
MSc. MKE

Real Time Eye Blink Detection using a Configurable Processor

Presented at the Faculty of EWI

of the Delft University of Technology (Netherlands) by

Remco Geert Jan Janssen

in Oktober 2010

Graduation Committee:

Prof. Drs. Dr. L.J.M. Rothkrantz

Dr. Ir. P. Wiggers

Ir. H.J.A.M. Geers

Ir. L. Dricot

Preface
AW Europe►1 is a company specialized in Automatic Transmission and

Navigation Systems. It is a world wide company, with two locations in Belgium.

One, located in Mons (Belgium) with primary goal to create and build the

Navigation systems. While the other department is located in Braine L'Alleud, under

the smoke of Brussels (Belgium). First part of my Master project is performed at the

Braine l'Alleud site at the Advanced Development Department under the supervision

of Dr. Ir. Stéphane Petti. At the start of the internship a new perception processor

was developed by a French company. The main question of AW is what this

processor is and what it could do. In order to find answers to this question, a series of

tests where performed to gain understanding of the processor.

This question was the start of the project. Besides finding the possibilities of the

processor, some constraints where put on the project. Initially a Software

Development Kit (SDK, Gloss. 2) was available that simulated the processor. Goal of

the SDK is to get familiarized with the processors methods and objects. The SDK is

implemented in C++ and provides tutorials on how to get simple examples working.

Given the way the processor works, it takes some time to get familiar with the

structure and approach (more on this in: 3.4 Theory & Concepts) but after some

reading in the tutorials it is quite easy to develop simple running prototypes. Using

the SDK, it was possible to perform some early tests with the processor. Results

looked promising and next step was to continue with the perception processor itself.

Those results and experiments led to this Thesis.

1http://www.awtce.be

iii

Real Time Eye Blink Detection using a Configurable Processor

Remco Janssen
Student No. 1274996
October 2010

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Man-Machine Interaction Group

Graduation Committee
Prof. Drs. Dr. L.J.M. Rothkrantz
Dr. Ir. P. Wiggers
Ir. H.J.A.M. Geers
Ir. L. Dricot

Abstract
This thesis describes the approach to create a real time eye blink detector using a new

perception processor. Tried is to describe how the processor works and to find out possible

fields of application. Supposed strength of the processor is it's speed combined with the

possibility of changing the configuration at run time. Since the current version is a prototype,

the perception processor is still undergoing some improvements and updates. By performing

extensive tests not only to the domain of eye blink detection, advice is given about promising

directions for further development of the processor. Ultimately, the demonstrative application

created for this thesis is robust enough to be used as a real time blink detector that can be used

in different domains of computer vision. In order to create the blink detector, a step by step

approach is taken. First, the face is located and tracked. Next, the eye region is to be found,

which should lead to real time locating and tracking of the pupils. Finally the blinks are

detected to give an indication of a persons blink rate. Goal is to find out the limitations and

the field of application for the perception processor.

iv

Acknowledgments
I would like to thank AW Europe for offering me the opportunity to participate in their

advanced development team. Seeing and experiencing what it is to work in a growing

company and how to deal with the issues evolving from such work. The ADEV team really

helped me finding my way in the company and spending quality time in the Belgian pubs.

Special thanks go to my supervisors, Stéphane Petti, Alexandra Degeest and Lionel Dricot for

stimulating me and for all the help and tips they gave me. On a personal level, I would like to

thank Blandine for her hospitality and good company during my Internship. Thanks to

Professor Rothkrantz as well, for the discussions and for giving me the opportunity to realize

my own project. His experience helped me through some of the hard times throughout my

project. Also, I like to thank the TU Delft for letting me use all the equipment needed to

perform my tests.

Furthermore, I would like to give my gratitude to my cousin, Solenn, for all that he has done

and for helping me to arrange this trainee ship. Tante Mieke, for her delicious bread and

support. I can't forget my roommates Frank Beers and Jeroen Kwast, for their enthusiasm and

for participating during the experiments. Off course, I will not forget my parents, for their

efforts and financial support. Without them, this project would not have been possible. Last

but certainly not least, I would give special gratitude to my girlfriend, Esther, for her patience

and for being there.

v

vi

Table of contents
1 Introduction ...1

1.1 Problem definition ...1

1.2 Research questions ..2

1.3 Societal relevance ..3

1.4 Methodology ..3

1.5 Project challenges ...4

1.6 Outline ...4

2 Related work ...7

2.1 Face detection ...7

2.2 Eye detection ..9

2.3 Fatigue & Blinks ..10

2.3.1 Blinks ..11

2.4 Commercial solutions ...11

2.5 Literature Study ..12

2.6 Summary ..13

3 Perception processor ..15

3.1 Hardware ..16

3.1.1 Schemes ...16
3.1.2 Setup ...18

3.2 Software ..19

3.2.1 Simulator & SDK ..19
3.2.2 Connect to the processor ...21

3.3 Communication ...21

vii

3.3.1 UDP Packets ...22
3.3.2 Speed ...23
3.3.3 Sending configurations ..23
3.3.4 Catching results ...24

3.4 Theory & Concepts ..25

3.4.1 Flows ...25
3.4.2 Colour transformations (temporal) ..27
3.4.3 Gradient transformations (temporal) ...28
3.4.4 Movement Transformations (temporal) ...28
3.4.5 Spatial transformations ..29
3.4.6 Classification ...29
3.4.7 Validation ..30
3.4.8 Histograms ..30
3.4.9 Cells ..32

3.5 Interaction ..33

3.6 Implications of interaction ..35

3.7 Conclusion ...36

4 Model & Approach ..39

4.1 Face detection ...40

4.1.1 Introduction ..40
4.1.2 Classification through color ..40
4.1.3 Classification through shape ..41
4.1.4 Classification through movements ...41
4.1.5 Eye detection ...41
4.1.6 Approach I: Side rectangles ..42
4.1.7 Approach II: Prediction ..45

4.2 Eye blink detection ...46

4.3 Test case : Driving in a car ..47

4.4 Test case evaluation ..49

4.4.1 Errors using side rectangles ..49
4.4.2 Test case conclusion ...50

5 Implementation ...53

5.1 GUI ..53

5.1.1 Goal of the GUI ...54
5.1.2 Requirements ...54

viii

5.1.3 Functionality ...55
5.1.4 External software ...55
5.1.5 UML ...56

5.2 Creating configurations ..57

5.3 Sending configurations ...58

5.4 Viewing results at run-time ...59

6 Experiments ...61

6.1 Tools and platforms ..61

6.1.1 TORCS (The Open Racing Car Simulator) 62
6.1.2 EEG Scanner & TruScan ...63
6.1.3 MATLAB ..64

6.2 Test Goals & Expectations ..65

6.2.1 Goals ...65
6.2.2 Expectations ..66

6.3 Test approach ...66

6.4 Performed tests ...67

6.4.1 Free race experiment ..68
6.4.2 EEG experiment ...68

7 Results ...69

7.1 Free race results ...70

7.1.1 Face detection ..71
7.1.2 CLEAN Race: Eye region prediction ...71
7.1.3 CLEAN Race: Blink detection ...72

7.2 EEG race results ..73

7.2.1 EEG Race: Eye region prediction ..74
7.2.2 EEG Race: Blink detection ..74

7.3 Interpretation of the results ...74

7.3.1 Vertical scanning for eyes ...74
7.3.2 Pupils ...76
7.3.3 Near blinks ..77
7.3.4 False negatives & False positives ..77
7.3.5 Glasses ...77
7.3.6 Dark eyebrows ...79

ix

8 Conclusion ..81

8.1 What is the perception processor? ...81

8.2 Applicable Domains ..82

8.3 Interface for interaction ..82

8.4 Create a tool to monitor eye blinks ...82

8.5 Detect and track human faces? ..83

8.6 Detect and track pupils? ..84

8.7 Optimal Approach ..84

8.8 Determine blink rate? ...85

9 Future work ...87

9.1 Computer Algorithms ...87

9.1.1 Threads ..88
9.1.2 High level reasoning ..88

9.2 Processor update ...88

9.2.1 Search at relative offset ...89
9.2.2 Search for circular shapes ...90
9.2.3 Combining flows mathematically ..90

9.3 Hardware updates ...90

References ...93

A Appendix ..XCVII

A.1 Links & Resources ...XCVII

A.2 Terms & Abbreviations ..XCVIII

A.3 Brain Computing Interfaces ..XCIX

A.3.1 Invasive BCIs ..XCIX
A.3.2 Partially evasive BCI's ...C
A.3.3 EEG ..CI

x

Remco Janssen 1 Introduction

1 Introduction

Since the beginning of the computer age, new technologies emerge in the blink of

an eye. People get accustomed to new devices and software to make their everyday

life easier. People demand new technologies to perform an increasing amount of

tasks. For navigation systems, this implies that giving directions alone no longer

fulfills the users' needs. Companies are constantly looking for ways to improve their

navigation systems as to close the gap between device capabilities and users

expectations. Be it in simplifying the ways of interaction, or by expanding the tasks

that can be performed.

1.1 Problem definition

One of those companies is AW Europe, located in Braine L'Alleud under the

smoke of Brussels. Through the acquisition of a new prototype processor, which

enables to find the location of the eyes, tried is to find ways to expand the

possibilities of a new generation of navigation systems. This processor, designed to

mimic task in the same fashion as the human brain, offers a whole lot of new

possibilities. What tasks can be accomplished by the processor and how well do they

perform compared to well known or established techniques? Given the prototype

stadium of the processor, it's an illusion to think the processor can outperform the

existing techniques, but the flexible nature could result in a solution applicable to a

wide range of problems.

1

 1 Introduction

More specific, the domain of blink detection is chosen as a test case to test the

performance and reliability of the processor, since blink detection is a known

problem and is known for it's complexity given the fact that blinks typically occur

very fast and appear in a small area of the human face. How well can the processor

perform in this area and what other possibilities are present to which the processor

can be a useful tool.

1.2 Research questions

Goal of the project is to determine how well the perception processor can perform

in the domain of blink detection inside a car environment by using low cost

hardware without disturbing the driver? To find the answer to this question a

number of sub problems are posed:

■ What is the perception processor, how does it work and what problems can

be solved by it?

■ In what domains can the perception processor be an added value?

■ Design and Implement an easy to use interface for interacting with the

perception processor.

■ Create an easy to use tool to monitor the eye blink rate while the perception

processor is running.

■ Can the perception processor detect and track, in real time, the human face

within a sequence of images?

■ Is it possible to extract the location of the pupils in real time using the

perception processor?

■ What is the optimal way to find and track in real time the face, eye locations

and pupils using the perception processor within sequence of images?

■ Do the extracted features provide sufficient and reproducible data to

confidently determine the blink rate?

2

 1 Introduction

The sub problems will lead to clues as how to answer the overall problem of this

thesis, namely, how will the perception processor behave in a real life environment

using low cost hardware to solve the blink detection problem.

1.3 Societal relevance

Several studies have shown that driver inattention or micro sleeps behind the

steering wheel is one of the main causes for accidents on roads [1][2][3]. By

enhancing the capabilities of the new generation of navigation systems, the amount

of distraction for the drivers is increased as well. Other research has shown as well,

that a persons blink rate directly relates to a persons alertness level [4]. By using new

technologies available to manufacturers it might be possible to reverse the trend of

increased inattention into a tool to prevent distraction. Not only for drivers on the

road, but all systems depending on real time detecting and finding objects, the

processor could prove to be an added value.

1.4 Methodology

To optimally create and test the application running on the processor, the

following steps have been executed:

3

 Problem Definition:

“How well can the perception processor perform in the domain of

blink detection inside a car environment by using low cost

hardware without disturbing the driver?”

 1 Introduction

1.5 Project challenges

The main challenge within this thesis is to create a well performing prototype that

is capable of real time blink extraction under different lighting conditions and on

different people. Since the proposed solution should be a relatively low cost solution,

no high speed or infra red cameras will be used. Furthermore, a solution without any

wearables is preferred since we don't want to trouble the driver with such

distractions. By using those kinds of hardware, the overall performance can probably

be improved.

1.6 Outline

First of all, a summary of related work in the field of Face and Blink detection is

depicted in Chapter 2 Related work. After a brief review, a description of the

processor itself along with terminology involved when working with the processor is

given in Chapter 3 Perception processor. Chapter 4 Model & Approach, gives a

4

 Table 1: Actions performed for this thesis.

Duration Action Goal
2 months Literature Study Gain knowledge about Face and Blink Detection

methods
1 month Learn SDK

Simulator

Learn to use the concepts involved in working

with the processor
1 month Perform SDK tests Test performance and techniques to create

working applications
4 months Design &

Implementation

Create an easy to use interface for adjusting the

processor settings and monitoring the output
1 month Data Acquisition Acquire data for measuring the processor

performance
4 months Analyze

Performance

Perform the analysis to give a final judgment

about the processor performance.

 1 Introduction

description about the approach taken to tackle and solve the problem stated before.

Chapter 5 Implementation will explain all the details of the chosen implementation

for the Blink Detector. The tests performed during this Thesis are explained in

Chapter 6 Experiments and the results of those tests will be presented in Chapter 7

Results. Finally, a conclusion to the posed questions is given in Chapter 8

Conclusion, followed by a series of recommendations for future work in 9 Future

work.

5

 1 Introduction

6

Remco Janssen 2 Related work

2 Related work

Summary. A brief description of related work done in the fields of Blink- and

Drowsiness Detection.

Much work has been done trying to create fully automated, real-time systems that

are able to classify faces, and emotions. Within this thesis, focus lies on detecting

blinks as to get an indication for driver distraction. The problem of blink detection

can be tackled in many different ways, but nearly all of them sub divide the problem

into face detection, eye/pupil detection and finally blink detection.

2.1 Face detection

Approaches to detect faces within images or sequences of images are not a novel

idea. Ever since the arrival of computers, people have been trying to detect and track

faces on digital images. One of the best known solutions to face detection is the

Viola Jones algorithm [5]. This techniques uses a tree hierarchy to quickly scan an

image for specifically designed features. Implemented on a conventional desktop face

detection proceeds at 15 frames per second. Many improvements have been

proposed and implemented for the algorithm, resulting in techniques with even

higher frame rates. The Viola Jones algorithm is so wide spread that it even made it's

way into Intel's OpenCV library [6] for Computer Vision as a standard

implementation for face detection. Figure 1 shows the result of the standard openCV

7

 2 Related work

solution for eye detection. Although this method provides good results, the Face

Detection problem is far from solved. Phenomena like occlusion, head posture,

position and facial hair can still be difficult to overcome.

Still, other solutions exist. Feraud et al, 2001 [7] use Neural Networks and

Rajagopalan et al. 1998 [8] use Higher order statistics. So far, the Viola Jones

detector seems to be most popular. Some critics argue that when used on a processor,

such a detector would eliminate the need for the perception processor. But, again,

stressed is that such a processor would be limited towards face recognition versus the

flexibility of the perception processor. Those kinds of processors can be found in

modern photo camera's.

8

 Figure 1: Result of using the standard implementation of the openCV library using haar cascades
for detecting the eyes.

 2 Related work

2.2 Eye detection

Some research for eye detection has been devoted towards using special lighting

conditions to extract the pupils. Most efforts use multiple light sources [9], near infra

red lighting conditions [10], or actual infrared illumination techniques [11] making

use of the unique intensity distribution or shape of the eye. With the constraint of

using a regular camera, these options are not suitable for this thesis. Other research

focuses on traditional image based methods for eye detection. These methods can

roughly be classified into three categories:

■ Template Based

■ Appearance Based

■ Feature Based.

Template based methods usually make use of a pre-defined model based on the

spatial characteristics of the eyes [12][13]. Template matching is then used to

determine the location of the eyes. A common addition is the use of Hough

transforms, as proposed by Nixon [14], to enhance the fitting of the model onto the

eyes. Appearance based methods try to detect the eyes by looking at the visual

appearance of the eyes rather than the spatial characteristics [15][16]. These

techniques usually require large training sets of data to train neural networks, vector

9

 Figure 2a: Results of Face API. Figure 2b: Results of Beta Face.

 2 Related work

machines or other learning algorithms to perform well. Extensions to this approach

include the use of EigenFaces [15], wavelets and sophisticated classifiers such as the

RBF NN classifier [16]. The Feature based approach basically looks at anything that

is discriminative for a specific feature. This includes edge orientation, intensity and

color distributions [17][18][19][20]. Kwatao et al. do not use the eyes themselves.

Instead, features between the two eyes are used to derive the eyes location from [21].

Tian et al. [22], proposed a new technique by using a modified version of the well

known Lucas-Kanade algorithm [23]. Once the eyes have successfully been detected,

a common approach is to track the eyes using a Kalman filter, which essentially uses

physical laws, dynamic models and sensor measurement to form an estimate of the

system's varying quantities.

2.3 Fatigue & Blinks

One of the interesting things that can be achieved by using the before mentioned

techniques is to apply the techniques for usage within practical applications. One

particular interesting topic for a company creating navigation systems, is to create a

drowsiness detection system. A lot of effort has gone into creating fully automatic

drowsiness detectors. The main problem in classifying drowsiness is how to measure

the entity. EEG scanners can monitor brain waves which can give an indication of

the level of fatigue. Different researchers have different hypothesis as to what is the

indicator for drowsiness. Some argue that the disappearance of alpha activity in favor

of Delta activity is viewed as crucial [24][25]. While others mark the increase of

power in the Alpha-Theta band as important [26][27]. While trying to find the

exact discriminator for fatigue, others have moved on using other techniques, while

EEG scans are not very practical to apply in field situations. Those other efforts

mainly focus on oculomotoric parameters.

10

 2 Related work

2.3.1 Blinks

Blink frequency and duration remain the best examined oculomotoric indicators

for current alertness state and and drivers ability to react to environmental stimuli

[28][29]. It is well known that fatigue is associated with increased blink frequency.

Blink an increased blink rate can also be an indicator for increased emotional activity.

Thus, a lot of research is devoted to extract the meaning of increased blinks, blink

duration and saccades. Hargutt [28], concluded that a state of light fatigue was

indicated by an increased blink rate alone whereas the transition from severe

sleepiness was accompanied by increased blink duration. Some argue, that blink

frequency and blink duration have to be considered as two independent factors in

blink behavior. A lid closure that lasts for more than 500 milliseconds and covers the

pupil for that period is usually described as a micro sleep. However, lid closure alone

is insufficient to detect severe sleepiness for all people.

2.4 Commercial solutions

Face API is a tool designed by SeeingMachines [30]. It can be used to track faces

in real time. It uses the feature points of a 3d model, to find and track faces in real

time.

11

 Figure 3a: Results of Face API. Figure 2b: Results of Beta Face.

 2 Related work

FaceAPI provides a robust solution and can even deal with rotation and occlusion to

some extend. Beta Face [31] is another commercial product that can be used for

finding and tracking faces. Although both products provide real good solutions, they

only offer a solution to a specific problem, namely Face Detection. Trying to

perform other tasks, such as blink detection would be possible, but requires a

completely new approach. Resulting in yet another round of optimizations and

tweaking of parameters for optimal performance. The potential strength of the

processor approach is that the processor is configurable and can be used for a wide

variety of tasks. Not all as good and robust as the specialized solutions, but it

hopefully good enough to be used to tackle real life problems.

2.5 Literature Study

The perception processor is designed to focus on perception rather than image

processing. The idea is that, the more one perceives, more the understanding is easy.

A literature study has been done to learn all the ideas and concepts behind the

perception processor, as well as related techniques and other solutions. The results

are presented within the literature study [32]. Upon finding the best approach for

blink detection, several preliminary tests have been performed (see 4 Model &

Approach). Goal is to find a robust method for detecting eye blinks in real time.

Once a robust method has been developed, the prototypes can be used to ultimately

create a drowsiness indicator for drivers within a car environment. This final step

however, is not part of this thesis. Once more details are known between the relation

between blink frequency and duration and saccadic speed, an first step towards a

drowsiness detector can be created.

Other areas of research go even further. Some research is focussed on Emotion

detection, in which, face and eye detection are a sub problem as well. An automated

recognition system for facial expressions has been created by Pantic et al [33], but the

eyes have to be identified manually. Datcu et al [34], have improved this technique

12

 2 Related work

further and combined the expert system with automatic localization of the eyes but

has a frame rate of 5fps, indicating that it quit hard to do eye detection fully

automatic and high frame rates.

2.6 Summary

A lot of work has been done in the different fields prior to blink detection as well

as to blink detection itself. However, most solutions that are fast enough to be used

for real time blink detection are optimized for specific tasks. Even when providing

good results under different conditions, the proposed solutions can be used for one

thing only. The biggest advantage of the processor would be that it is highly

configurable and can be configured to solve problems in the areas of Face Detection,

Blink Detection as well as Factory chain monitoring, Traffic monitoring and

Robotics. This wide range of applicable situations is inherent to the flexible nature of

the processor since it does not require extensive training. Off course, the processor

can be used in conjunction with Artificial Intelligence techniques to provide more

stable results, but the basic idea is that it should be able to perceive anything

independent of color, size, shape or orientation.

13

 2 Related work

14

Remco Janssen 3 Perception processor

3 Perception processor

Summary. Concepts that originate from biology have been the inspiration for the

perception processor. This chapter describes the underlying ideas, the schematics of the

processor and finally describes how to use the processor. Both hardware and software

configurations are discussed.

The processor (Figure 4) used for this project is called: “Perception Processor”.

This name comes from the way the processor is designed. Tried is to mimic some

important characteristics of the human visual system.

The circuits try to capture the existing properties of the human visual system. This

includes adapting to background lighting, tracking relative movements of objects,

anticipating their movements and learning to detect certain objects. The circuits are

inspired upon processing principles observed in populations of retinal and cortical

15

 Figure 4: The Perception Processor is capable of delivering 100 frames per second.

 3 Perception processor

neurons. Aim is not to get a complete neuronal implementation, which is very costly

in electronic circuits, but rather capture as simple as possible the adaptive properties

of the neural processes.

3.1 Hardware

To capture these adaptive properties, the processor consists of 16 individual cells.

These cells can be configured to perform different tasks. For example, a single cell

could be configured to select only pixels moving faster than a certain threshold. All

pixels of the image that have moved within the set criteria are than selected. Through

majority voting, the biggest group of those pixels are considered a group, and can be

tracked over time. These groups are called Regions Of Interest or ROI. To track a

ROI, a cell must:

■ Select the pixels that meet the desired criteria

■ Store the location of the ROI for later retrieval.

How this is done in the electronic circuits is described in the next section: 3.1.1

Schemes.

3.1.1 Schemes

Figure 5, shows the rough schematics of the processor. The sensor's output is split

into sequences of images. One single image is considered to be part of the Spatial

Domain. In the spatial domain, the processor can follow and track the locations

Regions of Interest (ROI). The output of the spatial domain is send to a Spatial

STN. At the same time, the sequencer stores images and cross references them with

new images, to form the temporal domain. Within the temporal domain, parts of the

image like colour, movements and orientation of edges can be extracted. The

temporal output is send to a temporal STN.

16

 3 Perception processor

This structure allows to search within image sequences for all kinds of interesting

parts and extract the location of those interesting parts. Details of a single STN can

be seen in Figure 6.

The writing registers must be configured through the API, before the processor will

produce some usable results. The results can be retrieved directly by the API as well.

17

 Figure 5: Sensor output is split into spatial and temporal cues, which are send to a cell. The cell
itself consists of two separate STN's.

 Figure 6: Schemes of a single STN.

 3 Perception processor

Like mentioned before, the prototype used for the project consist of 16 of such cells.

Each cell capable of performing statistical analysis in the temporal as well as the

spatial domain.

The complete processor layout is shown in Figure 7. As an input, a camera has to be

connected to the input, and a UTP cable is required to write to and read from the

cell registers. More on how to use the processor is described in the section: 3.1.2

Setup.

3.1.2 Setup

The input of the processor can be a camera, DVD player or even a web cam, as

long as it is fitted with an analogue output. To read and write from the cell registers,

a UTP cable is required, resulting in the configuration shown in Figure 8.

Furthermore, a power supply is needed to power the processor. Throughout the

project, different power supplies have been used.

18

 Figure 7: Schemes of the prototype processor, consisting of 16 individual cells than can be
interconnected.

 3 Perception processor

3.2 Software

Now the hardware has been discussed, this section will focus on the software that

is needed to get the processor to work. The first way to work with the processor is by

using a simulator to get to know the concepts and the methodologies. The processor

comes with an Software Development Kit (SDK) that can be used to gain

understanding in the concepts used to work with the processor. Using the simulator

is described in detail in: 3.2.1 Simulator & SDK .The simulator does not require to

actually connect to the processor, while it is a pure software implementation. To

really get started with the processor, one has to connect to the processor and send

hexadecimal packets to configure the processor. Everything needed to do this is

explained in: 3.2.2 Connect to the processor. Either way, all software is implemented

for usage on Linux machines. Throughout the project, Ubuntu 8.10 Intrepid Ibex

has been used.

3.2.1 Simulator & SDK

An SDK has been developed to simulate working with the processor. The SDK

runs on Linux and is implemented in C++. The simulator can be used with the

Eclipse IDE (Res. 1) in combination with the CDT plug-in. When running the

19

 Figure 8: Required configuration to work with the perception processor.

 3 Perception processor

simulator, typically a web cam is used as the input for the simulator. Additionally,

the openCV (Res. 4) library is used for different functions in the simulator.

An screen shot of one of the first applications created using the SDK is shown in

Figure 9. It is an early blink detector using a single cell to detect skin color. Inside

the skin rectangle is looked for big dark regions. This result in one area containing

both eyes, and another region containing the mouth. Finally, inside the biggest of

the two, yet two more cells look for the darkest areas. This configuration worked

surprisingly well. However, since it runs on the SDK simulator, e.g. without the

actual processor, the frame rate is very low (around 3.5 fps). As can be seen in the top

of the figure.

20

 Figure 9: Early Test using the Simulator only.
 This screen shot shows a simple blink detector running on the simulator. First the face is detected,
within the face a new cell is searching for dark horizontal areas. Yet another cell is looking into the
horizontal areas for small dark features. Based upon the height of the squares it is possible to extract
blinks. This example shows a possible result of using the SDK simulator, but as can be seen the frame
rate is around 3.5 fps, which is too slow to use in real time systems within a car environment.

 3 Perception processor

3.2.2 Connect to the processor

After some preliminary tests with the simulator, it's time to really connect to the

processor. This is completely different from working with the simulator in the sense

that there is no need for an IDE. The only way to work with the processor is by

sending hexadecimal packets to the processor, and catching the returned packets send

from the processor (more on the communication in: 3.3 Communication). To

accomplish this, NetCat (Res. 3) can be used on Linux systems. Besides sending and

catching packets, the images send from the processor have to be shown using

Mplayer (Res. 2). Mplayer is used to catch images from an Realtime Transport

Protocol and display them on a computer screen. The images captured include the

results of the processor. E.g. if a face classifier is used, the rectangular boundaries are

included in the images.

3.3 Communication

The main advantage of the Perception Processor is that it allows for very fast

computations. Many processors have been devoted towards executing a single

predefined task. Whereas the perception processor is suitable for a much broader

collection of applications. It is highly customizable since it can be configured at run

time. Communication takes place through the use of User Datagram Protocol

(UDP) packets. The UDP protocol has the advantage of causing less overhead

compared to for example TCP protocol. One advantage of this protocol is that there

is no need for hand shaking. This allows for less overhead, but can also be a

disadvantage, since there is no guarantee that the packets will arrive at the

destination.

21

 3 Perception processor

3.3.1 UDP Packets

Communication with the perception processor occurs through the sending of

UDP packets. UDP packets are very small in size and are often used when speed is of

the essence. Since the perception processor has to respond in real time, UDP seems

like the right protocol for the job. The protocol does not guarantee that the packets

arrive at the destination. UDP packets are strings of hexadecimal numbers which

represent data. All packets consist of a header, with some information about the

packet, followed by the real data in the packet. Depending on the header, one can set

criteria for classification, connect flows to cells, or connect multiple cells together.

AW Wiki contains extensive documentation on which hexadecimal codes are related

to what actions. Figure 10 shows roughly what the UDP protocol looks like. The top

part in the figure is the UDP standard header. The lower part is a custom header for

the processor itself and that is the part that has to be send to the board. A packet can

vary in size from 50 bytes up to around 60 kilobytes, but on average packets do not

exceed 512 bytes.

Creating all packets needed to configure the perception processor for a specific task

requires patience and alertness for the inexperienced programmer. To make life

easier, a tool was developed to create, edit and send the packets to the perception

processor. This allows to create packets without knowing the exact structure of the

implemented protocol. More on this tool is to be found in chapter 5:

Implementation.

22

 Figure 10: UDP Protocol structure to work with the perception processor.

 3 Perception processor

3.3.2 Speed

Using UDP packets to communicate with the perception processor results in very

high frame rates. Frames are being send to the computer through an RTP stream and

the frames are being send 100 times per second. However, the camera used for

recordings operates at a speed of 25 fps. This means that all frames recorded by the

camera are evaluated 4 times. Note, that this speed is the optimal performance and

such speeds cannot be achieved during more complex operations (more details on

this can be found in 3.6 Implications of interaction).

3.3.3 Sending configurations

To send the a specific configuration to the perception processor, initially a

command line tool was available. Using a simple texteditor it is possible to write the

packets and save them in a file. Using the command line, these packets can than be

send to the perception processor. Figure 11, shows such a text file. This specific

example enables the perception processor to find and track the biggest moving object

in scene.

As can be seen in the example, the file consists of a couple of instructions. The

commands consist of a general code +100, followed by a reference to a specific

register 2166, and finally the hexadecimal code for the value to write to the register,

in the first case 04010300. This file can than be send to the processor by the

following command in the command line: BVSplay <scriptfile>
<destinationIP> <destinationPort>.

23

 3 Perception processor

3.3.4 Catching results

After configuring the processor, results can be retrieved from the perception

processor by sending a specific result packet. Once this configuration packet is send

to the processor, the processor sends hexadecimal results back to the computer. An

example of such a result is shown in Figure 12. This code includes information about

what cell it belongs to, what configuration is used for that cell, as well as some

statistical data about the results. E.g. searching for a face results in a packet that

contains detailed information about the histograms.

24

 Figure 11: An example of a configuration to track the biggest object within a scene.

 3 Perception processor

3.4 Theory & Concepts

Knowing the internal structure of the processor is one part. This section will focus

extensively on the Theory & Concepts behind the processor. How it works as well as

the limitations of the processor. One of the main concepts of the processor is Flow.

Flows are transformations of an image, that contain a certain aspect of data. These

flows can easily be obtained by performing different matrix transformations of the

input image, transforming them into a specific domain.

3.4.1 Flows

Flows can, like images, be considered as a two dimensional matrix. A flow is the

transformation of an image into another image (or matrix). Let I be an image whose

dimensions are m×n . I is constructed of RGB colour values :

I={I r , I g , I b} , (1)

25

 Figure 12: An example of the results being send from the board to the computer.

 3 Perception processor

where I r , I g and I b are the red, green and blue components of the pixels of I. To

convert I to the more useful Hue, Saturation, Value representation (Figure 13:

Colour spaces. , shows the HSV colour space). Then H, S and V are defined as:

V m ,n=max {I r m,n , I g m,n , I bm ,n} (2)

S m ,n=V m,n−C m ,n∗255/V m,n
0

if V m,n!=0
else

(3)

, where

C m ,n=min {I rm ,n , I gm ,n , I b m ,n}

and,

H m ,n=
0 I gm ,n−I bm,n∗60/ Sm,n
120 I bm,n−I r m,n∗60/S m ,n
240 I rm ,n−I gm ,n∗60/ S m,n

if V m ,n=I rm ,n
if V m ,n=I gm ,n
if V=I b m,n

(4)

Then, any image I, can be transformed into their respective Hue or Saturation or

Value representation by multiplying the original image by one of the defined

transformations.

I hue=I⋅H , and I saturation=I⋅S , and I value=I⋅V (5)

These transformations can be useful, because it allows to observe or perceive an

image from a different perspective. Figure 14 shows an input image and the

corresponding transformations to the HSV domains. The transformations (2),(3)

and (4) operate on the colour domain. They represent the RGB channels of an image

in a different way. Currently only transformations to the HSV colour space (Figure

13: Colour spaces.) are possible. While other colour spaces exist, the HSV space has

been proven to be very useful in the field of face detection. Not only colour contains

important information about the objects within an image. The structure of the

objects, edges and contrast contain viable information as well. Other transformations

exist to be able to extract different information about the objects within an image.

All the different kind of transformations yield image representations suitable for

different approaches. Below is a list of the four different categories of transformations

currently available:

26

 3 Perception processor

■ Colour transformations

■ Gradient transformations

■ Movement transformations

■ Spatial transformations.

Colour, gradient and movement transformations are known as Temporal Flows as

opposed to Spatial Flows, that only deal with x and y locations of pixels.

3.4.2 Colour transformations (temporal)

Colour transformations can transform an image to HSV colour space. This

transformation can be used to look for specific colours in HSV space. The “Value” is

actually the Luminance representation. Figure 14 shows how a source image is

transformed into the respective flows2. The numbers behind the explanation indicate

the range of the values obtained after the transformation.

2Different colours can have different values. E.g. the colours in the Oriented edge indicate the
orientation of an edge [0, 2555], while the colours for speed represent the values between [0,10].

27

 Figure 13: Colour spaces.
 (Left) Hue is the angle between 0 and 360o, saturation is the radius and Value is the height of the
cone. Note that when the value is zero, all colours are black and the Hue and Saturation values have
no effect.
 (Right) Lighting conditions affect the RGB colours of an image, the Hue and Saturation are
maintained however. The difference in light can be seen in a change of the “Value” component. These
two pictures show why it is easier to work with Hue and Saturation in face detection, since they are
more or less fixed with changing lighting conditions.

 3 Perception processor

3.4.3 Gradient transformations (temporal)

Gradient transformations allow to perceive texture. They can transform images

into edge representation, oriented edge representations or curvature representations.

This set of transformations allow for edge detection, and detection of specific shapes.

Figure 15 shows the differences between those representations.

3.4.4 Movement Transformations (temporal)

Last but not least, a set of movement transformations are defined. The movement

transformations take into account time, and they give information about the

direction of movement as well as the speed of movement of all pixels. Additionally a

28

 Figure 14: From left to right, The original input image and the corresponding transformations to
Saturation [0,100], Hue [0,255] and Luminance [0,255] respectively. Different transformations reveal
different information about the objects within the image.

 Figure 15: Source, Oriented Edge [0, 255], Curvature [0,255], Edge[0,255].

 Figure 16: Source, variability of Luminance [0,7], Direction [0,8], Speed [0,10].

 3 Perception processor

flow to measure temporal variability of luminance is included. Figure 16 shows how

those representations look when applied to a source.

3.4.5 Spatial transformations

Additionally to the flows mentioned before, spatial flows are implemented. The

spatial flows, as opposed to temporal flows, define transformations in the X and Y

plane. In the sense that they are used to calculate the distance from the left and

bottom of the image respectively. They are especially handy, when objects have been

isolated from an image, and the location of the isolated object needs to be computed.

The next section will discuss how to isolate objects using flows.

3.4.6 Classification

Classification is the process of setting criteria for pixels. And the goal is to separate

the good from the bad. The result of classification is a set of pixels that meet the

criteria given. Suppose we have want to classify our input image I, for hue values

smaller than 200, then the resulting image I hue200 for pixel located at (m,n) is

defined as:

I hue200m ,n=
1
0
, if H m ,n200
, else . (6)

29

 Figure 17: Classify the input image (left) on Hue values < 200. Result is on the right.

 3 Perception processor

where H is the transformation to Hue values [Eq. (4)]. As an example, the result of

this classification is shown on a given input image in Figure 17.

Once a flow is applied to the source image, setting classification criteria leads to an

image where only pixels who met the criteria are visible. In terms of matrices this

means that after classification one has a matrix filled with either 0's (indicating not

meeting the criteria) or 1's (does meet the criteria). Since these matrices are usually

sparse, calculations can be very fast and efficient [35].

3.4.7 Validation

Validation is the process of combining multiple classifications into a single

representation. It is possible to invert the classified results before applying the

validation process to it. This way, results can be re-used in different ways to make

powerful combinations. Let A be the result of classifying pixels with Speed > 5

pixels / frame, X be the result of classifying pixels with x-location < 120, and Y be the

result of classifying pixels with a y-location > 400 in an image whose dimensions are

m×n . Then the validated Image is calculated as followed:

I validated=A speed5∩X x120∩Y y120 . (7)

In words, this expression means, look in the upper left corner of an image and find

pixels that are moving with a speed higher than 5 pixels per frame.

Here's what the corresponding matrices could look like in an 4×4 image:

I validated=[1 1 0 0
1 1 1 1
0 0 1 1
0 0 0 0]∩[

1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0]∩[

1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0]=[

1 1 0 0
1 1 1 0
0 0 0 0
0 0 0 0]

(8)

3.4.8 Histograms

Histograms are another important feature. Histograms are a common way to

visualize statistical data and to perform statistics on large data sets. Histograms are

used to do statistical calculations. The way the calculations are performed can be

configured. Figure 18, shows a histogram and the parameters and need to be

30

 3 Perception processor

configured. All histograms have a minimum value (min), a maximum value (max), a

median, a highest peek (posrmax), the value of the highest peek (rmax) and the

amount of energy of the function (nbpix). The bval parameter has to be specified

enable partial selection of the histogram.

Essentially, histograms offer additional tools to select certain pixels. They can be

configured to focus on the highest peek, and disregard the rest of the histogram. This

removes pixels from the image in the same fashion as classification does, but

histograms parameters can directly be used in the classification for other flows. E.g.

the boundaries of a histogram can be used as criteria for classifying another flow.

Figure 19 shows a classified image, where Hue and Saturation flows have been used

to select those pixels in the range of Hue[0,200] and Saturation[50,150]. The Y

projection of this image, is the Y histogram that you can see on the left most part of

the image. The X histogram is a projection of the classified image (visible in the

bottom of the image). The bval parameter is the one that has to be configured on the

board, in the example it is defined as follows:

bval x=
rmax x
2

and bval y=
rmax y
2

. (9)

31

 Figure 18: Histogram with main parameters.

 3 Perception processor

where rmaxx ,rmax y are the value of the maximum peek in the X and Y histograms

respectively. Now the new minimum and maximum values of the X histogram define

the position and width of the selected pixels while the Y equivalent defines the height

of the selecting pixels, forming a square of pixels.

3.4.9 Cells

All of the concepts mentioned are used within a single cell. Thus, one cells needs

to be configured to use spatial flows and a temporal flow. The classification process is

applied to the configured input flows and the resulting pixels will be used to calculate

the histograms. The current processor version uses a total of 16 cells. The output of a

single cell, can be used as the input of another cell as well. By using inhibition and

32

 Figure 19: X and Y histograms as obtained from analyzing a classified image.

 3 Perception processor

cross validation, cells can be configured to look within the results of another cell.

Figure 20 shows the layout of one such cell.

This kind of layout can lead to hierarchical structures which can be used to search in

depth for specific geometrical features like, for instance, the pupils within an eye, or

teeth within a mouth region.

3.5 Interaction

Using all the before mentioned techniques, the processor can be configured for

different tasks. Some of them can be used to create an independent configuration.

For example searching for moving objects, one only has to send a few commands (see

Figure 11). The processor will only select pixels that are moving more than the

specified number of pixels. From this classified image, histograms are extracted.

Those histograms are used to draw rectangular boundaries around the classified

pixels, based upon the histogram configuration. The next frame, the boundaries are

expanded, and the pixels inside the boundaries are classified again. This will reduce

the area to search for pixels. This new expanded area will be used to calculate

histograms again, to draw the new boundary. This process causes the perception

33

 Figure 20: Layout of a single cell. A total of 16 cells are present on the perception processor.

 3 Perception processor

processor to track and follow the moving object. Result registers are used to store the

position of the classified region, as well as statistical data about the number of pixels

inside the classified region. These result registers can be used directly by other cells,

to search within that region. This direct usage of the result registers is the preferred

way to connect multiple cells together like a chain, because it allow the processor to

run at it's highest speed. This setup is shown in Figure 21.

If, however, the result registers cannot be used directly, it is possible to retrieve the

results, and perform additional calculations on those results. Followed by sending

new parameters to the processor. This can be the case when you need to interpret the

results of a cell and take appropriate follow up actions. Think about situations where

you want to validate a result. For example, when a face is found we want to start

looking for the eyes. However, it might be possible that the region classified as a face,

is actually a window. Without a check, we would look for the eyes within the falsely

classified window yielding false results. If we where to check the location and

dimensions of the classified region, we might conclude that indeed we are dealing

with a falsely classified region, and start looking for the actual face elsewhere. Thus

we need to check to location and dimension and send updated parameters based

upon the whether or not the classified region seems valid. An example of such a setup

can be seen in Figure 22.

34

 Figure 21: Stand alone setup. Requires a single configuration being send, where after the processor
can run stand-alone. This can only be achieved when the result registers do not need to be evaluated
for further analysis.

 3 Perception processor

This second setup, reduces a lot of the performance of an application. Since the time

to retrieve the results, perform the calculations, and send the new parameters back

takes a significant amount of time, this slows down the overall performance of the

processor.

3.6 Implications of interaction

There are some downsides to the setup where the results are being retrieved, used

for calculations and then being resend. The main disadvantage of this technique is

that it affects the operational speed by intervening in the processors work flow by

constantly sending newly calculated configurations.

Once the board is configured to perform a specific tasks, results are send back from

the board at a maximum of 100 times per second, c. When those results need to be

interpreted by some high level analysis system, the time left, t, available for the

system without missing any frames is given by:

35

 Figure 22: Intervention setup: The results are being retrieved, and based upon some new
calculations appropriate actions can be taken.

 3 Perception processor

t= 1
f max

−
1
c .

(10)

where f max is the operational frame rate of the camera. And c is the upper bound of

the perception processor (100 in our project). Additionally, this means that when the

camera captures images with a frame rate equal of higher than c, some frames cannot

be processed real time.

Thus, if the time of performing the calculations on the computer exceeds t, frames

will not be processed. In the case of blink detection with a 25 fps camera, this is not

acceptable. Ideally, as much logic as possible should be performed on the processor

side. The current version of the processor used for this Thesis, was only a prototype,

and therefore not all functions where implemented and/or available yet. Hence,

sometimes we really need to interact with the processor in order to get stable results

while taking the risk of loosing frames.

3.7 Conclusion

Concluding, the processor is not an image processor. All traditional algorithms

used for optimizing images can be implemented on a compute running along side

the processor. Standard techniques like increasing contrast, flood fills and noise

cancellation are not part of the standard features of the perception processor. It uses

matrix transformations instead to classify regions of transformed images, and uses

Histograms to do statistical analysis on those regions. By combining tasks, a chain of

cells can be connected to detect blinks within a sequence of images. Since the area

within an image where blinks occur is very small, the suggested solution is to find the

eyes before looking for blinks. With similar reasoning it is suggested to start by

finding the face even before the eyes. A solution to finding blinks, hence consists out

of a chain (see Figure 23). The main advantage of the processor is that it is very fast

and that it is flexible for multiple purposes. We would like to find out what the

36

 3 Perception processor

limits are with respect to complexity and speed. Obviously there is a trade off

between the complexity and the operational speed of the processor.

37

 Figure 23: Chain for detecting blinks. First the face has to be detected. Next a search for the eyes is
performed in the face portion. Finally, the width/height of the eyes will be used to determine whether
or not a blink has occurred.

 3 Perception processor

38

Remco Janssen 4 Model & Approach

4 Model & Approach

Summary. This chapter describes the architecture, design of the model as well as some

preliminary tests performed to get an indication of which approach to take for the final set

of tests.

So far we discussed the underlying concepts of the perception processor as well as

the terminology used. The ultimate goal is to create an application capable of

detecting blinks within a car environment. Two specific reasons steer the project

towards blink detection. First off all, blinks are directly related to fatigue [4], which

by itself is a thread to safety on roads [1]. Since AW, as a producer of navigation

systems with an increasing amount of functions, is itself also a part in the distraction

problem, it is very interesting for AW to look at counter measures to increase safety.

Basically, it is a very lively and interesting subject. Second, blinks are hard to detect.

Pupils are relatively small, blinks occur very fast, and the lighting conditions change

very rapidly within a car environment. Therefore, creating a blink detector generates

a good understanding about how well the perception processor is able to perform

under these conditions.

The problem of blink detection is divided into three sub problems. First of all, the

face must be located. Once the location of the face is known, the eyes must be

located. Finally the characteristics of the eyes must be extracted over time to see

whether or not we are dealing with a blink.

39

 4 Model & Approach

4.1 Face detection

Face detection is the first step in our application. Different approaches have been

used to create a robust face detector. Namely classification based upon color, shape

and movements.

4.1.1 Introduction

Skin color is a very characteristic for most humans. Even though it comes in a

wide variety of colors, skin portions are easy to detect for humans. One might think

that skin color can occur in a wide variety of colors, but since the perception

processor uses the HSV colour scheme (see Figure 13), looking at a combination of

Hue and Saturation satisfies for most skin color. Earlier research, has shown that

S+V/H provides a constant value for skin colour independent illumination [36].

4.1.2 Classification through color

It seems logical to detect faces based upon the HSV model. One of the problems

using this method is that the perception processor currently does not have an option

to combine input flows mathematically. Therefor it is currently not possible to

implement the formula S+V/H without a computer intervention. Hence, a

combination of Saturation and Hue is used to detect portions of skin, making it

40

 Figure 24: Results of Face Detection.

 4 Model & Approach

sensitive to illumination changes. Early tests using this method provides the results

shown in Figure 24. Note that all these images where taken under similar lighting

conditions. The African male's face was not detected right, but the European and

Asian faces are detected right.

4.1.3 Classification through shape

One might argue whether or not color can provide a stable classifier for skin

portions. Due to the fact that color depends upon the lighting conditions, other

methods have been studied as well. Like mentioned before, the processor currently

does not provide an easy way for combining color information into a constant. A

series of tests looking at a particular shape where done to see if shape could provide a

more robust classifier. For these tests the Oriented Edge flow is used (see 3.4.3

Gradient transformations (temporal)). This classifier can look for edges in a specified

orientation. Currently, the perception processor is based on rectangular structures,

making it hard to detect circles or oval shaped occurrences.

4.1.4 Classification through movements

Another classifier could look for the biggest moving object within a scene. This

idea would be build upon the assumption that the head would be the biggest moving

object within a scene. Early tests clearly show that this assumption does not hold.

Especially in the dynamic environment of the car, where background movements can

occur. Even without the distracting background this method will not provide robust

results. The classifier is triggered by movement, so whenever the person behind the

steering wheel is not moving for some time, the classifier will loose the head. Hence,

classification through movements seems not very suitable for a robust face detector.

4.1.5 Eye detection

Eye detection has proven to be the most prudent task in the chain. Since the eyes

are quite small and look a like features exist in the surrounding of the face. Since a lot

41

 4 Model & Approach

of similar features, like portions of hair, eyebrows and even the nostrils (see Figure

25, above), all share some of the characteristics of the eyes, there is need for an extra

step to reduce the area in which to search for the eyes. A number of different

approaches have been tested to study the effects. All approaches will be explained

within the rest of this chapter.

4.1.6 Approach I: Side rectangles

Instead of directly looking in the face for dark round features, an intermediate

step is needed to prevent miss classification of the eyes. To be able to find the eyes,

we assume that the area we found in the previous step is indeed a face. If it is a face,

we have some knowledge about the geometry of the object. Since the current

perception processor only deals with squares, we can check if the square we have

found is indeed a face by looking at the projection histograms. We use this

knowledge to find out if we indeed have a face, and at the same time reduce the

potential area of where the eyes can be located. First a cell is positioned at the left

boundary of the face. We classify all pixels that are the opposite of our face, and

validate pixels that are between the maximum and half of the maximum. All columns

of pixels, starting from the left, with more than half of the height of the face of non-

42

 Figure 25: The difficulty in finding the eyes, a lot of eye-like features exist.

 4 Model & Approach

face colours will be removed. We repeat this process starting from the opposite side

as well. After that, the process is repeated on the y projections, removing all rows

from top and bottom which consists of mostly non-face pixels. A graphical

explanation can be found in Figure 27. By excluding the four boundaries from the

actual facial pixels, we get the reduced area where the eyes should be located, and

which is clear from noise belonging to the hair of the subject. The advantage of this

approach is that it requires no interaction with the processor. The boundaries of the

face are used for the starting point of each of the four side rectangles. The four side

rectangles remove portions of the side of the face, resulting in a smaller area for the

43

 Figure 26: Errors can occur in situations where the head is rotated.

 4 Model & Approach

potential eyes. On the other hand, this approach is not robust to head tilting. Once

the head is tilted, the removal of the sides is not optimal, and the resulting region is

not free of eye-shaped features. This in turn, can lead to false recognition of the eyes.

So this approach is very sensitive for head tilting/ rotation, but it requires no

additional computational power on the computer side. Therefor, the processor does

not have to wait for some computations on the computer to finish. This enhances

the speed at which the processor runs.

44

 Figure 27: Eye Detection.
 Due to the characteristic geometry of a face, we know what the histogram projections should look
like. By using four cells to remove these non-face pixels, the resulting area is smaller, and will probably
contain the eyes.

 4 Model & Approach

4.1.7 Approach II: Prediction

Another approach to reduce the potential area for the eyes is by using the face in a

different way. In this approach, the face is first detected. Instead of using the face

45

 Figure 28: Activity diagram of the Prediction Approach.

 4 Model & Approach

 boundaries directly, the region where the eyes will most likely can be found is

predicted. Within this region, two eye like regions are being retrieved. If no eyes are

found, we move our predicted region, and we try again.

The obvious advantage of this method is that it allows for searching within smaller

potential regions, given less false positive results for the eyes. As a side effect, since

the location of the eye region is calculated, we can store the location for future

reference. If we are to find two eye like features, we can store those locations as well,

giving the possibility to easily account for occlusion. The down side of this method is

that some of the speed is lost, due to the complexity of the algorithm to predict the

region.

4.2 Eye blink detection

After the step described in the previous section, the eyes can easily be located by

looking at the two biggest regions that are not part of the skin. Taking a close look at

the image shown in Figure 27, one might wonder why the two eyes are selected

rather than the two nose holes, that have approximately the same shape, size and

colour? It appears that, even though the nostrils seem to be the same colour, they

have different hue. Note that the skin was selected by looking at a specific hue.

Recall that Hue the value of a colour where it submitted to bright white light. By

turning down the light, the appearance of the colour changes, but the base remains

the same. The holes of the nose in fact are skin colour. They appear very dark, due to

the lack of light. Yet, the eyes, are not skin colored. Problems do occur, when the

eyebrows are very dark. Since they have a different hue from skin colour, and they

also appear in the same region of the face, there exist situations where the eye brows

are mistakenly recognized as being the pupils.

46

 4 Model & Approach

Assuming the pupils are detected correctly, the following method is used for

detecting blinks. For every frame the height of the pupils is retrieved and stored.

During a blink, when the eyes are completely closed, the pupils cannot be found

anymore, since there is no dark shaped area within the eye region. At this time, we

can assume that a blink is going on. To actually determine whether or not a blink is

occurring, we look back in the stored heights, and if we see that the height of the

pupil was getting smaller, we assume a blink actually is occurring. Furthermore, if the

same pattern can be seen in the other pupil as well, we can safely conclude that a

blink occurred. Figure 29, shows the state diagram for a blink. We use the onset of

the blink to check if we actually have a blink, or whether we simply lost the location

of the pupil.

4.3 Test case : Driving in a car

To test the different methods a simple test has been performed. Using a camera

mounted inside an actual car, some recordings have been made. Given the fact that

the application is for demonstration purposes only, the performance is good. Goal

was to find out the best methods for blink detection and to get an idea of the

usefulness of the processor in real time applications. The camera used for this test was

a regular PAL Camera of 720 x 540 resolution at a frame rate of 25 fps. Figure 30

shows the recording setup which in this case yields pupil sizes of 10 x 5 pixels. The

processor has proven to give promising results, even under these harsh conditions.

47

 Figure 29: State diagram of a blink.

 4 Model & Approach

Sequences of images are recorded under poor conditions. Shaky images at middle

resolution with varying lighting conditions and rapid moving backgrounds can still

be used to produce valid results for the blink detector. Manual recordings with

“little” head movement produce a 97% recognition rate for a sequence of 2 minutes,

48

 Figure 30: A camera (720 x 540 pixels) is mounted on the dashboard.

 Figure 31: Result of the blink detector prototype. This clip with little head movement lasts
approximately 1 minute, and has a correct recognition rate of around 97%.

 4 Model & Approach

while a 2 minute recording with “heavy” head movement provide a recognition rate

of 82%. Some screen captures from a clip with little head movement is shown in .

4.4 Test case evaluation

From the simple test case we can learn which of the proposed methods for

detecting respectively the Face, Eyes and Pupils will provide the most stable results.

Though, one must keep in mind, this test case was performed on a single test subject

only.

4.4.1 Errors using side rectangles

Some errors in classification occur in this first test. Especially using the Side

Rectangles Method (described in 4.1.6 Approach I: Side rectangles) a lot of errors

occur. Both images in the left of Figure 32 show a common error with this approach.

49

Figure 32: Common errors using the Side Rectangles approach. Left: Errors in classification. Right:
The explanation of why this type of error occurs.

 4 Model & Approach

Reason for this miss classification is due to the bval parameter, which has to be send

to the board. The current demonstration application uses Eq. (9) to determine to

what extend portions from all sides of the face boundaries are removed. Currently

this value is set to the height of the face divided by two (or half of the maximum). As

can be seen in the image in the right side of Figure 32, the misclassified portion is

outside the area removed (looking from the left). Furthermore, the hair is of a

different hue than the skin, and the region is bigger than the pupils, making it the

first candidate to be a pupil.

4.4.2 Test case conclusion

From the initial test case we learned that the best way to create a blink detector is

to use the Color Method for face detection (See 4.1.2 Classification through color)

and to use the predictive model for locating the eyes (4.1.7 Approach II:

 Prediction). As for determining the blinks themselves, we will use the model using

the onset of a blink to double check if we observed a blink.

50

 Table 33: Results of the preliminary test to get an indication of the best approach for the eye blink
detector.

Detect Approach Recognition Rate
little movement normal movement

Face

color 99.00% 99.00%

shape 81.00% 56.00%

movements 67.00% 86.00%

Detect Approach Recognition Rate
little movement normal movement

Eye region Side rectangles 85.00% 59.00%

Prediction 87.00% 82.00%

 4 Model & Approach

Looking at the accuracy, we obtained a 87% recognition rate for the eyes when the

test subject is hardly moving, and 82% recognition rate for the eyes when the driver

is actually driving on a real road. Note, that this test helped to decide on which

method to use for the final tests, and there was no blink detection during this early

test.

51

 4 Model & Approach

52

Remco Janssen 5 Implementation

5 Implementation

Summary. Description of the implementation used to work with the processor as well

as a description of the requirements for the software. All implemented software is used in

conjunction with the perception processor.

The first goal for the testing phase was to design and implement a graphical user

interface (GUI), to communicate with the board without using the command line

tool. Initially, the perception processor comes with some command line tools to send

the configuration packets and for retrieving the results send in return from the

processor. Requiring manually typing hexadecimal codes needed to configure the

processor is very sensitive to errors which are hard to detect. To facilitate easy

communication as well as creating an easier way to configure the processor, a GUI

has been designed and implemented.

5.1 GUI

The GUI will allow to create, open and edit files that contain configurations.

Editing the configurations will be done using GUI elements such as drop down

menus, combo boxes and sliders. Changes made to the configurations can be saved,

and send to the perception processor as well. Furthermore, the GUI will have the

option to retrieve the results of the processor at run time and optionally reply with

adjusted configurations.

53

 5 Implementation

5.1.1 Goal of the GUI

Like before mentioned (See 3.3 Communication), the perception processor comes

with some command line tools. Since using the processor this way requires a lot of

experience, a sub goal of the project was to facilitate working with the processor. All

desired settings have to be looked up within the packet reference manual, and typing

them requires precise work. Goal is to facilitate the creation of configurations as to

minimize to changes for errors whilst creating new configurations.

5.1.2 Requirements

A GUI can facilitate the way of working with the processor. Goal was to create a

tool that allows for easy selecting some configurations, and saving those

configurations for later usage, or for sending them directly to the perception

processor. Furthermore, the results being send from the processor would have to be

retrieved for gaining insight in the results.

Since the accompanying tools are all written in C++, it seems like a natural choice to

implement the GUI in C++ as well. As a platform, Qt Creator was chosen, since it

54

 Figure 34: Use Case diagram for the GUI

 5 Implementation

offers some nice functionality for using plug and play components such as sliders,

drop-downs and combo boxes.

5.1.3 Functionality

The GUI should comprise of the following functions:

■ Easy to use through the usage of common GUI elements

■ Create, edit and save files to modify them later on

■ Connect to the perception processor

■ Receive data packets from the perception processor.

Additionally, before the user can actually work with the GUI, the tools described in

the next section need to be installed.

5.1.4 External software

The GUI will be able to use the following external software to communicate with

the perception processor. Two applications that come with the processor and

NetCat. The applications that come along with the processor are two command line

tools. One for sending packets to the processor, while the other is a listener, that

catches all results send back from the board. NetCat is an open source utility for

Linux to read and write data across network connections. This is necessary to send

the updated predictions of the eye locations to the processor. It is possible to use

NetCat instead of the two accompanying applications.

To be able to watch the output of the perception processor, the RTP stream from the

perception processor needs to be captured and displayed. For this thesis, the open

source version of Mplayer has been used, for it offers good functionality on

displaying RTP streams over an Ethernet connection.

55

 5 Implementation

5.1.5 UML

Figure 35 Shows the UML diagram of the GUI design. It contains only the most

important classes and functions. The MainWindow is loaded at start up and contains

a list. Packets can be added to the list and packets referring to the same cell can be

grouped together. Double clicking a packet in the list opens the Form that enables

the user to edit the packet by selecting the options in the Form. The bottom line of

the Form is the actual representation of the hexadecimal packet that is going to be

send to the board. Note that only the most relevant classes and methods are

described within the UML diagram.

56

 Figure 35: UML diagram of the most important classes of the GUI.

 5 Implementation

5.2 Creating configurations

Creating and editing of configurations is done using the GUI shown in Figure 37,

below. It provides ways to create a configuration file by adding packets for each cell

to a list. The order in which the packets are being send to the processor is important,

so the interface provides some utilities for organizing the packets.

57

 Figure 36: The dynamic interfaces for editing an individual packet.

 5 Implementation

Upon selecting a specific packet out of a configuration, the user can edit that specific

packet. The interface for editing individual packets is a dynamic form, based upon

the underlying code of the packet. Some elements provide sliders to adjust

boundaries, while others present selection boxes to the user. Figure 38 Shows four

different examples of the forms to edit a single packet. From the UDP protocol we

have to set a header (top part in Figure 38). Most of the time this does not need to

be changed. All header data is filled in automatically based upon the packet to be

send. Below the header part, the actual data can be filled in. Depending on the kind

of configuration it is possible to slide, select or enter values to configure the

processor. By Saving the packet, you will return to the main window where all the

packets are listed in the order the user wants to send them to the processor.

5.3 Sending configurations

Once all packets have been created, it is time to send them to the processor. This

is done by simply clicking the “Send” button (nr 14 in Figure 37). As a default

action, the GUI launches a Blink-Detector class, which monitors the blinks of the

newly started session. It is possible though, to adjust this in the “Preferences Menu”.

58

 Figure 37: The interface for creating and editing configurations.

 5 Implementation

In the preferences menu, alternative class names can be started. It is up to the

developer to implement that specific class, but the possibility is there for facilitating

future work. It seems logical to start a new class depending on the kind of task

performed by the processor. While this Thesis focus lies in blink detection, the Blink

Detection class is started by default.

5.4 Viewing results at run-time

Once the processor is running, the user should be able to observe what happens

and see in an instance how many blinks occur. The top part of Figure 39 provides

some tools for fine tuning the configurations. Each time one of the sliders is released,

it's corresponding value is being send to the processor. The processor in turn,

immediately updates the configuration. At the same time, the lower part of Figure 39

shows a resume of the actual process.

It is here, in the lower part, where the user can see important information. The info

right of the green dot in Figure 39 shows a percentage of spatial checks that have

passed as well as a message explaining what goes wrong when not all the checks have

been passed.

59

 Figure 38: Preferences menu, for selecting which class to load after sending the configuration. And
for selecting the ip and port address of the perception processor as configured in the internet
connection settings.

 5 Implementation

Even lower, a resume of the number of blinks, the number of blinks per minute and

the amount of time since the session started is shown. These values are also used to

drive the alertness meter (vertical bar on the right in Figure 39). Once all packets are

send to the board, the GUI starts the BlinkDetector class which is responsible for

asking the results, and processing the results as can be seen in 4.1.7 Approach II:

 Prediction.

60

 Figure 39: Top part of the figure above is used to fine tune the current configuration. While the
lower part of the interface provides feedback of the current session. Finally, the bar on the right is the
first step towards an indicator for the level of drowsiness.

Remco Janssen 6 Experiments

6 Experiments

Summary. This chapter will present the experiments performed for the thesis as well

as the data needed to replicate the results for future reference.

While the initial results look promising, the real question was how the perception

processor would perform in more realistic experiments. Good results have been

achieved in controlled environments with fixed lighting conditions, and clean

backgrounds. But is it fast and accurate enough to give acceptable results in a specific

situation, where the lighting conditions are uncontrolled. To get answers to these

questions, a final series of tests is performed in which people where asked to drive

laps in a racing simulator game. Followed is a description of the tools and platforms

used for performing the tests, as well as a description of the test goals and approach.

The results are denoted in Chapter 7 Results.

6.1 Tools and platforms

To being able to perform the tests, a set of tools have been used. To mimic an in

car environment, TORCS is used as a driving simulator along with a steering wheel

(6.1.1 TORCS (The Open Racing Car Simulator)). Furthermore, to be able to

extract the number of blinks during a race, chosen is to use an EEG scanner during

some of the tests (6.1.2 EEG Scanner & TruScan). At the TU Delft the EEG

scanner has been used in different experiments along the way, and has proven that it

can indeed be an valuable asset, given that it's used right. Once the EEG data and the

61

 6 Experiments

output of the processor is acquired, all data has to be compared to draw any

conclusions. Primarily MATLAB (6.1.3 MATLAB) will be used for that task.

Followed is a description of these tools and platforms.

6.1.1 TORCS (The Open Racing Car Simulator)

The Open Racing Car

Simulator, or TORCS (see Figure

40), is a open source race game

developed for racing but for

research as well. TU Delft has

extended this game with races and

billboards, making this platform

suitable for performing such a test.

Two different tracks have been

used for testing. Most of the tests

where performed at the “Road

Track 2” created by . Details of the track are shown in Figure 41. This track is

chosen because it's approximate length (in minutes). We wanted to have recordings

of around 2,5 minutes, as to make sure the test subjects actually blink during the

race, but not have too much data to analyze on the other hand.

62

 Figure 40: The Open Racing Car Simulator.

Name: CG Track 2

Creator: Christophe Guionneau

Type: road

Length: 3185.83m

Width: 15.00m

Pits: 16

 Figure 41: CG Track 2, the one used in the tests.

 6 Experiments

6.1.2 EEG Scanner & TruScan

Electroencephalography (EEG) is the recording of electrical activity along the

scalp produced by the firing of neurons within the brain.[2] It can measure the

activity of the brain using a brain cap that is connected to a computer. Figure 42,

below shows the hardware available at the TU Delft.

As with all EEG systems, the signal is very sensitive. A detailed description of how to

work with the EEG scanner at the TU Delft can be found in [37] . There is a chapter

about removing artifacts from the EEG recordings. For this project we are interested

in one of those particular artifacts, Blinks. Hence, we will have to remove all artifacts,

whilst keeping the blink data intact. Given the nature of blinks in EEG data, this

63

 Figure 42: Attributes used for the EEG scans.

 Figure 43: Samples of EEG data. Left: clean data where two blinks can easily be identified. Right: A
noisy sample caused by (in this case) movement of the test participant.

 6 Experiments

should be apparent, for the blinks can easily be detected in the EEG data, if the data

is free from noise. EEG data is very sensitive to external factors. Muscle movements,

or even the net tension can heavily influence the recorded data as can be seen in

Figure 43. A lot of these artifacts can be removed using the techniques described in

[37]. The main difference is that we do not want to remove the blinks, instead the

aim is to remove as much as possible except the blinks. More detailed information

about conducting EEG experiments and Brain Computing in general, can be found

within the Appendix

6.1.3 MATLAB

MATLAB is a powerful mathematical framework for solving engineering

problems. Many extensions have been written to give tools in specific solution areas.

The data obtained from the EEG scans, will be exported to use within MATLAB.

The export functions in TruScan Explorer result in two different files. One is an

ASCII text file, containing all the data recorded from each of the 19 channels. While

the other is an ASCII *.Ini file, containing all manual annotations during the test.

The manual annotations are entered during the recordings by pressing a predefined

key. The annotations can be used to set references, and to see the corresponding

EEG response at that given moment.

6.1.3.1 EEGLAB

EEGLAB is an interactive toolbox for MATLAB. Is contains lots of useful

functions to process EEG data. EEGLAB is used to pre-process the data as obtained

from TruScan for usage in MATLAB. EEGLAB is already equipped with the exact

scalp map used for our testing, giving the possibly to gain insight in the locations of

the responses on the brain. Blinks typically show the biggest response in Fp1 and

Fp2 (see Figure 44).

64

 6 Experiments

6.2 Test Goals & Expectations

The main goal of the test is to find out whether the number of blinks during a

race according to the perception processor is consistent with both the manual and

EEG data. Since using the EEG cap influences the behavior of the participants, two

runs of the test will be done. The first one without EEG, as to recreate normal

driving conditions. The second run with an EEG cap, to facilitate the comparison

with respect to number of blinks observed. Even under these conditions, the tests are

far from a real driver, since driving on a computer screen is limited to a relatively

small screen.

6.2.1 Goals

Below is a description of the goals of the tests:

■ Test Face detection robustness

■ Test Eye detection robustness

■ Test blink detection robustness

■ Find overall robustness of the blink detector.

65

 Figure 44: Locations most sensitive to eye blinks, Fp1 and Fp2.

 6 Experiments

By analyzing the individual parts in the blink detection chain, hoped is to learn what

parts of the chain work well and what parts need improvement.

6.2.2 Expectations

Furthermore, we expect the tests in which the participants are asked to sit still

provide better results in the blink detection domain. Since there is less movement, it

should be easier to find and track the pupils and extract the blinks. As for the

performance, given the results from the early tests inside a car (see 4.3 Test case :

Driving in a car) we expect the results to be almost the same.

6.3 Test approach

Goal of the final tests is to determine whether the perception processor is capable

of producing good results for multiple test subjects. Tried is to create a blink detector

that has the potential to be used within a real car environment. The area of blink

detection is chosen since it is:

■ Challenging since blinks occur fast, and the pupils are small

■ Of great interest in the new developments within cars.

One of the most difficult areas of application is the area of blink detection. Blinks

typically occur very fast, and give a good indication about the alertness of a driver

[4]. To be able to test the processor under these circumstances a total of 15 test

persons have been recruited. People are asked to drive 3 laps in the game of TORCS

(see 6.1.1 TORCS (The Open Racing Car Simulator)), using a steering wheel. The

complete test is recorded using a standard analogue video camera. After racing three

laps to get acquainted with the racing options, people are asked to drive a second

time. The second race laps are recorded as well, but this time the test persons wear an

EEG headset as well, to get an indication of the number of blinks. Finally, after all

tests where performed, the recorded videos where used as an input for the perception

66

 6 Experiments

processor. The results in the number of blinks obtained from the EEG can than be

compared with the results according to the processor.

6.4 Performed tests

Followed is a list of all the tests performed for this thesis, along with a reference to

the section where the results of that specific test are presented. Also, they are listed in

Table 2.

67

 Figure 45: Diagram of the test approach.
 1) First run where subjects are allowed to move freely.
 2) Second run, where people have to sit still, and being EEG recorded.
 3) Both tests are processed by the processor after wards.
 4) The first run has to be annotated manually, since there is no EEG data. These annotations are
compared to the Processor output.
 5) The Second run has EEG data, so the EEG output is compared to the processor output.

 Table 2: List with all the experiments performed.

Experiment Goal Result
Free Race Experiment Test influence of rotation/ movements on the

results

Chapter 7.1

EEG Experiment Compare detected blink rate of the processor

with the blink rate from the EEG scans

Chapter 7.2.

 6 Experiments

6.4.1 Free race experiment

During the “Free Race Experiment”, participants are asked to race 3 laps in the

simulator, with no moving constraints. Goal is to find out if the perception processor

is able to find and track the eyes if subjects are allowed to move freely. By running

the recorded session through the perception processor, the number of blinks is

compared to a manual reference. Since during this experiment, no EEG cap is worn,

the comparison is done with respect to manual counts of occurring blinks.

6.4.2 EEG experiment

During the EEG Experiments, participants are asked to sit as still as possible while

racing 3 laps in the simulator. Since moving would influence the EEG data, people

are asked to move a little as possible. Goal is to compare the results of the EEG scans

with the results of the perception processor as to get an indication of how well the

blinks are extracted. This time, the EEG data shows clearly when blinks occur. After

filtering the data using EEGLab and Matlab (see Section 6.1.3 MATLAB), the

number of blinks are compared with the number of blinks according to the

perception processor.

68

Remco Janssen 7 Results

7 Results

Summary. This chapter will present the results and statistics of the experiments

mentioned in the previous chapter.

The results of the tests will be described within this section. At first a single test is

reviewed in detail. After that findings on the complete test set are presented. The

results are split up into different categories. First an analysis of the face detection part

is given, followed by an analysis of the results in Eye detection. Finally, the results of

the overall blink detector are provided. Table 3 shows a brief summary of the

experiments. A total of 13 participants volunteered for the tests, and the average

69

 Table 3: Summary of the results.

Test 1 Test 2

S
ta

ts

code name Free Race EEG Race
Participants # 13 13
Male % 92.5 92.5
Female % 7.5 7.5
Facial hair % 15.4 15.4
Glasses % 30.7 30.7
avg. blinks # 19.31 12.77
avg. detection rate % 50.37 45.71

D
et

ai
ls total blinks 251 166

false positive # 110 157
false negative # 36 93
blinks detected # 112 60

 7 Results

number of blinks recognized correct is 50.37% for the Free Races, and 45.71% in

the races with the EEG Scans.

7.1 Free race results

The results of the experiments in which the participants are allowed to move

freely are presented within this section. While the overall blink detector works like a

chain of multiple sub tasks, those sub tasks will be analyzed separately to get an idea

of the overall performance of the blink detector. By doing so, a better understanding

of the individual parts in the chain is obtained. First the overall results for the “Free

Race Experiment” are presented. The following sections will explain each part of the

70

 Table 4: Results for the Free experiments.

participant test type Recognition Rate (%) Blinks
Free race Face Eyes Actual Processor + - CORRECT %

FREE Race 100.00% 86.07% 3 5 3 1 2 0.67

FREE Race 99.49% 6 4 0 2 4 0.67100.00%

FREE Race 100.00% 64.04% 21 37 27 11 9 0.43

FREE Race 99.39% 14 2 1 13 1 0.07100.00%

FREE Race 100.00% 91.75% 7 30 24 1 6 0.86

FREE Race 99.97% 26 28 5 3 23 0.88100.00%

FREE Race 100.00% 82.50% 92 32 5 65 24 0.26

FREE Race 96.81% 0 9 9 0 0 0.00100.00%

FREE Race 100.00% 96.41% 20 22 5 3 17 0.85

FREE Race 98.39% 6 8 3 1 5 0.83100.00%

FREE Race 100.00% 97.87% 2 1 0 1 1 0.50

FREE Race 100.00% 48 16 1 33 16 0.33100.00%

FREE Race 46.19% 6 31 27 2 4 0.19100.00%

Overall Average: 100.00% 86.44% 251 225 110 136 112 50.36%

 7 Results

chain separately with examples of common errors. In Table 4 the results are shown

for the Free Experiment. On average, 50% of the blinks that actually occurred are

detected correct.

7.1.1 Face detection

The third column of figure Table 4 shows the recognition rate for the face. The

face is detected using the Color method described in 4.1.2 Classification through

color. The face detector works very well. It has been tested on people of different

races, and with different levels of facial hair. In all cases the application is able to

continually find and track the face. Since the face is the beginning of the detection

chain, it is comfortable that face tracking works well. One point to mention is that at

the current configuration it is only possible to detect a single face. Since a single cell

in the processor is responsible for locating and tracking the biggest area that contains

skin colored pixels, it is limited to one face only. If two faces appear in the scene,

depending on the distant between the two faces, it either sees them as one giant face,

or it selects the biggest and ignores the other. All faces presented to the blink detector

can be found and tracked over time.

7.1.2 CLEAN Race: Eye region prediction

To get an indication of the robustness of this method, take a look at the fourth

column of Table 4. The time in which the eyes can be found is measured compared

to the total time of the recorded clips. On average, the application successfully finds

and tracks the eyes in 86,44% of the time when participants are allowed to move

freely. The rest of the time the application is scanning for a suitable region, as

explained in section 7.3.1 Vertical scanning for eyes.

71

 7 Results

7.1.3 CLEAN Race: Blink detection

While the region of the eyes can be found most of the time, the same is not true

for counting the blinks. The last columns in Table 4, show the number of blinks that

actually occurred, the number of blinks according to the processor. Additionally the

number of False Positives and False Negatives (e.g. blinks missed by the processor)

are depicted. The resulting percentage of correct identified blinks is only 50,36%.

This number is not what was expected, but note that 9 participants have really bad

blink detection stats, while 4 have a recognition rate of more than 80%. Section 7.3

Interpretation of the results will describe some of the most common errors and

discuss some of the aspects that work very well. Note that since the clean races are

performed with the absence of an EEG scanner, the recordings have manually been

checked for blinks. Those manually detected eye blinks are used as a reference for the

performance of the eye blink detector.

72

 7 Results

7.2 EEG race results

Results for the experiments with the EEG cap are shown in Table 5. Using the

EEG cap as a reference, the number of correctly recognized blinks drops even further

to 45,71%. Since the face detection works equally well on both the Free Experiments

as on the EEG Experiments, the section of face detection is skipped.

73

 Table 5: Results for the EEG experiments.

participant test type Recognition Rate (%) Blinks
Free race Face Eyes Actual Processor + - CORRECT %

EEG Race 100.00% 99.30% 1 1 0 0 1 1.00

EEG Race 78.81% 9 8 1 3 6 0.67100.00%

EEG Race 100.00% 77.48% 23 13 10 15 8 0.35

EEG Race 99.91% 9 2 7 0 2 0.22100.00%

EEG Race 100.00% 79.16% 5 63 59 1 3 0.60

EEG Race 74.75% 24 14 3 13 8 0.33100.00%

EEG Race 100.00% 74.73% 61 20 4 45 14 0.23

EEG Race 82.28% 2 36 34 0 2 0.06100.00%

EEG Race 100.00% 76.80% 6 4 1 3 3 0.50

EEG Race 99.99% 4 4 1 1 3 0.75100.00%

EEG Race 100.00% 88.88% 4 7 3 0 4 1.00

EEG Race 99.52% 12 1 0 11 1 0.08100.00%

EEG Race 63.22% 6 39 34 1 6 0.15100.00%

Overall Average: 100.00% 82.72% 166 212 157 93 61 45.71%

 7 Results

7.2.1 EEG Race: Eye region prediction

Like the data illustrated, the eye region prediction for the EEG Experiments

works correct 82,72% of the time. This is a little lower than for the Free

Experiments. This is the opposite as was expected, since during the EEG

Experiments, participants where asked to move still. This would indicate that the

eyes would move less than in the Free Experiments and thus a more accurate

prediction of the eye region could be made. In the Interpretation of the results

section an explanation is given for this strange result.

7.2.2 EEG Race: Blink detection

As can be seen in Table 5, more specifically in columns five through 10, the

average percentage of correctly detected blinks is around 45,71%. This result is

disappointing on one hand, but is also promising given the fact that no special

algorithms to increase the performance have been implemented yet. This means that

our blink detector works in approximately 50% of the cases out of the box. And

there are lots of potential techniques available to improve this number (see 9 Future

work).

7.3 Interpretation of the results

While the rough results are presented, a discussion of those results will be given.

Some of the implemented techniques work very well, while others are extremely

disappointing. Tried is to give an explanation for some of the phenomena that can be

observed while taking a closer look to the results of the experiments.

7.3.1 Vertical scanning for eyes

Based upon the results of the face detector, the processor will predict where the

eyes should be located. The prediction is based upon the geometric properties of the

74

 7 Results

human face [38]. If no eye can be found in the predicted area, a vertical scan is

started until the eyes indeed are found. This process can be seen in the series of

screen shots in Figure 46. The series of screen shots show how the initial prediction,

shown in the top left image, is a little bit above the center of the middle of the face.

No eye like features are found within this region, so the vertical scan is initialized. At

first the predicted region moves down. At each step, the area is scanned for eye

shaped features. No such features are present, so the scan continues all the way to the

bottom of the face. Upon hitting the lower boundary of the face region, the scan

direction is reversed to go up again.

This method of scanning the face region for eye-shaped features works great. In the

above case, it takes the processor less than one second to find the eyes within the

face. Ultimately, when no eyes are present in the face, the vertical scan will continue

to sweep up and down the face until it can positively identify eye shaped features.

75

 Figure 46: Vertical scanning for a potential eye region.

 7 Results

The method makes a prediction for both eyes (left and right) separately. This can be

seen in some of the frames in Figure 46 above. Reason behind this is that a person

might be winking, so there might actually be only one eye. Results from both

predictive areas are used for the next prediction.

7.3.2 Pupils

It is clear from the results that the performance of the processor in the fist two

stages is acceptable. However, detecting the pupils themselves is not going correct in

most of the cases. One possible explanation is that with the current perception

processor it is only possible to search for Structure, Color, and Movements of the

biggest object. However, the pupils tend to be very small, and to make it even

harder, surrounded by similar features. This causes the processor to falsely classify the

eyebrows as pupils in some cases. The current version uses some checks on the

computer side to check for these falsely classified features, by looking at geometrical

and positional properties. However, exactly finding and tracking the pupils over time

76

 Figure 47: Example of a near blink, followed by an actual blink.

 7 Results

seems to be the most challenging problem of the eye blink detector. It does not really

matter if subjects are moving constantly or sitting motionless, the presence of similar

features continue to distract the perception processor. The best solution might be to

look in another direction for classifying pupils. Or to use classical algorithms, like

Hough transforms and Kalman filters to improve tracking of the pupils.

7.3.3 Near blinks

Another issue when trying to detect the blinks are near blinks. The EEG scanner

notices heavy eye movement, which results in a blink. On the images recorded with a

25fps camera however, the people do not seem to blink. Since the processor only

registers a blink when the eyes are completely closed, e.g. a height of 0, those blinks

are missed by the processor. One such example is shown in Figure 47. Frame three

results in a blink in the EEG scan, but on the images, the eyes are not completely

closed, resulting in a non-blink according to the processor.

7.3.4 False negatives & False positives

A lot of the blinks that actually occur in during the experiments are being missed

by the blink detector. It is really interesting to note that there are clear cases when

absolute no blinks are missed, while other generate false negatives all the time. This is

an indication that the perception processor has no preference, or flaw, in either

missing or adding blinks that are not present. This implies that the processor can

deal with both situations, but depending on the type of person in front of the

camera, acts either as with a tendency to miss blinks, or with the tendency to register

extra blinks.

7.3.5 Glasses

30% Of the participants wore glasses during the test. This comes down to 4

participants. In 3 of those cases, the glasses of the test subjects where very light or

77

 7 Results

transparent, like shown in Figure 48 below. All those experiments resulted in a

relatively large amount of False Positives.

E.g. the light glasses cause the wrong features to be tracked, and once they move very

fast, this results falsely to registering a blink. Especially since the glasses are quite

often positioned on the border of the Eye region, a sudden move of the head will

move the glasses outside of the eye region, causing to loose the eyes and register a

blink. By improving the pupil detection part of the eye blink detector, this type of

error might be circumvented as well. The question remains as to what is the best

discriminator for usage with the limited options available on the perception

processor.

78

 Figure 48: Examples of people with light, or transparent glasses.

 7 Results

7.3.6 Dark eyebrows

All test participants with very dark eyebrows hair have higher than average

percentage of incorrect blink detection. Figure 49 shows some of those participants

with very dark eyebrows.

Since the eyebrows usually share some of the characteristics of the pupils, they are

often mistakenly being detected as the pupils. In these cases we see a very high

percentage of blinks missed, indicating that when an actual blink occurs, the detector

will think the eyes are still open, since it is tracking the eyebrows.

79

 Figure 49: Examples of people with very dark eyebrows.

 7 Results

80

Remco Janssen 8 Conclusion

8 Conclusion

Summary. All conclusions will be presented here.

Looking at the results and experiments tried is to answer the questions declared in

the introduction of this thesis (1.2 Research questions). Although the results of the

final experiments are a bit disappointing, the perception processor can definitely be

an added value to many problems as it is. And only a few added features can lead to a

more robust tool for usage in many computer related vision problems.

8.1 What is the perception processor?

The perception processor is a fast and flexible utility that can be used in a wide

range of applications. Since it is configurable during run time, the behavior of the

processor can adapt to different situations. While the perception processor is not

specifically designed for the problem of eye blink detection, it's flexibility allows to

tackle such a problem. Instead of creating a fully robust eye blink detector, the

perception processor can be used as a tool to solve the problem. Domain specific

algorithms can be implemented on a computer to enhance the results within a

specific domain without loosing the opportunity to tackle other problems with

regard to computer vision.

81

 8 Conclusion

8.2 Applicable Domains

During the tests different problems have been solved. Some of the applicable

domains in which the perception processor can be an added value are:

■ Monitoring

■ Surveillance

■ Object tracking/ recognition

■ Virtual Reality

■ Man machine interaction

8.3 Interface for interaction

The interface designed to work with the perception processor is implemented

with future work in mind. It can load different classes after sending a specific

configuration, and it has a gentle learning curve compared to manually creating

configurations. Improvements can be made by implementing a queuing mechanism

to provide better performance. As for, the prototype created for this thesis, has to

wait for the algorithmic calculations to finish before sending an updated

configuration. Implementing such a queuing mechanism, possible in a separate

thread could speed up the methods where direct interaction with the perception

processor is necessary.

8.4 Create a tool to monitor eye blinks

The blink detection class is one of the classes that can be launched after sending

the eye blink detection configuration. The classes' sole responsibility is to count the

number of blinks based on the data received and to visualize those results. A

drowsiness indicator is available as well, but it remains to be investigated what eye

blink frequency is correlated to what level of drowsiness. Additionally, the class

82

 8 Conclusion

provides means to tweak some of the most important configuration settings at run

time. This feature allows to find the human face under any lighting condition.

However, an automatic approach, without manual tweaking is preferred. Possibly

this can be achieved by newer version of the perception processor, that includes more

advanced combinations of flows. Or even a special illumination flow to get

information about the illumination of a scene.

8.5 Detect and track human faces?

The perception processor in its current state, can readily be used to find and track

human faces in many environments. When tweaking some of the settings for any

face in any lighting condition a suitable configuration can be created to robustly find

and track a human face over time.

What is currently lacking, is the robustness to create a single configuration that

works under all lighting conditions on people of all races. Since different lighting

condition have a huge effect on the hue and saturation of the faces, a single

configuration is currently not capable to track all possible faces under all possible

lighting conditions. If, in advance, the characteristics of the environment are known,

the perception processor is well suited to perform such a task. To really come to the

point of creating a single configuration capable of doing so, more features need to be

added to the perception processor itself, like mathematically combining the color

input flows (See 9.2.3 Combining flows mathematically). An alternative is to send a

configuration that analysis the properties of the scene first, followed by an adjusted

configuration to perform tracking under the given conditions. A computer algorithm

should be present to analyze the current conditions and to make decisions about the

appropriate configuration to send.

83

 8 Conclusion

8.6 Detect and track pupils?

To fully track the pupils is more difficult than expected. Some of the evident

methods for pupil detection fail for different reasons. A down side of the perception

processor is the preferred direction to find and track the biggest objects within an

image sequence. By expanding the boundaries of tracked objects, and re-analyzing

the histogram information, the perception processor tends to “snap” to the larger

object. For the pupils, this is a disadvantage, since the much bigger eyebrows, with

similar characteristics are present many of times, near the actual pupils.

Either a better discriminator to make a clear distinction between pupils and eyebrows

needs to be found, or extra features need to be added to the perception processor.

One of those features should be the ability to search for the most circle like shape.

This is currently quite difficult since the classifiers work based upon limited

knowledge obtained from calculating histograms.

8.7 Optimal Approach

The optimal approach to detect the eye blinks with the current version of the

perception processor is start by looking for the face. Face detection and tracking can

be done with the current version. With regard to eye region detection, the best

approach is to predict and store the eye regions. By storing previous successful

identifications, a better prediction can be made. The use of a Kalman filter can also

be an added value to track the eye regions, once a successful identification has been

made. A major drawback of the prototype is that it has to wait for some calculations

and geometrical checks to finish, before an updated configuration can be send.

Ideally, more and more of these calculations and checks should performed by the

processor itself, without creating a specific blink detector, and thus, loosing it's

flexibility.

84

 8 Conclusion

8.8 Determine blink rate?

Concluding we can state the the current version used throughout this project is

not quite ready for application in complex systems such as blink detection. It simply

lacks too many necessary features to provide stable and reproducible results. Features

like searching for elliptic shapes is of great importance for applications that operate in

biological environments. On the other hand, applications that perform in non

biological environments can already benefit from the speed and ease of the functions

provided by the perception processor. For example, finding and tracking a face is

already performing at a recognition rate of 100 fps, with good accuracy. But using

that face as a starting point for more advanced types of recognition requires a little

more details.

Especially the lighting conditions are very hard to deal with. Image processing

techniques can be used to increase the robustness by intervening in the classification

process, but they also intervene in the operational speed of the overall application. By

combining flows in a mathematical way, a future version could provide better results

on this area as well, without slowing down the overall speed. All experiments with a

correct eye blink detection rate of more than 80% come from participants that have a

fairly light skin color and light eyebrows. In those cases, the tacking of the eyes went

excellent. This proves that the current application is indeed able to be used as a blink

detector when some of the shortcomings have been fixed. Those shortcomings

appear especially in the final stage of the blink detector, namely, when it is time to

track the actual pupils. Whether this step will be improved from the side of the

computer running smarter algorithms, or whether the improvements are driven by

updates of the processor itself is to be seen. When the perception processor matures,

it can definitely be an added value in all applications that need to observe objects.

85

 8 Conclusion

86

Remco Janssen 9 Future work

9 Future work

Summary. Things to improve, and steps needed to continue presented here.

From the experiment analysis, we have learned that the processor has great

potential. However, the prototype used for the thesis is not yet ready to provide

stable results to be used as a blink detector. Looking at the sub problems arising in

trying to create a real time blink detector we can conclude that the final part of the

chain is not up to the task yet. Most can be gained by the last step, namely

improving pupil detection.

Two logical solutions to improve the results of the blink detector are available. Firstly

enhancing the high level reasoning performed on the computer side can improve the

results. The other solutions steers towards using an updated version of the processor.

Both solutions will be discussed here.

9.1 Computer Algorithms

By enhancing the methods and algorithm on the computer side, better results for

the blink detector can be achieved. For instance to increase the correct detection of

the pupils, Hough transforms or Eye projection methods can be used. A more

advanced system for storing previous locations of the eyes can definitely improve the

problems that occur when dealing with occlusion. Whatever methods used, all

87

 9 Future work

methods will decrease the operational speed of the processor. Since the calculations

on the computer side have to be performed before updating the configuration to the

perception processor. Therefor, the preferred direction is to move to the other end,

towards the perception processor itself. If no future updates of the processor are

available, the following items should be considered when expanding the research.

9.1.1 Threads

One of the main reason that the processor is slowed down by calculations

performed on the computer side, is that the calculations lead to new insights in

better configurations of the processor. Hence, the processor has to wait until the

calculations are finished and the newly calculated configurations are being send to

the processor. A possible work around might be an intelligent threading and queuing

system on the computer side. By reserving multiple threads in combination with a

queuing system, the waiting time might be reduced.

9.1.2 High level reasoning

The High level reasoning implementation can be improved as well. Currently a

total of 10 checks are performed upon the results that are being send from the

processor to the computer. By using more advanced reasoning upon those results, a

more accurate location of the pupils can be calculated. This should lead to a more

robust pupil tracking algorithm, which spends more time counting blinks than

trying to find the eyes.

9.2 Processor update

Because of the reason given, the preferred way to increase the overall performance

of a blink detector is to use a new processor version. Ideally, all logic and reasoning

88

 9 Future work

should happen on the processor side. Since flexibility is one of the key features of the

processor, this is not possible. To place all logic on the processor would implicate

that the blinks themselves would be detected on the processor as well. Off course this

is possible, but it would only be useful for a blink detector. No other application

would benefit from the opportunity to count blinks on the processor itself. Thus,

what do we want to move to the processor side?

9.2.1 Search at relative offset

One of the must have features for a new perception processor would be the ability

to search relatively within another cell. The current prototype only offers the way to

search within the boundaries of a complete cell. Or to position a cell absolute using

screen coordinates.

Figure 50 Shows an example of the idea behind relative searching within cells. The

green cell is responsible for searching the face. Based upon the human anatomy, an

initial guess would be to look for the eyes in a block centered in the face and with a

89

 Figure 50: An example of how relative search would work.

 9 Future work

width of 80% of the face and a height of 25% of the face. By using such automatic

settings, the extra steps needed to predict the eye location would become redundant.

9.2.2 Search for circular shapes

Yet another missing function the current prototype is missing, is to search for

circular shapes. Given the current options available to configure the processor, it

seems to be optimized for usage with squares. Indeed, it is possible to find and track

a specific edge, as to follow the edge of a mill for example. However, finding a

circular feature is currently very tricky. Especially since the difference between a real

circle and a distorted circle is not very big (when looking at the resulting histograms).

9.2.3 Combining flows mathematically

The last improvement a new version of the prototype must have is to ability to

mathematically create combinations of flows. Right now the possibilities are limited

to traditional AND, OR combinations. Especially for skin detection, it might be

interesting to look at the classification process of combing the hue, saturation and

value flows as described in a paper by Lu et al. [36]. The research states that

according to their findings, (Hue + Saturation / Value) provides a constant for skin

color independent of races. This could provide a more robust starting point for face

recognition which is independent of the illuminating properties of the scene.

9.3 Hardware updates

Even though AW put a constraint on the hardware used for the blink detector,

e.g. no wearables and a fairly cheap camera, it might be extremely interesting to see

the performance of the current application by using a high speed camera or an infra

red camera. Ideally, a combination of both would be interesting. Considering this, it

might be more efficient to adjust the type of equipment based upon the function of

90

 9 Future work

the processor. By using different types of cameras for different problems, better

results might be accomplished without loosing the flexibility and operational speed

of the processor.

91

 9 Future work

92

Remco Janssen References

References
 [1] U.S. Department of Transportation (2009), "Driver Distraction in

Comercial Vehicle Operations" - U.S. Department of Transportation Federal Motor

Carrier Safety Administration.

 [2] Horne (1992), "Stay awake, stay alive" - New York State Department of

Health

 [3] Mitler (1988), "Catastophes, sleep and public policy." - Sleep.

 [4] Schleicher, Galley, Briest, Galley (2008), "Blinks and sacades as indicators of

fatigue in sleepiness warnings: looking tired?" - Ergonimics, Volume 51.

 [5] Viola, Jones (2001), "Robust Real-time Object Detection" - Second Intl.

workshop on statistical and computational theories of vision.

 [6] Intel (2000), "Intel's OpenCV Library -

http://opencv.willowgarage.com/wiki/" - Website.

 [7] Feraud, Bernier, Viallet, Collobert (2001), "A fast and accurate face detector

based on neural networks" - IEEE Transactions on Pattern Analysis and Machine

Intelligence.

 [8] Rajagopalan, Kumar, Karlekar, Manivasakan, Patil, Desai, Poonacha,

Chaudhuri (1998), "Finding faces in photographs." - Sixth International Conference

on Computer Vision.

 [9] Morimoto, Koons, Amir, Flickner (2000), "Pupil Detection and Tracking

Using Multiple Light Sources" - Image and Vision Computing, Volume 18, Issue 4.

 [10] Lalonde, Byrns (2007), "Real-time eye blink detection with GPU-

based SIFT tracking" - CRV '07. Fourth Canadian Conference.

93

 References

 [11] Zhu, Ju (2004), "Robust Real-Time Eye Detection and Tracking

Under Variable Lighting Conditions and Various Faces" - Journal of Information

science and engineering.

 [12] Yuille, Hallinan, Cohen (1992), "Feature extraction from faces using

deformable templates" - Computer Vision and Pattern Recognition, 1989. Proc. CVPR

'89., IEEE Computer Society Conference.

 [13] Feng, Yuen (2001), "Multi-cues eye detection on gray intensity

image" - Pattern Recognition, Volume 34, Issue 5.

 [14] Nixon (1985), "Eye spacing measurement for facial recognition" -

Proc. SPIE Applications of Digital Image Processing.

 [15] Pentland, Moghaddam, Starner (1994), "View-based and modular

eigenspaces for face recognition" - IEEE Conference on Computer Vision & Pattern

Recognition.

 [16] Huang, Wechsler (1999), "Eye detection using optimal wavelet

packets and radial basis functions (rbfs)," - International journal of pattern recognition

and artificial intelligence.

 [17] Kawato, Tetsutani (2002), "Detection and tracking of eyes for gaze-

camera control" - Proceedings from the 15th International Conference on Vision

Interface.

 [18] Waite, Vincent (1992), "A probabilistic framework for neural

network facial feature location" - 2nd International Conference on Automatic Face and

Gesture Recognition.

 [19] Reinders, Koch, and Gerbrands (1997), "Locating facial features in

image sequences using neural networks" - Automatic Face and Gesture Recognition,

1996., Proceedings of the Second International Conference.

 [20] Sirohey, Rosenfeld (2001), "Eye detection in a face image using linear

and nonlinear filters" - Pattern Recognition, Volume 34, Issue 7.

94

 References

 [21] Kawato, Ohya (2000), "Real-time detection of nodding and head-

shaking by directly detecting and tracking the between-eyes" - Automatic Face and

Gesture Recognition, 2000. Proc. Fourth IEEE International Conference.

 [22] Tian, Kanade, Cohn (2000), "Dual-state parametric eye tracking" -

Fourth IEEE International Conference on Automatic Face and Gesture Recognition.

 [23] Lucas, Kanade (1981), "An iterative image registration technique with

an application to stereo vision" - Proc. of the 1981 DARPA Image Understanding

Workshop.

 [24] Cajochen, Brunner, Kräuchi, Graw, Wirz-Justice (1995), "Power

density in theta/alpha frequencies of the waking EEG progressively increases during

sustained wakefulness" - Sleep.

 [25] Gevins, Leong, Dur, Smith, Le, DuRousseau, Zhang, Libove (1995),

"Toward measurement of brain function in operational environment" - Biological

Psychology.

 [26] Akerstedt, Folkard (1994), "Prediction of intentional and

unintentional sleep onset." - Sleep onset. Normal and abnormal processes.

 [27] Horne, Baulk (2004), "Awareness of sleepiness when driving" -

Psychophysiology.

 [28] Hargutt (2003), "Das Lidschlagverhalten als Indikator für

Aufmerksamkeits- und Müdigkeitsprozesse bei Arbeitshandlungen" - Düsseldorf:

VDI Verlag.

 [29] Papadelis, Chen, Kourtidou-Papadeli, Bamidis, Chouvarda, Bekiaris,

Maglaveras (2007), "Monitoring sleepiness with on-board electrophysiological

recordings for preventing sleep-deprived traffic accidents" - Clinical Neurophysiology.

 [30] SeeingMachines (2006),

"http://www.seeingmachines.com/product/faceapi/" - Website.

95

 References

 [31] Beta Face (2008), "http://www.betaface.com" - Website.

 [32] Janssen (2009), "Literature Study: Vision Project" - TU Delft,

literature study.

 [33] Pantic, Rothkrantz (2000), "Expert system for automatic analysis of

facial expressions" - Image and Vision Computing Journal.

 [34] Datcu, Rothkrantz (2008), "Automatic bi-model emotion

recognition system based on fusion of facial expressions and emotion extraction from

speech" - Automatic Face & Gesture Recognition, 2008. FG '08. 8th IEEE

International Conference.

 [35] Gibbs, Poole, Stockmeyer (1976), "A Comparison of Several

Bandwidth and Profile Reduction Algorithms" - ACM Transactions on Mathematical

Software (TOMS) .

 [36] Lu, Liu, Guo, Kong, Chang, Shan (2007), "Features of human skin

in HSV color space and new recognition parameter" - Optoelectronics Letters, Volume

3, Issue 4.

 [37] Horlings (2008), "Emotion Recognition using brain Activity" - Proc.

of the 9th International Conference on Computer Systems and Technologies and

Workshop for PhD Students in Computing.

 [38] He , Chia , Yang (2006), "A Geometric Invariant Approach to

Human Face Verification" - Journal of Information science and engineering.

96

Remco Janssen A Appendix

A Appendix
Summary. This part of the Appendix contains all kinds of links, resources, terms and

abbreviations used throughout the report. For a list of references see References.

A.1 Links & Resources

Res. 1: Eclipse IDE – http://www.eclipse.org

Eclipse is a multi-language software development environment comprising an

integrated development environment (IDE) and an extensible plug-in system. It

is often called Eclipse CDT for C/C++ development.

Res. 2: MPlayer - http://www.mplayer.org/

MPlayer is an open source movie player which runs on many systems. It plays

most video formats.

Res. 3: Netcat - http://netcat.sourceforge.net/

Netcat is a featured networking utility which reads and writes data across

network connections, using the TCP/IP and/or UDP protocol.

Res. 4: OpenCV - http://opencv.willowgarage.com/wiki/

OpenCV (Open Source Computer Vision) is a library of programming

functions for real time computer vision.

Res. 5: TruScan Exporer - http://www.deymed.com/truscanqEEG.html

TruScane Explorer is the software available at the TUDelft to work with the

EEG scanner.

XCVII

http://www.deymed.com/truscanqEEG.html
http://opencv.willowgarage.com/wiki/
http://netcat.sourceforge.net/
http://www.mplayer.org/
http://www.eclipse.com/

A Remco Janssen Appendix

A.2 Terms & Abbreviations

 Gloss. 1: AW

AW is the company where I did my Master Thesis project.

 Gloss. 2: SDK

Software Development Kit

 Gloss. 3: STN

Spatio-Temporal Neuron is a building block of the circuits in the perception processor.

XCVIII

A Remco Janssen Appendix

A.3 Brain Computing Interfaces

Summary: Article from wikipedia:

A brain–computer interface (BCI), sometimes called a direct neural interface or a brain–

machine interface, is a direct communication pathway between a brain and an external device.

BCIs are often aimed at assisting, augmenting or repairing human cognitive or sensory-motor

functions. Research on BCIs began in the 1970s at the University of California Los Angeles

(UCLA) under a grant from the National Science Foundation, followed by a contract from

DARPA. The papers published after this research also mark the first appearance of the

expression brain–computer interface in scientific literature. The field of BCI has since

advanced mostly toward neuroprosthetics applications that aim at restoring damaged hearing,

sight and movement. Thanks to the remarkable cortical plasticity of the brain, signals from

implanted prostheses can, after adaptation, be handled by the brain like natural sensor or

effector channels. Following years of animal experimentation, the first neuroprosthetic devices

implanted in humans appeared in the mid-nineties.

A.3.1 Invasive BCIs

Invasive BCI research has targeted repairing damaged sight and providing new functionality to

persons with paralysis. Invasive BCIs are implanted directly into the grey matter of the brain

during neurosurgery. As they rest in the grey matter, invasive devices produce the highest

quality signals of BCI devices but are prone to scar-tissue build-up, causing the signal to

become weaker or even lost as the body reacts to a foreign object in the brain. In vision

science, direct brain implants have been used to treat non-congenital (acquired) blindness.

One of the first scientists to come up with a working brain interface to restore sight was

private researcher William Dobelle. The second generation device used a more sophisticated

implant enabling better mapping of phosphenes into coherent vision. Phosphenes are spread

out across the visual field in what researchers call the starry-night effect.

XCIX

A Remco Janssen Appendix

BCIs focusing on motor neuroprosthetics aim to either restore movement in individuals with

paralysis or provide devices to assist them, such as interfaces with computers or robot arms.

A.3.2 Partially evasive BCI's

Partially invasive BCI devices are implanted inside the skull but rest outside the brain rather

than within the grey matter. They produce better resolution signals than non-invasive BCIs

where the bone tissue of the cranium deflects and deforms signals and have a lower risk of

forming scar-tissue in the brain than fully-invasive BCIs. Electrocorticography (ECoG)

measures the electrical activity of the brain taken from beneath the skull in a similar way to

non-invasive electroencephalography (see below), but the electrodes are embedded in a thin

plastic pad that is placed above the cortex, beneath the dura mater. ECoG technologies were

first trialed in humans in 2004 by Eric Leuthardt and Daniel Moran. In a later trial, the

researchers enabled a teenage boy to play Space Invaders using his ECoG implant.[26] This

research indicates that control is rapid, requires minimal training, and may be an ideal tradeoff

with regards to signal fidelity and level of invasiveness.

Light Reactive Imaging BCI devices are still in the realm of theory. These would involve

implanting a laser inside the skull. The laser would be trained on a single neuron and the

neuron's reflectance measured by a separate sensor. When the neuron fires, the laser light

pattern and wavelengths it reflects would change slightly. This would allow researchers to

monitor single neurons but require less contact with tissue and reduce the risk of scar-tissue

build-up. This signal can be either subdural or epidural, but is not taken from within the

brain parenchyma itself. It has not been studied extensively until recently due to the limited

access of subjects. Currently, the only manner to acquire the signal for study is through the

use of patients requiring invasive monitoring for localization and resection of an epileptogenic

focus.

ECoG is a very promising intermediate BCI modality because it has higher spatial resolution,

better signal-to-noise ratio, wider frequency range, and lesser training requirements than scalp-

recorded EEG, and at the same time has lower technical difficulty, lower clinical risk, and

probably superior long-term stability than intracortical single-neuron recording. This feature

C

A Remco Janssen Appendix

profile and recent evidence of the high level of control with minimal training requirements

shows potential for real world application for people with motor disabilities.

A.3.3 EEG

Electroencephalography (EEG) is the most studied potential non-invasive interface, mainly

due to its fine temporal resolution, ease of use, portability and low set-up cost. But as well as

the technology's susceptibility to noise, another substantial barrier to using EEG as a brain–

computer interface is the extensive training required before users can work the technology.

Another research parameter is the type of waves measured. Birbaumer's research with Jonathan

Wolpaw has focused on developing technology that would allow users to choose the brain

signals they found easiest to operate a BCI, including mu and beta rhythms.

A further parameter is the method of feedback used and this is shown in studies of P300

signals. Patterns of P300 waves are generated involuntarily (stimulus-feedback) when people

see something they recognize and may allow BCIs to decode categories of thoughts without

training patients first. By contrast, the biofeedback methods described above require learning

to control brainwaves so the resulting brain activity can be detected.

CI

Remco Janssen A Appendix

Attached electronic data
Below is a DVD with all materials of this thesis. It contains a PDF version of this

thesis, as well as the final presentation. Additionally, all test data and videos are

present on the medium. Finally, the GUI application developed for this thesis is

available. The application runs currently under Linux only.

CIII

Master Thesis Documents
- Raw data & Recordings

- Implemented GUI
- Presentation

- Thesis

MSc. Thesis
R.G.J. Janssen

October 2010

	77
	81
	XCIX
	
	v
	iii
	III
	Problem Definition:
	Table 1: Actions performed for this thesis.
	Figure 1: Result of using the standard implementation of the openCV library using haar cascades for detecting the eyes.
	Figure 2a: Results of Face API. 			Figure 2b: Results of Beta Face.
	Figure 3a: Results of Face API. 			Figure 2b: Results of Beta Face.
	Figure 4: The Perception Processor is capable of delivering 100 frames per second.
	Figure 5: Sensor output is split into spatial and temporal cues, which are send to a cell. The cell itself consists of two separate STN's.
	Figure 6: Schemes of a single STN.
	Figure 7: Schemes of the prototype processor, consisting of 16 individual cells than can be interconnected.
	Figure 8: Required configuration to work with the perception processor.
	Figure 9: Early Test using the Simulator only.
	This screen shot shows a simple blink detector running on the simulator. First the face is detected, within the face a new cell is searching for dark horizontal areas. Yet another cell is looking into the horizontal areas for small dark features. Based upon the height of the squares it is possible to extract blinks. This example shows a possible result of using the SDK simulator, but as can be seen the frame rate is around 3.5 fps, which is too slow to use in real time systems within a car environment.
	Figure 10: UDP Protocol structure to work with the perception processor.
	Figure 11: An example of a configuration to track the biggest object within a scene.
	Figure 12: An example of the results being send from the board to the computer.
	Figure 13: Colour spaces.
	(Left) Hue is the angle between 0 and 360o, saturation is the radius and Value is the height of the cone. Note that when the value is zero, all colours are black and the Hue and Saturation values have no effect.
	(Right) Lighting conditions affect the RGB colours of an image, the Hue and Saturation are maintained however. The difference in light can be seen in a change of the “Value” component. These two pictures show why it is easier to work with Hue and Saturation in face detection, since they are more or less fixed with changing lighting conditions.
	Figure 14: From left to right, The original input image and the corresponding transformations to Saturation [0,100], Hue [0,255] and Luminance [0,255] respectively. Different transformations reveal different information about the objects within the image.
	Figure 15: Source, Oriented Edge [0, 255], Curvature [0,255], Edge[0,255].
	Figure 16: Source, variability of Luminance [0,7], Direction [0,8], Speed [0,10].
	Figure 17: Classify the input image (left) on Hue values < 200. Result is on the right.
	Figure 18: Histogram with main parameters.
	Figure 19: X and Y histograms as obtained from analyzing a classified image.
	Figure 20: Layout of a single cell. A total of 16 cells are present on the perception processor.
	Figure 21: Stand alone setup. Requires a single configuration being send, where after the processor can run stand-alone. This can only be achieved when the result registers do not need to be evaluated for further analysis.
	Figure 22: Intervention setup: The results are being retrieved, and based upon some new calculations appropriate actions can be taken.
	Figure 23: Chain for detecting blinks. First the face has to be detected. Next a search for the eyes is performed in the face portion. Finally, the width/height of the eyes will be used to determine whether or not a blink has occurred.
	Figure 24: Results of Face Detection.
	Figure 25: The difficulty in finding the eyes, a lot of eye-like features exist.
	Figure 26: Errors can occur in situations where the head is rotated.
	Figure 27: Eye Detection.
	Due to the characteristic geometry of a face, we know what the histogram projections should look like. By using four cells to remove these non-face pixels, the resulting area is smaller, and will probably contain the eyes.
	Figure 28: Activity diagram of the Prediction Approach.
	Figure 29: State diagram of a blink.
	Figure 30: A camera (720 x 540 pixels) is mounted on the dashboard.
	Figure 31: Result of the blink detector prototype. This clip with little head movement lasts approximately 1 minute, and has a correct recognition rate of around 97%.
	Figure 32: Common errors using the Side Rectangles approach. Left: Errors in classification. Right: The explanation of why this type of error occurs.
	Table 33: Results of the preliminary test to get an indication of the best approach for the eye blink detector.
	Figure 34: Use Case diagram for the GUI
	Figure 35: UML diagram of the most important classes of the GUI.
	Figure 36: The dynamic interfaces for editing an individual packet.
	Figure 37: The interface for creating and editing configurations.
	Figure 38: Preferences menu, for selecting which class to load after sending the configuration. And for selecting the ip and port address of the perception processor as configured in the internet connection settings.
	Figure 39: Top part of the figure above is used to fine tune the current configuration. While the lower part of the interface provides feedback of the current session. Finally, the bar on the right is the first step towards an indicator for the level of drowsiness.
	Figure 40: The Open Racing Car Simulator.
	Figure 41: CG Track 2, the one used in the tests.
	Figure 42: Attributes used for the EEG scans.
	Figure 43: Samples of EEG data. Left: clean data where two blinks can easily be identified. Right: A noisy sample caused by (in this case) movement of the test participant.
	Figure 44: Locations most sensitive to eye blinks, Fp1 and Fp2.
	Figure 45: Diagram of the test approach.
	1) First run where subjects are allowed to move freely.
	2) Second run, where people have to sit still, and being EEG recorded.
	3) Both tests are processed by the processor after wards.
	4) The first run has to be annotated manually, since there is no EEG data. These annotations are compared to the Processor output.
	5) The Second run has EEG data, so the EEG output is compared to the processor output.
	Table 2: List with all the experiments performed.
	Table 3: Summary of the results.
	Table 4: Results for the Free experiments.
	Table 5: Results for the EEG experiments.
	Figure 46: Vertical scanning for a potential eye region.
	Figure 47: Example of a near blink, followed by an actual blink.
	Figure 48: Examples of people with light, or transparent glasses.
	Figure 49: Examples of people with very dark eyebrows.
	Figure 50: An example of how relative search would work.

	1 Introduction
	1.1 Problem definition
	1.2 Research questions
	1.3 Societal relevance
	1.4 Methodology
	1.5 Project challenges
	1.6 Outline

	2 Related work
	2.1 Face detection
	2.2 Eye detection
	2.3 Fatigue & Blinks
	2.3.1 Blinks

	2.4 Commercial solutions
	2.5 Literature Study
	2.6 Summary

	3 Perception processor
	3.1 Hardware
	3.1.1 Schemes
	3.1.2 Setup

	3.2 Software
	3.2.1 Simulator & SDK
	3.2.2 Connect to the processor

	3.3 Communication
	3.3.1 UDP Packets
	3.3.2 Speed
	3.3.3 Sending configurations
	3.3.4 Catching results

	3.4 Theory & Concepts
	3.4.1 Flows
	3.4.2 Colour transformations (temporal)
	3.4.3 Gradient transformations (temporal)
	3.4.4 Movement Transformations (temporal)
	3.4.5 Spatial transformations
	3.4.6 Classification
	3.4.7 Validation
	3.4.8 Histograms
	3.4.9 Cells

	3.5 Interaction
	3.6 Implications of interaction
	3.7 Conclusion

	4 Model & Approach
	4.1 Face detection
	4.1.1 Introduction
	4.1.2 Classification through color
	4.1.3 Classification through shape
	4.1.4 Classification through movements
	4.1.5 Eye detection
	4.1.6 Approach I: Side rectangles
	4.1.7 Approach II: Prediction

	4.2 Eye blink detection
	4.3 Test case : Driving in a car
	4.4 Test case evaluation
	4.4.1 Errors using side rectangles
	4.4.2 Test case conclusion

	5 Implementation
	5.1 GUI
	5.1.1 Goal of the GUI
	5.1.2 Requirements
	5.1.3 Functionality
	5.1.4 External software
	5.1.5 UML

	5.2 Creating configurations
	5.3 Sending configurations
	5.4 Viewing results at run-time

	6 Experiments
	6.1 Tools and platforms
	6.1.1 TORCS (The Open Racing Car Simulator)
	6.1.2 EEG Scanner & TruScan
	6.1.3 MATLAB
	6.1.3.1 EEGLAB

	6.2 Test Goals & Expectations
	6.2.1 Goals
	6.2.2 Expectations

	6.3 Test approach
	6.4 Performed tests
	6.4.1 Free race experiment
	6.4.2 EEG experiment

	7 Results
	7.1 Free race results
	7.1.1 Face detection
	7.1.2 CLEAN Race: Eye region prediction
	7.1.3 CLEAN Race: Blink detection

	7.2 EEG race results
	7.2.1 EEG Race: Eye region prediction
	7.2.2 EEG Race: Blink detection

	7.3 Interpretation of the results
	7.3.1 Vertical scanning for eyes
	7.3.2 Pupils
	7.3.3 Near blinks
	7.3.4 False negatives & False positives
	7.3.5 Glasses
	7.3.6 Dark eyebrows

	8 Conclusion
	8.1 What is the perception processor?
	8.2 Applicable Domains
	8.3 Interface for interaction
	8.4 Create a tool to monitor eye blinks
	8.5 Detect and track human faces?
	8.6 Detect and track pupils?
	8.7 Optimal Approach
	8.8 Determine blink rate?

	9 Future work
	9.1 Computer Algorithms
	9.1.1 Threads
	9.1.2 High level reasoning

	9.2 Processor update
	9.2.1 Search at relative offset
	9.2.2 Search for circular shapes
	9.2.3 Combining flows mathematically

	9.3 Hardware updates

	References
		[1] 	U.S. Department of Transportation (2009), "Driver Distraction in Comercial Vehicle Operations" - U.S. Department of Transportation Federal Motor Carrier Safety Administration.
		[2] 	Horne (1992), "Stay awake, stay alive" - New York State Department of Health
		[3] 	Mitler (1988), "Catastophes, sleep and public policy." - Sleep.
		[4] 	Schleicher, Galley, Briest, Galley (2008), "Blinks and sacades as indicators of fatigue in sleepiness warnings: looking tired?" - Ergonimics, Volume 51.
		[5] 	Viola, Jones (2001), "Robust Real-time Object Detection" - Second Intl. workshop on statistical and computational theories of vision.
		[6] 	Intel (2000), "Intel's OpenCV Library - http://opencv.willowgarage.com/wiki/" - Website.
		[7] 	Feraud, Bernier, Viallet, Collobert (2001), "A fast and accurate face detector based on neural networks" - IEEE Transactions on Pattern Analysis and Machine Intelligence.
		[8] 	Rajagopalan, Kumar, Karlekar, Manivasakan, Patil, Desai, Poonacha, Chaudhuri (1998), "Finding faces in photographs." - Sixth International Conference on Computer Vision.
		[9] 	Morimoto, Koons, Amir, Flickner (2000), "Pupil Detection and Tracking Using Multiple Light Sources" - Image and Vision Computing, Volume 18, Issue 4.
		[10] 	Lalonde, Byrns (2007), "Real-time eye blink detection with GPU-based SIFT tracking" - CRV '07. Fourth Canadian Conference.
		[11] 	Zhu, Ju (2004), "Robust Real-Time Eye Detection and Tracking Under Variable Lighting Conditions and Various Faces" - Journal of Information science and engineering.
		[12] 	Yuille, Hallinan, Cohen (1992), "Feature extraction from faces using deformable templates" - Computer Vision and Pattern Recognition, 1989. Proc. CVPR '89., IEEE Computer Society Conference.
		[13] 	Feng, Yuen (2001), "Multi-cues eye detection on gray intensity image" - Pattern Recognition, Volume 34, Issue 5.
		[14] 	Nixon (1985), "Eye spacing measurement for facial recognition" - Proc. SPIE Applications of Digital Image Processing.
		[15] 	Pentland, Moghaddam, Starner (1994), "View-based and modular eigenspaces for face recognition" - IEEE Conference on Computer Vision & Pattern Recognition.
		[16] 	Huang, Wechsler (1999), "Eye detection using optimal wavelet packets and radial basis functions (rbfs)," - International journal of pattern recognition and artificial intelligence.
		[17] 	Kawato, Tetsutani (2002), "Detection and tracking of eyes for gaze-camera control" - Proceedings from the 15th International Conference on Vision Interface.
		[18] 	Waite, Vincent (1992), "A probabilistic framework for neural network facial feature location" - 2nd International Conference on Automatic Face and Gesture Recognition.
		[19] 	Reinders, Koch, and Gerbrands (1997), "Locating facial features in image sequences using neural networks" - Automatic Face and Gesture Recognition, 1996., Proceedings of the Second International Conference.
		[20] 	Sirohey, Rosenfeld (2001), "Eye detection in a face image using linear and nonlinear filters" - Pattern Recognition, Volume 34, Issue 7.
		[21] 	Kawato, Ohya (2000), "Real-time detection of nodding and head-shaking by directly detecting and tracking the between-eyes" - Automatic Face and Gesture Recognition, 2000. Proc. Fourth IEEE International Conference.
		[22] 	Tian, Kanade, Cohn (2000), "Dual-state parametric eye tracking" - Fourth IEEE International Conference on Automatic Face and Gesture Recognition.
		[23] 	Lucas, Kanade (1981), "An iterative image registration technique with an application to stereo vision" - Proc. of the 1981 DARPA Image Understanding Workshop.
		[24] 	Cajochen, Brunner, Kräuchi, Graw, Wirz-Justice (1995), "Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness" - Sleep.
		[25] 	Gevins, Leong, Dur, Smith, Le, DuRousseau, Zhang, Libove (1995), "Toward measurement of brain function in operational environment" - Biological Psychology.
		[26] 	Akerstedt, Folkard (1994), "Prediction of intentional and unintentional sleep onset." - Sleep onset. Normal and abnormal processes.
		[27] 	Horne, Baulk (2004), "Awareness of sleepiness when driving" - Psychophysiology.
		[28] 	Hargutt (2003), "Das Lidschlagverhalten als Indikator für Aufmerksamkeits- und Müdigkeitsprozesse bei Arbeitshandlungen" - Düsseldorf: VDI Verlag.
		[29] 	Papadelis, Chen, Kourtidou-Papadeli, Bamidis, Chouvarda, Bekiaris, Maglaveras (2007), "Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents" - Clinical Neurophysiology.
		[30] 	SeeingMachines (2006), "http://www.seeingmachines.com/product/faceapi/" - Website.
		[31] 	Beta Face (2008), "http://www.betaface.com" - Website.
		[32] 	Janssen (2009), "Literature Study: Vision Project" - TU Delft, literature study.
		[33] 	Pantic, Rothkrantz (2000), "Expert system for automatic analysis of facial expressions" - Image and Vision Computing Journal.
		[34] 	Datcu, Rothkrantz (2008), "Automatic bi-model emotion recognition system based on fusion of facial expressions and emotion extraction from speech" - Automatic Face & Gesture Recognition, 2008. FG '08. 8th IEEE International Conference.
		[35] 	Gibbs, Poole, Stockmeyer (1976), "A Comparison of Several Bandwidth and Profile Reduction Algorithms" - ACM Transactions on Mathematical Software (TOMS) .
		[36] 	Lu, Liu, Guo, Kong, Chang, Shan (2007), "Features of human skin in HSV color space and new recognition parameter" - Optoelectronics Letters, Volume 3, Issue 4.
		[37] 	Horlings (2008), "Emotion Recognition using brain Activity" - Proc. of the 9th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing.
		[38] 	He , Chia , Yang (2006), "A Geometric Invariant Approach to Human Face Verification" - Journal of Information science and engineering.

	A Appendix
	A.1 Links & Resources
	Res. 1: Eclipse IDE – http://www.eclipse.org
	Res. 2: MPlayer - http://www.mplayer.org/
	Res. 3: Netcat - http://netcat.sourceforge.net/
	Res. 4: OpenCV - http://opencv.willowgarage.com/wiki/
	Res. 5: TruScan Exporer - http://www.deymed.com/truscanqEEG.html

	A.2 Terms & Abbreviations
	Gloss. 1: AW
	Gloss. 2: SDK
	Gloss. 3: STN

	A.3 Brain Computing Interfaces
	A.3.1 Invasive BCIs
	A.3.2 Partially evasive BCI's
	A.3.3 EEG

