
Intelligent Methods for Automated Video

Surveillance

Faculty of Electrical Engineering,

Mathematics & Computer Science

Alexander Keur (1055380)

26th March 2009

Author

Alexander Keur

Title

Intelligent Methods for Automated Video Surveillance

MSc presentation

February 2009

Graduation Committee
prof. drs. dr. L.J.M. Rothkrantz Delft University of Technology

ir. Z. Yang Delft University of Technology

dr. ir. C.A.P.G. van der Mast Delft University of Technology

ir. H.J.A.M. Geers Delft University of Technology

Abstract

At the Man Machine Interaction research group at the Delft University of Techno-

logy research is being done on the subject of aggression detection in trains. The

goal of this project is to research different aspects of train surveillance, including

video surveillance, but also audio surveillance storyboard based modeling.

This thesis discusses the current state of the art methods and techniques that or

being applied, or could be applied to the task of automated video surveillance.

This work discusses the application to the video surveillance problem of several

methods, most notably motion detection, face tracking, face recognition and facial

expression analysis.

Acknowledgements

I would like to thank my supervisor, Leon Rothkrantz, for his much needed support,

advice and guidance during my thesis work. I would like to thank Zhenke Yang for

his cooperation and involvement in this project.

Alexander Keur

Delft, The Netherlands

26th March 2009

iii

iv

Contents

1 Introduction 1

1.1 Organizational Description . 4

2 Problem Overview 7

2.1 Environment . 7

2.2 Behavior . 10

2.2.1 Aggression in the Train 11

3 Related Work 17

3.1 Overview . 17

3.2 Motion Detection . 17

3.2.1 Environment Modeling 18

3.2.2 Motion Segmentation . 18

3.3 Face Detection . 20

3.3.1 Skin Pixel Based Face Detection 21

3.3.2 Viola & Jones . 21

3.3.3 Huang & Haizhou . 24

3.4 Person Tracking . 25

3.5 Behavior Analysis . 26

3.5.1 Template Matching . 27

4 Design and Implementation 29

4.1 Proposed Surveillance System Framework 29

v

4.2 Video Input . 31

4.3 Image Processing . 31

4.3.1 Image Scaling . 31

4.3.2 Image Adjustment . 32

4.4 Motion Detection . 34

4.5 Motion Recognition . 35

4.5.1 Implementation . 36

4.6 Human Detection . 38

4.6.1 Viola & Jones . 38

4.6.2 Skin Pixel Detection . 39

4.6.3 Implementation . 42

4.7 Human Tracking . 45

4.7.1 Fast & Simple Point Tracking 45

4.7.2 Implementation . 48

4.7.3 Kalman Filter . 50

4.8 Behavior Recognition . 54

4.8.1 Preprocessing . 55

4.8.2 Data Classification . 55

5 Experiments and Results 65

5.1 Experiments and Setup . 65

5.2 Motion Recognition . 65

5.3 Human Detection . 67

5.3.1 Face detection using Viola & Jones 67

5.3.2 Face detection using Skin pixel classification 74

5.4 Tracking and Human Behavior recognition 77

5.4.1 Template matching . 77

5.4.2 Scene masking based classification 79

6 Conclusions 87

6.1 Conclusions . 87

vi

6.2 Future work . 89

Appendix A 95

Appendix B Behaviour Detection in Dutch Train Compartments 95

vii

viii

List of Figures

2.1 A typical train compartment . 8

2.2 Side view of a train . 9

2.3 Seating plan for trains including camera positions 10

2.4 Fighting passengers in the train 14

2.5 Facial expressions templates used by Datcu and Rothkrantz in [7] 14

3.1 Background subtraction applied using the first image as the static

background, and the second image as the input. The resulting mask

is shown in the third frame. 19

3.2 Temporal differencing applied to two video frames, with the result-

ing selected pixels shown as a mask in the third image 20

3.3 Example of rectangle features in Viola & Jones 23

3.4 Example of face detection using Viola & Jones 24

3.5 Example of face detection by Huang & Haizhou 25

3.6 WFS tree structure used by Huang and Haizhou 26

4.1 Proposed framework for an automated surveillance system 30

4.2 Comparison of an original image (left) from the train camera, and

the same image after scaling and adjusting (right) 34

4.3 Energy graph for scene 8b; people entering the train and walking

through the corridor . 37

4.4 Positive data samples all containing skin pixels 39

4.5 Red and green values of RGB model 40

ix

4.6 Red and blue values of RGB model 40

4.7 Green and blue values of RGB model 41

4.8 Luminance and red chrominance values of YCbCr model 42

4.9 Luminance and blue chrominance values of YCbCr model 43

4.10 Blue and red chrominance values of YCbCr model 43

4.11 Route plot for fragment of scenario 08b, a person entering the train

and sitting down . 59

4.12 Route plot for fragment of scenario 08b, overlayed on last frame

of the scene . 60

4.13 Empty train (a) and designation of areas for masking (b) 61

4.14 Scene mask for walking . 62

4.15 Scene mask for sitting . 63

4.16 Scene mask for error and undefined behavior 63

4.17 Scene segmented by seat numbers 64

5.1 Scenes from scenario 8b . 66

5.2 Energy graph for scene 8b; people entering the train and walking

through the corridor . 67

5.3 Scenes from scenario 12 . 67

5.4 Energy graph for scene 12; people sitting in the train, a single per-

son enters the compartment between frames 1100 and 1300 68

5.5 Scenes from scenario 13 . 68

5.6 Energy graph for scene 13; people sitting in the train, one person

leaving seat around frame 1200 69

5.7 Faces used for testing detection at varying sizes 71

5.8 Face detection success rate for various face sizes 72

5.9 Scenes taken in lab conditions 72

5.10 Face detection running times for Viola & Jones 73

5.11 Original frame from camera feed 74

5.12 The isSkin() algorithm applied to all pixels in the frame 75

5.13 Background subtraction generated mask 75

x

5.14 The result of the isSkin() algorithm on the foreground pixels . . . 76

5.15 Walking passenger template . 77

5.16 Sitting passenger template . 78

5.17 Template for passenger walking to a seat and sitting down 79

5.18 Single frame from train camera 80

5.19 Walking template compared with several measurements 81

5.20 Person being tracked inside the train, with tracking overlayed on

last frame of scene . 82

5.21 Mask values for person tracked in figure 5.20 83

5.22 Person being tracked inside the train, with tracking overlayed on

last frame of scene . 84

5.23 Mask values for person tracked in figure 5.22 85

xi

xii

List of Tables

2.1 Incident categories used by the Dutch Railways (NS) 11

2.2 Static features related to aggression 15

2.3 Dynamic features related to aggression 15

4.1 RGB skin pixel range . 42

5.1 Face detection results for 574 video frames of 10 persons entering

a train . 70

5.2 Average distance between corresponding points for measurements

in figure 5.19 . 80

xiii

Chapter 1

Introduction

Surveillance in public places is currently widely used to monitor locations and the

behavior of the people those areas. Closed Circuit Television (CCTV) systems

around the world are used to monitor the safety of people in public spaces 24

hours a day. Since events like the terrorist attack in Madrid and London there has

been a further increasing need for video network systems to guarantee the safety

of people in public areas. But also events like football games, music concerts and

large venues like shopping malls where large amounts of people gather, have a need

for video surveillance systems. Another field of application is to protect people as

well as property against aggression, physical attacks and crimes like robbery and

vandalism. However, the greater the number of cameras, the greater the number of

operators and supervisors needed to monitor the video streams.

In public transport surveillance has proven to be a useful tool in detecting a pre-

venting potentially violent situations. This research focusses on the application

of intelligent video surveillance methods in public transport, most notably inside

the train compartment. Aggression in trains can lead to great discomfort of other

passengers and working personnel, and even go as far as disrupting the service

schedule, causing physical harm to people and the damaging of train furniture and

material. Aggression against the train conductor and other passengers leads to great

distress on the bystanders, and may eventually lead to physical aggression.

According to a 2004 report on social safety by the Dutch Ministry of Transport,

1

2 Chapter 1. Introduction

Public Works and Water Management (Ministerie van Verkeer en Waterstaat) [9],

20% of all train travelers in 2004 have been the victim of an incident. The highest

level in four years. The report also shows an increase in serious incidents such as

abuse and theft. Reducing the number of incidents will increase the (perceived)

safety of the passengers. A passenger not feeling safe is more likely to choose

other transportation methods such as private cars.

An efficient surveillance system could lead to improved incident handling and pre-

vention, resulting in a safer public transport. Video surveillance allows a single

supervisor to monitor several video feeds of multiple areas at the same time, as

opposed to a local surveillant on the scene who can only oversee his immediate

surroundings. This allows one single supervisor to cover a much larger area. In

the wake of this development we are seeing efforts to further automate the task of

surveillance. Computer systems are already being used to record and preprocess

video and audio data, and we are now seeing dedicated video surveillance software

entering the field. The use of computer software can be simple as in merely detect-

ing change in a scene, but more complex applications and methods are currently

being researched.

Currently, video surveillance systems are mostly passive. They require a human

operator to monitor the video feeds on a screen, and to alert security crews when

their assistance is required in case of emergency. Automated video surveillance as

suggested in this work is currently not being used at the Nederlandse Spoorwegen

(NS). The number of available cameras for monitoring is currently very limited.

Few trains, and only the larger train stations in the Netherlands are equipped with

video cameras. As more cameras are installed in the future, a system like the one

proposed will become necessary.

A fully automated surveillance system is currently not commercially available.

Some software packages do exist, but they mostly record video streams and pro-

vide little further functionality. Behavior detection and motion detection, as well

as human tracking methods are a widely researched topic. A combination of these

methods could be used to provide an automated system capable of classifying hu-

3

man behavior, and in case of this project specifically, detecting aggression. A

multimodal surveillance system would use audio and video data from the feed,

and analyze this to determine the behavior that is present in the currently observed

scene. To analyze a situation, the scene must first be interpreted. Separate systems

are proposed to analyze both the video and the audio stream. This work will focus

on methods of analyzing and processing the video data. The goal is to ultimately

extract as much as data as possible from the imagery, and to find a way to interpret

this data in a meaningful manner given the context.

Eventually an automated surveillance system should aid the train surveillant in de-

tecting certain types of unwanted behavior, and make it possible to intervene in

aggressive situations more quickly. The goal is to eventually have a system that

can quickly and accurately monitor a large and very complex area for human be-

haviors, and when needed report observed activities to a surveillant, or even deploy

assistance if required. Furthermore, the presence of a functioning surveillance sys-

tem has been shown to have preventive effects against aggression and vandalism.

The goal of this work is to research the field of video surveillance, and investigate

what the common problems are and how they can be solved. For this we research

the current literature to find the most common problems and how they are currently

being solved. We are particulary interested in the integration of computer vision

techniques into one system geared towards crowd surveillance. Using available

methods we aim to develop a model for an automated surveillance system. This

work focusses on video surveillance, but the eventually the goal is to design a sys-

tem that integrates different modalities, especially audio. We can thus define the

goal of this project as follows:

Project Goal

To design a system composed of a network of video cameras, intelligent computer

4 Chapter 1. Introduction

vision techniques, for automated video surveillance and crowd monitoring.

We use video recorded earlier using actors in a train compartment provided for this

research by the NS, as well as some data recorded at the TU Delft and available

face detection training data on the internet. This data will then be used to test

different methods and our own implementations.

Although the main focus of this work is researching the theory and designing a

system, several implementations will be offered to demonstrate the possibilities of

current techniques and their application to the automation of video surveillance.

Parts of this research were used for the publishing of a paper for the Euromedia

2008 conference [21].

1.1 Organizational Description

The outline of this work is as follows: The first chapter gives an introduction to the

work that will be presented in this thesis, as well as the general social and academic

relevance of this research. The goal of this work is also stated in this chapter. In

Chapter 2 we present an overview of the entire problem in which we describe the

setting for the proposed system, and various key elements for our work, such as the

features we wish to detect, the environment in which the system would operate, and

how these factors can influence each other. In Chapter 3 we discuss the state of

the art by means of a discussion of related works. Many computer vision as well as

mathematical methods used later on in this work are based on existing techniques,

some directly related to video surveillance and face detection, others more general,

such as point tracking and image processing. Chapter 4 presents a framework for

an automated surveillance system, and the subsequent design for each of the mod-

ules. This work is to be part of a greater framework in which aggression detection

is to be achieved by acquiring and combining gathered environment data from dif-

ferent modalities, including video. The methods used include motion detection and

1.1. Organizational Description 5

classification, face detection, and tracking. This chapter also describes the design

of different methods to detect and classify behavior, based on the latter mentioned

methods. We also describe the implementation provided for some of the modules

described in this chapter. In Chapter 5 we describe the experiments performed for

this work including the recording of the data, and the performance of the modules

we implemented. Afterwards we evaluate these results. Chapter 6 presents the

conclusions of this work, as well as recommendations for future work in this area.

Finally, in the Appendix we include a paper partly based on the research in this

thesis that was presented at the 2008 Euromedia conference in Porto.

Chapter 2

Problem Overview

The main goal of this project is to develop a video surveillance system that can

detect and analyze types of human behavior in trains. This thesis will focus on

aggression and violence detection in the video data, specifically in train compart-

ments.

2.1 Environment

The environment where the system is to be used are the compartments in the trains

of the Nederlandse Spoorwegen (NS). These compartments consist of a 3 meter

wide cabin, with a length of approximately 15 meters. These compartments form

an enclosed space, that can be entered through doors at each end of the compart-

ment. An example is shown in figure 2.1.

Our system is designed to be used in a real world train compartments. The system

will therefore be subjected to situations different from the common lab environ-

ment. This means that a lot of environment variables such as lighting and people

behavior will be out of our control.

The compartments contain rows of four seats, with a corridor in the middle. People

enter the train through the entrances on both ends, and walk through the corridor.

People can therefore be walking through the corridor in opposite directions. Peo-

ple will either find a place to sit, or walk along through the corridor and exit the

7

8 Chapter 2. Problem Overview

Figure 2.1: A typical train compartment

compartment on the other end. If the train is very crowded, people can use the cor-

ridors for standing. During busy hours, the corridor can easily get congested during

stops when many people are entering and exiting the train. This leads to passen-

gers commonly occluding other passengers. During travel, there is less movement

in the compartment, usually only the train conductor checking for tickets, and pas-

sengers moving to and from the toilet. Passengers will have unobstructed access

to the corridor, and will be able to walk through the compartment at higher speed

compared to busy times like rush hour. At night it is not uncommon to observe

complete unoccupied compartments since usage at that times is low.

When the train is moving, most passengers will be expected to be sitting in their

seats, either talking to eachother, looking out the windows, reading, or sleeping.

In case we still observe movement in a moving train, this is sometimes caused by

people moving from one seat to another, people running in the corridor, or people

pushing eachother to either get in or out just after boarding. All of these cases can

be seen as a sign of possible upcoming aggression.

Both sides of the train are fitted with large windows The windows are divided

2.1. Environment 9

into a small upper part and a larger lower part. Only the top part of the window

can be opened or closed.These windows let in daylight, which leads to varying

lighting conditions in the train, due to outside weather, or when the train enters a

tunnel. Buildings casting shadows on the train also can cause very rapidly changing

lighting conditions in the train. During nighttime, fluorescent lamps illuminate the

cabins. Opening windows also causes wind noise when the train is moving, but this

is not directly relevant to our research. The ceiling is approximately 2.10 meters

high in Dutch trains. The width of the cabin is 3 meters.

The train compartments are equipped with digital cameras at the locations shown

as in figure 2.3, which will be providing the video streams used in this project.

The cameras are located on the ceiling of the train compartments, four cameras in

each. Furthermore, there are two cameras located at both entrances of the train,

facing outwards. These cameras capture the entering passengers. The cameras

are tilted slightly downwards at an angle of approximately 30 degrees, focusing

on eye-height of most passengers in the direct vicinity of the camera, as well as

the seats near by. The cameras are currently static, that is, they are fixed at their

position and in their orientation. Panning cameras however could some day be

installed, providing each individual camera with a larger field of view. Similarly,

other functions could be added, like the ability to zoom in to individual faces of

objects.

Figure 2.2: Side view of a train

The cameras used have a resolution of 640x256 pixels, or about 1.6 megapixels.

The video is provided in an unusual 2.5 : 1 aspect ratio for PAL video compatibil-

ity, meaning that some scaling and resizing has to be performed in order to make

the video suitable for digital processing. The resolution is adequate for a human

observer to make out individuals in the video feed, but recognizing faces can be

10 Chapter 2. Problem Overview

Figure 2.3: Seating plan for trains including camera positions

difficult when viewed on a small screen. Furthermore, the resolution of these cam-

eras is too low for observer to recognize faces that are not in the close vicinity of

the camera.

Apart from these cameras, we installed several webcams, filming at a slightly flatter

angle, to capture about one third of the train in a single scene. These webcams

record video at a resolution of 352x288 pixels.

2.2 Behavior

To detect and classify human behavior in a scene we must first determine what

types of behavior we wish to distinguish. Different types of behavior will have

different characteristics, which may or may not be suitable for automated detection

and analysis using video data. Our goal is to determine which specific features of

different behavior exist, and how these could be relevant to our research topic.

The behavior we wish to detect for this research is mostly aggressive behavior. Ag-

gression is any kind of behavior that is intended to cause harm or pain. For our case

we consider two basic types of aggression, verbal and physical. Verbal aggression

can for example be aimed at train personnel checking for tickets, but loud conver-

sation is also a common nuisance in the train. Physical aggression is anything that

involves fighting with other passengers, but also things like destructive behavior

and damaging of property. For both types of aggression, there are several scenarios

that are most likely to occur in the train environment.

Because we want to focus on visual behavior aggression detection, we are mostly

interested in physical aggression. This also seems the most suited for detection by

video surveillance. There are for more visual characteristics to detect than in other

2.2. Behavior 11

types of aggression like verbal abuse, frustration, or other more passive forms. We

will concentrate on features like wild sudden movements by passengers, erratic

behavior, and other unexpected behavior such as running or falling.

2.2.1 Aggression in the Train

The Dutch Railways (NS) spend a large amount of money each year for prevention

of aggression in their trains. The main goal is to keep their own personnel and

passenger safe, but also to prevent damage to the train equipment and furniture.

Furthermore, high aggression will undoubtedly scare many passengers away, thus

reducing profit from ticket sales. The Dutch Railways define different categories

of incidents, which include aggression. This list is shown in table 2.1.

Table 2.1: Incident categories used by the Dutch Railways (NS)

Category Description

A Suspicious behavior

B Robbery and theft

C Violence

D Serious public inconveniences

E Small public inconveniences

F Vandalism

G Accident

H Fire

The following are examples of passenger behavior and some of its features, and

the aggressive behavior that we could expect to observe.

• Normal behavior - Passenger

A passenger is expected to enter a train compartment at a normal walking speed,

traveling in a straight line towards an empty seat, and perhaps standing still for a

few seconds before moving towards the seats and sitting down. When not sitting

down, a passenger is expected to move through the corridor in one movement,

without stopping. When the train is very full however, passengers can be expected

to stand still in the corridor due to lack of sufficient seats, otherwise this behavior

12 Chapter 2. Problem Overview

is not expected.

• Normal behavior - Train Conductor

A train conductor when checking tickets will show a slightly different behavior,

namely walking through the corridor, and stopping briefly at each row of seats to

check tickets. This delay should not often take more than a few seconds, when

taking longer it can be expected that a passenger can not immediately provide

his ticket, and/or the conductor is issuing a fine to said passenger. Since this can

sometimes lead to aggressive behavior, being able to detect when a) a passenger

is identified as the conductor and b) the conductor is experiencing such a delay is

desirable.

• Speed of movement

When a person is moving faster than normally expected in a train compartment,

this can often be linked to aggressive behavior. For example, running towards

another passenger (charging), or running away from the train personnel when they

are coming to check for tickets. Smaller fast movements can also be linked to

aggressive behavior. These can include actions like swinging an arm (punching)

or a person being pushed. Fast movements not directly linked to a person may

also constitute aggression, such as the throwing of objects within the cabin, and

the slamming of doors. Also, since we do not expect many sudden movements in

normal behavior, any such sudden fast movement could be of interest.

• Non-standard/non-scenario behavior

In the train compartment there are areas designated for sitting (the seats), and for

walking (the middle corridor). When we observed people not moving in the cor-

ridor, or observe a lot of movement in the seats area, this could be a situation that

would require attention. The only times when we would expect movement in the

seating area, is when the train has just stopped at a station, and people are taking

or leaving their seats. At this point we do however expect a lot of movement in

the corridor. Contrary, when the train is moving, we expect the opposite behavior.

Only few people should be walking through the compartment at this point. At this

time we expect to see the occasional passenger visiting the restroom, and the con-

2.2. Behavior 13

ductor coming into the compartment to check the tickets. Opposed to these forms

of non-standard movement, we might also encounter non-standard non-movement.

An example of such behavior could be passengers resting their feet on other seats,

lying down in the seats or in the corridor.

• Erratic behavior

When a passenger is taking an unusually long time to find a seat, switching seats

often, or moving at non-constant speed in a non-constant direction this could have

several reasons we are interested in. For instance a passenger could be drunk or

under the influence of other substances, which could potentially lead to a dangerous

situation. Any such non-standard behavior could be detected by defining standard

behavior and simply determining when an observed action differs to much from it.

• Poses

People who are physically aggressive, will often assume different poses. They

may use their fists to punch as in a fighting stance, or for example be kicking

train furniture or even other passengers (Figure 2.4). A person being the victim

of aggression will often be using their arms and hands to shield their heads, or

use their knees when on the ground to protect their bodies. More subtle features of

aggressive poses include bending the forehead slightly forward, sometimes towards

the subject of the aggression, or the raising of the arms.

• Personal area invasion

According to social psychological studies, human beings have a personal area sur-

rounding them (the size of which is culturally dependent) and do not like intrusion

by other people in this area, especially strangers. In case one person is moving

close to another person, within the other person’s personal area, and this other per-

son then moves away, we might have a case of invasion here. This is often the case

when people are trying to intimidate others, or more explicitly, when people are

fighting.

• Facial expressions

Facial expression convey a great deal of information about the emotions being

experienced by a person. In dangerous situation we expect to see people express

14 Chapter 2. Problem Overview

Figure 2.4: Fighting passengers in the train

emotions like fear and anger through their faces. Examples of different expressions

are shown in figure 2.5.

Figure 2.5: Facial expressions templates used by Datcu and Rothkrantz in [7]

Tables 2.2 and 2.3 summarize several types of reprectively static and dynamic fea-

tures, related to aggression or other unwanted behavior, that might be detected

using currently available methods, and could therefore apply to our system. Static

features are those features that can be detected from single frames. Dynamic fea-

tures are detected in a series of frames, and involve behavior exhibited and detected

over a period of time.

2.2. Behavior 15

Table 2.2: Static features related to aggression

Behavior Description

Unusual locations

for faces or body

parts

Faces very close to the floor, or in the lockers. Shoes

on the furniture.

Unexpected objects Knives, sticks, cigarettes & smoke, bottles

Invasion of per-

sonal space

Persons detected very close to eachother, passengers

touching or pushing one another.

Body poses Offensive or aggressive postures, raised arms

Smoking Persons smoking cigarettes when not allowed

Facial expression Angry or aggressive expressions

Abandoned lug-

gage

Suitcases, backpacks

Table 2.3: Dynamic features related to aggression

Behavior Description

General motion of

persons

The amount of motion energy in a scene is different

from the expected value given the current status of

the train

Running Persons running through the train

Fighting Fights among passengers, pushing, kicking, jump-

ing

Vandalism Damaging of train seats or windows, graffiti

Throwing objects People throwing with objects in the train compart-

ment

Chapter 3

Related Work

3.1 Overview

To detect the situations previously described, there are currently a number of com-

puter vision techniques available, especially tracking, face detection and motion

interpretation. Different methods have different applications to our project. We

will discuss the possibilities of each, and the feasibility of their application to our

project.

3.2 Motion Detection

Being able to detect motion in a scene is the first and most basic step towards un-

derstanding behavior, since most of the behavior we wish to detect, especially ag-

gression, is associated with some kind of body movements. Motion detection aims

at segmenting regions of an image corresponding to moving objects over frames to

the rest of the image. Most techniques try to find a so-called ’blob’ in one frame,

and associate it to a similar looking blob in the next frames. The easiest blobs to

detect are uniformly colored regions. If the camera is fixed, blobs in the frame will

be changing position, and these blobs can the be assumed to be moving objects.

Most of the other operations we wish to perform, such as person tracking and be-

havior interpretation are highly dependent on motion detection. Motion detection

17

18 Chapter 3. Related Work

algorithms usually involve environment modeling and motion segmentation.

3.2.1 Environment Modeling

Environment modeling is very important for motion detection since it provides a

description of the scene which can help in interpreting the observed motion data.

Especially background modeling is important because it can greatly reduce the cost

of computation. One of the challenges is being able to model the background pixels

under varying lighting conditions. Many methods exist, some including Gaussian

pixel models, others using Kalman Filters to reduce the variance in illumination

[10]. A more simplistic, but static approach is using a previously acquired image

of the scene without any objects or persons in the scene, possibly under varying

lighting conditions, so that it can later be used for background subtraction. This

method can be applied to static cameras, but is generally unsuited for moving cam-

eras.

2D environment models are usually preferred over 3D models for their simplicity,

and the fact that most modeling can be done using only the data visible in the image

plane from the camera. Usage of 3D environment models is being researched but

currently mostly limited to indoor scenes due to the high complexity of outdoor

scenes [22].

3.2.2 Motion Segmentation

Motion segmentation aims to segment the moving parts of an image from the back-

ground of the image, thus to detect moving objects such as persons or vehicles.

Some currently conventional motion segmentation methods used today are out-

lined below.

1. Background Subtraction

Background subtraction is a very simple, and popular method for motion seg-

mentation. It simply subtracts a previously acquired reference background

image from the currently observed image, the reasoning being that any pix-

els that have significantly changed in value must belong to the foreground.

3.2. Motion Detection 19

It is useful for scenes with a relatively static background. Due to its sim-

ple nature it is extremely sensitive to changes in the environment, such as

changing lighting conditions. To reduce the influence of these changes, a

good background model is extremely important. An example of background

subtraction is shown in figure 3.1. In this case we could take advantage of

our access to an empty scene, and having a fixed camera. Although the light-

ing conditions are slightly different between the background frame and the

video frame, it is still possible to perform the algorithm with satisfactory re-

sults in this case. In the example we also see that the bag in the lower right

seat is not present in the empty background image, and thus we also detect

the bag in this example.

Figure 3.1: Background subtraction applied using the first image as the static back-

ground, and the second image as the input. The resulting mask is shown in the third

frame.

2. Temporal Differencing

Temporal differencing uses the difference in pixel values over several frames

of an image sequence to determine moving regions. It is therefore more

adaptive to dynamic environments than background subtraction. A downside

of this method is that it can ignore pixels that are part of a moving object,

but remain at the same color value for several frames, effectively producing

’holes’ in the detected object. For example, a large, plain-colored object will

produce the same color of pixels at a certain coordinate for a certain number

of frames. If this period is longer than the time the algorithm looks back

in the image sequence, these pixels will appear unchanged, and therefore be

considered background instead of foreground. This characteristic makes it

20 Chapter 3. Related Work

less suitable for detection large, uniformly colored objects, that exhibit fairly

linear motion. Another drawback is that the difference between two frames

will include the pixels from the posterior frame, that is, the area in the image

where the movement originated from. This is shown in figure 3.2 where we

can clearly see the pixels being masked in the top area of the image where

the moving person was in the first frame. When compared to background

subtraction as shown in figure 3.1, we notice that the masked area found in

the third frame in this case indeed is slightly larger, because it also includes

the actor in the original frame having moved, and thus changing the pixel

values in that area. Especially when the time difference in frames is larger,

this overlapping will also be larger. Also, we notice that since the bag in the

lower right corner is present in both frames, there is no difference between

these pixels, and therefore the bag is not detected, while it is detected using

background subtraction in figure 3.1. This is a drawback for the temporal

differencing method, it cannot detect changes in a scene if they occurred

before the last instance we use to compute the frame differences.

Figure 3.2: Temporal differencing applied to two video frames, with the resulting

selected pixels shown as a mask in the third image

3.3 Face Detection

Face detection can be regarded as a special case of object-class detection. Object-

class detection aims to detect all objects in a scene belonging to a certain class,

such as vehicles, cars, but also upper bodies or pedestrians. Most face detection

methods are also face localization methods, because they also determine the loca-

3.3. Face Detection 21

tion, and size of a face in an image. While most face detection methods try to detect

frontal views of faces, newer algorithms attempt to detect faces from multiple an-

gles, or multi-view face detection [23]. A wide variety of techniques exist, ranging

from simple edge-based algorithms, to complex high-level approaches using pat-

tern recognition methods. We will discuss the two most common approaches to

face detection: image based, and feature based.

3.3.1 Skin Pixel Based Face Detection

Detecting skin in an image can effectively enable us to also detect humans. Skin

detection is mainly a tasks of color segmentation, which divides an image into

sections which can be used for face detection applications. An example of this

method is presented by Albiol et. al. in [3, 2]. This method detects faces by

first detecting skin pixels, and then applying a segmentation algorithm to find skin

regions. Region grouping is then applied to find region that most likely represent a

face.

Skin pixel have very specific correlation between color values which can be ex-

ploited by a classification algorithm. This correlation is present for all skin colors.

The relation between color values in different color spaces for skin tones is highly

correlated [16], and falls within a narrow range. It is therefore quite trivial to sim-

ply segment the image into skin and non-skin pixels. Most methods simply use a

color map to classify pixels.

In the next stage, the skin pixels are clustered to obtain regions. In the case of [3],

a watershed segmentation algorithm is used to find clusters, after which the most

face-like blobs are selected as the faces.

For this work we designed and implemented a pixel based human detector based

on the works of [3, 2, 16], and tested its performance in our live train setting.

3.3.2 Viola & Jones

Paul Viola and Michael Jones introduced a new approach for visual object detec-

tion using the principle of a boosted cascade of classifiers [17]. It can be trained

22 Chapter 3. Related Work

for face detection, and is capable of processing images extremely rapidly while

achieving high detection rates. They used the Adaboost machine learning algo-

rithm and claim to have achieved a 15 times speedup over the original Rowley [1]

implementation for their detector. To understand the Viola & Jones detector, the

concept of boosting needs to be explained first.

Randomly answering a yes or no question with an evenly distributed answer space

will yield the correct answer 50% of the time in the long run. If a method can

improve this score by a very small amount, it is called a weak classifier. It is

possible to generate weak classifiers for a great number of tasks in an automated

manner by enumerating a large set of generated data on a basis of very simple

rules, and then evaluating their performance on a set of samples. A heuristic that

can improve the detection rate by a larger amount is called a strong classifier. By

’boosting’, we aim to combine several of these simple, weak classifiers, and create

a strong classifier. Adaboost is a well known method to combine weak classifiers

and create strong classifiers [17].

The weak classifiers in Viola & Jones are based on three different kinds of fea-

tures. The two-rectangle feature is the difference between the sum of the values

in two adjacent rectangular windows. The three-rectangle feature takes three ad-

jacent rectangles, and computes the difference between the sum of the pixels in

the extreme rectangles, and the sum of the pixels in the middle rectangle. A four-

rectangle feature considers a 2 by 2 set of rectangles, and computes the difference

between the sum of the pixels of the diagonally opposed rectangles. An example of

these features is shown in figure 3.3. It is shown how for example, a three-rectangle

classifier can return recognizable results for face sections like the nose, where the

differences in pixel sums over the square are very characteristic. The minimum

size of a feature is roughly comparable to the size of a face in an image, so a 16x16

section of an image can already contain hundreds of thousands of features, since

a 12x12 pixel or even smaller detector is swept over each pixel. This is where the

Adaboost algorithm comes in, and selects those weak classifiers to limit the se-

lection to a few hundred weak classifiers, that will still yield good enough results.

3.3. Face Detection 23

This obviously greatly increases the speed of the algorithm.

Figure 3.3: Example of rectangle features in Viola & Jones

Computing the rectangular features is a straightforward operation. The algorithm

then introduces the integral image. The integral image at a location (x, y) is defined

as the sum of the pixel values above and to the left of (x, y). It is therefore like

an integral function over the entire image. The integral image ii is defined as a

function of the original image i in equation 3.1. By using this representation, we

can greatly increase the efficiency in calculating rectangular sums, since we only

need to compute the difference in the total sum for the two corners of the rectangle.

This is a contribution by Viola & Jones to the original algorithm, which greatly

reduces the computational complexity, since it effectively removes the needs to

calculate large sums of pixels for each and every classifier, every single time. To

determine whether a sample contains a face, the sum of weighted classifier scorer

is taken, and compared to a previously determined threshold. An example of the

results is shown in figure 3.4.

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′), (3.1)

24 Chapter 3. Related Work

Figure 3.4: Example of face detection using Viola & Jones

The original work by Viola & Jones is proprietary, but since then their algorithm

has been reimplemented. The most widely used version is the one included in the

OpenCV toolkit. It comes with several so-called cascades of classifiers, which are

each trained for a certain class of objects. The cascades provided in OpenCV de-

tect frontal faces, profile faces, upper bodies, lower bodies, and full bodies. One

characteristic of face detection cascades, is that they are trained for a single view

of the face, hence separate frontal and profile cascades included. To perform true

multi-view face detection, it would therefore be necessary to either use both pro-

vided cascades in parallel, or to train additional cascades for multiple view angles

and orientations.

The face detection in this work will be done using the Viola & Jones implementa-

tion provided with the OpenCV toolkit. We will use the resulting face detections

from this method to perform human tracking in the video samples.

3.3.3 Huang & Haizhou

The Huang & Haizhou face detector [20] is a relatively new method introduced

in 2004 aimed at multi-view face detection. It introduces a Width-First Search

(WFS) tree structure (figure 3.6) that achieves higher performance both on speed

3.4. Person Tracking 25

and accuracy when compared to other current methods for multi-view face de-

tection (MVFD). It uses a similar approach to the Viola & Jones multi-view face

detection method, in that it applies the Adaboost algorithm on weak classifiers for

several orientations of faces. It divides human faces into several categories based

on the varying appearance from different angles. For each of these categories,

weak classifiers are used to detect Haar features. These weak classifiers are then

boosted using Adaboost, and construct a face detector. Apart from detecting faces

it therefore also detects the orientation of the face. This is illustrated in 3.5.

There is currently no implementation of this method publicly available for com-

parison with other methods, since it has already been commercially licensed. The

results presented so far are very promising since this method not only provides face

localization, but in combination with the facial orientation also provides informa-

tion on where a person is focusing his sight on, and possible in which direction

a person is traveling. Knowing where other passengers in a scene are looking at

is a very desirable feature in our project, so this detector could be of great future

benefit for this project.

Figure 3.5: Example of face detection by Huang & Haizhou

3.4 Person Tracking

There are several possible method for tracking in video frames. To track motion,

we must first be able to detect objects. Color value based methods like the ones dis-

cussed above can be used for blob tracking, but there are other methods as well such

as contour based tracking, or feature based tracking. The Viola & Jones method

will return the image coordinates each time it detects a face. Given these coordi-

26 Chapter 3. Related Work

Figure 3.6: WFS tree structure used by Huang and Haizhou

nates for each frame, we can perform tracking using a filtering algorithm on these

coordinates to perform the task of data association and motion prediction. Methods

that could be applied are for example the Kalman filter, or simpler forms of data

interpolation and nearest-neighbor matching.

3.5 Behavior Analysis

Human behavior analysis concerns the detection and tracking of people, and more

in general, the understanding of human behaviors. A successful human behavior

analysis system consists of three major components; human detection, tracking,

and finally, behavior interpretation. Human behavior analysis has attracted great

interest from the scientific community due to its wide range of applications such

as automated video surveillance, video conferencing, virtual reality and perceptual

user interfaces [19]. Niu et al. [12] present a framework for recognizing human

activities, aimed mainly at outdoor activities, which recognizes behavior based on

the observed paths by humans.

The application we are most interested in is naturally the field of video surveillance.

In a lot of areas like banks, large department stores, and in our case, train sta-

3.5. Behavior Analysis 27

tions and compartments, video surveillance cameras are already in place. Security-

sensitive areas like these can greatly benefit from smart surveillance methods. Be-

ing able to interpret human behavior can help detect suspicious or otherwise un-

wanted behavior automatically.

Having motion data available, the task of behavior analysis can be considered a

classification problem of time varying feature data. The features in this case could

be the locations, or the tracks of each individual being observed over a time pe-

riod. A set of reference data can then be used to compared the measurements, and

construct a best fit. This requires prior knowledge of the behavior to be detected.

3.5.1 Template Matching

The template matching approach takes an image sequence and converts it into static

movement data, which can then be used to match with a set of templates. It requires

pre-stored prototypes for comparison during recognition. In early approaches, op-

tical flow fields were used to model the movement in a scene. The optical flow

fields of successive frames are stored, and split into both the horizontal en vertical

motion components. A set of these flow fields is then accumulated to form a set of

feature vector for a time period. This set of feature vectors is then compared to a

template using a nearest neighbor algorithm.

More recent work by Bobick and Davis [4] uses a view-based approach. They

use the motion history image (MHI) and motion energy images (MEI) to interpret

human behavior. This effectively produces a dual component representation of

an action based on the observed motion. This method is based on the property of

different actions have different motion history patterns, which can be used to detect

and classify human actions. The use of these images makes the algorithm useful

for detection of wide ranges of actions, however also it makes it very susceptible

to noise. An action must be observed without any occlusion, since any occlusion

will greatly influence both the MHI and MEI signatures of the performed action.

In both of the above cases it is assumed that similar actions will have similar mea-

surable features. For this particular work we developed a template matcher loosely

28 Chapter 3. Related Work

based on above methods, but which instead uses the tracked paths of passenger

locations to interpret their most likely behavior by performing pattern matching

against previously tracked and annotated paths.

Chapter 4

Design and Implementation

We want to design a system than can detect a few basic types of behavior, which

can then be used to analyze the overall situation in a train compartment. This

is a process that requires many steps, from the raw video input, to an automated

interpretation of the observed actions. We propose a modular approach that divides

this tasks into sub-problems, and describe the workings of each module in this

system.

4.1 Proposed Surveillance System Framework

Automated video surveillance is a task that includes many subtasks. For this reason

we suggest a modular approach for such a system. A diagram of the proposed

system is shown in figure 4.1. The video input stage takes the raw input from the

video cameras in the train. In the next step this data is processed so that it is fit

for the next two stages where the image sequences will be analyzed. This involves

tasks like resizing the video, and applying corrections for orientation.

The system then splits into two parallel tasks, motion based, and human detection

based analysis. The motion based analysis will perform motion detection and some

motion recognition. The human detection side is aimed to detect the humans in

a scene and their locations, and track them accordingly. The results of these two

modules are then analyzed in the behavior analysis module, which will try to detect

29

30 Chapter 4. Design and Implementation

behavior, and discern between aggressive and non-aggressive behavior. The final

stage of the system will take this behavior analysis, and if necessary produce an

alert, in this case when aggression is detected. This could then be used to alert

the operator to evaluate the situation on the video stream, or even automatically

dispatch the security personnel required for handling the situation.

Figure 4.1: Proposed framework for an automated surveillance system

4.2. Video Input 31

4.2 Video Input

The video is received from the cameras directly in raw video format. In our case,

the video is coming from a CCTV system already implemented in the trains, and

has a unusual 640x256 resolution, and a framerate of 8 fps. The color depth is

24-bit, but reduced greatly when the video is compressed. The average size of a

compressed frame will be reduced to around 15 kilobytes per image, resulting in

data stream of around 120Kb/s for the video. The video can be received real-time

as uncompressed RGB data, or as streaming AVI. For our system we stored the

video in MPEG-4 format for reduced size, and loaded them into our system for

processing afterwards. The eventual goal is to provide the system with real-time

data however.

4.3 Image Processing

This work is different from previous works in that it is designed to work under

real-life conditions, and therefore faces problems not found in the lab environ-

ment. Some of the challenging circumstances we have to cope with in the train

compartment include the varying (and unpredictable) lighting conditions. The pre-

processing step consists of reducing noise in the video stream. Some smoothing

is applied to allow for easier segmentation by the algorithm, since more noise in

an image will lead to more small segments being created. This can be done by

lowering the color depth. Another common approach in computer vision methods

is simply using a grayscale version of an image. A blurring algorithm can be used

for even further smoothing. This further reduces the number of regions that will be

found in an image, simplifying segmentation.

4.3.1 Image Scaling

The video received from the cameras in the trains is in an uncommon 640x256

resolution. The video image is scaled down vertically, as to achieve a interlacing-

like effect. This is useful for compatibility with television systems, but the images

32 Chapter 4. Design and Implementation

need to be scaled up to normal resolution for processing. After scaling the images

up to 640x512 resolution, we also have a more usable 5:4 aspect ratio. In addition,

it is possible to downscale frames to reducing computational complexity. The Viola

& Jones algorithm performs quicker when using smaller images, but detection rates

suffer, since the method performs better on higher resolution images, and smaller

images contain less detectable features. Apart from the cameras available in the

train, we also used common webcams for video recording. These cameras record

video at a 352x288 resolution.

4.3.2 Image Adjustment

The images recorded by the camera in the train compartment during our experi-

ments need to be adjusted before being usable by our methods. The cameras in

the train are facing downward at an angle, and have slight variance in their orienta-

tion between them. To accurately determine locations of objects, we need to take

into account necessary adjustments in the image caused by both camera orienta-

tion, and perspective distortion. Objects near the camera will appear larger, and

distances between objects will change as a result of this. The images recorded will

be projection of a 3-D scene onto a 2-D image. We would like to be able to map

the position in our 2-D frame to coordinates in the actual 3-D space. This would

be very useful for example to be able to determine exact locations and speeds of

objects in a scene. The method for image adjustment used in this work is based

on a camera model called Direct Linear Transformation (DLT). The DLT model

describes a model for camera calibration using a linear transformation that takes

into account zoom, pan, and tilt of a camera. The DLT method is computation-

ally cheap due to being a simple linear transformation. It can however not correct

non-linear effects like radial distortion. The imaging process produced by a pro-

jective camera can be interpreted as a sequence of three projective transformations.

Given a point p = (xw, yw, zw, 1) in homogeneous world coordinates and a point

q = (f ·xi, f ·yi, f) in image coordinates corresponding to the projection of p onto

the image, then the mapping of p to q can be expressed as:

4.3. Image Processing 33

q = K ·

1 0 0 0

0 1 0 0

0 0 1 0

·M · p (4.1)

Where, K represents the intrinsic parameters of the camera and is given by:

K =

σx σθ u0

0 σy v0

0 0 1

(4.2)

With (u0, v0) the coordinates of the principal point, and σx and σy the scale factors

in image u with axes v. The parameter σθ describes how much the image axes

are skewed, and therefore account for non-rectangular pixels. However, in most

modern cameras pixels are almost perfectly rectangular, therefore σθ will be very

close to zero. M represents the extrinsic parameters of the camera and is given by:

M =

. . .
... . .

. ...

· · · R · · · T

. .
. ...

. . .
...

0 0 0 1

(4.3)

Where R is the rotation and T the translation relating the world coordinates to our

camera coordinates. By performing the inverse rotation and scaling on the image,

the u,v axes of the image is aligned with the x,y axis in the world coordinate system.

Figure 4.2 shows the images before and after resizing and adjusting. The slanted

lines in the original image have become horizontal lines in the adjusted image. This

shows an important consequence of the inverse rotation: horizontal movement in

the train compartment should now indeed register as horizontal movement in the

adjusted image and vertical movement in the compartment will register as vertical

movement in the adjusted image.

34 Chapter 4. Design and Implementation

Figure 4.2: Comparison of an original image (left) from the train camera, and the

same image after scaling and adjusting (right)

4.4 Motion Detection

A first and low level approach to scene understanding is to detect motion. Even

without any further investigations, we find ways in which basic motion detection

could still be of use to our system. Most motion detection algorithms, including the

ones discussed in the previous chapter, will perform a comparison with a previous

frame, or a background frame. The result of the motion detection then yield a so-

called foreground image, which contains the moving pixels. With this information

we can determine several things that might be of our interest:

• Location in the image

The location where we detect motion can be helpful to determine what action is

being observed. Motion in the seating area will be expected to be people sitting

down, motion in the corridor is expected to be from moving passengers. We can

make a scene model in which we can simply designate seating and walking areas

as a start.

• Direction

The direction of the movement tells us whether a person is entering or exiting the

train, and where a moving object is headed towards. Lateral motion is usually only

expected when passengers take their seats.

• Speed

We expect passengers to travel at a certain walking speed. Objects moving at a

4.5. Motion Recognition 35

higher or lower speed can be a sign of aggression or obstruction respectively. To

accurately determine speed, we must take into account the perspective distortion

of our images by converting the 2D distances to approximations or the real world

distances.

Random noise in the video stream can cause apparent motion in an image where in

reality no motion is occurring. Changing lighting conditions need to be taken into

account. In the case of a moving train we also have the added problem of rapidly

changing lighting conditions when for example entering a tunnel, or the changing

scenes observed through the windows. These circumstances add a lot of noise to

the scene, and make it difficult to perform accurate motion detection. A partial

solution is to filter out the most abrupt changes in a scene, comparing results with

previous measurements.

4.5 Motion Recognition

Motion detection algorithms can give use data on the direction and speed of mov-

ing objects in a scene, as well as the total amount of motion observed. We can

compare this data to previously recorded scenarios to see if they are similar, and

recognize behavior in this manner. Niu and Long [12] described methods to recog-

nize individual human gestures given the localized motion detection data, as well

as more general applications. One way of recognizing motion would be to classify

scenes according to the amount of movement.

We expect that different scenarios will have different amounts of motion. We would

not expect a lot of motion when the train is in transit, but do expect a lot of energy

in the scenes where the train stops at station at busy hours, and many people are

exiting and entering the train. If we know the average motion energy for common

scenarios, we can effectively build a simply scene classifier based on the amount

of recorded motion.

Since we have a certain expectation for passenger behavior in the train, we can tune

36 Chapter 4. Design and Implementation

the motion thresholds for different circumstances. For example when observing a

lot of motion while the train is in transit, we would suspect abnormal behavior.

While the train is stopped however, we will observe many people boarding as well

as entering the train, so we would expect high amounts of motion during these

periods. We aim to find a threshold for both of these cases later in this work.

Similarly with motion detection, we can take into account the location where the

motion was detected. Large amounts of motion energy near the corridor are most

likely to be from people exiting and entering the train, while a large amount of

energy detected in the sitting areas is most likely a cause for concern. We can

also take into account whether the train is in transit or not, since for example we

would not expect much movement in the corridor when the train is in transit. A

possibility is to assign different weights to different areas of the train, during the

different phases of travel. We can then judge each motion energy profile against

the current set of rules. This obviously requires some knowledge about the current

operation of the train however.

4.5.1 Implementation

Applying the motion detection algorithms from OpenCV, we use the acquired Mo-

tion Energy Image (MEI) as an indicator of motion of the last viewed frames (op-

posed to the Motion History Image (MHI) which describes the recency of motion).

The MEI is a two-color image in which only those pixels are colored that have

changed in the last two frames, or in some cases the last several frames. Therefore,

we can use this image and the number of colored pixels in it as a measure of the

amount of change occurring in the image, that is, the amount of energy in the cur-

rent scene. We can express the amount of motion as the total number of pixels that

have changed, which is the number of pixels in the MEI. A slightly more subtle

approach is to use the MHI instead. This image assigns grayscale values to a pixel

according to the amount of motion observed in the last few frames. We can use a

similar approach, converting the pixel values to an intensity between 0 and 1, or in

the case of grayscale color values, between 0 and 255, and simply add these up in-

4.5. Motion Recognition 37

stead. The resulting data is much more smooth, as the MHI calculation by default

filters a lot of noise from the data due to being performed over more than 2 frames.

In both cases we used the implementations provided by the OpenCV toolkit.

0 100 200 300 400 500 600
0

2

4

6

8

10

12

x 10
6

frame index

Σ
 p

08b_enter_train.avi

Figure 4.3: Energy graph for scene 8b; people entering the train and walking

through the corridor

Algorithm 1 function motionEnergy(Image i)

image i

for pixel x in image i do

totalEnergy = totalEnergy + pixel.grayvalue

end for

return totalEnergy

Adding up motion energy values from images is fairly simple and is implemented

as illustrated in algorithm 1. This algorithm is run for each time index, thus supply-

ing an energy value for each recorded frame. An example of motion energy plotted

for a scenario is shown in figure 4.3.

38 Chapter 4. Design and Implementation

4.6 Human Detection

4.6.1 Viola & Jones

The main method we used for the purpose of human detection is face detection.

When a face is detected in an image, this obviously means we have detected a

human as well. We used the implementation provided with the OpenCV library,

which is completely based on the method proposed by Viola & Jones in [17]. When

applied to a single frame, the algorithm will return the regions in the image in

which a face is believed to be. This gives us the location and the size of face for

each frame, as well as the total number of faces present. This data can be stored for

a video stream. We plan to use this data to construct paths of known locations of

faces, so we can track movement of passengers in the train. Having detection data

over a longer period of time will allow us to use filtering methods to smooth out

the paths of passengers, as well as fill in the gaps in detection should we have any

false negatives. Since this algorithm is fairly computationally expensive, we also

consider the option of not running it every single frame. Using the same filtering

techniques, we expect to be able to perform person tracking with only several true

positive measurements per seconds, so given high enough detection rates we could

opt to run the face detection algorithm on a smaller percentage of the total frames.

The Viola & Jones classifier is provided with several cascades, or cascading clas-

sifiers. These are each individually trained to detect frontal faces, profile faces,

upper bodies and full bodies. We can use a single one of these for example only

to detect frontal faces, but we can also combine several of these cascades to boost

detection rates if necessary. The advantage would be more accurate detection, due

to for example the frontal and profile cascades providing us some basic version of

multi-view face detection. The downside however is that we need to run the algo-

rithm several times, increasing the running time of our method, as well as having to

combine the detection results into one final location of a person. When using both

frontal and profile faces these locations might overlap very well. However when

in a single frame both a full body and a face is detected, we need to find a means

4.6. Human Detection 39

of determining whether these two (presumably) different coordinates belong to the

same person or not. This would require some sort of passenger modeling.

4.6.2 Skin Pixel Detection

An alternative to feature based face detection such as Viola & Jones, is color value

based skin detection. This method was compared to Viola Jones since it could pro-

vide a computationally cheap alternative, which can also run in realtime at higher

resolutions. Similarly to face detection, when skin is detected, we have also de-

tected a human. Albiol et al. have implemented a method [3] that is based on the

characteristic relation between color values in skin tones of any color, that can ef-

fectively be used to determine whether a pixels is part of the skin color range or

not.

Detecting skin tones in an image will effectively allow us to localize persons in

a scene as well. Skin detection can be done in several ways, most of which are

computationally inexpensive. The most basic method is simply determining for

each pixel whether it belongs to an certain empirically determined color range, in

this case that of skin tones. In the skin model used for this implementation, we use

several methods as described in [16].

Figure 4.4: Positive data samples all containing skin pixels

40 Chapter 4. Design and Implementation

Figure 4.4 shows some of the manually selected positive face samples. We visually

observe that most skin tones are similar in color value. A feature that we can exploit

for automatically detecting skin pixel is the fact that the values of individual color

components in skin tones are highly correlated. The most commonly used color

models for skin detection are the RGB, YCbCr, and HSV color models. For our

first simple algorithms we observe the common color values for skin pixels on our

image set, and create a simple pixel classifier based on the recorded values in the

positive samples.

Figure 4.5: Red and green values of RGB model

Figure 4.6: Red and blue values of RGB model

Figures 4.5, 4.6, and 4.7 show the correlation of the (R,G, B) values in the pixel of

4.6. Human Detection 41

Figure 4.7: Green and blue values of RGB model

our positive samples (figure 4.4. We can observe several things from these figures.

Figure 4.5 indicated that the red and green color components in skin pixel always

seem to appear in a fixed ration, since all the data points are roughly on the same

line. The value of the red component is always close to 1.3 times the value of

the green component. We observe similar correlation in the values for the red

and blue components (figure 4.6), and the green and blue components (figure 4.7).

Also, for each component there appears to be both a minimum, and a maximum

threshold. This knowledge can be used to construct a simple, rule based pixel

classifier. The observed data is presented in table 4.1. The table shows the average

quotients between the color components. For example, an (R,G, B) value of a

skin pixel can be constructed using the values (R,R ·1.33, R ·1.78). The MIN and

MAX values are the respective minimum and maximum values observed for each

particular component.

Downside of the RGB color representation is that it is very much influenced by

lighting conditions, and the channels are highly correlated with eachother. This

partially explains the found relations between the color channels, although the cor-

relation can still contain enough information to do some useful analysis on. An-

other downside is the mixing of chrominance and luminance data. For this reason,

most pixel based skin detectors use a different color model [16].

A partial solution to this problem is using normalized RGB. The normalized RGB

42 Chapter 4. Design and Implementation

values are easily obtained from the original data:

r =
R

R + G + B
, g =

G

R + G + B
, b =

B

R + G + B
(4.4)

Since the sum of the values r + b + g = 1, any single value can be omitted since it

represents no significant information, effectively reducing the space dimensional-

ity. The benefit of normalized RGB is that the values of the red and green compo-

nents in particular, are less dependant on the brightness of the source RGB color.

Therefore, this representation will yield similar (r, g, b) values for a skin pixel in

varying lighting conditions. This remarkable feature makes normalized RGB a

popular choice among researchers [16].

Table 4.1: RGB skin pixel range

R G B MIN MAX

R 1 1.33 1.78 48 208

G 0.75 1 1.55 36 160

B 0.56 0.65 1 24 128

Figure 4.8: Luminance and red chrominance values of YCbCr model

4.6.3 Implementation

Our tested adaptation of the discussed skin detection algorithm uses a skin-classifier

to determine whether foreground pixels belong to the skin pixel range. The goal is

4.6. Human Detection 43

Figure 4.9: Luminance and blue chrominance values of YCbCr model

Figure 4.10: Blue and red chrominance values of YCbCr model

to be able to achieve higher detection range solely for moving faces, thus ignoring

any stationary persons and objects, which reduces the number of false positives.

We use the already available Motion History Image as a mask to determine which

pixels classify and which ones to ignore.

The first algorithm (algorithm 2) calls the isSkin() function for those pixels that

are thought not to belong to the background. This is done to further reduce the

false positive rate of this algorithm, which is originally quite high at 30 percent

[11]. By masking the foreground in this way we also reduce the computational

complexity. The pixels which are determined not to belong to the background, and

thus being moving objects in the image, as classified using the isSkin() function.

44 Chapter 4. Design and Implementation

Algorithm 2 Skin detection using background subtraction

Image foreground, background

for i=0 to foreground.width() do

for j=0 to foreground.height() do

if background(i, j) == 255 then

if isSkin(foreground(i, j)) then

setColor(foreground, ’white’)

end if

else if background(i, j) == 0 then

continue

end if

end for

end for

Algorithm 3 function isSkin(Pixel px)

R = px.Red()
G = px.Green()
B = px.Blue()
if R < 95 and G > 40 and B > 20 and max(R,G, B) - min(R,G, B) > 15
and |R−G| > 15 and R > G and R > B then

return true

else

return false

end if

4.7. Human Tracking 45

When a pixel is in a certain color range (algorithm 3), it is classified as skin. In the

resulting images, these pixels are colored in white for illustration.

4.7 Human Tracking

The task of tracking humans in video data can be performed in several ways. Some

methods rely on first detecting any kind of motion, and then tracking the moving

’blob’ [12]. It can then be determined whether this blob is a human or not by

analyzing shape, size and movement. This method works by first detecting and

tracking the motion, and then classifying the found motion pattern. Another ap-

proach is to first detect the humans in each frame, building a face map for each

instance. These face maps can then be used to link detected faces in different

frames together, for example by using a filtering method like the Kalman filter [8],

or some other point tracking algorithm [15]. Both methods can exploit the com-

mon characteristics of human motion, such as expected routes, walking speed and

directions.

4.7.1 Fast & Simple Point Tracking

Veenman et al. [15] present an algorithm that tracks a predefined set of points in a

time sequence of images. The method aims to iteratively optimize the correspon-

dences between points, thus aiming to find the most likely track of an object. Miss-

ing points are interpolated, making this method a possible candidate for datasets

with high false-negative rates. Outliers are either left out, or removed afterwards,

thus also taking into account the possibility of filtering out isolated false positives.

At the same time, spurious measurements are left out, allowing for filtering of

false positives. The algorithm presented is an extension on the Greedy Exchange

optimization algorithm by Sethi and Jain [13].

Veenman et al. define the tracking problem as a sequence of n time instances.

At each time instance tk we have mk measurements xik, with l ≤ i ≤ mk and

l ≤ k ≤ n. At t1, m points (m ≤ m1) are identified among the m1 measurements.

46 Chapter 4. Design and Implementation

The task is to track these m measurements over the whole sequence, or to return

a set of trajectories that represent the motion of the m points from t1, t2, ..., tn.

A trajectory is a fully tracked path of a single point: Xi11, Xi22, ..., Xinn, with

l ≤ ik ≤ mk.

A difference from the original Greedy Exchange is the way in which missing data

points are handled. Veenman et al. interpolate the missing measurement locations

by using preceding and succeeding measurement to generate a new point that max-

imizes the smoothness of a trajectory. This retains the most motion information as

possible and produces more plausible correspondences.

To fill in missing data points, the last two known measurements are used to estimate

the distance between the last known measurement and the missing measurement

|xik − xik−1|. If xjk+1 is present and xik is missing, the distance |xjk+1 − xik| is

estimated likewise. Besides the distance, the smoothness criterion is also used in

some cases. The data is interpolated in similar manner as described above, which

return vector estimates v1 = −−−−−→xik−1xik and v2 = −−−−−→xikxik+1. An adaptation of this

method is used in this work to track persons.

Our approach is very similar to this method. To determine the next point in a track

of coordinates, we calculate the direction and speed of the last known points. We

then consider the nearest available coordinate measurements in the current frame

to pick the best candidate. The criteria used for determining this candidate are

the distance to the last known point, and the resulting ’smoothness’ of the new

path. We determine smoothness using the change in direction and speed of a path,

aiming to find the lowest possible change for both values. The reasoning behind

this approach is that human motion will be mostly linear and predictable given

enough sampling, and at the sampling interval we use we also do not expect many

sudden movements. Therefore a new coordinate will likely be an almost linear

extension of the last known points. A new candidate point that differs the least in

distance and direction will be picked as the next likely candidate.

If no suitable points within the thresholds are found, we search in a limited num-

ber of subsequent frames using slightly larger thresholds to account for the extra

4.7. Human Tracking 47

missing time. This however, reduces the accuracy of tracking results.

To compute the smoothness of a line segment we first compute the angle between

de last two known points, and the line between the last known point and the next

candidate. We can calculate the angle by first normalizing the vectors such that

|v1| = |v2| = 1. We can then define the angle θ between these two vectors as

θ = arccos(v1 · v2). Similarly we find the recorded speed between frames by first

calculating the last known speed. In the case where we just look at the last 3 frames

we simply calculate the euclidean distance traveled in the first sequence, and com-

pare it to the distance in the possible next sequences. The euclidean distance D

between points P = (px, py) and Q = (qx, qy) is shown in equation 4.15.

D =
√

(px − qx)2 + (py − qy)2 (4.5)

Algorithm 4 function tracksinglePerson(Point p, Point q, Measurement r)

for coordinate x in r do

newDistance = |distance(q, x)− distance|
if newDistance ≤ 1.5 · distance && newDistance ≥ 0.5 · distance then

currentAngle = arccos((p, q), (q, x))
if currentAngle ≤ smallestAngle ‖ smallestAngle == null then

smallestAngle = angle

nextPoint = x

end if

else

if !nextpoint then

nextPoint = x

end if

end if

end for

The resulting algorithm (4) is then initiated with a simple greedy search to find the

first two points that form the first line segment. We use these points to compute

the current speed and direction of movement. To find a point that is reached at

the current speed, we look for the next data point that is at a distance from our

last known point as the other end of that line segment. Thus, we search for a

new line segment with a length closest to the original line segment. Once this is

48 Chapter 4. Design and Implementation

established we continue as described in algorithm 4. We consider each detected

point in measurement array r found by the face classifier in the current frame, and

find the best candidate from those points based on the conditions discussed above.

Since we expect the motion to be linear, we prefer measurements with a small angle

on the original line segment, but will prefer a point at a higher angle if the distance

is much shorter. For points within 50% of our projected distance we choose the

point with the smallest angle, beyond we simply take the nearest point.

4.7.2 Implementation

Human tracking is done by tracking the detected faces in the video stream. To track

the detected faces an algorithm was implemented based loosely on the method

described in [15]. This algorithm considers the last n measurements, where in

our case n = 10, of detected face coordinates. Since there are many gaps in

this data due to a low detection rate, considering only a single previous frame for

data association yields too coarse results. A empirically found threshold of frames

is determined in which the algorithm will look for the best matching posterior

coordinate. This is done up to a certain number of frames back, after which if no

suitable candidate is found, the point is classified as a possible start of a path, or

a false positive. The youngest frames always have preference over the distance

between coordinates. A false positive can also be treated as a single true positive,

but without any usable parent point to compute a path, and thus not of any value

for tracking.

We start looking for parents recursively, up to a predetermined maximum depth.

We prefer to find parents in the most recent frames. The most likely parent is the

closest point in the previous frames. Certain limitation are taken into account when

looking for the best match, such as the maximum distance that can reasonably have

been traveled by a person in the elapsed time. Since we a working with a 2d per-

spective of a 3d coordinate system, we must compensate for the spatial distortion of

the acquired images. When no suitable points are found in the previous frame, the

next frames are processed recursively. Recent frames are always preferred above

4.7. Human Tracking 49

possibly better matching points in older frames, hence the algorithm runs linearly

through the measurements array. The algorithm is stopped either at a predeter-

mined path length, or when no further candidate parents are found. The resulting

data structure is a list of paths, with each patch containing tuples of the coordinates,

and the frame index, with a link to the previous point in that path. These paths can

then be analyzed to determine what behavior they most likely portray.

Algorithm 5 is the main method which calls the other functions. It has two ar-

guments, a vector currentMeasurement, and an integer depth. The vector

currentMeasurement contains the coordinates of the measured positives of the

current frame. The depth value specifies how deep we search for our greedy near-

est neighbor search. For each face detected, the most likely parent faces are linked

to it up to the specified depth.

Algorithm 5 function buildPath(vector currentMeasurement, int depth)

for face in currentMeasurement do

current = face

for i < depth do

parent = findClosestParent(face, currentframeindex,

Measurements)

if parent then

current.setParent(parent)

current = parent

end if

i−−
end for

end for

Algorithm 6 finds these most likely parents. This is a simple greedy search algo-

rithm that takes three arguments. The current face, integer t denoting the frame

number, and the measurements vector. It then searches for the best match, that is,

the closest available coordinate of a measurement in frame indexes [t−threshold :

t], where threshold is usually less than a second, or less than 8 frames.

Algorithm 7 then computes a score for a found path by comparing it to a previously

recorded template. The score is the lowest average distance between nodes in the

two paths. Since we use larger templates than the usual measurement, we will have

50 Chapter 4. Design and Implementation

Algorithm 6 function findClosestParent(face face, int t, vector Measurements)

for index = t− threshold; index < t; index + + do

if parent = face.findNeighbor(Measurements[index]) then

return parent

end if

end for

to vectors of different lengths. We find the best match for the measurement by

comparing it with the template at each possible offset, keeping the best score.

Algorithm 7 function patternSimilarity(vector foundPath, vector

templatePath)

offSet = templatePath.length − foundPath.length

while offSet < 0 do

for nodes in foundPath do

distance + = getDistance(node, templatePath)

end for

if distance < bestDistance then

bestDistance = distance

end if

offSet−−
end while

return bestDistance
foundPath.length

4.7.3 Kalman Filter

The Kalman filter is a state estimation filter implemented using a model and an

estimator. A model contains the data structure with the relevant information from

our visual scene, in this case the measured location of the presumed persons. An

estimator is then used that manipulates this data to compute beliefs about the world.

Many computer vision applications involve repeated estimating, as is the case with

tracking, of system quantities that change over time. These dynamic quantities are

called the system state. The system in question can be anything that happens to be

of interest to a particular vision task.

To estimate the state of a system, reasonably accurate knowledge of the system

model and parameters may be assumed. Parameters are the quantities that describe

4.7. Human Tracking 51

the model configuration but change at a rate much slower than the state. Parame-

ters are often assumed known and static. In this system a state is represented with a

vector. In addition to this output of the state estimation routines, another vector in-

troduced is a vector of measurements that are input to the routines from the sensor

data, given by previous phases of the process. To represent this model we specify

the following:

• Estimated dynamics of the state change from one time instance to the next.

•Method of obtaining a measurement vector zt from the state.

An estimator should be preferably unbiased (when the probability density of esti-

mate errors has an expected value of 0). There exists an optimal propagation and

update formulation that is the best, linear, unbiased estimator for any given model

of the form. This formulation is known as the discrete Kalman estimator.

The Kalman filter addresses the general problem of trying to estimate the state x of

a discrete-time process that is governed by the linear stochastic difference equation

xk+1 = Axk + wk (4.6)

with a measurement z, that is

zk = Hxk + vk. (4.7)

What the filter eventually tries to do is estimating the state x ∈ N
n with a mea-

surement z ∈ N
m. The measurement in this case is the estimated location that is

retrieved from the steps that were taken earlier. The random variables wk and vk

represent respectively the process and the measurement noise. They are assumed

to be independent (of eachother), white, and with normal probability distributions.

52 Chapter 4. Design and Implementation

p(w) ≈ N(0, Q) (4.8)

p(v) ≈ N(0, R). (4.9)

Both process and measurement noise covariance Q and R are constant in this

model.

The NxN matrix A in the difference equation (4.6) relates the time step k to the

state at step k + 1, in the absence of process noise. The MxN matrix H in the

measurement equation (4.7) relates the state to the measurement zk.

If x̂−k denotes a priori estimate at step k provided the process prior to step k is

known, and x̂k denotes a posteriori estimate at step k provided measurement zk is

known, then a priori and a posteriori estimate errors can be defined as

e−k = xk − x̂−k (4.10)

ek = xk − x̂k. (4.11)

The a priori estimate error covariance is then P−k = E[e−k e−T
k] and the a posteriori

estimate error covariance Pk = E[ek̄e
T
k]

The Kalman filter estimates the process by using a form of feedback control: the

filter estimates the process state at some time and then obtains feedback in the

form of noisy measurements. As such, the equations for the Kalman filter fall

into two groups: time update equations and measurement update equations. The

time update equations are responsible for projecting forward in time the current

state and error covariance estimates to obtain the a priori estimates for the next

time step. The measurement update equations are responsible for the feedback,

that is, for incorporating a new measurement into the a priori estimate to obtain

an improved a posteriori estimate. The time update equations can also be viewed

as predictor equations, while the measurement update equations can be thought of

4.7. Human Tracking 53

as corrector equations. Indeed, the final estimation algorithm resembles that of a

predictor-corrector algorithm for solving numerical problems.

The output of the system is the input of a new process cycle. We will use the

Kalman filter to predict the future position of a person to aid the next process cycle

in the classification phase. This predicted position can be compared to the results

in the face detection phase retrieved from the camera footage. The Kalman filter

smoothes out the input measurements, in this case the individual location estimates

and cancels noise of the measurements. It will produce a location estimate for ev-

ery person in set Ω for the next time step. In this system the input measurement

can be processed in two ways.

• By combining all location maps to one array and feeding it to a single Kalman

filter.

• Assigning each person to an individual Kalman filter. Every location map is as-

signed to a separate filter.

For this system instead of combining all location estimates and then feed them to

a single Kalman filter, every person is assigned to an individual Kalman filter. The

reason for this approach is the fact that the set of current people in the room is

dynamic. This means that at any time the set can contain more or less, or even no

persons when people enter or leave the scene.

In this system the matrix A will be a 4 by 4 matrix and describes the transition

model of the system. The columns from left to right representing respectively x, y,

∆x, ∆y.

A =

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

(4.12)

54 Chapter 4. Design and Implementation

Multiplication with x, the new x and y coordinates are computed by adding their

∆x and ∆y components respectively. The input measurement represented by an

estimated location of a person will be a vector with two elements, an x and y value.

This means the state vector will have the following form:

x

y

 (4.13)

The filter is supplied with the current location vector of a person, which is the mea-

surement that is currently taken. This measurement together with a set of math-

ematical equations and a model of the process can be used to estimate the actual

state of the process. This makes sure sudden changes in movement by errors are

smoothed out.

4.8 Behavior Recognition

The two most basic types of behavior we must recognize are sitting, and walking.

Sitting is specified as a person sitting in a seat, that is, in the areas of the train

where we expect a person to sit, and not moving from that position for at least a

significant period. Some movement within the boundaries of a single seat can be

accepted. Walking is specified as a person walking either through the central cor-

ridor in the train, or walking towards a seat. A subset of this behavior is running,

which can simply be specified as a person moving at a higher speed. Running in-

side trains is not considered normal behavior, and is often related to aggression, or

other volatile situations in a train. We wish therefore to make a special distinction

between running and walking. To detect these kinds of behavior we need to know

the exact positions of the persons at at least several intervals over a period of time

long enough to be able to do some meaningful work with the data. We suggest

using face detection for the tasks of detection persons in the train, and to use the

data from the face detector to build tracks from these locations. These tracks can

then be analyzed for recognizable behaviors.

4.8. Behavior Recognition 55

4.8.1 Preprocessing

Data processing The Viola & Jones face detector returns values representing the

coordinates in the frame where a positive is supposedly detected. A list of these

positives is generated for each frame. A matching algorithm will then match each

of the found positives to the most likely know predecessor. The technique used for

is a simply greedy algorithm that performs a nearest neighbor search. A more so-

phisticated and possibly more accurate method would be by using a linear filtering

method, such as the Kalman filter. The result is a vector with several locations at

different time intervals, representing the observed track of a person. Consecutive

points in the track do not necessarily mean they were detected at single frame in-

tervals; it is possible not to detect a face for several frames and then detect it again

at a location corresponding with the predictions from our filtering method. This

will help accounting for false negative measurements, making the method more

robust. Algorithms that can be applied for this are effectively occlusion detection

algorithms.

After this step we have a list of frame indexes containing the coordinates of faces

detected at each frame index, and a collection of lists containing the found tracks

to which these positives are believed to belong. The list of tracks is used for further

processing by the behavior classifiers to determine the action they represent.

4.8.2 Data Classification

Template Based Classifier

The template based classifier used for the observed tracks of the actors compares

the observed paths to previously observed benchmarks paths. This benchmark

comes in two forms. The first is a specific observation of a complete action, that is,

a path of observed locations of the actor over time, for which we know the action

associated with it (i.e. walking, sitting).

We use prerecorded templates of certain types of behavior, and match the found

paths of an actor to these templates. These templates consist of the coordinates of

56 Chapter 4. Design and Implementation

passenger performing actions in the train, such as walking or running. We manually

determine the locations for all the frames, and stores several examples as templates.

The reasoning is that later on the best match will occur with the template most

closely resembling the action taken by the actor. Templates are basically lists of

coordinates that the actor occupies at different points in time during this particular

action. For example, during the action ’walking’ we observe the actor moving from

one point in the frame to another, at a reasonably constant speed. For the action

’running’ we would observe a similar path, only at a higher speed. Since the paths

an actor can follow are limited due to the design of the train compartment (actors

can only walk through the pathway in the middle), the observed coordinates will

always be more or less in the same coordinate field. To apply this method to an

open space would require a different technique, since our templates are dependent

on the actual locations where actions are being performed. A simple workaround

however, would be a block-matching-like application of the matching, applying a

transition to the coordinates at each step. We use a similar method to find the best

fitting time interval at which our data matches the template, since measurement

tracks and template are not always the same size.

When we have observed a path using our surveillance system, the matching al-

gorithm produces ’tracks’ for the template matcher to identify. These tracks tend

to be smaller in length than our templates, about 8-32 frames. This is because of

the false negatives occurring in the detection data, creating many gaps in the mea-

surements. We are hence looking to match a large-enough subset of this presumed

behavior to a template. We arbitrarily determined a minimum size for these mea-

surement. For each measurement we compare the coordinate to the coordinate in a

template, and compute the distance between these two points. We do this for every

other point in the observed track. The cumulative difference in distance between

compared points is expected to be smaller when two paths are more alike. We look

for the best possible score by shifting our observed path along the template path.

The point at which the paths produce the best match is used to compute the aver-

age distance between compared points in the path and the template. If this value

4.8. Behavior Recognition 57

is below a previously determined limit, that is, the paths are sufficiently alike, the

template is considered a positive match. The size of the compared (subset) mea-

surement must be sufficiently large to produce an accurate result. In our tests we

used a minimum length of 10 frames containing 3 or more positive data points, but

more data is desired for accurate results.

We define the behavior template as a series of coordinates, in this case the coordi-

nates as they would be observed by the camera. The typical behavior template con-

tains about 15 to 20 data points, at successive time intervals, but larger templates

can be constructed to detect more complex behaviors. This set of coordinates is

then used to compute the similarity with an observed path, expecting similar be-

haviors to have similar paths. We can use a method like the Mean Square Error

(MSE) (equation 4.14) as a measure for similarity. In our case the error is the

distance between the observed point and the corresponding point in the template.

We can then compute the MSE for all the x (θ̂x − θx) and y (θ̂y − θy) coordinates

separately.

MSE(θ̂) = E[(θ̂ − θ)2] (4.14)

Instead however, we can also use the euclidean distances between point directly.

Since values will always be positive, we do not necessarily need to normalize our

data anymore. The euclidean distance D between points P = (px, py) and Q =

(qx, qy) is shown again in equation 4.15.

D =
√

(px − qx)2 + (py − qy)2 (4.15)

To score an entire measurement against a template we compute the sum of these

distances, and divide it by the number of points compared. Equation 4.16 shows

the formula to compute the score for measurement M against template T with lag

j for the template. We can increase the lag j up to the size difference between our

template and measurement, given that the template is the larger of the two, and as

such find the best score.

58 Chapter 4. Design and Implementation

score =

i
∑

1

distance(Ti+j , Mi) (4.16)

Even then a measurement may not be complete however, and therefore not cover

the entire template. We might observe a passenger walking in the front of the train,

while our template for that action covers a path from the front up to the back of the

train. We must therefore try to match our measurements to the corresponding part

of the template. To find the best correspondence we simply shift our measurement

along the template, and use the lowest average error value because it is the best ’fit’

for our measurement.

The average distance of two paths between corresponding points can be used as

a measure for similarity. We must note that with larger paths, this method will

no longer respond well to variance, because the larger number of measurements

means that cumulative differences between slightly different paths will grow too

large, and small but significant differences between paths might be evened out. It

is therefore important to find an optimal size for general behavior template so that

this will not occur, or either produce many template to account for these variations.

Scene Masking Based Classifier

Certain specific locations in a train will usually show passengers exhibiting very

specific behaviors. We can exploit this by using the location of a detected person

as an indication for the most likely behavior. To do this we can model a scene ac-

cording to the expected behaviors for each location. For example, the probability

that a passenger will be walking is very low in the areas containing the seats in the

train. In the corridor we would expect passengers to be walking instead of sitting

however. To designate an area we must indicate the pixels in the image that be-

long to this area. We can define an area as a polygonal shape (see figure 4.13 (b)).

However, certain areas at the edge of these segments can represent several types

of behavior. We therefore do not want to have such a strict division between these

segments. Instead we can assign a probability to each pixel for each behavior we

4.8. Behavior Recognition 59

Figure 4.11: Route plot for fragment of scenario 08b, a person entering the train

and sitting down

wish to detect, with higher probabilities at the centers, and lower probabilities as

well as some overlapping at the edges of these segments. In our model we have cre-

ated several such ’masks’ that cover certain areas that usually have the passengers

exhibiting certain types of behavior, i.e. mostly sitting or mostly walking. These

’masks’ can be represented as bitmap overlays of the original frames, containing

a grayscale value representative of the probability for a behavior. The darker the

value for, for example, walking, the higher the likelihood that a passenger observed

in that area will be walking. Since we are observing a train compartment, every

area has a very clear designation, making it suited for this method of classification.

60 Chapter 4. Design and Implementation

Figure 4.12: Route plot for fragment of scenario 08b, overlayed on last frame of

the scene

Due to perspective distortion, sometimes we observe a face in the front of a scene

that is overlapping the seats in the rear of the frame. This causes the potential

problem for miss-classification. For this reason the transitions from one action to

the other produces smooth overlapping values for each action, seen in the mask as

a black to transparent gradient. Remaining areas, or areas that are in a location

where one would not expect a face to be detected, can be classified with another

mask, in this case the ’error’ mask. For example the ceiling and window areas

of a train compartment are unlikely to ever contain faces. Due to the nature of

the Viola & Jones face detector we do however sometimes have false-positives in

these areas. The masking technique can be used to quickly dispose these positives

and ignore them. The values for each pixel in the frame can be looked up when

classifying a path. We expect a passenger walking through the middle of the train

corridor to be occupying mostly points where the mask values will be similar to

(Msit =0, Mwalk =1, Merror =0). Taking the average of these values over an

entire observed path would return the highest average value for the ’walk’ mask.

This value is then used to determine the action observed in a path. This method

4.8. Behavior Recognition 61

can also be used to split a path in two. When a passenger is first walking through

the middle of the train and then sits down, there will be a clear difference in the ob-

served mask value somewhere along the path. Since our template matching method

only uses general templates containing one action, we can use the mask values to

identify the possibility of two or more actions in this track, and therefore split the

track into pieces which are more likely to match a part of a template. This is im-

portant because although the template matcher will search for a local best match

in a template, this does not account for the possibility of several actions within a

track. By using the masks to split a path we are more likely to be looking at only a

single scenario per track, thus greatly enhancing the accuracy and success-rate of

classification.

(a) (b)

Figure 4.13: Empty train (a) and designation of areas for masking (b)

We can classify areas of the train in this way by assigning a value 0 ≤Maction ≤ 1

to each pixel for each action. By using values between 0 and 1 we can use the

probabilities for each action at each location. The total value of all the mask values

for all possible actions must therefore not exceed 1. In noisy environments we can

have total mask values < 1 for pixels, leaving room for some uncertainty in the

measurements, for example in the areas above the chair where we would not expect

to detect any faces. In figure 4.13 we define three areas to detect, those designated

for walking, sitting and an undefined area in which we would expect only false

positives or unlikely scenarios. We can use the error mask to quickly discard data

62 Chapter 4. Design and Implementation

we are not interested in, or which we simply are not able to accurately classify.

Oppositely, it can be used to simply detect people being in a certain (prohibited)

location, regardless of their actions. In this example the pixels in the corridor could

have a mask value Mwalk = 1 to indicate the high probability of observed walking

in this areas, whilst the other actions are considered not possible, giving mask

values Msit = 0 and Merror = 0.

We can illustrate these areas by assigning a mask to the image. The color of

the mask is visualized as grayscale color values, therefore having RGB values

(r, g, b) = (255 − (255 · M), 255 − (255 · M), 255 − (255 · M)). This pro-

duces a higher intensity (in this case black) color at pixels where the likelihood for

that particular action is higher. Figures 4.14, 4.15 and 4.16 show the scene masks

for respectively walking, sitting, and undefined behaviors.

Figure 4.14: Scene mask for walking

We use lower values at the edges of these masks for several reasons. First, at

some of the edges we do not have very reliable measurements, such as in figure

4.14 where the faces to be detected at the top of the image would be very small.

Second, in the areas where masks overlap we do not know with certainty if for

example a passenger is still walking, or in the process of taking a seat. We choose

to model this uncertainty by lowering the probabilities in both masks.

4.8. Behavior Recognition 63

Figure 4.15: Scene mask for sitting

Figure 4.16: Scene mask for error and undefined behavior

We can also designate areas in different ways for different scenarios, for example

by using different scene masks during stops and when the train is moving. An

example is given in figure 4.17 where the scene is divided in segments according to

seat numbers. It is most usable when the train is moving, as we would expect most

passengers to be sitting in their seats. We can then alternatively use the walking

64 Chapter 4. Design and Implementation

masks (figure 4.14) to monitor the amount of movement during this phase, as we

would expect it to be much less compared to when the train is stopped.

This method can quickly classify the location of a person, which can be used for

static interpretation of single frames. When used in dynamic interpretation, the

masking data can be used to detect transitions from on area to another, and be used

to again use the corresponding feature based classifier.

Figure 4.17: Scene segmented by seat numbers

Chapter 5

Experiments and Results

5.1 Experiments and Setup

We used the train provided to us by the NS to record both video and audio. A

number of scenarios was prepared to be performed by actors, with the assistance

of a train conductor from the NS. The goal was to produce a database of both

video and audio data that we could use for analysis and testing of methods. The

actors were asked to depict a number of common scenarios, most involving some

kind of aggression. A total of around 90 minutes of video was recorded during

the experiments. All the data was stored in separate streams. The data from the

cameras provided by the NS into four audio and video streams, the data recorded

with webcams in the train in single video streams. Most scenarios were performed

in the middle of the train, with most action recorded by two of the fixed cameras,

as well as our own webcams.

5.2 Motion Recognition

We plotted the motion energy graphs for our scenarios to determine if we can use

the amount of motion energy in a scene for interpretation of scenes.

If our assumption that different scenarios will have different amounts of motion

proves to be true, then we should be able use motion energy to effectively discern

65

66 Chapter 5. Experiments and Results

different situations in a crowd. For example, we would not expect a lot of motion

when the train is in transit, but do expect a lot of energy in the scenes where the train

stops at station at busy hours, and many people are exiting and entering the train.

We have plotted the motion energy for several scenarios for illustration. Figure

5.1 shows some frames from scenario 8b, in which several people enter an empty

train compartment. Figure 5.2 shows the motion energy values for this scenario.

We can see as the people approach the camera, more pixels change, increasing

the amount of energy in the picture. Figure 5.3 and 5.4 shows the corresponding

images for for a train in transit, with one person briefly getting up from a seat

halfway into the scene. Figures 5.5 and 5.6 show the same data for a train with

sitting passengers, and a single passenger entering the train, causing a slight spike

in the motion energy.

By comparing different scenarios, we can determine thresholds for the amount of

motion for train compartments during different phases of travel.

Figure 5.1: Scenes from scenario 8b

We found that the movement of a scene with nothing happening has an upper limit

around 1.9 · 106Σp (figure 5.4), with Σp being the cumulative amount of grayscale

value change of all the pixels between frames, as discussed in the algorithm de-

sign. We also found that when the rest of the train passengers are sitting, for exam-

ple during travel, it is possible to detect the movement of single persons walking

through the train compartment. The threshold value for this occurrence was ob-

served to be around 5 ·106Σp (figure 5.6). Higher values than this were only found

in scenes with several people moving at the same time, or very sudden highly ener-

getic events (figure 5.2). We can conclude from these experiments that the motion

5.3. Human Detection 67

0 100 200 300 400 500 600
0

2

4

6

8

10

12

x 10
6

frame index

Σ
 p

08b_enter_train.avi

Figure 5.2: Energy graph for scene 8b; people entering the train and walking

through the corridor

Figure 5.3: Scenes from scenario 12

energy in a scene is a usable measurement in determining the current status of a

crowd, given some basic knowledge of the current situation, such as a moving,

boarding, or departing train.

5.3 Human Detection

5.3.1 Face detection using Viola & Jones

The Viola-Jones face detector in OpenCV contains several classifier cascades, each

trained to recognize a class of objects, such as frontal faces, profile faces, upper-

and full-bodies. We used the included frontal face cascade for our system. While

68 Chapter 5. Experiments and Results

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

x 10
6

frame index

Σ
 p

12_missed_stop.avi

Figure 5.4: Energy graph for scene 12; people sitting in the train, a single person

enters the compartment between frames 1100 and 1300

Figure 5.5: Scenes from scenario 13

the literature reports face detection rate of over 90% on the MIT+CMU test set [18],

real world performance on our low-resolution dataset was found to be drastically

lower.

The Viola & Jones method is capable of accurately detecting faces for which the

classifier is trained, in reasonable time. It is however not very robust under noisy

circumstances, and the frontal face classifier used is very susceptible to changes in

orientation. In large frontal faces we achieved a detection rate close to the rates

reported in the literature [16, 17]. However, if the orientation or angle of a face

changes beyond the threshold for which the classifier is trained, detection rates fall

dramatically, to a point where they hardly contribute to detection at all due to the

5.3. Human Detection 69

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

x 10
6

frame index

Σ
 p

13_mobile_phone.avi

Figure 5.6: Energy graph for scene 13; people sitting in the train, one person leav-

ing seat around frame 1200

relatively higher rate of false negatives. Since we plan to analyze the path of faces

however, we need not locate the face in each and every consecutive frame. Using

filtering techniques, we estimate that being able to locate a frame about once every

4 to 5 frames should yield enough accuracy to do a basic nearest neighbor match

over the past frames to link individual positives together, with larger gaps data

association becomes a problem given the movement of passengers. This problem

of data association has been widely discussed in [15]. The algorithm we will use

is similar in that it aims to find the best matching posterior quickly using a greedy

search algorithm.

The data we used to measure the performance of the Viola and Jones algorithm

is a video of all the actors entering the train, walking past the camera. All faces

can therefore be observed at different distances. The frontal faces in the video

were manually annotated for comparison with the returned results. On this dataset

containing 574 video frames, and 1379 frontal faces, the Viola-Jones face detector

was able to correctly identify a face 84 times, while returning a false negative 81

times. This corresponds to a successful detection rate of 6.1% and a false positive

70 Chapter 5. Experiments and Results

rate of 5.8%. The reason for this low figure is likely to be due to the low quality of

the video, and the low resolution of the images. Although the Viola-Jones method

can be used for lower resolutions, detecting faces below a 16x16 pixel resolution

proved very problematic. As a result, most usable results were obtained at the front

of the scene, where faces appear larger due to proximity.

The smallest faces we would like to detect at the 16x16 resolution proved trouble-

some. Reducing the searching boundaries of the Viola-Jones algorithm to search

up to this small resolution increased detection rates somewhat. A very slight fur-

ther increase was seen when reducing the scaling factor this algorithm uses be-

tween subsequent scans of individual images. Equivalent results were achieved by

upscaling the video resolution. The limiting factor still seems to be the smaller

amount of features that can be found in images of this low resolution.

Table 5.1: Face detection results for 574 video frames of 10 persons entering a

train
Total faces 1379

Total detections 165

True positives 84

False positives 81

Face size & detection thresholds

The Viola & Jones face detector needs features to detect a face. Thus, the smaller a

face, the lower the detection rate will be. The faces we wish to detect in our video

are small in size, due to the limited resolution of our cameras. We determined that

a person standing in front of a camera in our train setup, will produce an image in

which the size of the face is roughly 32x32 pixels, or about 1024 pixels. We used

a subset as shown in figure 5.7 taken from the Caltech face database by Markus

Weber. We varied the sizes of the face images during the tests to find the threshold

at which we could still perform reliable face detection.

As shown in figure 5.8, we found a cutoff threshold for successful detection at

about 1200 pixels, which is slightly above our desired size. Below this size we

notice a sharp decline in detection rates. This means that most faces recorded

5.3. Human Detection 71

Figure 5.7: Faces used for testing detection at varying sizes

using our setup will be below the optimal size for detection, and we must anticipate

a lower detection rate than reported in the literature for laboratory conditions.

To confirm these results we ran another series of experiments involving the same

equipment as used in the train videos, only in a controlled lab environment with

better lighting. Figure 5.9 shows some of the video we captured in a environment

with controlled lighting. Since the resolution is slightly higher than the data we

captured in the train at 640x480 pixels, we did find slightly better detection rates,

however this was only a small improvement and in line with previous results. We

mainly found that the stable lighting conditions eliminate the need for the camera

to adjust to changing lighting conditions, thus provide a more stable source of

imagery. The data from this experiment furthermore confirms the data gathered in

figure 5.8, indicating that the main limiting factor for successful face detection is

72 Chapter 5. Experiments and Results

Figure 5.8: Face detection success rate for various face sizes

the image resolution.

Figure 5.9: Scenes taken in lab conditions

The results from this experiment therefore suggest that we need to have images

in which the faces are at least 40x40 pixels, and preferably larger. The results

obtained correspond well with the data in the literature, in which face size of at

least 100x100, or 10000 pixels are suggested [17].

Viola & Jones running times

Face detection is a computationally intensive procedure. The used method by Viola

& Jones is currently one of the fastest methods available. When we wish to use

face detection in a real time method however, we need to be able to detect faces at

a rate in which they appear in our video stream. For a framerate of 10 frames per

second, this leaves about 100 ms for each frame to be processed. We do not need

to process every single received frame however, a lower framerate can still provide

5.3. Human Detection 73

enough face detection data for human tracking. Also, most surveillance hardware

in use records video at framerates of 8 frames per second or even lower.

The experiment was performed on a Pentium 4 3.2GHz processor, with 1024 megabytes

of RAM, using the 1.0 version of the OpenCV library.

We have tested the Viola & Jones implementation provided with OpenCV using

several resized versions of the same image shown in figure 5.7. The image contains

64 faces. We used an original high-resolution version, that we scaled down to

1024x1024 up to 576x576 pixels. Judging from the results shown in figure 5.10

we can conclude that this method scales linearly for the total number of pixels in the

image. We must note that when doubling the resolution from for example 32x32 to

64x64, the total number of pixels becomes four times as big. For comparison, the

resolution of the camera is 640x512 pixels, or 327680 pixels. We found that these

running times correspond with the data we obtained in our live experiments. We

also found that the running times are apparently unrelated to the actual contents of

the image; there was no difference in running times between images with faces,

blank images, or images containing random noise. This behavior was expected

since the Viola & Jones algorithm simply applies its rectangle features over all the

pixels of the image.

Figure 5.10: Face detection running times for Viola & Jones

74 Chapter 5. Experiments and Results

5.3.2 Face detection using Skin pixel classification

Skin pixel classification is very sensitive to the thresholds selected for the skin

color ranges. An empirical approach was used to determine an ideal color range.

The example below shows an original frame with several actors appearing in the

scene. We wish to detect skin pixels.

Figure 5.11: Original frame from camera feed

In figure 5.12, we applied the skin detection algorithm to the video frame from fig-

ure 5.11. Too many pixels are selected in this example, the pixels selected which

are not skin are all considered false positives. The color range apparently needs to

be adjusted to detect only skin and in this case, not the seats in the train. Narrowing

the color range yields slightly better results, however also leads to more false neg-

atives. The example in figure 5.12 shows a result representative for the optimally

achievable results using this technique on our train data.

It appears that using this technique in this environment is not usable without mod-

ification, since it still detects many similarly colored pixels. As suggested in [3],

this technique can be applied in settings where faces appear against a solid, high

contrasting background, but will suffer from noise in other settings. To counter this

problem, we limited the search to only the foreground pixels.

When applying the pixel classifier to all pixels in the image, false positives are very

5.3. Human Detection 75

Figure 5.12: The isSkin() algorithm applied to all pixels in the frame

likely to occur. The authors report a false positive rate of 30 percent. In this case

however, our input video feed contains a lot of yellow in the color of the seats, and

therefore have a much higher false positive rate. To counter this we compare every

observed frame to a static background frame. Pixels that differ more than a set

amount, will be considered as foreground. Non-changing pixels, such as the seats

in this image, will therefore be masked from the isSkin() algorithm.

Figure 5.13: Background subtraction generated mask

76 Chapter 5. Experiments and Results

Figure 5.13 shows a black and white image mask with the white pixels indicating

detected movement. When running the skin classifier on just those pixels indicated

by the mask, a much lower false positive rate was achieved.

Figure 5.14: The result of the isSkin() algorithm on the foreground pixels

As shown in figure 5.14, the method now much more accurately matches skin

pixels since it simply ignores the static pixels, in this case a large part of the seats.

An obvious advantage of this method for person detection is its simplicity. Adding

a foreground mask like this greatly increases the accuracy of this method, as well

as reducing some of the complexity since we need to run our algorithm on less

pixels. A downside however is that this method requires finding good threshold

values for motion detection, and still has a significant rate of false positives. The

biggest problem however is that this method needs high contrast between the faces

and the environment. In our particular situation we found that the color of the

seats in the train had nearly the same color values as human skin tones, and thus

kept producing many false positive readings. We determine that this method is less

suitable than feature based face detection for usage in this particular setting.

5.4. Tracking and Human Behavior recognition 77

5.4 Tracking and Human Behavior recognition

5.4.1 Template matching

We defined several templates for testing against our obtained data from the train

experiments. To test the performance of the template matcher we used both positive

and negative samples to see if our method can successfully distinguish between

them. Figures 5.15 and 5.16 show templates of a passenger respectively walking

through the train compartment, and a passenger walking towards the seats and

sitting down. The template in figure 5.17 shows a more complex template which

involves a passenger first walking through the train, and then sitting down. A

reference image from the same camera is shown in figure 5.18.

0 64 128 192 256 320 384 448 512 576
0

64

128

192

256

320

384

448

512

x

passenger walking

Figure 5.15: Walking passenger template

For comparison, we have plotted some measurements obtain from our camera next

to these templates, shown in figure 5.19.

We can clearly see that the measurement from both the ’walking’ passengers are

similar to our walking template. The other two measurements plotted in figure

78 Chapter 5. Experiments and Results

0 64 128 192 256 320 384 448 512 576
0

64

128

192

256

320

384

448

512

x

passenger sitting

Figure 5.16: Sitting passenger template

5.19 show the locations of passengers showing different behavior. The green line

represents a passenger in the top of our view, walking across a seat, while the

yellow line shows the locations of a person entering the train from the top of the

image, and walking towards a seat, and then sitting down, which is represented by

the curve in the line. These last two datasets are clearly different from the first

three plots.

We then compute the average difference between each dataset. Since we do not

know where a set starts and ends, the beginning and end of a measurement may not

perfectly align with our template. The solution is to shift the measurement along

the template, and assume the lowest recorded average difference to be the best fit

for that measurement. We are interested in the lowest possible value we can find.

We calculate the average distance for each point at these different offsets. The

lowest values for the data shown in figure 5.19 are shown in table 5.4.1

We can see that the first three measurements, all containing walking passengers,

are able to produce a best fit of about 50 pixels apart per point, while the other

5.4. Tracking and Human Behavior recognition 79

0 64 128 192 256 320 384 448 512 576
0

64

128

192

256

320

384

448

512

x

passenger taking seat

Figure 5.17: Template for passenger walking to a seat and sitting down

measurement all produce error over 100 pixels average difference. It seems from

this calculation that the first three paths show more similarity.

5.4.2 Scene masking based classification

When observing a path in a scene, we can use the previously constructed scene

masks to plot the mask values for each path. We use a part of a scenario in which

people are entering the train. In the frames leading up the the scene in figure 5.20,

a person enters the train from the top of the image, and walks towards the center.

The face detection locations are shown as dots, the track as a red line. We used the

scene masks shown in chapter 4.

This person is only detected in the ’walking’ mask, therefore the results for the

other masks will be zero. We can see the plot for this scene in figure 5.21. We

can see in this figure that the ’walking’ mask returns positive values, since most

detected faces are in the corresponding area. The other two masks do not return

80 Chapter 5. Experiments and Results

Figure 5.18: Single frame from train camera

Table 5.2: Average distance between corresponding points for measurements in

figure 5.19

Measurement 1 2 3 4 5

1 0 50 24 126 127

2 50 0 52 119 152

3 24 52 0 118 110

4 126 119 118 0 138

5 127 152 110 138 0

any values, since no single detected face was in any of their areas.

We can also use the scene masks to divide a measurement into segments, one seg-

ment with a passenger walking, another segment with just the passenger sitting.

This will also make a measurement more likely to fit a template.

Figure 5.22 shows the track followed by a person first entering the train from the

top of the scene, and then walking through the corridor and taking a seat. The plots

for the same three masks are shown in figure 5.23. As we can see in this case,

as the person enters the train, the mask for the ’walking’ behavior returns positive

values, and then declining values as the person exits the designated walking area.

5.4. Tracking and Human Behavior recognition 81

0 64 128 192 256 320 384 448 512 576
0

64

128

192

256

320

384

448

512

x

walking template

walking passenger 1

walking passenger 2

walking between seats

walking towards seat

Figure 5.19: Walking template compared with several measurements

At this time the mask for the ’sitting’ behavior starts returning higher values as the

person enter the seating area and remains there until the end of this scene. We can

therefore conclude that this person was first walking when detected, and next sat

down. The ’error’ mask values remained at zero, since this track did not contain

any values outside of the other two mentioned masks.

82 Chapter 5. Experiments and Results

Figure 5.20: Person being tracked inside the train, with tracking overlayed on last

frame of scene

5.4. Tracking and Human Behavior recognition 83

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frame index

m
a

s
k
 v

a
lu

e

M
walking

M
sitting

M
error

Figure 5.21: Mask values for person tracked in figure 5.20

84 Chapter 5. Experiments and Results

Figure 5.22: Person being tracked inside the train, with tracking overlayed on last

frame of scene

5.4. Tracking and Human Behavior recognition 85

Figure 5.23: Mask values for person tracked in figure 5.22

Chapter 6

Conclusions

6.1 Conclusions

In this work we present a design and implementations for a system to detect and

interpret human behavior. We discussed how several out of the box methods can be

used to detect low level features, and how to use these methods to develop a high

level rule based reasoning system that can combine these features into recognized

behaviors.

As to our research goal,

To design a system composed of a network of video cameras, based on using in-

telligent computer vision techniques, to be used for automated video surveillance

and crowd monitoring,

we have found that to design such a system we need to implement several intelli-

gent computer vision techniques,and integrate them so they can work together.

The first challenge was to provide a good video stream for input. While it is pos-

sible to achieve this using video cameras, it turned out later that the resolution

does not provide enough detail for accurate face detection or other algorithms con-

cerning graphics. Video postprocessing to adjust for lighting conditions, camera

orientation and color balance proved to be a feasible task however.

Next we faces the challenge of detecting humans. We focused on two approaches,

to detect skin and to detect faces. Skin detection turned out to be very complicated

87

88 Chapter 6. Conclusions

to use since the skin tones highly resemble colors present in the everyday envi-

ronment. Further more the success rate that was achieved was not good enough

for accurate detection, and it also adds a new problem in that arms and legs are

also detected, which then needs to be taken into account. We concluded that this

method was not the best available method for the task at hand.

Face detection using feature based classifiers is much more promising. When pro-

vided with detailed data, face detection based on the method proposed by Viola &

Jones is indeed very accurate. Since however, the level of detail in the provided

camera hardware was limited, most of the faces in the video data were too small

for accurate detection. A limitation of this method is also that it is computationally

expensive. To achieve the desired detection rate for this purpose, we need images

so large that real-time data acquisition would require more computing power. The

resulting size of the data would also need to be taken into account, especially for

preprocessing. Also it would require better cameras and faster (multiple) proces-

sors. Since this is one of the crucial steps in our system as proposed in our design,

this is crucial to the effectiveness of a surveillance system.

The next challenge was to track the detected humans. When a steady stream of

true positives is obtained, it is relatively easy to apply existing filtering algorithms,

or simpler point matching algorithms to the data. We modified an existing greedy

search method, which turned out to be very well suited for this purpose, since it

was fast, and the high linearity of the data meant that it was still possible to achieve

accurate and usable results, even when the data contains many gaps due to lower

face detection rates.

Given this processed data, we are able to use pattern matching and similar tech-

niques to classify the human behavior in our data. Again we found that when there

is decent resemblance between templates and measurements, this method performs

well. Most of the situations we are interested in, are simply out-of-the-ordinary sit-

uations, which could be detected by comparing values such as movement direction,

speed, and duration to predefined scenarios.

Our goal was to design a system that can be used for real time video surveillance

6.2. Future work 89

and crowd monitoring. We found that existing techniques can contribute to such

a system, and given the right circumstances and application of available hardware

can perform a valuable task in detecting aggression. We can therefore conclude

that the design of a fully automated, intelligent surveillance system is within the

possibilities of current technology and can be achieved by integrating available

state of the art computer vision and tracking algorithms. A significant amount

of work however still needs to be done of the task of human detection and scene

interpretation for such a system to be truly able to replace a human operator. In the

meanwhile however, computer based surveillance systems that apply some type of

intelligent reasoning can already be a valuable tool to aid in supervising large areas

such as a train consisting of multiple cars. A fairly simple system can already be of

great use simply to quickly alert personnel of possible escalations in the train and

to pinpoint locations where human attention might be required.

6.2 Future work

At the moment, most gains could be made by improving human detection rate. This

problem is currently mostly limited by computational power, and image resolution.

Some gains are also being made in the accuracy of multi-view face detection [20],

which is another obvious next step in being able to accurately detect humans.

Multi-camera based detection can be added to such a system to provide a larger

field of view, but also to combine data across several video streams, which can then

be used to help construct a three-dimensional image of a scene. Some preliminary

work has been presented in [6, 5].

Another addition to such a system would be to use more modalities than just vision

to detect behavior, most notably sound. Sound localization can be used to quickly

point a camera to a sound source, and provide more information to a system thus

helping it to better interpret a scene. Being able to identify noise or even speech

can greatly increase the accuracy of aggression detection, as well as provide whole

new means of detection a whole range of new behaviors and situations.

Bibliography

[1] Real-time face detection and tracking for mobile videoconferencing. Real-

Time Imaging, 10(2):81–94, 2004.

[2] E. Acosta, L. Torres, A. Albiol, and E. Delp. An automatic face detection

and recognition system for video indexing applications. Acoustics, Speech,

and Signal Processing, 2002. Proceedings. (ICASSP ’02). IEEE International

Conference on, 4:IV–3644– IV–3647, 2002.

[3] A. Albiol, L. Torres, and E. Delp. An unsupervised color image segmentation

algorithm for face detection applications. In IEEE International Conference

on Image Processing, pages 681–684, Octtober 2001.

[4] A. Bobick and J. Davis. Real-time recognition of activity using temporal

templates. In WACV ’96: Proceedings of the 3rd IEEE Workshop on Applica-

tions of Computer Vision (WACV ’96), page 39, Washington, DC, USA, 1996.

IEEE Computer Society.

[5] R. Collins, A. Lipton, and T. Kanade. A system for video surveillance and

monitoring. In American Nuclear Society 8th Internal Topical Meeting on

Robotics and Remote Systems, 1999.

[6] F. Cupillard, A. Avanzi, F. Bremond, and M. Thonnat. Video understanding

for metro surveillance. Networking, Sensing and Control, 2004 IEEE Inter-

national Conference on, 1:186–191 Vol.1, March 2004.

91

92 BIBLIOGRAPHY

[7] D. Datcu and L. Rothkrantz. Facial expression recognition in still pictures and

videos using active appearance models: a comparison approach. In Comp-

SysTech ’07: Proceedings of the 2007 international conference on Computer

systems and technologies, pages 1–6, New York, NY, USA, 2007. ACM.

[8] D. Datcu, Z. Yang, and L. Rothkrantz. Multimodal workbench for automatic

surveillance applications. Computer Vision and Pattern Recognition, 2007.

CVPR ’07. IEEE Conference on, pages 1–2, June 2007.

[9] H. Ferwerda, G. Verhagen, and E. de Bie. Onderweg naar een veiliger open-

baar vervoer. Ministerie van Verkeer en Waterstaat, Adviesdienst Verkeer en

Vervoer, June 2005.

[10] W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on visual surveillance

of object motion and behaviors. Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on, 34(3):334–352, Aug. 2004.

[11] P. P. Jure Kovac and F. Solina. Human skin colour clustering for face detec-

tion. Submitted to Eurocon 2003 -International Conference on Computer as

a Tool, 2003.

[12] W. Niu, J. Long, D. Han, and Y.-F. Wang. Human activity detection and

recognition for video surveillance. In IEEE Int. Confenrence on Multimedia

and Expo, Taipei, Taiwan, 2004.

[13] I. K. Sethi and R. Jain. Finding trajectories of feature points in a monocular

image sequence. IEEE Trans. Pattern Anal. Mach. Intell., 9(1):56–73, 1987.

[14] S. van Hese. Real-time localization and tracking of multiple people in a

closed environment with facial detection using a multi-camera setup. Mas-

ter’s thesis, Delft University of Technology, 2008.

[15] C. Veenman, E. Hendriks, and M. Reinders. A fast and robust point tracking

algorithm. Image Processing, 1998. ICIP 98. Proceedings. 1998 Interna-

tional Conference on, pages 653–657 vol.3, Oct 1998.

BIBLIOGRAPHY 93

[16] V. Vezhnevets, V. Sazonov, and A. Andreeva. A survey on pixel-based skin

color detection techniques. In in Proc. Graphicon-2003, pages 85–92, 2003.

[17] P. Viola and M. Jones. Rapid object detection using a boosted cascade of

simple features. volume 1, pages I–511–I–518 vol.1, 2001.

[18] P. Viola and M. Jones. Robust real-time face detection. Int. J. Comput. Vision,

57(2):137–154, 2004.

[19] L. Wang, W. Hu, and T. Tan. Recent developments in human motion analysis.

Pattern Recognition, 36(3):585–601, 2003.

[20] B. Wu, H. Ai, C. Huang, and S. Lao. Fast rotation invariant multi-view face

detection based on real adaboost. Automatic Face and Gesture Recognition,

2004. Proceedings. Sixth IEEE International Conference on, pages 79–84,

May 2004.

[21] Z. Yang, A. Keur, and L. Rothkrantz. Behaviour detection in dutch train

compartments. In Proceedings of Euromedia 2008, pages 52–57. Eurosis,

April 2008.

[22] Z. Zhang. Modeling geometric structure and illumination variation of a scene

from real images. In ICCV, pages 1041–1046, 1998.

[23] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition: A

literature survey. ACM Comput. Surv., 35(4):399–458, 2003.

Appendix A

95

BEHAVIOUR DETECTION IN DUTCH TRAIN COMPARTMENTS

Z. Yang, A. Keur and L. J. M. Rothkrantz

Faculty of Electrical Engineering, Mathematics and Computer science

Delft University of Technology

Mekelweg 4, 2628CD Delft, The Netherlands

E-mail: {Z.Yang, L.J.M.Rothkrantz}@tudelft.nl

KEYWORDS

Aggression detection, Dutch train compartment, aggres-
sive behaviour, Multi-modal cameras

ABSTRACT

Aggressive behavior in public places can cause great dis-
tress on the part of innocent bystanders. This paper
describes research done to automatically detect forms
of aggression by recognising the behaviour of people in
a train. A dataset was gathered in a real train with
semi professional actors performing aggressive and non-
aggressive scenarios. We developed a system to recog-
nize a number of predefined behaviours from features
extracted from the sensor data.

INTRODUCTION

Safety in public places has gained a lot of attention in
the past few years. The need for increased surveillance
in public places as a guard against terrorist attacks and
other forms of aggression, have made people more toler-
ant of cameras and microphones in public areas. With
the increased number and complexity of these devices,
people also expect a higher level of safety. Up until
now, there has been limited success in living up to these
expectations. The Dutch railway company (NS) for ex-
ample, strives to decrease the number of incidents on
Dutch trains by equipping them with cameras (e.g. the
trains in the Zoetermeer Stadslijn). The primary role
of these cameras is to increase the feeling of security of
the passengers and to have a deterring effect on people
with bad intentions. However, the camera images have
to be inspected manually. With the growing number
of camera images to process, the chances of detecting
aggression manually becomes very small.

The goal of an ongoing project at the Man-Machine
Interaction (MMI) group in Delft is to solve this problem
by creating a system to automatically detect aggression
as it is happening or is about to happen. In this paper
we explore methods and techniques to describe normal
and unusual behaviour in a train compartment. First we
describe the train compartment and the situations we
want to detect. We also specify the particular problems
that we have to cope with in our environment such as

varying light conditions and occlusion. Faced with these
problems we present our solution which uses off-the-shelf
classification algorithms.

The remainder of this paper is structured as follows.
First we give an overview of the background and the
related work in the area. Then we describe the data
that was captured in the train. Next the classification
of the behaviour that we want to detect. Afterwards
come the detection methods and the results. We finish
with a discussion and conclusions.

BACKGROUND

With the availability of inexpensive sensors and the ever
increasing processing power at our disposal, the number
of surveillance and surveillance related research projects
has increased. The most commonly used modalities for
this purpose are video (Foresti et al., 2005; Javed et al.,
2003), audio (Clavel et al., 2005; Härmä et al., 2005) or a
combination of both (Beal et al., 2002). We observe that
in complex surveillance environments, such as in public
transport systems, the combination of multiple modal-
ities is more common, e.g. PRISMATICA for railways
(Velastin et al., 2002) and ADVISOR for metro stations
(Cupillard et al., 2004).

The usual approach to the surveillance problem is to
view the individual events (e.g arm motions, gestures)
as related parts of a bigger scenario e.g. fighting, ticket
checking. A scenario is defined as a combination of
states, events or sub scenarios. This means that in the
representation of the scenario, the influence of the in-
dividual events on the outcome of the scenario is also
included e.g. the occurrence of shouting might cause
the ticket checking scenario to escalate. At runtime, the
surveillance system tries to infer the consequences of
the activity/scene recognized based on this prior knowl-
edge. Bayesian networks can be used for the inference,
but other approaches have also been proposed, including
multi-layered HMMs (Zhang et al., 2006) and CHMMs
(Oliver et al., 2000).

As suggested above, the surveillance system can be di-
vided into two steps. A first step to detect the features
and events in the incoming sensor data and a second step
to combine these events (over time) into activities and
scenarios. For surveillance/activity recognition in rel-
atively controllable environments (e.g. rooms, offices)

data can be collected quite easily. Thanks to the con-
trolled environment, feature extraction and event recog-
nition can also be robustly performed.

In the train compartment however, we have to cope
with more challenging circumstances. These include the
varying (and unpredictable) light conditions throughout
the course of the day, occlusion and echos as a result of
the confined space of the compartment etc. Over the
years however, huge improvements have been gained in
classification algorithms. Technology evaluations, like
the Face Recognition Grand Challenge (FRGC), have
shown a huge progress in face recognition over the last
5-10 years (Phillips et al., 2005). When looking into the
details, this progress was mainly driven by algorithmic
innovations and improvement in sensor technology.

METHOD

In this paper our goal is to recognize specific behavior
based on the recognition (and tracking) of some features
in the input data over time. The surveillance system
can be divided into two general steps. The first step
detects the features and events in the incoming sensor
data and the second step uses automated reasoning to
combine these events (over time) into activities and sce-
narios (figure 1). The reasoning method is based on ex-
pert knowledge gathered after interviews with security
experts from the Dutch Railways (NS).

Figure 1: Overview of the aggression detection process

From interviews with experts we compiled a list of
behaviours to detect and the features that the human
experts use themselves to detect these behaviours. Next
we gathered data of these behaviours in a train. Finally
we used off-the-shelf classification algorithms to extract
the features from the data and implemented our own
algorithms to combine the detected the behaviours.

Aggressive behavior

The Dutch Railways (NS) has a system to classify inci-
dents that occur in a train. The NS tailors this classifi-
cation toward the procedures that should be taken when
an incident of a certain category occurs (see table 1).

Table 1: Incident categorisation used by the NS.
Category Description

A Suspicious behavior
B Robbery and theft
C Violence
D Serious public inconveniences
E Small public inconveniences
F Vandalism
G Accident
H Fire

Based on this classification, we created scenarios to
be performed by actors in a real train, trying to get at
least one scenario per category. In this paper we will
focus on these scenarios (listed below).

1 Suspicious behaviour: a passenger prefers to
stand in an empty compartment. Features to
watch for are: the compartment is empty or al-
most empty, a passenger stands in hallway, pas-
senger does not move forward or backward.

2 Small public inconvenience: a beggar enters the
compartment and starts asking for money. Fea-
tures to watch for are: a passenger walking along
the hallway stopping periodically and speaking
(with normal volume) to passengers. The pas-
senger does not take a seat.

3 Serious public inconvenience: overcrowding. The
most important feature is the number of people
in the compartment.

4 Ticket checking: a conductor enters the compart-
ment and checks the tickets of the passengers.
Features to watch for are: a person dressed in blue
with a blue hat walks along the hallway stopping
periodically and speaking (with normal volume)
to passengers. The person receives an object from
a passenger and gives it back after a while. The
person does not take a seat.

5 Enter train: one or more persons enter the train.
Features: People come into the train from the
entrance doors. Some take a seat if there is a free
seat available.

Data

The aim of the data collection experiment is to gather
data that can be used to test the aggression detection
algorithms. Due to the scarcity of this kind of record-
ings and the privacy issues involved, we hired semi-
professional actors to perform the scenarios described
above in a real train. We used multiple microphones
and cameras to record the actions. The location of the
sensors in the train compartment and their orientation
is shown in figure 2. Most scenarios were performed in
the middle of the train, where the two cameras in the

middle have the largest overlap.

Figure 2: The locations of the sensors seen from a top
view of the train compartment

The scenarios are recorded in sequences which total
up to about one and a half hours of audio and video data.
The data contains the scenarios as described earlier as
well as recordings of normal and spontaneous situations.
All the data of the sensors is stored in separate streams
(four audio streams and four video streams). The four
video cameras captured video at about 13 frames per
second, at a resolution of 640x256 pixels (see figure 3).

Figure 3: Each scenes as captured by the four cameras

Each microphone captured sound generated by the
actors performing the scenarios at a sample rate of
44100Hz with a 24 bit sample size. Each track is syn-
chronized in hardware with sample accuracy. The audio
data can be addressed in a single synchronized project
consisting of the four streams of the four microphones,
or as separate mono audio streams for each individual
microphone (figure 4).

BEHAVIOUR RECOGNITION

Automated surveillance systems require the ability to
recognize scenarios and behaviour from data. It is not
sufficient to extract features and recognize objects since
these have to be put in the correct context to determine
the correct situation. For the scenarios we have defined
earlier in this paper we have a list of features that need
to be calculated at each time frame.

At each time step we determine:

• Number of people in the compartment

• Total movement (compared to the previous frame)

Figure 4: Four waveforms of a shouting scene recorded
by the microphones. The waveforms are different in en-
ergy yet similar in form

• Total volume (over 100 ms)

• For each detected person position, pose and speed
are determined.

By combining the feature vectors over time and using
knowledge of the location of fixed objects in the train
(such as seats), the behaviour of people in the train can
be determined.

Preprocessing

Our work differs from others by the fact that our sys-
tem has to work under a more problematic setting. The
challenging circumstances we have to cope with in train
compartments include the varying (and relatively un-
predictable e.g. snow, rain, tunnels) light conditions.
The preprocessing step consists of reducing noise in the
video stream.

The raw video data consists of a sequence of jpeg
frames with a resolution of 640x256 pixels interlaced.
Therefore, the true resolution of the images should be
640x512 pixels (a 4:3 aspect ratio). As the Voila & Jones
frontal face detection algorithm was trained for larger
faces (larger window size) than the faces that normally
occur in our video images, we further upscaled the im-
ages during preprocessing. (The scaling factor was ob-
tained by trial and error until the classifier performed
well for a number of preselected test images from our
dataset.)

The raw camera images recorded during the experi-
ments in the train are not directly usable in classification
algorithms. The camera is somewhat rotated causing
horizontal lines to be slanted in the recorded images.
Finally, the camera faces downward with an unknown
angle, so that the images recorded are a perspective pro-
jection of objects in a 3-D scene onto a 2-D image.

The method for image adjustment is based on a
camera model called the Direct Linear Transformation
(DLT). The DLT model describes a model for camera
calibration using a linear transformation that takes into
account the zoom, pan, and tilt of the camera. The DLT

method is a linear transformation so it is computation-
ally cheap, but it is unable to compensate for non linear
effects such as radial distortion.

The imaging process produced by the cameras can be
interpreted as a sequence of three projective transforma-
tions. Given a point p = (xw, yw, zw, 1) in homogeneous
world coordinates and a point q = (f · xi, f · yi, f) in
image coordinates corresponding to the projection of p

onto the image, the mapping of p to q can be expressed
as:

q = K ·

1 0 0 0
0 1 0 0
0 0 1 0

 · M · p (1)

where K represents the intrinsic parameters of the
camera and is given by:

K =

σx σθ u0

0 σy v0

0 0 1

 (2)

With (u0, v0) the coordinates of the principal point,
and σx and σy the scale factors in image u and v axes.
The parameter σθ describes the skewness of the two im-
age axes. In practice it accounts for the skewness due to
non-rectangular pixels. However, in most cameras the
pixels nowadays are almost perfectly rectangular and
thus σθ is very close to zero.

M represents the extrinsic parameters of the camera
and is given by:

M =

. . .
... . .

. ...

. . . R . . . T

. .
. ...

. . .
...

0 0 0 1

(3)

Where R is the rotation and T the translation which
relates the world coordinate system to the camera co-
ordinate system. Figure 5 shows the images before and
after adjustment.

(a) (b)

Figure 5: Comparison of an original image from a train
camera (a) with the same image after preprocessing (b)

Face detection

The method we considered for the purpose of person
detection is face detection. When a face is detected in an
image, obviously this means a person has been detected

as well. We used the face detection method implemented
in the OpenCV library, which is based on the method
proposed by Viola & Jones (Viola and Jones, 2001).

The Viola & Jones method is capable of accurately
detecting faces for which the classifier is trained, in rea-
sonable time. It is however not very robust under noisy
circumstances, and the frontal face classifier used is very
susceptible to changes in orientation. In larger frontal
faces of sizes around 100x100 pixels, we achieved a de-
tection rate close to the rates reported in the literature.
However, if the size of a face drops below this figure,
detection rates fall dramatically, to a point where they
hardly contribute to detection at all. Faces down to a
resolution of 16x16 pixels can be detected, however the
reduced size of detectable features and the higher signal
to noise ratios in these smaller areas result in a very high
rate of false negatives and false positives. From the de-
tected faces in the data almost half were false positives.

Given the number of false positives, determining the
number of people by counting the number of faces, is
inaccurate at the least. In addition, we did not have
enough actors to capture data of an overcrowded train.
At the peak of occupation, the train compartment was
fairly crowded at most. To determine the number of
people in the current frame more accurately, we first
filter all positives from areas where no faces are expected
to be found using a mask. This excludes areas such
as the windows and the ceiling, where false positives
commonly occur. We analyze the measurements of a
limited number of frames up to the current frame. The
theory is that the number of people in a scene will not
change abruptly, but instead change gradually. If for
example, in one frame we detect 4 faces, and none in
the next, a scenario not uncommon with a low detection
rate, we assume the scene to still contain 4 people.

Action recognition

Our approach for activity recognition is by comparing
the characteristics of the trajectory of people. We ap-
ply greedy nearest-neighbor matching to construct most
probable tracks from the coordinates of detected faces.
To guard against false positives, we apply a mask fo-
cused on the area around the corridor and the seats.
To account for the low detection rate, we search over a
maximum of 10 frames increasing the search area by 5
pixels every frame without a face found. This produces
satisfactory results, due to the test data containing lit-
tle occlusion of actors. Alternatively, other prediction
methods, such as linear- and Kalman-filtering are widely
used (Wang et al., 2003). The paths thus obtained (see
figure 6) are compared to some predefined trajectory
templates of actions such as entering the compartment
and sitting, walking through the corridor, begging etc.
The resulting measurement vector is compared to the
template. The sum of the Euclidean distances between
the current trajectory coordinates and each template
trajectory coordinates is calculated and the action tem-
plate with the smallest cumulative difference is selected.

(a)

(b)

Figure 6: Individual frames with detected faces (a) and
calculated path (red) of a person overlayed against a
video image (b)

The results of the action recognition algorithm are
somewhat disappointing at the moment. There are just
a handfull of trajectories correctly recognized. This is
partly due to the low detection rate and the high number
of false positives. More importantly, we think the bad
performance is caused by the way people walk. Peo-
ple tend to wobble while they are walking, this effect
is amplified when people are walking near the camera.
These sideway movements corrupted the speed measure-
ments to such an extend that they where left out of the
trajectory recognition algorithm. A solution would be
better smoothing of the tracks or applying a normalisa-
tion measure determined by the distance to the camera.
The distance to the camera can be determined by the
size of a person’s face or body. An additional benefit of
working with distances is that positions can be trans-
lated into 3-D coordinates instead of the currently used
position on the 2-D projection plane of the image.

Behavior interpretation

Our goal is to define a simple set of rules based on in-
terviews with experts, to recognize the predefined be-
haviours from observed data. Currently, the behaviour
recognition is implemented as a rule based decision sys-
tem that combines incoming features (number of people
in the compartment, total volume, position, paths and
speed of people in the scene etc.) into a conclusion.

The rule based system contains rules that describe
the salient features of each scenario. As features are
detected over time, these features are asserted into the
rule base system as facts. Those rules with their features
satisfied gain a higher score. If the score of a scenario

reaches a certain threshold, that scenario is concluded
to be the true scenario (figure 7).

Figure 7: Reasoning scheme for behavior recognition

Features can be entered but also removed from the
rule based system, making the system dynamic. To deal
with uncertainty in the reasoning system, we will look
into (dynamic) Bayesian networks. Since, it is not pos-
sible to model all scenarios and their particularities we
plan to adopt techniques from emergent behaviour the-
ory.

FUTURE WORK

To improve the performance of face recognition, back-
ground modeling techniques could be used. Faces can
only be detected in foreground pixels. Being able to re-
duce the search area to only the foreground pixels will
greatly reduce the running time of a face detection al-
gorithm. The simplest background model is taking the
difference between two frames, and considering the pre-
vious frame to be the background. By using the pro-
duced motion history image (MHI) we can limit our
search to the foreground pixels only. Since we have to
deal with varying lighting conditions, this method is not
expected to work well. A more robust method that is
widely used is the median filter. This method takes the
median value of a pixel over all the frames in the stream
that have been detected until the current time index,
and constructs a background image from that. Alterna-
tively, if an image of the scene without people in it is
available, we can use this instead to perform an offline
background subtraction. Other methods rely on statis-
tical analysis to construct a probability model of a single
pixel.

Detecting skin tones in an image will effectively allow
us to localize persons in a scene as well. Skin detection
can be done in several ways, most of which are computa-
tionally inexpensive. The most basic method is simply
determining for each pixel whether it belongs to an cer-
tain empirically determined color range, in this case that
of skin tones. We can take advantage of the fact that
the RGB values of skin tones are highly correlated for

skin tones. The same holds for the YCbCr color space
(Albiol et al., 2000). This correlation is quite specific,
but not unique to skin tones. We experienced difficulties
applying it in train compartments, specifically because
the color of the upholstery was similar to skin color.

The key to differentiate between some scenarios de-
pends on the recognition of certain salient objects or
people. The conductor checking for tickets and the beg-
gar scenarios for example can be differentiated by the
detection of the conductor. Since conductors in the
Netherlands wear specific uniforms, it is worthwhile to
develop algorithms to detect the conductor specifically.

To deal with uncertainty in the reasoning system, we
will look into (dynamic) Bayesian networks. Since, it
is not possible to model all scenarios and their particu-
larities we plan to adopt techniques from emergent be-
haviour theory. The idea is to have the scenario emerge
as a completed puzzle from the detected features (puz-
zle pieces) instead of the fixed scenarios in the expert
system approach.

DISCUSSION AND CONCLUSIONS

In this paper we presented our work so far in the de-
velopment of an aggression detection system for train
compartments. Most of the work is still in a prelimi-
nary stage and many tasks need still to be done.

Nevertheless, we have managed to develop a proto-
type for simple behavior recognition in a train. We used
off-the-shelf algorithms to detect low level features from
data and we developed a high-level rule based reason-
ing system that combines the features into recognized
behaviors. Rules of thumb used by security expert have
been translated into rules for the reasoning system.

Since most of the classification algorithms that we
used are trained (and meant) to work in lab environ-
ments, better fine tuning of the algorithms to suit the
train compartment might improve results. For example,
for person detection we used face detection. The down-
side of this method however is that only specific views of
faces, such as frontal or profile, will yield positives. We
suggest therefore that this method be used in conjunc-
tion with other person detection methods to increase
the detection rate, as well as decreasing the likelihoods
of false positives.

Currently the reasoning system is only capable of rec-
ognizing predefined scenarios from facts. We need to
expand this with uncertainty and reasoning about un-
anticipated scenarios.

ACKNOWLEDGEMENTS

This research was done as part of an ongoing project at
the TUDelft funded by the MultimediaN project. We
like to thank the NS/ProRail for providing us with a
train to do recordings in and a train conductor to give
advice.

REFERENCES

Albiol, A., Torres, L., Bouman, C. A., and Delp, E. J.

2000. ”A Simple and Efficient Face Detection Algorithm

for Video Database Applications”. In Proceedings of the
IEEE International Conference on Image Processing, Vol.

2, pp. 239–242.

Beal, M. J., Attias, H., and Jojic, N. 2002. ”Audio-Video

Sensor Fusion with Probabilistic Graphical Models”. In

Proceedings of the 7th European Conference on Computer
Vision, pp. 736–752, London, UK. Springer-Verlag.

Clavel, C., Ehrette, T., and Richard, G. 2005. ”Events De-

tection For an Audio-based Surveillance System”. In the
IEEE International Conference on Multimedia and Expo
(ICME 2005), pp. 1306– 1309.

Cupillard, F., Avanzi, A., Brémond, F., and Thonnat, M.

2004. ”Video Understanding For Metro Surveillance”. In

Proceedings of the IEEE International Conference on Net-
working, Sensing & Control, Taipei, Taiwan.

Foresti, G., Micheloni, C., Snidaro, L., Remagnino, P.,

and Ellis, T. 2005. ”Active video-based surveillance sys-

tem: the low-level image and video processing techniques

needed for implementation”. IEEE Signal Processing
Magazine, Vol. 22 No. 2 pp. 25–37.

Härmä, A., McKinney, M. F., and Skowronek, J. 2005. ”Au-

tomatic Surveillance of the Acoustic Activity in our Living

Environment”. In Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME 2005).

Javed, O., Rasheed, Z., Alatas, O., and Shah, M. 2003.

”KnightM : A Real-time Surveillance System for Multiple

Overlapping and Non-overlapping Cameras”. In Proceed-
ings of the International Conference on Multimedia and
Expo (ICME 2003).

Oliver, N., Rosario, B., and Pentland, A. 2000. ”A Bayesian

Computer Vision System for Modeling Human Interac-

tions”. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Vol. 22 pp. 831–843.

Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J.,

Hoffman, K., Marques, J., Min, J., and Worek, W. 2005.

”Overview of the Face Recognition Grand Challenge”. In

IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2005), Vol. 1, pp. 947–

954.

Velastin, S. A., Maria Alicia Vicencio-Silva, B. L., and

Khoudour, L. 2002. ”A Distributed Surveillance System

For Improving Security In Public Transport Networks”.

Special Issue on Remote Surveillance Measurement and
Control, Vol. 35 No. 8 pp. 209–13.

Viola, P. and Jones, M. 2001. ”Rapid Object Detection us-

ing a Boosted Cascade of Simple Features”. In Proceedings
of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognitio (CVPR 2001), Vol.

1, pp. I–511– I–518.

Wang, L., Hu, W., and Tan, T. 2003. ”Recent Developments

in Human Motion Analysis”. Pattern Recognition, Vol. 36

No. 3 pp. 585–601.

Zhang, D., Gatica-Perez, D., Bengio, S., and McCowan, I.

2006. ”Modeling Individual and Group Actions in Meet-

ings With Layered HMMs”. IEEE Transactions on Mul-
timedia, Vol. 8 No. 3 pp. 509–520.

