with which a system can integrate 
other knowledge models, and how easy a developed knowledge model can support its 
integration. In many growth scenarios, the communication and linking to other 
systems becomes more and more relevant, where this is often a minor concern in the 
early stages of development. 

Easy to make changes 
The representations used must allow for changes to be made with ease. This would 
mean changing the model, within the purpose and structure that it has, to repair or 
adapt the model to a better implementation of that purpose. There must be no penalty 
for making a change, beyond the effort of that change itself. Furthermore, to deploy a 
changed model must not be penalised either.  

Easy to extend 
A related requirements to the one above, this requires that the knowledge model must 
allow extension, i.e. incorporation of new features and functionality, and this 
extension must be possible without great effort. Considering the time-frame in which 
development may take place, this can mean that the purpose and structure of the 
knowledge system can change considerably over time and that such changes need to 
be accommodated by the process and the tools. This requirement therefore requires 
support at a different timescale than the previous one. 

Easy to deploy 
A new system or increment should be easy to deploy to its users. A modeller should 
be able to send an update to the users after validating the changes. Current default 
software deployment techniques are not sufficient for this purpose. 

3.4.5  Conclusions 
The requirements above are quite broad and in some cases show more of the 
requirements to the process than the tool, but both are united in their purpose. In some 
cases, the effects or benefits that are expected are mentioned. In part, these 
requirements form an evaluation method for tools and development methodologies; if 
they conform to some degree to the requirements mentioned in this section, they can 
be said to support the continuous knowledge engineering approach. This will be 
subject of discussion in later sections. However, in line with the principle mentioned 
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by Jacobson at the beginning of this section, they will likely to work better if both are 
dedicated to a unified purpose.  

3.5 Architectural and Technical Concerns 
Considering the realisation of the requirements discussed above something can be 
said about the architectural concerns and techniques that may be employed. These are 
discussed here because the next chapters are about the actual implementation of some 
tools, and not all these techniques will be employed in each tool, although all are 
relevant. Furthermore, discussing them here on an equal footing will enable a focus a 
better focus on specific concerns in the chapters on tools.  

3.5.1  Vivid Knowledge Representation 
Direct, analogical representations or as described by Levesque (1986) as vivid 
representations represent knowledge as a model of reality. This may sound trivial, 
since one could assume that any knowledge representation is a model of a domain, 
which is not true. A knowledge representation is not a model of its domain if it does 
not present a surrogate of it, like a neural network. But even representing a domain in 
logic or rules does not it mean it is by definition also a model. For example, 
compound assertions such as: 

Jack is married to either Jan or Jill
Nobody is married to Jan

These allow the conclusion that Jack is married to Jill, but this does not capture any 
essentials about the domain. Also, the rules are encoded in such a way that there is a 
limited context dependent use for them, while any useful assertions based on such 
rules in other contexts can soon become intractable. 

A vivid representation evokes the same kind of imagery the domain itself does. A 
knowledge representation is vivid if: 

1. There will be a one-to-one correspondence between a certain class of symbol 
in the [knowledge model] and objects of interest in the world. 

2. For every simple relationship of interest in the world, there will be a type of 
connection among symbols in the world such that the relationship holds 
among a group of objects in the world if and only if the appropriate connection 
exists among the corresponding symbols in the [knowledge model]. 

This means that the world and the model share important basic features, and to find a 
relationship in the knowledge means that such a relationship should also exist in the 
world. Vivid knowledge representations are analogues of the domain, we can operate 
on them as if they were the domain itself. Direct calculations on a vivid model should 
be able to determine what is true in the domain itself. For example, on a map one is 
able to find out the distance between two cities by using a ruler to measure the 
distance between two cities.  

To answer the question, what age is Jan, the information should be ready to use. The 
information could be stored in the knowledge model as a fact, or there could be a 
proposition telling that Jill is married to Jack. The example is a puzzle, which could 
be direct. This means that base facts about the world should be easy to answer, 
without the need to infer anything. If in the world it is easy to determine whether Jack 
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and Jill are married, then the knowledge representation should allow this to be as 
simple as a database look-up. 

For knowledge engineering vivid knowledge representations have an important 
secondary effect, which means that as lessons are learned from making new 
discoveries in the knowledge model these will translate to lessons learned on the 
domain. This implies that vivid knowledge models are exceedingly useful in 
supporting the discovery of new knowledge. 

3.5.2  Visual Knowledge Representation 
Making sense of the environment by provided visual or graphical models enables 
certain easy to comprehend representations of sometimes very complex and 
interrelated associations between elements. Related to graphical or visual 
programming, it receives much attention from researchers (e.g. Kremer 1997, 
Menzies 1996b). The attraction of the saying that one image can say more than a 
thousand words is quite strong. Software and knowledge remains are inherently 
difficult to visualise properly (Brooks 1987).  

In previous chapters two representation techniques that are coupled to highly visual 
counterparts were presented among others that will be examined in following chapters 
on the tools to be developed. The decision table leans quite heavily on the fact that it 
can be presented in such a way to make the relationships between several related rules 
clear. Furthermore, inconsistencies or incompletenesses within the decision table are 
quite easy to locate. As such, it is a good contender for knowledge representation that 
is easy to understand and has good characteristics concerning its changeability and 
extendibility. From the standpoint of participation of stakeholders, it therefore seems 
a good candidate. 

Object-oriented models are to a degree forms of visual modelling. UML and its 
predecessors gave much attention to the visual nature of its models (Rumbaugh, 
Jacobson & Booch 1998). By virtue of the direct support for localisation, change and 
extension, object oriented models are quite good at communicating ideas from 
software professionals to stakeholders and vice versa. They allow them to comment 
on the model, and provide feedback that goes directly to the design. The vividness of 
the model allows parallels with the experts� own understanding of their domain.  

Other issues such as the principles of encapsulation, abstraction and information 
hiding are also important to the conciseness and modular nature of the models, having 
no small impact on the readability of an object-oriented diagram. Another aspect to 
object-oriented representation is integration. It plays an important role when using 
object-oriented knowledge representation, as many software developers use object-
oriented languages and design specifications. Speaking the same language makes it 
easier to integrate these concerns. 

3.5.3  Component Based Development 
From the previous, a need to deliver one product in several formats was seen. As a 
stand-alone application, integrated into an existing piece of software, with more than 
one visualisation of the same knowledge model, and perhaps also in other forms. To 
be able to offer such a solution an important concept is component-based 
development (CBD). This is an approach to system development whereby systems or 
parts of systems are developed through assembling, configuring and combining 



88 Chapter 3 Towards Continuous Knowledge Engineering 

 

different reusable software components. These components are autonomous units that 
constitute reusable software units offering certain functionality and are designed to be 
employed in flexible configurations of other components and applications. It is often 
seen as complementary to object oriented development, although some confuse it as 
being identical. 

Component-based development allows the development of different applications and 
systems reusing the same components. CBD embodies the �buy, don't build� 
philosophy advocated by Brooks (1987). CBD is also referred to as component-based 
software engineering (CBSE) (Brown 1996). It allows for the development of, for 
example, different development environments based on the same components. In this 
way, both standard and dedicated version of such an environment can be developed 
with ease. Java Beans for example, fall into this category, where an entire architecture 
is divided into autonomous software units. The ties between the different components 
are kept as minimal as possible. CBD gives the possibility of developing a knowledge 
system shell but with the freedom to integrate that shell with any regular 
programming language and providing any type of user interface that is wished for.  

3.5.4  Model-View-Controller Framework 
The Model-View-Controller (MVC) framework is prototypical for model-based 
applications, which makes a strict separation between data and use of that data, or 
model and view of and control over that model. Its origins can be traced to its 
inclusion in the Smalltalk IDE (Integrated Development Environment) as a primary 
architectural construct by developers of Xerox PARC (Krasner & Pope 1988). Several 
versions of it exist, each attempting to take some of the negative points away from its 
realisation. The Swing classes, which provide the Java with extensive User Interface 
capabilities, are based on MVC. The Document/View separation in Microsoft 
Foundation Classes (MFC) is also inspired by it. Several current day tools are 
flaunting it as part of their support to building ever larger and more complex systems, 
like VisualAge (Stanchfield 1999). 

The framework separates the system into three distinct parts: 

Model Responsible for access to the data, responding to mutation requests and 
maintaining data consistency. 

View The elements showing or presenting the model to the user. For 
knowledge this is known as a mediating presentation. These can also 
present access to the control capabilities. 

Controller The controller maps abstract actions undertaken by the view to the 
actual actions necessary on the model. 

The view can perform actions on a selection of the model through the controller and is 
informed of changes by any party to the model. In this way, the necessary updates are 
made to all views showing the model. In a structured, more complex model, the 
controller and viewer focus on part of the model, rather than the whole. In many 
implementations the controller and view are joined together, as the viewing and 
editing functionalities are often integrated into one class or element. 
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This gives the design the following features: 

• Clarity of design 
• Extendibility 
• Maintainability 
• Exchangeability 

Comparing this to the requirements set out earlier shows that this architectural choice 
fulfils many of the essential functions. This separation of concerns enables the 
replacement of any of the components by equivalent counterparts (cf. CBD). As an 
example, and a preview to later discussions, another model may replace the 
(knowledge) model, while keeping the same control and view elements.  

As a concrete example, we use a tree or composite. A tree can be represented as a 
node that can contain other nodes. This can be presented as a tree in user interfaces in 
several ways. In addition, some trees are mutable, where others are fixed in nature. 
This may affect their use but not their inherent data structure. Therefore, a viewer can 
be constructed that can show any element implementing a Composite interface. Any 
controller that gives access to methods to add, modify, or remove nodes can be used 
to modify the composite. Therefore, whether the model holds a directory tree or a 
family tree the application can operate satisfactorily. Services added to this, such as 
undo-facilities are implemented once, and can be reused many times. 

3.5.5  Abstract Communication Model 
In this section, the need for an abstract communication model is discussed. An 
abstract model of communication, i.e. one without designation of form or 
visualisation, allows customisability and presentational diversity. These are both 
requirements mentioned earlier. It is also a prerequisite for CBD, and application of 
the MVC framework. In short, it separates the visualisation of communication from 
the message communication action itself.  

query? present!

obtain?

*

receive!

*

**

 
Figure 3-3 CommonKADS Communication Modalities 

Figure 3-3 shows the four modalities that exist in system/user communication. The 
communication model above is taken from CommonKADS (Schreiber et al. 1999). 
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Present  The system shows information to the user. For example a picture, an 
intermediate- or end-report.  

Obtain  The system requests some information from the user. This is the typical 
question to the user. 

Receive The user provides information to the system unprompted. This may be 
entering some information describing the problem or for example some 
general information to differentiate the consultation from another one, 
merely for administrative purposes. 

Query The user asks the system for some information. This can be a question 
based on the status of the system or the start of an evaluation.  

The asterisk ! indicates on which side, knowledge system or user, the initiative lies. 
The communication direction is indicated by the arrow direction, from the system to 
the user or back. The question mark shows whether a response is expected, an 
exclamation indicates that it is a message or report, without response to be expected. 

(MSG
:TYPE query
:QUALIFIERS (:number-answers 1)
:CONTENT-LANGUAGE kif
:CONTENT-ONTOLOGY (blocksWorld)
:CONTENT-TOPIC (physical-properties)
:CONTENT (color snow ?C))

Figure 3-4 KQML Message 
Other models and standards for communication also exist, for instance KQML, the 
knowledge query and manipulation language could also be used (Finin, McKay & 
Fritson 1992). KQML is influenced by logic and logic inspired languages such as 
LISP, but it allows use of other underlying representations. Queries are sent to ask 
questions (color snow) or assert new beliefs for the agent. KQML knows many more 
types of communication than those proposed for CommonKADS, and it is not meant 
here to equate them or size them up for comparison.  

Another example, which is directed towards knowledge interchange is KIF, the 
knowledge interchange format (Genesereth & Fikes 1992). Also based on logic as an 
underlying representation, this format as been criticized for attempting to formalize a 
common basis for communication when most of the questions needed to develop such 
as standard remain unanswered as yet (Ginsberg 1991). KQML and KIF show 
through the need to communicate and transfer concepts and beliefs as symbolic 
structures. Considering earlier comments, it remains to be seen whether such 
approaches will reach the levels of effectiveness that are necessary, and that such 
communication does not hinge on the acceptance of static, standardised and therefore 
stale ontologies and knowledge structures.  

The approaches mentioned here have different, complementary purposes. 
CommonKADS treats communication as tasks, like knowledge goals (cf. planning),  
whereas KQML attempts to define a protocol for doing this and KIF proposes itself as 
a possible format for the content of the messages sent through KQML (also see the 
CONTENT-LANGUAGE in the figure above).  

These types of protocol can also be added as additional layers and services to an 
abstract communication-model. MVC normally only allows for those actions where 
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the initiative lies with the user: query and receive, and only sends informative 
messages when something is changed in the model, but has no facilities for explicit 
communicative actions. This means that services have to be extended to allow for the 
knowledge model to initiate communication.  

3.5.6  Centralised Deployment 
Normal deployment is quite costly and requires a concerted effort. Because of this, it 
is something that occurs only a couple of times per year. Otherwise, other schemas are 
more effective. Examples of this are systems that check with regular intervals for 
updates, such as virus-checkers. The mutable part of the application in these cases is 
known in advance. 

To enable the deployment of changes and new systems to users, a different approach 
than standard deployment such as CDs or Internet downloads is required. With 
software that is continuously changing, and requires frequent updates, centralised 
schemes are more appropriate. One of the possibilities is the use of Internet as a 
means to access the developed applications distributed while using centralised 
deployment. Deployment of a change or iteration then means that only single central 
location needs to be updates, whereby all users will have the latest version of the 
system as their disposal. Minimally the knowledge model is centralised while the 
knowledge system may be distributed to its users, going on the assumption that the 
latter is relatively fixed. This may be complementary to the component-based 
development described earlier. A component for knowledge systems may be 
augmented with a visualisation engine that dishes out web pages, instead of the 
normal forms. Especially for the standard question-answer interaction, this can be 
accomplished quite easily. 

Distributed applications such as these web-applications are becoming more and more 
commonplace, which eases the introduction of these facilities for knowledge systems. 
These types of systems offer great advantages. The very low deployment cost and 
effort are important. They constitute an essential factor for any cyclic development 
process. Another benefit is that the knowledge does not leave the confines of the 
company or the country, but only the questions and answers do. Normally such data 
would require encryption and this is only a limited protection.  

A further advantage lies in scalability; the effort to allow one user is the same as for 
thousands or tens of thousands of users. The only additional effort may be the 
installation of extra server machines, when such numbers of visitors is reached. 
Furthermore, the required infrastructure can be shared over different developments. 

Information gathering on the usage of the knowledge system and the feedback from 
the users is essential for the verification of the systems quality. Not only does it give 
information on the impact of the system, the case history can also provide important 
insight into the usage of the system, and the hotspots and dead-areas. This information 
can be used to steer further development and sell to management that the knowledge 
system is essential. 

3.5.7  Executable Specification 
Many development environments use textual code that is compiled or interpreted, 
where this code is the result of a previous analysis and design in some design 
method�s modelling language. The path from conceptualisation through design to 
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implementation can be a long one. On modification of a system�s functions, 
theoretically, the design is changed and these changes are subsequently implemented 
in the system. To temper some of the cost, some propose structure-preserving 
mechanisms (Schreiber et al. 1999). In practice, this leads to design and 
implementations that are out of sync (Jeffries, Anderson & Hendrickson 2000).  

On the other hand, knowledge systems already have a tradition of tools that allow the 
consultation of a system at any time during their development. By increasing the 
conceptual level of modelling in a knowledge system, and by allowing such a design 
to be executed immediately, model and implementation become the same. 

This negates any problems relating design and implementation, relegating the 
discussion on design and design-less approaches to the background. Both live models 
(discussed in the section below) and this form of transformation-less development can 
be supported using the program as a dynamic medium that can accept and run any 
query.  

Executable specifications are modelling approaches, where the model is operational, 
or in other words directly usable or executable. No transformation to another medium 
such as a programming language is required. This can make reversing one�s steps a 
lot easier than when such a transformation has to be reversed (see reverse 
engineering). In addition, these transformations are often quite technical in nature and 
could prevent the expert to be able to create a model and publicise it independently. 
To make it possible for a modelling approach to be used to remain close to the 
conceptual model of the knowledge, but eliminate the transformation from model to 
implementation, executable specifications can be used.  

The critique that has befell executable specifications can be most succinctly seen in 
the article by Hayes & Jones (1989). The main criticism by Hayes and Jones is that 
the executability conflicts with the expressiveness of a modelling language. Another 
problem they perceive is the overspecification in executable specifications. In order to 
make the model executable additional detail must be given, which may unnecessarily 
constrain the choice of implementation. For example, where a specification might 
have specified that a non-specific sorting procedure be used, an executable 
specification would force the choice to be one of the available techniques such as 
QuickSort. The final argument made by Hayes and Jones is that there exist formal 
specifications that are not executable. They describe a number of examples that in 
their opinion show that abstract specifications are not necessarily executable (Hayes 
& Jones 1989). 

Fuchs formulated the counter case, and since has refuted all the examples provided to 
support this by relying on the properties of declarative languages such as Prolog 
(Fuchs 1992). This means that all these examples can be stated in predicate logic and 
can more or less directly transformed to executable form. Any solution made by 
Fuchs can therefore be transformed into a solution on a procedural level. This means 
that such statements must be expressible in a form that accommodates declarative 
statements but they are solved by procedural solutions. 

On the subject of expressiveness, Fuchs sees a role for the developers of these 
languages to ensure that they remain expressive. It is the question whether 
overspecification is necessarily a bad thing. For one, a working solution may be 
preferred to a possibly optimal solution. The optimal nature of a solution is always 
very context dependent. Or, as stated by Fuchs himself (1992), ��executable 
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specifications can serve as prototypes, which allow to experiment with different 
requirements, or to use an evolutionary approach for software development. This is 
especially important since in many projects the requirements cannot be initially stated 
completely and precisely�. The latter is exactly the situation when discussing 
knowledge system development. 

In a transformational approach, i.e. one where specifications are transformed into the 
implementation, the specification will form the only relevant document for all phases 
of software development. In the proposed approach, this only document is also the 
application. The proposed �design = implementation� approach implies an extension 
of UML like models and formalised specification to an executable form of the Object 
Constraint Language (OCL)  (see (Warmer & Kleppe 1999)). This creates an object 
oriented equivalent of an executable specification.  

3.5.8  Live Model 
Most environments for software development of knowledge engineering are either 
compiler based or interpretation based. This means that one codes (writes) first, and 
then transforms the whole into a program, or runs the system interpreting the whole. 
This often involves making several changes before a compilation is made. This 
approach precludes making any changes at run-time.  

Such facilities do exist, where the coder and the program have the capability to make 
changes to the program, while the program is running. Reflective systems for one are 
a technique that allows for such enhancements, although its focus is on self-change. A 
reflective system is one that reasons about and acts upon itself. Reflection has been a 
technique and programming capability for some time and has been introduced in 
object-oriented systems (Maes 1989). Introspection, i.e. examination of a program 
structure, and dynamic loading of classes is also a facility present in other mainstream 
programming languages, such as Java. Smalltalk knows similar mechanisms such as 
dynamic compilation. No compilation of code is necessary to reach this form of 
modification or feedback. All modifications are performed at run-time, while the 
system is operational. 

A live model is one where modifications to a system are made directly on the system, 
rather than to code to be transformed into a software system at a later time. The 
system immediately reflects the changes, or refuses the changes when they violate 
certain constraints. The system can report any errors or failures that a single change 
brings with it. Live models are related to reflective approaches, but the support goes 
beyond making constructive changes, or developing towers of reflection to allow 
program changing themselves (the essence of reflection).  

Changes to the system for example deleting a certain attribute may make those parts 
of the system that reference that attribute invalid. Disabling these parts and reporting 
it to the modeller is then a possibility, keeping with the principle of having an 
operational model for all time. The effective cycle from design to development is very 
short. Every single change is merged into the model, with immediate feedback on its 
consequences and side effects. Simple syntactic and semantic errors are easily 
located. Therefore, it fits very well with a cyclic process. The approach is related to 
the use of transformation-less development. 
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3.5.9  Conclusions 

 

V
iv

id
 K

no
w

le
dg

e 
R

e p
re

se
nt

at
io

n 
V

is
ua

l K
no

w
le

dg
e 

R
e p

re
se

nt
at

io
n 

C
om

po
ne

nt
 B

as
ed

 
D

ev
el

o p
m

en
t 

M
od

el
 V

ie
w

 
C

on
tr

ol
le

r 
A

bs
tr

ac
t 

C
om

m
un

ic
at

io
n 

C
en

tr
al

ise
d 

D
e p

lo
ym

en
t 

Ex
ec

ut
ab

le
 

S p
ec

ifi
ca

tio
n 

L
iv

e 
M

od
el

 

Participation         
Understandability !!!! !!!!   !!!!  !!!! !!!! 
Locatability !!!! !!!!   !!!!   !!!! 
Expressibility !!!! !!!!      !!!! 
Changeability !!!!        
Extendability  !!!!        
Stewardship         
Usage Information    !!!! !!!! !!!!   
Metrics     !!!! !!!! !!!! !!!! 
Medium         
Operational   !!!!    !!!! !!!! 
Gradual UI   !!!! !!!! !!!!    
Diff. Visualisation    !!!! !!!!    
Dedicated Solution    !!!! !!!!    
Integration   !!!! !!!! !!!!    
Cyclic         
Start Minimal      !!!!   
Small Increments      !!!!   
Revocable Changes      !!!!   
Scalability    !!!!      
Gradual Integration   !!!!      
Easy to Change          
Easy to Extend         

Figure 3-5 Requirements and Features 
The above table shows the support that these features can offer at an architectural or 
technical level. These different architectural and technical issues are by no means a 
complete list and not all of these will feature as strongly in the realisations of the 
tools. The list is also an inventory of the influences that have played a role during the 
development of the two tools. What the table does show is that the attention from the 
different features overlap in their support for the requirements stemming in the 
continuous knowledge engineering approach. This will make it very difficult to 
attribute certain benefits to any one particular technology that was employed. 

3.6 Evaluation Method 
The goal that was formulated in the first chapter was to solve the four scientific 
problems of knowledge engineering. The global solution that was chosen was to 
arrange the development of knowledge systems as a learning process, or a process of 
continuous development. This chapter has shown the details of that approach.  
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In the previous, a path was described towards a principled program leading to changes 
in many different aspects of knowledge engineering. This includes requirements for 
the manner in which these knowledge systems should be developed and for the tools 
that aim to support this manner of operation. Finally, a variety of techniques that 
could be employed to create these tools.  

The next step in this thesis is the implementation of the solution and its demonstration 
in a number of case studies. After which the evaluation of the proposed solution can 
take place. The implementation of the solution in part is the development of tools for 
the support of the method. The plan is to create such tools, to realize the solution, and 
test these in a number of practical applications.  

Now the problem is known, and the proposed solution has been presented, a look 
ahead is made to use this additional insight to detail a method for determining the 
quality of this solution. This section formulates the methodology to evaluate the 
veracity, quality, and effect of the continuous knowledge engineering approach and, 
vicariously, the scientific metaphor as a basis for knowledge engineering. 
Furthermore, the tools that are developed are analysed to see whether they provide the 
required support and the effects of this support. By formulating these criteria, the task 
of validating the support through experimentation and application is made structured 
and transparent.  

3.6.1  Objective 
Different difficulties are commonly identified in evaluating both process and tools. 
Few application areas can be used to perform repetitive tests, complicated by the fact 
that both domains and domain experts cannot be assumed homogeneous. Furthermore, 
it is hard to compare different models, while the quality and completeness of the 
knowledge acquired is hard to confirm. Thereby, the influence of the different tasks in 
the domain in relation to the kind of tool or process used still is unknown, but some 
relationship can readily be imagined. In addition, it may be hard to distinguish what 
the effects are, and to what cause they must be attributed; if a negative result is seen, 
is this due to the problem, the domain, the expert, the knowledge engineer, the tools 
or the methodology used. Finally, in collecting different date from possible metrics, 
none of these metrics is easily used or interpreted.  

This does not mean that such attempts at evaluation are not made, for example, the 
Sisyphus  experiments, e.g. (Linster 1994). In (Hayes-Roth, Waterman & Lenat 
1983), a similar experiment using a mystery expert is mentioned. Menzies (1998) also 
discusses this and proposes that testability should arguably be part of any approach to 
situated knowledge engineering. 

There are several reasons for conducting evaluations of KA tools. Evaluations that 
compare tools with each other can indicate the strengths and weaknesses of tools that 
support the same knowledge engineering methodology. This evaluation can also be 
used to identify of the features of the tool that require further development, for 
instance increase the ease of use, enrich the user interface, and generally improve the 
tools.  

In addition, knowledge system development tools are often constructed around 
different methods or techniques, and some methods and techniques are only possible 
using a particular tool or tool-set. In these cases, comparing tools involves comparing 
the underlying methods and techniques that they support. Just as the areas of a tool 
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that need improvement can be identified through its evaluation, so can it identity the 
areas of improvement for the underlying method or technique on which it is based.  

An additional consideration is that experiments can reveal the way in which users 
perform the tasks the tool supports. There is still a lot that is unknown about 
knowledge acquisition and modelling, as well as the actual influence the 
methodologies have in the quality of the process. An essential factor in the evaluation 
of both tools and methodologies is the use of metrics. There are few metrics for 
evaluating knowledge system development tools, techniques, methods and products 
(cf. Lethbridge 1998, 1994). To evaluate these tools effectively accepted metrics to 
evaluate them against and allow identification of good and bad tools, techniques, 
methods and products (Menzies 1998).  

The purpose of a knowledge system development system is to support the 
construction of knowledge models, and the essential purpose of all evaluations is to 
improve the product. This is true both in helping to identify which tool or technique to 
use, or by improving the tools and techniques that are available. This will be the 
subject for the following chapters. 

The research in this thesis will attempt to create answers at a few different levels, to 
strengthen the image that they create as a whole and to cross-validate the conclusions 
that are drawn from them. Starting with the conjectures that project from the 
discussion on the engineering and scientific metaphor, this continues with an 
examination of the people, project, product and process aspects of knowledge system 
development. Secondly, a number of questions exist on what kind of tool support can 
realise the changes required by the continuous knowledge engineering approach. 
Finally, what are the questions that exist to directly evaluate the quality of the 
solutions? The evaluation first is in terms of the scientific problems of knowledge 
acquisition and maintenance and the ability to create industrial strength knowledge 
systems. Secondly, it examines the practical aspects of cost, risk and benefits and 
thereby the bottom-line problem.  

3.6.2  Metaphoric Evaluation 
Concerning the two metaphors that were described in this chapter, there remain to be 
some questions whether the engineering metaphor may provide a better basis for 
knowledge engineering, than the scientific metaphor proposed here. Alternatively, is 
there perhaps a need to combine the two metaphors in a common approach?  

When looking at the conjectures of the scientific metaphor it is clear that they make a 
number of interesting predictions about the nature of knowledge system development. 
The same goes for the engineering metaphor.  

The arguments for the engineering metaphor would collapse if it could be shown that 
the following assumptions are true: 

• People: Experts are capable of independent modelling. 
• Project: Knowledge systems without design can be created and knowledge 

systems see more change after deployment. 
• Product: Knowledge systems see considerable change within the knowledge to 

keep the system in line with the specification, while the environment  
• Process: Knowledge systems can be constructed through a cyclic incremental 

process, rather than a phased incremental model. 
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The arguments for the insight-based, scientific metaphor in this thesis would collapse 
if: 

• People: Experts are not able to either participate or be independently involved in 
knowledge modelling. 

• Project: Knowledge models do not require significant change after deployment. 
• Product: The motivation for changes originates outside the modelled knowledge 

and the knowledge system, by break down of the specification.  
• Process: Knowledge system not be constructed without a design, or cannot be 

constructed in a discovery process. 

Clearly, on these points both metaphors are contradictory, which makes them the 
ultimate vehicle for the evaluation of the implementation and demonstrations further 
on. This evaluation will take place at the level of the method and the tools, where 
these issues are elaborated. 

3.6.3  Continuous Knowledge Engineering Evaluation 
At the level of the development method, as derived from the scientific metaphor, 
certain lower level questions exist. The questions, in order of specificity, will be 
considered as goals for the method:  

Realisation � is it possible,  

Qualification � what advantages and disadvantages does it attain,  

Quantification � what quantitative results does it yield in what circumstances?  

These questions are divided over the aspects that they originate in. The questions on 
these aspects are split into questions that can be directly answered, without an analytic 
process. 

People 
In the explanation created from the engineering metaphor, knowledge is hard to 
articulate by experts. They require a skilled knowledge engineer to create a 
knowledge model, which constitutes a design by formulation and formalization 
supported by a modelling activity. The insight-based scientific metaphor is convinced 
that an expert is best person able to conduct the modelling, because they share the 
same context as the knowledge system, and they are by virtue of their training and 
experience best able to appreciate possible new lessons to be learnt from the 
modelling and the application of the knowledge through the knowledge system. The 
engineering metaphor then predicts that experts cannot model, where the scientific 
metaphor requires such a mode of operation as essential. Without it, continuous 
development becomes an impractical approach. 

People Test: Ascertain whether experts are capable to participate in knowledge 
modelling or can independently model their own knowledge. 

The test allows the determination of the ability to employ experts as a direct source of 
knowledge over the lifetime of the knowledge system, either directly or by 
involvement on the knowledge modelling. This will give insight in the possibility and 
the degree to which this is possible. 
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Project 
The engineering metaphor presupposes that knowledge system development is a finite 
process, followed by maintenance. The scientific metaphor counters this by assuming 
this development is necessarily continuous in nature. When most changes are 
necessary in a system before initial deployment, or conversely, afterwards, this would 
indicate support for one assumption while falsifying the other. 

Project Test: Ascertain whether a project knows more change than initial 
development activity. 

The test will allow the examination of the degree of change and where such change 
occurs. This gives details on the correctness of the engineering and scientific 
assumptions. 

Product 
The product of knowledge engineering is a knowledge system, and the knowledge 
model is merely a part of the design to specify that system. This engineering view of 
knowledge equates a knowledge system with any other artefact: designed, 
implemented, tested and deployed. The discrepancies between the system�s actual 
behaviour and the specification, caused by errors in the implementation or by changes 
in the specifications, are reasons to perform maintenance. This contrasts with the view 
that a knowledge system is a medium for communicating knowledge. In this view, the 
product of knowledge engineering is an ongoing knowledge model forming a theory 
of the domain, and a knowledge system is only a medium to communicate that 
knowledge. The theory will be replaced in time by a more predictive or more elegant 
theory. In this sense, a knowledge system is constantly changing as its knowledge 
model changes.  

Product Test: Determine whether changes to a knowledge system originate in its 
environment or from the invalidation of the knowledge contained within. 

The examination of the origin of the changes to a knowledge model and a knowledge 
system will provide the information on whether it would be possible to operarate in a 
design centric fashion or to operate more or less based on an exploratory basis. This 
would discourage or encourage the view of the knowledge system as the medium for 
knowledge models. 

Process 
While the incrementality is a feature of both engineering and scientific approach, they 
differ on the reasons for using it, leading to variations in the importance of phases, 
and in the ordering of the phases. The engineering metaphor with an emphasis on risk 
and cost minimization seeks to divide and conquer, professing no preference for either 
cyclic or phased incrementality, but most cases in literature show a incremental 
design and incremental development (see also chapter 2). The successive adjustments 
and critical feedback proposed by the scientific-based metaphor sees a greater role for 
cyclic incrementality. This leads to the question whether the preferred way is to 
perform complete cycles or be incremental within each of the phases or only specific 
ones. 

Process Test 1: Establish whether some phases are more important than others are or 
whether they are equally important. 
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Posed alongside these assumptions are the notions stemming from the scientific 
metaphor that the complete cycles matter more, than others are. Therefore, the 
discovery of knowledge depends on having operational models at every moment in 
time. 

Process Test 2: Establish whether cyclic development is more important than 
incremental division. 

The two tests in conjunction provide a possibility to survey the effects of a cyclic 
process, versus incremental and iterative processes as well as determine the relative 
importance of the different phases in gaining the required insight. 

Synergy 
Synergy Test 1: Determine to what extent the measures on the different dimensions 
are necessary. 

Synergy Test 2: Determine to what extent the measures are influencing one another. 

The engineering metaphor would have that different approaches to solving the 
problem are most likely unrelated as they attack unrelated problems. Within the 
perspective granted by the scientific metaphor, these are all related to the discovery of 
insight, and therefore synergy is expected. It is not expected that these measure have 
to be taken in unison. 

3.6.4  Tool Evaluation 
The investigation of the tools, by their different philosophies, is not meant to directly 
analyse the two metaphors. Both tools are inspired by the scientific metaphor. They 
aim to elucidate the form of support that should be given to make adjustments in 
people, project, product and process possible, and thereby facilitate the investigation 
of the metaphors. The two forms of philosophy can be summarised as simplicity vs. 
vividness. The implied distinction is that it is not possible or at least hard to allow 
both simplicity and vividness. 

Tool Test 1. A tool that can allow knowledge modelling by experts must be simple. 

Tool Test 2. A tool that can allow knowledge modelling by experts must use a vivid 
modelling language, to aid the discovery of new insight and support the changeability 
of knowledge models by experts. 

The dichotomy described by the tests above is that between simplicity and 
completeness of representation required by a vivid modelling language. Increased 
completeness was thought to further complicate the task of non-specialist users such 
as the experts whose knowledge was to be modelled. The results show that tools 
based on either test are usable. Furthermore, use of the first generation tool show 
definite signs of self-imposed structure, which is constructed out of available 
materials. This is not unlike the analysis of Clancey (1985, 1983), which showed 
different types of rules to exist in MYCIN and other knowledge systems. 

The approach used to determine an answer to all these questions is seen in the 
development of two tools that represent extremes in a spectrum in their approach to 
the problem. These tools provide a realisation of the continuous knowledge 
engineering method, to provide an implementation of the notions it embodies, as it 
were. By examination of these tools in practical settings, it is hoped they will show 
different results, giving insight into the variety of features that are supported. While 
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this answers, first of all, whether the features are possible to implement, i.e. 
Realisable, it also allows an examination of the benefits as to their Qualitative and 
Quantitative aspects.  

The rationale behind the study of two tools are used that realise a philosophy rather 
than examine a specific feature has more that one reason. First and foremost, it is not 
easy and practically impossible to extricate a single feature and study it independent 
of the others. The features are interdependent, like schemata in genetic algorithms. It 
is combination of features in unison provides support for a certain aspect. Secondly, 
the type of experimental setting to examine a difference in a system is hard to set-up 
correctly. It is very hard to fix the �other parameters�, for instance the background 
knowledge and skill of those involved. A third reason is that the opportunity is here to 
examine two related tools that share common features, but nonetheless possess a 
different philosophy to knowledge engineering.  

3.6.5  Bottom-line Evaluation 
The question addressed here is whether the global solution, proposed as the scientific-
based scientific metaphor and its realisation in the continuous knowledge engineering 
approach shown in the case studies, solves the economic, practical bottom-line 
problem. It was determined that an incremental approach inspired by the engineering 
metaphor was in principle a sound approach to overcome the difficulties of 
knowledge system development that lead to the uncertain bottom-line. The benefits of 
the approach depend on the granularity of the increments, the magnitude and cost of 
each increment and the risk of each increment. It does not address the problems that 
cause the cost and risk. 

The scientific metaphor partially extends the incremental approaches proposed by the 
engineering approaches. The questions that then remain are whether an insight-based 
scientific approach is an actual improvement.  

Benefits � does it increase benefits, 
Cost � does it lower the cost,  
Risk � does it lower the risks of development,  
Clarity - make the bottom-line clearer. 
The first three questions are aimed to improve the bottom-line of knowledge system 
development itself. The last two aim to improve the perception of the bottom-line and 
provide tools to have checks and bounds on the development. These aim to increase 
the sense of security of the development itself. The answers given to these questions 
provide an additional check on the results of this research, as these answers are to be 
given independent of the previous, which is aimed at making clear the effects of the 
proposed solution on the scientific problems. 

3.6.6  Approach 
The requirements support the principles set forth in the continuous knowledge 
engineering approach. The intent is to use the requirements in this chapter to develop 
two tools, which both implement the continuous knowledge engineering program in 
different ways, i.e. by implementing different requirements or by implementing them 
in different ways. These tools should offer certain benefits based on their realisation 
of the program, and in different ways. The differences between the systems allow the 
determination of the relative importance of the requirements and their relevance to the 
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establishment of the principles. This will establish that different realisations can 
implement the requirements, going towards the Realisation question and provide 
additional detail into the questions of Quantification and Qualification.  

A Tale of Two Tools 
The first step then is to ascertain that the tools do indeed implement a number of 
requirements. In the next step, these tools are applied in practical applications, where 
data must be collected to measure the effect of the tools. By implementing two tools 
that are different in philosophy, some information can be gathered about their relative 
support for continuous knowledge engineering, and by the bias of their 
implementation gain some insight into the sensitivities of either tool. This allows us to 
compare the requirements they implement and perhaps say something about their 
relative importance. By this, the approach can be calibrated somewhat. For the tools, 
the best way to check is by examining whether some of the requirements are fulfilled 
and whether the features that implement the requirements lead to the benefits that 
were supposed to exist. 

Therefore, each tool must make clear in what way it implements the requirements. 
This enables us to see clearly how the tool supports the approach. Then through 
experiments and applications the benefits of the features can be examined. This lends 
itself to the validation of the requirements. This also goes to justify the continuous 
knowledge engineering approach from which these requirements are derived. If the 
benefits are realised then this lends support to the approach itself. 

The first dichotomy between tools that is examined is whether the tools should be 
very simple or whether the completeness of a tool aids the ease with which modelling 
can be done, by allowing knowledge models that are vivid. A way of examining this 
is by looking at two tools that represent these extremes. 

In a preview of what is to come, the two philosophies that underlie the tools are 
discussed in this section. The first tool realises a program of simplicity, the system 
with many similarities to first generation systems is realised that aims to support 
experts in modelling their own knowledge. The system provides a primitive domain 
model and a visual way of formulating reasoning knowledge. Furthermore, extensive 
facilities are added that allow the development of customised and dedicated 
applications based on the modelled knowledge.  

The second system aims to generate support for knowledge systems in a second-
generation fashion. The user support aims to assist the forming of models that are 
vivid, close in conceptual structure to the experts� own ideas and conceptions. 
Furthermore, the additional structure facilitates maintenance. Because of the more 
complex nature, it does pose more of a challenge to non-computer specialists. 

This research approach is also given by a healthy dose of pragmatism, as one tool is 
predecessor of the other. The implicit assumption is that the successor should be 
better than its predecessor, but considering that one is not merely a continuation of the 
other, but implements a distinct philosophy should be sufficient caution to give that 
assumption too much heed. The next two chapters will be dedicated to the description 
of both tools. These chapters will include descriptions of their support for the 
continuous knowledge engineering approach. 

It should not be forgotten that any knowledge engineering tool is usable in a 
continuous knowledge engineering approach as formulated in this chapter. Other tools 
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may be just as apt as the tools in this thesis. Nevertheless, these tools contain 
combinations of features that are considered complete and consistent in their support 
for the approach in the sense that they make it �reasonably easy, safe and efficient� to 
use the approach. 

Case Studies 
The case studies are analysed for their results to answer the question whether the 
approach formulated in this chapter truly constitutes a solution. The case studies will 
be executed to validate both the tools and the continuous knowledge engineering 
method. Caused by the difficulty to perform experiments in knowledge engineering, 
and by the constraints of the practical environment in which the research is taking 
place a number of practical projects have been selected where these tools are 
employed. In some cases, these do constitute prototyping projects to validate the 
systems functions and its abilities for certain tasks.  

The projects employ the tools and in some cases implement the continuous knowledge 
engineering program from a methodological standpoint. As these project represent 
actual real-life problem situations the evidence they supply is realistic, however at the 
same time this has restricted the possibilities for measuring, or even the 
implementation of a project directly along the lines of the proposed approach. In 
many cases, the project have therefore been analyses post facto to their effects and 
evidence for benefits.  

From the battery of projects, examples are shown of expert modelling and expert 
participation in modelling, continuous development, direct application and 
customisation, and insight gained through modelling and experiences with the system. 
The evaluation of the proposed solution will be done by defining a number of 
experiments that will be used to evaluate the success of results of the implementation 
of the two tools and their demonstration in a number of practical situations. By 
extension, this allows a verdict on the two perspectives that are proposed by the two 
metaphors.  

3.7 Conclusions 
This chapter has defined an alternative view of knowledge system development in 
continuous knowledge engineering. The approach is based on the scientific metaphor 
as inspiration for knowledge engineering and provides the appreciation of the fluid 
nature of knowledge and its origin in learning. It shows focus on building and 
changing knowledge systems, as proposed by the weak situated cognition position. 

Three principles were proposed to enable that learning: stakeholders, project 
stewardship, knowledge system as a medium for knowledge models and cyclic 
development The unity of these principles moves towards a situation where 
knowledge systems are developed continuously over an extended period, in majority 
by the experts, with typically frequent deployment of iterative changes to the 
knowledge model. The changes needed to create this situation, require that support is 
given by tools to implement these changes. 

Primarily, this chapter has described several conceptual steps were taken to move 
towards realisation of the continuous knowledge engineering approach. First, the 
principles were used to come to a number of requirements for tools to make the 
approach viable and practical. Furthermore, a number of candidate techniques to 
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realise the tools were discussed. Finally, a number of evaluation criteria were 
presented, allowing the testing whether the tools conform to the requirements and 
support the principles, and thereby support the continuous knowledge engineering 
approach.  

Following the identification of the problem and design of a method of solving it, the 
next chapters will show implementations of tools based on the program described in 
this chapter, and demonstration of the use of these tools in practical and experimental 
settings. These describe the concrete steps taken on the path towards continuous 
knowledge engineering. 
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Chapter 4 
A Simple Tool 

�simplicity is the ultimate form of sophistication� 

� Leonardo Da Vinci 

The tool described in this chapter is a simple, limited system for knowledge modelling 
and knowledge system development. This system realises requirements stated in the 
previous chapter. It employs a visual knowledge representation, provides facilities for 
centralised deployment and allows component-based development techniques. KBE 
has been applied in a series of practical projects and thereby forms the basis of a 
number of real world applications.  

The first section of this chapter offers an overview of the KBE, providing an 
elaboration of the philosophy behind the system, the architecture of the KBE and the 
system's key features. In the following section examines the internal knowledge 
representation constructs as well as the inference mechanism that the system uses to 
apply the modelled knowledge. In the third section, the basic methods to model 
knowledge using the KBE is deliberated, with special attention for aspects to be used 
in evolutionary development strategies. The fourth section the KBE supports use of a 
knowledge modelling a knowledge system or as part of a larger system. This shows 
the customisation of the presentation of the system to the user to create both default 
and domain-specific systems. The fifth and final section recapitulates these subjects, 
and highlights the primary characteristics that will come under consideration when the 
system is applied. 

4.1 Simplicity versus Completeness 
The overview in this section presents the KBE. Before delving into the system itself, 
it is important to understand the basic philosophy of the system, which values 
simplicity over completeness. Using this philosophy as a perspective, the functionality 
is discussed in general terms, followed by an examination of the architecture. Finally, 
a description of some of its key features is given. 

4.1.1  Philosophy 
Many researchers and developers have over the years researched different approaches 
to the development of knowledge models and knowledge systems. The challenge 
often was to represent some grave and complex problem in a certain representation. 
Alternatively, the challenge was in the difficulty to elicit the knowledge itself, the 
sheer scale of the knowledge, or the need to constantly verify and validate the 
completeness of the knowledge with mathematical precision.  

The KBE takes a different view on the problems in knowledge engineering. Most 
knowledge problems in existence today do not concern space shuttle repair or brain 
surgery. They concern knowledge that is not accessible to people or that they cannot 
apply in the form that it is in. This knowledge is implicitly available in a single person 
or distributed over a group of people. These problems require a consolidation effort to 
make this knowledge explicit, bring the knowledge together in a central repository 
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and transform it into a usable form (Steels 1992, 1986, Stefik 1995, 1986). Note that 
these issues do not require that the knowledge itself must be elaborate, complex or 
necessarily involves great amounts of modelled knowledge.  

A tiny knowledge base that many users can have access to can be an enormous 
economic benefit to an organisation and to people in general. An Internet advisory 
knowledge system that can tell people what to do if their child swallowed an object 
and which answers 19 out of 20 that they should take the child to see a doctor will 
probably save as many or more lives than MYCIN ever did. The problem therefore is 
to bring the possibility to develop and access knowledge systems to a great many 
people. 

The aim should therefore be to make it easy to develop and use knowledge systems 
for simple knowledge. In this context, simplicity is seen as a virtue, rather than a lack 
of sophistication. The only consideration that such simple, but effective knowledge 
systems must submit to is to the usability of the system. The knowledge system must 
offer the same quality and ease of use that people have grown accustomed to in 
standard software. This means that the post-production facilities for knowledge 
system development must offer the possibility to create a high-level quality product.  

The remainder of this section will provide additional insight into how this philosophy 
has been realised in functionality that the KBE system offers and how this was made 
possible by the underlying architecture.  

4.1.2  System 

Figure 4-1 KBE User Interface 
The KBE is an extension of an earlier system called the Advanced Knowledge 
Transfer System (AKTS). This system is a front-end to a Prolog engine that allows 
entering decision-tables and translates these to Prolog facts and clauses. Initially, 
AKTS was restricted to a knowledge acquisition tool, but the system eventually 



4.1 Simplicity versus Completeness 107 

  

allowed the consultation of the knowledge models (Lucardie 1994, 1992). The KBE is 
its successor, independent of a Prolog engine, and enhances the systems capabilities 
for knowledge modelling and knowledge system development. The remainder will 
make no distinction between AKTS and KBE, as the KBE subsumes the facilities of 
AKTS. 

The KBE is a knowledge modelling tool based on the philosophy of simplicity. It 
does not have an elaborated domain-model and its inference mechanism is based on 
simple backward chaining. The basic technology contained in the system is therefore 
not an elaboration in a technical sense, rather it can be perceived as a simplification of 
the technical possibilities that can be discerned in many other tools. This simple tool 
is coupled with visual representation of the knowledge in the form of decision tables 
and extensive facilities to deploy the knowledge models, as standalone applications 
and through web-enabled user interfaces. Furthermore, these deployment facilities are 
highly configurable and can be used to easily develop dedicated applications. 

The KBE is a system for the capture, maintenance and consultation of knowledge. 
The tool provides a user-friendly point and click environment that is intuitive and 
easy to use. Using the system requires no programming skills whatsoever. The system 
represents the domain as attribute-value pairs using only primitive data types and uses 
decision tables as the representation of the knowledge itself. The visual nature of 
decision tables is easy to understand and assists in the validation and verification of 
knowledge.   

• Visual Knowledge Representation 
• Component Based Development 
• Model View Controller 
• Abstract Communication 
• Centralised Deployment 
• Executable Specification 
• Simple Knowledge Model 
• Simple Inference Mechanism 
• Adaptable Visualisation 

Figure 4-2 Key Features 
The KBE allows non-specialists and knowledge engineers alike to create knowledge 
models, verify and validate them, and maintain the represented knowledge. 
Furthermore, the use of decision-tables enables strategies that allow a knowledge 
system to grow continuously and evolve over time. Decision-tables allow for easy 
extension, both top-down and bottom-up. This means that it is easy to start a small but 
useful system and develop it incrementally. 

Beyond the modelling functionality, the KBE has a number of sophisticated tools to 
publish the knowledge models and make them available to the end-users. These tools 
make it possible to use the knowledge model in a default user-interface, but also using 
simple customisable interfaces based on HTML, or by engineering dedicated domain-
specific systems.  
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While having a commitment to simplicity of use, the requirements that were stated in 
the previous chapter stand as functionality that must be realised in order to support the 
continuous knowledge engineering approach. The Figure 4-2 Key Features an 
overview of the features that the KBE implements. Some of these will be described at 
greater length in later sections of this chapter. 

4.1.3  Architecture 
The KBE family�s architecture is highly component-based, which allows the 
development of both domain-specific knowledge-modelling tools as well as 
knowledge-consultation systems. A central component handles all the actions on a 
single knowledge model, and is equipped with additional facilities and extensions for 
other functionality. Based on these components several applications have been 
devised as default design and consultation environments. First, the knowledge base 
component is described, after which the remainder of the architecture is elucidated. 
Then a number of applications based on the component are discussed. 

Knowledge Base Component 

Figure 4-3 KBC Basic Architecture 
The architecture is based on that found in many different kinds of knowledge systems 
(compare Figure 2-3 Knowledge System Architecture). The knowledge consisting of 
a factual knowledge, a reasoning knowledge and inference mechanism is contained by 
the knowledge base component. These will be described in the sections below. The 
knowledge base component does not contain any visualisation aspects, much like a 
database. The visualisation of either modelling or consultation is considered a 
separate issue. This allows integration of the component in any kind of software 
environment, examples of which will be discusses later. One effect of this is that it 
makes the development of dedicated systems possible. 

The advantages of CBD, described in the previous chapter, is the great modularity of 
different aspects of a system, and their exchangeability with other components that 
realise the same functions, in another way. The architecture requires a knowledge 
editor and a consultation of a knowledge model, and may include other components to 
be integrated, such as databases, etc.  

The API of the knowledge base component is simple. It allows modification actions 
on the knowledge model elements as well as consultations actions, supplemented by a 
general introspective API, giving access to the different sub-components of a 
knowledge model. The component-based approach yields the possibility to employ 
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Inference
Mechanism

Case Model

Consultation
API

Knowledge Base Component

Editor
API
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virtually any kind of visualisation, medium or interface. The different modalities are 
represented in the architecture. Whether it concerns a standalone application 
developed around interactive forms or by using a sophisticated web-server extension, 
the possibilities abound. 

The component has a number of methods that arrange for an abstract model of 
communication. This has as an advantage that several different facilities can handle 
the visualisation. The knowledge model itself can be developed using this abstract 
communication rather than worry about the specifics of any of the representation 
forms.  

Component-based Architecture 

Figure 4-4 Knowledge Component Architecture 
The architecture of the different systems that comprise the KBE family centres on the 
knowledge base component. The additional facilities and extensions are mainly aimed 
at visualising the knowledge model and develop a knowledge system based on a 
knowledge model. A number of other components were added to support the 
development of knowledge modelling and consultation systems, as well as a default 
visualisation of the modelling environment and consultation system. Additionally a 
series of components was developed to allow knowledge systems to be deployed 
through an Internet web-server. 

The abstract component does not contain all functions that are essential for 
developing knowledge systems. In its bare form, there is not way to pose any 
questions, and provide a user with a final result, perhaps as a report. To the 
component, these are auxiliary issues, which allow anyone to add these visualisation 
functions to the component, as well as others that have yet to be contemplated. The 
system�s architecture includes a number of auxiliary facilities for developing 
knowledge systems based on a knowledge model.  

Other components can be added in time to the framework, as some have already been 
done. A default knowledge modelling environment has been developed, as has a 
default consultation environment. Additional components include so-called 
knowledge aware components, allowing very fast development of dedicated user-
interfaces. Other components allow visualisation of a knowledge system through an 
Internet server as HTML pages.  

Knowledge Aware Components 
This first category of additional support was implemented by providing for a set of 
visualisation components. The integration of the knowledge base component and the 
knowledge aware components enables developers to use rapid application 
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development environments such as Borland�s Delphi to quickly and easily create 
every possible type of application. These simple components make it possible to 
develop a graphical user interface for a knowledge system very quickly. They obviate 
the need for programming this integration.  

The knowledge aware components are visualisation aids that can be used in 
conjunction with the knowledge base. Such a component like an edit field can be 
linked to a parameter in the model, by virtue of which link the value represented by 
the component is the value of the parameter. Changing the value in the edit 
component, changes the value of the parameter.  

Each of these components is integrated into the Delphi programming environment. By 
using a true point-and-click interface, these components can be linked to one of the 
parameters in the model, allowing them to display and in some cases change the value 
for a parameter. 

Name Visual Description 
KBEEdit  

Display and modify Values through 
open questions. 

KBECombobox  
Display and modify values through 
closed questions 

KBELabel  
Display messages, prompts, 
explanation and values of 
parameters. 

Table 4-1 Knowledge Aware Controls 
Any one of these components needs only to be told which of the parameters in a 
knowledge model it belongs to. It then is ready to visualise and modify the parameter 
during a consultation. Changes may propagate to other parameter values, under the 
inference mechanism. These changes are reflected immediately in these components. 

Internet-based Deployment Components 
To support centralised deployment and allow for a scalable and customisable solution, 
Internet-based deployment components were developed as an additional framework. 
This framework consists of visualisation and reporting facilities. The former 
visualises the questions posed to the user of the knowledge system, while the 
reporting facilities generate a more insightful end-result based on a knowledge model.  

The Internet capabilities of the system enable centralised deployment of knowledge 
systems to distributed users. The cost per additional user is negligible compared to 
other schemes and makes it very easy to release systems based on small changes. In 
fact, such changes are transparent to the end-user. 

The iKnow Server Extensions supports the use of a knowledge model in an Internet 
server environment. These components serve out HTML pages and receive answers 
through the HTTP protocol. This allows many different users around the world to 
make use of the knowledge system at their convenience. These components give 
many possibilities to customise a knowledge system. The system employs a set of 
templates that are used to generate different screens. Changing these templates or 
adding new ones can change the look-and-feel in any way.  

The first option is to change the knowledge system�s surface visualisation, such as the 
colour scheme. This can include company logos, etc. The next stage includes a 
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number of specific templates to be added to a knowledge system, to visualise certain 
specific questions. For example, a question on colour can be visualise as a colour 
map, rather than a closed question giving a textual description of different possible 
colours. This type of customisation can be added incrementally. 

To visualise the results of a consultation it is standard to deliver a concluding report. 
The iKnow Report Extension allows the definition of an XML (Extended Markup 
Language)  file containing a template report that gives a specific report for the 
situation described in the knowledge model during a consultation. In some cases this 
report is created during the consultation, a so-called running report, in other cases this 
is limited to an end-report. Such reports are also in many cases what an expert would 
have to fill in or deliver as the conclusion of the involvement in a problem case. This 
report generates HTML to be integrated into the consultation pages generated by the 
Internet Extensions. 

Applications 
The KBE itself is based on the design and consultation API provided by the 
component. It provides a possible visualisation of the knowledge model and allows 
modification of its content. It is default editing interface placed on top of this 
component. Dedicated environments can also be developed in much the same way. 
The component-based approach further allows easy integration of this knowledge 
technology as a small part of a larger system. As such, knowledge systems have been 
integrated into document information systems and geographical information systems 
(GIS). A consultation only version Knowledge Base Consult System (KBCS) also 
exists making it possible to deploy a default standalone version of any knowledge 
model. A special file format has been developed for this to encrypt the knowledge 
itself, as in many cases the knowledge itself can represent considerable value. 
Furthermore, a default Internet Interface has been developed to allow the consultation 
of any knowledge model over the Internet with no other effort than the development 
of an initial knowledge model.  

These three default systems allow the development and deployment of a knowledge 
system to take place with minimum effort. At the same time, different paths are 
provided to move from a default system to a customised system, through to a full-
fledged dedicated visualisation of any knowledge model. 

4.2 Modelling Primitives 
In this section, the different aspects of the knowledge representation employed in the 
KBE are highlighted. This is a more detailed description of some of the aspects 
introduced in the section above. The subjects that will be treated are the domain 
model, the inference model and the inference procedures. This serves to clarify the 
constructs as they are used in a knowledge model. 

4.2.1  Simple Knowledge Model 
The model of knowledge that the KBE employs is intentionally simple. It only has 
three concepts that require understanding: the decision table, the parameter and their 
dynamic relationships bound up in the backward chaining inference process. The 
simplicity means two things for the user: there are not a lot of choices to be made and 
the choice for representations of knowledge are rather limited. Understandably, this 
has both its benefits and its disadvantages. 
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The decision-table is an example of a visual knowledge representation, as was 
described in the previous chapter. The use of decision-tables in this system assists 
different kinds of users, in understanding, locating and changing the modelled 
knowledge at a lower level. Decision-tables group a number of related rules, and 
thereby provide an element or concept at a higher level of abstraction than 
unstructured rules.  

This system knows no mechanisms for dividing a knowledge model into separate 
modules, and no object oriented modelling concepts are supported. Therefore, some 
of the advantages mentioned for aspects to do with participation in knowledge 
modelling are not realised.  

4.2.2  Parameters 

 
Figure 4-5 Parameter Specification 

The domain model part of the knowledge representation is formed by a set of 
parameters. A parameter is in essence an attribute-value pair. A parameter also has 
additional information describing it and determining some of the aspects of its usage 
within the system. 
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Name Description 
Title The name to be used when referring to the parameter. This name may 

contain spaces 
Prompt The prompt is used to formulate the question to the user. 
Explanation The explanation is used as an additional description to augment the 

prompt. 
Default The default value is the one assigned to the parameter when it is 

required. This can serve many purposes, but is especially useful when 
debugging 

Domain The domain limits the values of the parameter  
Type The type of the parameter, where the value can be one of four base-

types: String, Integer, Real, and Boolean (see Table 4-3) 
Goal Determines whether this parameter may be used as a goal for the 

knowledge model. 
Ask First This determines whether the parameter should first be presented to the 

user, before attempting to infer a value. In this particular case, the user 
may answer �don�t know�.  

Multi-valued Multi-valued parameters can attain more than one value. For instance, 
if the domain is �red, green, blue, yellow�, and the parameter is multi-
valued, it may contain the value �green, yellow�, or �red�, or �green, 
blue, red�, or any other combination of the domain values. 

Precision Determines the precision of calculation and storage of a real valued 
parameter. 

Decimals Determines the number of decimals for calculation and storage of a 
real valued parameter. 

Table 4-2 Parameter Settings 
The most important attributes of a parameter are shown in Table 4-2 above. The 
remainder of the attributes shown in Figure 4-5 are either advanced concepts or have 
been depreciated. 

Type Description Example Domain  Example Values 
String Open text none name = •John Smith•
 Any value from 

an enumerated 
domain  

(red meat,
poultry, fish)

course = •red meat•

Integer Any whole 
numbered value 

[0, inf) [1,10] number = 6

Real Any real 
numbered value 

[-273.15, inf) temperature = 25.5

Boolean Any truth value (true, false) vegetarian = true

Table 4-3 Domain Model Parameters 
String parameters can be given a domain, which enables it to operate as an 
enumerated value. Boolean parameters can be configured as to what term is used to 
denote true and false. Each parameter further has a prompt, an explanation, a domain 
and a default value. The prompt and explanation are used to query the user for a value 
when the inference cannot yield a value for the parameter. The domain can restrict the 
possible values that a parameter can accept or state the possible enumerated 
alternatives that can be chosen for the parameter. 
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String 
String parameters are parameters that contain a text value. Usually these parameters 
have a predefined domain, for instance, a parameter which contains a colour, can have 
a domain "red, green, blue, yellow". If a text parameter has no domain, it can contain 
any value. The string type can hold any value that is an array of characters. The text 
type plays a double role in the KBE. If it is not used in a decision table as a condition 
then it has no restrictions on the values it can assume. It can then be used to hold 
auxiliary information like the users name, the name of the object under diagnosis, etc. 
If it has an explicit domain given by definition, or if it is part of a decision-table�s 
condition-alternatives, it can assume an implicit domain defined by local restrictions 
on its values during consultation. In those cases, it functions as an enumeration. The 
parameter can then only take values from the domain. In these cases, it is used to 
enumerate for example the wines of choice: Bordeaux, Merlot, etc.  

Boolean 
The Boolean type is the well-known logical type that is used to specify values that can 
be either true or false. The domain of a Boolean parameter is determined by that fact. 
Boolean types are used to specify yes-no situations such as �Is the guest coming to 
dinner a vegetarian?� Boolean parameters are similar to text parameters, but they 
have a predefined domain. The KBE by default makes this the domain "Yes, No", but 
you can override those values using the knowledge base properties. Besides that, 
"Yes" is equal to TRUE and "No" is equal to FALSE.  

Integer 
A parameter of the integer type can accept any whole-number value. It can be 
supplied with a domain limits the values it can assume. The domain for an integer is 
not a list of values, as with text parameters, but a range of values. The domain can be 
specified as a language expression, or as a range. If the domain should be all integer 
values greater than 3, the domain is X > 3 (the X is used to refer to the parameter 
value itself, so 3 < X is the same as X > 3). If it is all integer values less than 9, the 
domain should be X < 9. If it is all integers between 3 and 9, the domain is X > 3,
X < 9. You can use >= and <= to express "greater than or equal to" and "less than or 
equal to" respectively. You can only express a single interval, so, a domain combining 
of the values between 3 and 9 and the values between 22 and 37 cannot be defined. 

Real 
The real type can accept any broken-number value. It can be supplied as the integer 
can with a domain that functions as a limitation on the values it can assume. The real 
can be used to declare parameters that hold the temperature in degrees Celsius, with a 
domain of [-273.15, inf). Real parameters have real values. These are handled 
in the same way as integer values. For a decimal point, a dot must be used (e.g. 
3.14156). As was discussed before a real-valued parameter may be equipped with a 
precision and number of decimals. 

4.2.3  Decision Tables 
The knowledge model further consists of a set of decision-tables. The decision-table 
has been around for some time and has been used for knowledge representation in 
other systems as well (Mors 1993, Montelbano 1973). 
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Figure 4-6 An Example Decision-table 

The left top part of the table contains the conditions, below which the actions are 
located. These contain references to parameters in the domain. The right side contains 
a tree of condition-alternatives and action-alternatives. The condition alternatives and 
action alternatives can contain expressions yielding a value. This can be simply a 
value in the domain of the parameter or a reference to another parameter. Special 
values include the DON’T-CARE (-), which means that the condition is not relevant 
and can be ignored, and the ELSE alternative, meaning the remainder of the domain. 
Another special keyword here is ASK which can be added as an action alternative. 
When this action-alternative is executed, the question to ask which wine type is 
required is forced, as in that situation the knowledge system has no preference. 

The condition parameter is compared to the active alternatives; for example, Main
course is compare the values red meat, poultry, and fish. The chosen value 
is used to determine the next set of alternatives, below the chosen alternative, as 
visible in the figure. If there is a don’t care, the condition is skipped and the 
condition alternatives in the row below are chosen to be executed. When all 
conditions have been evaluated a column of the table�s action alternatives is selected, 
and these actions are performed, in this case assigning a value red to Wine type. 
By virtue of this visual representation, it is easy to examine the contents as to their 
completeness and exhaustiveness. Therefore, it is easy to whether one of the required 
alternatives is missing or that there are no actions associated with a particular 
configuration. Furthermore, it is easy to add additional knowledge at any point in the 
decision table, as an additional condition, condition alternative, or the consequences 
of the table�s execution can be extended with additional actions.  

A decision table can be perceived as an implementation of heuristic classification 
(Clancey 1985). It uses a number of features in the domain, associated with a number 
of conclusions, not necessarily through causal links. A knowledge model in the KBE 
is a network of heuristic classifications. 

4.2.4  Inference Process 
The inference process used by the KBE is simple backward-chaining reasoning. There 
is no way to influence or change the inference process directly. The only control by 
the user is implicit in the model. To exert this control requires modelling approaches 
that explicitly incorporate control structures. These approaches will be discussed later 
on in this chapter. 

Evaluate Parameter 
The inference process commences by attempting to determine the value of a goal 
parameter (see Figure 4-7). Any one of the parameters in the knowledge model can be 
marked as goal parameter. The consultation process can be halted at any time, by the 
user or by any other outside agent. This gives the possibility to examine the facts of 



116 Chapter 4 A Simple Tool 

 

the knowledge model, save the consultation for later, retract one of the earlier answers 
or stop the consultation. 

Figure 4-7 Evaluate Parameter 
The system works by deepening queries, attempting to derive the value of a parameter 
with the available knowledge, which may require inferring other parameters. The 
process is the same for the goal as for any sub-goal parameter. For example, if the 
value for a parameter X has not been set yet, the system attempts to determine it. First 
option in the inference process is to assign the parameter X a value is the default that 
has been set. If there is a defined default then that value is returned. In some cases, 
this may give rise to further inference by virtue of the replacement expressions that 
may be present in the default (See replacement expressions). If there is no default, the 
inference proceeds. In the next step, the system sees whether the parameter is defined 
as ask-first, and if from this user interaction a value is returned, then the system is 
ready and returns the value. If this user interaction does not yield a value, because the 
parameter could not be asked first or the user�s answer was don't-know, the inference 
continues. 

The system then attempts to infer the parameter, using those decision tables that have 
the parameter contained in one of the actions. There may not exist such decision 
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tables or when used they may lead to a situation where the decision table does not 
assign a value to parameter X. As there may not have been a decision-table, or the 
decision-table did not produce an answer, then there is another possibility to ask the 
user for the answer. This may be the second time that this question arises. This time 
however, the user is not allowed to enter don't-know as an answer. After this, the 
value is either known or the consultation aborts. 

Inferring a Parameter 
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Figure 4-8 Inferring a Parameter 

The inference of a parameter is performed during the evaluation of a parameter. When 
the decision-tables are consulted, it is important to remember that there may be more 
than one decision-table that can assert a parameter. In that case, the decision-table 
with a name equal to that of the parameter is used first. If this does not lead to a value 
for the parameter because none is specified in that specific case, the remaining 
decision-tables are consulted in order of the list of decision-tables. 
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Consulting a Decision-table 
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Figure 4-9 Evaluating a Decision-table 

A condition is evaluated by first checking the expression of the left-top condition 
alternative to see whether it contains a don�t-care symbol. If it does then the 
consultation continues to the following condition; otherwise, the current condition �s 
expression is evaluated. 

Reaching the evaluation of a condition, the resulting value is then successively 
compared to the value yielded by evaluation of the current condition alternative 
expression. If the condition alternative has specified variable replacements (e.g. X >
10 or X > {temperature}) in its expression, as references to the result value of 
the condition, then the value of the condition is substituted into the expression. 
Otherwise a normal comparison of the condition and alternative values is performed. 
This comparison yields either true or false. If the values match, then the tree of 
condition alternatives under the current condition alternative is selected, and the 
system proceeds to the next condition. This continues until all the conditions have 
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been evaluated. The column of action-alternatives under the last selected condition 
alternative contains the selected actions.  

These actions are executed in order, combining the parameter in the action expression 
and the value is the action alternative. The action and action alternative may contain a 
valid assignment statement or they can contain a COMMAND expression. The first leads 
to a value to be assigned to the parameter mentioned in the action. The COMMAND 
expressions leads to some action being taken on the model or on the outside world. 

�What if�� Analysis 
One of the aspects of the inference process is the possibility of performing a �what 
if�� analysis. The system allows users to change the value of a single parameter and 
explore an alternative interpretation of the problems situation. This revokes all 
inferred parameter values and all answers given to questions after the revoked 
parameters timestamp. This leaves only the answers that were provided by the user 
until the point at which the original answer was given. 

After this operation, the consultation is restarted, using the remaining answers for 
questions that may arise. The user therefore does not answer these questions again. 
The system automatically ends up at the place where the revoked parameter was 
asked, giving the user a chance to change the answer previously given. 

4.2.5  Communication 
As is clear from the inference process, communication with external systems is 
sometimes required. Although the system has a bias towards a human user using a 
prompt and explanation, this does not negate the possibility to use other sources of 
information, such as databases, active sensors, etc. The knowledge base component 
fulfils all possible modes of communication discussed in the previous chapter. 

Obtain 

 
Figure 4-10 Q & A Dialog 

At different points in the inference process, questions to the user are directed to 
obtaining a value for a parameter. This employs the prompt, explanation, and the 
domain to create a basic question format. When a parameter has no alternatives and 
the values used in the decision table from which the question originated are used. This 
negates the need to enter a domain for all parameters.  
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It is possible to direct the system to order the questions posed to the user. First of all, a 
parameter can be made ask-first. This means that the first time that the parameter is 
evaluated, instead of using any available decision-tables, the parameter is first 
presented as a question to the user. If the user answers the answer is unknown to him 
(the �don�t know� button in the dialog), the system continues with the inference 
process as before. The purpose of this is that experienced or knowledgeable users can 
provide high-level answers, which negate the need for some inference, and the many 
questions that can be related to it. For inexperienced or novice users this can create 
the possibility to have difficult questions inferred or approximated by the system. An 
example would be a question to the temperature in the room. If the user does not 
know, it can be approximated by knowing the season. Using this as an estimate, the 
system can continue. 

 
Figure 4-11 Explicit ASK Alternative 

Another capability is to explicitly ask a specific parameter from a condition-
alternative in a decision table. This allows a certain question to be asked at the time 
the decision-table uses a certain condition-alternative or action. When explicit control 
is needed to change the order of questions, this mechanism can be employed. The 
inference mechanism sometimes asks questions in an order that is unintelligible or 
seemingly illogical from the user�s perspective.  

This is related to the practice of users who try to guess at the inference process, and 
according to their own reasoning necessitates a certain order in the questions asked. 
The system may have determined a more efficient order, or has determined that a 
question is irrelevant in the current context. In certain cases, these questions are 
explicitly incorporated in the knowledge model to appease the users. While this may 
seem wrong, the choice to do so may be very important in the acceptance of the 
system.  

It is an important mechanism to incorporate a question for a parameter explicitly, 
because the knowledge does not provide for certain situations (yet), as in the table 
above. The ELSE condition means that some main course unknown to the modeller is 
selected, and determines that the system might as well ask the user for the type of 
wine to be used during the meal. 

Present 
Certain parts of the reporting are produced during the consultation of the system, by 
explicit commands within the knowledge model. 
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Figure 4-12 Display Command 

The COMMAND display as shown in Figure 4-12 is the KBE�s equivalent of present 
mode of communication. The text sent in a display command uses HTML syntax, so a 
great variety of ways exist to present elements from the model.  

Query 
Any parameter in the knowledge model can be accessed and queried for its value. The 
parameter allows access to the current value or its evaluated value. The latter may 
start an inference process when the value for the parameter is not yet evaluated. In this 
way it functions as a goal. 

Receive 
Likewise, it is possible to access any parameter in the knowledge model and set a 
value for it. These values are checked for conformance to the domain that was set for 
it. This mechanism may be used to set a host of parameters before the consultation is 
started. This is often the case when dedicated knowledge system with an interactive 
user-interface are integrated with the knowledge model. 

4.2.6  Language 
The KBE knows a limited language for creating expressions that can be used in 
different parts of the system. The explanation here will be concise as the previous 
showed many examples. It also explain replacement expressions. 

Expressions 

Type Name Examples 
Literals String "A string", "foobar"
 Integer 10
 Real 1.2
 Boolean TRUE, FALSE
Operators Numeric *, /, +, -, ^
 Logical OR, AND
 Comparison =, <, <=, <>, >, >=
Symbols Evaluation UNKNOWN, KNOWN
 Decision table ELSE, ASK
 Replacement {<name-of-parameter>}, X
 Call command COMMAND name(par1, …, parn)
Functions Mathematical sin, cos, min, max
 Date& Time date(dd, mm, yyyy), time(hh, mm)

Table 4-4 KBE Language 
The expressions in this language contains commands, symbols, operators, functions, 
equations, assignments, text display, picture display, parameter logging. Some 
examples are shown in the Table 4-4 above. 
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These expressions are found in many different places. Decision tables are an obvious 
location, but the default can also be such an expression. Another issue in this respect 
is the capability to parse replacement texts from a parameter into a string, for example 
into a prompt. Even though the language is extensive enough to support basic math 
functions, the set of functions that is considered the minimal set is quite small and 
self-contained. 

Replacements 
As was seen earlier in domains, X can be used to refer to the value of the parameter. 
This also operates in the decision table. On execution the value in the parameter is 
substituted for X, after which the actual comparison is made. In fact, the normal form 
of the decision-table is a short notation for this principle. In actuality it should say 
X = "red", instead of just "red". 

In condition- and action-alternatives, it is also possible to use replacement 
expressions, of the form {<name-of-parameter>}. This is then replaced by the 
value of that parameter. This can also be used in prompts, replacing the reference to a 
parameter, changing "Is the owner {'name of owner'} living in
the dwelling at {'address of building'}?" into "Is the owner
Jack Smith living in the dwelling at 4 Main Street,
Hicksville? ". This allows the system to tailor its questions and responses based 
on the content of the knowledge model. To be able to parse the original text, it is 
necessary to evaluate those parameters. Therefore, these kinds of replacements can 
change the natural order of inference. Another replacement expression could be X < 
{room temperature }/10 * {alpha_factor}, found in a decision table. 

4.2.7  Conclusions 
The full spectrum of possibilities that makes up a knowledge model in the KBE 
remains to be a set of parameters, with related decision tables and a backward 
chaining inference engine. The language that is used to formulate the different 
expressions is quite simple as well. The inherent complexity of navigating and 
understanding such a knowledge model is relatively low. There are only a few 
concepts that are required material and the learning curve has been shown in practice 
to be very limited indeed. 

4.3 Knowledge Modelling 
This section describes the manner in which the KBE can be used to develop a 
knowledge model. This takes the form of a scenario. From the start to a developing 
system, different aspects of modelling are shown, including later changes and 
enhancement. 

4.3.1  Starting off 
In many cases, developing a knowledge model is an exploration, rather than a 
development along a predefined path. This means knowledge modelling can take 
many forms, but is most commonly an iterative process, proceeding either top-down 
or bottom-up, or by using mixed approaches. The most important feature is that the 
minimal system that can be consulted is very small and that subsequent changes are 
small as well. A single decision table and a couple of parameters are sufficient for a 
first implementation and some trivial systems require no more than this.  
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Integrity control makes sure that the knowledge model can be consulted at every 
moment. This allows testing of the knowledge model to its ability to deal with a 
specific case. As each parameter can be used a goal, testing parts of the knowledge 
system, up to an individual decision-table is easy. Additionally, a decision table can 
therefore be developed incrementally as a separate functional unit. By virtue of this 
knowledge model representation, the knowledge can start small, and accrete in small 
increments and be extended to include additional functionality. 

A Single Table 
Using the KBE, developing a knowledge model begins relatively easy. The basic 
system can be as simple as a single decision-table and a couple of parameters. Such 
small systems can elucidate certain reasoning, and allow people to make a certain 
decision explicit. For example, the calculations necessary to determine eligibility for 
rent-subsidy are relatively straight-forward but difficult to explain. Rent-subsidy is a 
process which many different people with different backgrounds go through, but often 
only once or at least very few times. As an alternative to a leaflet, a knowledge model 
consisting of a single table can solve the problem. Iterative or cyclic knowledge 
modelling makes use of this as a starting point, although in most cases a higher-order 
result is required. Nevertheless, this effect can also be seen on larger scale, and is still 
present when examining the development of individual decision-tables in the system. 

The system guards the integrity of each table. This eases the development of a table 
considerably. In every configuration, a decision-table is always in a correct and 
consultable state. Errors that break the knowledge model are simply impossible, 
because the system keeps each decision table consistent and complete. For example, a 
new condition adds new condition alternatives for each of the columns, filled with a 
don’t care expression. Whenever a don’t care alternative is provided with a 
definition, another alternative is automatically added filled with the else expression. 
Conversely, when all the alternatives are deleted, the final alternative is filled with a 
don’t care. This last one cannot be deleted. 

Furthermore, when the table uses a parameter name, but the name of the parameter is 
not present in the list of parameters, the user is asked whether he would like to add it 
to the list of parameters. These initially default to String parameters.  

The first attempt at a table is often not the correct one nor the optimal one. Sometimes 
this becomes obvious when the expert views or comments on the table, but many 
times this becomes obvious from building the table in the first place. Conversely, the 
consultation of the system can reveal inconsistencies in its notation mainly from the 
external behaviour of the system. 

The common mode is that as the system grows, tables are added, and the list of 
parameters grows. The major activity however, lies in sharpening up the decision-
tables. Different types of feedback make it clear that certain aspects are not present, 
leading to questions to the knowledge provider. This can be an incomplete covering of 
the domain of a parameter, when only red and white wine is in the table and the 
domain also contains rose and champagne. Alternatively, when the action alternatives 
are blank in certain situations, this is an indication that some situations just are not 
covered. Each of these questions leads to improve upon the table being in a piecemeal 
fashion. Adding new alternatives, changing existing ones or even removing them can 
all be done with relative ease. 
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The development of a decision table can be likened to that of ripple down rules, where 
there is an increasing refinement of the knowledge present. An exceptional case is 
quickly added to the table as can be seen in the case of champagne in the example 
above. At every point in the table can be room for additional detail, and particularities 
can be inserted. When a new parameter becomes relevant in a particular case, it can 
be added as a condition, and this exception is handled, leaving the remainder as don�t 
cares. 

4.3.2  Adding tables  
If a single table does not suffice, the next step is to add new tables. Adding a table is a 
simple button press. In principle, the system allows new tables to be added singularly, 
based on the inference of a single parameter. The common approach is to add sub-
tables, which is basically a top-down approach. Another possible way is to add a 
decision-table that uses the existing table, in a bottom-up fashion. 

Sub-tables 
When one of the conditions in a decision-table needs further deepening, an additional 
table can be added for that condition�s parameter, as a �sub-table� of the original table.  

 
Figure 4-13 Super Table 

The fact that the Main course has a sub-table is indicated with the underline in the 
top-left condition.  

 
Figure 4-14 Sub Table 

In the figure above, the sub-table elaborates on the Main course condition of the 
previous table. When the value for that condition parameter is required, for example 
when the super-table is evaluated, the sub-table is evaluated in the process. For 
conceptual purposes, it can be supportive to think of the interconnections as a tree. 
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Figure 4-15 Tree Structure 

In fact, the connection between the tables goes through the parameter in the condition. 
This said, a table may have more than one super-table, as the parameter may feature 
in more than one place (see for example the wine type which features twice in the 
tree). In addition, a parameter can have more than one decision-table that assigns a 
value to it. In this case, the conflict resolution procedure will choose which decision-
table to evaluate (see Inferring a Parameter on page 117). 

Structural Knowledge and Tasks 
It is also possible, in a reverse form of what was discussed above to introduce new 
decision tables, �above� another table, subsuming its reasoning. This allows for 
bottom-up approaches that proceed from the earlier description. Therefore, only a 
special case will be treated here. 

 
Figure 4-16 Structure Table 

A common approach is to introduce so-called structure tables, which can organise and 
steer the reasoning process (cf. the structural rules in Clancey (1983) that contain 
strategic and meta knowledge). In larger systems, these structure tables can constitute 
the majority of the tables contained in the system. Experts sometimes have an explicit 
view of the order in which certain tasks are executed in the domain. They also feel 
unsupported by, in their eyes, weak control derived from the inference mechanism. 
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Using structure tables such as the one in Figure 4-16 is similar to the introduction of a 
control structure in a program, introducing a linear, and sometimes, conditional 
ordering of steps. The DETERMINE entry in the table is not a keyword, but a dummy 
parameter to which the value of the replacement expression to the right is assigned. 
Different forms of these structural tables exist, depending on the preference of the 
modeller.  

In the eyes of an expert, the operation of the system can sometimes appear random. 
Not so much because they do not understand the modelled knowledge, or the way this 
knowledge is employed by the system�s inference mechanism. The experts and 
knowledgeable users attempt to second-guess the system using their own line of 
reasoning, expecting certain questions to be asked. The system may have left these 
out because they are not relevant. 

4.3.3  Change and Enhancements 
During the lifetime of a model, its knowledge changes and the model is expanded in 
functionality. Make a change or an enhancement is very much influenced by the 
subject matter that has already been added to the system, the bias of the knowledge 
model. Such a bias always grows into a knowledge model, in implicit and explicit 
assumptions and particular idiosyncrasies of the modellers that were involved.  

Because of these influences understanding the structure and content of a knowledge 
model is important when making changes or contemplating the best way for 
introducing enhancements. The task of understanding a knowledge model can be 
supported by giving support for distinguish the relationships that the element that is to 
be changed has with other elements. Making changes to a knowledge model can be 
difficult because of the many implicit assumptions and hidden structure. It is 
important to understand the relationships between the different parts of the model, to 
locate elements. 

KBE allows the user to locate all uses of a particular parameter and pure text search. 
It also includes facilities to establish which elements in the knowledge model are not 
connected to other parts in the model (orphaned). These, together with other means of 
navigating the system support the ability to understand the model it contains. The user 
can navigate from a parameter to all the locations in the model where it is used, and 
from those to the parameters that it influences and so on.  

Enhancing a knowledge model often means adding additional sections as distinct new 
functionality into the system. After developing a model for problem diagnosis 
naturally comes a model for problem solving, which means that a new structure table 
is placed on top of the earlier table, to first ascertain the diagnosis and then start the 
solution to the problem based on that diagnosis. It joins the two sections in the 
knowledge model. 

Another more explicit approach makes use of this feature directly. Developing a 
structure table, with trivial implementations for parts of the knowledge model yet to 
come, prepares it for enhancement and helps structure that development. These trivial 
implementations create �space� within the model with the idea that the space will be 
filled at a later point in time. The purpose of this approach is to flesh out and test the 
structure tables in the system, which can then become relatively stable when 
compared to the remainder of the system. 
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4.3.4  Problems and Limitations 
The representation of knowledge chosen in the KBE aim to be simple and 
understandable. The simplicity of the chosen representation has number of problems 
associated with it. One of the main problems is the lack of scalability of the 
knowledge base. The system knows no modular structure. Without measures being 
taken, the size of the knowledge base can quickly become overwhelming. As a 
decision table�s meaning within the knowledge base is determined largely by its use, 
knowledge of the whole system is required to understand the implications of a change. 
Running test cases can then become the only means to ascertain the working of the 
knowledge system. 

As was shown when the number of decision-tables grows, decision tables can be 
added to impose a structure on the tables in a top down fashion. In fact a whole 
section of knowledge can be captured in this way, that could be denoted task-
knowledge. The decision table format is not the most appropriate for this, leading to 
knowledge being �hidden� in the decision tables. Only that which can be caught in a 
decision-table is seen by the system. Implicit assumption consistently used remain 
however, and are sometimes explicitly used by the expert and developer. 

The structure-less parameter representation is also not able to deal with problems that 
concern instances of a common type, such as reasoning over a set of rooms. This a 
fundamental flaw in the representation format. To be able to reason about more than 
one room, each room must be modelled explicitly, in its own set of parameters. This is 
also called an �is-a� or instance problem. 

4.4 Knowledge System Development 
There are several ways that a knowledge model can be deployed. There is a need to 
provide for off-the-shelf default solutions, but systems must also be fitted with 
dedicated visualisations to support the user. Furthermore, incremental development of 
such visualisations must be supported. This section discusses all the possibilities that 
exist to deploy knowledge systems using the KBE. 

4.4.1  Default Deployment 
The intent of these systems is to provide a suitable environment for the knowledge 
bases to be used with zero effort, within the capacities of a non-specialist users of the 
system. Based on the knowledge base component a number of default- applications is 
available created. The architecture of the KBE allows consultations to run as 
standalone or as web-application.  

Knowledge Base Consult 
The KBCS is the standalone version of a default consultation tool. It consults 
knowledge bases designed with the Knowledge Base Editor. It is not a very advanced 
tool and it provides only rudimentary consultation facilities. In fact, these facilities are 
the same as the functions present in the KBE without the editing facilities. 
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Figure 4-17 Knowledge Base Consult System 
As shown in Figure 4-17, the KBCS system can be used as a knowledge base viewer. 
A dedicated format has been created that allows knowledge bases to be shared. The 
files are encrypted which makes them impossible to inspect or open for inspection in 
the KBE. The knowledge bases can therefore be shared and deployed without fear that 
critical knowledge is copied or changed. The latter is also important as the knowledge 
may have strict requirements on the validity of the knowledge that may not be 
compromised. 

Default iKnow Visualisation 
The iKnow architecture offers the possibility to deploy a knowledge system, through 
either as a stand-alone system or though an Internet server extension, using the same 
visualisation of HTML templates. A series of default templates present in the system 
are used when no preferences are provided by the author of the system. These 
preferences are normally located in the preference file for the knowledge model (iPref 
file). 

When the server is up and running the deployment of the knowledge system is 
relatively easy. The installation of this infrastructure constitutes no more than the 
installation of a web-server extension (a standard solution for these kinds of tools). 
For each knowledge system or update of a knowledge system, uploading the 
knowledge base files to the web-server in its own dedicated directory as well a simple 
preference file is all that is required. 
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Figure 4-18 Default Web Interface 
To start the consultation of the system a normal URL can be used, entered into the 
browser of choice or through a link on an HTML page. A stand-alone version of the 
iKnow system uses the same default templates and does require a preference file, but 
allows distribution in the same fashion as the KBCS stand-alone application.  

4.4.2  Customisation 
The important difference in using the iKnow facility is its customisability. Both the 
Internet and stand-alone iKnow system share the same set of templates. Therefore, 
any changes made for one version are quickly integrated into the other system as well. 
Furthermore, a change in preference file and templates can change the complete look 
and feel of a knowledge system, allowing for differential visualisation. The need for 
customisation is to make a system conform to the expectations of a user, and make it 
easier to use the system. The approaches discussed here show an incremental strategy 
that can be used by virtue of the iKnow architecture. 

Preference File 
The iKnow knowledge server is accessed using a URL of the form 
"http://<sitename.com>/iknow.dll?<name-of-system>". The name 
of the system points to a specific preference file name <name-of-system>.xml.
A preference file contains a number of fixed partitions dealing with different parts of 
a knowledge system. Some concerns simple messages that are presented to a user, 
while others determine the templates to be used and various other settings. 
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Title Description 
kbase Determines which knowledge model this preference file is for. There 

may be more than one preference file describing a knowledge system 
configuration per Internet server. 

templates Lists all the different fixed and custom templates that are defined for 
the knowledge system.  

goals Contains a list of all the goals that the knowledge model can be 
consulted for. One of these goals can be tagged as the default goal. 

messages Holds the text for certain fixed messages, such as errors, warnings, 
etc. 

reports Lists the different reports that can be generated for the knowledge 
system. More on this later. 

casebase Describes in which folder to store the consultation cases that are kept 
for each user. 

database The different cases produced by the different users have to be 
coordinated. This is accomplished using a database in some cases. 

settings Contains various other settings. An example is the user authentication 
levels that determine whether the user must be known and has to log 
in or anybody can consult the system anonymously.  

Table 4-5 Preference file elements 
 Using the preference file, a parameter can be given a specific dedicated template. 
This means that the parameter when asked uses that template to build the question and 
send the answer. This allows for example that images are used to present the choices 
or that an image-map allows people to click on that part of a map that they wish to 
explore. 

<template id="error" type="system:error"
file="error.htm"/>

<template id="graph" file="graph.htm">
<parameter name="Characteristic graph"/>

</template>

Figure 4-19 Template examples 
The figure shows two examples of a template definition. The first show the definition 
for a fixed template, the one that will be used for any of the system�s error messages. 
The type system:error identifies its role, and the file identifies the name of the 
file containing the template. The second template definition is slightly different, it 
contains no type and within it, a single parameter is identified. For that specific 
parameter in the model, the graph.htm template file will be used. The parameter 
tags are contained within the template tag, because more than one parameter may be 
serviced by the visualisation contained in the template. 

Custom Defaults 
The customisation starts with replacement of the default HTML templates by other 
system templates made for the system in question. This changes little to the 
functionality of system. It merely changes its presentation, an HTML page to perhaps 
the style of the company or a colour scheme that fits the company colours. 
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Figure 4-20 Customised Dialog 
An example is given above, showing the knowledge model as displayed in the TNO 
web site look and feel.  

Custom Parameter Dialogs 
Further customisation would entail producing different templates for specific 
parameters within the model. This would allow certain aspects of the usage of the 
system to be drastically changed. The capabilities of HTML offer a variety of 
visualisations to be used, like image maps, Flash animations and many others, while 
not requiring highly trained people to develop these visualisations.  

The dialog can also present more than one question on a HTML page as is shown in 
Figure 4-21. This allows some related questions to be asked at the same time, rather 
than one after the other. For the user this makes an easier user interface as the 
questions can be grouped into meaningful configurations. For example, name, 
address, and town can be asked together. 

A problem may occur when questions are dependent upon each other. For example 
when asking whether the room is a bathroom or a bedroom, the subsequent question 
how many people sleep in the bedroom is not relevant for the bedroom. This question 
should be disabled when the bathroom is chosen. Such interdependencies can be 
handled in a knowledge system by resending the HTML page to the user, whenever a 
change is made, but a more practical solution in many cases is to employ Java-script. 
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Figure 4-21 Multi Question Dialog 
This does mean that some knowledge is then present in the visualisation of the 
questions, which may lead to maintenance problems when this is a common approach, 
Changes that occur in the knowledge itself must be reflected in the user interface. 
Therefore the latter approach is only used as a last resort. 

4.4.3  Dedicated Solutions 
Dedicated solutions are a step beyond customised solutions. This comprises a 
knowledge system that is given a specialised user-interface completely oriented to 
make the use of the system as easy as possible, or a knowledge system as an 
integrated non-visual component within a larger system. 

Dedicated User Interface 
Knowledge systems are often positioned as standalone systems, that provide for 
certain functionality as a whole. A dedicated solution can be developed in any phase 
of development of a knowledge model. This goes beyond what is mentioned earlier 
for customising a knowledge system. 

By accessing its API, the connection is easily made between the functions of an 
application and the knowledge base. It is possible to build a customised user-interface 
around the application in advanced professional programming environments. In this 
way, a knowledge system can be developed much as any other software development, 
but with a knowledge model as its core.  
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The end result of such a development is software that is indistinguishable from other 
professional, industrial strength software. In fact, such software will most likely not 
be perceived as a knowledge system, as knowledge systems have an aura of difficult 
and complex surrounding them.  

Integrated Solutions 
A knowledge system can also be a component of a larger system, much like a 
database. It is also possible to use the knowledge base as a part of a greater system, as 
a calculation core, answering all the questions that are posed itself, without ever 
posing one to the actual user. The component-based architecture makes it easy to use 
the Knowledge Base Component in any software. Communication between the 
application and the component is realised through its API. To an outside observer the 
presence of a knowledge system within the larger system may not be suspected. Its 
presence may not appear to the users of such a system, but this can allow for some 
additional flexibility in a system.  

4.4.4  Developing Reporting facilities 
The KBE knows an additional service that allows the creation of templates for 
document generation, as post-production after the consultation. This can be used in 
the iKnow architecture, but also features in dedicated and integrated solutions. 
case Conditionally places text in the report, when the case matches the 

parameter. 
parameter Includes the value of a parameter in the report. 

These two simple commands can be used are shown. These determine what specific 
text to include in the report. Because it is possible to include the value of a parameter, 
it is possible to perform some of the more complex reporting tasks from within the 
knowledge model. While this may be seen to dilute the distinction between model and 
view, some facilities exist within the KBE to keep those parts within a knowledge 
model that concern reporting separate. 

<report>
...
<case name="Main course" value="poultry"
operator="equal">
The main meal is white meat, such as

chicken,
turkey or game.

</case>
...
Wine to be served: <parameter type="kbe"
name="Wine type"/>

</report>

Figure 4-22 Report Template 
The XML format of the report is processed to create a final report. This requires that 
the values of parameters are placed in the text and that the text from the case is only 
included when the condition is true.  
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Figure 4-23 Example Report 
As can be seen from the example report, it can be quite specific to the situation. The 
danger here lies in that part of the knowledge is transferred to the report creator, 
whereas the knowledge should be in the knowledge base. This would create many 
difficulties. To keep the XML report-file as simple as possible, and remove the 
knowledge content of the report format, it was kept intentionally simple.  

4.4.5  Conclusions 
The facilities that were described allow for high degrees of customisation to be added 
incrementally. The iKnow architecture provides for both distributed and centralised 
access to knowledge systems, which allows for most distribution models that 
currently exist. This manner of development fits well with the necessities of 
continuous knowledge engineering. In addition, by allowing such a gradual path with 
the possibility of changing to a dedicated solution, any amount of effort can be placed 
in the development of a specific system, at any time during the development.  

4.5 Conclusions 
The description of the KBE in this chapter shows a simple knowledge system 
development environment. To this simplicity it adds a visual form of knowledge 
representation and the ability to support a full development process towards 
professional industrial strength knowledge systems. The KBE realises almost all of 
the requirements for tools to support continuous knowledge engineering, as 
formulated in the previous chapter.  

The different features and architecture of the KBE described in this chapter each 
support one or more of the requirements. The table below describes a summary of 
these requirements as well as the aspects of the KBE that support them.  
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Participation           
Understandability !!!!   !!!!  !!!! !!!! !!!! !!!!  
Locatability !!!!   !!!!   !!!! !!!!   
Expressibility !!!!      !!!! !!!!   
Changeability         !!!!  
Extendability          !!!!  
Stewardship           
Usage Information   !!!! !!!! !!!!      
Metrics    !!!! !!!! !!!! !!!!    
Medium           
Operational  !!!!    !!!! !!!!   !!!! 
Gradual UI  !!!! !!!! !!!!      !!!! 
Diff. Visualisation   !!!! !!!!      !!!! 
Dedicated Solution   !!!! !!!!      !!!! 
Integration  !!!! !!!! !!!!      !!!! 
Cyclic           
Start Minimal     !!!!   !!!! !!!! !!!! 
Small Increments     !!!!   !!!!  !!!! 
Revocable Changes     !!!!      
Scalability   !!!!       !!!! !!!! 
Gradual Integration  !!!!        !!!! 
Easy to Change         !!!!   
Easy to Extend        !!!!   

Table 4-6 Features and Requirements Implemented by KBE 
1. As the system is always operational, the smallest change is also the smallest 

possible increment. 

2. Internet-based consultation is scalable with ease, as increasing numbers of 
users come at no extra cost. 

The table shows that the only requirement not supported is revocable changes, from 
within the system. However, the files can be placed in a version-control system, to 
make backups of different versions of a model. Therefore, this is a requirement that is 
not essential in this approach.  

The features that implement the requirements have overall created a system that is 
easy to understand and use. A knowledge model can be comprehended to its dynamics 
with little knowledge of information technology or software. The KBE is a simple 
tool that can be used by non-specialists and has sufficient features and capabilities to 
develop small and medium sized systems. The decision-table format is a useful 
knowledge representation because it inherently supports direct understanding, 
modifiability, verification and validation. The expert in question can perform this 
validation and verification, and non-specialists and novices could arguably be seen to 
perform those tasks as well by virtue of its simplicity and visual knowledge 
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representation. The KBE�s ability to consult the knowledge base at any moment in 
time supports verification and validation.  

In addition, deployment can be reasonably simple using the technologies described 
earlier and facilities for building dedicated systems are integral to the system�s 
architecture. There are several ways that a knowledge model can be deployed. 
Standardised solutions include a stand-alone system, and a web server extension that 
can dish out HTML pages. Both systems operate on a series of default templates, but 
it is possible to define a custom page for a parameter and to create elaborate pages 
that answer several queries at once. Dedicated systems can also be made using 
knowledge-aware components that are used to create sophisticated forms.  

The KBE allows for different deployment scenarios by virtue of its many formats for 
publications, where many different types of visualisation are possible. This includes 
centralised deployment as well as stand-alone standard modes. The knowledge base 
engine by its component-based architecture can be easily incorporated into larger 
systems. This allows it to be employed in many different settings and in different 
roles. In these ways, the system supports continuous knowledge engineering.  

This simple representation of knowledge in the KBE in a unstructured domain model, 
and singular representation of reasoning knowledge as decision tables also creates a 
number of problems.  

The necessity or wish to enforce control over the reasoning can lead to many structure 
tables being used, which is can be seen as a misapplication of the decision-table 
representation form and may lead to maintenance problems. But it also brings to the 
fore an important need to structure the domain, in terms of the control structure that is 
apparently part of the knowledge as the solution strategy. 

Fundamental representation problems also arise through the simplicity of the system. 
Most notably this includes the inability to represent problems about variable numbers 
of instances and collections. The KBE cannot, or at least with considerable difficulty, 
represent problems dealing with different instances of an element. It can reason over a 
room, but it has no facilities to reason over a set of rooms.  

The knowledge model format further has no facilities to provide structure in the 
domain, to pool different related parameters together. This make it harder to manage 
and maintain the factual knowledge represented by the parameters, when the number 
of parameters grows. Approaches commonly found in knowledge model devised 
using the KBE are to introduce textual hints in the names of parameters, clustering 
them in that way. For instance, all parameters dealing with a type room are prefixed 
with the roomtype 'bedroom temperature', 'bedroom occupied'. 

The system has features worth keeping in its simplicity but causes problems by its 
representational poverty and its lack of decompositional features. The problem is that 
the simplicity is also a result of the absence of such advanced features. Solving these 
problems without sacrificing the simplicity may prove to be quite difficult. 
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Chapter 5  
An Advanced Tool  

Things should be made as simple as possible, but not any simpler. 

Albert Einstein 

This chapter describes an advanced system for knowledge modelling and knowledge 
system development called Intelligent Objects (IO). This system is based on a 
philosophy of vividness, in other words creating �true-to-life� models of the world. IO 
incorporates features that are also used in the KBE, but employs them in a different 
way. In addition, IO introduces new capabilities. To avoid reiterating the descriptions 
in earlier chapters, this chapter will therefore focus on these differences and additions.  

In the first section of this chapter the general overview of IO provides an examination 
of the philosophy behind the system, the architecture, and key features. The second 
section presents the set of modelling primitives that IO offers. The modelling 
vocabulary of IO based on object-oriented models, providing various representations 
of reasoning knowledge and an explicit reflective architecture. Continuing in the third 
section, an assessment is made of the manner in which IO can be used to model 
knowledge. This examines the basic modelling approach and aspects of that approach 
that enable the system to be used in evolutionary development strategies. This also 
goes into some practical problems that arise as the result of the more involved 
approach taken in this system. The fourth section discusses what the differences are 
between the possibilities offered by IO and KBE in developing a knowledge system. 
As both use the same iKnow architecture, in this respect they offer largely the same 
potential to visualise and deploy a knowledge system the KBE has. The fifth and final 
section recapitulates the subjects that were presented, and highlights the primary 
characteristics that will come under consideration when the system is applied and 
evaluated.  

5.1 Completeness versus Simplicity 
The simple tool described in the previous chapter provides for support to create and 
develop systems based on the continuous knowledge engineering principles and 
requirements. The limitations of its simplicity create problems of its own, in terms of 
scalability and a number of fundamental representation problems. The tool discussed 
in this chapter pursues a different philosophy. It attempts to aid the user by providing 
a richer form of expression that is based on object-oriented principles. Retaining some 
of the accomplishments of the KBE in many other respects, it aims to create a kind of 
simplicity in the models through the principle of vividness. In some ways it is a 
different software implementation of the features found KBE, but the difference in 
philosophy makes the modifications and extensions all the more important. 

5.1.1  Philosophy 
The philosophy maintained by IO is to offer freedom of expression and multitude of 
possible forms of knowledge representation to create a vivid model of knowledge. 



138 Chapter 5 An Advanced Tool 

 

This model should be the least constricting possible to enable the development of 
models that conform to an expert� own opinion on the domain of expertise.  

The ease of use aimed for derives from creating models that are familiar to the expert, 
much like a map of one�s own neighbourhood. Because the expert makes the map, 
this combines to empower them to know where to go, how to make a meaningful 
change and verify that the change indeed has its intended result. A concept that exists 
in their mind will be recognized as omitted in the knowledge model. Locating a place 
to make a change, and the character as well as the form of the change is informed by 
the bias of what was modelled already. This approach requires extensive and varied 
representation capabilities, while retaining simplicity of use of the representation 
forms. The aim is to make the knowledge model as simple as possible, rather than 
reducing the initial complexity of the tool used to build it. This philosophy may 
therefore seem diametrically opposed to the one followed by the KBE.  

The idea here is to supply a complete set of modelling concepts that create simplicity 
by offering many options to model a domain. Without wishing to undermine the quest 
for simplicity and ease of use, IO sees the need to represent a great many things with a 
different character and purpose. These can be described and modelled in a variety of 
ways. The IO system offers a richer and more complete set of expressive capabilities 
for this purpose. This must allow the expert to build knowledge models that have a 
direct correspondence with the domain, making them easier to understand, modify and 
verify. IO discerns three basic categories of components in a knowledge model: 
structural, behavioural and reasoning knowledge. The KBE only knows one kind of 
reasoning knowledge. 

A domain knows many entities and these entities are interrelated somehow, where one 
of these relationships is often one where an attribute described some part of the state 
of that entity. Such entities are defined by their state, their behaviour and the 
relationships implicitly and explicitly available. This is the structural knowledge, 
analogous to structural knowledge representations. 

The entities in such a domain are therefore more than static descriptions, but active 
representations of elements in the domain that can exert some dynamic behaviour. 
These can be actions to change the state of an entity, but also can be ways to model 
certain task behaviour. The description of this behaviour must allow expression of 
actions and task structures that can be performed on and with the entities in the 
domain. This can be behaviour supported by elements in the domain, but also 
approaches to problem solving, encapsulated as behaviour supported by the domain as 
a whole (cf. PSMs). 

The last category of knowledge is reasoning knowledge, to make inferences in the 
domain. Where decision-tables are the sole type of reasoning in the KBE it is easy to 
see that this can captures only part of all the modes of reasoning that may be required 
and in many cases will not be the preferred mode of expression. Many different ways 
of modelling knowledge are possible each with its own strength and weaknesses, as 
was seen in the second chapter. 

The differences between these forms of representation must be understood, as when 
modifications are made, choices must be made between different change strategies. 
The large number of concepts needed to be understood by the user makes for an initial 
complexity that is greater as there are more concepts that have to be understood.  



5.1 Completeness versus Simplicity 139 

  

There is a non-trivial relationship between the learning curve introduced by these 
functions and representations, and the simplicity of operation of a system. The 
conclusion that the KBE�s tools simplicity was reached in the previous chapter that 
the simplicity of the KBE and it�s ease of use could not be equated directly to the 
ability of a non-specialist to operate the KBE, even in participation with the 
knowledge engineer. At a certain size, the knowledge base becomes too complex and 
difficult to understand. The single representation of the decision table is used for 
purposes where other approaches could be more appropriate. The base simplicity 
gives a false view of the actual complexity, where IO aims to attain a scalable 
simplicity. In short, the path IO travels is characterised by attempting to speak the 
language of the expert, by allowing a knowledge model to remain close to the expert�s 
perception of the domain. In the same way the implicit simplicity of the KBE may 
turn out to be more complex in the end, the initial complexity of IO may fade away in 
time.  

5.1.2  System 
IO is a knowledge modelling tool based on the philosophy of vividness. It offers 
extensive facilities to model knowledge in a variety of ways. The system allows for 
development of second-generation knowledge systems. While it maintains a simple 
backward chaining inference mechanism, its operation can be directly influenced by 
explicit task structures. As an advanced system for the development and consultation 
of knowledge systems, IO is a continuation of efforts present in the KBE. For 
example, an IO knowledge model integrates seamlessly into the iKnow architecture, 
in the same role as the KBE knowledge base component.  

IO supports the capture, maintenance and consultation of knowledge. Just like the 
KBE, it provides a point and click environment that is user-friendly, intuitive and easy 
to use. It is directed towards non-computer specialist users although its use is arguably 
more involved than the KBE. The main difference lies in the domain modelling 
capabilities, based on object oriented models, different inference knowledge 
representations, an extended language for articulating expressions and statements, and 
the use of a live model, providing feedback on any change made to the system. 

IO�s philosophy is to supply a vivid model, which is divided into structural, 
behavioural, and reasoning knowledge. The structural model is an object-oriented 
model. It contains descriptions of classes, associations, attributes, collections and 
other elements. The knowledge model, or project in the nomenclature of IO, is 
divided into a number of knowledge bases. Each knowledge base can contain a series 
of classes, and associations. IO, as shown above, places the importance with the 
domain model, which is used to organise the reasoning knowledge. This is counter to 
the reasoning focus approach of the KBE, where a view was forwarded of parameters 
in service of the decision-table. Using object-oriented model constructs allows them 
to function as a map of the territory. 

In Figure 5-1 a screen shot of the IO knowledge modelling environment is shown. It 
displays an example knowledge model. The TBrasProject shown in the top-left 
tree-view contains a single knowledge base, called TBras. It in turn contains 
different types, both primitive (TBoolean a Boolean sub-type) and structured 
(TLid, which is a Class). The bottom-left tree-view shows an instance model. An 
instance model is an instantiation of the project.  
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Figure 5-1 IO Knowledge Modelling User Interface 

The bottom-middle corner contains an IO language editor, with additional detailed type 
information to its right. Entering commands there allows the user to operate on the model 
through its reflective language definition. The language editor is syntax highlighted and 
shows whether the expression or statement entered there is syntactically correct and 
whether it is valid in the model. It is used to answer queries on the model through 
expressions in the language. The figure above shows a query for the name of the type of 
an attribute. It can also be used to make changes in the knowledge model. For example, 
the command TBras->Define("TDog", Class) defines a class type named 
TDog. This part of the user-interface is provided as an advanced user feature. Most of 
these language operations are also accessible through the user-interface itself.  

Using this interface, modelling starts by creating a model of the domain and other 
important concepts that may be necessary. This involves defining types, either primitive 
or complex, such as knowledge bases or classes. Relationships can be defined between 
classes, going beyond what is most often available in executable object oriented 
specifications. Classes, and other structured elements, can be provided with definitions of 
attributes and operations. The later defines an elements dynamic behaviour.  

This structural model can be augmented with reasoning knowledge by adding reasoning 
method to an attribute. These count as determination methods when a value for a field is 
required, for an instance of a structured type. A reasoning method is added to the list of 
reasoning methods as soon as it contains a possible assignment to that field. The presence 
of voldoet together with a value True in the action alternative forms an assignment 
statement, which informs the model that the decision table should be counted as an 
inference method for TLid.voldoet. When the last assignment to that attribute is 
removed then the method is automatically removed from that list. This requires further no 
involvement from the user. An example of this is shown in Figure 5-2. 
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Figure 5-2 Automated Reasoning Attachment 

All the changes that can be made by the user can be undone and subsequently redone. 
The system supports unlimited undo/redo, to give the user added security and allow 
them to operate with impunity. These operations allow exploration of functionality and 
make it possible to try different alternative solutions. 

    
 • Vivid Knowledge Representation • Live Model  
 • Visual Knowledge Representation • Full Object Oriented Model  
 • Component Based Development • Script Interface  
 • Model View Controller • Unlimited Undo/Redo  
 • Abstract Communication • Code Insight  
 • Centralised Deployment • Adaptable Visualisation  
 • Executable Specification   
    

Figure 5-3 Key Features of IO 
To support the requirements formulated for continuous knowledge engineering IO 
implements many different features and techniques.  

Under the overarching philosophy to support a vivid model, the features shown in 
Figure 5-3 are considered to be most important in the support of the requirements and 
the demands of the philosophy. Some of these have already been described, while 
other will be described in later parts of this chapter. 
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5.1.3  Architecture 
The architecture chosen for IO is designed to be extendible in the different knowledge 
representations that are supported. This extends to the structural, behavioural and 
inference knowledge. To this end, the design for the system has an extensive meta-
model, to which new elements can be added in time. This will be discussed below in 
paragraph 5.2.2  Meta Model. 

Figure 5-4 IO Architecture 
Beyond the component-based architecture discussed in chapters two and three, it 
supports a number of services that aim to leverage the potential of the representations 
for use in design and consultation environments.  

The architecture seen in IO shares many surface similarities with the KBE. A 
component encapsulates a domain model, a reasoning model and an inference 
element. The difference that is most markedly here is the provision of services. A 
service allows a service supplier to be created that enables certain functionality. 
Because the component and the services communicate through an abstract API, 
replacing the service with another is relatively simple. These include support for 
general capabilities such as undo-able and redo-able operations on the model and an 
abstracted communications model allowing for high degrees of configurability in the 
visualisation of knowledge systems. 

IO Component 
The component and its API play the same role as the KBC from the previous chapter 
(see page 108). It holds a knowledge model and enables communication with the 
model, sometimes leading to inferences being made, or other types of dynamic 
behaviour being supported. The component realises some of this functionality through 
reliance on one of the services. 

Services 
Rather than a completely different realisation, this architecture reorganises certain 
functional units within the system into self-contained services. Each service has an 
associated API, enabling its operation within the system. This allows some separation 
of concerns and is convenient for maintenance purposes. In many cases, the 
separation was for expressly for these purposes. 

Persistence 
Service

Inference
Service

Communication 
Service

Language 
Service

IO
component

IO
component
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Inference Service 
The inference engine is a service that arranges for the determination of a specific 
field�s value based on the available inference methods in the model. It can be replaced 
to allow for implementations that are more efficient. This may be required to allow 
other kinds of inference, for example forward chaining or utility based inference 
mechanisms. Now, the inference engine contains a version that attempts to deliver an 
inference mechanism as close as possible to that present in the KBE. 

Language Service 
The language service is responsible for translation and execution of language 
expressions. IO currently uses an extension of the OCL language, which enables the 
formulation of expressions and statements performing queries and modifications on 
an IO model. As part of the component, this service allows a textual form to be 
transformed into reified elements. Any element that contains a language expression 
can use the language service to translate a textual for into reified language structures. 

  Figure 5-5 An Assignment Statement Reified 
For example the expression x := x + 1 is translated to the tree in the above Figure 
5-5. On a change in the textual form, the language service updates the structure. The 
textual form of any language expression can be retrieved from the expression 
elements. This does change the text into a normal form. When a name of an attribute 
is changed, the text is adjusted to accommodate the new name automatically.  

This approach also makes it possible to replace the current language service based on 
OCL syntax and semantics by another one, perhaps semi-formal, natural language or 
even a true natural language interface. As long as the element is able to translate a 
textual form into formal constructs, and back like the tree shown above. 

The architecture of the system further allows for a high degree of reflectivity. In fact, 
the design interface uses the same API as the one available from within the model 
itself. In short, this means that an operation in the model can change the model itself, 
reflectively. This allows some additional features to be supported more easily in the 
future, like wizards for knowledge modelling support and self-modifying, learning 
models. 

Communication Service 
This service allows the model to communicate with the outside and vice versa. This 
service is based on a number of abstract communication primitives, both from and to 
the model. As with the persistence service communication it is supported by functions 
that allow these primitives to be translated into an XML format.  

descriptorexpression

descriptorexpression

operatorexpression

elementexpression

assignmentstatement:=

+

X 1

X
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A replacement or extension of this first abstract communication service could provide 
for interfacing with other agents through a KQML/KIF type interface (Finin, McKay 
& Fritson 1992). This has not been researched as yet, but the possibility to allow this 
has been part of the requirements of IO. 

Persistence Service 
The persistence service is responsible for reading and writing knowledge models form 
and to persistent storage. The current persistence service uses a proprietary XML 
format. An alternative format of any kind may be used, as long as it conforms to the 
interface.  

MVC 
Each of the elements in IO is a descendant of a class ModelElement, where this 
class implements the Observable pattern. This interface is part of the Observer pattern 
(Gamma et al. 1994). It allows other objects to register themselves as Observers, in a 
one-to-many relationship, so that when the Observable changes state, it notifies all the 
Observers. 

This allows a great freedom in developing view on a knowledge model, where besides 
editing actions, the model has great autonomy in making changes to itself. These 
changes need to be reflected in many different types of interfaces and views. All the 
Views can now simply react to a change by �repainting� themselves. 

This, among other things, allows elements from the model, to be presented in different 
perspectives on that model. It can just as easily feature in a tree based form, giving a 
quickly navigable form of the model, as a reference in a decision-table. Each is 
informed accordingly, when the user changes the name of the element, also negating 
the need to search-and-replace names in the model. 

5.2 Modelling Primitives 
In this section, the knowledge representations employed in the IO are highlighted. The 
first part of the section will concern itself with the necessity to provide a fuller set of 
object oriented concepts in knowledge modelling, to allow a knowledge model to 
ascend above the normal implementation details. The second part takes a look at the 
meta-model that in underlies the total set of modelling primitives. After that, several 
specific groups of modelling primitives are examined. Finally, a look is taken at the 
current realisation of some of the services, specifically the inference, language and 
communication services. 

5.2.1  Vivid Knowledge Model 
The need to provide knowledge-modelling representations that allow a vivid and 
direct model has been discussed in the section above. The approach taken to realise 
this has focused on providing an object oriented modelling language. Particularly, the 
extent of the object-oriented domain-modelling concepts and the role of an object-
oriented model as the scaffold for other knowledge representations are seen as 
important aspects in this regard.  

Object orientation is an important paradigm in the design and implementation of 
complex software based systems. Object models have proven themselves as a medium 
for describing the complex relationships commonly found in software and for making 
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such complexity intelligible. In this sense, even Brooks (1987) has credited object 
orientation with resolving some of the accidental problems in software engineering. 
This ability extends to enabling those not native to computer science to understand 
these models. The visual, conceptual language allows them to understand the models, 
discuss the content of those models and propose adaptations.  

The elements offered allow most forms concepts and their relationships to be defined. 
The abstract level of modelling brings important concepts and relationships to the 
front, while at the same time relegating some aspects to the background. This gives a 
proper framework to discuss the responsibilities of different parts of such a system, 
from a particular perspective. The visual nature of most object-oriented models 
strengthens this level of abstraction by removing all kinds of cognitive noise. All 
superfluous information is removed, focusing on the important aspects. 

UML is the foremost standard in object-oriented modelling (Rumbaugh, Jacobson & 
Booch 1998, Jacobson, Booch & Rumbaugh 1998). As the integrated form of 
different earlier object-oriented modelling languages, it provides an important 
standardisation to the object-oriented arena. This standardised nature of UML is also 
important when knowledge models are integrated into other software systems, as 
designers of these different systems need to communicate.  

Both software engineering and knowledge engineering have now accepted object-
oriented models into the mainstream. This is also mirrored by the increased 
acceptance of UML in the world of AI and knowledge engineering. As an example of 
the latter, UML has been adopted into CommonKADS (Breuker et al. 1999). 

For the development of systems based on object-oriented models, many programming 
languages also follow the object-oriented paradigm. As the representation follows the 
principles of encapsulation, modularisation and information hiding, it has many 
attributes that allow for improved modifiability and enhancement of such 
implementations. However, comparing the range of concepts offered by object 
oriented modelling languages to those offered by programming languages, the latter 
seem to lack support for several modelling elements. Most notably this includes the 
different relationships such as associations and aggregations that connect the different 
classes to each other.  

The choice was made to make the knowledge modelling elements used conform quite 
strictly to the UML definitions and to be quite complete in the different kinds of 
elements offered. In fact, conformance goes further than many other object-oriented 
tools. Providing an executable object-oriented specification implies providing the 
same level of object-oriented modelling concepts in an object-oriented language. 
Compare this for example to C++ or Java that may offer classes, but require 
significant implementation for association or aggregation relationships between 
classes. The difference between an object-oriented model and an object-oriented 
implementation is therefore significant. Offering a model that at the same time is an 
implementation removes this difference and allows the realisation of the model to 
remain at a high conceptual level. In supporting the use of an object oriented by non-
computer scientists, this is though to be an essential factor. 

The structure of an object-oriented model allows it to function as the skeleton for 
attaching different kinds of knowledge representation. An attribute can be equipped 
with different inference methods, much as the same way a parameter can be the 
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subject of a number of decision tables in the KBE. The object-oriented model can then 
function as the universal glue binding these knowledge representations together.  

5.2.2  Meta Model 
A model is defined by the elements that may be used in it and the possible 
relationships between those elements. An explicit definition of this is called a meta-
model. Where a model is a semantically complete description of a system, a meta-
model�s system is a model itself. UML even includes a meta-meta model, the Meta-
Object Facility (MOF). It underlies a three-tier meta-meta model, meta-model and 
model organisation. This is not employed within IO, but because of the greater 
number of elements that are discerned with IO�s meta-model and the increased 
complexity of the interrelationships, this meta-model will be given some explicit 
attention. 

Figure 5-6 IO Meta Model 
There are two ways of using a meta-model. The meta-model can be used through 
creation, i.e. the elements are made up from building blocks provided by the meta-
level, or by inheritance, where the elements are derived from meta-model elements. 
Figure 1-1 above shows all the abstract classes in IO�s inheritance tree, describing the 
divisions that are discerned within it. Each descent to a lower level adds some features 
or refines that which has been defined at higher levels of abstraction. The top element 
is ModelElement. This element is the root of all elements in a knowledge model 
with IO. It introduces a small number of functions, which 1) allow elements to be 
given a unique identifier (GUID), 2) allow each element to be translated into an 
XML/HTML representation, and 3) allows them to save their internal state in support 
of the Memento pattern. Furthermore, it contains support for the MVC architecture.  
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The first division could be clear from the figure: three main classes of element can be 
seen, topped by ModelElement. The main divide is the distinction between 
TypeElement, InstanceElement and BehaviouralElement. Types and 
instances are connected as all instances have a type that defines their composition, and 
constrains the functionality of the instance. The collection of types and instances are 
organised largely analogically, therefore in principle for every subclass of type there 
is an equivalent subclass in the instance hierarchy. A class at the same level is that of 
Behavioural elements. These elements are part of the IO language. All statements and 
expressions are transformed into reified structures that can be queried and 
manipulated like any other element in the model.  

Besides these classes, there are a number of auxiliary classes that support the other 
classes described until now. These will mostly be left out of the description to 
simplify the discussion of the model elements. 

5.2.3  Types and Instances, Attributes and Fields 
Before starting the discussion of each of the individual categories of elements and 
their members, a more general examination will position these elements in a broader 
perspective. A view on the interconnections between the types, instances, attributes 
and fields is aimed to provide a context for the specific individual elements in a 
knowledge model. An important set of relationships in any knowledge model 
developed in IO is the correlation between types, instances, attributes and fields.  

A type is a description of instances that can be constructed with it �� which allows 
the user to build composite type definitions from existing types and attributes, starting 
from some set of primitives� (Ringland & Duce 1988, pp. 228). A type within an IO 
model is known under a name. A type can be used to create instances and can be used 
in the declaration of attributes.  

An instance of a type is an individual element that derives much of its behaviour from 
its type. Many different kinds of type exist as meta-types. Either these can be used to 
create a new type, a basic type such as Integer and Real, or types that are more 
complex, based on a Class for example. A user-defined Integer type for example 
can be given a domain, functioning as a constraint placed on instances of that type. A 
Temperature type based on Real for example can have a domain, from 
-273.15 to infinite. This means that any instance of Temperature can only 
assume values in that domain. 

Many types provide extensive mechanisms for their specialisation in the development 
of user types. The structured types are a category of types that allow for the use of 
attributes. A structured type is the only kind that can declare a set of attributes. An 
attribute is a combination of a name and a type, year_of_manufacture of type 
Integer for example. Any type, whether it is an existing type or a user-defined type, 
can be used in the declaration of attributes. A type Car based on the Class meta-
type determines the manner in which a specific instance of car myCar will behave. 
The Car class may have declared a brand, a year of manufacture, a colour, etc. An 
instance such as myCar has values for each of these attributes, in structures called 
fields. This predisposes the system to also include different facts about the car as 
default, which are not put to the user as questions. 

Thus, myCar may have values for each of the attributes of the type, in fields, so that 
it can be queried on each of these. This allows myCar to be represented as a Fiat, 
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built in 1990, with a black colour. In an instance of a structured type that has 
attributes, a number of fields are added that conform to the specification in the 
attribute declaration. The attributes of the Car class is only the specification, it does 
not have a value. The values are specific for each instance of Car. 

The majority of an IO model consists of such structures. The user can define different 
kinds of type, and several of these fall in the category of structured types. The systems 
top-most element is a Project, which can contain KnowledgeBase types. Each 
of these is home to a number of user-defined types and attributes. These user-defined 
types form the brunt of what an expert might consider important concepts in the 
domain. The KnowledgeBase may have an attribute Car, which means that an 
instance of that KnowledgeBase has a field, containing a reference to a Car, 
possibly myCar. 

Types do not have to be limited to mere descriptions of a set of conforming instances, 
but can also �have a life of their own�. They can provide useful functions by providing 
for behaviour that overarches the concerns at the level of instances. A type can for 
instance provide for access to all its instances. Every type can provide this 
functionality to a user of the model. It can also be more specific and user-specified in 
nature. For example, where a set of instances may have a temperature, the type can 
provide the average of all temperatures. Something that is a type merely plays the role 
of type, but it may also be an instance at the same time (as it is when perceived from 
the meta-level). 

In fact, the types in IO provide an extensive API for use within a knowledge model, 
through the IO Language. This allows a user to define modelling actions within the 
knowledge model. Using the Project->Define(CarKB, knowledgebase) 
command adds a new knowledgebase to the project, for example. The knowledge 
model can therefore make changes to the type-level of its own model, through these 
reflective facilities. 

5.2.4  Base Types and Values 

BaseType

BooleanTypeStringType

IntegerType

RealType

BaseValue

StringValue BooleanValue RealValue

IntegerValue

 
Figure 5-7 Base Types and Values 

The collection of base types is almost a replicate of the types found in the KBE: 
String, Boolean, Integer and Real. The difference here is that the types 
themselves are present in the system, and not options in the parameter. 

Each of the base types has a domain, which can be set to restrict the values that any 
attribute with that type can assume. It is possible to define subtypes of these base-
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types, for example Temperature, as a Real with a domain defined as X > -
273.15. 

String 
A string can represent any textual value, and in its standard for it does not know any 
restrictions on what value can be assumed. A sub-type of String, Colour for example 
can declare a domain of {"red", "yellow", "green", "blue"}. 

Boolean 
Booleans are used to represent basic truth-values. Sub-types of Boolean can be used 
to re-define the display representation of these values, for example, {"Yes",
"No"} instead of {true, false}.  

Real 
A Real can represent any real valued number, similar to the implicit Real type in the 
KBE. The domains can restrict the values to a specific range. 

Integer 
An Integer can represent any whole-valued number, similar to the implicit type in the 
KBE. The domains can restrict the values to a specific range. 

The Integer is derived from Real in this model, as it constitutes a restriction on the 
values that an integer can assume in relation to a real. 

5.2.5  Collection Types and Collections 
Collections denote containers for a number of elements. In their different forms, they 
are often part of the capabilities of object-oriented systems. Compare for example the 
Container packages in Java. IO knows three types of collection: Set, Bag and 
Sequence. Any of these containers has an item-type, the type of element contained 
with the collection. 

Figure 5-8 Collection Types and Instances 
Each collection supports a series of functions to query the collection, gain access to its 
contents, and create selections of the collection. As an example of the latter, 
<collection>->select(<expression>). The select operator selects all the 
elements in a collection that when the expression is applied to it, returns true. For 
example rooms->Select(temperature > 10), selects all rooms for which 
the temperature is greater than 10. Other such functions also exist. 

CollectionType
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CollectionInstance
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Set 
A set can contain only one single copy of any element, and may not contain any 
duplicates. Furthermore, it cannot be enumerated. The first two examples below are 
identical when compared. 

Examples 
Set of Integer : {0, 1, 2, 3}
Set of Integer : {3, 2, 1, 0}
Set of Room :{room1, room2, room3}

Bag 
A bag is similar to a set, but it releases the constraint on containing duplicates. The 
first two examples are identical to each other. 

Examples 
Bag of Integer : {0, 1, 1, 0, 1}
Bag of Integer : {1, 1, 0, 0, 1}
Bag of Integer : {1, 1, 0, 0}
Bag of Room : {room1, room1, room2}

Sequence 
A sequence is an enumerated array of elements, which may contain nil as a value. 
Access to individual items is possible by using an index: <sequence>[0] or 
<sequence>->at(0). 

Examples 
Sequence of Integer : {0, 1, 1}
Sequence of Integer : {0, 1, 1, 2}
Sequence of Room : {room1, nil, room2}

The different collection types have a number of functions that enable their 
transformation into another type of collection, for example from a set to a sequence: 
<set>->asSequence(). These operations create a copy of the original container, 
adjusting it for the target container. This may include removal of duplicates, or the 
introduction of order among the members. In the case of ordering the members, no 
guarantees are given that subsequence transformations will yield the same order. 

5.2.6  Structured Types and Instances 
Structured types allow the declaration of attributes. A structured instance contains 
fields for each of the attributes of its type. An attribute is the description of a named 
slot of a specified type; each instance of the type holds a named value of the type.  

By virtue of the attributes, a concept described by a structured type can be given 
definition, by providing it with a related set of attributes, conceptually connected to a 
single instance of the type. 



5.2 Modelling Primitives 151 

  

Figure 5-9 Structured Types and Instances 
Within IO, many different structured types exist each with its own specialised take on 
the interpretation of concept. Some of the less involved descend directly from 
StructuredType. Others introduce more behaviour, and are discussed in later 
sections, such as the DefiningType and InheritableType. 

Record 
A record is a basic form of a collection of attributes that are conceptually dependent. 
Some basic units such as complex number can be represented this way, or for example 
the date. From an object-oriented perspective, this is an obsolete structure, 
obfuscating the nature of an object-oriented design. However, in some cases a light 
escape vehicle such as a record can provide a more efficient basis for certain types of 
calculations. It is present in the system but is primarily intended for internal use.  

Examples 
complex.real: Integer
complex.imaginary: Integer
time.day = 31
time.month = 12
time.year = 2001

Association 
An association is a relationship between a number of classes. By virtue of that 
relationship, links can be declared to exist between instances of those classes. In other 
words, these relationships may have attributes of their own. There are binary and n-
ary association, which within IO are treated identically. Associations are especially 
useful for specifying navigation paths between objects.  

Inclusion of association is to prevent users requiring to implement different relational 
and ownership relationships, and instead enable them to operate with such 
relationships at a relatively high level of abstraction. 

Figure 5-10 A Binary Association 
Binary associations are by far more common than n-ary associations. As is visible in 
the figure just above, in an object-model an association is a solid path connecting two 
class symbols. The class type will be discussed below, as one of the Inheritable Types. 
The association �employs� will introduce a number of pseudo attributes to the classes, 
namely employee with company, and employer with person. This allows the 
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formulation of the following types of expression: aCompany.employee and 
aPerson.employer. This provides a set containing the employees of one specific 
company, and the set of different employers that one specific person may have. It is 
also possible to access the objects taking part in the association through the name of 
the association itself: employs.employee and employs.employer. These 
yield all the Persons employed at any Company, and all the Companies that employ a 
Person. 

Figure 5-11 An N-ary Association 
In an n-ary association, a central diamond is shown to connect all vertices, as in the 
above graph. This also shows an association class, which normally in UML denoted a 
class like any other which is connected to each of the links present in the association, 
an each instance object of that class derives its identity from the existence of that link, 
i.e. if the link ceases to exist then so does the object. In IO, the association has a 
structured character and can therefore declare all kinds of attributes.  

Examples 
company.employees : Set of Person

All the persons employed by the company 
person.employer : Set of Company

All the companies that employ the person 
Employs.employer

All companies in the whole employs relationship.  

5.2.7  Defining Type Elements 
These types of the model are those that have the capability of defining a new type. 
This means that they are the only ones enabled to introduce new types of elements and 
are the owners of these types. 
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Figure 5-12 Defining Types and Instances 
With some restrictions, these types can define all of the types that are described in this 
chapter:  
<definingtype>->Define( <string>, <meta-type> )

This defines an element of a certain meta-type (e.g. class, projecttype, 
knowledgebasetype, �). This new type is then available to any element wishing 
to declare an attribute of this type, by reference to its name.  

Project Type and Instance 
A project is the root element of the knowledge model. It can only define knowledge 
bases and declare variables of the knowledge-base type. It serves only to organise a 
number of knowledge base types. 

Its instance, Project is a normal instance. One of these instances is always present at 
any time, to enable the instance level design modelling. This involves the ability to 
provide an initialisation of the knowledge model, prior to consultation of the model. 

Knowledge Base Type and Instance 
A knowledge base serves as a general purpose mechanism for organising elements in 
the model into meaningful groups. Knowledge bases may not be nested within other 
knowledge bases. Larger knowledge models offer special challenges in modelling. A 
natural upper boundary exists to the number of element that should be part of any 
model. This depends on the complexity of the elements, but at a certain point the 
classes, associations and other types become too complicated to understand, and 
thereby cannot be easily modified and maintained. Within UML, packages were 
introduced to solve this problem. A packaged delineates a number of related elements. 
The knowledge base that is presented here also delineates a series of elements, beyond 
that can also have state and behaviour of its own. This enables a knowledge base to 
operate as any other structured type. A knowledge base can serve to solve a sub-
problem. This solution can be used by reference to its own interface rather than to 
elements that are contained within. This is thought to simplify the issues of 
encapsulation.  

5.2.8  Inheritable Types 
The elements in this category can inherit from another inheritable type of the same 
denomination (e.g. one class to another). To this end, they each have a parent, as 
IO knows only single inheritance. By virtue of inheritance, these elements form a 
generalisation hierarchy. 
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Figure 5-13 Inheritable Types and Instances 
Each inheritable type is a partial specification of its instances, where it and all the 
parents of that type create the complete specification. A child element inherits the 
features of its parent and indirectly those from its ancestors. An Inheritable type 
can also partially re-define parts of the inherited declarations, by overriding them. 
This allows an Inheritable type to employ its parent�s definition as a default, to 
be overruled when necessary. As can be seen in the figure above, the instances of 
Inheritable types descend from StructInstance. The approach to 
incremental definition of an Inheritable type has not effect on the instances. To an 
instance, it seems like its own type introduced its complete definition. 

Currently, the only inheritable element in IO is the Class. This may change in the 
future as new types may be introduced, like Interfaces, or when other existing types 
are changed to Inheritable types such as the Association. Inheritable types 
provide a model with parsimony of expression, where knowledge needs to be 
expressed only once but used in many different places. From a maintenance point of 
view, this means that changes need to be made only in one place. The verification of 
those parts of the model affected is also simplified to concern only those that use that 
type, instead of those that use a number of types. Inheritable types are the class of 
structural elements that allow declarations and definitions to be shared within an 
inheritance hierarchy.  

Class 
A Class is an element or concept that defines a set of instances, which share the 
same attributes, operations and inference methods. As such, a class defines a concept 
within the model. By virtue of its inheritable nature, it can have a parent class and 
several child classes, thereby defining an inheritance tree. Different families of classes 
can be created in that way. 

A class adds the possibility to be incorporated into relationships to the inheritable 
type. This allows a class to play a variety of roles in a model. A person for example 
can feature as family, as an owner of some estate, or as employed by zero or more 
companies. With these relationships come attributes and behaviour. A person marries, 
has children, changes employer, buys and sells property. What is clear from this 
account is that relationships are defined statically as possibilities, whereas the 
behaviour of the model dynamically asserts and modifies the real relationships for the 
instances of the class.  

5.2.9  Operational and Behavioural Elements 
This collection of elements is somewhat spread out over the hierarchy, but they 
belong to a common category nonetheless. 
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Figure 5-14 Operational and Behavioural Elements 
Each of these elements supports the ability to be evaluated to perform some dynamic 
behaviour and perhaps change the model. This may be a value assignment at the 
instance level or a structural change at the type level. The different behavioural 
elements possess important interrelationships.  

Procedures and Functions 
A procedure or function allows the definition of operations in structured type 
elements.  

room.heat(degrees:Integer); // procedure

room.getHumidity():Integer; // function

Figure 5-15 Procedure and Function Example 
They constitute a named reference to a method and have the capability to declare 
formal parameters. A procedure has no result and can therefore not be used in an 
expression, only in a statement. A function is like a procedure in all ways except for 
the fact that it has a fixed result parameter. This means that a function call can only be 
found in an expression. 

Method 
From the outside, a method is a black box for determining the value of one or more 
attributes. The innards of a method are of no direct interest to the remainder of the 
model. An implementation of the innards of such a method can make use of the 
services that are available to the methods, like the language service. Thereby, 
statements and expressions can be incorporated into them. This is not a necessity, 
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however, and an implementation of say a Neural Network method can be devoid of 
any reference to elements internal to IO. This approach allows many more methods to 
be incorporated into IO. By adding to the list of methods, IO can be extended with 
different knowledge representation and reasoning components. A method may be 
incorporated into a function or procedure, if the method can set more then one 
attribute simultaneously. 

Name Description Number of 
attributes 

DecisionTable  A decision-table implementations that employs 
IOLanguage Statement and Expressions in the 
conditions and actions.  

Multiple 

AskUser Request for information to external system Single 
Default Simple expression as value of element. Single 
Language Number of statements expressing a procedural 

approach to deriving a value for the parameter. 
Multiple 

Database Method Determine the value of a field by querying a 
database using an SQL query. 

Multiple 

External Method Link to external function or procedure in a 
dynamic link library (dll). 

Multiple 

Table 5-1 Method Types 
As is seen in the above table, some methods are used to determining a single attribute 
while others can be used to determine a number of attributes in unison. 

Expression 
Before delving into expressions and statements, a more general remark is required. In 
the KBE, the expressions and statements are retained in a textual format, and 
interpreted when needed by a parser. By virtue of its live model, IO requires 
significant feedback from these expressions and statements. Therefore, it has reified 
them into objects forming many statement and expression trees. As the language is 
quite mature in capabilities, there are a great many of such statement and expression 
elements.  

Figure 5-16 Expression Items 
Whenever an element that contains an expression, for example a decision-table, is 
changed, it sends a request to the language service for an update. This parses the 
textual expression into the statement and expression elements. These elements have 
links to the remainder of the model. The elements also have the capability of 
rendering themselves into a textual format yet again. When an attribute that features 
in the expression changes its name, the expression will change accordingly. Through 
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the MVC mechanism the user interface can be notified of this change. Furthermore, 
when that same attribute is deleted from the model, the expression will be aware of 
that change and can inform the model that the expression has become incorrect. This 
is the manner in which the live model and MVC cooperate, to create an advanced 
notion of feedback on each user action. 

Name  Description Example 
CollectionExpression Constant collection expression.  Bag of { x, true,

false } of Boolean
DescriptorExpression A reference to a name in the 

model. 
temperature

ElementExpression A constant expression. 6
FunctionExpression A call to a user-defined 

function. 
fac( 10 )

NavigatorExpression Navigating over the names 
defined by the types using the 
dot notation. 

x.temperature

OperatorExpression Calling an operator, of which 
there are some 67 different 
ones.  

x and y, x+y, x/y

SelfExpression Calling the context of an 
expression or the context of 
the surrounding element. 

self.temperature

WildCardExpression A special reference to an 
expression that is present 
elsewhere.  

# = true

Table 5-2 Expression Elements 
An expression item is a special entity, as it has no state and is evaluated using the 
context in which it is called. This context can be any element in the knowledge model. 
An expression always returns some value on evaluation of one of the defined types, 
and is capable of providing type-information. This includes information on possible 
errors in the expression. The above table provides a list of the available expression 
items.  

Statement 

Figure 5-17 Statement Items 
A statement is a stateless element, evaluated using the context in which it is used. A 
statement executes some behaviour, through repetitive, conditional or linear action, 
that can change the model. A statement itself does not yield a value, although the 
behaviour of the different statement type does depend on values returned by contained 
expressions. 
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Name Description Example 
AssignmentStatement Assign a value to an element x := 1;
BlockStatement Organises a number of 

statements 
begin
x := 10;
...

end;
IfThenElseStatement Control a bifurcation by a 

Boolean expression  
if room.temperature
> 50 then
room.heat( 10 )
else door.open();

OperationStatement Execute an operation by 
name.  

room->SetParent(
space)

PresentStatement Fires an event to show an 
element within the model to 
an outside party. 

Present( x )

ProceduralStatement Calls a named, user-defined 
procedure.  

room.heat( 10 );

RepeatStatement Repeats a number of 
statements contained until 
test expression is satisfied. 

repeat
x : = x +1;
y := y * x;

until x > 100;
RequestStatement Fires an event to the request 

a value for a field to an 
outside party. 

Request(
room.temperature );

WhileStatement Repeats a statement until the 
test expression is no longer 
satisfied. 

while x < 100
x : = x +1;

Table 5-3 Statement Elements 
The Operation statement is special because it is a holdall for many different 
operations that are defined. Some 32 different operations are possible, although not all 
types allow each of these operations to be performed on them. For example, the 
SetParent operation is only valid for inheritable types.  

Also special among the statements are the assignment and request statements. These 
set the value of an attribute explicitly and when they occur within a reasoning method, 
they are the reason to register the containing method as a valid inference for the 
attribute being set. The exception to this rule is when the method is contained by a 
function or procedure.  

5.2.10  Inference Process 
The inference process is quite similar to that of the KBE although some functions are 
perhaps present in a more explicit form. Actually, the inference process has been 
based on that of the KBE to make the transition easier for previous users of the KBE 
(compare the KBE process described on page 115). By provision of the inference 
service, it is possible to switch to another inference process, or to make it a 
configuration option for legacy knowledge system. 



5.2 Modelling Primitives 159 

  

Figure 5-18 IO Inference Process 
The inference process described in the figure above shows the system going through 
the list of available inference methods. In the case of an inheritable element, such as 
an object�s class, the superclasses are also included in the search for an available 
inference method. 

The actual operation of each of the methods is left to the particular methods. Each 
method is capable of accessing different aspects of the knowledge model, and can 
execute statements and expressions. A change made by a method in the end is 
assigning a value to the requested field, but a method can also set other fields value as 
well. A method does not have to assign a value, and in that event, the inference 
process continues with the next method until the set is depleted.  

5.2.11  Communication 
The communication is abstract in so far that the IO model component communicates 
with the outside world through a number of events, in a similar way as the KBE 
component does. However, where the KBE sometimes communicates through textual 
information, IO uses the actual elements. The present- and request-statement are the 
two communication elements of the language that the knowledge model uses to 
explicitly model communication acts. These can be used to initiate a presentation of 
information in the knowledge model or conversely to obtain information about the 
knowledge model from the external systems or users of the system. The other 
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communication modalities, query and receive, that are initiated by the external system 
or the user are supported by the consultation API. 

Present 
The present statement is similar to the display option in the KBE. However, the intent 
of the display option was to show a textual string of characters. The present statement 
accepts any element from the IO model, whose actual representation as text or as an 
image or any kind of format that is used is determined by external facilities, i.e. 
determinable by the developers of the knowledge system. Support for some internal 
functions that create default visualisations of elements as XML or HTML are 
provided to make default visualisations easy. The choice of how to actually present an 
element in the model is up to the developers and can be to either a default textual form 
or a proprietary format. 

Obtain 
The request statement implements the obtain modality as it is known within 
CommonKADS (see Figure 3-3 CommonKADS Communication Modalities) It is 
similar to the present statement but only operates on fields in the model. The field�s 
attribute maintains certain information such as the prompt, the explanation and the 
domain of the attribute, as an expression for a set of alternative values. The 
information that can be used to support the visualisation of the request. However, the 
external system may decide to answer the question from a database, where such 
information is superfluous.  

Query 
The functions in the API allow a user to formulate a query in any number of ways. 
The knowledge model can be queried using its goals, through any of the fields in the 
knowledge models, or by having the model execute a script consisting using the IO 
language. Either of these methods can start an inference process to determine one or 
more aspects through reasoning.  

Receive 
The ability for the model to receive information is provided by allowing parties to set 
values for fields in the model. This can be done directly on a field or in the same way 
as the formulation of a query through an expression or statement in a script. A 
statement is acceptable in such a case because no value needs to be returned. 

5.2.12  Language 
The language that underlies the formulation of statements and expressions within IO 
is based on the Object Constraint Language (OCL). It has been extended to include 
the constructive actions that are allowed on the different elements within the model, 
propelling it beyond its initial intent. The OCL is a text language originally intended 
for specifying constraints and queries in UML models, and was not intended for 
writing actions or executable code (Jacobson, Booch & Rumbaugh 1998). OCL 
allows navigation expressions, Boolean expressions and other queries. The full OCL 
is a thoroughly worked out construct that can be parsed like any other such language. 
It contains a large number of predefined operators on collections and primitive types. 
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A complete description of the OCL syntax and semantics is found in (Warmer & 
Kleppe 1999).  

The OCL, although not intended for that purpose, gives a good control, specification 
and query language.  
item.selector

item[<integer>]

item.selector(<argumentlist>)

Examples: 
room.temperature

Get the temperature of the room 
house.rooms[0]

Get the first room in the list of rooms in the house. 
house.rooms->select(item.temperature > 15)

Select the rooms in the house that have a temperature above 15 degrees Celsius. 

5.2.13  Conclusions 
As is clear from the description of the many elements with which a knowledge model 
can be constructed in IO, the expressive capabilities far exceed that of the KBE, 
adding to the initial difficulty that may be attached to the use of IO. The main source 
of this is the sheer number of elements whose purpose and meaning have to be known 
to be able to work with IO. Nevertheless, a subset of the functions allows usage of IO 
in an almost similar way to the KBE itself, as IO subsumes many of its functionalities. 
Using this subset could reduce some of the significant learning curve on these 
subjects. However, using this set exclusively reduces the benefits that may drive from 
the other facilities. 

5.3 Knowledge Modelling 
This section describes the common knowledge modelling process when working with 
IO. In a way, this is a usage scenario, in an idealised description of the functions that 
IO should support. However, this description is also based on actual experiences such 
as those described the next chapter. 

5.3.1  Starting Off 
A fresh new project in IO contains no more than the library of system types such as 
Boolean, Integer, etc., basic functions and a new empty knowledge base. This is a 
valid knowledge model, but it cannot be consulted for any goal. As a project can only 
define and declare knowledge bases, a minimal operational knowledge model must 
contain at the very least a primary knowledge base and a variable of either the 
knowledge base type. Furthermore, this knowledge base must contain at least a single 
attribute of one of the base-types. Equipping this attribute with a reasoning method of 
any kind will create the smallest possible executable system.  

The additional work is therefore not a great deal more than is required in the KBE, but 
the actions are perhaps conceptually more complex as the number of actions to 
perform is greater. A further difference is that where the KBE worked from a 
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decision-table as the main representation form, and added new parameters to the 
domain model when required in any of the decision-tables, the procedure here is quite 
the reverse. From the start, the main entry point is a domain model, structured in 
knowledge bases and other structural elements. The domain model can be developed 
to an elaborate representation of the domain, giving a plain perspective of the relevant 
concepts and relationships.  

No reasoning method has to be added for this to be a meaningful model, and in this 
form, the system can already give some meaningful responses to queries in a form that 
compared to results from an object-oriented database. The possibility to create 
elements at the instance level and the reflective character supported by the type level 
elements, enable general queries. There are no ways to determine values for elements 
through inference and reasoning, but at the level of types and instances, such 
information can be returned. 

Classes 
The likely start of any knowledge model is to locate some structure in the classes 
involved in the model of the domain. These important concepts determine to a great 
degree what can be discerned within the domain.  

Inheritance Relationships 
After the core-set has been found, the relationships between the classes can be 
defined. The inheritance relationships are oft located first, in unison with the core set 
of classes.  

Associations & Aggregations Relationships 
After this, associations and aggregations become part of the model�s evolution, 
determining further the static relationships existing between the different classes. This 
occurs more or less at the same time as the attributes.  

Attributes 
An attribute is considered to a relationship of a kind that is less pronounced, because 
the structural type element such as a class �owns� the attribute. The attribute does not 
exist on its own, but is defined by its presence in class, for example. 

Reasoning Methods 
Adding reasoning knowledge and attaching these to certain points in the structures 
contained in the knowledge model, creates its dynamic nature alongside the static 
nature of the structure model. It allows assumptions to be made based in the 
knowledge contained in the reasoning methods. These can be without structure, 
keeping with the backward chaining control that the system offers.  

Procedures and Functions 
In many systems, some form of structured procedure is required when solving a 
problem. In the KBE, decision-tables served as a double role as structure-tables, 
which subverts the original intent of the decision-table for practical needs. It must be 
stressed, that this is considered practical and not incorrect in the KBE. It is necessary 
for resolving certain problems, and for remaining close at least to the task structure 
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that is perceived by the expert. In IO however, other mechanisms are offered that 
should remove the need to use such implicit structure in tables.  

Task methods may be created any kind of method type, embedded in a function or 
procedure. For example, a decision-table can be used as the body of a procedure, and 
in this form determine the order of reasoning steps. Within the context provided by 
IO, the difference is that the method is explicitly embedded as a task procedure, and 
that the choice for a decision-table as the most appropriate form is made with other 
method types available as well. Other approaches may also be employed, but a choice 
is made for a decision-table explicitly. As soon as that choice is no longer the most 
appropriate one, a change can be made to another format. This does not affect those 
parts of the knowledge model that call upon the procedure or function to perform a 
specific task.  

5.3.2  Developing a Knowledge Model 
After an initial model has been created, from a basic model further development can 
be made in many different ways. The modelling style that is worded in the description 
of the elements above speaks from a presumed object oriented model in mind. 
However, this does not have to be the start of a knowledge model. Therefore, the two 
modes of operations discussed here will first show a design-less approach before 
discussing a design-focused approach. 

Design-less 
Much like the KBE, the knowledge base itself may be used as a container for a 
monolithical list of facts. While this does not derive benefits from the available 
structuring mechanisms, this may appeal to a sense of simplicity. This may moderate 
the otherwise considerable learning curve. As the mode of operation using this style is 
possible and creates valid knowledge models, it may well constitute a convenient 
starting point just before structure can be discovered to emerge from the long list of 
facts.  

This can also be part of a migration path from the KBE to IO. This approach 
constitutes a design-less approach that can also be employed when experts start 
creating a system and don�t want to be bothered initially by overt amounts of analysis 
and design specifications. As a knowledge acquisition tool, this can operate quite 
well. Eventually this can evolve into more structure, either by separating over several 
knowledge bases, which creates entities of great granularity, but expectations are that 
such an approach will freely give way to more structured approaches.  

Although this minimal modelling scenario is a degenerate form of use of the IO 
system, it is important to stress that the modelling approach found in the KBE works 
well for certain types of projects. It does not do to force users to employ other 
methods. Structural knowledge needs to be discovered as well, and this structure does 
not exist beforehand in all situations. In many cases a structure can be proposed, but it 
may be preferable to leave structure for what it is, either temporarily of indefinitely.  

By allowing the smallest common denominator, one can educate users, in small steps 
that can be applied in operations that are more complex later on. In addition, division, 
decomposition and abstraction can be quite difficult concepts to grasp. They are not 
pre-existing things in many domains, and do not necessarily represent the best way of 
examining a domain. This contrary runs to the high regard for analytical accuracy and 
generality that many computer scientists hold to be true.  
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Design-focused 
Another approach is the development of an incomplete but initial model, based on 
classes and associations, imposing structure. This form of model can also emerge 
from the previous approach, and could be seen as a continuation of the previous. The 
ability to extend the model, with parts of medium granularity, i.e. classes and 
associations and the conceptual nature of the models, is not very difficult and can be 
done on the basis of necessity rather than based on a complete design.  

Adding a new class is as hard as adding a knowledge base. Its difficulty is determined 
more by choosing to compartmentalise a certain aspect of the knowledge model into a 
separate entity than anything else. The more structure is added to the model, the easier 
it will become to choose places for the remaining parts, and to determine whether a 
certain concept or association is missing. In fact, similar to the decision-table, the 
knowledge model�s classes and relationships will expose weak spots and omissions 
when such an additional concept is necessary. Just as a blank decision-table column, 
or missing domain alternative. It is perhaps not as explicit, but the same basic 
principle applies. The scale is larger and accommodations can place the responsibility 
with for a certain aspect with an entity that is not truly suited, but for which it is at 
that time correct or merely practical. Because the knowledge model incorporates 
knowledge representations such as the decision-table, at lower scale this exposition of 
flaws and incompleteness is also included. The decision-table plays the role of an easy 
to understand visual representation, but is now one of many different tools at the 
disposal of the modeller, who now has gained considerable choice in the form and 
content of the model. This choice most likely is also one of the root causes of the 
systems difficulty.  

This illustrates one of the main differences between the KBE and IO. Within an IO 
model there are many different levels at which some aspect of the domain can be 
defined, and support for modelling is given at each of these levels. A particular 
important concept can be a knowledge base, a class, a relationship, an attribute, etc., 
or even split out over different elements in the knowledge model. This freedom is 
gained at the cost of understanding these options and making an explicit choice 
between them. 

The development of a knowledge model with a focus on design means adding new 
types using knowledge bases, classes, and relationships to create a structure to the 
model. These can be shown to exist in the domain or are discovered by working 
though the model. In many cases, the first choice may not be the correct one. 
Therefore, it is very important that the model remains fluid to allow changing one�s 
mind.  

Further development of a structured type is no more than adding content in the form 
of attributes, which is a task known from the KBE and from the earlier simple 
approach. This can be done in the same need-to-know basis as the KBE, deciding to 
add an attribute only when required in a reasoning method. It is possible to add a 
reasoning method to a class without referring to the attribute or attributes for which it 
should infer a value. As each of the structured types allows for the definition of 
procedure and functions, it is also possible to weave the structure of tasks through a 
model. Placing different aspects of the task with separate types in the model gives a 
division of labour and allows different types to perform a task in specialised ways. 
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Classes play a special role in defining their internal composition as they allow 
inheritance. This enables them to derive much of their operation from a parent class 
and allows a very concise formulation of knowledge. The child class needs only to 
express the difference between it and the parent class. The value for an inherited 
attribute can be inferred using the methods of a parent class. Reasoning methods in a 
class can even call the inherited reasoning methods explicitly by use of the 
inherited keyword. This invokes the methods of the parent classes to derive an 
initial value. The same works for procedures and functions that can call on inherited 
procedures and functions using the same keyword. Such features are known from 
other object-oriented languages as well. 

5.3.3  Change and Enhancements 
As was described in some detail, knowledge models go through considerable change 
and enhancement throughout their lifetime. As these activities are of a different 
character than development, some of the support for performing these activities is 
provided here. 

Change 
Change is an activity aimed at adjusting the current content of a knowledge model to 
perform as was intended when first formulating the knowledge. More than 
development itself, this then entails understanding the current operation and the 
desired operation. Furthermore, it requires formulating an approach that will effect a 
change that will adjust the behaviour. In many cases, the change originates in the 
behaviour on a specific situation or set of situations. The intended change needs to 
adjust the behaviour in these situations, while leaving the treatment of the other 
situations the same. Each of the types and method types has their own strategies for 
accepting change. The procedures for the overall model are described in this section. 

One important component in making a change is that the procedure to modify certain 
behaviour makes it necessary to locate the place or places where the current behaviour 
originates. Making the model that is used transparent is an essential step, aided by the 
vividness of the model. Each type is a location in a map of the domain, which at 
smaller scale knows internal locations. The different interrelationships, parenthood, 
associations, usage of types, its own usage in places, and its general location as part of 
a greater knowledge base, constrain and assist the search.  

The structure of the domain model therefore needs to be developed as that map of the 
domain. Its function goes above and beyond the need to implement the knowledge. 
The knowledge model needs to be elegant and recognisable as a theory of the domain. 
The facilities for doing so are present through the different types and alternative 
relationships between these types. This determines the localisation, navigability, 
transparency and understandability of the knowledge model. In turn, this determines 
the ability of a modeller to change the model. The more familiar the terrain is, the 
easier it is to understand and make effective changes. The more the experts experience 
the model as their own, the easier this task will therefore be. 

In fact, certain relationships are as familiar paths, shortcuts to get from one place to 
the next in the model: from house to person, from person to employer. This will also 
affect the content of the model, as these paths will also be reiterated as part of the 
reasoning methods, when these are used in qualified descriptors: 
house.inhabitants and person.employer. 
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Exchanging one implementation of a type for an alternative implementation is part of 
the object-oriented possibilities. Design for maintenance as it was called earlier is 
certainly part of the options of any object-oriented model, supported by 
modularisation, encapsulation. The specifics of making changes to a knowledge base, 
or class occur on a different level of abstraction and are similar to the effort faced in 
their creation. The problems of an internal change made to one of these types, or to 
one of the reasoning methods, are comparable to those found in the KBE. Therefore, 
besides stressing that the same kinds of principles must be supported at different 
scales as much as possible, the description of such features is relegated to the previous 
chapter. 

Enhancements 
In a similar way, the possibilities for enhancing or embellishing a knowledge model 
on a smaller scale are quite similar to that found in the KBE. Therefore, this section 
concentrates on object-model�s support for enhancement.  

Enhancing, changing the model to create new functionality, or extending the number 
of products known to the system is supported by the system.  

Known as extension points, object oriented models can create specific places when 
new additions that are expected can be added with ease, without incurring a great cost 
to modify the existing knowledge model. Often these extension points are specific 
classes in the model that abstract a family of elements. When a new animal type is 
required, the model can be easily changed to incorporate it. Deriving a new type of 
animal is as simple as creating a class and setting its parent to that of animal or one of 
its abstract descendants. The differences for that animal are the only modelling 
requirements, and in many cases, no other change is required.  

Functional enhancements are also supported. Adding capabilities to an existing 
structural model to assist in the inference of an additional goal, means weaving new 
inference methods through it. The structure of the model can remain the same or 
requires only minor changes and enhancements.  

If the behaviour is task based, this is the same, but new procedures and functions are 
added to the user-defined types in the model, with inference methods to back the tasks 
that need to be performed. After building an initial system that performs diagnosis, 
other knowledge can be added that provides solutions based on that diagnosis. These 
two can be integrated into the same model. The structure of types defined in a 
knowledge model, can also be used to start another.  

5.3.4  Special Facilities 
IO offers a number of special facilities that support the modelling process and aim to 
alleviate some of the effort in developing a knowledge model with confidence and 
with ease. 

Code Insight 
Code Insight is a term borrowed from Borland Delphi. In IO, it is used as a broad term 
for support in understanding and creating IO language expressions and statements. It 
includes syntax highlighting and a number of additional facilities to aid the 
knowledge modeller in producing quality knowledge models in little time.  
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Figure 5-19 Syntax Highlighting & Code Completion 

Syntax highlighting changes the colour and font attributes of text in the IO language 
editor, making it easier to quickly understand and identify parts of the expressed 
knowledge. While being a very simple addition, it provides immediate feedback to the 
modeller on the meaning of the expression or statement that has been formulated. 
Beyond the styling of the text, the system also always gives an error status of the 
expression in the border of the editor, denoting a syntactic or semantic error. This is 
shown in the right-top corner of the figure. 

Code Completion is the feature that allows a modeller to be provided with suggestions 
on how to continue the expression that is being constructed. In the image above, it is 
possible to see that behind the expression self. all possible continuations are given. 
This includes voorrang, and other attributes of road user. Code completion 
negates the need to look up these continuations and allow the user to enter these terms 
without making spelling errors.  

The direct feedback coming from the syntax highlighting is in fact more advanced as 
it interprets not only the syntax, but detects when certain terms do not occur in the 
model, allowing missing attributes to be detected as soon as they are entered. When 
corrective actions are undertaken, the syntax highlighter makes it clear immediately if 
the actions produced the desired result. The turn around time on these types of 
changes is exceedingly short, compared to for example a compile cycle with error 
messages. 

Unlimited Undo/Redo 
IO supports the Memento pattern. This in a very concise way means that it �allows the 
capture and externalisation of an object�s internal state so that the object can be 
restored to this state later� (Gamma et al. 1994, pg. 283). By virtue of this mechanism, 
it is possible to capture the current state of a knowledge model and return to this state 
on command. The memento is an object that stores the internal state of the knowledge 
model. 

The Command pattern �encapsulates a command as an object� (Gamma et al. 1994, 
pg. 233). An action on the model is therefore reified as a command object. This object 
can be placed on an undo-stack when executed and the actions on this stack can then 
be reversed in order to return to previous states, effectively undoing some of the 
mutations on the model. Based on the Memento pattern it can easily reverse the model 
into an earlier state. 

Using these two patterns as a basis the IO editor is capable of implementing an 
unlimited undo/redo mechanism. While this is a common enough feature in many 
professional systems, it is an essential feature when providing functionality to layman. 
It allows the user not only some measure of trust that errors made by him will only 
have limited effects, and can be safely reversed, and further makes it possible to use 
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this fact explicitly by exploring certain possibilities in freedom. It is essential 
functionality to allow learning and development to go hand in hand. It further allows 
users to experiment with the functionality offered by the system, which allows them 
to test whether a certain command �works for them�. 

Language Interface 
One of the other advanced elements that is not directly related to knowledge 
representation is the language interface, which in effect is the door to the reflective 
live model contained in IO.. 

 
Figure 5-20 Command Line Language Editor 

The language used in IO contains reflective elements that allow inspection and 
modification of all parts of the knowledge model. These facilities go so far that all 
operations possible through the API or by the user-interface are in principle also 
possible by executing statements and expressions in the language. This language 
interface is present in the user interface of the editor, providing part of the functions 
that can be used by expert users. At the right of the editor is the type information 
known about the result type of the statement in question. 

5.3.5  Conclusions 
The previous has shown different approaches that flow into each other with increasing 
levels of abstraction and complexity. It has also shown that the increased structure in 
the knowledge model aids and predetermines choices for representation, acting as 
frame of reference for each new addition as it were. Because these choices are explicit 
rather than implicit in numerous assumptions within the knowledge model, it is 
available to all that employ the model. This makes a model more open and 
understandable, for people outside of the circle of people that were involved in its 
initial development. All of the aspects of the knowledge are therefore open to be 
discussed and managed as to its quality. 

This sections also aimed to show that although one might get an impression that IO is 
all about design, it is very suitable to be employed in a way that the design is 
discovered later, rather than imposed in the beginning. On the other hand, 
interpretation models such as those proposed within CommonKADS, can function 
similarly here, if and only of such model are seen as a kind of scaffolding that needs 
to develop with the model, rather than a rigid skeleton. The structure should create the 
frame around which changes are made, but that does not receive the brunt of the 
changes itself.  
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5.4 Knowledge System Development 
Knowledge system development pretty much follows the same procedures as 
mentioned in the previous chapter. The iKnow architecture was developed to allow 
both KBE and IO knowledge models to be published through the same framework. 
For details on developing dedicated and customised applications, either standalone 
and using the Internet, the reader is reverted to the previous chapter. This section will 
discuss the support for the MVC architecture which determines the majority of 
features that are different or additional to the features of the KBE. 

5.4.1  MVC Support 
The MVC architecture that lies at the base of all the elements in the knowledge model 
generates improved support for the development of dedicated applications. The usage 
of the MVC architecture makes it much easier to develop dedicated applications on 
top of an abstract component.  

All elements in the model deal out events when changes are made to them, like a new 
type that is defined, or when the model itself makes changes, such as assigning an 
inferred value. Different types of events are generated for different types of changes, 
allowing discriminative screening to be used before undertaking large-scale updates. 
The only requirement for the application is to implement observers or listeners for 
these events. Support classes from the MVC part of the system allow viewers for 
classes to be developed that already realise the observer interfaces. This means that 
development of a proprietary viewer is limited to implementing a visualisation routine 
that is called whenever an event is generated by the model element in question.  

For other uses, a separate observer non-visual component encapsulates the listener 
capabilities. This can be used in all kinds of visual and non-visual settings, where an 
application needs to be informed about changes or other actions performed on the 
knowledge model.  

The MVC capabilities are necessary for different reasons. On the one hand, it is 
necessary as the changes made to the model are sometimes outside of the control of 
the client system, either by reflective parts of the knowledge model or by consulting 
the system. The visualising application will then have a hard time to keep the 
visualisation in tune with the actual state of the model. On the other hand, a complex 
knowledge model will also require alternative, co-existing visualisations of the same 
part of the knowledge model. Informing each of these using events is less complex 
than other possible approaches that require the initiative to lie with the application 
rather than the model.  

The iKnow architecture provision for both distributed and centralised access to 
knowledge systems, as described in the previous chapter allows many distribution 
models. It allows a gradual path to develop a customised system, making it possible to 
place any chosen amount of effort in the development of a specific system, at any 
time during the development. The support given by the MVC architecture further 
empowers the development of dedicated consultation and design applications with 
ease. In addition, the support for abstract communication is also improved as was 
discussed earlier. As these were requirements deriving from the principles of 
continuous knowledge engineering, this support is perceived as both fitting and 
essential for knowledge system development.  
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5.5 Conclusions 
The support for developing vivid and conceptually high-level models of a domain 
dominated the description of the facilities realised by IO. This chapter shows an 
advanced knowledge system development environment. Extending and reapplying the 
facilities first introduced by the KBE, the full set of functionality is all but basic in its 
support to evolve knowledge models and its abilities to support the development of 
professional industrial strength knowledge systems. 

Many of the improvements to the changeability and extendability of a knowledge 
system, be it the model or the visualisation, derive from the object oriented modelling 
language. Coupled with the visual nature of the knowledge representation for the 
reasoning methods, this aims to provide a modelling language that can scale in size 
considerably, while retaining the fluidity and understandability required for 
continuous knowledge engineering.  
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Participation              
Understandability !!!! !!!!   !!!!  !!!! !!!! !!!! !!!! !!!! !!!!  
Locatability !!!! !!!!   !!!!   !!!! !!!!     
Expressibility !!!! !!!!      !!!! !!!! !!!! !!!! !!!!  
Changeability !!!!        !!!! !!!! !!!!   
Extendability  !!!!        !!!! !!!! !!!!   
Stewardship              
Usage Information    !!!! !!!! !!!!        
Metrics     !!!! !!!! !!!! !!!!      
Medium              
Operational   !!!!    !!!! !!!!     !!!! 
Gradual UI   !!!! !!!! !!!!        !!!! 
Diff. Visualisation    !!!! !!!!        !!!! 
Dedicated Solution    !!!! !!!!        !!!! 
Integration   !!!! !!!! !!!!        !!!! 
Cyclic              
Start Minimal      !!!!       !!!! 
Small Increments      !!!!   !!!! !!!! !!!!  !!!! 
Revocable Changes      !!!!     !!!!   
Scalability    !!!!      !!!!    !!!! 
Gradual Integration   !!!!      !!!!    !!!! 
Easy to Change          !!!!  !!!!   
Easy to Extend         !!!!  !!!!   

Table 5-4 Features and Requirements Implemented by IO 
The advanced support facilities comprise the additional facilities such as syntax 
highlighting, code completion, direct error feedback, and unlimited undo redo/undo. 
While individually these facilities may merely provide an improvement to the 
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usability of IO, the set of features creates a very reactive model, where each change is 
meaningful and can be ascertained to its meaning. Coupled to the unlimited undo/redo 
the potential to experiment is very great. This is seen as a significant addition to the 
already short-cycle of development provided by the executable specification nature of 
the model.  

The IO knowledge system development environment supports an object-oriented 
structure for a knowledge model. The realisation of the object-oriented knowledge 
modelling language supports a conceptually high level model by going beyond 
provision of classes to incorporate association and aggregation relationships. The 
static model of a domain created in this way can be extended not merely with 
attributes for static state behaviour and operations for dynamic state behaviour, but 
also extends such a structural model with reasoning knowledge. With the knowledge 
system development capabilities largely similar, IO provides more support for 
developing dedicated applications by increased support for an MVC architecture.  

The accent on evolving design before starting with the reasoning knowledge is a 
definite break with the modus operandi proposed for the KBE. The larger number of 
elements available for modelling and the different conceptual level for actions that 
have to be undertaken for modelling activities may seem daunting, but first results 
have shown that the divide is not as overwhelming as it seems.  

The exact opposite to the effect noted with the KBE is in play here, its initial 
simplicity leads to hidden complexities only noted during actual use, while here the 
actual difficulty in choice and conceptual diversity divides a model into meaningful 
parts, sub-parts and interrelationships in analogous way to the experience of experts in 
their own domain.  

The further support for change, direct feedback on that change, and the ability to 
revoke changes goes far beyond the short cycle provided by the executable 
specification nature of the model. In IO, every change is susceptible to a test as each 
change is ascertained to the meaning of that change to the model. This strengthens the 
effects of having a live executable model, capitalising on its strengths. 

The increased support for abstract communication further improves the model/view 
distinctions and means that less effort is required to create a visualisation for a 
knowledge model in the form of a knowledge system. The improved support for MVC 
strengthens the capabilities to create complex design and consultation environments 
for a user. 

The encapsulation and inheritance of the object-oriented models are meant also to 
support the evolution of the system and aid the ability to keep changing different parts 
of the system. This is seen as a partial solution to the gridlock experienced in 
changing a KBE knowledge base when it has grown beyond a certain size like 200 
tables. Two hundred tables do not pose a big challenge of IO, because they are 
structured and subdivided throughout the model, The difference between the KBE and 
IO lies mainly in the approach taken to knowledge modelling, which for the KBE 
resembles first generation systems, and for IO is more in line with second-generations 
concepts.  

Compared to the KBE, less is known about the problems and limitations of the 
knowledge modelling capabilities and knowledge system development capabilities of 
IO. Where systems have been developed that stretch the capacity of the KBE, such 



172 Chapter 5 An Advanced Tool 

 

systems are yet to be built using IO. The problems that are seen therefore concern the 
initial stages of development. 

Feature KBE IO 
Vivid Knowledge Representation  !!!! 
Visual Knowledge Representation !!!! !!!! 
Component Based Development !!!! !!!! 
Model View Controller  !!!! 
Abstract Communication !!!! !!!! 
Centralised Deployment !!!! !!!! 
Executable Specification !!!! !!!! 
Live Model  !!!! 
Simple Knowledge Model !!!!  
Simple Inference Mechanism !!!! !!!! 
Full Object Oriented Model  !!!! 
Script Interface  !!!! 
Unlimited Undo/Redo  !!!! 
Code Insight  !!!! 
Adaptable Visualisation !!!! !!!! 

Table 5-5 Comparison of Main Features of the KBE and IO 
Comparing the facilities to that of the KBE, users have posed a returning question as 
to the ability to create an instance without a type. The KBE is able to reason on an 
instance, without ever thinking about a type for such an entity. IO requires a type 
before ever creating an instance. This limitation can reduce the ability to discover new 
knowledge on the level of instances, and transform this in time to knowledge at the 
type level. This problems is seen to be connected to an overarching problem, namely 
the initially more demanding learning curve for this system, which remains to be 
higher that that of the KBE.  
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Chapter 6 Case Studies 

Make the easy things easy and the hard things possible 

� Software Engineering Maxim 

This chapter depicts a diverse set of projects that put the tools and techniques 
described in the previous chapters into practice. The first section provides an 
overview of what this chapter seeks to convey. The following five sections describe 
each of the case studies used to evaluate the proposed solution, in its realisation in 
tools and guidelines for people, project, product, and process. In the final part of this 
chapter the results are gathered, going towards some general conclusions. The 
following chapter will complete the evaluation of the case-studies by comparison to 
criteria of the evaluation program formulated in Chapter 3. 

6.1 Overview 
This section discusses the relationship of these case studies to the research program, 
the structure of the description of the case studies and the intent behind the inclusion 
of each of the featured systems. 

6.1.1  Research Program 
The case studies aim to show a mix of systems built using one of the two tools, KBE 
and IO, and explore different of the aspects of the continuous knowledge engineering 
approach. 

• BOKS � exemplifies a professional, industrial-strength knowledge 
system developed using the KBE 

• MDDS � represents a knowledge discovery effort supported by the 
KBE 

• VDES � shows a knowledge system for a smaller user community, 
and illustrate the more limited effort to develop a user-interface. 

• FRAS-KBE � illustrates a separated knowledge design model and 
its implementation in a software system, i.e. use of a knowledge 
model as a specification. 

• FRAS-IO � demonstrates the abilities of IO in knowledge 
modelling by an expert in participatory and independent scenarios. 

• Mebis-KBE � establishes the support for usage of KBE knowledge 
models as component technology. 

• Mebis-IO � establishes the support for usage of IO knowledge 
models as component technology. 

Figure 6-1 List of Case Studies 
The case studies provide a good cross-section of the work performed at TNO in the 
development of knowledge system. The knowledge systems described in this chapter 
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form the second part of the engineering phase of the research that demonstrates the 
strength of the implementation. These systems serve to enable the analysis of the 
implementation and the conceptual solution that was proposed. The case studies are 
evidence of the abilities of the proposed global solution by the implementation of this 
solution in both guidelines for development and the tools described in the previous two 
chapters. By virtue of this demonstration, it is possible to ascertain whether the solution 
is viable and practical, and subsequently examine possibilities to come to a qualification 
and quantification of the solution.  

The applications are a selection from projects performed at TNO. However, these 
projects did not contain any special objectives to act as proof of concept for the 
approach proposed in this thesis. None of these systems described in this chapter was in 
effect a prototype or proof of concept purely dedicated to elucidate the questions 
originating in the research program. The cases therefore present a realistic view on the 
treatment of the different principles and idiosyncrasies of the tools used. They represent 
a good cover of the different possibilities through their similarities and differences. 
Because of this realistic aspect, this thesis may not assess some of the concepts 
exhaustively. In assessing these concepts and to compensate for this imperfection, the 
differences and similarities of the cases are used provide a more complete image.  

6.1.2  Case Description 
The case studies must answer the questions described in the evaluation program 
formulated in the first chapter. These aim to tease out the effects of the metaphoric 
distinction and descendant continuous knowledge engineering approach in adaptations 
to the people, project, product, process and tools.  

The second part of the evaluation is more practical as it examines the effects on the 
bottom-line of knowledge engineering. These two lines of evidence are to enable the 
scientific and practical evaluation of the solution. 

Overview 
• Create an impression of the system and its development method. 
• Detail the important aspects that the application addresses and the 

manner in which the guidelines and tools are used. 

Task 
• Examine the task the system has to support. 
• Reflect on the knowledge that is necessary to carry out this task. 

Approach 
• Examine the process used to carry out the development. 
• Determine the influence of the guidelines, tools and process. 

Conclusions 
• Summarise the results. 
• Determine the benefits of the approach. 

Figure 6-2 Description Structure 
The five different systems in this chapter are quite diverse in their purpose, domain 
and approach. The standardised description of the important features of the 
application allows the comparison of their descriptions and properties in the final 
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section of this chapter. In addition the case-studies make explicit the manner in which 
they realise the guidelines and employ the development tools. The sections below 
describe each of these case studies according to the case description just shown. The 
different implementations of FRAS and Mebis will be discussed in one shared section. 

6.2 Building Materials Regulation Knowledge System 
The Building Materials Regulation Knowledge System (BOKS) incorporates the 
Dutch regulations on the use of building materials. It supports users in their adherence 
to the legislation when employing different kind of building materials. BOKS is an 
example of an industrial strength knowledge system with a dedicated user-interface 
and integration with other auxiliary software components. As a knowledge system 
developed with the KBE, it provides a good example of a system maintained over an 
extended period. Moreover, it shows experts in a participating role in the development 
of the knowledge model (Schilstra & Spronck 2000, Spronck & Schilstra 2000).  

6.2.1  Overview 
Environmental issues are now a common concern in all aspects of society, in many 
cases with the government as a coordinating body. An instance of this is the 
legislation concerning the use of building materials by the Dutch government in the 
1995 publication of the �bouwstoffenbesluit� (BSB).   

Figure 6-3 BOKS User Interface 
The BSB determines whether building materials are permissible in a specific 
situation, what procedures to follow, and what conditions have to abide by. It actively 
promotes reuse of building materials, as long as this forms no threat to the health of 
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the environment. Since January 1, 1999, the BSB has become a set of official 
regulations, and every building contractor is legally bound to conform to them.  

The government publication of the BSB consists of 300 pages of text that is difficult 
to apply not only because of its sheer size, but also by the numerous tables, 
references, schemas, footnotes and exceptions. All of these have to be taken into 
account, and the knowledge for one specific aspect can be found spread throughout 
the document. Practice has shown that even BSB experts find it difficult to use it 
correctly. One the other hand, once they have applied the BSB to a particular 
situation, the results are easy to understand.  

A knowledge system emerged as an ideal way to allow people to check whether they 
are using building materials in conformance with the law without requiring training 
for this purpose. Approx. 3000 people in the Netherlands use it, constituting a large 
majority of those who need to work with the BSB. 

BOKS is a stand-alone computer program that contains knowledge about the BSB, 
with a knowledge model developed using the KBE. BOKS can answer six fixed 
queries or goals, represented in the large buttons in the BOKS user-interface Figure 
6-3 above: 

Button Name Question 

 
BSB? Is the BSB applicable to the current situation? 

 
Categorie Which is the category the materials belong to? 

 
Procedure What is the procedure to follow when the material is used? 

 
Toepassing What are the requirements for application of the material? 

 
Onderzoek How should the user sample and test the material? 

 
Hoogte How high can the material be stacked 

Table 6-1 BOKS Goals 
The consultation of these goals offers enough information to allow a layman to know 
whether they conform to the BSB (see Table 6-1). Using the knowledge model the 
system will pose questions to the user, such as �What is the type of material�, �Where 
is it used� and �What are the emission values the laboratory reports�. The nature of all 
the questions asked by the system is such that a layman can answer them. After such a 
consultation it gives a report that is identical to the kind of conclusions an expert 
would reach. Other functions of the system include saving and loading a consultation, 
as well as generating different types of reports and providing access to the background 
documentation on the BSB itself. 

The main benefit of the system is that it negates the need for people to be trained in 
the use of the law. This would be difficult because it concerns large numbers of 
people and because the law itself is still undergoing changes. The added advantage of 
a fast and consistent system has meant that even the experts involved in its 
development use BOKS in their daily practice. 

The development was a mix of engineering and insight-based issues. While the 
project employed a standard version based deployment scheme, which has seen three 
different versions of the system released into the user community, the development 



6.2 Building Materials Regulation Knowledge System 177 

  

process was highly cyclic. The experts participated heavily in the knowledge 
modelling process. The development of the BOKS knowledge model has thereby seen 
more than a thousand iterations of different granularity. Minor tests and validation on 
test cases were performed with the default consultation environment.  

The user-interface developed over several stages coinciding with the knowledge 
modelling. It was incorporated into the system for the deployment of the first version. 
The main product in this case was very clearly the knowledge system, as the problem 
to be solved here was availability of knowledge rather than the development of new 
knowledge. The intent behind the knowledge model was to provide a complete replica 
of the articles of legislation. It therefore does not constitute a true product of this 
project. 

This case study shows the ability of the tools and approach to realise an actual 
knowledge system. BOKS is an industrial strength application, used by a great many 
people and with a certain amount of maintenance history.  

6.2.2  Knowledge Modelling  

Task 
The BSB regulations are applicable in situations where primary and secondary 
building materials are transported to a building site to be used there. If there is no 
official quality assurance of the building material, a laboratory test must analyse a 
specified number of samples of the material. The test determines quantities and 
emission values for possible environmentally harmful substances contained in the 
material. Based on these laboratory findings, in combination with the exact purpose 
the contractor has for the material, the BSB decides whether the material can be used, 
and if so, under which conditions. 

The main part of the BSB is concerned with the determination of the category of the 
building material. The different categories are: 

Clean soil: If the material falls in this category, it is usable without restrictions. 

Category 1: Category 1 material is usable without restrictions in the situation the 
building contractor has specified. One of the consequences is, for instance, that if the 
contractor has specified that he will use the material in a layer with a specific height, 
he cannot add to that height without running the risk of the material falling in another 
category. 

Category 2: Category 2 material is only usable if they are isolated from the 
environment, and even then, only in the particular situation the contractor specified. 

Unusable: Most building materials are unusable at all, if they do not belong to one of 
the preceding categories. Only with a specific exemption can the material be used 
legally.  

To determine the category of a material, the BSB expert just needs the laboratory 
findings and a description of the application situation. The answer needed from the 
expert is which of the six possible categories to which the material belongs. The user 
can understand the �input� and output of the system quite easily. The input is the 
laboratory-supplied list and the situation description. The �output�, is the category of 
the material, and related information. The procedure to get from �input� to �output� is 
complex, however, even for experts, and even though the procedure is uniquely 
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determined in the regulations. After the material category has been determined, the 
procedures and conditions follow from this but are specific to the situation in which 
the material is used. 

Domain model 

Figure 6-4 Partial Material Model 
A part of the domain model used is the model of the materials, shown in the figure 
above. This model does not feature explicitly in the structure of the knowledge model 
featured as a paper-model alongside as an additional model. This model of the 
materials and its components is the basis of the conclusions reached on a single 
building material. The strongest category for any of the component materials 
determined the category of the building material. 

Task model 
The task model for the system is relatively simple. 

• Determine building material 
• Determine environmental features 
• Evaluate each of the component materials  
• Determine procedure and conditions (opt) 

Before being able to say anything about the procedures and codes, both the nature and 
origin of the building material and the location where it will be applied must be 
known. The evaluation of the each component materials is the next step, leading to the 
category of the building material. The next steps are optional, depending on which 
goal the user selected:  

Knowledge Modelling Process 
The KBE was used exclusively to develop the knowledge model. Based on the 
functionality of the different goal questions mentioned earlier, the system 
development process incrementally added each of the six goals. Each goal functions 
as a sub-goal for other goals, therefore the development of the knowledge model in 
these subdivisions worked especially well. 

The knowledge engineer took the role of the intermediary, who would interview and 
discuss the global and specific parts of the BSB articles of law. Initially this was fed 
back to the expert as text notes, but this practice was abandoned early on for an 
alternative propose-and-revise approach. This process was used almost exclusively for 

Building Material Component

1..*1..*

Non-Soil Soil

Shaped Amorphous

Anorganic Organic

Metal... ...
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the duration of the knowledge acquisition. The knowledge engineer entered 
knowledge into the system, and the expert reviewed the decision tables and 
parameters. This review allowed the knowledge engineer to explain the content of the 
decision tables and perform some test cases with the system. In many cases these 
discussion would concern a single table, but the knowledge engineer and expert 
performed two complete reviews of the knowledge as a whole as well. 

The visualisation of the knowledge as decision-table and the simple domain model 
and inference mechanism allowed the expert to not only understand it enough to 
validate and verify the modelled knowledge, but also to comment directly on the 
table, giving instructions to add an alternative or change a value in one of the cells. 
Sometimes this could extend to the suggestion to add a new table at a certain place. 
The ability to consult the system at each point in time also enabled some 
experimentation and the use of test cases. In other cases, a single or a small set of 
decision-tables would come under scrutiny by consulting these few tables. 

A further result was that by posing an initial formulation of a decision-table afforded 
an exploration of the knowledge representation. By subsequent reformulation, a 
decision-table could be located that would best fit the sometimes-difficult law articles. 
This has also led to a situation where the experts would many times faulted by their 
own knowledge. The consistent and complete representation of the decision table 
would contain a missing action alternative, indicating that the law did not cover a 
specific situation.  

From consultation of the system in test- and real life cases, using both release 
candidates and deployed versions, different errors and misconceptions surfaced. The 
knowledge engineers have fed these back into the model. In some cases, it became 
obvious that these were a result of inconsistencies in the law itself. The experts have 
reported these to the legislative body. Furthermore, the law underwent changes in 
certain areas. In effect, the knowledge model grew considerably and the majority of 
the decision-tables in the model have seen one or more modifications during their 
lifetime. The development of the system will remain to be an ongoing effort as the 
law will undergo more change and the system�s experience includes increasing 
numbers of real world problems.  

6.2.3  Knowledge System Development 
The BOKS is a system that integrates different additional components. The 
knowledge component is only a part of the larger system. The application also 
contains a database of approx. 150 different building materials. This is used to answer 
many of the questions that would otherwise be directed to the user. In addition, it 
includes an integrated reporting facility. The domain experts have maintained both the 
report templates and the content of the database. 

BOKS had to be an industrial strength application with a user-friendly interface and 
additional facilities. The system should be easy to maintain, to both reduce cost and 
reduce the time needed to update the knowledge in the system. The user should have 
access to the latest version of the regulations as quickly as possible. This extended to 
both the knowledge base and the reporting facilities. It was determined beforehand 
that the knowledge engineer would develop the knowledge base in participation with 
expert, using a propose-and-revise approach, described above. The developers went 
through many iterations although the number of versions released were quite limited 
in number. 
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Figure 6-5 BOKS Architecture 
The architecture of BOKS is more involved than the more basic systems show later. 
BOKS integrates a number of elements not found in other systems. First, the database 
that contains pre-defined answers to questions on building materials and components 
that may arise from the knowledge base, built with Microsoft Access. The documents 
that are integrated include a HTML based version of the BSB, built with Macromedia 
Dreamweaver. The report format of the KBE was the basis of the reporting facilities. 
Adept ArborText was the tool for editing the XML file. Borland Delphi, a standard 
software development environment, was the integrator of these components, and was 
the basis of its visual user-interface.  

It took approx. 1000 man-hours to develop the first version of BOKS. This divides 
into 40% knowledge acquisition, 40% application development, and 20% residual 
issues. 

User-interface 
The user interface incorporated into BOKS is quite user-friendly (see Figure 6-3). 
Because it asks simple questions and provides an intuitive visualisation, people often 
suppose BOKS is no more than a friendly kind of spreadsheet. While this is in a way 
the intended effect, this obscures the fact that it contains an array of knowledge, 
which it applies diligently to come to its conclusion.  

The system�s user base is quite sizable and diverse in background, therefore a 
common denominator had to be found. The capabilities for the development of a 
dedicated visualisation was therefore essential. The importance of the user interface in 
the acceptance of the system can not be overestimated. A further important issue in 
this respect is the completeness of functionality supported by background information 
etc., as well as having a simple workflow. The number of questions asked of a user 
during a consultation is one particular part of this. The repetition in the questions 
asked at the beginning can be detrimental in the long run. 

Database 
BOKS also incorporates a link to a database that contains information on most 
building materials, such as their composition into different chemical compounds, such 
as cadmium, etc. This database contains 150 different pre-defined building materials. 
The user can also enter an unknown material, but then will have to answer many 
different questions on that new material. This will add the new materials to the 
database. This is especially aimed at reducing the knowledge required to operate the 
system, and aims to lessen the total number of questions asked. The relevant 
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properties of a material as fixed per material type, but can not be considered common 
knowledge. Therefore its inclusion in the form of a database enables a much wider 
user base, as well support the ease of use.  

Report 
The reporting facilities are also quite extensive, the user has the option of choosing 
different types of report: concise, normal and extended. This allows for quick review 
and full documentation for reference purposes.  

Figure 6-6 BOKS Report 
The image above shows an example of one of the reports. The reports use the XML 
reporting facilities described in chapter 4. The experts can edit the template reports 
themselves, as part of the development effort. 

The reports can be shown in either concise or extended form. The concise report 
contains only the relevant final conclusions, i.e. the class the material was assigned 
and other answers to the goal questions. The extended report details the answers given 
and provides intermediate conclusions. 

Documentation  
BOKS further integrates the full text of the BSB for reference in HTML form. This 
enables an author of a report to integrate hyperlinks to this background info. All the 
pages of the BSB can be found there. This reference thereby provides all the relevant 
background to a case. From sections of the report, the user can then request the 
relevant background information. 
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Figure 6-7 BOKS Documentation 
An example is shown in Figure 6-7 above. This form of the text of the BSB is also 
fully searchable.  

6.2.4  Conclusions 
The previous has shown an application of a KBE knowledge model developed into a 
knowledge system that supports a great number of users. It is the most advanced 
example of the ability to develop professional, industrial strength knowledge systems 
using both the continuous knowledge engineering approach and the tools. 
Furthermore it is an example of a legal knowledge system, of which there are 
apparently few successful examples (Visser, Bench-Capon & van den Herik 1997). 

People: Participatory modelling Cost: - 
Project: Finite, product-based Risk: - 
Product: Dedicated knowledge system Clarity: ++ 
Process: Cyclic modelling and development, with limited 

deployed versions 
Benefits: ++ 

Tools: KBE Bottom-line: ++ 

Table 6-2 Evaluation BOKS 
This case study shows quite clearly the significance that the expert participation. 
Feedback from application of the system had a definite effect on the knowledge model 
and knowledge system. Being able to add small increments of knowledge to an 
operational knowledge system is critical in this respect, because it creates a feedback 
loop. The gradual approach to knowledge modelling also makes it easier to develop 
the knowledge model and aids the communication between the knowledge engineer 
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and the expert. From his understanding, the expert can make constructive comments 
directly on the knowledge represented in the system.  

As to the modelling ability of the expert, the conclusion was that the experts would be 
able to develop parts of the knowledge model independently. The granularity of such 
modelling changes would have to be a small, for example a single decision table. 
Lack of structure in the domain model as a set of parameters makes it difficult to form 
a conception of the organisation and interconnection in the model. This can make it 
difficult to locate the parts of the model that to be modified or understand the effects 
of a change to other parts of the model. Some separate experiments confirm this 
result. The gradual approach also supports the development of the knowledge system, 
as there were more opportunities early on to give attention to feedback from the users, 
on the content and the form of the knowledge system. Because a usable system was 
available early on, it was easier to elicit such comments, and direct the development 
by it.  

Furthermore, the cost of development as well as the risk associated with it was lower. 
This was mainly due to the shortening of path to change. As the criticisms of the 
experts were directly based on the knowledge model, and did not have to be elicited 
through circumstantial evidence. This lowers the cost of both the acquisition and the 
translation into the knowledge model. The cost of measures required to incorporate 
changes in the knowledge model were of low enough to allow alternatives to be 
realised in the model and tested, before settling on a specific one. The large number of 
small cycles is evidence of this. Coupled to the clear idea of the resulting product and 
the benefits the introduction of the system would create, the decision on additional 
investments in the knowledge system were based on actual value rather than 
predictions.  

It further shows how from an initial default implementation of a knowledge model, an 
iterative strategy can explore the knowledge, by experimentation and evolution. This 
improves not only the knowledge model, but also leads to significant insights for the 
domain expert and can improve the domain knowledge. 

6.3 Masonry Damage Diagnostic System 
The Masonry Damage Diagnostic System (MDDS) is a knowledge system for 
diagnosis of damage to old buildings and monuments, to determine the cause of 
damage and provide a starting point for restoration. This is an example of an 
incremental development process and participation of the user, but one where the key 
product is not a knowledge system, but the knowledge model itself.  

6.3.1  Overview 
Conserving ancient building and monuments for posterity warrants a significant 
amount of effort, to keep a view of the past otherwise only found in history books and 
old paintings. Our bustling post-industrial society has placed many of these buildings 
under further stress, such as acid rain, and wear-and-tear from vibration.  

Conservation of historical buildings is made harder than it could be because the 
knowledge of it is distributed over a small group of specialists from different 
disciplines: building physics, architecture, history of art, chemistry, geology and 
biology. They lack a common language and their current mastery is incomplete.  
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A knowledge system does not merely improve the availability and accessibility of 
knowledge of ancient brick masonry structures. It can also provide a catalyst for 
detecting lacunas in the knowledge of the experts, and aid the formulation and 
discovery of new knowledge. Consolidating the knowledge and integrating the 
different fields into a set of shared assumptions and a common vocabulary makes 
interdisciplinary communication a possibility. Such communication is a first 
requirement for these experts to start sharing their knowledge and experience. The 
task for the knowledge system is therefore much broader than merely enabling users 
to diagnose masonry damage.  

To this end MDDS, was developed both in the interest of the science of restoration 
and for practical restoration activities. MDDS originates in the EC Environment-
project entitled �Expert System for Evaluation of Deterioration of Ancient Brick 
Masonry Structures�, dating from 1992 to 1995. The development of the system 
continues until today. Plans for enhancements and further extension are actively 
pursued. Over a period of 8 years approximately 1500 hours of work over the total 
period spent on the actual knowledge model. The knowledge creation and discovery 
component in the development of this system�s knowledge model is therefore clearly 
one of the main goals, next to the usage of the system. 

The intended users of MDDS are quite diverse:  

• professionals in charge of the maintenance of historic brick masonry monuments; 
• specialist is other fields, occasionally confronted with the specific problems of 

historic brick masonry structures; 
• persons responsible for restoration campaigns, such as architects;  
• students, following courses on conservation and maintenance of buildings; 
• representatives of national bodies in charge of the conservation of the cultural 

heritage. 

The development of MDDS is a prime example of continuous development, and is an 
instance of an insight-inspired approach. The fact that the knowledge model in MDDS 
was developed by the experts themselves was an important aspect in making that 
possible. Mainly because of that, the project is continuous in nature and as yet part of 
ongoing research and development. The main product is primarily the knowledge 
model itself; the knowledge system plays an important but secondary role. The 
knowledge model deployed using the default consultation environment and using an 
Internet-based consultation system. 

6.3.2  Knowledge Modelling 

Task 
Damage to masonry is due to many different chemical and physical processes. 
Exposure to caustic materials, like acid rain or damp conditions, is an important recent 
cause of problems. Structural problems can also cause deterioration of the masonry. 
These different problems can lead to an array of cracks, deformations, fungal 
infestations and other problems. The diagnosis of the causes of these problems is the 
first step in being able to counter-act and repair the damages and to prevent the 
problems from reoccurring.  

The problem that the expert faces during diagnosis is to locate the damaging process. 
Visual observations and background information on the structure play an important 
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role in this. They provide an impression of the kind of damage, which is an entry 
point to determining the actual cause of these symptoms. 

The knowledge system uses the same kind of diagnostic process and information 
utilised by an actual expert. The focus taken is that the information provided by the 
user must be observable visually or easy to determine otherwise. What's more, the 
knowledge in the system, coming from so many different sources, should represent a 
consensus, which meant not only reaching some accepted norm for the system, but 
also scientific standardisation, as the conclusion of different scientific research 
projects was reported to the community as decision-tables coming from MDDS (e.g. 
van Hees, Pel & Lubelli 2000). 

Domain Model 
There are a great many different manifestations of damage to masonry, each with its 
own specific characteristics. It is possible for the user to see more than one type of 
damage, but the system is only configured to deal with one type of damage at a time. 
This is due to the limitations of the KBE that cannot adequately represent those kinds 
of multi-causal diagnoses. Consulting the system the user should then normally select 
the most representative form of damage seen.  

Type Sub-type Specific damage type 
surface change   
 discoloration fading, moist spots, staining 
 deposit soiling, lichens or liverworts, algae, mosses, 

moulds, unknown biological deposit, graffiti, 
encrustation, efflorescence, crypto-florescence, 
undefined 

 transformation patina, crust 
disintegration   
 layering delamination, exfoliation, spalling, scaling 
 loss of adhesion loss of bond, blistering, peeling, peeling hide, 

push out 
 cratering cratering 
 loss of cohesion chalking, powdering, sanding, brick-blistering, 

erosion, crumbling, pulverization, bursting, void 
cracking  rupture, hair crack, crazing, crack, star crack, 

network cracking, vertical cracks 
deformation  bulking, bending, twisting, leaning, 

displacement, bulging 
mechanical 
damage 

 scratch, cut/incision, puncture, splitting, 
chipping, mechanical damage (general) 

biological 
growth 

  

 higher plants higher plants 
 living exogenous 

material 
lichens or liverworts, algae, mosses, moulds, 
unknown 

Table 6-3 MDDS Damage Type Decomposition 
The table above shows the hierarchy of damage types and sub-types. There are 53 
individual types of damage, which a Damage Atlas defines through textual and 
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graphical information. It provides different translations for each of them, to 
disentangle their use in different contexts and discussions. Although in majority the 
hierarchy is tree-like, the type �biological growth� and the sub-type �deposit� share 
some of their types. 

• frost damaging process 
• salt crystallisation process 
• environmental pollution chemical process 
• surface erosion process 
• water penetration process 
• mechanical damaging process 
• surface deposition process 
• condensation process 
• structural damaging process 
• iron corrosion process 
• biological process 

Figure 6-8 Damaging processes 
The damage types are manifestations of one or more of a set of possible damaging 
processes. The table above shows the complete list of these processes incorporated 
into MDDS. This shows the chemical, biological and structural forces playing on a 
masonry structure leading to degradation and destruction of the stone works. The 
damaging processes in their main categories are 11 in total; a few of them have sub-
divisions into more specific process determinations.  

Task Model 

 
Figure 6-9 MDDS Top Table 

The basic structure of the task is to determine the damage category, and use this 
category to test different associated damage processes as hypothesis. The system 
enforces this structure by using the decision-tables to derive sub-goals. These order 
the steps taken in the evaluation, where each condition is concerned with a specific 
sub-task.  

The system starts by asking the user the general type of damage, making it possible to 
dismiss many of the non-suitable categories of damage offhand. If the user leaves the 



6.3 Masonry Damage Diagnostic System 187 

  

question unanswered, the system will ask questions for each of damage categories, 
until the right type of damage is determined through analysis. By querying for specific 
symptoms, it is able to perform this classification task. This provides for use of the 
system by novices and experts. 

By determining the type of damage, it is now possible to start the determination of the 
damage process or processes. The system treats each of the processes as a hypothesis 
of a process that may be the cause of the damage. Because only certain damage types 
conform to a specific damage process, they filter the evaluation of the damage 
processes.  

 
Figure 6-10 Determination of Damaging Process 

For the determination of possible causing processes, a central decision-table is present 
in the knowledge model for each of the processes. These decision-tables contain 
knowledge about the possibility that the damage process is relevant and possible. The 
decision table �determination of damaging process� evaluates all of eleven processes 
in order, and as a side effect infers a parameter denoting the conclusion for the 
process. This may lead to the conclusion that more than one process is the cause of the 
damage. An example of such a table is below for the frost damaging process. 
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Figure 6-11 Decision-table �Frost Damaging Process� 
The form and content of this decision table for this particular process is characteristic 
of all the central decision-tables for damage processes. First, a damage process must 
be relevant, i.e. fit the damage type. For example, frost damaging is only relevant as a 
damage process for 16 out of 53 damage types (see the decision table below). When it 
is relevant, the system considers the environmental and material related situation in 
which the problem occurred. A damaging process is a cause of damage only when it 
meets favourable conditions. Frost damaging only occurs when winters occur in the 
region, it is possible that the material used had high moisture content, and the material 
is vulnerable to frost.  

 

Figure 6-12 Decision-table �Relevant Type of Damage for Frost Damaging Process� 
A single parameter �relevant type of damage for {processname}� 
makes the link between one of the damage types and the process. If the damage type 
is in one of the categories that may be relevant, it is a valid hypothesis. As is visible in 
the decision-table above, the link is sometimes more than merely a mapping between 
type of damage and processes. For the damage type �crack� or �hair crack�, the table 
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contains a special situation, where frost is not always a possible hypothesis. After the 
relevance of the process is clear, the actual testing of the hypothesis is started. 

The remainder of the evaluation of the process in majority examines whether 
favourable conditions occur, for example, the geographical zone should have frost 
damaging winters, high moisture content of the material should be a possibility and 
the material should be vulnerable to frost. 

Process 
At the start of the project, the knowledge engineers developed an initial model for the 
diagnosis of the masonry damage, based on interviews and discussions with the 
experts (Lucardie 1995, pg. 199-236). The experts rejected the model from this initial 
effort, not because it did not function correctly. It did not sufficiently reflect the way 
an expert operated in real-life or was easy to understand as such a model by the 
expert. They considered it to be �too detailed�, as it goes into the chemical processes 
at work in the brick masonry. The level wanted by the experts is more abstract as is 
seen in the current knowledge model.  

The experts commenced to develop a new knowledge model independently, only 
occasionally supported by a knowledge engineer. A small team of ambassador-experts 
represented the full team of experts that were involved. These ambassador-experts 
were located at TNO in the Netherlands, and were the people responsible for making 
the actual changes. The other experts involved themselves with reviews of the 
knowledge model and testing versions the knowledge system. From their discussions 
on the content of the knowledge model, they would propose adaptations changes to 
the tables or definitions. The ambassador-experts at TNO reviewed them and 
incorporated the changes into the model. Only the ambassador users make these 
changes, and therefore constitute a mediated consensus process coupled with a 
review-critique approach.  

Two other activities started in parallel with the development of the knowledge model, 
partially in support of the knowledge modelling. First was the development of a list of 
definitions for the damage types and processes in the model, with translations to 
different languages. Another effort was the development of a damage atlas, where 
each damage type featured using a visual example, to aid the user in determining the 
damage type. The definitions and visual catalogue form an integral part of the 
knowledge model.  

The abstract task model, determination of the damage type followed by a process-
based diagnosis as described above, was already present in the system at that time. 
Initially these changed concentrated on the abstract structure, development and 
definition of the damage types and processes. Once the structure for the system was 
more or less complete, the focus turned to the determination methods for the damage 
types and processes. These discussions between ambassador-experts and the other 
members were mostly on paper. The reports, describing the knowledge model, made 
extensive use of the printouts from the system. In addition, meetings within the 
project concentrated on demonstrations of the system to elicit comments and requests.  

When the project got further along, regular distributions of the system distributed 
regularly using the default consultation system to allow all concerned to get to grips 
with the dynamic behaviour of the system. This did not allow them to examine or 
change the knowledge in the system. 
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One aspect that noticed in this period was that the first version of a decision table that 
conceived was invariably flawed. The first version of a chunk of knowledge 
represented as a table would create an initial sketch. After the integration into the 
system, inconsistencies in the decision table would surface. Positioning of a decision-
table relative to other tables reveals requirements to the table not thought of before. A 
further source of adaptations comes from anomalies that become evident in the 
behaviour of the system. This would make clear that the decision table should be 
organised differently or that certain aspects were missing, for example, additional 
conditions required in the determination of the answer. The initial thoughts on how 
the reasoning would be organised would justify answer found in the action 
alternatives, rather that aim for a complete story. This was no flaw of the experts 
modelling independently; it is though that this is a fundamental feature of knowledge 
acquisition (see also Compton et al. 1992). 

Another observation during modelling is that a certain table would undergo changes 
and slowly start to resemble the �form� of other tables. Eventually the experts picked 
this up and started to create these types of decision table explicitly. Since then, they 
are growing in number and importance. These decision-tables make the system easier 
to understand, as certain classes of decision-tables are easily recognisable. For the 
experts this made modelling much easier, by this self-imposed additional structure. 

A problem that is negatively affecting the system now is its lack of changeability. 
Time has shown certain choices to be wrong, as new insights have revealed the 
appropriate subdivisions between the different damage types. The interconnected 
nature of the system makes it hard to remove elements, making the cost of a change 
too great. On the other hand adding a new damage type or process is quite easy 
because of the chosen abstract task-model. This model allowed incremental 
development of the system.  

In the current phase of the project, with the content of the knowledge system fleshed 
out and in an acceptable form for the partners, the focus changed from building the 
system, to updating it for new insights. This was also a starting point for use of the 
system to direct some of the research activities. One of the areas in which knowledge 
was lacking, was the effect that the application of repair mortars could have on the 
masonry in monuments. Many cases of failure showed that the knowledge of the 
compatibility of repair mortars for historic masonry was lacking (Hees, Pel & Lubelli 
2000). Repair mortars used for repointing may have been responsible for making the 
masonry vulnerable for frost damage, by interaction with the existing substrate. 

The use of decision tables and the inclusion of a preliminary version of the knowledge 
into the system supported the formulation of two testable hypotheses: 

• The repointing mortar may have changed the drying behaviour of the wall 

• The original lime mortar may have changed it properties over the years and has 
become prone to frost attack. 

Confirmation of the first hypothesis arrived after an advanced NMR system, with an 
especially high spatial resolution. This showed how repointing mortar affects different 
properties of the existing material, leading to high moisture content. The second 
hypothesis is currently under investigation. This shows an example of how an explicit 
knowledge model aids in locating and describing lacunas in the knowledge and how 
this can direct these investigations.  
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6.3.3  Knowledge System Development 
This section described the development of two knowledge systems based on the 
knowledge model.  

MDDS Demonstrator 
The first system constructed based on the knowledge model described above is the 
MDDS Demonstrator. The users received several versions of the demonstrator, for the 
most part after a significant amount of change to the knowledge model. The users 
were limited to the partners and experts involved in the development of the system. 
They used the system to verify and validate the system in practical situations. This 
form of the system replaced the paper-based discussions of the knowledge model.  

The complete activities concerning knowledge system development and deployment 
were under the control of the experts as well. The default consultation system used did 
not require any additional visualisation. The only auxiliary issue was the damage 
atlas, a collection of pictures of damage types. These are used as additional 
information for the questions for damage type determination. The system handled 
display of pictures quite well as an advanced option. As this default system was 
already available, this constitutes no development effort in itself.  

In addition, the experts could perform deployment activities independently. The 
deployment of the system as a set of diskettes requires limited effort. Even so, it 
formed an obstacle, leading to postponement of deployment until sufficient changes to 
the knowledge model warranted it.  

Feedback from the visual review of the paper-based versions of the knowledge model 
initially dominated as a source of new knowledge, and localisation of flaws. After the 
knowledge system was available for use, it turned into the main source of knowledge 
discovery. 

MDDS Online 
The development of the MDDS knowledge system started in earnest after the Internet 
technology for consultation of knowledge systems over web was completed. The 
knowledge engineer initially performed the development of the user interface. This 
was only a limited effort due to the support present in the system for customisation. 
After that, they became the responsibility of the experts.  

The reporting facilities used to create an elaborate diagnostic report required 
considerably more effort, based on the XML-report presented earlier. The current 
report gives an explicit account for the consultation. The report has been prepared 
based on initial example texts from the expert. The knowledge engineer developed a 
subset of the reports, and transferred to the expert responsibility. The experts 
developed the majority of the report after that, with limited support from the 
knowledge engineer. 

Initial comments from the expert criticised the technical nature of the approach, but 
with some support for questions and suggestions on best practices, the experts now 
also have this part under their own control. Modifications to the report are still 
necessary, and the experts perform them independently. 
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Figure 6-13 MDDS Internet Screen 

Deployment on the Internet server means the replacement of a limited number of files 
on the system. Even though the effort for the demonstrator system was already quite 
limited, this lessens the threshold for deployment quite considerably and makes the 
deployment cycle very short. It negates the need to make a sufficient number of 
changes before warranting the re-deployment the system. 

6.3.4  Conclusions 
The MDDS system has shown its worth as a centralized clearinghouse for the 
knowledge on masonry degradation and damage processes. In this sense, it has been 
very successful in representing an evolving consensus model. From the point of view 
of application of the system, the results are harder to formulate as the system is not yet 
introduced into a large-scale user community. As a system used to diagnose actual 
damages, it has been successful already, as the experts put the system to the test on 
many actual problem cases, to test the knowledge model and validate the knowledge 
contained therein. 

This case study shows a knowledge system that has an extensive knowledge base, 
independently maintained and extended by the expert. It further shows two completed 
knowledge systems, one using the default consultation system and another Internet-
based system, which includes a customised HTML-based user interface. The experts 
are now in complete control of the further development and enhancement of the 



6.4 Moisture Damage Diagnostic System 193 

  

knowledge model and the knowledge system supported by a centralised deployment 
scheme. 

Some problems appear during the development of the system, which are the result of 
the representational poverty and the incomplete support for evolutionary approaches. 
Overall, it shows the KBE to be a good tool from the perspective of continuous 
knowledge engineering in its empowerment of the non-specialist to build user-
friendly systems with assistance of a knowledge engineer. 

The advantages of the approach used here are similar to those stated for collective 
memories (Steels 1992, Steels 1986). The development of the system creates a 
common terminology and guarantees continuity, as the knowledge is no longer 
dependent on a single person. It eases and improves communication between experts, 
exchanging knowledge and experiences, and through shared definitions and 
assumptions, speed knowledge transfer.  

People: Independent modelling and participatory 
development 

Cost: -- 

Project: Continuous, process-based Risk: -- 
Product: Knowledge model as scientific theory. Default 

and customised knowledge systems 
Clarity: ++ 

Process: Cyclic with many iterations, coupled with 
extensive verification, validation and testing 

Benefits: + 

Tools: KBE Bottom-line: ++ 

Table 6-4 Evaluation MDDS 
MDDS shows how the experts can develop a knowledge model and how this 
improves the quality of the knowledge, as well as support the further development of 
the knowledge. The MDDS system is an example of a knowledge engineering project, 
that clearly falls under the heading of continuous knowledge engineering. The 
incremental development employed there and the independent modelling by the 
expert, especially its explicit use in knowledge discovery. The only problem is the 
lack of user feedback, which has negated the ability to learn knowledge from the 
insights developed through application of the knowledge system. MDDS is also 
evidence of a project where the knowledge acquisition bottleneck seems to have 
disappeared and one where the cost of deploying the knowledge system anew is 
negligible. 

6.4 Moisture Damage Diagnostic System 
VDES is a diagnostic knowledge system for problems related to moisture in dwellings 
and other types of inhabited buildings. The acronym is an abbreviation of its Dutch 
name �Vocht Diagnose Expert Systeem�. The knowledge engineer, the expert and an 
ambassador user have developed it cooperatively. The knowledge system uses a 
stand-alone consultation system, and an Internet server application.  

6.4.1  Overview 
Moisture damage is one of the most frequent problems surfacing in many old and new 
buildings. The rent tribunals in the Netherlands receive approx. 45.000 notices of 
objection to rent increases per year, and on a third of these, problems with damp and 
moisture are forwarded as reasons why the increase should not be allowed. These 
notices of objection form the proverbial tip of the iceberg. The front offices receive 
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massive amounts of complaints, many of them concerning moisture related problems. 
They resolve most of the complaints. The front office forwards irresolvable cases to 
the back-office and the rent tribunal is involved if they cannot be resolved even there.  

Besides the unpleasant sight and smell, and potential damage to the dwelling, 
moisture related problems have a definite and clear effect on the health of the 
inhabitants. The determination of the cause of the moisture related problem could also 
have serious financial consequences as it contains in it the attribution of responsibility 
for repair. Diagnosis of such problems is not a straightforward affair, and experts in 
the field, including those at TNO, regularly provide evidence in court-cases to give an 
independent professional view on these matters. The number of experts with sufficient 
knowledge to make such diagnoses on principled grounds is small. The domain 
constitutes an area of ongoing scientific discovery. 

The problem addressed by the system is that of diagnosing moisture related damage 
and fungicidal infestations that can arise from this. This knowledge is unavailable to 
those confronted with these problem situations. A knowledge system could help 
resolve many of the problems. The potential user-base of a knowledge system for 
diagnosis of moisture related problems is therefore quite extensive and could even 
extend to the full community of tenants. This may prove to be an even greater user 
community than that of the housing associations.  

The VDES system has gone through some initial user testing. A number of housing 
associations are assessing the system for evaluation. The system is primarily a means 
of communicating the knowledge to the users. In some cases, it is not possible to 
make a diagnosis without complete information on the properties of the construction 
materials and configuration. Like MDDS, most damage is categorized into specific 
damage types and attributable to one or more damage processes. 

The development of VDES is a prime example of continuous development, and 
influenced by the insight metaphor. Both the expert and user have participated in the 
knowledge modelling throughout the project. The project is continuous in nature 
although not in the same sense as MDDS. Providing a knowledge system to 
communicate the knowledge in usable form is the main objective. This is not to say, 
that the knowledge model itself is not important. The quality of the knowledge model 
was a great concern and the expert sees it as an important instrument for the 
improvement of the scientific knowledge of moisture damage diagnosis. Deployment 
of the knowledge system used the default consultation environment and an Internet-
based consultation system. 

As a case study, the example given by VDES provides a good contrast with the other 
systems. It illustrates the ability of experts to model knowledge independently and 
with a high degree of quality. Furthermore, it shows that the development of a 
knowledge model can stand on its own to provide the benefits required.  

6.4.2  Knowledge Modelling 

Task 
The task that lies before the expert in any damage situation is to locate the cause of 
the problem. In the case of moisture problems, there are a number of possible causes, 
from bad ventilation to broken pipes, even leakage from adjacent properties. Any of 
these can surface in different ways, simple by running water, or by the formation of 
cracks or fungal infestations.  
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An expert in diagnosis of moisture problems uses basic observations to determine the 
type of problem. This restricts the possible damage processes that can be causing the 
problem. Then the expert examines each of the possible process hypotheses to 
ascertain whether they could apply, by examining the specifics of the problem 
surroundings and by looking at the construction itself. The damage type uniquely 
identifies a number of damage processes. This specific context precludes the re-use of 
determination methods over different damage types. 

The knowledge that experts possess for the most part derives directly from their 
experience and the theoretical grounding from their education. The analysis of these 
problems requires knowledge of building physics of heat distribution and ventilation 
but also chemistry and biology. It is not surprising that the field is still developing 
new knowledge, with new insights gained and new experiences with changes in 
housing patterns. Some of these advances are relatively recent and have been 
incorporated into the knowledge system even before they were published (Adan 
1994). 

Domain Model 
The distinction in the domain is between damage types and damage processes. The 
domain is therefore quite similar to MDDS. There are four main categories of 
damage, each with possible sub-categories. These are show in the table below: 

Main type Sub-type 
Visible water Running water,  

Condensation,  
Drops from seams and joints,  
Puddle. 

Dry discoloration Dry rings,  
Moulds,  
Salt bleeding,  
Sallow,  
Soiling. 

Moist discoloration Damp spot and mould,  
Damp spot and wallpaper letting go,  
Damp spot and plaster letting go,  
Damp spot and paint losing adhesion. 

Structural Change Wallpaper letting go,  
Paint losing adhesion,  
Plaster letting go,  
Wood rot, 
Floor sagging,  
Floor succumbing,  
Roof succumbing,  
Bulging floor, wall or roof.  

Table 6-5 VDES Damage Type Decomposition 
Where MDDS proceeds to determine which of a set of processes was responsible for 
the damage in an attempt to disqualify the process as a possible candidate, in VDES 
this initial classification is used to very specifically use a determination method, 
singularly to determine the cause. Most of the time, this then continues as a 
determination of that type of damage in a class of situations, e.g. condensation� 
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• On building construction,  
• On building construction behind, beneath of above furniture of behind curtains, 
• On windowsills, doors and windows behind curtains 
• As caused by a specific climate-class 

There is a number of process hypotheses for each of these subtypes, rather than a 
series of processes for all types of damage, as was previously seen in MDDS. The 
system uses the combination of damage type and situation as the starting point for the 
determination of the process or processes that are causing the damage. The set of 
possible processes is different for each combination, although some overlap and reuse 
of decision-tables exists. 

Task Model 
The knowledge model contains a task model that initially comes to a classification of 
the problem situation. The system then investigates a number of hypotheses, possibly 
leading to the evaluation of further sub-hypotheses processed in a similar way. One 
can plainly see that the development process has a great influence on the development 
of the system and that it possesses a strategy for evolution, based on an adding new 
structure tables to the control knowledge.  

Beyond the hypotheses and sub-hypotheses, there are the testing methods. They 
determine whether the current hypothesis is possibly the cause of the problem. In 
some cases, only a partial answer is possible. This also leaves the door open for 
attributing the problem to one of several damage processes.  

The way that damage type and determination of the damage process influence each 
other is reminiscent of the context discussion that was also seen in the GARVAN ES-
1 system, where new additions were made in the context of the last fired rule 
(Compton & Jansen 1990). Although this leads to redundancy in the knowledge 
model, it does allow very fine-tuned responses, quite specific to the damage type 
found and other properties of the problem situation. Some reuse is evident within the 
knowledge model, mainly in those cases where a cause is related to all kinds of 
moisture damage, such as leaks in plumbing and precipitation. 

One of the problems that surfaced during the modelling of the knowledge has to do 
with the instance problem. When discussing a problem in one of the rooms in a 
dwelling the manifestation may be the result of a problem originating in one of the 
surrounding rooms, or even in a neighbouring dwelling. For example, a bedroom may 
develop colour spots on the walls because of a bathroom with a shower in it that does 
not ventilate well. The diagnosis of a single room is not possible, without taking into 
account its surrounding rooms, essence diagnosing them as well. The KBE does 
support representing this recursive style of reasoning well, as the configuration of 
rooms is not fixed.  

Process 
The knowledge model was developed using a cyclic development style, with a team 
of developers consisting of a knowledge engineer, and expert and between three and 
four users. This team cooperated over the total period of time that the system was 
developed. In the first sessions, the main objective was to create a common 
vocabulary as each of the group came from a different environment. The users were 
very much the ones confronted with the daily practice of the problems. Later sessions 
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would discuss changes made to the knowledge by the knowledge engineer and errors 
found by the users and the expert. The expert would often discover a flaw or 
something seemingly out of the ordinary, and locate the position within the 
knowledge base as well. This would lead to suggestions for modifications. 
Discussions of new knowledge or adaptations to be made to existing knowledge 
would not necessarily be restricted to the format of decision-tables. The group saw the 
system�s representation structure in the task model, and structure in the domain 
model. Even though this was only implicit in the knowledge model itself, they made 
explicit use of it. 

With certain proposed adaptations, it sometimes was the case that the knowledge 
engineer would be in disagreement with the expert and user about the way specific 
changes should be modelled. In most instances, this would concern system�s ordering 
of the questions. The inference engine dictates this order based on its needs, whereas 
the expert and user in some cases expected a specific question to surface based on 
their view of the domain. This eventually led to a principled decision to take the 
expert and especially the users opinion as the preferred form. The behaviour of the 
system should make sense to the user and the expert, rather than insist on the 
complete correctness of the knowledge model. The current version of the KBE 
circumvents these problems by allowing the order of questions to be influenced from 
outside the knowledge model, in the preference file for a knowledge model.  

Test cases were used to validate the system, but care was taken not to use and over-
use a fixed suite of cases. Therefore, the group tried out as many different, actual 
cases as possible. One of the users got a name for being able to unearth strange cases 
from practice, such as attics where people created an inside garden, with pond and 
fountain. The cases stretched the extent of the system to cover as many different types 
of situations as possible. 

6.4.3  Knowledge System Development 
VDES was deployed using a standard consultation system, and is currently still being 
evaluated by its users. An initial deployment carried out to give the users an idea of 
the eventual system was a useful source of feedback on the functionality of the 
knowledge system, as well as its visual presentation. At first, a number of workshops 
provided a controlled environment for user training. The workshops also enabled the 
developers to hear their reactions and ideas on possible changes. Several housing 
associations are now testing the system in practical problem situations. 

The system has shown that the quality of the knowledge model itself is quite good, as 
the users did not report any serious errors in any of the diagnoses. Extensive testing 
on actual cases had already taken these out of there. The users did request changes to 
user-interface of the then default consultation environment. These requests 
concentrated on making the system easier to use. For example, the location of the 
moisture problem is easier to provide using a picture of a room rather than through a 
succession of textual questions. 

Some questions required too much expertise on part of the user. One of the reactions 
to this is to integrate an arithmetic unit to calculate a critical heat coefficient value, 
rather than let users make an educated guess. Only some of the people associated with 
housing associations are capable of doing this. By performing a simplified finite 
element analysis using some simple observable measurements as parameters, this 
turns into a reasonably easy question. This is however still a future issue. 
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Plans exist to prepare the system for general use by a far greater user-population and 
beyond making it easier to use, it is essential that the users have access to the latest 
knowledge for diagnosis. That is one of the reasons why an Internet based 
consultation system is being considered. This includes the development of a report 
using the XML report generator, with more attention to background information. 
Currently all the reporting consists of display commands present in the knowledge 
base.  

The further separation between knowledge representation and knowledge system 
presentation gives advantages in maintaining the system and making it easier to work 
using a continuous knowledge engineering approach. A further development possible 
step is a remodelling of the VDES knowledge model in IO. This solves some of the 
problems experienced in the system, in particular the problem with surrounding 
rooms. Without this transformation the current problems facing VDES will not be 
solved, as many revolve around the fundamental instance problem. 

6.4.4  Conclusions 
VDES is still under development today. It is considered one of the systems that would 
be most helpful to the public. Therefore, it may in the future be deployed over the 
Internet as an e-commerce application.  

People: Participation of expert and user on knowledge 
model  

Cost: -- 

Project: Continuous, product based Risk: -- 
Product: Default and customised knowledge system. 

Knowledge model as scientific theory.  
Clarity: + 

Process: Cyclic with many iterations, coupled with 
extensive validation, verification and testing. 

Benefits: ++ 

Tools: KBE Bottom-line: ++ 

Table 6-6 Evaluation VDES 
The knowledge system is an example of strong participation in the knowledge 
modelling by an expert and user. It shows the combined effect of the process on the 
quality of the knowledge of the knowledge system and of the expert. In fact, VDES 
provides further evidence of the necessity of the participation in developing a 
knowledge model. It also shows the effect that an explicit role for a user early on in 
the development can have on the quality of both the knowledge model and the 
knowledge system. Furthermore, it makes clear that in a knowledge system, the user 
and expert may make other choices than a knowledge engineer might make.  

The development of VDES is a mixture of scientific insight-based concerns and 
engineering concerns. The level participation of the expert and user speaks most 
strongly of this. The project however is continuous in nature in concordance with the 
evolving nature of the knowledge contained in the system. While the knowledge 
system may require some presentation improvements, the majority of changes made 
to the system originate in the advanced made in the field of moisture damage. The 
process that was used to develop the system was very cyclic, and a wish to deploy 
more of the versions developed is felt but not easily realisable without a central 
Internet deployment scheme. For the KBE VDES is another such story as it shows a 
system that is used by a true user population and with a few adjustments this user-
population may grow to include any home-owner and tenant in the country.  
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6.5 Fire Regulations Advisory System 
The Fire-safety Regulations Advisory System (FRAS) is another example of a system 
supporting the use of legislation. This knowledge system was one of the first 
knowledge systems developed at TNO. The first phase employed the KBE technology 
to develop a knowledge-model, to be used as a design for the development of a 
standard software system. The second phase saw a re-implementation of that system 
using IO. This latter phase aimed to solve some of the problems experienced in the 
earlier version, mainly to do with reduction of the cost of maintaining the system.  

6.5.1  Overview 
One of the earliest laws in existence, enacted by Hammurabi, King of Babylon, 
already contained an article calling for the death penalty for the builder or designer 
who would deliver an unsafe house that collapsed and killed its occupant. The current 
legislation having to do with the safety of buildings in the Netherlands, which is the 
subject of consideration here is the Building Decree (in Dutch: Bouwbesluit). The 
decree adopted in 1983 aims to collate the existing collection of local council 
regulations into a single piece of national legislation. Introduction of this decree 
aspired to provide simplification and unification of the rules and regulations that 
buildings must meet. It states the rules to uphold when a building is to be safe for the 
people that use and inhabit them.  

Every architect that puts his pen to paper, every builder constructing a new building or 
altering an existing building, and every owner of any building, must abide by the 
Building Decree. It is the law that most people involved in the process of building and 
construction find on their path on a regular basis. A fire in a café on New Year�s Eve 
killed several people and scared many more for life, rendering crystal clear what the 
consequences are of not being up to code.  

The law is sizeable and complex, and is not easy to understand, even though the 
authors paid a lot of attention to this aspect. The wording is difficult because of the 
necessity to state the intent of the legislation in an unmistakable manner. A single 
word in an article can drastically influence the meaning of an article. The articles 
become quite technical in points, filled with graphs, tables and formulates, and littered 
with references to norms and standards.  

This situation was the starting point for contemplating the development of a system 
for support of professionals that require the Building Decree in their daily work. This 
document-information system called BCS (in Dutch: Bouwbesluit Consultatie 
Systeem) support those people employing the Building Decree. In fact, it is the main 
form for the majority of that employ it. The BCS contains regulations from the 
Building Decree, supplemented with information on related technical standards, 
standards of quality, jurisprudence and officially accepted alternative solutions. The 
BCS also integrates some other software components that are relevant to users of the 
law. 

One of these systems is FRAS, a knowledge system for the inspection and design of 
buildings according to the part of the Building Decree the fire regulation (also see 
(Lucardie 1992)). The fire regulations are one of the most used parts of the decree and 
often by people not formally trained in building physics, chemistry, etc., for example 
firemen. 
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The intent with the inclusion of this knowledge system is twofold, as the two different 
phases provide contrasting approaches to knowledge system development. The first 
phase shows an example of a first generation knowledge model as a design for a 
standard software system. This gives some insight into the problems and benefits 
attached to such an approach. The second phase gives a view of the realisation of a 
knowledge model using the IO system. This shows a system development more in 
accordance with the insight-based metaphor.  

6.5.2  Knowledge Modelling 

Task 
The expert employing the building decree has to support someone using the decree 
during the design of a building or to inspect an already existing building. For the 
design-advice and critique may be necessary. For control, a verdict on the 
acceptability of the building under the decree is necessary. In many cases, the user is 
interested in evaluating a single aspect of the legislation, for example, in a setting 
where the design of a building is considered only certain aspects of the law are 
relevant at a certain level of detail in the design. When examining such a �problem 
situation� there may only be a small number of relevant articles. To support locating 
these relevant articles within the legislation and to make it more transparent and 
understandable, the authors gave a great deal of attention to the internal structure of 
the legislation. Furthermore, the formulation of the law was fashioned to incorporate 
the rationale behind the different articles.  

Different subdivisions within the legislation allow one to focus on a specific subject 
or aspect of the legislations. By combining different subdivisions, very specific cross-
sections are possible.  

The first subdivision uses the purpose of the building activity: 

• New buildings 
• Existing buildings 
• Alteration 

The second subdivision is according to function of the building: 

• Dwellings and residential buildings 
• House-trailer and fixed stands 
• Not meant for habitation 

o Office buildings 
o Accommodations and hotels 

• Other constructions 

Orthogonal to this is the structure of the subjects within a chapter, divided into 
sections, articles and paragraphs. Each chapter describes a specific purpose and 
function combination, for example a newly developed office building. Each such a 
chapter divides into at the most four sections, with subject matter arranged in 
paragraphs as described below: 

Section 1: Requirements from the perspective of safety: 

• constructive safety 
• user safety 
• fire safety 
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• social safety  
• equivalency for safety 

Section 2: Regulations from the perspective of health: 

• protection against harmful or irritating influences 
• protection against harmful or irritating substances 
• harmful or irritating pests 
• water supply 
• natural light 
• equivalency for health 

Section 3: Requirements from the perspective of utility: 
• surface area of the trailer stand 
• accessibility 
• spaces and stand areas 
• communal areas and stand areas 
• telecommunications 
• displacement and distortion 
• equivalency for utility 

Section 4: Requirements from the perspective of energy conservation: 

• reduction of heat loss 
• equivalency for energy conservation  

The above divisions on purpose, function and by the structure of the legislation itself 
means that a choice on one of each of these three dimensions can give access to an 
specific situation dealt with by the law. For example, with the purpose of newly 
constructing a building, with an office function, and concerning the aspect of fire 
safety yields article 6.15.1. 

Providing the rationale behind the article as additional information makes the 
legislation even more transparent. In support of this, within the document a set of 
basic principles expands into qualitative functional requirements, implemented by 
quantitative technical requirements. The legislation formulates the technical 
requirements in such a way that they always give information on the part or 
subdivision they apply to, the rationale behind the requirement, what the threshold 
value of the required performance is and how to measure this performance. 

A high level principle is that people should reasonably be able to leave the building 
before they are overcome by either smoke or fire, when such an event takes place. 
Functionally, this means that people on for example an office building should be able 
to reach a safe place within 30 seconds. As a technical requirement on office 
buildings, a maximum distance from any point in a location to an exit of a fire-
compartment is applied. The design of a building must incorporate this to comply, and 
an existing building is in violation of the building code if it is not the case. Beyond 
making the different articles more transparent, this supports innovation, as different 
technical solutions can be functionally equivalent. If someone can provide an 
alternative technical solution that can take people out of that location to a safe place 
within 30 seconds, it is allowable under the building decree. Of course, only after 
extensive testing has proven the effectiveness of that alternative. 
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An outer dividing construction of an accessible area, a toilet space of 
bathroom (1), to limit heat-loss by transference or conductivity (2), 
determined in accordance with NEN 1068 (3), a heat resistance of at 
least 2.5m2*K/W (4) 

1. Part: the context, or condition of the requirements 

2. Rationale: the functional requirement for the performance requirement 

3. How: the method by which the performance target must be determined 

4. Threshold: the performance target 

Figure 6-14 Anatomy of a Decree Article 
The example above shows a schema as present in the anatomy of the corresponding 
article in the Building Decree. Typically, the first paragraph of an article states the 
general case, as in the example above. The later paragraphs contain exceptions, and 
the final paragraph contains information about possibilities for equality. 

The context is determined by the first opening of the article and the location of the 
article in a chapter and section, as was discussed above. The second part of the article 
is rationale behind the article. It provides a background reason for the incorporation of 
the requirement. The next element is the method used for verification of that 
requirement. If the determination method is simple, such as the distance between two 
exits, the how is not specified, for more complex determination methods a link is 
made to a separate standardised norm (NEN-norm), that describes in detail how the 
property must be measured. Finally, the threshold value gives the point at which the 
building satisfies the article. 

The principles and their elaboration for different parts of the construction are 
dependent on the intended use of the building or part of the building. This is 
especially valid for the performance requirements; at the level of functional 
requirements, the intent is general. For example, to be able to safely exit a building is 
a valid functional requirement for any building. The level of the demands is amongst 
other things dependent on the number of people, their physical state, their level of 
attentiveness and their familiarity with the environment. 

Different types of buildings have different characteristics. An office is populated and 
constructed in a different way than a typical dwelling. People inhabiting know the 
way around their house and they are typically small. The legislation reflects this by 
realising functional demands through differing technical requirements. Another 
difference exists between buildings predating the introduction of the legislation and 
those building considered new.  

Fire Safety 
Fourteen chapters in the legislation contain in total some 420 articles of law. About a 
third of these are concerned with fire safety. As the law provides for differences in the 
evaluation of existing and new buildings, and further sub-divides into different types 
of building, with different demands on each, there can be a distinction between 
general and specific articles of law. For example, because the inhabitants of 
accommodation are less known to the environment, they require shorter exit routes 
and more in terms of fixed exit pathways. As can be understood from the previous, the 
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fire-safety requirements are found throughout the legislation and form a cross-section 
of the different chapters. 

With the specific subject of fire-safety, the following aspects play a role in a 
functional sense: 

1. Limit the possibility of the start and development of fire 
2. Limit the possibility for the expansion of fire 
3. Limit the start and expansion of smoke 
4. Presence and layout of escape routes 
5. Prevention and limitation of accidents in fire-situations 
6. Enabling fire fighting 

These functional demands unfold into performance requirements for the properties of 
parts of the constructions. The materials used for some parts of the construction 
should have proven properties in flame resistance, flame retardation, and smoke 
production. The construction should be fire-resistant to collapse, have resistance to 
fire penetration and transfer, and have resistance to smoke transfer. 

These high-level principles and functional demands also conform to aspects for either 
design or inspection. An example of such an aspect is the compartmentalisation to 
stop the spreading of smoke in a building. About fifteen different articles of law are 
concerned with smoke compartmentalisation. To say that a building fulfils the 
requirements of these articles is to say it complies with the decree for this specific 
aspect. When a building complies with all aspects, it complies with all the fire 
regulations in the building decree.  

Knowledge Modelling � FRAS-KBE 
The KBE supported the first phase of the FRAS development. The knowledge model 
in this phase constituted an operational design specification for a standard software 
system. This is very much like the approach proposed in CommonKADS.  

Domain Model 
The KBE split the domain model of FRAS into three separate knowledge models. The 
different types of sub-divisions of the legislation were flattened into a more generic 
theme tree. The division into different knowledge bases intended to make the 
knowledge models more manageable in development and enhancement. 

The order in which they were developed was office building, followed by hotels and 
lodgings and finally dwellings and residential accommodations. Offices, hotels, and 
lodgings have a great similarity between them, whereas dwellings overall do not have 
many demands placed upon them by their limited scale and the familiarity of the 
inhabitants with the dwelling. 

The first subdivision in the theme-tree is by the task, either control of an existing 
building or support with the design of a new building. The following divisions are by 
subject, as known from the aspects of the fire regulations. Design divides these 
aspects among the relevant design phases. For the Control theme there is no such sub-
division. When examining a building for control purposes the full extent of the law, 
i.e. all the relevant articles are employed. The theme tree therefore captures some 
important logic about which parts of the legislation to employ, when faced with a 
particular task. This is made explicit in the theme-tree 
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 Control   
  • Fire Compartmentalisation  
  • Smoke Compartmentalisation  
  • �  
 • Design   
  • Structural Design  
  o Smoke Compartmentalisation  
  o �  
  • Provisional Design  
  • Definitive Design  
    

Figure 6-15 Excerpt from Office Building Theme Tree 
This tree organises all the possible ways to employ the legislations, for purpose, 
function, and aspect. The theme-tree leaves commonly contain the knowledge to 
perform the task of evaluation a very specific subject within the legislation. Some of 
the intermediary themes in the tree may have some knowledge that helps determine 
the exact subset of legislation, to accommodate certain specific arrangements in the 
law. 

The theme tree allows the knowledge engineer and expert to have a large number of 
small knowledge bases, rather than one integrated one. This supports the incremental 
development and helps in the localisation of the relevant part of the knowledge model. 
This can be very important when making changes and enhancements. 

Task Model 
1. Select house type 

2. Select design or control mode 

3. Select theme until leaf is selected 

4. Evaluate rules from theme 

In effect, this means that the theme tree organises a large number of very small 
knowledge models, rather than constitute a single large model. This simple task model 
suffices because the remainder of the evaluation is implicit and depends on the 
specific of modelling of the articles. The building must comply with each of these 
rules to pass the test for this theme. 

All three KBE knowledge models contain the same kind of theme-tree. Although 
similarities exist between the hierarchies they define, they are not in agreement. The 
use of terminology is inconsistent in places and sub-divisions are organised 
differently. The division in three separate models makes it hard to appreciate these 
inconsistencies, but even in a single integrated model, it would not have been much 
clearer. Duplication exists within each knowledge base because each article in 
included once for design and once for control. A further redundancy is present 
because of the overlap between the three knowledge models. These factors multiply 
the effort required for a single change to an article. Such a change requires updating 
six representations of that article in the different knowledge models. This combines to 
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make changing the knowledge model hard, and difficult to verify. The side effects of 
a change to a knowledge model become especially hard to appreciate. 

Process 
Knowledge acquisition proceeded in a very traditional fashion. The knowledge 
engineer organised many different sessions with the experts, and developed a 
prototype model. The first product of this activity was the idea of the theme-tree 
structure. This tree grew more detailed as the knowledge model evolved. After the 
first part of the theme tree fleshed out, the knowledge engineer started with the 
development of the different small sized knowledge models on the articles of law. A 
typical module in the knowledge base as a leaf of the theme tree treats one article, but 
some treat between two and five. 

When the first version of the office building system was finished, it was frozen and 
used to develop the software. The knowledge model only served as the specification 
of the software. After this, users and experts alike formulated the critique based on the 
behaviour of the system. The developers made modifications in the software to solve 
the problems, which subsequently had to be incorporated into the knowledge model 
was changed to keep the specification synchronised. Of course, in latter stages, the 
feedback to the knowledge model became limited. Eventually they became too much 
out of sync to be able to say that one was the design of the other.  

Knowledge Modelling � FRAS-IO 
In the second phase, a single model was developed to contain the complete model, 
rather than divide it into a number of models. The intent was to create a system with 
the same type of functionality as the previous but with solutions to the maintenance 
problems and supportive of approaches where the expert make modifications to the 
model independently.  

This was necessary, not only because the original system was showing high cost of 
maintenance. The government proposed to introduce a completely new edition of the 
legislation in 2001. This version contains not three building-types, but twelve or more. 
Furthermore, the legislation aimed to incorporate a kind of inheritance hierarchy for 
these building types, so that there would be as little duplication in the legislation as 
possible. The developers easily appreciated what this entailed within the approach as 
described in the above section. Maintenance would become impossible in such a 
setting. The secondary goal of empowering an expert to be involved in the modelling 
or model independently was also not one of the options within a design-
implementation track.  

Thus, the new model in IO would have to demonstrate maintainability and 
participation of the expert. It would also have to make clear that accommodation of 
several different building types would not entail a problem. To limit initial 
development of the knowledge model to a realistic subsection of the legislation, it was 
determined that the initial modelling would concentrate on smoke 
compartmentalisation. This part of the legislation constituted a major part of the 
knowledge in the phase I models and contained some more interesting modelling 
problems.  

Domain Model 
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Figure 6-16 FRAS Abstract Model 
The model in this phase was more explicit about the structures found in the domain, 
leading to a high-level of the task structure, seen in the abstract model above. It 
contains the subject tree, by an aggregation-relationship from the Subject class to 
itself. Furthermore, it shows a Subject organising the different Articles. It 
further elucidates the fact that an Article makes use of the Building under 
consideration to make judgement. The first activity involved general discussions of 
the domain, the regulations and their organisation. This led to an abstract model of the 
domain, shown in the above figure. The different descendant subjects are organised 
into a tree of sub-category subjects, which in turn organise the paragraphs. A 
Subject is satisfied if all the paragraphs it organises are satisfied, where a specific 
member has access to the knowledge to determine whether a Building is satisfied 
according to it. An Article can perform this determination by looking at the type of 
building and its different properties. This abstract model makes it possible to test a 
single Article separately, by querying its satisfied attribute. Based on this 
abstract model, the system�s knowledge model therefore divides into three sub-
models: the building model, the regulation model and the subject model. This model 
is not the ultimate model for a legal domain. The ability of such a framework to 
assimilate and bring together knowledge as well as provide a guideline to what must 
knowledge must be acquired is essential (Visser, Bench-Capon & van den Herik 
1997). 

Task Model 

context: Subject

satisfied := (relevantArticles ->
ForAll(article | article.satisfied)) and
((chosenSubject = nil) or
chosenSubject.satified))

Figure 6-17 Main Algorithm for Task Model

By calling the satisfied property of the root subject, the selection of 
chosenSubject starts and following that determination of the satisfaction of 
contained subjects, or relevant articles of law. By virtue of this procedural 
representation this is more direct and informative than by forcing it in a decision table. 

This is one of the major differences with the modelling in the KBE. First, its simple 
representation precisely does not allow reasoning over multiple instances such as the 
example illustrates here. The natural expression for the expert does however revolve 
around this kind of manipulation of concept. Secondly, the categorisation principle 
enshrined in the decision table would be going against the grain of the task that has to 
be performed. 

Building
Paragraph

satisfied
applies toSubject

satisfied
0..*0..*

organises

0..*0..*
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The task model shown therefore contains the earmarks of the vivid modelling it aims 
to support. These models remain easy to understand by experts and can easily be 
explained to external parties. This  further  supports the verification and validation of 
the system as well as provide a greater sense of trust in the operation of the system 
with users and clients. 

Figure 6-18 Subject Model  
The evaluation of specific rules is impractical for the standard user, so a hierarchy of 
subjects is used. This organises the knowledge of the expert on categorising the 
sections according to subjects. These include fire compartmentalisation and smoke 
compartmentalisation. 

Figure 6-19 Building Model 
The building model contains three building types that are not abstract: office building, 
lodgings and dwellings. The evaluation of a subject uses properties of the specific 
type of building under consideration. The building model can easily be adapted to 
accommodate new building types. This is necessary because the second phase of the 
Building Decree will introduce many more types of building. 

Figure 6-20 Regulation Model 
The regulation model mirrors the organisation of the paragraphs, articles, sections and 
chapters. Each of the relevant articles and paragraphs is contained in the regulation 
model, with the possible to query its contents separately. This allows testing and 
verification of individual parts, which aids the development process. It is possible to 

Subject
satisfied

Smoke Compartimentalisation Fire Compartimentalisation ...

Building

NonInhabited Inhabited

DwellingHotelsLodgings Offices

Chapter Section Article Paragraph
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use this to determine whether a user�s building satisfied a specific subsection of the 
legislation, in a manner analogously to the current use of the subject tree. 

 
Figure 6-21 Modelling of FRAS in IO 

In the above screen, the modelling environment of IO contains the FRAS knowledge 
base. It is displaying the decision-table used in the determination of the satisfied 
property of article 6.15.1. 

 
Figure 6-22 IO Decision-table Detailing Member 6.15.2 

The figure above details the article 6.15.2. It determines that if the highest elevated 
living area of an office building is higher than 50 m above ground level, and the living 
area has an entry lock, the length of the lock must be less than 2 m. or the lock has to 
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also be a smoke compartment. Otherwise, it does not comply. The conclusion attribute 
contains the different explanations of why the building does or does not comply, 
through the last action in the decision table. 

Process 
The knowledge modelling commenced with a small number of discussions between 
the knowledge engineer and the expert. This led to the abstract model described 
earlier. The expert then proceeded to develop the three hierarchical models. Partly 
because the expert was the one that could better appreciate the different aspects of 
these models but mainly to accustom the expert to the object oriented modelling 
formalism. The knowledge engineer incorporated the proposals for the building and 
regulation model into the model, but at first added no properties or decision tables.  

The skeleton of the system in place, the knowledge engineer and the expert started 
with modelling a single article, namely article 6.15.1. The representation of this article 
as an individual class enabled the validation of its representation through testing. This 
specific article is quite simple as it states that the fire compartments in a building must 
be divided into smoke compartments. There is no actual inference here just a question 
for the user whether this is indeed the case. This simple article proved an excellent 
starting point to familiarise the expert with the decision table format, and the abilities 
of the IO system. 

Using this article the knowledge engineer constructed a prototype implementation 
with only one root subject and one article of law. This was the basis of the eventual 
system, as further modelling would entail only enhancement of this basic structure. 
The expert subsequently verified and validated this first knowledge model. In essence, 
this system was the barest skeletal form of the system that was operational. 

The design provides different extension points that prepare for further elaboration. 
Adding more subjects to the theme tree, adding articles to the leaves of the tree and 
introducing new types of building to enhance this simple system is quite simple. The 
knowledge engineer and expert filled the subject tree in part, adding design and 
control subjects the collection of main subjects: smoke compartmentalisation subject 
and its sibling themes. Smoke compartmentalisation was the only one that was 
implemented with relationships to actual articles.  

Any Building 
art. 6.15 

Office 
art. 7.5.3 

Accommodations 
art. 7.6.7 

Dwellings 

6.15.1 = +7.6.7.1 = 
6.15.2 = +7.6.7.2 = 
6.15.3a +7.5.3a =7.6.7.3 (overriding) = 
6.15.3b +7.5.3b = = 
6.15.3c = = = 
6.15.4 = = = 
6.15.5 = = = 

Figure 6-23 Relevant Articles Smoke Compartmentalisation 
The different relevant articles showed unevenness in overriding behaviour in the 
legislation. Some articles for a specific building type define additional requirements 
while others replace existing general articles. The article 7.6.7.3 overrides the more 
general 6.15.3a article. The knowledge engineer and expert discovered this through 
communication with the other experts and the authors of the legislation, as this was 



210 Chapter 6 Case Studies 

 

not obvious from the text. This and other insights into the legislation text were 
forwarded to the legislative body.  

During the final stages of the project, as a test, the expert modelled some of the 
knowledge independently. Little instruction was required because the expert was 
present during almost all modelling activity. This made it easy to perform certain 
tasks, change a prompt for ask-user questions and adding new articles to the 
knowledge model.  

This prepared the expert for a demonstration of the new knowledge model for the 
client. During a final evaluation of the knowledge system, the expert performed 
several small and medium sized tasks on the knowledge model as an evaluation for 
the client. The expert made clear that �using this approach the experts could perform 
the majority of maintenance activity.� He attributed this to the ease with which he 
could find the location of the position where changes needed to be made and the fact 
that the form of representation in was not difficult to master �just a couple of days of 
training are sufficient to work with the current version of IO� (Janse 2000). The 
expert further reported the knowledge model to be more compact, concise, and 
conveniently arranged.  

6.5.3  Knowledge System Development 
As the development of this system has seen a two very different phases, this section 
discusses each separately.  

Knowledge System Development � Fras-KBE 
The first phase initially used the default stand-alone system for the consultation of the 
system, with limited abilities for the customisation of the user-interface and did not 
possess any possibilities for changing the order of the questions from the presentation. 
It interacted with the users purely by a question-answer interface, providing limited 
reporting facilities, based on the display commands in the knowledge base. The more 
advanced features of the KBE were not available at that time. 

As the client required a dedicated system that integrated with the remainder of the 
BCS, this was unacceptable. The desired system had to present the questions and 
responses in a more visually attractive way and allow customisation of the complete 
communication with the user, including the order. Therefore, a decision to used the 
KBE to develop and test the knowledge model, but to use the knowledge model as an 
operational specification for software development.  

The FRAS system was the result of that development. It is based on a hypertext-
document architecture. The hypertext documents are in a proprietary format based on 
RTF and meta-tag notations, with a custom-built system that could navigate 
hyperlinks. This involved conditional expressions and open text input. This enabled 
complex paths through the hypertext tree (equated by the designers as a form of 
reasoning). This was before XML was introduced.  

With the decision table form of the knowledge kept as the original and maintained 
separately as a design model, all changes to the design were reflected in modifications 
to the RTF files. This was not an automated process, partly because of these 
visualisation and implementation issues. Using this approach, the developers were 
able to create a system integrated into the BCS document information system.  
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Figure 6-24 FRAS-KBE User Interface 

FRAS enables inspection of and design support for office buildings, accommodations 
and dwellings:  

• regulations for the confinement of fire 
• regulations for the facilities to flee a building 
• regulations for facilities and adaptations to allow fire fighting and rescue  
• regulations to determine proper procedures and measures to confine hazardous 

materials from a viewpoint of fire or other dangerous situations  

Additionally the explanations given in terms defined in the legislation allows use of 
both text and imagery. The material originates in introductory course materials, for 
training in the use of the Building Decree. It was thought that this would help explain 
some difficult terms, as an example, the initially considered easy to perform 
determination of the distance between two points is in actuality dependent on more 
involved definitions.  

For example, the entrance of a smoke compartment and a place in a location in a 
minor living compartment is calculated without regard to non-permanent elements, 
from the farthest point in the space along the shortest route, staying 30 cm from any 
wall. Figure 6-25 shows the explanation of this in the form it is contained in the 
system (in Dutch). In this form, FRAS was deployed to all of its users, about a 
hundred people in total. 
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Figure 6-25 Explanation Example 

The amount of effort involved in maintenance is significant. The main cause is the 
many locations where changes need to be made for a single change in the law. The 
same applies to a certain extent to errors found in the design of the decision-tables, or 
flaws present in the translated result in this approach. To make a change to one article, 
twelve places in the knowledge model and implementation have to be located, 
assessed and perhaps changed. For each of these changes verification and testing of 
possible side effects is necessary, which can require further changes.  

Awareness of the maintenance cost of the system grew over time, even though it was 
not expected to be as bad as it was. The volume of modification was not 
overwhelming, but it required too much work. The consequences for any large-scale 
modifications were such that any approach would most likely be a complete re-
implementation effort, or a maintenance effort with more risk and uncertainty 
associated with it that would turn out to be as expensive as re-implementation. 

Knowledge System Development � FRAS-IO 
The second phase knows little in terms of knowledge system development, as it 
employed the default consultation environment incorporated in IO. As this is in fact 
the iKnow consultation environment, in theory this default application could already 
serve both standalone and Internet use of the FRAS system. The customisation 
facilities were also available but because the focus was mainly on the maintainability 
in this project, they were not employed in this early phase. The next phase of the 
project will pursue the finalisation of the knowledge model, and the development of a 
customised user-interface.  

6.5.4  Conclusions 
FRAS has shown an application with an extensive development history. The system 
treats a relatively simple subject in size and complexity, but to make it a useful 
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operationalisation the system needs to be customisable in its presentation to the user 
and maintainable in its knowledge model.  

FRAS-KBE  
In its initial phases, the approach has all the earmarks of the current standard in 
knowledge system development, and is a clear example of the engineering metaphor�s 
influence, where the knowledge model is a design specification. It shows direct 
evidence of the problems that can arise by this approach, and the barriers that it raises 
for participation of the experts on the content of the model. The development cycles to 
propagate changes become especially long, and very intensive (i.e. expensive). The 
system furthermore shows the importance of customising the user-interfaces for a 
knowledge system and auxiliary issues. This was solved in this phase of the 
development by realising it as a standard software system, allowing all kinds of 
adaptation to the users needs. In addition, it shows a KBE approach reaching the 
limits of its possibilities, detailing some of the maintenance problems experienced. 

People: Indirect knowledge acquisition Cost: - 
Project: Finite, product-based Risk: = 
Product: Knowledge model as specification for a 

software system 
Clarity: = 

Process: Incremental design, waterfall implementation 
followed by maintenance 

Benefits: = 

Tools: KBE Bottom-line: = 

Table 6-7 Evaluation FRAS-KBE 
Knowledge modelling in this phase was quite indirect. The participation of the expert 
was mostly circumstantial and restricted to the first phases of development. The 
project commenced as a finite project, with a clear-cut hand-off point after finishing 
the knowledge model. This failed and created a situation that can only be described as 
chaotic and unstructured development at high cost and risk. The knowledge system 
functioned as a product, with critique based on the behaviour of the product. This was 
the case even though changes in the knowledge required repair or changes in the 
knowledge model. This phase of FRAS initially followed a waterfall model, but 
quickly and unexpectedly turned into an incremental model. The developers did not 
intend such an extensive maintenance activity, which led to planning and control 
problems in the project. 

FRAS-IO 
The second phase shows an application of the Intelligent Objects system. The 
description had made clear the added complexity of employing Intelligent Objects. 
There is not merely a cost attached to this complexity, but the additional support for 
making structures and procedures explicit supports the discovery of new insights, 
eases the evolutionary development and facilitates localisation of parts of the that are 
affected by a change. It further demonstrates the conciseness introduced by the object-
orientation and its inheritance. 

FRAS-IO is a small-scale realisation of the same knowledge found in FRAS-KBE. 
This case study has fashioned a structured, explicit representation of the knowledge. It 
shows that this supports the expert participation because the model is easier to 
understand and it allows the expert to locate elements within the model more easily. 
Furthermore, the object-oriented representation�s encapsulation and abstraction allow 
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more concise modelling, reducing the redundancy found in many KBE models. The 
second modelling phase also shows that IO supports an expert to model parts of the 
knowledge model independently. 

People: Participatory and partially independent modelling Cost: - 
Project: Continuous, product-based Risk: - 
Product: Default knowledge system Clarity: + 
Process: Cyclic with limited number of iterations Benefits: + 
Tools: IO Bottom-line: + 

Table 6-8 Evaluation FRAS-IO 
The second phase is then also an example of a participatory modelling. It also shows 
in a limited sense the ability to perform independent modelling by an expert. The 
project is from the onset meant to be infinite in nature as is evidenced by the 
approaches focus to make the expert responsible for the development of the 
knowledge system. The products are in the first place is the knowledge model and in 
second place the knowledge system. The process of development is from the very 
beginning cyclic with complete releases at every point in the development. This has 
also influenced the design within the knowledge model, to exploit this style of 
development to the full. 

6.6 Mebis 
The Mebis system supports the production of concrete. It calculates concrete mixtures 
based on user requirements and available raw materials. This encompassing system 
integrates a dedicated knowledge system as a component. The KBE provided the first 
basis for the realisation of this component; IO supported the development of the 
second version. This case study shows either tool�s capabilities to support such an 
approach.  

6.6.1  Overview 
Concrete is a versatile building material, used in all manner of constructions since its 
first use by the Egyptians in 3000 B.C. Its ability to be shaped into any conceivable 
form, in addition to its potential for immense strength, and its resistance to fire has 
made it one of the most common building materials in the world. It consists of a very 
hard mixture of cement with sand, gravel or stone parts and water. Different additives 
can be included in the mixture to give it attributes that are even more exotic. This 
makes it possible to deliver an almost endless variety of concrete products. 

Concrete is produced to order a set of requirements, for its use in a specific situation. 
Potentially many different recipes produce concrete that will satisfy a client�s 
requirements. The expertise in producing concrete lies mainly in knowing which 
recipes to use. The ingredients never are the same, for example the distribution of the 
size of granulates; therefore, the recipe needs to be adapted for that. The analysis of a 
concrete-recipe is a recurring activity, either to validate it against the requirements of 
a client, or to find the most optimal recipe to comply with such requirements.  

While the first task is what the experts are well equipped for, the later repetitive task 
is hard to do by humans in a consistent and complete way. The proposed solution to 
solve this problem was a system that could analyse many different recipes and 
compare them. Because the composition and analysis of these recipes is a knowledge 
intensive task, this part of the system had to be knowledge system. The goal was to 
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find recipes that can satisfy the customer�s requirements and allow them to be 
optimised, for instance on the production cost. The complete system would perform 
many more tasks than this, but a knowledge system would be an ideal choice for the 
difficult and potentially mutable knowledge that was relevant in this part of the 
system.  

6.6.2  Knowledge Modelling 
The development of the system and the modelling of the knowledge was first 
performed using the KBE, followed by a re-implementation using IO. This section 
discusses each of these in order, after a general description of the domain. 

Task 
The expert normally has to create a recipe that will be able to fulfil functional criteria. 
In some cases, the client will only give some information about its intended usage the 
expert will have to map onto functional criteria. These criteria divide into standard 
and additional sets as shown below: 

Standard requirements: Additional requirements: 
• environmental class: 1-5d 
• strength class: B5-B65 
• consistency area: 1-4 
• nature of the construction: 

unreinforced, reinforced, 
prestressed 

• transport: kubel, pump, 
pumpmixer 

• work is in clear view 
• use of granular material? 
• maximum granulate-diameter 
• volume mass concrete 
• concrete colour  
• cement type 
• strength development 
• hydrocrete 
• closurefree concrete 
• additive fibres 
• addition of MHK 

Table 6-9 Standard and Additional Requirements for Concrete 
The expert also has knowledge of what usage situations will require what kind of 
concrete. Some clients also ask the supplier to determine the requirements from a 
description of the site and purpose of the concrete. The starting point for the actual 
recipe is the description in terms of standard and additional requirements. These 
requirements cover about 80% of all concrete mixtures, the remainder represent 
specialist recipes for which the support of an expert will be required. In time, the 
system may become equipped to deal with such recipes.  

Category Description 
Cements Binding agents 
Granular material Sand and gravel of different sizes and distributions 
Water Water, warm water or slurry water 
Auxiliary material Materials aimed at making the concrete more manageable 
Additives  Inert and binding agents 

Table 6-10 Concrete Component Material Categories 
Concrete contains several component materials, divided into six main categories. 
Every category contains several individual raw materials. Combining one or more 
individual materials from one such category creates a compound material. For 
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example, one type of cement CEM I 52,5R and another CEM III/B 42,5 LH LS in an 
80-20 ratio yields a specific compound cement. Each point of production has a 
�material package�, which states which types of materials are available in stock in the 
different categories. From this material package, it is possible to generate all possible 
�compound packages�.  

A recipe for concrete consists of a certain amount of compound from each of the five 
categories. The specific types of material in the compound within each category and 
the relative proportion between compounds determine the properties of the resultant 
concrete. An expert has the ability to analyse a recipe, containing compounds as 
ingredients and know to what degree the resulting concrete will conform to the 
requirements. This expertise is developed over time and experience. The knowledge 
has significant competitive value for the expert�s company, which is why no specific 
details on the actual formulas will be given.  

The expert can also develop a single recipe based on a fixed procedure from a given 
compound package. For each of the compound materials, it is possible to calculate its 
relative proportion in order for the mixture to conform to the user�s requirements. 
This procedure contains in total 33 formulas for calculating different aspects of the 
preliminary recipe. This delivers both specific values, for certain compounds, as well 
as describe constraints on the compounds such as the one above, which describes the 
acceptable granular distribution. In the end, the procedure generates a specific recipe 
that satisfies the requirements or yields the answer that no such recipe exists for that 
compound package. 

However, an expert cannot easily perform a complete analysis of the possible recipes, 
from all possible compound packages, to choose one with maximum utility. To 
circumvent this, the experts employ a library of recipes. The expert chooses recipes 
that satisfy the criteria and fit available ingredients. The expert can analyse a subset of 
these recipes as to their ability to fulfil the requirements, and choose one based on 
cost/profit criteria.  

This approach has a number of inefficiencies. This approach is very sensitive to 
quality of the library and the ability of the expert to find the right ones. The expert is 
not equipped to analyse the recipes fully, and optimise the possible recipes. 
Furthermore, when second order utility issues become targets for increasing 
efficiency, such as logistics and load distribution, the task is impossible for a single 
expert to perform. 

Knowledge Modelling � Mebis-KBE 

Domain Model 
The formulas mentioned earlier are the basis for the domain model for the knowledge 
system component. The domain model contains all the relevant variables mentioned 
in the formulas.  

Unlike most other models discussed until now there is no discernable implicit 
structure in the domain-model. The derivation from the formulas, as noted by the 
expert, already contains a model consisting of some general variables. There is no 
reason to form this model into more aggregate models. Rather it is advantageous to 
remain close to the expert model which consists mainly of these formulas. 
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Figure 6-26 Granular Distribution Graph 
The area for allowable granular distribution results from a number of base lines: an 
ideal line, a lower boundary and higher boundary. The ideal, upper and lower granular 
distribution graphs are dependent on the maximum granule diameter, the processing 
method and the desired consistence of the concrete. Any combination of materials that 
is not within this area is not suitable as a possible recipe. This graph is used as a filter 
to remove unsuitable recipes. 

Task Model 
The Mebis task-model allows the development of a recipe that will satisfy the 
requirements given by the user.  

• Determine granular distribution 

• Determine provisional water cement ratio 

• Calculate other compounds 

• Determine actual water cement ratio 

• Apply business rules 

Figure 6-27 Task Model Mebis 
The first step is the determination of the granular distribution. The determination of 
the granular distribution is done separate from the recipe determination procedure. 
This particular part of the task model creates the graph of the granular distribution as a 
number of lines that form the acceptable area for the granular distribution. The task 
model consists of a linear structure table that performs each of the required 
calculations in order.  

The next step is to create an estimate of the ratio between cement and water. It then 
continues to calculate values for the other compounds, which require some initial 
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insight into the water-cement factor. With these values known the actual amount of 
cement and water are determined. The model then has all the characteristics for the 
recipe. Finally, it applies a filter to examine whether the recipe does not violate some 
common-sense rules, legislation or company specific business logic.  

The application uses this to generate a covering list of possible compounds. The 
encompassing application initialises the model with the correct values through the 
KBC�s API and application extracts the results in the same way. 

With these compounds, it then generates all possible recipes from the possible 
compound combinations, with some impossible combinations filtered out by the first 
model. All of these are fed through the second model, yielding the compound 
proportions for the recipe. From this and information on the individual materials a 
number of properties can be calculated, including the cost of the recipe. The 
application performs these latter calculations. 

Process 
The knowledge modelling process was the closest to a standard knowledge engineer-
expert interaction, at some distance from the actual knowledge model. The textual 
report consistently modelled the formulas and tables as a complete set (Borsje et al. 
1999). The knowledge engineer translated these into a knowledge model, and noted 
some omissions  and flaws in the knowledge purely on missing values and internal 
inconsistencies, as well as some common sense issues. The knowledge engineer could 
not detect domain specific flaws, because he did not have matching skills and 
experience to the expert. The errors were first repaired in the document and 
subsequently incorporated into the knowledge model. Some of the knowledge ended 
up into some of the code of the Mebis system directly, because the KBE model was 
unable to perform the full task.  

Knowledge Modelling � Mebis-IO 
The knowledge model in the second phase is in part a re-implementation of the 
knowledge in an IO format. In addition, the knowledge model incorporates knowledge 
about production facilities and their organisation to complete the model. This 
knowledge used to be in the software rather than the knowledge system component. 
The re-implementation of the model saw far more influence from the knowledge 
engineer. He applied appreciation of design rules and experience with object-oriented 
models to the, initially limited, abstract model of production facilities and their 
organisation. The expert and the project organisation perceived the resulting model 
this as a significant improvement. This system then enhances the capabilities of the 
first knowledge model by allowing optimisation over production points at different 
plants located all over the country. 

Domain Model 
The domain model for Mebis as implemented in IO is far more detailed and more 
inclusive than the initial version developed in the KBE. The object oriented features 
of IO allowed the capture of the knowledge of the expert quite directly. What was 
noticed is that the model developed together with the knowledge engineer is more 
systematic in certain cases than the initial views of the expert�s themselves. This is 
probably caused by the different background knowledge of the expert and knowledge 
engineer. It would be easy to say that the knowledge engineer�s version is better, but 
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the distance to the understanding by the expert is greater. This is therefore not by 
definition a good step to make. 

Figure 6-28 Production Model 
This domain model contains the facilities from the first model for calculation of a 
single compound package and the resultant recipe. The domain model includes the 
information on the production points and geographical organisation of the production 
facilities. This enables some logic to operate on finding the best solution considering 
different production points.  

Figure 6-29 Material Model 
The different materials are now also explicit within the model. They are used to 
determine all possible combinations of materials into compounds packages. The 
constraints in the model denote the restrictions on their composition. 

Main Office

District

1..*1..*

Branch

1..*1..*

Factory

1..*1..*

Production Unit

1..*1..*

Cement WaterGranular Material Auxiliary MaterialAdditive

Binding Additive Inert Additive

Material

Compound Package

Compound {same type of material}

{one from each compound materials}
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Task Model 

context: MebisKnowledgeBase;

forall(productionPoint | productionPointSet) do

begin

compoundPackageSet :=
productionPoint.
generateProductionPackageSet;

recipeSet := expert.calculateRecipes(
compoundPackageSet );

resultSet->add( expert.selectBestRecipe(
recipeSet ) );

end;

bestRecipe := expert->selectBestRecipe(
resultSet );

Figure 6-30 Task Model Mebis in IO
The task model is similar to that of the first phase. Contained in a language method 
and described in the IO language, the operation of the system is now explicit and 
easier to verify. In a KBE model this logic would be distributed over several decision 
tables, or impossible to represent. In this procedural form it is open to discussion, 
verification and validation by the knowledge engineer, and even more importantly, by 
the expert. 

This task model now also deals with the resource constraints at different locations. 
The knowledge in the knowledge model is now more complete and does not require 
the source-code of the application as an escape opportunity. The analysis that it can 
make is therefore more complete. 

Process 
The second phase of knowledge modelling had as a goal to incorporate some of the 
functions previously implemented in the code of the Mebis system, mainly the feeding 
mechanism for the analytical model. Furthermore, the knowledge model incorporated 
some of the structure of the production point model. This meant that much of the 
knowledge that was present in the code and required restructuring for usage within the 
IO knowledge model. 

The expert reviewed the UML models as part of the model now, not in the same way 
as before. He reviewed them and proposed some small modifications. 

6.6.3  Knowledge System Development 
The different phases of the development of the knowledge models themselves did not 
have a great deal of development effort attached to them, since they were deployed as 
components. Their incorporation into the system was through use of their API in a 
standard programming language. 
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Knowledge System Development � Mebis-KBE 
The knowledge model that was developed in the first phase can only assess the ability 
of a recipe to fulfil the requirements of the client. The limitations of the KBE mean it 
cannot analyse more than one recipe at a time, due to the instance problem. The 
knowledge model therefore functioned integrated as a component system in a larger 
system. 

Figure 6-31 Mebis User-interface 
The software used the component by supplying many different recipes, analysing 
them into those that will and those that will not this provide a set of correct recipes. 
The application has the ability to order the recipes along different criteria, one of 
which can be the cost of the recipe. Other criteria are available.  

The complete software system was provided with a standard Windows interface, that 
allowed the user to set the characteristics of the requirements for the concrete. The 
system then analyses the proposed recipes and yields a list of them ordered by the 
goal criterion, which in this simplified setting is the cost of the recipe. 

The Mebis knowledge model was initially set-up to contain the knowledge to analyse 
one combination of ingredients for concrete to its properties such as cost, strength 
class and environmental class. This is also included to let the expert user validate 
recipe, which can be necessary as sometimes counter-intuitive recipes can arise. The 
system surprised the experts with some of the recipes that came up, which they would 
never have considered. 
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Figure 6-32 Recipe Properties  
This system is being evaluated by the experts at this time with the intent to arrive at 
conclusions on the usability of such a system and possible improvements and 
enhancement that can be made. 

Knowledge System Development � Mebis-IO 
The second phase of this project attempted to incorporate this model and stretch its 
capacities some more. In effect, it relocated the software solution that was required in 
the first phase to the model as well. This was necessary to allow consideration of 
logistical issues associated with production points and available stocks. The 
knowledge model incorporation into the system is expected in the next phase of its 
development project. 

6.6.4  Conclusions 
The Mebis system shows the ability of both KBE and IO as component knowledge 
system. Furthermore, it displays a very engineering based development and contrasts 
this with a more insight-based approach. In part, this is evidence of the ability to 
integrate the knowledge system in other systems, and displays the diversity of 
functions that a knowledge system can play. 

Mebis-KBE 
Mebis KBE showed a pure usage of the possibilities of the KBE, where the 
knowledge model was solve the problems by the interconnections between the 
parameters. The amount of imposed structure was kept to an absolute minimum. It 
also showed some of the limitations inherent in the usage of the KBE. The mono-
representation limits what can be represented and how it is represented. Certain 
problems can also not be handled within the knowledge model, and are moved to 
source code solutions. 
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People: Indirect knowledge acquisition Cost: - 
Project: Finite, product-based Risk: = 
Product: Integrated component for larger system Clarity: = 
Process: Incremental design and development Benefits: = 
Tools: KBE Bottom-line: + 

Table 6-11 Evaluation Mebis-IO  
Looking at the chosen approach for the development of the knowledge system and the 
acquisition of knowledge the following observations can be made. The experts 
involved are participating in a distant way, although they have been introduced to the 
knowledge model at times and have had an opportunity to criticise it. Using the 
textual way of representing the knowledge in a semi-formal manner allowed the 
knowledge engineer to concentrate on getting the different formulas right. The 
approach centred initially on getting the design right, and went on the assumption that 
the formulas found in this would be final.  

The development of the knowledge system followed a similar path. No notion of 
completing a full cycle before going on was used. The development of the knowledge 
model was completed almost independently from the development of the knowledge 
system.  

In actual fact, this case-study is the most like a standard knowledge engineering 
approach of all the case-studies. Beyond usage of the KBE�s visual knowledge 
representation and facilities for development of the knowledge system, it incorporated 
very little of the continuous knowledge engineering approach. 

Mebis-IO 
Beyond the change in tool in the second phase, not much changed in the approach 
taken. Therefore, the only changes that can be reported on are the effects of the 
differences in tool support.  

People: Indirect knowledge acquisition Cost: - 
Project: Finite, product-based Risk: = 
Product: Integrated component for larger system Clarity: = 
Process: Incremental design and development Benefits: = 
Tools: IO Bottom-line: + 

Table 6-12 Evaluation Mebis- IO 
The main differences therefore are the more explicit and more inclusive nature of the 
knowledge model. Furthermore, the models were better in their representation of the 
experts� concepts. While the participation followed the same pattern, it was 
augmented with UML models that have a close resemblance to the actual models in 
IO. It is possible to perceive this as a more direct use of the model, but the possibility 
to interact with the models was lacking.  

In conclusion, this case-study shows how well possible it is to employ the benefits of 
the tools to a certain extent. The full benefits of the continuous knowledge 
engineering approach have however not been realised. 
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6.7 Conclusions 
This chapter has shown a number of different cases applying the approach and tools 
described in the previous chapters.  

System People Project Product Process Tools 
BOKS 
(legislation) 

Participatory 
modelling 

Finite, 
product-
based 

Dedicated 
knowledge 
system 

Cyclic 
modelling and 
development, 
with limited 
deployed 
versions 

KBE 

MDDS 
(diagnosis) 

Independent 
modelling and 
participatory 
development 

Continuous, 
process-
based 

Knowledge 
model as 
scientific 
theory. 
Default and 
customised 
knowledge 
systems 

Cyclic with 
many 
iterations, 
coupled with 
extensive 
verification, 
validation and 
testing 

KBE 

VDES 
(diagnosis) 

Participation 
of expert and 
user on 
knowledge 
model. 

Continuous, 
product-
based 

Default and 
customised 
knowledge 
systems. 
Knowledge 
model as 
scientific 
theory 

Cyclic with 
many 
iterations, 
coupled with 
extensive 
verification, 
validation and 
testing 

KBE 

FRAS-KBE 
(legislation) 

Indirect 
knowledge 
acquisition 

Finite, 
product-
based 

Knowledge 
model as 
specification 
for software 
system 

Incremental 
design, 
waterfall 
implementation 
followed by 
maintenance 

KBE 

FRAS-IO 
(legislation) 

Participatory 
and partially 
independent 
modelling by 
expert 

Continuous, 
process-
based 

Default 
knowledge 
system 

Cyclic with 
limited number 
of iterations 

IO 

Mebis�KBE 
(configuration/ 
optimisation) 

Indirect 
knowledge 
acquisition 

Finite, 
product 
based 

Integrated 
component 
for larger 
system 

Incremental 
design and 
development 

KBE 

Mebis-IO 
(configuration/ 
optimisation) 

Indirect 
knowledge 
acquisition 

Finite, 
product 
based 

Integrated 
component 
for larger 
system 

Incremental 
design and 
development 

IO 

Table 6-13 Relation of People, Project, Product, Process and Tool to Case Studies 
The five case studies cases come from everyday practice and vary quite significantly. 
Each has different goals, constraints and expectations. They have different kinds of 
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expert and user populations. To allow their analysis, each of the descriptions of the 
cases in the previous sections has provided a concise analysis of its results. These 
provide a summary of their features and help to find meaningful similarities and 
differences to be recognised. The goal is to bring all of these cases to a common 
ground. The results show evidence of the tool support for the development of 
knowledge systems, the ability to employ a continuous knowledge engineering 
approach as well as the benefits of the . To further structure that analysis, the results 
are collected in this section. 

Table 6-13 shows a structured summary of the case-studies as to their position on the 
people, project, product, process, and tool dimensions. As can be discerned from the 
table the different cases show considerable diversity while retaining some important 
cross-similarities. This helps to draw conclusions of a more general nature about the 
different choices made in the various dimensions. While the applications take 
different positions, none belong purely on the side of the engineering or science 
metaphor. They incorporate measures from either side to a certain extent. It is also 
proof of the possibility to �mix-and-match� aspects according to the resources and 
constraints that are determined by the practical reality of the situation. 

System Cost Risk Clarity Benefits Bottom-line 
BOKS - - ++ ++ ++ 
MDDS -- -- ++ + ++ 
VDES -- -- + ++ ++ 
FRAS-KBE - = = = = 
FRAS-IO - - + + + 
Mebis-KBE - = = = + 
Mebis-IO - = = = + 

Table 6-14 Bottom-line Results 
The above Table 6-14 shows the assessment of the case studies as to their bottom-line. 
This is an estimation of the systems developed compared to a standard development 
using run of the mill techniques. The systems show a mixture of results on these 
dimensions. Most systems show an improvement in their bottom-line. The least 
successful system is FRAS-KBE, attributed to its development process where the 
knowledge model is only used as a specification. The systems that appear to give the 
best results are BOKS, MDDS and VDES. They show the effects of the measures 
most positively.  
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Chapter 7  
Evaluation 

If a man will begin with certainties, he will end in doubts; 
but if he will be content to begin with doubts, he will end in certainties. 

� Francis Bacon (1561-1626), Advancement of Learning  

The evaluation is final step in the research program. Based on the earlier 
demonstration of the solution in the case studies, this chapter carries out this 
evaluation by performing the evaluation program specified in Chapter 3. In the first 
section, the criteria formulated as tests in the evaluation program are answered to 
provide clarity on each of the research dimensions: people, project, product, process, 
and tools. This will inform the discussion on the scientific and engineering metaphors. 
It will also shed some light on the two tool philosophies. The second section examines 
the practical economic results, the meaning of the solution in terms of clarity on 
benefits, cost, clarity and risk. The final section collates these results into a number of 
general conclusions. 

7.1 Results of Criteria Evaluation 
With the results of the case studies properly presented and arranged, it becomes 
possible to finalise the evaluation program. The results on the criteria of this program 
make it possible to reach a conclusion on the role of each of the dimensions of people, 
project, product, process and tools. The tool dimension is given detailed attention, to 
evaluate the tool philosophies. The results on all of the dimensions make it possible to 
form a conclusion about the continuous knowledge engineering approach and the role 
of the two metaphors. 

7.1.1  People 
The engineering metaphor proposes that one of the reasons that knowledge acquisition 
is difficult is because experts are incapable of expressing their knowledge directly. 
The scientific perspective forwards that the experts are the most capable at extracting 
new insights from the knowledge modelling process. Furthermore, the continuous 
knowledge engineering approach pivots on the ability of the expert to participate in 
the knowledge modelling. 

People Test: Ascertain whether experts are capable to participate in knowledge 
modelling or can independently model their own knowledge. 

In Mebis, the expert is farthest from the knowledge model. The knowledge model 
derives from earlier textual formalisations made by the expert. The knowledge 
engineer translated the knowledge into a knowledge model, both in the KBE and in 
IO. During this time, inconsistencies noticed by the knowledge engineer lead to 
changes and discovery of new insights. These inconsistencies were those that would 
contradict earlier statements, incompleteness in the knowledge surfacing in the 
representation or errors that only surfaced during the operationalisation of the theory 
and application to test cases. Many of these are automatic for the visual knowledge 
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representations used, and are not domain-specific. Over time, the knowledge engineer 
has developed an appreciation for the domain itself, allowing some domain-specific 
insights to be derived. However, this contribution should not be overrated. 

BOKS, FRAS and VDES show participation of the expert in developing the domain 
model. Instead of the knowledge engineer querying the expert based on general 
inconsistencies, the expert would examine the represented knowledge and initiate the 
need for changes. This requires the knowledge to remain closer to the original 
perception of the expert. The suggestions made by the experts in this case would often 
be constructive in nature, proposal to amend the model in specific ways. The 
automatic contributions of the representation only add to this. 

MDDS shows experts modelling knowledge independently. In addition, FRAS-IO 
shows an experimental setting for independent knowledge modelling by an expert. In 
this setting the knowledge engineer, when present can make suggestions for change 
based on the same principles as earlier, but the main changes originate in the insights 
of the experts themselves, while searching for appropriate locations to position their 
newly found knowledge. In this setting, the representation in decision-tables often 
made the general completeness and correctness much easier to verify, negating to 
some degree the knowledge engineers need to be involves as evidenced by their very 
limited involvement in MDDS. 

The applications have shown examples of systems developed by a knowledge 
engineer, by a knowledge engineer with participation of the expert, and independent 
modelling by the expert. The magnitude of insight and improved understanding of the 
domain is most pronounced when the involvement of the expert is a structural 
contribution and when it is more directly involved with the knowledge model. The 
experts involved have had ample experience using the systems. In time, they may 
therefore adopt enough knowledge engineering knowledge to become responsible for 
the knowledge model�s further development. This also is evidence that there is no 
reason to assume that problems with knowledge acquisition are caused by the inability 
to articulate their own knowledge.  

Therefore, the answer is that both participatory and independent modes are possible. 
In turn, this supports one of the basic foundations of continuous knowledge 
engineering. Its benefits on this singular aspect have already been shown. Additional 
evidence is required before this is conclusive, but there is for now no reason to 
assume that experts are incapable of modelling their own knowledge, given the proper 
tools.  

7.1.2  Project  
The engineering metaphor assumes that a knowledge system project is finite, and 
similar in nature to a software engineering project. This includes the handing over of 
the knowledge system to another maintenance organisation after deployment (hand-
over assumption). This assumption would become invalidated when most knowledge 
engineering projects showed signs of greater efforts after deployment of a knowledge 
system than before. Approaches based on the scientific metaphor claim that a 
knowledge system project is continuous as insight is acquired constantly throughout 
the development process, and requires constant knowledge acquisition. It is then not 
possible to hand a system over to a maintenance organisation after deployment. If 
successful knowledge systems exist that have a considerable maintenance history but 
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have seen little or no change during that time, this would seriously challenge the 
scientific metaphor.  

Project Test: Ascertain whether a project knows more change than building activity. 

BOKS shows a system that is considered finished after every deployment, but that has 
had three full deployments already. Further development is not required, besides 
obvious flaws and minor extensions. For now, maintenance seems to prove no threat 
for the system. The explanation for this lies in the assumed static nature of the legal 
knowledge it contains. The knowledge in BOKS as a carbon copy of the legislation 
will only have to change when the law itself changes. This requires a longer period to 
determine whether the knowledge does indeed remain static or whether alternative 
interpretations of the law require changes to the system, while the law remains 
constant. The case study has shown limited evidence of this already, but nothing 
conclusive. Nevertheless, even in BOKS, most decision tables have been changed at 
least once during their lifetime. 

MDDS and VDES show evidence of a developing body of knowledge based on new 
insight discovered throughout the project. Here the knowledge truly has the character 
of a theory, as a representation of insights gained with an appealing form to the 
experts involved. This kind of project will perhaps reach a stage where further 
development and knowledge acquisition is smaller, by a limited number of the 
original team. However, this will only stop when the system is discontinued. These 
knowledge models are products in its own right, that warrant safeguarding. The 
systems also have an organisation that works to perform this safeguarding. These 
systems have also clearly shown more change than building activity. Here too, each 
decision-table underwent changes several times during the lifetime of the system. 

FRAS in the KBE version, as a specification for a software system, is therefore 
oriented as a product. Again, the knowledge is based on legislation and this keeps the 
system more static. The maintenance problems show how hard the changes on 
knowledge are to incorporate in an implementation of the knowledge in the software 
system. As this is what is proposed as one of the avenues of knowledge engineering, 
this system provides ample warning of the possible consequences. The volume of 
change is too great for the approach to muster. 

Mebis in both its incarnations shows another role for knowledge models as a 
component in a larger system. As a sub-system, the integration is paramount and the 
communication with a user directly is not included. Being required to follow the 
needs of the surrounding systems adds an additional reason for changes to the 
knowledge model.  

For knowledge that has the character of a scientific theory character, the mode found 
in the latter systems is the most appropriate. The development of insight is necessary 
as there exists no formalised model and the model remains open for discussion. 
Unless a domain is defined to be static, the theory like character of the knowledge will 
therefore force a continuous need to keep the knowledge up-to-date. A factor that also 
appears to play a role is the fact that the knowledge system changes the environment 
into which it is introduced, leading to a further need for changes as a result of that 
feedback loop.  
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7.1.3  Product  
Engineering approaches treat knowledge systems like any other engineering product. 
This product is an artefact: specified, designed, implemented, tested, deployed and 
maintained. The knowledge model is merely a part of the design specifications 
required for that system.  

This presupposition would come under doubt if cases should show that the changes 
made to a knowledge system after deployment do not originate not in the 
discrepancies between the system and the specification, or from specifications 
deriving from requests for new features. Approaches based on the scientific metaphor 
perceive a knowledge system as a medium to communicate knowledge. This view of 
knowledge system would come under doubt if the changes to a knowledge system 
would be originating primarily in the errors and incomplete specifications, rather than 
through new discoveries and evolving knowledge invalidating part of the knowledge 
model. 

Product Test: Determine whether the changes to a knowledge system originate in its 
environment or from the invalidation of the knowledge contained within. 

In an engineering context, the knowledge acquisition is only in support of the quality 
of the eventual product. There is no incentive to improve the model because of its 
own quality as a model of the domain. BOKS, FRAS and Mebis each show this 
approach to knowledge acquisition.  

The BOKS project treats the knowledge system as the singular product, also because 
in a client-developer relationship this is productive way of treating such a project. The 
functionality is directed to the users of the system, where the quality of the knowledge 
is supposed to be the exact same as that of the legislation. Bar errors, the knowledge 
in the model follows the further development of the law. Any discrepancies between 
the system and the law are therefore errors in the knowledge by definition. This 
fixates the knowledge and creates a different situation to the one found in the other 
systems.  

FRAS-KBE with an explicit purpose as design specification shows that modifications 
are treated as originating in faulty behaviour from the users� point of view. Many of 
the changes are required in the model not in the system�s usage of that model. The 
question on origin in this case is a matter of opinion. The model in itself is never used 
as a source of insight. 

Mebis assumes to be a static translation of the specifications as found in the textual 
representation of knowledge. Changes to it occur, and are therefore places outside of 
the model. In effect, the knowledge changes through insight, leading to better 
formulations.  

MDDS and VDES show systems where the knowledge model itself is the pivotal 
element. The ability to make sense of the domain using the model and expressing an 
understanding of the way things work is the principal goal. The knowledge system 
provides users with access to this operational theory of the domain and enables them 
to employ it in problem-solving tasks. The insight the model generates is the reason 
for the system to exist, and it only exists because it generated that insight. The insight 
drives the knowledge acquisition process. 
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Their knowledge engineers and developers often saw the systems that were developed 
as a product. Nevertheless, in a few, the product was most definitely the knowledge 
model, and the creator of the insights that were gained.  

7.1.4  Process 
The engineering metaphor assumes that the incremental development plays only a role 
in risk management, but is not necessary property of knowledge acquisition. This 
means that in this viewpoint, the incremental approach functions purely as a divide-
and-conquer strategy. Incremental development approaches, whether they focus on 
incremental methods within phases or whether they operate over full cycles of 
development should make no difference. Additionally, the engineering metaphor is 
design-focused. It therefore sees the design as the primary phase to be approached in 
an incremental fashion. It does not perceive applications of the design as an 
opportunity to test the system for errors and incompleteness, beyond validating the 
system�s conformance to the design. Counter this, the scientific metaphor envisages 
that cycles of successive adjustments coupled with critical review form an essential 
ingredient in the discovery process of knowledge acquisition. 

If the case-studies would show that better results are reached through cyclic rather 
than incremental approaches this would put the engineering assumptions in peril. 
Furthermore, if it could be shown that design is not only important phase to approach 
in an incremental or cyclic fashion, this would also place question marks with those 
assumptions.  

Process Test 1: Establish whether some phases are more important than others are or 
whether they are equally important. 

Posed alongside these assumptions are the notions stemming from the science 
metaphor that the complete cycles matter more, than others are. Therefore, the 
discovery of knowledge depends on having operational models at every moment in 
time. 

Process Test 2: Establish whether cyclic development is more important than 
incremental division (the latter means executing phases incrementally). 

BOKS and Mebis have seen a small number of large-scale cycles, by their version-
based approach to development. They are more in line with the first category with the 
modelling itself performed in an incremental manner, rather than through complete 
incremental cycles.  

MDDS and VDES have seen the highest incrementality by the use of small cycles, 
sufficiently to warrant the term continuous development. This was an important factor 
in their development as this allowed the changes to set and used on practical cases to 
test them before implementing new changes.  

The FRAS-KBE maintenance history is extensive but its history is clouded by the fact 
that it was used to specify a software system. Its specification nature places it within 
the category of incremental design focused systems. FRAS-IO belongs in the cyclic 
systems, but as a knowledge system it is too small in scale and has too little actual 
development to truly comment on this aspect of development.  

It is hard to disentangle the incrementality from the other dimensions examined, as all 
projects had some form of iterative process. The cyclic form of incremental 
development combined with expert modelling seemed to provide more of a basis for 
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the development of insight than solely a lower number of cycles, incremental design, 
Also, participation of the expert or knowledge engineer modelling by itself would 
seem to have less of an impact inn such a situation. Cyclic development seems 
therefore to be highly connected to the insight creation derived from knowledge  
modelling. However, the use of these tools also biases this, as both the KBE and IO 
allow consultation of the models during the modelling. Nevertheless, the cyclic 
development seems a highly important aspect of knowledge modelling, as it allowed 
the early finalisation of a single, small-scale change and incremental testing. 

The application of the knowledge system generated less pronounced effects on the 
creation of insight than the participation of the expert. The applications that they 
examined were test cases or �cornerstone� cases used to test the system. Conversely,  
they would specify a specific problem-solution combination that the system was 
unable to handle before. These would sometimes be provided by users of the systems , 
when such an incompleteness was detected. However, the user base of these systems 
was much smaller and the feedback from application was therefore not as strong as it 
might have been. However, the feedback from BOKS and the effect this has had on 
the development was only limited. Although it must be said that some feedback was 
indeed incorporated back into the system. The nature of the BOKS system however 
means that this was seen as an error that was reported, rather than an opportunity for 
new insight to be reached. 

In conclusion, application experience and cyclic development have an important part 
in generating the required insight. Something that is not possible with an incremental 
design approach. Smaller complete cycles are the best basis for building and 
developing a knowledge model.  

7.1.5  Synergy  
An important question is the manner in which synergetic effects influence the effects 
of the measures that were taken. The engineering metaphor naturally makes no 
statement about any such synergetic effects. The approach based on the scientific 
metaphor goes on the assumption that each insight is an enabler for other insights. 
Thus, the total amount of support is indifferent to the specifics of the measures taken, 
rather the package as whole can be seen as a measure of insight support, and each of 
these strengthens the others. 

Synergy Test 1: Determine to what extent the measures on the different dimensions 
are necessary. 

Synergy Test 2: Determine to what extent the measures are influencing one another. 

The synergy between the guidelines and the different results for each of the 
dimensions is clear. It is not necessary to address measures in each of the dimensions 
in unison, as insight will be created even when only one of them is addressed, for 
example incrementality. Nevertheless, it is clear that the effects will strengthen each 
other, validating the assumption made by the scientific metaphor. The most 
pronounced effects are visible when incrementality and expert modelling combine.  

7.1.6  Tools 
Tools enable and support the proposed changes in process, product, project and 
people that may be necessary under the science metaphor. In a manner of speaking, 
tools embody the approach and make it practical and productive. They often 
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determine the practical reality of any methodology: what parts of the methodology are 
used in what manner, by whom and to what end.  

The tool support given for the continuous knowledge engineering approach aims to 
perform two tasks. First, it aims to make continuous knowledge engineering viable. 
Secondly, it provides some clarity about the methods best employed to realise this. 

While the tools in this thesis are directed towards realisation of an approach based on 
the science metaphor they employ a pragmatic view, focusing on direct support for 
building, changing knowledge models, and gaining insight through modelling and 
application experiences. This also means that they are still usable in an engineering 
perspective without any significant problems. The case studies illustrate this. The 
system do however realize a number of the requirements originating in the alternative 
metaphor by incorporating different features thought to be useful in this respect.  

The tools must support the development of insight. Allowing experts to model the 
knowledge themselves, enabling them to understand a model and the effects of 
changes to that model is only a part of this approach. Extracting meaningful 
knowledge through practical experiences of the knowledge model, embodied in a 
knowledge system is another. In addition to this the tools must enable incremental 
development of the knowledge model and knowledge system. This must be done so 
both small and large increments can be fashioned and made available to the users. 
Finally, the knowledge systems have to be adaptable to the needs of the user, in a 
cost-effective, flexible and incremental manner.  

Rather than directly provide arguments for and counter the metaphors, these tools 
seek to support these requirements. Their purpose is not limited to providing evidence 
in support of the approach, and to enable the comparison of different approaches to 
development. For example, a number of the capabilities of these systems feature in 
other knowledge system development environments not specifically built for this 
purpose.  

Tool Test 1: A tool that can allow knowledge modelling by experts must be simple. 

Tool Test 2: A tool that can allow knowledge modelling by experts must use a vivid 
modelling language, to aid the discovery of new insight and support the changeability 
of knowledge models by experts. 

Either tool described in this thesis implements a philosophy on the way the support 
should be given. The respective tests above represent the two philosophies under 
investigation. The first states that such a system must primarily offer simple 
mechanisms, �dumb down� the possibilities that may exist and thereby making it 
easier for the expert to understand what is going on in the model.  

The second assumes that although simplicity of use is important, the ability to 
generate insight in every way possible is most important. This can be supported by a 
vivid form of representation, which is in this case the principal objective.  

Examining the results of both these tools then aims to yield some answers as to which 
tool philosophy is more successful in providing the conditions most suitable for the 
discovery of insight, and support the continuous knowledge engineering approach. 

KBE 
The KBE is a tool that implements a set of features deriving from the requirements 
formulated in Chapter 3. The KBE focuses on providing an easy to use system to 



234 Chapter 7 Evaluation 

 

allow non-specialists to use it to create, modify, and extend a knowledge model. By 
providing a simple tool, it was thought that no overwhelming learning curve was 
presented. The simplicity would allow navigation of the knowledge models, as well as 
facilitate understanding of the effects of changes.  

The graphical knowledge representation of the decision table makes it easy to 
comprehend, validate and change the knowledge about the simple facts in the 
knowledge base. The primitive facts that are at the disposal of the modeller leave little 
room for complex design decisions in the description of the world. The 
straightforwardness of the inference engine also contributes to the ease of use of the 
system. The backward-chaining inference mechanism strategy is fixed and can only 
be adapted in minor ways. 

The minimum system is tiny, consisting of a single parameter. This means that as 
soon as the user has entered the first fact, the system can be consulted. Adding new 
parameters is relatively easy and adding new knowledge without necessarily affecting 
other parts of the knowledge base is possible. The system remains to be consultable 
after each change. This allows direct testing of each change, and means that in a sense 
every change and subsequent test constitutes a development cycle.  

The facilities that are shared with IO for developing knowledge systems based on 
these knowledge models allow the development of the visualization of the system to 
be as advanced as necessary, and can also be implemented incrementally. These 
facilities for developing and deploying knowledge models range from small to 
medium sized knowledge systems. The simplicity supports this initial trajectory and 
allows an incremental way of building knowledge systems, either by small or by 
larger granularity increments. The previous chapter has shown examples of these 
abilities. As the knowledge model grows the ability to change the model diminishes. 
The ability to comprehend the effects of changes to the knowledge becomes harder 
and harder. These shortcomings of the editor originate directly in its simplicity. The 
representational poverty of both factual and reasoning knowledge creates problems in 
the modelling of knowledge. The structures and relationships that are available in the 
domain cannot be modelled directly. This requires that much of the expert 
conceptualisation of the domain needs to be translated to the chosen knowledge 
representation formats. Furthermore, it means that problems like those that require 
reasoning over instances can only be accomplished in part and this requires 
redundancy in the knowledge base.  

The KBE therefore does not have scalability of change, when knowledge models 
accrete during their lifetime. The lack of structuring mechanisms makes a knowledge 
base hard to navigate although some support can be gives by provision of a tree of the 
decision tables. Making changes to the system also becomes increasingly difficult as 
the locations of the affected areas become harder to find.  

Additionally, there are no facilities for decomposition and encapsulation. This means 
that changes can cascade through the model. The representational poverty also means 
that the decision-table is used as an all-purpose tool. This leads to further cluttering of 
the knowledge base. As much as 60% of a knowledge base can consist of structuring 
tables. Combined with a limited amount of vividness of the model and navigation 
through related areas of the model this wreaks havoc on any maintenance and 
evolution. In effect, this means that there is a ceiling for the size of a knowledge 
system. 
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The limitations of the modelling environment in its primitive domain model and 
singular knowledge representation in the form of decision tables do not allow the 
representation of task model or modelling of concepts and relationships as they play a 
role in the domain. The latter is a fundamental problem of the representation. 
Problems that contain variable number of elements, as many do, are impossible to 
solve given the chosen representation form. Approaches to circumvent these problems 
in the KBE lead to further maintenance problems. 

In conclusion, the KBE is easy to use and the facilities to support the non-specialist 
user are definitely present. Nevertheless, these features alone are not sufficient to 
support the user in the end. In particular, the evolution of knowledge models is 
undermined by the lack of structure, impeding changeability and other long-term 
requirements of an evolving knowledge model.  

Intelligent Objects 
IO realises a philosophy, which embraces vivid knowledge representation as a means 
to support the discovery of new insights. Vivid models can stay close to the experts� 
understanding of the domain, providing every opportunity to be explicit in the 
formulation of that knowledge. This allows reality to inform the knowledge model 
and vice versa. It is thought to make it easier to find inconsistencies and 
incompleteness in the model, because more of the knowledge is made explicit. To 
realize this philosophy IO incorporates a number of the features present in the KBE 
capitalising on its strengths while attempting at the same time to improve upon some 
of the weaknesses of that system. The philosophy that underlies IO redeploys the 
features in combination with additional features. The primary difference between the 
KBE and IO are the facilities for expressing knowledge. They are greatly expanded 
both in the structural knowledge as in the behavioural part. 

Therefore, IO focuses on providing a vivid modelling language to express the 
knowledge, based on object oriented modelling constructs. The complete realisation 
of UML modelling constructs, especially the inclusion of the association, allow the 
user to model the domain knowledge at a conceptual level. The object-oriented model 
conforms to the understanding that many have of their domain, and this allows them 
to map new insights within the model to the real world and vice versa. This makes it 
easier to connect new insights either derived from the expert own experiences, 
insights in conceiving the model and exploring different possible formulations of 
knowledge within the context of an existing model. The modelling language serves 
other purposes such as the navigation of the knowledge models, the facilitation of 
understanding of the effects of changes and support for continuous changeability 
through modularity, encapsulation and abstraction.  

The knowledge model further has features to aid the modeller in understanding the 
effects of actions on the model and to remove the need for transformation to an 
executable format. By virtue of its live model, the user can examine the effects each 
operation on the model and ascertain the correctness of elements. This guarantees 
feedback on each operation immediately and throughout the model. Furthermore, this 
guarantees that the model does not require any transformation for implementation in 
some other language. Models retain the capability to be executed at any point during 
their development.  

Additionally, the system�s architecture performs basic but essential functionality to 
support non-specialist users, such as undo/redo mechanisms and multiple view user-
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interfaces. The IO environment further retains the visual representations of knowledge 
such as the decision-table and shares the same approach to knowledge system 
deployment and the components that allow the development of default, custom and 
dedicated systems to in an incremental manner.  

Therefore, IO provides a development environment more advanced in modelling 
vocabulary and additional facilities that it offers in the feedback from the model and 
the undo/redo support. It provides an architecture that grants many different 
knowledge representations. Additionally it aims to provide the different elements of 
the model in a form and presentation that is easy to understand and is conceptual in 
nature, coupled with visual representations of reasoning knowledge. Thereby it 
provides a more explicit knowledge model, building on the additional structure and 
diversity, provide sufficient flexibility in representation to allow vivid models to be 
created that conform to the expert�s perception of the environment. 

The minimal knowledge model consists of a declaration of some type and an instance 
of the project. Compared to the minimal system of the KBE this is already an 
indication that operating this system is more difficult. For one, the distinction between 
a type and an instance level is sometimes hard to make. For some types of reasoning, 
this may not even have to be a useful distinction. 

IO focuses on the diversity of representational facilities and proposes some features to 
strengthen the ease of use of the system. In short, it aims to improve the evolution of 
knowledge systems, while retaining simplicity of use. Even so its learning curve is 
much more steep that that of the KBE. IO suffers from the opposite problem to the 
KBE. Here it is the complexity, introduced by new options and possibilities that 
enable knowledge model evolution, that make it a difficult system to use for any non-
specialist. The choice introduced requires understanding the options and making a 
choice. This may not be the user�s strong suit. Furthermore, more steps are required in 
unison to implement particular changes. Changes made in the KBE are often 
monolithic and far more direct. 

The problems that surface in larger models in IO relate to the increasing difficulty 
with which changes are possible. This is isomorphic to the problems in the KBE, but 
in IO, they occur much later. Some of this is moderated by the compartmentalisation 
and encapsulation, but this does not remove the problems completely. The structure 
that has been placed in the domain model is now explicit but at some level, it becomes 
a fixed bias and can be hard to change while maintaining the integrity of the model.  

A conclusion for the tools therefore is that the IO models are more resilient to change, 
are more understandable and allows a high level of insight. This allows better support 
for experts especially when the model grows in size. The higher learning curve does 
make it more difficult for experts to make the first step. The KBE makes it very easy 
to build a minimal system and build from this. It does not have any facilities to deal 
with systems that are more complex. IO has a more difficult initial development, and 
requires additional work for systems that are very easy in the KBE. IO does handle 
those systems with ease, which remains impossible in the KBE.  

7.1.7  Conclusions 
Two distinct levels of conclusions can be derived from this evaluation of the criteria. 
The first is the evaluation of the tools, and the second the evaluation of the continuous 
knowledge engineering approach. 
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Knowledge System Development Tools 
The models developed using the KBE all have a large amount of implicit structure. It 
is necessary to know this structure to be able to understand the knowledge model. In 
many cases this structure develops during the first phases of the project. Sometimes 
this leads to the abandonment of a first model, to be able to restructure and improve 
the system while scuttling the existing knowledge model is still a viable option. The 
structure is implicit, but it is determined by re-examining the order in which the tables 
are called in their execution hierarchy. In many cases, the structures that are used also 
provide an explicit basis for incremental development, by creating extension points. 

The experience so far with IO makes it hard to make any final conclusions, although 
the case-studies show several key-points about the system. IO is a system that can be 
used by an expert. Furthermore, the knowledge models that are constructed with it 
contain much more explicit knowledge than is present in similar KBE knowledge 
models. This makes the internal relationship in the knowledge model much clearer, 
and further allows them to be subject of explicit discussion. This also is helpful in 
communicating the knowledge to others better, which aids cooperation witha 
knowledge engineer or expert. 

Further research would be to allow a KBE like knowledge model to slowly transform 
into an IO knowledge base. Enhancing the instance level model with abilities to 
define decision tables of their own could do this. An instance of one particular room 
found in the model could then slowly transform into the type for all rooms. 

Continuous Knowledge Engineering 
Overall, the previous brings the principles of continuous knowledge engineering in 
view in different settings, even though none of the systems explicitly employed the 
development process. It does provide ample evidence that each the principles of the 
continuous knowledge engineering each is at the very least possible. The case-studies 
further show that the advantages thought to exist when employing these principles are 
realised.  

The evaluation of the different criteria through the tests is successful in many aspects 
of the continuous knowledge engineering approach and thereby the scientific 
metaphor. While this is not intended to be taken as proof that the science metaphor is 
somehow better than the engineering metaphor, it makes clear that providing for 
insight development is an essential factor in knowledge acquisition. Knowledge 
engineering must not just account for how knowledge systems should be built but also 
account for their development and change over time.  

7.2 Evaluation of solutions  
The research in this thesis started with the formulation of a number of problems of an 
economic nature that made it difficult to offer knowledge systems as a viable solution 
to organisations. The problems are in turn caused by a number of root scientific 
problems in knowledge engineering. This section will first consider the solution that 
this thesis offers for the latter scientific problems, before going into the evaluation of 
the solution to the practical problems. 
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7.2.1  Scientific problems 
The four main problems in knowledge engineering affecting the ability to offer 
knowledge systems as an economically sound solution are: 

• The knowledge acquisition and maintenance problem 
• The gap problem 
• The brittleness problem 
• The complexity problem 

The direction of the solution on the level of metaphors attacked these problems on all 
fronts, making each of these problems of paramount importance within the approach 
taken. The previous section dealt mainly with the individual parts of the approach, 
dissected into different dimensions. The aim of that section was mainly to answer the 
question whether the continuous knowledge engineering approach was viable and 
practical. That has been established, as well as the role of insight in knowledge system 
development. The question that remains is whether the solution actually solved the 
problems that were identified in the first place.  

Knowledge Acquisition and Maintenance Problem 
The knowledge acquisition and maintenance problem is one of the main problems in 
knowledge engineering since its inception. Knowledge acquisition is said to be an 
intrinsic problem of knowledge engineering, making the development of knowledge 
models difficult and hard. It is an important factor adding to the risk and cost of 
knowledge system development.  

It already turned out to be impossible to extract knowledge from an expert�s brain 
directly, by asking them for the rules that they themselves use. Subsequently, the 
modus operandi changed to a modelling or design process. Modelling this knowledge 
requires monitoring and analysing the expert behaviour. The expert�s knowledge is 
incorporated into a model of the domain and the task by a knowledge engineer, 
without having anything to do with the actual knowledge that may be present in the 
expert�s head. The expert is not trusted to do this himself because of his supposed 
inability to formulate and formalize the knowledge correctly.  

The solution proposed in this thesis, reformulates the problem. In the normal view on 
knowledge engineering, knowledge acquisition is perceived as a requirement for 
knowledge engineering, enabling the development of the end-product of this activity, 
the knowledge system. Conversely, this thesis treats knowledge acquisition as the goal 
of knowledge engineering. Within this view, the knowledge model is the end result. 
The knowledge system �merely� functions as a medium for the knowledge model, 
supporting the knowledge acquisition process by providing actual experiences and 
feedback.  

Although this may seem an artificial, almost deceptive, solution to the problem, it has 
provided a path to the creation of an approach for knowledge system development 
without suffering from the knowledge acquisition bottleneck. In analogy to software 
engineering, (Brooks 1987), programming is not about formulation and formalisation 
of knowledge like programming syntactically correct structures; it concerns 
construction of complex conceptual arrangements. In knowledge system development, 
the actual problem is not formulating and formalising knowledge to be represented in 
a knowledge system; it is the discovery of the knowledge in the first place.  
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To support these statements, the case studies have shown the possibility and 
practicality of such an approach to knowledge engineering. Treating knowledge 
acquisition as a goal for knowledge engineering, changes the way knowledge systems 
are developed. This alternative approach, by virtue of its gradual character transforms 
knowledge engineering from the development of a product into a path of discovery. 
Experts have shown to be quite capable to develop knowledge models, and moreover, 
are more in tune with their domain. Their participation, continuous nature of the 
project, the view of knowledge systems as a medium and a cyclic process for 
development, as well as tool that support this and the discovery of insight, facilitate 
the discovery. The knowledge acquisition and maintenance bottleneck is solved, 
because using this approach, it is a virtually effortless activity.  

Gap Problem 
The engineering view perceives the development of a knowledge system based on a 
knowledge model as a technical issue. Its scientific relevance is limited, and therefore 
it relegates the problems either to the tool producers or more generally to software 
engineering. The long period before a knowledge system is complete, in a normal 
development, complicates the realisation of a learning process. It increases the 
distance between the knowledge model on which the system is based, and the actual 
experiences that might be gained by the application of that model.  

In its role as a medium, the knowledge system acquires another additional function. 
The system turns into one the sources of insight. The cases to which it is applied even 
as test cases, fall into the category of application experiences. Insight discovery is 
supported by critical feedback, which can come from the users of the system. 

The research in this thesis shows knowledge systems as essential in generating 
feedback from the users of the knowledge system, both in terms of insight as in the 
ability to support the users in their tasks. In most cases, these are one and the same. 
Knowledge systems have to properly solve the problems of its users. Facilitating the 
understanding and ease of use of a system through an intuitive user interface, and 
integration with auxiliary facilities, is an important aspect of insight development. 
Both the problems they are used to solve and their inability to solve certain cases in a 
source of new knowledge. 

The realisation of the knowledge system based on the knowledge model is pulled to 
the front of the development. This is supported by the tools and allows the 
development of default, customised and dedicated user-interfaces. The case studies 
have shown examples of industrial strength knowledge systems, and have shown the 
process of their development. Although these by necessity originate in the tools, the 
facilities are in support of the approach. This is also the reason that these tools are 
shared between the KBE and IO.  

Attention is given to the development of the system in a form presentable to the user 
from the first modelling action. With the ability to incrementally develop this 
knowledge system based on default consultation environments through to customised 
systems, and up to dedicated systems, the effort can be spread over time and directed 
towards the wishes of the user. The technical capabilities and the incremental 
development approach bridge the gap between a knowledge model and a knowledge 
system. 
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Brittleness Problem 
The brittleness problem as the inability of a knowledge system to perform beyond the 
knowledge it possesses is within the engineering view a problem that can only be 
solved by deep knowledge models and/or a store of commonsense knowledge. These 
can provide the depth required to function acceptably beyond the domain knowledge 
of the system.  

Seen from the perspective of the scientific metaphor and the continuous knowledge 
engineering approach, this problem is artificial. To expect a system to work on 
outputs that it was not built to work for gives the same results as when a scientific 
theory is used to predict values for which it was not created. Newtonian physics fail 
when stressed to its limits. Parts of this failure has led to the theory of general 
relativity and the discovery of quantum effects. 

Two answers to the brittleness problem derive from his. First, the brittleness problem 
is a problem with the boundaries of knowledge. When a problem is posed to a 
knowledge system for which it should be able to provide an answer is a possibility for 
learning. The growth of knowledge that results from this insight is testament to the 
nature of knowledge.  

Second, many engineers still use Newtonian physics even though better theories exist. 
For their purposes it suffices to use these laws, and this will not adversely affect their 
ability to develop new devices, as long as they remain aware of the underlying 
assumptions. Similarly, a knowledge system may operate under the assumption that 
its task is limited to a certain subset of all possible inputs it could theoretically be 
subjected to. If these implicit assumptions are violated, the possibility is created to 
become aware of such an assumption. It can then be explicitly modelled into the 
knowledge model. 

Complexity Problem 
Many knowledge systems are developed for tasks that would require humans training 
and experience to solve. Dubbed the complexity problem this is an inherent problem 
of knowledge system development. The task to perform within domain of the system 
does not become any simpler merely because of the introduction of a knowledge 
system. While new discoveries may go some way to increase understanding of the 
domain and simplify performing certain tasks, this can not be interpreted as a solution 
to this problem.  

For those knowledge systems that orient themselves to good performance in non-
linear domains, with no deterministic procedures to calculate a solution, the 
continuous knowledge engineering approach has merely provided another way of �� 
making the hard possible�. The base complexity of knowledge system development 
for complex tasks remains however. 

7.2.2  Practical Problems 
This part of the chapter concerns the evaluation of the results related to the bottom-
line problem associated with benefits, cost and risk of knowledge system 
development. The practical problem for which a possible solution was sought, lead to 
the scientific questions answered above. The question addressed here is whether the 
global solution, proposed as the scientific metaphor and its realisation in the 
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continuous knowledge engineering approach shown in the case studies, solves the 
economic, practical bottom-line problem.  

It was determined that an incremental approach inspired by the engineering metaphor 
was in principle a sound approach to overcome the difficulties of knowledge system 
development that lead to the uncertain bottom-line. The benefits of the approach 
depend on the granularity of incrementality, the magnitude and cost of each increment 
and the risk of each increment. It does not address the problems that cause the cost 
and risk. 

The insight-based metaphor partially extends incrementality proposed by the 
engineering approaches. The questions that then remain are whether an insight-based 
approach is an actual improvement. Does it make the benefits clearer, lower the cost 
and risk of development, and provide additional control? This section attempts to 
concentrate on these issues to provide a validation of the results of this thesis based 
not on its scientific rationale, but on its actual effect on that which instigated the 
research in the first place. 

Benefits 
The cases studies show a great diversity, but the actual benefits of developing a 
knowledge system remain hard to ascertain on face value. In some cases the benefits 
can be approximated, for instance with BOKS where the value of the knowledge 
system can be offset against the cost of having to train thousands of people in 
applying the legislation. In MDDS, there is no actual knowledge system as a product 
with a large user base; the discovery, formulation and formalisation of the knowledge 
is the actual benefit. This intangible can be attributed a value in the same way a value 
can be assigned to a monument; either as a priceless human creation or as stone 
rubble, as a matter of opinion. When it can be employed in a number of cases, its 
worth may become more evident as it then becomes based on its current utility. 
Therefore, the benefits should be seen as the commitment that can be found to 
continue the system�s upkeep.  

As the insight-based approach is focused on creating a usable knowledge system or 
operational knowledge model as early on as possible, it allows this utility based 
approach to be used with more force. There should be no large initial realisation, and 
each increment should be as small as possible, both of which are supported by the 
metaphor and visible in its realisations.  

A problem found with small initial knowledge model is that a knowledge system 
based upon it may not provide enough content to be usable. A regularly quoted 
engineering principle is the 80-20 rule (otherwise known as Pareto�s principle). This 
heuristic states that the common category of problems takes a small amount of time to 
solve, but that the remaining, often exceptional problems take much, much longer. 
This principle applied by the science metaphor. The case studies show that the 
usability of a first system can be quite impressive with only a limited amount of 
knowledge, acquired with minimal effort. The problem the knowledge system solves 
is often not the lack of knowledge, but its availability to others. Therefore, in most 
situations incomplete knowledge models can enable a functional knowledge system 
that can be ascertained to its utility in an early stage. Furthermore, its role in providing 
a stepping-stone in further knowledge acquisition has shown to be especially 
beneficial. 
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Cost 
An additional factor in determining the possible bottom-line is the cost, although the 
actual cost of a project will be a function of the effort of each step and the risks that 
are relevant to the success of those efforts. Therefore, these paragraphs will examine 
the effort necessary to perform certain tasks; the relevant risks will be discussed later. 
The effort of each of the developments over for the majority of cases remains to be an 
involved enterprise when taking into account the complete lifecycle. The continuous 
nature of the development and the smaller increments allow more even spreading of 
the cost over the complete lifecycle and strengthen the benefits derived from the 
incrementality.  

However, there is also reason to assume that the approach lowered the base cost. The 
reduction of the knowledge modelling effort and the development of the knowledge 
systems visualisation are the most effective targets, as they concertedly form approx. 
80% of the total cost. This is also visible in the case studies. In all of the cases the 
acquisition and maintenance of knowledge was one of the major tasks in the 
development. In those systems with a proper user community the effort for 
development of the outer shell of the system was an activity that was at least as great 
in size as that of knowledge acquisition.  

The cost of knowledge acquisition is much lower than in standard approaches for 
three main reasons: business focus, deployment of people, improved changeability.  

The insight-based science metaphor forces the knowledge acquisition to be focused on 
the model itself. It does not require the use of �circumstantial� knowledge gathering, 
like interviews and repertory grids, in fact it de-emphasises from this entirely. This is 
also clear from the case studies. The amount of work to get to a unit of knowledge 
into the model is therefore reduced. Furthermore, the model focuses the knowledge 
acquisition to the system that will be used rather than unearth the full knowledge and 
then derive an operational version from that. The sole aim is to create an operational 
knowledge model for a specific task and user population.  

Under an engineering metaphor, the role that a knowledge engineer plays as a scribe 
for the knowledge model in a knowledge acquisition process is necessary to create a 
part of the specification for a system. Within the science metaphor, such an approach 
becomes nonsensical, as it would require the knowledge engineer to be permanently 
attached to the project, part of the upkeep organisation. Transferring some of these 
tasks to the expert serves as an important cost saver. Especially when the knowledge 
engineer can be completely removed from the process, this is a very effective 
approach to reduce the cost, as is evidenced by MDDS.  

Much energy has been directed to reducing the effort spent making changes to the 
knowledge model, and to reduce the effort required to incorporate these changes into 
the knowledge system as used by its users. Modifying and extending a model was a 
special issue for both the KBE and IO, and this has been a subject of discussion in the 
description of the case studies. Furthermore, deployment of the model has also been 
an area of attention. 

The detachment of a knowledge model and the knowledge system�s visualisation also 
means that one change can affect many knowledge systems, and that a change in a 
single representation can be limited to that particular representation. This lowers the 
cost of changing the visualisation of a knowledge system while increasing the benefit 
of keeping the knowledge model up to date.  



7.2 Evaluation of solutions 243 

  

Next to this transfer cost, other costs in this development are related to the level of 
interactivity, graphical user-interfaces, and integration with other systems. These costs 
are determined mainly by the support that is present in the tools that are used, but also 
are affected by the timescale in which these must be implemented. A more gradual 
scheme can allow piecemeal realisation, rather than require a big bang approach, 
which when it fails is ever so costly.  

The inclusion of facilities for knowledge system development, in an incremental 
fashion, does also contribute to reduction of development cost. Less effort is 
necessary to attain proper levels of user support and understandability, and more 
effort can be focused on those areas that require change from the perspective of the 
users. Because of these factors, it is thought that the development of the example 
knowledge systems has been lower than would otherwise have been the case.  

Risk 
The risk is a factor in determining the proposed bottom-line for any knowledge 
system development. Knowledge engineering knows many risks, which differ in 
situation to situation in importance. The approaches inspired by the engineering 
metaphor use iterative, incremental development to overcome and lessen the risk. The 
same approach is used here, although with a different aim. The benefits with respect 
to the risk however remain to be the same. Besides this general approach to the risk, 
some specific amendments exist. The question here is whether the continuous 
knowledge engineering approach, embodying a science metaphor, realised in the 
knowledge systems of chapter five offers less risk than the standard approach. Two 
factors are important when determining this: does the risk concern a smaller cost, i.e. 
reduce the effect of the risk, and is the risk itself reduced. 

Smaller increments provided by the tools, are less costly to reverse, and the inherent 
support for change allows for a decrease in rework effort required for a change. 
Therefore, any support for smaller increments and added changeability reduces the 
risk taken.  

Further specific risk reduction effects are also supposed to occur. The expert is 
sometimes hard to motivate to participate and remain with the process, as fears of 
being made redundant play a role. The approach shows reduction of risk by 
motivating the expert to assert ownership of the knowledge system. This improves 
their bond with such projects and makes it much easier to form an organisation for the 
management of the system. The insight-based approach makes the knowledge system 
an extension of the expert, rather than its replacement. If the expert does not continue 
to feed the knowledge system, it will soon be out of date.  

A risk that is not easy to take away is the inability of experts in operating the 
knowledge system development environment. It is possible to go quite a way in 
making such systems more useable, but it would not be correct to expect everybody to 
be able to use them. The case studies and other experiences have however shown that 
experts with little or no computer skills can effectively make use of KBE and IO. As 
this risk is made obvious early on in the project, the effects of this risk can be limited. 
Furthermore, a participatory approach to knowledge modelling can be adopted with 
lesser but comparable benefits.  

The expert may be capable of certain tasks that cannot be translated to a knowledge 
system. This can be a risk for any knowledge system development. For instance, the 
system can require the sensory perceptions of the expert, i.e. a tactile rather than a 
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cerebral task. In certain of the case studies, such issues have surfaced, for example 
visual inspection of damage in MDDS. Such problems can be circumvented as with 
the damage catalogue in MDDS, but one cannot suppose this is always possible. 
Therefore, this risk may be lowered, but is not removed. It is possible that some of 
these problems will not ever be solvable within the limited context of knowledge 
systems. Unless of course the notion of a knowledge system is stretched beyond 
recognition. 

A further risk may be that the knowledge system requires a large amount of technical 
sophistication, e.g. high levels of interactivity, graphical user-interfaces, and 
integration with other systems. This type of risk is addressed by the tools that were 
proposed and receives special attention. The knowledge systems show industrial 
strength applications that can deliver the same types of user interfaces that other 
software shows nowadays. Integration of the knowledge system in other systems and 
wit other system has also been shown. These were all realised without specific 
problems, and therefore pose as the same type of problems as they do for standard 
software development. 

The Bottom-Line 
As the benefits can be made more clear, the cost can be spread more effectively and is 
lowered, the risks have been reduced as well as the effects of the risk, this means that 
the approach proposed in this thesis has realised significant advances in this respect 
with respect to the bottom-line problem. 

The difference then is the following and in this difference lays the solution. The cases 
show systems that do not attempt to �get it all in one go�. They attempt to develop a 
first model of development knowing that it is not complete and correct, consistent and 
provable. But rather than attempt to get it right before the product is placed in the 
hand of the user, the deployment is seen as one of the means to get it right. This 
change in perspective is the actual solution.  

When employed the metaphor and its practical implementation in the continuous 
knowledge engineering approach can alleviate the knowledge acquisition bottleneck 
to the point that is no longer is a relevant parameter. The focus on building and 
changing knowledge systems resolves some of the intrinsic difficulty of formulating 
and formalizing knowledge. The appreciation of the nature and origin of knowledge 
allows for realisation of the manner in which knowledge systems should be 
engineered. In addition, the types of applications that can be created by applying the 
approach and the supporting tools can clearly generate professional, industrial 
strength knowledge systems.  

In addition, the approach can be employed in situations where knowledge is yet to be 
discovered, to structure and support the insight creating process and knowledge 
creation. This can be a powerful incentive to companies to develop and employ 
knowledge technology in their organisations, for instance in research organisations. 

7.3 Conclusions 
The evaluation presented in this chapter completes the research program. What 
remains is for these results to be reflected upon to reach some more general 
conclusions.  
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The basic question asked at the beginning of this thesis was why knowledge 
engineering is so difficult. The global solution that was found started from an 
understanding that the knowledge system is a special kind of engineering product, that 
remains fluid during its lifetime. It therefore requires other types of engineering 
practices than most. The engineering metaphor that underlies much of knowledge 
engineering needed to be exposed as the common denominator behind the current 
state-of-the-art in knowledge engineering. Solutions stemming from pure engineering 
inspiration are not sufficient and risk focussing on inappropriate directions, 
misinformed by initial explanations of the problems.  

When examining the different dimensions that were looked into another perspective is 
afforded. The people dimension makes clear that there is no impediment for expert to 
play a role in knowledge modelling, to a far greater degree than is the custom or 
prescribed by accepted methodology. In fact, the benefits of this approach are quite 
substantial. The project dimension shows the continuous nature of development and 
the requirement of most knowledge system to remain in development. The product 
dimension shows that the results from a project are not limited to the knowledge 
system. The formulation and formalisation of knowledge through the discovery of 
insight delivers an important product in an explicated, knowledge model. The process 
dimension makes clear that mere incrementality is a valid and sound engineering 
approach directed to divide-and-conquer of risk and cost. For insight discovery, it is 
necessary to propose-and-critique. The tool dimension shows several things. First, the 
simplicity is not necessarily the best approach, and vividness can be a source of 
additional insight. This does not require deeper knowledge models that are more 
resilient.  

Each of these dimensions individually shows the requirement to focus on the 
development of insight, which is a cycle of proposal and critical assessment. Both in 
the modelling and in the application of knowledge systems can such feedback be 
found. The obstacles professed by the engineering camp do not exist in these cases. 
Rather than do away with the engineering inspired aspects of knowledge engineering, 
it attenuates the need to appreciate the development based on a learning developing 
process. It strengthens what is particular about knowledge systems instead of focusing 
on the relationship with general engineering practice. The dimensions show the ways 
that a knowledge system differs from other software development.  

By merely changing one�s point of view on developing artefacts such as knowledge 
systems, different explanations are afforded for the problems that are experienced, 
inspiring alternative approaches to solve these problems. That insightful action was 
provided by the engineering metaphor itself, as the stepping-stone for this change of 
opinion.  

The scientific metaphor has provided the starting point for a continuous approach to 
knowledge engineering, supported by dedicated tools. These have shown to alleviate 
the acquisition of knowledge and support the development of industrial strength 
knowledge systems. The cases show the beneficial effect this has on the cost and risk 
of knowledge system development, and the clarity on the benefits of a knowledge 
system.  
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Chapter 8 
Conclusions and Recommendations 

Perfection is attained by small degrees; 
 it requires the hand of time. 

Voltaire 

This chapter summarises the results of the research program set out in the beginning. 
In the first section, the results obtained at the previous theoretical and engineering 
steps are analysed and held against the research criteria, based on which a number of 
final conclusions are drawn. The second section makes a number of recommendations 
for further research and development. The third section finalises by presenting a short 
summary of the contributions of the research. 

8.1 Conclusions 
The incentive for this research was a practical, economic problem with the use of 
knowledge systems as a viable technology to employ to solve knowledge problems. 
This bottom-line problem reflects the unclear benefits of knowledge systems coupled 
to the high cost and risk of development. The analysis in the second chapter has 
shown that four problems that belong more clearly in the area of scientific concern 
cause this uncertain bottom-line. 

The knowledge acquisition and maintenance problem is the first and main problem to 
be solved. The gap problem defined as the difficulty to transform a knowledge model 
into an industrial strength, professional knowledge system was mentioned as the 
second problem. The third problem was the brittleness of knowledge system when 
confronted with problem situations just outside of their working area. The fourth an 
final problem responsible for the difficulty and risk associated with the knowledge 
system is the complexity of a the task that many knowledge system have to perform. 

This thesis established the problems are as part of and partly caused by an ingrained 
engineering metaphor. This metaphor sees a knowledge system as an artefact. Much 
like any engineering product, a knowledge system can be designed, built and 
deployed in a sound and principled manner. It is the thesis of this research that 
knowledge systems do not conform to this metaphor, and that the solutions that are 
inspired by this metaphor do not solve the practical or the scientific problems that are 
experienced. 

In the search for a global solution to the bottom-line problem and its root-problems an 
alternative metaphor was proposed based on the development of insight, rather than 
the engineering of a product. This metaphor perceives a knowledge system as a 
medium and knowledge system development as a continuous activity of knowledge 
acquisition. The research has examined the changes this would effect in different 
dimensions of knowledge system development: people, project, product, process and 
tools. It showed a number of changes that would be required to the interpretation of 
these dimensions. This included changes in the tools needed to support the changes in 
the other dimensions. The implementation and demonstration of this insight-based 



248 Chapter 8 Conclusions and Recommendations 

 

scientific metaphor has been the further subject of research. This required the 
development of tools that support this type of development as well as the use of the 
guidelines and general ideas in knowledge system development projects. 

8.1.1  Evaluation of the experiments 
This section reiterates the conclusions reached upon analysis of the cases. These are in 
effect the tests with respect to the evaluation criteria. The results of these tests are 
used to determine the justification that there exists for the different metaphors. 

People 
In the explanation created from the engineering metaphor, knowledge is hard to 
articulate by experts. They require a skilled knowledge engineer to create a 
knowledge model, which constitutes a design by formulation and formalization 
supported by a modelling activity. The scientific metaphor sees an expert as the best 
person able to conduct the modelling,. Furthermore, they are by virtue of their training 
and experience best able to appreciate possible new lessons to be learnt from the 
knowledge modelling and the application of the knowledge through the knowledge 
system. The engineering metaphor then predicts that experts cannot model, where the 
scientific metaphor would have that such a mode of operation is essential. Without it, 
continuous knowledge engineering becomes an impractical approach. 

People Test: Ascertain whether experts are capable to participate in knowledge 
modelling or can independently model their own knowledge. 

The cases show all three modes of operation: indirect, participatory and independent 
knowledge modelling. First of all, this invalidates the engineering metaphor�s 
explanation of the knowledge acquisition bottleneck. Beyond this, the results are non 
sufficiently conclusive to declare a clear preference for independent modelling. It 
appears that both participatory and independent knowledge modelling has its merits. It 
does show however, that there needs to be no impediment for independent modelling, 
making schemes such as community knowledge bases (Steels 1992, 1986) and the 
knowledge producing next medium (Stefik 1986) possible. 

Project 
The engineering metaphor presupposes that knowledge system development is a finite 
process, followed by maintenance. The insight metaphor counters this by assuming 
that this development is necessarily continuous in nature. When most changes are 
necessary in a system before initial deployment, or conversely, afterwards, this would 
indicate support for one assumption while falsifying the other. 

Project Test: Ascertain whether a project knows more change than building activity. 

Each of the cases supports the view that building is a relatively minor activity 
compared to changing. This is even true when looking at the development running up 
to deployment. The extent of the changes that are made after deployment far exceed 
the effort in the developmental stage. It is as yet unclear whether this will continue to 
be so, or whether it will stabilise or converge on a minimal upkeep effort, but the 
longer lasting cases show no obvious signs of this. More extensive and longer 
duration examination will have to show this in more detail.  
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Product 
The product of knowledge engineering is a knowledge system, and the knowledge 
model is merely a part of the design to specify that system. This engineering view of 
knowledge equates a knowledge system with any other artefact: designed, 
implemented, tested and deployed. The discrepancies between the system�s actual 
behaviour and the specification, caused by errors in the implementation or by changes 
in the specifications, are reasons to perform maintenance. This contrasts with the view 
that a knowledge system is a medium for communicating knowledge. In this view, the 
product of knowledge engineering is an ongoing knowledge model forming a theory 
of the domain, and a knowledge system is only a medium to communicate that 
knowledge. The theory will be replaced in time by a more predictive or more elegant 
theory. In this sense, a knowledge system is constantly changing as its knowledge 
model changes.  

Product Test: Determine whether changes to a knowledge system originate in its 
environment or from the invalidation of the knowledge contained within. 

Many of the cases show evidence that changes in the best theory are a main cause of 
change to the knowledge system. On the other hand, the systems also show external 
motivation for change, which is best explained by the engineering view. These 
changes were often limited to the look and feel of the system or missing auxiliary 
features. The latter does no diminish the notion of a knowledge system as a medium. 
The knowledge system may be a product, but the knowledge model is the product. It 
is similar to internet-browsers, which constitute products that nevertheless only 
provide a medium for Internet content. 

Process 
While the incrementality is a feature of both engineering and scientific approaches, 
they differ on the reasons for using it. This leads to variations in the importance of 
phases, and in the ordering of the phases. The engineering metaphor with an emphasis 
on risk and cost minimization seeks to divide and conquer, professing no preference 
for either cyclic or phase-based incrementality. Most cases in literature show 
incremental design followed by incremental development (see also Chapter 2). The 
successive adjustments and critical feedback proposed by the scientific metaphor sees 
a greater role for cyclic incrementality. This leads to the question whether the 
preferred way is to perform complete cycles or be incremental within each of the 
phases or only specific ones. 

Process Test 1: Establish whether some phases are more important than others are or 
whether they are equally important. 

Posed alongside these assumptions are the notions stemming from the science 
metaphor that the complete cycles matter more. Therefore, the discovery of 
knowledge depends on having operational models at every moment in time. 

Process Test 2: Establish whether cyclic development is more important than 
incremental division (the latter means executing phases incrementally). 

The amount of insight, measured as the amount of change to a model shows that the 
cyclic mode is to be preferred to the incremental within design and implementation. 
The cases also show that none of the phases prevails over the others in generating the 
insight. It occurs over all phases, and every opportunity to do generate more must be 
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exploited. The case studies have shown the role that application experience can play 
to some extent, but this is a relationship that warrants additional study. 

An important signal is this respect is in need for the change that is seen in the 
development of most knowledge models. The changes are not additions but seem to 
occur all over the model, leaving no part of the model in its initial form. This can be 
interpreted to mean that what can be considered correct at first may require change 
several times. This can also be taken as evidence that it is the behaviour of the system 
that must be correct, rather than the knowledge contained in the model. The inherent 
quality of the model, its consistency, is then merely a guarantee that the system will 
behave with the same quality in similar situations, rather than proof of its correctness. 
The view taken by this thesis is that the expert and the knowledge system learn 
together, sharing new insights that are discovered. This is the main reason for change. 

Tools 
The investigation of the tools, by their different philosophies, is not meant to directly 
analyse the two metaphors. Both tools are inspired by the insight-based metaphor. 
They aim to elucidate the form of support that should be given to make adjustments in 
people, project, product and process possible, and thereby facilitate the investigation 
of the metaphors. The two forms of philosophy can be summarised as simplicity vs. 
vividness. The implied distinction is that it is not possible or at least hard to allow 
both simplicity and vividness. 

Tool Test 1. A tool that can allow knowledge modelling by experts must be simple. 

Tool Test 2. A tool that can allow knowledge modelling by experts must use a vivid 
modelling language, to aid the discovery of new insight and support the changeability 
of knowledge models by experts. 

The dichotomy described by the tests above is that between simplicity and vividness. 
Increased vividness by providing more complete representation languages was 
thought to further complicate the task of non-specialist users such as the experts 
whose knowledge was to be modelled. The results show that tools based on either 
philosophy are usable by experts, with a difference in the learning curve involved. 
Furthermore, use of the KBE as a first generation tool shows definite signs of self-
imposed structure, which is constructed out of the available ground materials. This is 
not unlike the results of the analyses of experts system performed by Clancey (1985, 
1983), which showed different types of rules to exist in MYCIN and other knowledge 
systems over and beyond the rule formats and inference mechanisms. 

The benefit of the structured representation is not an improved design or realisation of 
deep models. Rather the better analysability makes it easier to spot missing concepts 
and relationships, similar in a fashion to the decision table. In addition, it allows easier 
maintenance by modularisation, abstraction, and encapsulation. It is easier to 
understand a knowledge model, locate a place for change, and it reduces the ill effects 
of such a change (e.g. change cascades). Furthermore, it improves the predictability of 
the effect of changes. Therefore, its vividness is more important for the cognitive 
mapping and its insight producing characteristics, where the level of structure is more 
important in mediating the cost of changes. 
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Synergy 
Synergy Test 1: Determine to what extent the measures on the different dimensions 
are necessary. 

Synergy Test 2: Determine to what extent the measures are influencing one another. 

The synergy between the different aspects of the approach is clearly present. It is not 
necessary to address each of the dimensions in unison, as insight will be created even 
when only one of them is addressed, for example incrementality. Nevertheless, it is 
clear that the effects will strengthen each other. The most pronounced effects are 
visible when incrementality and expert modelling combine. In the MDDS system the 
knowledge acquisition bottleneck is solved to the same extent as it is in the GARVAN 
ES-1 system. The measures are therefore certainly not independent. 

8.1.2  Metaphors 
The scientific goal of this thesis was to research a global solution to the main 
problems in knowledge engineering. These two problems, the knowledge acquisition 
and maintenance bottleneck and the gap between a knowledge model and a 
professional, industrial strength application of that knowledge, were analysed and the 
insight-metaphor was proposed to explain these problems and provide direction for a 
possible remedies. The metaphor therefore stands as the global solution to these 
problems and has shown to be able to address these problems. The previous sections 
have shown the evaluation of a number of tests that were proposed to enable the 
differentiation of the engineering and the insight-based metaphor.  

The results from the case-studies and the results from the analysis of the different tests 
show first of all that insight-based knowledge system development is not only a 
possibility, but that it is practical and a viable approach. It is an approach that has 
stronger requirements on the way knowledge systems are developed and how that 
development should be supported but these requirements are realisable, as can be seen 
from both the KBE and IO. Moreover, the approach does in fact realise benefits.  

The analysis of the cases further shows that the perspective it gives can even 
strengthen the insight created in projects driven by an engineering outlook, because of 
the incorporation of the perspective in the capabilities of the tools. The effects are 
simply stronger when more aspects are directed towards insight creation, and in that 
case show a definite synergetic effect. This indicates that the perspective rather than 
any one of the individual measures taken is the factor that determines the effect. This 
can be taken as support for insight-based knowledge engineering, and evidence that 
the explanation the metaphor gives for the problems that are experienced in 
knowledge engineering are correct. 

In addition, the cognitive model that was embodied by taking this approach, namely 
weak situated cognition is by virtue of this research strengthened as an attainable 
position, both as scientific model of cognition and a practicable next step for 
knowledge engineering. As research in this area is scarce, certainly when placed 
against the many systems created under the physical symbol systems hypothesis, this 
can feed the discussions with additional information.  

The preliminary conclusion is that the standpoint represented by the insight-based 
metaphor is a valid alternative to the state-of-the-art and other accepted measures to 
solving the problems. Further research will be required to take what has been 
proposed here beyond these initial steps towards realisation of the metaphor and 
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complete its evaluation on a time-scale more fitting with the intentions of the 
approach. 

8.1.3  Practical Problems and Solutions 
The final conclusion of this thesis is reserved for the bottom-line problem associated 
with unclear benefits, and high cost and risk of knowledge system development. The 
problem for which a possible solution was sought, leading to the scientific questions 
answered above. The question addressed here is whether the global solution, proposed 
as the insight-based metaphor and its realisation shown in the case studies, solves the 
economic, practical bottom-line problem.  

It was determined that an incremental development method was a sound approach to 
overcome the difficulties of knowledge system development that lead to the uncertain 
bottom-line, without actually addressing the problems that caused the uncertainty. It 
therefore is an approach that alleviates some of the adverse symptoms but does not 
cure the ground cause. The benefits of the approach depend on the granularity of 
incrementality, the magnitude and cost of each increment and the risk of each 
increment. As the scientific metaphor in many ways extends that which is proposed 
by the engineering metaphor, the questions that then remain are whether it makes the 
benefits clearer, lowers the cost and risk of development, and provides additional 
control given by the incrementality of the approach.  

It has been shown that the benefits from the development of a knowledge system 
using the tools described in this thesis are more easily appraised as to their benefits in 
these cases shown in this thesis. The early availability of a usable system is seen to 
focus the development of the system to be in line with the current perceived utility of 
the system, rather than a prediction of that utility. In addition, the approach lowers the 
cost and risk of development and more easily spreads them by the smaller increments 
and direct application of the model. The cost of knowledge system development is 
due mostly to knowledge acquisition and knowledge system development. The first 
requires less effort per increment due to the lowering of the number of people 
involved in knowledge modelling and better support for modifications in the 
knowledge model. The increased support for knowledge system development lessens 
the effort to build a knowledge system. The risk is lowered by tying the expert more 
closely to the project, making acceptance of the system to its users a crucial factor in 
the development and serving knowledge which is much more up-to-date. 

This has led to a more comfortable bottom-line shown in these case-studies, where 
clear decisions could be taken about which additional investments to make based on 
the proven value of the system in action. Because this proof of value is present from 
the first cycle, this clarity is there as soon as the first basic knowledge system is 
created. 

8.2 Recommendations 
In keeping with the program set out in the first chapter and in line with the insight-
based metaphor, this first increment should inform and structure the next cycles in this 
research. This section therefore describes further avenues for research and goes over 
some of the inconclusive results that need further investigating. The greatest problem 
discerned, for which additional research is essential, is to look at projects, such as the 
ones described in this thesis, over a far more extended longer period. Concerning the 
systems and the outlook given in this thesis, one can only come to true conclusions 
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when the development over a system is monitored over its complete lifetime, from 
inception to its being decommissioned. 

The tools examined in this thesis are not the only tools that could be employed; others 
may implement the features or provide similar mechanisms that may allow them to be 
employed. However, the tools described in this chapter were engineered for this 
specific purpose. Examination of the use of other existing tools can shed further 
clarity on the viability and practicality of the approach, and on the features that are 
usable to implement the guidelines. 

The case studies as described in this thesis do not provide for an easy choice or 
preference for either the KBE or IO. Both tools have their benefits and disadvantages, 
making them more suitable for certain situations. The main problem found in the KBE 
beyond its fundamental limitations has to do with the lack of structure in its 
knowledge model. This may be solved by means a few shades shy of full-blown 
object-orientation. Perhaps a division of the model into separate modules can already 
stretch the capacities of the system to enable larger systems to be used more easily 
and strengthen the structure perceived and impose by its users. The KBE is a very 
capable system for development of small-scale knowledge systems developed by the 
experts on their own.  

IO, in all its expressive richness can be improved upon by taking the visual nature of 
the knowledge. The first instalment could be to include visual UML diagrams. This 
may even include further visual ways of entering language methods using program 
structure diagrams and the inclusion of other methods that allow highly visual 
presentations, such as cross-tables, and certain forms of case-based reasoning. 
Furthermore, assistance to the users may be given by realisation of wizards built in IO 
that operate on the reflective interfaces and aid the user in creating, maintaining and 
monitoring the system. For instance, such a wizard can aid the user when creating a 
new class or association, or in more complicated example may advise the user on 
restructuring the knowledge model. Further work on IO will however be likely to 
remove the learning curve associated with it. This will then make IO the tool of 
choice when compared to the KBE. The main reason for the favourable comparison is 
the ability to support the discovery of new insights, which IO aims for much more 
directly than the KBE. 

Usage of a mature methodology such as CommonKADS adjusted to conform more to 
the process guidelines would allow explicit use of the continuous knowledge 
engineering approach, rather than the inclusion of the principles in ad-hoc or rapid 
prototyping settings. This will perhaps allow for a more principled application of the 
guidelines and create a basis for comparison to other systems built and maintained 
under CommonKADS. 

A further research approach may be to promote tools such as these that have been 
developed further to be used by the common public. Perhaps then community 
knowledge model will arise (Steels 1994, 1986) or a knowledge producing industry 
such as described as the next medium by Stefik (1992). Such investigations may show 
other processes at work than are supposed now to be operational within rapid 
prototyping and methodological views of knowledge creation and discovery.  
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8.3 Contributions 
The contributions of this research made the following contributions to the science of 
knowledge engineering: 

• Signalled the engineering metaphor as an ingrained bias in the state-of-the-art and 
research of knowledge engineering and proposed an alternative metaphor for 
knowledge engineering based on insight-development to afford a further 
explanation of the problem of knowledge engineering and inspire new solutions; 

• Presented a continuous knowledge engineering approach inspired by the insight-
metaphor; Described a first- and second-generation tool for knowledge system 
development to support the approach; 

• Showed a number of real-world practical cases employing the techniques and 
tools that were proposed, describing the quality of the proposed solution for both 
the scientific and practical problems. 
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Summary 

�Towards Continuous Knowledge Engineering�, Ph.D.-thesis by K.O. Schilstra 

Artificial Intelligence (AI) is hard to sell as a matter of fact solution. Even knowledge 
systems, AI�s economically most successful prodigy, have a bad reputation 
concerning their bottom-line. The main problems in the development of knowledge 
systems are the difficulty of knowledge acquisition and maintenance, and the gap that 
exists between prototype and industrial strength knowledge systems. These problems 
make their development a costly and risky enterprise, and create uncertainty as to the 
benefits of knowledge systems. This leads them to be perceived as experimental 
technology. 

The wish for economically sound, principled development of knowledge systems 
coupled with a symbolic view of cognition has led to an ingrained engineering 
metaphor. This metaphor inspires the current approaches to these problems to employ 
structured methodology to design and realise them according to specification. Counter 
to this a science metaphor can be placed, motivated in part by situated theories of 
cognition. This metaphor sees knowledge system development as akin to working on a 
scientific theory, successively changed and subjected to critical review. This intends to 
indulge the learning character of knowledge rather than attempt to curb its fluid nature.  

To investigate the differences between these two metaphors and their influence on the 
development of knowledge systems this research formulated a synthesis approach 
called �continuous knowledge engineering�. This approach is oriented to support an 
ongoing learning approach through its guiding principles: participation of experts in 
knowledge modelling, project management as stewardship over the complete lifecycle, 
use of knowledge systems as a medium rather than a product, and a cyclic development 
process. The approach does not aim to replace current practices, but reorients them, 
augmented with additional facilities. 

To make the approach practical, it requires support from development tools. Two tools 
were developed with this in mind. The first is a simple tool based on a visual knowledge 
representation, and is limited in its scalability. The second is a more advanced system, 
building on the accomplishments of the first tool. It extends the number of knowledge 
representations and introduces object-oriented domain models to enable vivid models. 
Both tools were put into daily practice at the Knowledge Based Systems Group at TNO 
in a number of case-studies.  

These case-studies allowed analysis of these tools and their support for continuous 
knowledge engineering. The results show that experts are indeed able to participate in 
the modelling of knowledge. The case studies further demonstrate the viability of 
stewardship through a dedicated organisation. In addition, the support to develop a 
professional system as a medium from the first knowledge model onwards is shown, 
with the knowledge system growing in specificity and completeness as the knowledge 
itself develops. Finally, the case studies show a highly cyclic process of development. 
The benefits of the approach are a gradual knowledge acquisition process, and support 
for creation and evolution of an advanced knowledge system. This lessens the cost 
and risk of knowledge system development, while it increases the clarity on the 
realised benefits. This significantly improves the bottom-line of knowledge systems.
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Samenvatting 

�Towards Continuous Knowledge Engineering�, proefschrift van K.O. Schilstra 

Kunstmatige intelligentie is moeilijk te verkopen als een vanzelfsprekende oplossing. 
Zelfs kennissystemen, de economisch meest succesvolle afstammeling van 
kunstmatige intelligentie, hebben een slechte reputatie als het gaat om de rentabiliteit. 
De belangrijkste problemen bij de ontwikkeling van kennissystemen zijn de 
moeilijkheid waarmee kennis geacquireerd en onderhouden kan worden, en het gat 
tussen een prototype kennissysteem en een professioneel, bruikbaar software systeem. 
Deze problemen maken de ontwikkeling kostbaar en risicovol, en creëren 
onduidelijkheid als het gaat om de meerwaarde van kennissystemen. Dit heeft tot 
gevolg dat ze gezien worden als experimentele technologie, en reduceert 
mogelijkheden om ze te introduceren als mogelijke, praktische oplossingen voor veel 
van de kennisproblemen in professionele organisaties. 

De wens om economisch aantrekkelijk en op onderbouwde wijze kennissystemen te 
ontwikkelen, samen met het gebruik van een symbolische theorie van cognitie heeft 
geleid tot een ingegroeide �engineering� metafoor. Deze metafoor inspireert de 
huidige aanpakken om deze problemen op te lossen door het gebruik van 
gestructureerde methodologie voor het ontwerp en realisatie volgens specificatie. 
Daar tegenover kan een metafoor van wetenschap geplaatst worden, deels 
gemotiveerd door �situated cognition�. Deze metafoor ziet systeem ontwikkeling als 
verwant aan het werken aan een wetenschappelijke theorie, successievelijk veranderd 
en onderworpen aan kritische heroverweging. Dit heeft tot doel het leer karakter van 
kennis te omarmen, in plaats van het te vermijden.  

Om de verschillen tussen deze metaforen en hun invloed op de ontwikkeling van 
kennissystemen te onderzoeken, is een synthese methodiek geformuleerd, �continuous 
knowledge engineering� genaamd. Deze aanpak richt zich op het ondersteunen van 
een continu leerproces door een aantal principes te volgen: deelname van experts in 
het modelleren van kennis, beheer van de ontwikkeling als rentmeesterschap over de 
gehele levenscyclus van het systeem, gebruik van kennissystemen als een medium in 
plaats van als product, en een cyclisch ontwikkelingsproces. De aanpak richt zich er 
niet op om de huidige praktijken te vervangen, maar om ze te heroriënteren en aan te 
vullen met additionele faciliteiten. 

Om de methodiek praktisch inzetbaar te maken is ondersteuning nodig uit de 
ontwikkelgereedschappen. Twee gereedschappen werden ontwikkeld met dit als doel. 
De eerste tool richt zich op simpliciteit, gebaseerd op een visuele kennisrepresentatie, 
en is beperkt in schaalbaarheid. De tweede tool is meer geavanceerd, en bouwt verder 
op de eerste tool. Met uitbreiding van het aantal kennisrepresentatie mogelijkheden en 
de introductie van object georiënteerde domein modellen ondersteund het de 
ontwikkeling van levensechte (vivid) kennismodellen. Beide tools werden in de 
dagelijkse praktijk van de groep Kennisgebaseerde Systemen van TNO in gezet in een 
aantal casestudies. 

Deze casestudies maakten het mogelijk om de gereedschappen en de ondersteuning 
voor �continuous knowledge engineering� te analyseren. De resultaten laten zien dat 
experts inderdaad goed in staat zijn om te participeren in het modelleren van kennis. 
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De casestudies demonstreren de mogelijkheden om kennissysteem ontwikkeling als 
rentmeesterschap te behandelen. Verder tonen zij de ondersteuning voor het 
ontwikkelen van professioneel systeem als medium voor een kennismodel, met het 
kennissysteem meegroeiend met het kennismodel in compleetheid. Als laatste laten de 
casestudies de rol zien van een proces met een hoge mate van cycliciteit. De 
voordelen van deze aanpak zijn een graduele kennisacquisitie process en 
ondersteuning voor het ontwikkelen en evolueren van een geavanceerde 
kennissystemen. Dit verlaagt de kosten en de risico�s dien verbonden zijn aan de 
ontwikkeling van kennissystemen terwijl het zicht op de gerealiseerde meerwaarde 
wordt vergroot. Dit verbetert de rentabiliteit van kennissystemen. 
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