

Building a visual speech recognizer

Master’s thesis

Karin F. Driel

August 18, 2009

3

Building a visual speech recognizer

Thesis,
submitted in partial fulfillment of the requirements for the degree of

Master of Science
in

Media & Knowledge Engineering

Karin F. Driel
Born on December 8, 1984, in Delft, The Netherlands

Man-Machine Interaction group

Faculty of Electrical Engineering, Mathematics and Computer Science

Mekelweg 4

2628 CD Delft, The Netherlands

http://ewi.faculteiten.tudelft.nl

4

© 2009 Karin Driel

5

Summary

This thesis describes how an automatic lip reader was realized. Visual speech
recognition is a precondition for more robust speech recognition in general. The
development of the software comprised the following steps: gathering of training
data, extracting meaningful features from the obtained video material, training the
speech recognizer and finally evaluating the resulting product.

First, research was done to gain insight on the theoretical aspects of automatic lip
reading, the state of the art, speech corpus development, face tracking and feature
extraction.

Gathering training data came down to the recording and composing of a new audio-
visual speech corpus for Dutch. With frontal and side images of 70 different speakers
recorded at a frame rate of 100 frames per second this is the most diverse corpus
currently in existence. Analysis of the new data corpus shows an increase in quality
compared to other corpora.

Visual information is obtained by searching the video footage. Using Active
Appearance Models, points of an a priori defined model of the lower half of the face
are tracked over time. Based on the model point coordinates, distance and area,
features are computed that are used as input to the speech recognizer.

Training was accomplished by presenting labeled training data to viseme-based
Hidden Markov Models that model speech production. In a few steps the model
parameters were adjusted, so that it could be used to perform recognition of visual
speech signals from then on. The recognizer was implemented using tools from the
Hidden Markov Model Toolkit.

The results of a visual speech recognizer based on training data from a single person
depend on the utterance type of the unlabeled data. For the simple word-level task
of digit recognition 78% was recognized correctly with a word recognition rate of
68%. For letter recognition tasks it did not perform nearly as well, but considering
the limitations that the use of visemes over phonemes imposes, these results are at
the expected level. The data corpus and visual speech recognizer will be a valuable
asset to future research.

Karin F. Driel
Student number: 1149784
E-mail address: karindriel@gmail.com

Thesis committee

Prof. Dr. Drs. Leon J.M. Rothkrantz
Dr. Ir. Pascal Wiggers
Ir. Hans J.A.M. Geers
Ir. Alin G. ChiŃu

7

Samenvatting

Dit afstudeerverslag beschrijft hoe een automatische liplezer tot stand kwam. Visuele
spraakherkenning is een voorwaarde voor betrouwbaardere spraakherkenning in de
nabije toekomst. De ontwikkeling van deze software omvatte de volgende stappen:
het verzamelen van trainingsdata, het extraheren van zinvolle visuele informatie uit
de verkregen video-opnamen, het trainen van de spraakherkenner en tenslotte de
evaluatie van het eindproduct.

Eerst is er onderzoek gedaan ter voorbereiding op het liplezen. Het huidige niveau
van automatische liplezers, spraakdatabases en methodes om het gezicht te volgen
in een video en hier kenmerken aan te onttrekken, kwamen aan bod.

Het verzamelen van trainingdata kwam neer op de opname en samenstelling van een
audio-visuele spraakdatabase voor het Nederlands. Met opnamen van de voorkant en
het profiel van 70 proefpersonen op een snelheid van 100 beelden per seconde biedt
deze verreweg de meeste mogelijkheden van het moment. Uitgebreide analyse van
de nieuwe database wijst op een sterke kwaliteitsverbetering ten opzichte van
bestaande audio-visuele spraakcorpora.

Visuele informatie wordt verkregen door het doorzoeken van videobeelden. Door
middel van Active Appearance modellen worden de punten van een vooraf
gedefiniëerd model van de onderste helft van het gezicht gevolgd door de
videobeelden heen. Aan de hand van de puntcoördinaten worden afstanden en
oppervlaktes berekend die als invoer voor de spraakherkenner dienen.

Training vond plaats door de presentatie van gelabelde trainingdata aan op visemen
gebaseerde Hidden Markov modellen die de spraakproductie modelleren. In een
aantal stappen worden de modelparameters aangepast zodanig dat nieuwe videodata
kan worden “gelezen” met behulp van het Viterbi algoritme.

De resultaten van de spraakherkenner gebaseerd op trainingsdata van één persoon
lopen uiteen naar gelang de aard van de te herkennen uitspraak. De telwoorden 0-9
geven een herkenning van 78% en een nauwkeurigheid van 68%. Bij taken zonder
grammatica van vaste lengte blijft het resultaat achter, maar uitgaande van de
beperkingen die alleen al het gebruik van visemen ten opzichte van fonemen met
zich meebrengt, was dit te verwachten. De data corpus en visuele spraakherkenner
zullen voor verder onderzoek van grote waarde zijn.

Karin F. Driel
Student nummer: 1149784
E-mail adres: karindriel@gmail.com

Afstudeercommissie

Prof. Dr. Drs. Leon J.M. Rothkrantz
Dr. ir. Pascal Wiggers
Ir. Hans J.A.M. Geers
Ir. Alin G. ChiŃu

9

Preface

At the Department of Man Machine Interaction at Delft University of Technology,
there is an ongoing project on multimodal speech recognition. For this Master’s
project one aspect of multimodal speech recognition has been tackled, namely visual
speech recognition.

People are subconsciously lip reading all the time. This is apparent from practical
situations – it’s easier to understand someone in a noisy bar if you’re looking at their
face, and scientific evidence (like the well-known McGurk effect). There are some
things we hoped to learn from this project. First of all, it would be interesting to see
whether a computer could be taught to read lips as well as human professionals. The
ultimate goal would be a combination of visual and acoustic speech recognition.
Though beyond the scope of this thesis, it has the best potential to bring the
performance of speech recognition to a level where it could be more integrated in our
daily lives.

Not to be underestimated is the amount of work involved with the processing of
video to perform visual speech recognition. A lot of it involves manual work. First
there was the recording of the data itself; then there was the transcription of the
data. Then annotating of training images had to be performed by hand to train the
tracking model, and applying the trained model also required supervision. Lastly we
had to select the data for training the recognizer by hand, and perform some more
manual labor while fine-tuning the recognizer. Luckily our efforts have been paid off
with the vast audio-visual speech corpus that is now at our disposal, and the other
results that will be discussed throughout this thesis.

Visual speech recognition has some practical applications that could help the
speaking-disabled, like my uncle who is paralyzed from the neck down. I hope my
work has contributed to the quick realization of a real-time implementation people
like him could benefit from.

I would like to thank Leon Rothkrantz and Alin ChiŃu for their guidance, the people in
the student lab for their friendship, my partner Hans van Gurp and my father Marijn
Driel for their moral support and efforts to proof-read. And last but not least, I would
like to thank all the people who agreed to become part of the new data corpus,
especially Ank Voets who has by now sat through five recording sessions, some of
which lasted a few hours.

11

Table of contents

Summary .. 5
Samenvatting .. 7
Preface.. 9
1 Introduction..13

1.1 Applications of automatic lip reading ...13
1.2 Problem definition ...15
1.3 Research challenges..16
1.4 Thesis outline ...17

2 Related work ..19
2.1 Definitions ...19
2.2 State of the art in automatic lip reading...20
2.3 Related topics...21

2.3.1 Speech animation ... 22
2.3.2 Sign language recognition.. 22
2.3.3 Audio-visual speech recognition .. 22

2.4 Overview of audio-visual speech corpora ...23
2.4.1 Criteria to evaluate speech corpora ... 24
2.4.2 Storage of visual speech data... 25
2.4.3 Dutch Audio-Visual Speech Corpus.. 25
2.4.4 Video frame rate issues ... 27
2.4.5 Using side view images.. 28
2.4.6 Conclusion ... 29

2.5 Methods for feature extraction..29
2.5.1 Classification of feature extraction methods ... 29
2.5.2 Optical flow analysis.. 30
2.5.3 Lip geometry estimation .. 31
2.5.4 Active Shape Models ... 32
2.5.5 Introducing Active Appearance Models... 33
2.5.6 Conclusion ... 33

3 Basics of speech recognition ...35
3.1 Statistical speech recognition ...35
3.2 Hidden Markov Models...36
3.3 Training: Baum-Welch re-estimation algorithm.....................................37
3.4 Recognition: Viterbi algorithm ..39
3.5 Going into more detail: Features...40
3.6 Hidden Markov Model Toolkit ..41

4 Visual speech recognition ...43
4.1 Visemes...43

4.1.1 Phoneme set ..43
4.1.2 Human viseme classification... 44
4.1.3 Viseme set ... 46

4.2 Performance boundaries ..48
4.2.1 Comparison between acoustic and visual speech... 48
4.2.2 Implications of using visemes... 48

4.3 Model ..49
5 Data Acquisition ..51

5.1 Language coverage ...51
5.1.1 Utterance types ..51
5.1.2 Speech types.. 53

5.2 Recording setup..54
5.2.1 Environment .. 54

Table of contents

12

5.2.2 Equipment ... 55
5.2.3 Laboratory setup...55
5.2.4 Operator.. 56
5.2.5 Operating software.. 56

5.3 Recording of New DUTAVSC ...57
5.3.1 Recording session composition ... 58
5.3.2 Demography ..58

5.4 Recording of Single Person New DUTAVSC ...59
5.5 Processing the recordings ..61

5.5.1 Auditory validation .. 61
5.5.2 Visual validation ... 62
5.5.3 Hardware issues ... 62

5.6 Conclusion ...63
6 Lip tracking ..65

6.1 Active Appearance Models..65
6.2 AAM Annotation Lab ..66

6.2.1 Functional Description ... 66
6.2.2 File format ... 67

6.3 Defining the lip model ...68
6.3.1 Terminology ... 69
6.3.2 Original 25-point lip model ... 70
6.3.3 Improved 29-point lip model .. 72

6.4 Training the lip model..73
6.5 Visual validation ...74

7 Feature extraction ...77
7.1 Defining the features...77

7.1.1 Features computed from the outer lip shape... 78
7.1.2 Features computed from the inner lip shape... 78
7.1.3 Features computed from nose and chin positions .. 79
7.1.4 Other possible features.. 79

7.2 Feature extracting algorithm ..80
7.2.1 Formatting ... 80
7.2.2 Normalization ... 80

7.3 Visual validation of feature performance ..81
7.3.1 Robustness ..81
7.3.2 Classification performance ... 85

7.4 Conclusions..88
8 Implementation...89

8.1 Data preparation...89
8.2 Training...91
8.3 Evaluation..92

9 Experiments and results ...95
9.1 Digit recognition ...95
9.2 Letter recognition ...96
9.3 Comparison..98
9.4 Discussion.. 100

10 Conclusions and recommendations ... 103
10.1 Conclusions.. 103
10.2 Future work ... 104

Bibliography ... 105
A Written instructions for New DUTAVSC recordings 107
B Consent document for New DUTAVSC recordings............................. 109
C Lip feature extracting algorithm .. 111

13

1 Introduction

Over the years, we have seen computers become much faster and smarter.
Computers of only a couple of years old are nothing compared to the latest ones in
terms of computing power and graphic capabilities. This is why it is almost
unbelievable that we keep working with the same keyboard and mouse interface that
causes us to develop repetitive strain injury and headaches. Interfacing with a
computer would be much more natural and healthy if we could just talk to it.

So, what is stopping us from incorporating automatic speech recognition into our
daily lives? The answer to that is the limited performance: especially when the
environment is the smallest bit noisy, automated speech recognition does not
achieve a perfect recognition yet. One step outside a quiet laboratory or office will
make the accuracy rapidly degrade. At least one thing to look forward to is that
solving the noise problem will take us one step closer to that idealistic “Star Trek”
computer interface we all dream of.

However, the options are limited. If the problem lies in the quality of the sound
despite attempts to filter out noise, one might want to start looking at other media,
like vision, to make recognition more robust. When people are trying to understand
someone in a noisy environment, they subconsciously start looking at the face and
interpret the speech information lying within. The face seems to provide a rich source
of information about speech. Experienced speech readers do not even need sound at
all to understand speech. Teaching a computer to read lips may provide that extra
information channel needed to achieve robust recognition.

This thesis describes how such an automatic lip reader was developed. The reader
should keep in mind that training a speech recognizer, both acoustic and visual, is
tedious work and a “quick fix” for any problems encountered is not realistic. With
every change of plans data has to be rearranged and training has to be done over,
taking hours. To train a visual speech recognizer large quantities of speaker video
data are required. Mainly due to the storage limitations of the past, these were not
available before. Therefore, recording training data has been an integral part of this
graduation project.

1.1 Applications of automatic lip reading

The societal relevance of automatic lip reading may not be as obvious as that of
speech recognition in general, but there are some cases where pure automatic lip
reading is the best candidate to solve the problem. Generally speaking, a visual
speech recognizer could tackle every speech recognition task where there is video
but no or non-retrievable sound. An example of this is mute or deteriorated film.
Especially extensive tasks like subtitling film archives would benefit from automatic
speech processing as opposed to hiring a human lip reader. Figure 1.2 shows a
similar application.

1 Introduction

14

An automatic lip reading application
would open up a world of opportunity
to help the disabled. Just like the
hearing impaired benefit from lip
reading as a skill, automatic lip reading
could help in training applications. For
people who just recently lost their
hearing and have not learned lip
reading or sign language (see Figure
1.1) yet, a mobile speech recognizer
could help in daily life. While the most
important part would be the
recognition from sound, a lip reading
attachment would make it robust, as
daily life is a very noisy environment.
Another group of disabled that could be aided by visual speech recognition are the
speaking impaired; those who can move their lips but lost the ability to produce an
adequate sound level could use an automatic lip reader to make themselves
understandable by the people around them.

Another opportunity lies in long-distance communication. Private phone
conversations in public places could remain private if speakers could whisper over
the phone. If the phone used is not a video phone, humans already have trouble
understanding whispering over the phone. For a speech recognizer (think of
automatic dictation applications) this would be practically impossible. An automatic
lip reader could provide a solution in both cases. The only speech recognizer that will
understand whispering is an automatic lip reader.

Another application that pops to mind
is video surveillance. Video recorded by
surveillance cameras in public places,
shops or trains, isn’t usually
accompanied by sound. Now if the
video is recorded at a sufficiently high
resolution, an automatic lip reader
could still make out what was said (e.g.
verbal threats), providing evidence of a
possible irregularity. If recognition is
done live an alarm could be triggered
and security guards could arrive at the
scene in time. A combination of
automatic surveillance done by motion
detection (to detect physical
aggression) and lip reading has the
most potential of replacing human
watchmen eventually.

One of the major areas where a visual
speech recognizer would be of value is
research. It is expected that multimodal speech recognition is the key to robust
recognition. Apart from the problems that arise when trying to combine the
modalities, there will always be a need to objectively compare the methods used for
video processing alone. The performance of a pure lip reader based on the

Figure 1.1: Fragment of the Dutch NOS

“Jeugdjournaal” news bulletin of July 31, 2009,

supported by a sign language interpreter.

(http://nos.nl)

Figure 1.2: Zinedine Zidane headbutting Marco

Materazzi after having been insulted during the 2006

FIFA World Cup football final. After video evidence

suggested that Materazzi had verbally provoked

Zidane, three British media newspapers claimed to

have hired lip readers to determine what Materazzi

had said. [1]

1.2 Problem Definition

15

techniques that are desired to be used in a bimodal recognizer, allows the evaluation
of just that method, so other aspects of multimodal processing can be evaluated
separately. Furthermore, from a scientific point of view it’s interesting to see whether
it is possible to build an automatic lip reader that performs as well as a human lip
reader.

1.2 Problem definition

The purpose of this graduation project was to develop a visual speech recognizer for
the Dutch language that would preferably be able to run in real time. By making
certain improvements like using a more extensive data corpus, we aimed for results
that would exceed those achieved by our predecessors.

A large portion of the work would involve the recording of a new data corpus
extensive enough to train a recognizer (visual or bimodal) thoroughly. The most
common reason for an automatic lip reader to perform suboptimal is insufficient
quality training data being available.

This project was part of the ongoing project of multimodal human computer
interaction conducted at the department of Man-Machine Interaction at Delft
University of Technology. Our automatic lip reader will give insight on the potential of
the visual modality for such a recognizer.

The goals we set for this project are the following:

1. Exploring the potential of a lip reading system based on Hidden Markov
Models

2. Exploring the possibilities for implementing a lip reader that can be run
real-time

3. Evaluating feature extraction methods discussed in literature according to
the criteria of performance, speed and speaker independence

4. Obtaining a visual speech corpus that is sufficient in size and quality to
train and test a pure lip reader from scratch

5. Preparing and implementing the separate parts that make up the

automatic lip reader (data formatting, feature extraction, language model)
6. Evaluating the results obtained from experiments using the trained lip

reader, according to expectations

The approach we took to reach the goals we set for this project is outlined in Table
1.1, which shows out methodology. It also includes the numbers of the chapters
containing the results of the specific actions taken.

1 Introduction

16

Table 1.1: Methodology

Action Goal Chapter

Researching related
topics

Getting a grasp on the theory, avoiding common
mistakes, avoiding reinventing the wheel

2

Researching Hidden
Markov Models

Being able to define a good model, preparing for
implementation

3, 4

Comparing feature
extraction methods

Being able to choose a good method with respect to
performance, speed and speaker independence

2

Recording a new
speech corpus

Gathering sufficient training data to train a lip
reader

5

Processing
recordings

Ensuring the quality of the training data 5

Annotating video
frames

Training the lip tracking model, data
parameterization of raw video

6

Implementing
feature extraction
from points

Providing the speech recognizer with some
meaningful speech features

7

Evaluating feature
performance

Being able to determine which part of the
recognizer leaves room for improvement

7

Implementing an
automatic lip
reader

Being able to determine the performance of an
automatic lip reader following our design

8

Reporting
everything into
detail

Enabling others to continue the work 9, 10

1.3 Research challenges

The scientific community faces many challenges when trying to integrate different
modalities into speech recognition. Questions waiting to be answered are, for
example:

1. Is it possible to build an automatic lip reader comparable to or even better
than a human lip reader?

2. Is it possible to build an automatic lip reader that performs as well as an
acoustic speech recognizer?

3. In which way should we integrate the results of automatic lip reading and
acoustic speech recognition?

4. Can we make an automatic lip reader that performs real-time?
5. What are the quantitative and qualitative requirements of the data we use to

train an automatic lip reader?
6. Can the methodology to train an acoustic speech recognizer be directly

applied to train an automatic lip reader?

7. Which feature extraction method should be chosen as the standard for
automatic lip reading in general?

By the end of this thesis, we will hopefully have (partially) answered some of these
questions and have brought science that much further.

1.4 Thesis outline

17

1.4 Thesis outline

The structure of this thesis follows the flow of this project. The first part revolves
around the development, the second around the realization, and finally the
evaluation of obtained results.

Development begins with the study of existing systems and theory. These, and the
resulting design choices, are addressed in chapter 2 (Related Work). Chapter 3
(Basics of speech recognition) explains the statistical approach of speech recognition,
as this is also the approach that we will adopt; we discuss the theory, algorithms and
tools. In chapter 4 (Visual speech recognition) the aspects more specific to visual
speech recognition are looked into: we choose the speech units and make predictions
about the performance. The result of the development phase is a set of tools, an
approach and a model for visual speech recognition, that shows how we envision
training and recognition.

In the realization phase, the different aspects of the visual speech recognizer are
implemented and finally linked together. In chapter 5 (Data acquisition) we describe
how a new speech corpus was composed. The chapters thereafter explain how we
poured this data into a format a speech recognizer can handle. Data
parameterization starts with chapter 6 (Lip tracking), where we used Active
Appearance Models to track points on the face, while in chapter 7 (Feature extraction)
we explain how these points were used to extract features for training and testing
the recognizer. In chapter 8 (Implementation) we describe how all the pieces of the
puzzle were put together, and a functioning recognizer was realized. The realization
phase resulted in an implementation of a visual speech recognizer, which we will
evaluate in the final phase.

Evaluation starts by analysis of recognizer performance, the results produced of
which are described in chapter 9 (Experiments and results). In chapter 10
(Conclusions and recommendations) we present the final findings for this research
and make recommendations for future work.

19

2 Related work

Automatic speech recognition has many aspects ranging from signal processing to
probabilistic models. Some more details about speech recognition will be given in
chapter 3. The aspects that are unique to visual speech recognition will be
highlighted in chapter 4.

All the way though this project, the available literature has helped us decide on the
best courses of action. This chapter starts out with some definitions of recurring
terms (2.1). Next, section 2.2 provides an overview of the current state of the art in
visual speech recognition. Some related topics are highlighted in section 2.3.

Since the bottleneck of most other automatic lip reading projects appears to be a
lack of data, we investigated some existing data corpora to decide which one to use
(2.4). In section 2.5 we explore different feature extraction methods that could be
used on this data: while for audio there are pretty straightforward ways to derive
meaningful features, for video this is not such a trivial task just yet.

2.1 Definitions

In this section, a few easily confusable terms that occur a number of times
throughout this thesis are defined.

Visual speech recognition
First of all, the terms automatic lip reader and visual speech recognizer are used
interchangeably, with automatic lip reading being the way we hope to accomplish
visual speech recognition. “Visual speech recognizer” was chosen for the title of this
thesis because it is more general and for “automatic lip reader” there exist different
spellings.

Visemes
The basic units of acoustic speech that can be distinguished are often referred to as
phonemes. Likewise, a set of visually indiscriminable phonemes can be referred to as
a visual phoneme or “viseme”. In human lip reading, visemes are considered the
basic information one should have at their disposal to be able to read lips. The term
also recurs in speech therapy and speech animation.

Measures for recognizer performance
Once the output of a speech recognizer is ready, it can be compared to known labels
to determine the “percent correct” and “percent accuracy” performance measures. [2]
An optimal string match is found using dynamic programming, where a score is
calculated for the match with respect to the reference and penalty values for each
occurring error are added to the final score. The optimal string match is the label
alignment which has the lowest possible score.

Once the optimal alignment has been found, the “percent accuracy” and the
“percentage correct” (that ignores insertion errors) can be found according to the
number of present deletion (D), substitution (S) and insertion (I) errors, with a total
of N sentences or words.

2 Related work

20

Percent Correct = 100%
N D S

N

− − × (2.1)

Percent Accuracy 100%
N D S I

N

− − −= × (2.2)

The accuracy is also referred to as word recognition rate (WRR). Also word error rate
(WER) is used, which is equal to 1 - WRR. It is generally agreed that performance
accuracy at a rate below 95% is not acceptable for applications.

The speed measure often used to evaluate a speech recognizer is the “real time
factor” (RTF). As long as the processing time is more than the duration of the speech
input, the RTF is greater than 1 and the real-time requirement has not been met.

processing time

input duration
RTF = (2.3)

2.2 State of the art in automatic lip reading

Laying aside the problem of lip reading for a while, speech recognizers can be
classified according to their vocabulary size or input speech type: word-level (single
words), sentence-level (according to a grammar), or continuous (ongoing signal).
Word-level speech recognition is the easiest task, while continuous is the hardest. In
continuous speech recognition the task of identifying meaningful chunks is left up to
the recognizer. This imposes a need to detect the onset and offset of speech.
Sentence level recognition is the minimum requirement for simple dialogue systems.

The state of the art in automatic speech recognition is at the level of continuous
speech recognition for applications like dictation systems (even though they require
speakers to work in a noise-clean environment, have a profile that matches the
training data and have opportunity to perform speaker adaptation). For automatic lip
reading, we noticed that current systems perform at no more than word level. The
reason for that is probably that most of them exist only as a proof of concept for a
certain feature extraction technique or to evaluate the quality of an audio-visual
speech corpus. For this reason those existing lip reading systems will be discussed in
the relevant sections. The next section is about some PhD work done on automatic
lip reading.

Previous work
Jacek Wojdeł, who was a PhD student at Delft University of Technology, researched
visual speech recognition for his promotion some years ago. His work can be seen as
preparation for our project. The approach he took was also similar. In this section we
will discuss his findings. [3]

His work began with comparing different feature extraction methods and developing
his own, Lip Geometry Estimation (LGE), which will be discussed in section 2.5.3. He
then explored the possible approaches to building a recognizer. A type of artificial
neural network that is able to handle the temporal dimension is considered, but the
final choice is the Hidden Markov Model (HMM), which is a statistical model that can
model speech quite naturally.

2.3 Related topics

21

Strings of digits (limited vocabulary) were used in a lip reading experiment. Binding
the number of digits per utterance with a grammar improved the accuracy results
significantly, probably due to an undertrained silence model. Using intensity features
along with LGE boosted the results even more. However, training on data from five
different people as opposed to a single person brought the recognition rate down
significantly. This suggests that the features are not speaker-independent after all.

Some of his work involved lip reading options for continuous speech. To perform
onset/offset detection an Artificial Neural Network (ANN) was used. Results were
verified using the presence of audio. A problem was the difference in timing between
the video and audio channels. Vowel/consonant discrimination could also be done
using an ANN.

To explain these results, the disadvantages that are implied by the use of visemes,
were given as a possible reason. A second reason for the lack of performance might
have been that the viseme models for “silence” were undertrained. This could be
solved by using a larger speech corpus. Also, a larger HMM could be used, but the
more free parameters an HMM contains, the larger the data set needs to be in order
to train them properly. Because of the temporal dimension, other, trajectory-based
models might be better suited than HMM to model visual speech.

Eventually, the project was dropped due to unsatisfactory performance and
continued as a multi-modal project, for fusion of audio and visual media. The lip
reader they wanted to use for late integration feature fusion reached a performance
of only 10%. One reason for this might be that coarticulation between visemes is
more evident than for phonemes. To model this coarticulation, a triphone model
would be needed where a monophone model would be sufficient for phonemes (see
section 8.2 for details). There wasn’t enough data to train a larger model, however.
The other reason is the lack of context. Context information is essential for
continuous speech recognition, especially for a lip reader that is theoretically always
outperformed by an acoustic speech recognizer (see section 4.2.2).

The final conclusions of this work are the following:

• The expected performance of lip reading lies far below that of acoustic speech
recognition

• Although a small data corpus was recorded, a bigger one would be needed for
further research

• The feature extraction method that will probably be most successful is
geometry based (e.g. LGE), extended with intensity features

• Search has to go on for a robust feature extraction method that is invariant to
different speakers, orientation, lighting conditions and occlusions.

2.3 Related topics

This section will scratch the surface of some topics that are related to automatic lip
reading. We will talk about speech animation, sign language recognition and audio-
visual speech recognition.

2 Related work

22

2.3.1 Speech animation
Lip synchronization of computer generated
talking faces often shows an amazing accuracy.
Although the 3D models of the lips used for
these cannot be mapped directly onto the
typical 2D video footage in actual data corpora,
it’s interesting to see the parallels between
both areas.

Applications of speech animation can be found
in entertainment and long-distance
communication. In entertainment it is used to
make virtual actors of movies and video games
“talk” (see Figure 2.1). In communication,
talking faces can provide an extra medium
where bandwidth costs make an actual video
phone infeasible. A talking head is then made
to synchronize with the speech. In a similar
application, talking faces could enable hearing-
impaired to talk on the phone, be it with a
small delay.

Generally, “visemes” (in the sense of mouth
positions) are used to provide the key frames
for synthesis of visual speech. Research topics
in speech animation are modeling the speech
apparatus accurately, lip synchronization, and
interpolation between animation key frames. Examples of speech animation software
are Baldi (CSLU toolkit, the more recent version is known as CUAnimate), Xface
(http://xface.itc.it), and many more.

2.3.2 Sign language recognition
In much the same way as automatic lip reading, sign language can be recognized
using an HMM implementation, as seen in [4]. Here visual speech recognition is
applied to sign language instead of the face. A practical difficulty is the segmentation
of the video; the position of the hands needs to be clear. This can be done by
applying a color filter for skin tone. An advantage of using sign language over normal
speech is that sign language is especially designed for the visual medium, making it
potentially much more accurate. Although the applicability in daily life is limited -
most people don’t even know sign language; much less produce it - understanding
the deaf without knowledge of sign language is made possible.

2.3.3 Audio-visual speech recognition
The type of multimodal speech recognition that appears to have the most potential is
audio-visual speech recognition, because sound and vision are the two most
prominent channels through which speech is communicated. Often the chosen
approach is to use the video signal to enhance the results of acoustic speech
recognition.

At the time of the work described in section 2.2, some additional work was done on
audio-visual speech recognition [5]. A bimodal speech recognizer needs to combine

Figure 2.1: Viseme set of Annosoft Lipsync

Tool 3.0 (http://www.annosoft.com)

2.4 Overview of audio-visual speech corpora

23

the two modalities. Ways to do this are early integration (combining the audio/video
features), late integration (combining output of 2 recognizers) or intermediate
integration (the road in-between). Both early and intermediate recognition requires
an HMM to be trained on both media.

It was decided to extend a speech recognizer trained on the Polyphone speech
corpus [6] with a state-synchronous multi-stream HMM architecture. The Polyphone
recognizer was first trained using the audio from the audio-visual speech corpus to
adjust to the better audio quality. The lip reading was added using feature fusion
(early integration) and the system was retrained using bimodal input. In the end, the
lip reading originally did not boost the performance, but when the signal-to-noise
ration (SNR) of the signal was less than 8 dB, it helped the system cope.

Figure 2.2: How a typical audio-visual speech recognition (AVSR) system benefits from visual speech

recognition (VSR) at low signal-to-noise ration (SNR) for audio, compared to normal automatic speech

recognition (ASR). [7]

2.4 Overview of audio-visual speech corpora

One of the main bottlenecks in speech recognition, and even more so in visual
speech recognition, is the lack of a sufficiently large and representative data corpus.
In our case, we would obviously need a speech corpus to contain video, but in
evaluating a speech corpus with the application of automatic lip reading in mind,
there are several other criteria that are not to be overlooked. Some of the important
issues spotted were the resolution of the video recordings, the video sample rate, the
richness of the language pool and last but not least the size of the corpus. All of
these need to be considered to evaluate a data corpus.

AVSR

ASR

VSR

0 5 10 15 20 25 30 35

90

80

70

60

50

40

30

SNR (dB)

w
o
rd
 r
e
c
o
g
n
it
io
n
 r
a
te
 (
%
)

2 Related work

24

Table 2.1: Overview of existing speech corpora according to [8]

2.4.1 Criteria to evaluate speech corpora
The first criterion to evaluate an audio-visual speech corpus is the language of a data
corpus. As much as one would like to, speech data of one language cannot be
mapped onto, added to or transferred to a data set of another language. While there
are a number of English speech corpora that include video, for Dutch there is only
DUTAVSC, the Dutch Audio-Visual Speech Corpus, recorded at this university several
years ago. [9]

Corpus Language Sessions Number of
speakers

Audio Quality Video Quality Language
Quality

Stated
purpose

TULIPS1 English 1 12: 9 male, 3
female

11.1kHz, 8bits
controlled

audio

100x75, 8bit,
30fps mouth

region

first 4 digits in
English

small
vocabulary

isolated words
recognition

AVletters English 1 10: 5 male, 5
female

22kHz, 16bits
controlled

audio

80x60, 8buts,
25fps mouth

region

the English
alphabet

spelling English
alphabet

AVOZES English 1 20: 10 male,
10 female

48kHz, 16bits
controlled

audio

720x480, 24bits,
29.97fps entire
face, stereo view

digits from ‘0’ to
‘9’ continuous

speech
application driven

utterances

continuous
speech

recognition for
Australian

English

CUAVE English 1 36: 19 male,
17 female

44kHz, 16bits
controlled

audio

720x480, 24bits
29.970fps

passport view

7,000 utterances
connected and
isolated digits

continuous
speech

recognition

Vid-
TIMIT

English 3 43: 24 male,
19 female

32kHz, 16bits
controlled

audio

512x384, 24bits,
25fps upper body

TIMIT corpus 10
sentences per

person

automatic lip
reading, face
recognition

DAVID English 12 258: 132
male, 126

female (in 4
groups)

? entire face, upper
body, profile view

multi corpora:
controlled and

degraded
background,

highlighted lips

vowel –
consonants
alternation,

English digits

speech or
person

recognition

IBM
LVCSR

English 1 290 -
unknown
gender

22kHz, 16bits
?

? connected digits
isolated words

audio-visual
speech

recognition

AVICAR English 5 100: 50 male,
50 female

48kHz, 16bits,
8channels 5

levels of noise
car specific

4 cameras from
different angles,
passport view car

environment

isolated digits,
isolated letters,

connected digits,
TIMIT sentences

speech
recognition in a

car
environment

DUTAVSC Dutch 10 to 14 8: 7 male, 1
female

48kHz, 16bits,
controlled

audio

384x288, 24bits,
25fps lower face

view

spelling,
connected digits,
application driven

utterances,
POLYPHONE

corpus

audio-visual
speech

recognition, lip
reading

2.4 Overview of audio-visual speech corpora

25

The size of the corpus in terms of number of recording subjects is also important.
Especially if one wants to make a speaker independent recognizer, a diverse group of
subjects is key. It is also important that the group of subjects is composed of both
males and females. If either group is underrepresented, it might lead to bad
recognition with respect to that group. This is especially important for audio, since
female voices are generally higher pitched. For lip reading we expect some variance
in the measures of the facial features.

Other important factors are the quality of audio and video. Due to the requirements
on video storage it might be tempting to compress the data heavily, introducing
artifacts. But for automatic lip reading computer vision has to be performed, so the
video should be of a decent quality concerning lighting and resolution. In section
2.4.4 we will go into the frame rate issue more deeply. It is one of the main reasons
why we decided to devise a new data corpus.

Another thing is the language coverage of the corpus. Most audio-visual corpora
shown in Table 2.1 are meant to be used for simple word-level recognition tasks. We
would like to see a corpus that can also be used for continuous speech recognition,
or natural language. Also, the corpus had to be available in order for us to be able to
use it in our research. Some corpora were available to us online (e.g. VidTIMIT
(http://www.itee.uq.edu.au/~conrad/vidtimit)), but after consideration we decided
that the video quality wasn’t good enough (especially the resolution of the mouth).
Another available corpus was DUTAVSC, which we will elaborate on in section 2.4.3.

2.4.2 Storage of visual speech data
An obstacle those wanting to implement visual speech recognizers often seem to run
into is a lack of training data. However, there is a reasonably explanation for this:
the amount of disk space needed to capture and store such a corpus. In comparison,
the entire Polyphone corpus (1994, [10]) is 330 MB. The size of DUTAVSC (2001) is
under 10 GB. The size of the new data corpus we will discuss in chapter 5 (2008), is
1580 GB. In short, the advancement in computer technology only recently enabled
us to develop a larger data corpus.

2.4.3 Dutch Audio-Visual Speech Corpus
The DUTAVSC speech corpus is a small audio-visual data corpus that was recorded
for the previous project. Therefore, we had full access to it. DUTAVSC stands for
Dutch (or Delft University of Technology) Audio-Visual Speech Corpus [9] and
contains 8 sessions of 8 different people speaking. This amounts to a total of over 4
hours of constant recordings (between 25 and 45 minutes per subject). The recorded
subjects are all native Dutch speakers: 7 male subjects and one female.

The language covered by the data corpus consists of words and sentences. Per
prompt set, of which between 10 and 14 were gathered for each subject, there were
the utterance types given in Table 2.2 and illustrated in Figure 2.3. For some prompt
sets subjects were asked to speak fast, speak extra clearly, or whisper.

The recording subjects were asked to read prompts shown on the screen of a laptop
in front of a digital video camera. The operator controlled the progress of the
prompts. The camera used was a SONY TRV20E digital camcorder on standard DV
tapes equipped with Cassette Memory chips, placed on a tripod. An external
computer microphone was used, which was hung on the speakers' neck. The audio
was recorded at using a sampling of 44 kHz with 16 bit resolution. For use in these

2 Related work

26

experiments the audio files were converted to 8 bit A-law format. The video was
sampled at 25 Hz.

Table 2.2: DUTAVSC prompt set

Number Utterance type

1 Sentence of 10 short unrelated words

10 Phonetically rich sentences from Polyphone

3 Random digit sequences of length 10

4 Spelled words

5 Sentences with fixed grammar (see Figure 2.4)

Each of the recorded sessions was edited using video editing software and cut into
smaller sequences. The video sequences were then converted from a standard DV
format to MPEG1 stream. Moreover, from all of the scenes audio data was extracted
and saved externally. Furthermore, the proper transcriptions of the utterances were
added.

After the recordings were made, data from 5 out of 8 subjects was transcribed and
used for experiments on audio-visual speech recognition. [5] From each subject 4 or
5 sessions were used. This data set was split in a training set of approximately 500
utterances from all speakers and a test set containing 30 utterances from all
speakers.

During our own project we transcribed the data of the remaining 3 subjects, with the
initial purpose of using it for our project. The dataset will be made available online
for researchers throughout the world.

Figure 2.3: Example prompts illustrating language coverage of DUTAVSC according to [5]

2.4 Overview of audio-visual speech corpora

27

$number10 = twee | drie | vier | vijf | zes | zeven | acht | negen;
$number20 = tien | elf | twaalf | dertien | veertie n | vijftien | zestien | zeventien |
achttien | negentien;
$number100 = [(1 | $number10) en] (twintig | dertig | veertig | vijftig | zestig |
zeventig | tachtig | negentig);
$number =
 [$number10] honderd [en] ($number100 | $number20 | $number10 | 1) |
 [$number10] honderd |
 $number100 |
 $number20 |
 $number10 ;
$digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9;
$amount = $number (euro | euro's) | een euro | 1 eu ro;
$greeting = goedemorgen | goedemiddag | goedenavond ;
$please = alstublieft | alsjeblieft;
$want = wil | wilde | wou;
$type = [prive] [bank] rekening;
$account =
 [mijn] $type [nummer] $digit $digit $digit $digit $digit $digit $digit $digit |
 (mijn | m'n | een) $type;
$action =
 $amount van $account [naar $account] overmaken |
 $amount op $account storten |
 $amount storten op $account |
 $amount opnemen van $account |
 $amount van $account opnemen|
 een [nieuwe] $type openen |
 $account sluiten;
([$greeting] ik $want [graag] $action [$please] |
 [$greeting] ik ($want | zou) $action graag |
 [$greeting] ik zou graag $action [$please])

Figure 2.4: Telebanking application grammar in EBNF used to generate prompt for DUTAVSC [5]

2.4.4 Video frame rate issues
One of the main reasons why we decided to record a new data corpus is the poor
coverage of visual speech by traditionally used video sample rates. For the corpora in
Table 2.1, audio was sampled at around 48 kHz, which results in 100 Hz once feature
extraction is performed using MFCC with a Hamming window of 30 ms, while video
was recorded at a frame rate of 25-30 Hz. For a human observer, 25 frames per
second is assumed to be sufficient to perceive fluent motion [11]. However, human
lip readers benefit from higher frame rate [12], so it can be assumed that a machine
lip reader would as well.

In audio-visual speech recognition, one tries to merge the auditory and visual
channels. If the sample rates for the auditory and visual channels are not equal, they
have to be synchronized. This can be done by interpolation or copying video frames.
This is without taking into account that for the auditory speech units and their visual
counterparts, although dependent, their timing may be off: visual evidence of sound
production may show before the sound is heard. [13]

Another problem lies in the model one would like to impose on the data. Figure 2.5
shows the duration of a great number of visemes appearing in some speech
fragment. For DUTAVSC, the video was recorded taking 25 frames per second, so the
majority of visemes (the visual counterparts of phonemes as will be discussed in
chapter 4) occupy 2-3.5 time frames (0.08-0.14 seconds). This is troublesome,
because Hidden Markov Models that represent a speech unit should have at least the
as many states as the number of time frames required for the shortest instance of

2 Related work

28

that speech unit. As seen in the figure, the majority of the speech units cannot be
modeled by an HMM with 3 states or less.

Figure 2.5: The number of time frames per viseme, in case of fast speech rate based on analysis of

DUTAVSC and artificial data [14]

A study was done to see which sample rate would be needed to capture all speech
information in a video signal [14]. The lip reading accuracy is estimated based on the
Root Mean Square Deviation measure.

() () ()()2ˆ ˆ ˆRMSD MSE Eθ θ θ θ= = − (2.4)

Both real high-speed data and synthetic data generated using CUAnimate (CSLU
Toolkit) were analyzed using two types of features; mouth width and height, and
optical flow. The conclusions with respect to speech rate are that the gain on low
speech rate is not significant enough to justify the extra use of resources implied by
recording at high speed. But when the speech rate increases, a recording rate of 24
to 30 frames per second is definitely insufficient.

2.4.5 Using side view images
In most work, we see visual features being extracted from images of the speaker
taken from the front. There are however some possible applications in which the
camera is not positioned directly in front of the speaker. Mapping identified face
points on a 3D model of a human head for example, would require more than just
the front view. Also, automatic lip reading from a telephone would almost certainly
not result in the front view. Besides, it is not impossible to read lips from another
viewpoint. Humans for example are very much capable of it.

Several experiments have been conducted to decide the success of features
extracted from profile view video, for example [15]. Here, they extract simple
geometric features from front (upper lip height, lower lip height, and lip width) and

2.4 Overview of audio-visual speech corpora

29

profile view (maxima of the face contour resulting in both lips, nose and chin) and
compare them. The conclusion is that profile view features (WRR: 40%) perform
about 10% better than front view features (WRR: 30%).

In [16] an experiment is described where optical flow features extracted from side
images are used in audio-visual recognition. They don’t say anything about the
individual performance of the lip reading, but the combination is more robust against
noise.

2.4.6 Conclusion
After analysis of existing speech corpora, we arrived at the conclusion that none of
them were sufficient to meet our goals and that recording a new data corpus was
required. The new speech data corpus received the code name New DUTAVSC.

The recording of New DUTAVSC had to be carefully prepared. Because of the scale of
the new corpus we needed to make sure that all material would be gathered in a
correct way. The new corpus would have to follow the quality requirements we
gathered after the research done on other speech corpora; a high frame rate,
capturing of both frontal and profile view of the face and a rich utterance pool fit for
continuous speech recognition experiments. Furthermore, we decided that it would
be useful if people would be recorded at both normal and fast speech rate, and
whispering (instead of low speech rate, as it appears to be more natural).

We decided to record at a frame rate of 100 Hz, which would give four times as
much speech unit coverage as for DUTAVSC, which as recorded at 25 Hz. While one
might decrease the frame rate of a recording during analysis, it is not possible to add
data that was never recorded.

For our new data corpus, we decided to capture both frontal and profile views of the
lower half of the face. This will keep all options open for mapping onto and
recognition from a 3D model of the frontal hemisphere of the face, and any other
research people might think of.

2.5 Methods for feature extraction

One aspect none of the existing visual speech recognizers have in common is their
feature extraction method. Computer vision techniques from a wide range of origins
can be applied to this task. Feature extraction is probably also the most important
part of the scientific endeavor and thus the most visible one with the most
development. The best feature extraction method has yet to be determined and in
many cases seems to depend on the application.

Feature extraction for visual speech often comprises two steps: locating the face and
mouth and then extracting the actual features used for classification. Since the
nature of the features that can be extracted depends heavily on the representation of
the face after localization, these two problems have to be seen as one approach.
That is why we have taken tracking and feature extraction together in this section.

2.5.1 Classification of feature extraction methods
Feature extraction needs to be performed for two reasons:
1. to reduce the dimensionality of the classification task,
2. to capture the relevant information about the process being modeled.

2 Related work

30

We will use the categorization introduced by a paper on active shape models by
Luettin et al. [17] Two main approaches for extracting speech information from
image sequences are the image-based approach and the model-based approach.
Combinations of these are also widely used.

In the image-based approach, the image intensities are preprocessed and then used
as the feature vector. Preprocessing normally consist of filtering and dimension
reduction. The advantage of this approach is that no data is thrown away.
Disadvantage is that the data is not normalized and the high dimensionality and high
redundancy of the feature vector. The data driven approach does not use any
previously defined model of the lip area and attempts to capture information based
on the data alone. An example is optical flow analysis, which only uses the motion of
an image sequence. Also mentioned is the processing of raw data which preserves a
lot of details about the speaker like skin textures, but this only makes sense for
speaker recognition, not lip reading.

In the model-based approach, a model of the visible speech articulators, mainly the
lip contours, is built and its configuration is described by a small set of parameters.
The advantage of the model-based approach is that important features are
represented in a low dimensional space and are invariant. A disadvantage is that a
particular model may not consider all relevant speech information. The main difficulty
in the model based approach is to build a model which represents the lip shape
efficiently and which is able to locate and track the lip contours of different speakers
and under different illumination conditions. The model-based approach seeks to first
make a model of the features of the face that could contain speech, allowing for a
compact notation. It is difficult to come up with a generic lip model though. The
feature set then consists of a set of parameters for such a model.

2.5.2 Optical flow analysis
Optical flow is a data driven approach to video tracking and feature extraction. It is
used widely in video compression standards. A common definition of optical flow is
“the distribution of apparent velocities of movement of brightness patterns in an
image”. From the differences between subsequent images, a guess is made about
the movement between images, resulting in a grid of motion vectors. Video
compression can then be accomplished by storing just the starting image and the
motion vectors.

A motion field of this kind contains one motion vector for each block of pixels. Optical
flow can also be used as a source for speech features. After localization, only the
motion field around the mouth is considered.

There are many algorithms for optical flow recovery differentiated by the
assumptions taken to alleviate the mouth cavity problem (sometimes the mouth is
open, sometimes it is closed). However, the most used and accurate is the algorithm
developed by Lucas and Kanade. [18]

Optical flow has been applied successfully to visual speech recognition. The optical
flow features directly recover the motion information apparent around the speaker’s
mouth. The idea is to split the region of interest into a number of interesting zones,
then compute and statistically describe the optical flow in each zone. It was shown
that the motion vectors are better at describing the mouth movement than the delta

2.5 Methods for feature extraction

31

and acceleration of static features. However, it can be very slow, especially when the
number of chosen motion vectors is very high.

2.5.3 Lip geometry estimation
Lip Geometry Estimation is a combination of the image-based and the model-based
approach. LGE was designed by Jacek Wojdeł to obtain robust lip features [19]. One
advantage is that no geometrical lip model needs to be defined in advance. In this
approach, the geometry of the mouth is represented by an estimate of some of its
statistic properties, making it insensitive to noise and personal characteristics of the
speaker.

With Lip Geometry Estimation, two types of features are computed; geometric
features and features based on area. Geometric feature extraction starts by
identifying the region on interest by color filtering the image to locate the lip pixels.
Hue, hue-value, grayscale, pseudo-hue histogram, and simple artificial neural
networks based on different color spaces were tried. The best results were obtained
with RGB based neural networks. More statistical methods were used to further
reduce the artifacts of the filtered image (outliers).

After that, the center of gravity of the lip pixels is used as the center point around
which the image is transformed into polar coordinates. The resulting intensity
function has two interesting properties; its conditional mean (thickness of the lips)
and variance (distance from the center of the mouth) for specific angles, thus
describing the shape of the lips:

() () ()(), cos , sincenter centerJ r I x r y rα α α= + + (2.5)

The formula to calculate the mean from equation (2.5):

()
()
()

,

,
r

r

J r rdr
M

J r dr

α
α

α
= ∫
∫

 (2.6)

The formula to compute the variance from equation (2.5):

()
() ()()

()

2

2
,

,
r

r

J r r M dr

J r dr

α α
σ α

α

−
= ∫

∫
 (2.7)

Sampling this function in 18 predefined directions provides the geometrical features.
The feature set can be extended by adding area features to obtain better recognition
results. These features are based on the visibility of the teeth and tongue in a video
frame. To determine the area occupied by the teeth, a color intensity filter is simply
used on the region of interest (bright pixels are probably the teeth). The tongue is
about the same color as the lips, but using an intensity filter to find the mouth cavity
area (which is dark) and comparing it to the full area of the lips, the area occupied
by the tongue can still be computed. Besides the areas, also the position of their
centers of gravity relative to the center of the mouth are added to the feature vector,
which ultimately forms the input to an artificial neural network or Hidden Markov
Model. Including these intensity features increased performance from 60% to almost
80% for simple recognition tasks.

2 Related work

32

Although this method is supposedly speaker-independent, recognition experiments
done using LGE decreased in performance when recordings of multiple people were
used for training. Reasons for this could be that the method may not be robust to
lighting conditions, occlusions and variations skin tone and presence of facial hair.
We also do not see how it could handle lip shapes that also vary per person.

Figure 2.6: Lip geometry estimation applied on a video frame [3]

2.5.4 Active Shape Models
This approach is model-based but the training phase can be considered image-based.
Active Shape Models are statistical models that approximate the shape of an object.
It is used in computer vision to locate objects in new images. This is done by
iteratively reforming the model, but with the constraint to vary only in ways seen in
a training set of labeled examples. The algorithm makes use of the appearance of an
image by assuming the points lie on edges.

Going from an initial estimate for the pose and shape parameters (e.g. the mean
shape), a variant on the Expectation Maximisation algorithm is applied. The shape is
iteratively updated as follows:

• Look along the normals through each model point to find the best local match
for the model of the image appearance at the landmark (e.g. strongest
nearby edge)

• Update the pose and shape parameters to best fit the model instance to the
found points

• Repeat until convergence

This method has been applied successfully to lip reading. Luettin et al. [17] describe
a model-based speech reading system where a model of the lips is constructed from
a training set. The model is used to subsequently locate, track and parameterize lip
contours in image sequences. These are the lip shape features that are handed to a
HMM modeling visual speech.

Active shape models are flexible models which represent the boundary or other
significant location of an object by a set of labeled points. ASMs use a priori
knowledge about shape deformation from the statistics of a training set which was
labeled by hand. PCA is used to map the main modes of shape variation into a linear
subspace. Any shape can then be approximated by a linear combination of the
“mean” shape and the first few modes of variation.

2.5 Methods for feature extraction

33

The parameters describing the shape of the lips are extracted at each time frame
and used as feature vectors. They are invariant to scale, rotation, translation and
illumination (parameters associated with these are not used) and can directly be
used by the recognition network. Much speech information is contained in the
dynamics of the lip movement rather than the actual shape. Therefore the delta
shape parameters are added as features. Also the delta scaling parameter was added,
even though scaling varies per speaker. Visual speech is modeled by representing
each utterance as a sequence of visual speech vectors. Their emission probabilities
are modeled by continuous Gaussian distributions and temporal changes are
modeled by HMM.

They achieved a 85% recognition rate by using whole-word HMM with 5 or 6 states
with the TULIPS1 corpus (see Table 2.1), which contains just the first four digits, but
of which it is known that untrained humans performed at a word recognition rate of
90%, while trained lip readers perform at 95%. The nicest part is that these features
are speaker-independent.

2.5.5 Introducing Active Appearance Models
The Active Appearance Model (AAM) is a generalisation of the Active Shape Model
that uses all texture information of an image, instead of just the edges. The ASM
essentially seeks to minimize the distance between model points and the
corresponding points found in the image, whereas the AAM seeks to minimize the
difference between the synthesized model image and the target image.

Because of this, AAMs have the following advantages over Active Shape Models:

• It is more robust because it explicitly minimizes texture errors.
• It takes advantage of all the grey-level information available across an object,

making it more reliable.
• A convincing model can be built with a relatively small number of landmarks.

Any extra shape variation is expressed in additional modes of the texture
model. The ASM needs points around boundaries so as to define suitable
directions for search.

Both methods have the drawback that an amount of labeled training examples is
required to build a good model. They have the advantage that they are well suited to
track objects through image sequences, using the previous frame as initiation of the
next frame. This way only a few iterations are required to lock on.

We ended up using this method for mouth tracking because of its speed, robustness
and convenience. More will be explained about Active Appearance Models in chapter
6.

2.5.6 Conclusion
After researching these methods (and seeing some of them put to action), there
were some criteria that made up our mind about which technique to use for our goals.
Feature extraction can be a real time bottleneck in an automatic lip reader that is
meant to run live. Especially in a data driven (and thus computationally expensive)
approach like optical flow this proved to be true. The more motion vectors were used,
the worse the performance became. For the other method that works without a
predefined model, LFG, the performance, although better than for OF, is still not that
good because still whole images are processed each time step.

2 Related work

34

For the model-based point tracking methods, ASMs and AAMs, the difference was
that for AAM fewer landmark points were required to build a model. Because of the
considerable work required to get reliable image labeling, this is an advantage.
Furthermore, there was an implementation readily available [20], which would save
implementation time. Point tracking proved to be faster than the other methods.

Other ways we explored to perform data parameterization are optical flow and lip
geometry estimation. Neither were as fast as AAMs, and because they were not
based on point tracking resulted in many more model parameters (which would
require more training data to train properly).

The reasons why we choose to use Active Appearance Models as our method for
point tracking are the promised speed and robustness of the tracking. There was also
an implementation readily available to prove this point. It was faster than other
investigated methods for data parameterization.

35

3 Basics of speech recognition

How does one build an automatic speech recognizer? While this may not have been
trivial question in the past, today a standard approach exists. The purpose of this
chapter is to give a basic introduction to the theory and techniques that are usually
applied to speech recognition problems. For automatic lip reading, this basic
approach is the same. Specific aspects of visual speech recognition will be discussed
in chapter 4.

In section 3.1 the problem of language modeling, which is fundamental to speech
recognition, is introduced. In section 3.2 we discuss the application of Hidden Markov
Models (HMM) to speech recognition. Training (3.3) and recognition (3.4) using these
Markov models are discussed after that. In section 3.5 we talk about acoustic
modeling in some more detail. In section 3.6 we introduce the tool we used to
implement our automatic lip reader: the Hidden Markov Model Toolkit (HTK).

3.1 Statistical speech recognition

In the past, there have been different approaches to speech recognition. Artificial
intelligence techniques such as expert systems, pattern matching and neural
networks have been applied with mixed results. To date, the most successful
approach appears to be the statistical one. Statistical speech recognition is based on
the fact that words, or sub-word units like phonemes, are mutually dependent. The
probability that certain words are observed given the previous words, can be
captured in a language model.

According to this approach, the problem of speech recognition can be solved if the
most likely sequence of (sub) words W given an observation sequence O is found,
which is given by equation (3.1).

()ˆ arg max |
W

W P W O=
(3.1)

In this equation, P(W|O) is the probability of a word sequence w given observation

sequence O. The word in W for which this probability is maximized is Ŵ , the most

likely utterance. This is however not directly computable, but using the Bayes rule
this formula can be rewritten as equation (3.2).

() ()ˆ arg max |
W

W P W P O W=
(3.2)

Here, P(W) is the a priori probability that the word string W is uttered, called the
language model and P(O|W) is the probability that when a (sub)word string W is
uttered evidence O will be observed, called the likelihood. P(O), which would appear
in the denominator after application of the Bayes rule, can be disregarded because of
the properties of the maximum operation.

The language model P(W) should provide a way to calculate the probability that the
(sub)word sequence W will be uttered in the language as a whole. For a single word
wi the probability depends on all previously recognized words. The bigram grammar

3. Basics of speech recognition

36

provides a simple and effective method to calculate this probability using the
following equation:

() () () ()1 2 1 1| ... |n nP W P w P w w P w w −= (3.3)

The probabilities ()1|i iP w w − can easily be estimated by counting the occurrence of

each word pair in a representative and preferably huge (text-based) data corpus.
Bigrams assume the current word only depends on the previous word. A better
approximation of the language could be obtained by extending this to n-gram
grammars that depend on n-1 previous words (trigrams or more), but apart from
needing an even larger data corpus to train it properly, the most widely used
algorithm for recognition, Viterbi, discussed in section 3.4, is unable to work with
temporal dependencies exceeding bigrams.

A language model like n-grams is only required for continuous speech recognition
that can recognize natural sentences. If the data consists of separate words or is
bound by a fixed grammar, a simpler language model can be used.

In case of acoustic speech recognition, the likelihood P(O|W) is often called the
acoustic model. It determines what sounds or observations will be produced when a
given string of words is uttered. One way to model this is by using Hidden Markov
Models.

3.2 Hidden Markov Models

The Hidden Markov Model (HMM) is a powerful mathematical tool to model time
series. It is a finite state machine in which the system being modeled is assumed to
be a Markov process. The state sequence however cannot be directly observed. Apart
from state transition probabilities, an HMM also has emission probabilities, which
means that for the same state sequence, numerous observation sequences are
possible. The HMM can model the varying duration that is common for speech units
well.

Figure 3.1: A standard three-state Hidden Markov Model, with non-emitting states 1 and 5, and

emitting states 2, 3, and 4. Emitting states are associated with an output distribution bi [21]

A Hidden Markov Model (see Figure 3.1) consists of a number of states, a number of
state transition probabilities stored in a transition probability matrix A, and output

3.3 Training: Baum-Welch re-estimation algorithm

37

distributions bt (ot) for each emitting state. For an HMM to learn all of these
probabilities, is not a trivial task: it can only be estimated. An algorithm that does
just that will be explained in the next section.

It should be clear how an HMM can generate an observation sequence O by
traversing states, but in speech recognition, we already know the observation
sequence and are only interested in the underlying process that generated those
observations, i.e. the (sub)word sequence. Because we are using a Hidden Markov
Model the state sequence is not directly visible to us though. In fact, there can be
many solutions to the problem we want to solve. The only approach we can take
here is trying to find the most likely underlying state sequence given the
observations made.

Although the state transition probabilities and emission probabilities of an HMM can
be estimated by an algorithm, the topology of an HMM can only be designed by hand.
The architecture of the HMM to use depends greatly on the primitives of speech one
wants to recognize, and the available training data. If words are used as speech
units and each word is represented by one HMM, within-word co-articulation effects
are well modeled, but training data will be required for every word, and retraining is
required for every word added to the dictionary. Usually sub-word units like
phonemes are used as units of speech so data can be shared among words.

Each unit of speech will be modeled by its own HMM. For phonemes, usually
triphones are used to model the relation to surrounding phonemes, which should
partially account for between-phone co-articulation. An HMM should not have too
many states; adding more states means introducing more parameters and thus more
degrees of freedom. Variations in sub-word units can be modeled more accurately
but this also requires more training data to avoid undertraining. If a sub-word unit
only occupies a limited amount of time frames the HMM should not have more states
than that, or there should be short-cuts. [5]

3.3 Training: Baum-Welch re-estimation algorithm

One algorithm that can be used to train a Hidden Markov Model, although it is not
guaranteed to give the best possible solution) is the forward-backward or Baum-
Welch algorithm. The forward-backward algorithm will let us train the transition

probabilities aij and emission probabilities bt (ot) of an HMM.

For a transparent Markov Model for which every state emits a fixed symbol, we could
find the transition probabilities by counting the times a transition occurs. For HMMs,
the approach is to iteratively estimate these counts. It starts with an estimate for
transition and emission probabilities, and refines the estimated probabilities by
computing the forward probability for an observation and dividing the probability
mass among the different paths that lead to this observation, with the previously
estimated transition probabilities as weighing factors. The forward probability is the
probability of being in state i after seeing the first t observations. It can be computed
by the algorithm displayed in Figure 3.2, which is closely related to the Viterbi
algorithm.

Similarly, the backward probability is the probability of seeing the observations from
time t + 1 to the end, given that we are in state j at time t.

3. Basics of speech recognition

38

function FORWARD(observations, state graph) returns forward-probability

num-states <- NUM-OF-STATES(state-graph)
num-obs <- length(observations)
Create probability matrix forward[num-states+ 2, nu m-obs + 2]
forward[0, 0] <- 1.0
for each time step t from 0 to num-obs do
 for each state s from 0 to num-states do
 for each transition s’ from s specified by state- graph
 forward[s’, t + 1] <- forward[s’, t + 1] + forw ard[s, t] *

a[s, s’] * b[s’, o t]
return the sum of the probabilities in the final co lumn of forward

Figure 3.2: Forward algorithm for computing likelihood of observation sequence given a word model. a[s,

s’] is the transition probability from current state s to next state s’, and b[s’, ot] is the observation

likelihood of s’ given to [22]

On the basis of the forward and backward probabilities, the frequency of the
transition-emission pair values is determined and divided by the probability of the
entire sequence. This amounts to calculating the expected count of the particular
transition-emission pair. Each time a particular transition is found, the value of the
quotient of the transition divided by the probability of the entire string increases, and
this value can then be made the new value of the transition.

Transition probabilities can be estimated by equation (3.4), and the observation
probabilities by equation (3.5).

expected number of transitions from state to state
ˆ

expected number of transitions from state ij

i j
a

i
= (3.4)

() expected number of times in state and observing symbol ˆ
expected number of times in state

k
j k

j v
b v

j
= (3.5)

So, the algorithm provides ways to re-estimate these probabilities from an
observation sequence O, assuming that we already have a previous estimate of a
and b. The entire embedded training procedure for HMM chooses a first estimate and
calculate a and b until convergence.

Pseudo-code of the algorithm to guess a state sequence given an observation
sequence is given in Figure 3.2.

3.4 Recognition: Viterbi algorithm

39

num-states <- NUM-OF-STATES(state-graph)
num-obs <- length(observations)
Create probability matrix forward-backward[num-stat es + 2, num-obs + 2]

FORWARD-BACKWARD (guessed initial state position, 0)

function FORWARD-BACKWARD (state s, time step t) re turns forward probability

if t > num-obs then
 return 1
if forward-backward[s, t] > 0 then
 return forward-backward[s, t]
forward-backward[s, t] <- 0
for each transition s’ from s specified by state-gr aph do
 forward-backward[s, t] = forward-backward[s, t] +
 FORWARD-BACKWARD(s’, t + 1) *
 computed a[s, s’] given observation element at t
return forward-backward[s, t]

Figure 3.3: Simple pseudo-code representation of the forward-backward algorithm. The requirements are

a state-graph, an observation sequence and guesses for the transition probabilities a[s, s’] and initial state

position.

3.4 Recognition: Viterbi algorithm

Once there is a fully trained HMM at one’s disposal, a common used algorithm for
speech recognition is the Viterbi algorithm. The Viterbi algorithm can be used to find
the most likely path through a Hidden Markov Model, as well as find the probability
of the observation sequence given this most likely path. To decode (and in case of
continuous speech find the word boundaries in) an observation sequence, first a
large HMM is constructed that combines all words in the dictionary according to the
grammar if there is one. Each cell viterbi[t, i] of the matrix contains the probability
of the best path which accounts for the first t observations and ends in state I of the
HMM. This is the most probable path out of all possible sequences of states of length
t – 1:

[] []() (), max 1, ij j t
i

viterbi t j viterbi t i a b o= − (3.6)

In order to compute viterbi[t, i], the Viterbi algorithm assumes the dynamic
programming invariant or Markov property. This is the simplifying (but incorrect)
assumption that if the ultimate best path for the entire observation sequence
happens to go through a state qi, that this best path must include the best path up to
and including state q. This doesn’t mean that the best path at any given time t is the
best path for the whole sequence: a path can look bad at the beginning but turn out
to be the best path. Because of this assumption the Viterbi algorithm breaks down
for certain kinds of grammars, including trigram grammars.

Once the viterbi matrix and an accompanying matrix of back pointers have been
constructed, the algorithm continues by looping through all time frames and states,
calculating the most probable path for each “next” state. When the final time frame
is reached, this leads to an optimal solution we can backtrack to find the path that
led there. The probabilities are usually so small that the logarithmic scale is used to

3. Basics of speech recognition

40

represent them. This way, multiplication operations can be replaced by simple
additions as well.

function VITERBI(observations of length T, state-gr aph) returns best-path

num-states <- NUM-OF-STATES(state-graph)
Create a path probability matrix viterbi[num-states +2, T+2]
viterbi[0,0] <- 1.0
for each time step t from 0 of T do
 for each state s from 0 to num-states do
 for each transition s’ from s specified by state- graph

 new-score <- viterbi[s,t] * a[s,s’] * 'sb (to)

 if ((viterbi[s’,t+1]=0||(new-score > viterbi[s’, t+1]))
 then
 viterbi[s’,t+1] <- new-score
 back-pointer[s’,t+1] <- s

Backtrace from highest probability state in the fin al column of viterbi[] and
return path.

Figure 3.4: Viterbi algorithm for finding optimal sequence of states in continuous speech recognition,

simplified by using phones as inputs. Given an observation sequence of phones and a weighted automaton

(state graph), the algorithm returns the path through the automaton which has minimum probability and

accepts the observation sequence. A[s,s’] is the transition probability from current state s to next state s’

and 'sb (to) is the observation likelihood of s’ given to . [22]

The Viterbi algorithm is an algorithm that runs in exponential time and can thus take
long to get to a result. Also, the memory requirement can be large if the HMM is
large (for word-level recognition for example, all words of the dictionary have to be
combined into one big HMM before performing the search). Pruning of the search
tree can be performed to make it more efficient.

3.5 Going into more detail: Features

To train and run a speech recognizer, data first needs to be poured in a numeric
format that can be classified. Data parameterization or feature extraction has two
functions: firstly and most importantly, it reduces the amount of data that needs to
be processed; secondly, it makes the data more meaningful to the recognizer, and
thus training easier. For an acoustic speech recognizer, recordings of sound are cut
into samples according to a chosen time frame. Using the Fourier transform of the
signal, the sound is split into more and less characteristic components that together
make up a feature vector for every time frame, which is handed over to the HMM for
recognition.

For the probability density functions of the HMM’s states Gaussians are often used.
For every feature eventually one Gaussian is trained per state, leading to the mean
and variance of the normal distribution to be model parameters. If a Gaussian is
expected not to approximate the actual probability density function, which is mostly
the case, a mixture of Gaussians is used to obtain a better approximation. Added
together, a multitude of normal distributions can approximate any probability
function, as long as one allows enough of them to be used, and the number of
Gaussians required is limited because a time frame is also limited. The model

3.6 Hidden Markov Model Toolkit

41

parameters will be a number of mean and variance values in this case, one for each
Gaussian. This is how most acoustic speech recognizers operate.

In the case where the signal to be recognized is not just one waveform that can be
transformed, the features will have to come from a different source. Care has to be
taken that the numeric format chosen for the features can accurately be modeled by
an HMM. Though it is possible to have discrete values, like Booleans, continuous
values are better suited to be modeled with Gaussians. Requirements for the feature
set depend on what one wants to recognize. In case of video, the features should
preferably be invariant to lighting conditions, scaling and rotation for example. Other
requirements can be speaker independency or speed of the feature extraction
algorithm. Features can be object model parameters, distances between certain
points or the derivative or acceleration values thereof.

3.6 Hidden Markov Model Toolkit

The Hidden Markov Model Toolkit (HTK) is often used for automatic speech
recognizer implementation, because it contains generally applicable tools for HMM-
based speech processing that are optimized for speed. The tools can be run from the
command line and each program has many options for customization. It is also well
documented: the manual [2] contains theory, examples, tutorials and detailed
descriptions of all available tools. There are tools for each step of building a speech
recognizer: data preparation, training, testing and analysis.

For data preparation, some available tools are HCopy that can conveniently extract
features from audio files (e.g. Mel Frequency Cepstral Coefficients), HList, that can
be used to inspect for example binary feature files, and HLed, that can format the
labels of the data.

For training, one usually starts with defining the HMM topology by writing a
prototype definition. The tools HInit and HRest can be used to make the initial guess.
HERest is used to perform embedded training using the Baum-Welch algorithm. The
philosophy of system construction in HTK is that HMM should be refined
incrementally. The usual process is to modify a set of HMM in stages using HMM
definition editor HHEd and then re-estimate the parameters of the modified set using
HERest after each stage. Also HVite can be used here to adapt the HMM to a speaker.

HTK has one recognition tool called HVite, which implements the Viterbi algorithm. It
has many options, including the option to run the algorithm with live (audio) input to
enable on-line recognition, and pruning search trees to speed up recognition. HVite
requires a word network describing the allowable word sequences, possibly
generated by using the HParse tool on a grammar in Extended Backus Naur Form
(EBNF), a dictionary defining the word pronunciations and a set of HMM. The tool
HDMan can be used to merge dictionaries.

Analysis can be done using the tool HResults which compares the recognition results
to the labels and counts the substitution, deletion and insertion errors among other
things. Also useful are the speaker-by-speaker breakdowns, confusion matrices and
time-aligned transcriptions.

With all these tools at our disposal, developing an automatic lip reader should come
down to processing our data, computing our features and then pouring everything
into the format required by HTK. The theory seen in this chapter will be applied in

3. Basics of speech recognition

42

the design of our lip reader. Visual and acoustic speech recognition can both be
accomplished by Hidden Markov Models, so we can use the HTK toolkit for our
implementation.

43

4 Visual speech recognition

Training a visual speech recognizer can be done in much the same way an acoustic
speech recognizer can be trained. There are however some factors that make it a
fundamentally harder task. That is why we will first go over the similarities and
differences between acoustic and visual speech recognition. In this chapter we will
first discuss the primitives of lip reading (section 4.1) and then explore the
theoretical performance boundaries of automatic lip reading (section 4.2). At the end
of this chapter, we will also have reached the end of the development phase. In
section 4.3 we will present our design choices and model for the rest of this thesis.

4.1 Visemes

In this section we will discuss the “viseme” (introduced in section 2.1). In speech
recognition systems, HMMs can be used to model sub-word units. This way a
recognizer does not have to be retrained when items (with their representations) are
added to the dictionary. For acoustic speech recognition, phonemes are used to
represent words. They will be discussed in section 4.1.1. For visual speech, not as
many sub-word units can be distinguished as there are phonemes. In order to still be
able to use the phoneme representations of available dictionaries (which are
essential to train a recognizer), a mapping from phonemes to visemes can be applied.
There is however no general agreement to which mapping this should be. In section
4.1.2 we present the results of a study of which viseme classes can be distinguished
by humans, and in section 4.1.3 the final mapping we applied for our automatic lip
reader.

4.1.1 Phoneme set
For the Dutch language, around 40 phonemes are distinguished, one for each
consonant or vowel. Table 4.1 shows the consonants and Table 4.2 shows the vowels
acknowledged by the dictionary of the Polyphone speech corpus [10]. There exist
different types of notation for these phones. IPA and SAMPA are internationally
recognized with the big advantage of SAMPA being that the transcriptions are in
ASCII format. However, HTK doesn’t allow all the symbols of SAMPA to be used. That
is why we had to embrace an alternative notation (found in the “HTK” column of the
table). Through this text, we will try to be consistent and use the SAMPA notation.

It has to be noted that not all language research agrees on the same phoneme set.
Not all phonemes included here are native to the Dutch language for example.
Foreign phonemes are usually only used in “loan” words. Sounds that have their
origin in French (g, Z, E:, 9:, O: in SAMPA notation) have become part of the
language, but are still underrepresented compared to native Dutch sounds. This
makes it hard for a speech recognizer to learn the statistical models (HMM) for those
phonemes reliably.

We used the natural sentences that originated from the Polyphone transcriptions as
prompts for recording New DUTAVSC. It therefore makes sense to use the same
dictionary and phoneme set as the one available.

4 Visual speech recognition

44

Table 4.1: Phoneme set: consonants

IPA SAMPA HTK Example Phonetic transcription

p p p pak p a k

b b b bak b a k

t t t tak t a k

d d d dak d a k

k k k kap k a p

g g gg goal gg oo l

f f f fel f e l

v v v vel v e l

s s s sein s ei n

z z z zijn z ei n

x x x toch t o x

ɣ G g goed g u t

ɦ h h hand h a n t

ʒ Z zj bagage b a g aa zj at

ʃ S sh sjaal sh aa l

m m m met m e t

n n n net n e t

ŋ N nn bang b a nn

l l l land l a n t

R R r rand r a n t

ʋ w w wit w i t

j j j ja j aa

4.1.2 Human viseme classification
Before trying to establish what a good mapping between phonemes and visemes
would be, it might be a good idea to explore first which classes humans can
distinguish. If a trained human lip reader cannot see the difference between certain
spoken phonemes, there is no reason to believe that a computer could. Humans will
probably always be the reference point when it comes to language processing tasks.

Most viseme classifications are deduced from linguistics theory. Here we will discuss
a paper that bases classification on empirical evidence. Van Son et al. [23] describe
an experiment where they try to determine three things that could all be of use to
our project to some extent:

1. A general viseme classification for Dutch vowels and consonants (which could
help us find a viseme set),

2. The relation between this classification and acoustic speech cues (which could
help us decide which features would be valuable), and

3. The effect of lip reading expertise on viseme categorization (which could give
us a reference point for performance at similar tasks).

4.1 Visemes

45

Table 4.2: Phoneme set: vowels

IPA SAMPA HTK Example Phonetic transcription

I I i pit p i t

ɛ E e pet p e t

ɑ A a pat p a t

ɔ O o pot p o t

ʏ Y y put p y t

ə @ at de d at

i i ie vier v ie r

y y yy vuur v yy r

u u u voer v u r

a: a: aa vaar v aa r

e: e: ee veer v ee r

ø: 2: eu deur d eu r

o: o: oo door d oo r

ɛi Ei ei fijn f ei n

œ 9y ui huis h ui s

ʌu Au ou goud x ou t

ɛ: E: eh crème k r eh m

œ: 9: euh freule f r euh l at

ɔ: O: oh roze r oh z at

The experiment was done by presenting soundless video of syllables built from the
phoneme of interest to subjects with different levels of lip reading expertise. The
confusion between the perceived and actually uttered phonemes taken over all
subjects provided the eventual classification, which can be seen in Table 4.3 and
Table 4.4. An explanation will be given below.

Table 4.3: Viseme classification: consonants

1 p, b, m bilabial consonants
2 f, v, w labiodental consonants
3 s, z, S nonlabial front fricatives
4a t, d, n, j, l other nonlabial front consonants
4b k, R, x, N, h other nonlabial back consonants

For consonants, mistakes were almost exclusively made within the three sets of
bilabial consonants (p, b m), labiodental consonants (f, v, w) and nonlabial
consonants (t, d, s, z, n, l, j, k, r, x, N, h). These sets can be distinguished most
evidently by visibility of lip articulation. Within the non-labial set, the separation of
front-articulated consonants (t, d) and back-articulated consonants (R, h) can be
explained by the actual place of articulation, and identification of the fricatives (s, z,
S) can be based on the (limited) degree of opening of the oral cavity. Table 4.3 gives
the final consonant classification, where subsets 4a and 4b are only recognized by
the better phoneme identifiers. The number of consonants that can be distinguished
for Dutch are only 4 compared to 6 to 7 in English.

4 Visual speech recognition

46

Table 4.4: Viseme classification: vowels

1a i, I, e:, E close and half-close front vowels (unrounded)
1b Ei, a:, A half-open and open vowels (unrounded)
2 u, y, 9:, O short back vowels (rounded)
3 2:, o: long back vowels (rounded)
4 Au, 9y closing and rounding diphthongs

Four sets of visually similar vowels can be recognized, namely unrounded vowels (I, i,
e:, E, Ei, a:, A), short rounded vowels (u, y, Y, O), long rounded vowels (2:, o:) and
closing and rounding diphthongs (Au, 9y). Mistakes also occur between sets though.
Lip rounding appears to be the most important feature in distinguishing these sets.
Within the rounded vowels, vowel duration plays an important role, and for the
diphthongs (which end in a rounded position) both lip rounding and lip opening play
a role. In the final vowel classification in table Table 4.4, subsets 1a and 1b were not
observed, but their existence was suggested by another study.

Initially, only 8 classes are distinguished in this paper, but at the final conclusion two
of these are split resulting in 4 visemes for consonants and 4 visemes for vowels.
The better lip readers find one more consonant and one more vowel viseme. If a
classification for which the between-class correlation is weaker is allowed, there can
be 10 classes in total.

Possibilities for features we saw in this paper are lip articulation, place of articulation,
degree of lip opening, lip rounding and vowel duration. Using these features, the
classification seen in this section can be made.

The analysis of the viseme classification abilities of people with different levels of lip
reading ability, shows that pure viseme classification is not influenced by lip reading
expertise, which is in agreement with earlier experiments. The skilled everyday lip
readers (hearing impaired persons who were considered to be experienced and
skilled lip readers) performed slightly better at viseme recognition than the other
groups however. So, if lip reading skills and viseme classification performance are
independent, we should also evaluate the classification abilities of our features and
the recognizer Hidden Markov Model (the “expertise”) separately.

4.1.3 Viseme set
The choice of which viseme set to use for a mapping from phonemes to visemes, is
essential for the final performance of a visual speech recognizer. There cannot be too
few or too many classes, because that will cause the viseme models to be badly
trained due to poorly separated data classes. This is more important than the
decrease in word distinguishability that the use of a small viseme set implies.

In the last section we have seen a human viseme classification. However, this
classification is not sacred, since some of their conclusions were not even established
by the authors. Besides, for our purpose, we are not just looking for a classification,
but a set. Certain phonemes (such as “@”) are missing from the final classification.

By most linguistics 10 to 14 visemes are distinguished. The viseme set used by
Wojdeł (see section 2.2) is the one given in Table 4.5, extended by adding classes
for “h” and “Ei”, which were not included in the original set. This leads to a viseme
set of 16 classes, which can be found in Table 4.6.

4.1 Visemes

47

Table 4.5: Viseme set according to [24]

Viseme Phoneme class Viseme Phoneme class
1 f v w 8 I e:
2 s z 9 E E:
3 S Z 10 A
4 p b m 11 @
5 g k x n N r j 12 i
6 t d 13 O Y y u 2: o: 9 9: O:
7 l 14 a:

Looking at the source of Table 4.5, we are not too confident about the viseme set
established there. The researchers are computer scientists, not linguists, and they do
not say what they based this viseme set on. Furthermore they missed two phonemes.
However, which viseme set to use is never a clear issue. We decided to use the same
set as Wojdel so as to ensure that our obtained could be comparable to his.

Table 4.6: Chosen viseme set: mapping onto 16 classes

 Viseme Phoneme set SAMPA Phoneme set HTK

1 at @ at

2 ie I ie

3 a A a

4 aa a: aa

5 iee I e: i ee

6 eeh E E: e eh

7 oyu O Y y u 2: o: 9 9: O: o y yy u eu oo ui euh oh ou

8 ei Ei ei

9 fvw f v w f v w

10 sz s z s z

11 shzj S Z sh zj

12 pbm p b m p b m

13 gkx G k x n N r j g g k x n nn r j gg

14 td t d t d

15 h h h

16 l l l

Now that we have discussed visemes, it has to be noted that using them may not
always be the logical choice. When the dictionary of the recognition task is small, and
no words are ever expected to be added to the dictionary, one might decide to use
word-level HMMs, which make both phoneme and viseme representations obsolete.
This approach can be quite successful as we saw in section 2.5.4.

It could also be decided to not apply any mapping and train a lip reader on
phonemes. It would be interesting to see the results of this, although we would not
expect these to be very good. To compare viseme sets for lip reading applications,
the surest way is to train a new recognizer for every candidate, and compare the
results of these. Looking at the many possibilities this would however be very time
consuming. A faster way might be to base the choice of which viseme set to use on

4 Visual speech recognition

48

how well they can be classified using a chosen feature set. In section 7.3 we tried to
do this, although not for the purpose of choosing the viseme set.

4.2 Performance boundaries

In this section we show the differences between acoustic and visual speech
recognition and how they theoretically influence the performance. In section 4.2.1
we discuss the performance of visual features, in section 4.2.2, we discuss the
performance of a recognizer based on HMMs and visemes.

4.2.1 Comparison between acoustic and visual speech
The main difference between acoustic and visual speech recognition is the type of
input. As should be evident, the use of video imposes extra requirements on a visual
speech recognizer that an acoustic speech recognizer does not have to deal with.

First of all, the information over the visual channel is not that rich compared to audio.
When they speak, humans use sound as the primary means of communication, the
movement of the lips can be seen as just a byproduct. Furthermore, a lot of it
happens inside of the mouth and throat, and is not directly visible. Human lip readers
can compensate for this because they actually understand language and know which
context applies, but an automatic lip reader depends primarily on the features.

For audio, features can be extracted by splitting the sound into time frames, applying
a Fourier transform, and using the Mel Frequency Cepstral Coefficients (MFCC). For
video, first the face has to be located in the image, then features important to lip
reading have to be extracted. However, there are a lot of different ways to
accomplish this, some of which were discussed in section 1.1. It is not agreed upon
what the best method is. We do know that any such approach should:

• Capture the most essential speech characteristics,
• Be fast, because video processing can take a lot of time,
• Preferably be person-independent.

4.2.2 Implications of using visemes
If a many-to-one mapping from phonemes to visemes is applied, it will be clear that
this has consequences for recognition.

Because of the one-to-many mapping, we see that some dictionary entries end up
with the same viseme (mostly consonants) repeated within a word (e.g. “romp”,
“hangkast”). The question is whether it is alright for the representations to have
double entries. They may be perceived as one, in which case, one of these double
entries should be removed. How they are perceived could also depend on their
syllabic structure. In Dutch, a syllable has the form C*VC*, where “C” denotes a
consonant, “V” denotes a vowel, and “*” means there can be any number of them,
including zero. It might be worthwhile to find out whether these double viseme
entries are combined in case they appear within the same “C*” part of a syllable.

Dictionary analysis performed by Wojdeł on the Polyphone dictionary [3] shows that
a mapping from phonemes to visemes can lead up to 10% less word separability.
However, the viseme set used to compute this was not specified.

4.3 Model

49

One last thing to consider is the propagation of misclassifications. If visemes are
misclassified on the lowest level of the recognizer, the available word list N should be
searched for the most probably candidate that matches the recognized
phoneme/viseme sequence best. Only after candidate matching we obtain the
resulting word that best matches the observation. When there are multiple
candidates in the dictionary that share the same representation, correcting the
misclassifications in this way can end up at some other word, yielding a false positive.
Since this affects the number of insertion errors, this has a negative effect on the
word recognition rate.

Figure 4.1: False positives as a function of misclassification of basic recognition entities [3]. R-1 is the

full phonetic representation, R-2 is the viseme representation with syllable boundaries, vowel duration

and stress point, R-3 is the viseme representation with syllable boundaries and vowel duration, R-4 is

the viseme-only representation. For the Polyphone corpus, the percentage of words that are

distinguishable assuming the most common option will be chosen is 99%, 93%, 92% and 91% for

each representation respectively.

As shown by Figure 4.1 , even with a viseme recognition rate as high as 90%,
already almost 35% of the words will be recognized incorrectly. For the phoneme
representation where 99% of the words have a unique representation (note that for
written language it would be 100%, the 1% error for phonemes represents the
portion of words that sound the same but are spelled differently), the number of
false positives would remain under 3%. And in a real-life system, the low-level
misclassification rates will be much higher than 90%. That said, it might be
overoptimistic to expect the same kind of performance from a viseme-based speech
recognizer as from a phoneme-based recognizer.

4.3 Model

According to [3], building a typical automatic lip reader involves 4 steps. After
discussing the remaining theoretical issues of visual speech recognition, the rest of
the chapters will each explain one of the following steps:

4 Visual speech recognition

50

1 Data aqcuisition (chapter 5)
2 Lip tracking (chapter 6)
3 Feature extraction (chapter 7)
4 Recognition (chapter 8)

Recognition
Feature

extraction
Lip

tracking
Data

acquisition
Recognition

Feature
extraction

Lip
tracking

Data
acquisition

Figure 4.2: Visual speech recognition overview

These steps are also illustrated in Figure 4.2, and this picture will return in each of
the chapters 5 to 8, to illustrate what the reader can expect to read about in those
chapters. The pictures represent our design choices: a high-speed camera for
recording, Active Appearance Models for lip tracking, point-based distances for
feature extraction and Hidden Markov Models for the recognition framework. At the
same time it models how a visual speech recognizer performs recognition.

The conclusion drawn from our research on existing speech corpora was that to
really handle the task properly, a new data corpus was required. The chosen method
for feature extraction is Active Appearance Models. This will result in a set of
landmark points, which may not be directly usable as features for training. For
training the recognizer, we will apply Hidden Markov Models based on visual
phonemes (visemes).

As a consequence of using a phoneme to viseme mapping all dictionary entries have
to be rewritten. For our lip reader we use the set of 16 visemes as seen in Table 4.6.
Each viseme is modeled with Gaussian mixtures continuous density left to right
Hidden Markov Models with five states, of which three are emitting. The same model
is used successfully to model phonemes.

51

5 Data Acquisition

Training a speech recognizer requires large quantities of speech data. Data
acquisition has been a big part of this project, because we the only training data we
had at our disposal initially was the relatively small DUTAVSC speech corpus, and to
train a lip reader successfully from scratch requires a large corpus. Furthermore we
wanted to honor the conclusions from the research discussed in section 1.1.

This chapter starts by explaining the things that were considered before starting the
recording sessions. First decisions had to be made about the speech that was going
to be recorded (section 5.1), then we needed to think about the recording setup
(section 5.2). After that we started recording many people, of which the results are
given in section 5.3. The resulting data corpus was named New DUTAVSC. In section
5.4, we show the result of multiple recording sessions we had with a single person
(Single Person New DUTAVSC) An analysis of the recorded data corpus can be found
in section 5.5, and the result is discussed in section 5.6.

Recognition
Feature

extraction
Lip

tracking
Data

acquisition
Recognition

Feature
extraction

Lip
tracking

Data
acquisition

Figure 5.1: Visual speech recognition overview: data acquisition

5.1 Language coverage

The recording of New DUTAVSC had to be carefully prepared. Because of the scale of
the new corpus we needed to make sure that all material would be gathered in a
correct way. The new corpus would have to follow the quality requirements we had
devised after the research done on other speech corpora; a high frame rate, capture
of both frontal and profile view of the face and a rich utterance pool fit for continuous
speech recognition experiments. Furthermore, we decided that it would be useful if
people would be recorded at both normal and fast speech rate, and whispering
(instead of low speech rate, as it appears to be more natural).

5.1.1 Utterance types
Here we will discuss the different types of utterances that were included in recording
sessions and why. A large portion of it is based on the original DUTAVSC corpus.
Digit sequences were included because it is a relatively easy task for a speech
recognizer to accomplish and useful to see how well it performs at this basic task.

Spelling random words is different from reading a letter sequence, because firstly the
length is unknown, making the task more difficult, and secondly the word itself is an
existing one, which could provide some context information. Of course in practice
mostly unfamiliar words like strange names would be spelled, in which case the
context information would not be of much use.

5 Data acquisition

52

Lists of random words were included to provide phoneme or viseme transitions that
are rarely seen in actual sentences.

Bank application sentences were included to make the recognizer perform
recognition tasks a little more difficult than digit sequences but still bound by a
grammar. However, the original DUTAVSC grammar as can be seen in Figure 2.4
allows for grammatical errors confusing the speaker. Sentences have been corrected
before they were presented to the speakers, but for future recordings an improved
version of this grammar should be used to generate recording prompts. One such
grammar is given in Figure 5.2. However, for recognition purposes the grammar
should cover all recorded material, even if it does contain errors.

$number10 = twee | drie | vier | vijf | zes | zeven | acht | negen;
$number20 = tien | elf | twaalf | dertien | veertie n | vijftien | zestien | zeventien |
achttien | negentien;
$number100 = [(1 | $number10) en] (twintig | dertig | veertig | vijftig | zestig |
zeventig | tachtig | negentig);
$number =
 [$number10] honderd [en] ($number100 | $number20 | $number10 | 1) |
 [$number10] honderd |
 $number100 |
 $number20 |
 $number10 ;
$digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9;
$amount = $number (euro | euro's) | een euro | 1 eu ro;
$greeting = goedemorgen | goedemiddag | goedenavond ;
$please = alstublieft | alsjeblieft;
$want = wil | wilde | wou;
$type = [prive] [bank] rekening;
$account =
 [mijn] $type [nummer] $digit $digit $digit $digit $digit $digit $digit $digit |
 (mijn | m'n | een) $type;
$action =
 $amount van $account [naar $account] overmaken |
 $amount op $account storten |
 $amount storten op $account |
 $amount opnemen van $account |
 $amount van $account opnemen|
 een [nieuwe] $type openen |
 $account sluiten;
([$greeting] ik $want [graag] $action [$please] |
 [$greeting] ik ($want | zou) $action graag |
 [$greeting] ik zou graag $action [$please])

Figure 5.2: Adaptation of the grammar given in Figure 2.4 that will only allow for grammatically correct

telebanking application sentences. HTK expects EBNF and requires the dollar sign $ to indicate non-final

symbols

Generating prompts from a grammar formatted like this can be done using the
following HTK commands:

> HParse bank_grammar.txt bank_wdnet.slf
> HSGen -l -n 50 bank_wdnet.slf dict.txt (> prompts .txt)

Where “bank_grammar.txt” contains the grammar, “bank_wdnet.slf” is a file that will
contain the word network in standard lattice format, “50” is the number of prompts
that will be generated and “dict.txt” contains a dictionary with a list of at least all the
words that occur in the grammar. Viseme transcriptions are not yet required. “>

5.1 Language coverage

53

prompts.txt” can optionally be added to save the generated prompts to a file
“prompts.txt”.

Random sentences taken from Polyphone are especially useful for continuous speech
recognition experiments. Because of the rich variety of sentence structures it is not
really possible to constraint them by a grammar, unless it is by N-grams. N-grams
are usually trained on large (textual) data corpora to get an accurate language
model. It mainly counts how many times a given word is preceded by another word
or combination of words. The resulting probabilities P (n| n-1, …, n-N) provide some
context for a speech recognizer. Use of the Viterbi algorithm for alignment is
dependent on the dynamic programming invariant, making it bigrams the only model
we can use.

Common expressions like greetings and thanks were included because they would be
useful for (dialogue) applications that require social interaction. Again it is hard to
find a fitting grammar for this type of data, but many common expressions could
almost be considered “words” (apart from the word combinations that already have
become words, like “goedemiddag”).

Finally, we included some open questions in hopes of recording some spontaneous
speech. Most of them were formulated as questionnaire questions. The downside is
that the answers had to be labeled by hand. Another practical disadcantage is that in
our case the speakers had time to think before answering the question because they
were recording themselves, thus eliminating part of their spontaneous reaction. To
prevent one-word answers like just “ja” or “nee” next time, questions should be
asked in such a way that people are provoked to give medium-long answers.

5.1.2 Speech types
We asked speakers to perform normal speech, fast speech and whispering.
Recognizing speech spoken at the usual speed should not be a big problem for an
average speech recognizer. Fast speech might be. Words are not articulated as
clearly; subsequent words may be seemingly merged together, entire visemes or
phonemes may be omitted. For automatic lip reading purposes, all previous video
material was recorded at an insufficient rate, so recognizing fast speech was not
even possible before.

Something sign language interpreters sometimes apply to facilitate lip reading, is lip
speaking. This is done by emphasizing useful clues during speech. Obviously, normal
people are not skilled at that, so to obtain a similar effect, we resorted to whispering.
Whispering is something a lip reader might actually perform better at than an audio
based recognizer. When people whisper, all sound they produce is unvoiced. Males
and females even sound the same when they whisper. On the other hand, the mouth
movements they make tend to be very articulated to compensate for the lack of
sound.

Some side notes have to be made for recording this type of speech, though. First of
all, people do not whisper a lot in daily life. Most subjects had to be reminded how to
do it by the operator. Without instructions, some people were just speaking softly
into the microphone with minimal mouth articulation, which wasn’t what we had
hoped for.

5 Data acquisition

54

5.2 Recording setup

To record a large data corpus required the recording setup to be carefully thought
through, because it was to remain in use over a longer period of time. For this
corpus, we wanted the recordings to be dual-view and taken at high speed. First, we
tried a setup with only one camera and a mirror placed at 45 degrees [25], but this
proved troublesome because of distortions in the mirror image (it would appear
further away than the original for instance) and it disallowed for high-resolution
recordings. That is why we eventually went for a setup with two cameras, one in
front and one at the side of the speaker. In the next sections we will give a
description of that setup.

Figure 5.3: Photograph of the recording setup with recording subject and operator

5.2.1 Environment
The environmental conditions of the recordings determine the illumination and
background of the scene. We used (blue) monochrome background panels so that
speakers could be given custom backgrounds using “chroma keying” also used for
weather forecasts on television.

To create the right environmental conditions we needed to have complete control
over the room’s lighting and noise level. Although the MMI department has a sound
studio, the lighting conditions there could not be regulated making it infeasible to set
up our lab there. The room we used to record was not isolated and we had no control
over the light coming front the window and air-conditioning. That is why we first had
to darken the room by covering the windows with packing foam panels and garbage
bags, and introduce our own controllable light sources. We put 2 x 2 500 W

5.2 Recording setup

55

construction site lamps on stands and placed them at both sites of the speaker such
that the scene would have uniform lighting (see Figure 5.5). Furthermore, the air-
conditioning slits under the window were blocked with packing foam.

5.2.2 Equipment
We used two high-speed cameras and two directional microphones. We decided to go
for 100 Hz video recording at half PAL resolution. The audio signal was sampled at 48
kHz on 16 bits. Just a computer with great RAM capacity was not acceptable for our
experiments due to lack of speed. Instead the computer was one with a stripe driver
setup (4 hard drives packed together in a RAID 0 configuration) so the
uncompressed raw data of multiple recordings could be temporarily stored on it.

Figure 5.4: AVT Pike F-032C high-speed camera

We used two Pike F-032C cameras built by AVT (see Figure 5.4). The cameras are
capable of recording at 200 Hz in black and white, 139 Hz when using the chroma
sub-sampling ratio 4:1:1 and 105 Hz when using the chroma sub-sampling ratio
4:2:2 while capturing at the maximum resolution of 640 x 480. By setting a smaller
Region Of Interest (ROI) the frame rate can be increased. In order to increase the
Field Of View (FOV), we recorded in full VGA resolution at 100 Hz. We used the fire
wire card bus’ clock for synchronization into a 125 µs range.

For recording the audio signal we used NT2-A Studio Condensators. We recorded a
stereo signal using a sample rate of 48 kHz and a sample size of 16 bits. The data
was stored in PCM audio format. After the equipment was ordered, it took some time
to arrive. Accomplishing the synchronization of the two cameras and linking it to the
recording software also took time.

5.2.3 Laboratory setup
Two cameras were placed at eye height (120 cm from the floor) at a distance of 162
cm from the subject, one directly in front and one directly from the side. The subject
was seated in a chair that couldn’t turn or be adjusted in height, in a tradeoff
between comfort and keeping subjects from moving. In cases where subjects were
too short to be in view of the cameras (mostly females), we improvised by having
them sit on packs of paper since adjusting the camera for each new subject would be
time consuming and prone to errors.

We aimed to capture the lower half of the face, because we were recording at a high
resolution and to lip reading the mouth and chin area is more relevant than the eyes.
We also wanted to guarantee some anonymity of the speaker this way, but in
practice the busy schedule didn’t allow for camera adjustments between recording
sessions, and there was a risk that the nostrils would fall out of the frame, which we
need for computing later on. That is why we ended up capturing roughly the lower
half of the face; sometimes the eyes were in the picture as well.

5 Data acquisition

56

Figure 5.5: Map of the recording setup: 1) frontal camera (height 1.20 m); 2) side camera (height

1.20 m) and environment microphone (height 1.50 m); 3) recording subject and speech microphone

(height 80 cm); 4) monitor showing prompts (36 x 26 cm); 5) computer running operating and

recording software and microphone controller; 6) operator checking speaker performance on second

monitor.

A monitor for the subject to read off was placed in front of the subject out of the line
of sight of the cameras. One microphone was placed close to the subject; the other
was placed some distance away to record the background noise. Figure 5.5 shows
the precise setup of the laboratory and Figure 5.3 shows a photograph.

5.2.4 Operator
The operator was sitting behind the background panel of the side view camera, and
was looking at the same prompts as the subject on a second monitor, allowing them
to have the subject retake items in case of error or disturbing background noise
(usually from outside the room). The operator also explained the courses of action to
the subject and had them sign a consent document in advance. In appendices A and
B respectively we present the written instructions and consent document as
presented to the subjects.

5.2.5 Operating software
The tool we used to prompt the subjects for utterances was also used to control the
video and audio devises. The subject was given a wireless mouse to operate the
software with. The left mouse button would start and stop a recording; the right
mouse button would take them to the next item. The screen would display the item
to be uttered together with some instructions about the speaking style, e.g. normal
speech rate, fast speech rate, or whispering. To make reading easier on the speaker,
prompts were presented in black sans-serif letters on a white background (see Figure
5.6). Each recording session was preceded by a short trial to familiarize the subject with
the software controls.

5

4

1

3
2

6

5.3 Recording of New DUTAVSC

57

Figure 5.6: Screenshot of the prompter/recording software

Using a high-speed camera increases the storage needs for the recordings. It is
almost impossible to record everything and cut the clips afterwards at the required
lengths, mainly because the (large amount of) video data is temporarily captured in
the RAM of the computer and needs to be written to the hard disk at set times.
Giving the speaker control over the recordings allowed all video and audio for every
utterance to be neatly synchronized and saved in a new folder, with the labels
already known because they were used to prompt the speaker (although the speaker
could have made mistakes). The tool was also used to keep track of the user’s data,
recording takes and recording sessions.

While it was convenient to us that the subject was taking their own recordings, we
also had to carefully instruct them not to start a recording too late or end it too early,
which people would inevitably start to do especially when they were asked for fast
speech rate. We also instructed them to close their mouths between utterances, but
of course this still wasn’t something we had complete control over.

5.3 Recording of New DUTAVSC

In this section we will discuss the results of the recording of the New DUTAVSC
corpus, using the setup previously discussed. In section 5.3.1, we will describe the
planning of a recording session, of which we gathered one or two per recording
subject. The variety of people that participated will be illustrated in section 5.3.2.

5 Data acquisition

58

5.3.1 Recording session composition
When compiling an entirely new data corpus, there is a lot of freedom to decide what
exactly to record. However, good language coverage is required. We decided to
present the user with random sentences drawn from a pool and random digit and
letter sequences. We wanted a recording session to last about 20 minutes, during
which the items given in Table 5.1 needed to be recorded.

Table 5.1: Original build-up of a recording session for New DUTAVSC

Number Speech type Utterance type

3 normal Random digit sequences of length 8

3 fast rate "

3 whispering "

3 normal Spelling a random word of variable length

3 whispering "

3 normal Lists of random words of length 8

3 fast rate "

3 whispering "

5 normal Fixed grammar bank application sentences

5 fast rate "

5 whispering "

5 normal Random sentences taken from Polyphone

5 fast rate "

5 whispering "

5 normal Every day use common expressions

5 normal Short answers to random open questions

For this data corpus, we recorded a large variety of people. The original DUTAVSC
corpus consisted of only 8 people. For this our new data corpus, we recruited as
many people as we could find (though most were from inside the university). We set
a goal of around 50 people, but in the end, we recorded a total of 70 different people,
for some of them multiple sessions were recorded.

Seven of the subjects recorded multiple sessions. This was very welcome because
one recording session was only good for about 10 minutes of material. While the
data is rich because of the frame rate, the number of utterances per session was
only 64. We recorded 79 sessions this way.

This results in a total of 64 utterances per recording session. One session lead to
approximately 10 minutes of recorded material. Most categories also appeared in the
original DUTAVSC data corpus. With all of this in mind, we made recordings of 70
people. A total of 79 sessions were recorded

5.3.2 Demography
We asked all participants of recording sessions for some basic information on gender,
age, level of education, occupation, whether they were native Dutch speakers, and
which province they originated from to find out about possible dialects (see appendix
B).

5.4 Recording of Single Person New DUTAVSC

59

A data corpus should consist of both male and female speech material, ideally with a
ratio of 50%-50%. For some reason, the faculty of EEMCS at this university is low on
female students and staff. To approach the ideal ratio, we had to recruit at the
administration department, where, funny enough, most employees are female.

Our 70 recording subjects were all adults aged 19 to 64. Most subjects were students
in the age range from 19 to 28, mostly male, originating from around the country.
The next group was that of staff members in the age range from 25 to 50, most of
them female. Their level of education varies, and most of them are originally from
the province of Zuid-Holland (where Delft is also located). The professors and PhD
students we recorded were from all over the country also, only one of them female,
and obviously all of them with a Master’s degree.

Of the 70 people recorded, 2 were not native Dutch speakers. Also, because the
question about the province of origin could be interpreted as “where do you currently
live”, we fear our information is not always complete. In total there were 49 males
and 21 females recorded. 41 students, 8 PhD students, 6 professors and 15 staff
members. This is illustrated in Figure 5.7.

Figure 5.7: Age distribution and gender of all 70 recording subjects

5.4 Recording of Single Person New DUTAVSC

In this section we will give the results of the recording of Single Person New
DUTAVSC, which was decided upon when our feature set turned out not to be
person-independent.

We asked one person (female, 52 years of age, secretary) to help us gather more
data so we could train a speaker dependent recognizer. This person recorded 1
session of 64, 5 sessions of 125 utterances and 5 sessions of 155 utterances. For

5 Data acquisition

60

convenience, we will denote this as a separate one-person data corpus, and call it
Single Person New DUTAVSC for the remainder of this thesis.

64 utterances for one person is not a lot of material to train on. We decided to record
10 more sessions composed a little differently for one willing subject. We came up
with the session planning given in Table 5.2.

Table 5.2: Original build-up of a recording session for Single Person New DUTAVSC

Number Speech type Utterance type

45 normal Sentences taken from Polyphone

10 " Random digit strings of length 8

10 " Random letter strings of length 8

30 " Isolated digits

30 " Isolated letters

This schedule accounted for a total of 125 utterances per session. For the second day
of recordings and last 5 sessions we changed the numbers around to match the
differences in dictionary size (10 for digits, 26 for letters), for a total of 155
utterances per session, as illustrated in table Table 5.3.

Table 5.3: Final build-up of a recording session for Single Person New DUTAVSC

Number Speech type Utterance type

45 normal Sentences taken from Polyphone

10 " Random digit strings of length 8

30 " Random letter strings of length 8

20 " Isolated digits

50 " Isolated letters

The idea behind all of this was that to train for simple tasks like digit and letter
recognition we wanted to make sure we gathered enough data. We only wanted to
record normal speech rate this time, because for the previous recordings, roughly
2/3 of the data was at either fast speech rate or whispered, so deciding not to use
them for training would not be an option, while for some applications this might be
the logical choice. For all of this goes “less is more”, less categories for the same
data means more data per category. Bank application sentences, word lists, common
expressions and open questions were left out due to their not so directly obvious use.

A problem we had seen before concerning the randomization of the prompts was that
it happened quite a lot that the same prompt would come up twice in the same
session, even twice in a row. This time, we wanted every single Polyphone sentence
to be recorded, so we just iterated through them all alphabetically.

The motivation to include isolated digits and letters now, is that the model would not
have to deal so much with co-articulation effects this way, making it easier to train.
We instructed the subject more explicitly to start at a neutral (closed) mouth position
and to take time before and after speaking, leading to nicer recordings from a lip
reading perspective.

5.5 Processing the recordings

61

In the previous spelling assignments, for words that had the letter “IJ” in them it had
been split up into “I” and “J”, causing IJ as letter to never appear. This time we
included IJ as letter instead of Y (which is “foreign” in Dutch anyway, people tend to
call it either “Griekse IJ” or “Y-grèc”, which is French).

Because of the many short recordings, a recording session took just a little longer
than originally. Our subject insisted that doing five sessions in a row with just one
short break was perfectly doable.

5.5 Processing the recordings

Before using data to train a speech recognizer, it is important to validate it. While
Hidden Markov Model based speech recognition can deal with a certain amount of
noise, it still has to be possible to extract something useful from it. Errors could have
been introduced in several ways we all had to check.

Firstly, the speaker could have made mistakes. Both speaking errors and errors
handling the recording controls (mouse buttons) occur frequently. This we checked
by auditory validation described in the next section. Secondly, the hardware was
responsible for quite a lot of mistakes as well. However, this is probably unavoidable
while recording at this frame rate. Lastly we performed some visual validation on the
data.

5.5.1 Auditory validation
The first thing we checked about the recordings was the audio, because it was the
easiest and quickest to access. Often, the operator had already asked the speaker to
retake something during the recording when a mistake was made, but there were
always things slipping through. The main purpose was to make sure the
transcriptions for the recordings were correct, as they did not always match the
prompts.

We checked for the following anomalies:
• Words skipped by the speaker (deletion) ,
• Words inserted by the speaker (insertion),
• Words distorted by the speaker,
• Words missing due to premature stop of the recording,
• Words incomplete due to premature stop of the recording,
• Recordings for which the speech style is different from the instruction,
• Background noise.

Insertion and deletion mainly occurred because the speakers were not always
familiar with - or used to - the expressions appearing on the prompter. Sometimes
the prompts contained grammatical or spelling mistakes. Word distortions were
mainly expected for recordings at fast speech rate, but also occurred naturally
depending on the speaker. Bad timing sometimes caused the speaker to cut off
words at the beginning or ending of a sentence.

Also, even though the speaker could retake something, the original take was not
overwritten and still needed to be checked. Sometimes, noise was introduced by the
environment. For the open questions, the answers had to be transcribed.

5 Data acquisition

62

All the audio clips were lined up in a play list and observed. The results of the
auditory validation were files for every recording session organized as seen in Table
5.4.

Table 5.4: Example of a verification report for a recording session

Utt # Take # Quality Environment Actual Label

1 1 1 g

2 2 1 g

3 3 1 g

4 4 1 g

5 5 1 g

6 6 1 g

7 7 1 g

8 8 1 g

9 9 1 g

10 10 1 g operator <n> e...<o> <e> <m> <e> <n>

11 10 2 g <n> <nul>

12 10 3 g <n> <nul> <e>

13 10 4 g

14 11 1 g

15 12 1 g

16 13 1 g incomplete

17 13 2 g

18 14 1 g

19 15 1 g

20 16 1 g ja, één

5.5.2 Visual validation
Visual errors like the subject moving out of the frame were checked in the point
tracking stage. At the time of the recordings, the operator could only see the first
and last frame of a recording, giving some indication about the posture of the
speaker, but not all the time. Many speakers tended to bend forward a bit as they
sat down for some duration of time, forcing the operator to correct them. We do not
exactly know for how many recordings this is the case, but sometimes the camera or
chair was not properly adjusted to the speaker’s height, causing the chin to go out of
the picture while talking. Figure 5.8 shows a dual view example frame of New
DUTAVSC.

5.5.3 Hardware issues
Some important errors were caused by the hardware. The audio signal was okay
most of the time, although a little unclear during whispering. The recording of the
video put far more strain on the systems, however, and this led to errors.

5.6 Conclusion

63

Figure 5.8: Sample front and profile view frames of New DUTAVSC

A lot of the data proved to be affected by a lagging hard disk and/or camera.
Apparently, 100 Hz is hard to deal with for the devices we used. And of course there
were two cameras recording at 100 Hz each at the same time. The result is data with
temporal gaps in them: if frames were missing, a whole series of them would be
missing.

The number of affected recordings is large, we estimate that one quarter of the
complete data set is affected. However, for a large part the number of skipped
frames is not that high. In spite of these errors we decided to use recordings for
which the number of skipped frames was under 10 (0.10 seconds). Because
recordings were made at the relatively high frame rate of 100 Hz, missing some
frames in practical applications is not unthinkable, so we decided that under 10
missing frames with a recording of perhaps 2 seconds (200 frames) is acceptable.
We estimate that about one third of all recordings with missing frames and thus one
ninth of all data could not be used. For the single person recordings more accurate
statistics are given in Table 5.5. 27% of all recordings had at least some missing
frames, but in about 40% of the cases the number of missing frames is under 10.
Session 0 (part of the original New DUTAVSC) was a very bad recording session in
this sense.

5.6 Conclusion

After the recording of this data corpus was complete, we were able to concentrate on
building the automatic lip reader. This would take the new speech corpus to the test.
With respect to this data corpus, the main question we ended up with was, whether
we had gathered enough data to train an automatic lip reader from scratch. And if so,
whether this lip reader would be either person-dependent, or person-independent,
like we had hoped.

Table 2.1 can now be extended with the information of our new corpora, given in
Table 5.6.

5 Data acquisition

64

Table 5.5: Percentage of missing frames, and percentage of that for which the number of missing frames

is under 10 for frontal and profile frames. Single Person New DUTAVSC sessions were used.

Session missing frames < 10 (front) < 10 (side)

0 38.1% 8.3% 12.5%

1 12.0% 33.3% 33.3%

2 18.4% 52.2% 47.8%

3 20.8% 26.9% 23.1%

4 22.4% 46.4% 46.4%

5 31.2% 53.8% 56.4%

6 37.4% 43.1% 43.1%

7 29.7% 45.7% 45.7%

8 34.2% 52.8% 52.8%

9 29.0% 46.7% 44.4%

10 25.8% 30.0% 30.0%

Mean 27.1% 39.9% 39.6%

Table 5.6: Extension of Table 2.1 showing the data for New DUTAVSC

Corpus Language Sessions Number of
speakers

Audio Quality Video Quality Language
Quality

Stated purpose

New
DUTAVSC

Dutch 79 70: 49 male,
21 female

48 kHz on 16
bits

384x288, 8bit,
100 fps, lower half

of the face

Connected digits,
spelling,

application and
natural

sentences,
normal, fast and

whispered,
common

expressions and
open questions

Multi-purpose:
word-level,

sentence-level
and continuous

speech
recognition,
restricted or

unrestricted by
grammar

Single-
person
New

DITAVSC

Dutch 11 1 (female) 48 kHz on 16
bits

384x288, 8bit,
100 fps, lower half

of the face

Single and
connected digits

and letters,
natural sentences

Small vocabulary
isolated/connected
words recognition

6.4 Training the lip model

65

6 Lip tracking

The first step we took to accomplish data parameterization on the recorded video
material was that of finding the face and mouth. While there also exist other
approaches, as seen in section 1.1, ours was to track certain landmark points. For
this we used Active Appearance Models (AAM), which will first be discussed in section
6.1, and the AAM Annotation Lab, discussed in section 6.2.

The application to lip reading starts by defining the lip model (section 6.3), and
training it (section 6.4). In section 6.5 we finally evaluate the results of point
tracking using Active Appearance Models. The resulting face points will be used for
feature extraction in the next chapter.

Recognition
Feature

extraction
Lip

tracking
Data

acquisition
Recognition

Feature
extraction

Lip
tracking

Data
acquisition

Figure 6.1: Visual speech recognition overview: lip tracking

6.1 Active Appearance Models

Active Appearance Models (AAM, introduced in section 2.5.5) are a convenient tool
for certain computer vision tasks. Using a model of the shape and appearance of an
object, similar objects can be found in images. How the model is allowed to
transform depends on the set of annotated images it was trained on. Active
Appearance Models were first introduced in a paper by Cootes et al. [26].

Approach
An Active Appearance Model combines statistical shape and grey-level appearances
of certain objects to be identified in an image. The application of Active Appearance
Models comprises of two steps. The first step involves an offline training phase that
will estimate the model parameters. The second step involves searching new images
for a fit of the model based on an initial estimate.

To train an AAM, the training supervisor first needs to present a training set labeled
with landmark points that appear in all images. These are usually generated
manually and takes a lot of time. A “bootstrap” approach to training can be to use
the current model to help label new images, which are then added to the model.
Incrementally building a model in this way is repeated until the AAM finds the points
of new examples sufficiently accurately every time, which means it requires no more
training.

AAM search
After an AAM has been trained for an object, it can be used to search new images for
that object. The search starts from the mean model and iteratively modifies the

6 Lip tracking

66

model parameters inside the learning range while minimizing the difference in
appearance between the real image and the image synthesized based on the new
model. The required number of parameters is computed in both cases by using
Principal Component Analysis (PCA). In order to match to an image, we measure the
current residuals and use the model to predict changes to the current parameters,
resulting in a better fit. A good overall match is obtained in a few iterations, even
from poor starting estimates.

The use of a face/mouth detection/tracking algorithm (Viola/Jones face detection) as
an initial guess was found to greatly accelerate the search for the shape parameters
during AAM based processing. This enhancement enabled a real-time implementation
of the algorithm. The face is located in an Active Shape Model search, and the shape
parameters are extracted. The face patch is then deformed to the average shape,
and the grey-level parameters are extracted. The shape and grey-level parameters
are used together for classification. Active Appearance Models combine both shape
and texture parameters into one compact model.

Given a new image, the aim is to identify the object in a way that is invariant to
confounding factors such as lighting, pose and expression. This is done using the
Mahalanobis distance measure, which enhances the effect of inter-class variation,
whilst suppressing the effect of between-class variation.

6.2 AAM Annotation Lab

The AAM Annotation Lab is the software tool we used to annotate video and perform
point extraction, all using Active Appearance Models. It was developed by Alin ChiŃu,
who in turn used an external implementation by Cootes at al. [20]. A screenshot is
displayed in Figure 6.2.

6.2.1 Functional Description
The software can be used both to train AAMs and apply AAM search. Frames can be
annotated by hand (mark certain points on the face) and those annotated images
used as training examples when training an Active Appearance Model. A saved model
can then be loaded into the program and used to find the face points for new images.

Training a new model is done by loading a new image and adding model points
organized in paths. In the case that the object is a face, different paths could be
added around the contours of the face, eyes, nose and mouth for example. An
addition by Alin ChiŃu is the ability to put constraints on the placement of these
points, as to ensure a more uniform annotation. Edges between points are forced to
be parallel or perpendicular to each other. The AAM algorithm itself is not affected by
these constraints. There are more options available to make annotating easier, for
example the mean shape or previous annotation can be copied to the next image,
and points that were found by a (partially) trained model can be moved around
manually.

Training an AAM with this program is done by providing a folder with annotated
training examples. The training time is dependent on the number of training samples
provided. The model parameters are trained until at least 95% of the variance can be
explained. The training time and size of the resulting model (stored in binary format)
depend on the quantity and diversity of the training set.

6.2 AAM Annotation Lab

67

Using this tool for point tracking is done by first loading a suitable model and image
sequence, and perform a search. The AAM algorithm comes into play when points are
tracked. For the first frame an initial guess is made by inserting the mean shape.
Providing the initial guess can also be done manually by providing the annotation.
Although this is not the procedure we want to follow - we want point extraction to be
fully automatic - it does guarantee reliable results.

In the current version of the program, all frames for an (uninterrupted) recording are
opened simultaneously before tracking is performed. During the search, the frames
pop-up after each like a video sequence, allowing immediate visual validation. Most
recordings take just a few seconds to be processed entirely.

Figure 6.2: Screenshot of AAM Annotation Lab, with detected model points indicated on the loaded

frame

6.2.2 File format
After an AAM is trained, it is stored in a binary format with the extension AMF.

The image annotations returned by the software are poured in a set of point
coordinates in ASCII format. First the number of points is specified, then the relative
coordinates of those points. Normalization of x and y coordinates is done according
to the image resolution (384 x 288 in our case). The relations between the points are
also given, showing which points form a path together. It also gives the name of the

6 Lip tracking

68

image counterpart. Both annotating by hand and applying an AAM result in such a
file. An example .ASF file is given in Figure 6.3.

AAM Shape File - written: Monday December 15 - 2008 [15:26]

number of model points

25

model points

format: <path#> <type> <x rel.> <y rel.> <point#> <connects from> <connects to> <user1> <user2> <use r3>

0 1 0.42607439 0.45010457 0 7 1 0.00 0.00 0.0 0
0 1 0.49949555 0.38849644 1 0 2 0.00 0.00 0.0 0
0 1 0.54768693 0.39242752 2 1 3 0.00 0.00 0.0 0
0 1 0.59027567 0.37919278 3 2 4 0.00 0.00 0.0 0
0 1 0.66781477 0.42058484 4 3 5 0.00 0.00 0.0 0
0 1 0.58141502 0.48384775 5 4 6 0.00 0.00 0.0 0
0 1 0.54841500 0.48982627 6 5 7 0.00 0.00 0.0 0
0 1 0.48850343 0.48843980 7 6 0 0.00 0.00 0.0 0
1 1 0.45399342 0.44162939 8 15 9 0.00 0.00 0. 00
1 1 0.49576520 0.39856323 9 8 10 0.00 0.00 0. 00
1 1 0.54763896 0.40857251 10 9 11 0.00 0.00 0 .00
1 1 0.59916921 0.39788249 11 10 12 0.00 0.00 0.00
1 1 0.63395605 0.41811975 12 11 13 0.00 0.00 0.00
1 1 0.59354006 0.42725822 13 12 14 0.00 0.00 0.00
1 1 0.54982364 0.43767984 14 13 15 0.00 0.00 0.00
1 1 0.49112842 0.43150759 15 14 8 0.00 0.00 0 .00
2 5 0.46685836 0.69888635 16 18 17 0.00 0.00 0.00
2 5 0.55169464 0.71679567 17 16 18 0.00 0.00 0.00
2 5 0.60614983 0.69688417 18 17 16 0.00 0.00 0.00
3 5 0.47582450 0.26400430 19 24 20 0.00 0.00 0.00
3 5 0.51690497 0.27177300 20 19 21 0.00 0.00 0.00
3 5 0.50063739 0.29660528 21 20 22 0.00 0.00 0.00
3 5 0.57881567 0.29554871 22 21 23 0.00 0.00 0.00
3 5 0.56178800 0.26712764 23 22 24 0.00 0.00 0.00
3 5 0.59318058 0.24862790 24 23 19 0.00 0.00 0.00

host image

xfontal__0000020.bmp

Figure 6.3: Example of Active Appearance Model shape file containing model point co-ordinates

6.3 Defining the lip model

With Active Appearance Models it is possible to track any kinds of objects in images.
In the original paper [26] they are applied to perform face tracking for identification
purposes, and used on medical images. For the purpose of lip reading, we will use
them to track the lower part of the face. More points than necessary would lead to
more work for the annotators, while we still needed enough points to accommodate
for the requirements of our features. The model should contain enough points to
cope with all shape variations that occur on the object (e.g. lips). That is why our
considerations for the chosen model points were based on the nature of the features
we hoped to extract.

6.3 Defining the lip model

69

For every frame point its coordinates would be calculated. A logical choice would be
to take certain distances and areas as features. The lips seem to provide the most
visual cues in speech production, so first we included certain points on and around
the lips. We wanted to add the area of the lips and mouth opening as features, so
there would have to be enough points to approximate the shape of the lips closely.
Lips are affected by many muscles and can thus take a great variety of different
shapes (see Figure 6.4).

Having a reference point to enable us to determine the scaling and orientation of the
face is useful. This made us decide to include fixed points around the nose.

Figure 6.4: Facial muscles around the mouth and directions of muscle contraction. A. levator labii

superioris. B) m. zygomaticus minor. C) m. zygomaticus major. D) m. risorius. E) m. depressor anguli

oris. F) m. labii inferioris. G) m. orbicularis oris [27]

In the work of Jacek Wojdeł, we have seen that it had paid off to determine whether
the tongue and teeth were visible using a color filter. While we would just be tracking
the points instead of using color information, we figured that the visibility of the
teeth would also be apparent from the distance from the nose to the chin, since the
teeth are attached to the jaws. So, we decided to include some chin points in the
model.

6.3.1 Terminology
Before defining the model, we had to be clear about some anatomical descriptions.
For the annotators to come up with a uniform annotation of the images, the model
points had to be carefully defined. Each point was given a definition to be used by
annotators to manually produce (or correct) key point positions using the software.

First, we need to explain some anatomical terminology in the lip area. Figure 6.5
shows a nose and mouth seen from a low angle, with the lips and nostrils fully visible.
The central vermillion tubercle is the “lump” most people have in the center of their
upper lip. It often sticks out a bit and can be easily recognized. The philtrum is the
narrow area between the nose and lips between two “lines”. The nasal columnella is
what separates the nostrils.

6 Lip tracking

70

Figure 6.5: Lip anatomy. A) Central vermillion tubercle. B) Philtral column. C) Nasal columnella [28]

6.3.2 Original 25-point lip model
The first model we used for annotation was mainly based on intuition. Although most
of the points could be placed unmistakably according to their definitions, not all of
them could. The initial model had 24 points: 6 around the nose, 3 around the chin
and 16 in the mouth area, following the point definitions in table Table 6.1.

Figure 6.6: Initial model – points are numbered, red lines indicate polylines, purple lines indicate

constraints

There were however some limitations to this model. It was not able to cope with all
mouth shapes we could present, e.g. a widely opened mouth. Furthermore not all
points had an unambiguous definition. Some definitions were just plain unclear or
only valid when the mouth was open. Because we wanted to include area features,
the interior shape of the mouth should cover the area of the mouth more exactly. A
more rigorous definition was needed.

6.3 Defining the lip model

71

Table 6.1: Initial model point definitions

0, 4 Points at the corners of the lips

8, 12 Intersection points of upper and lower lip when mouth
is opened

17 Lowest point at the center of the chin

16, 18 Points on the jaw flanking the chin (no exact definition)

0-7 Polygon describing the outer shape of the lips as well as
possible

8-15 Polygon describing the shape of the mouth opening as
well as possible

1, 3 Points where the “lines” of the philtrum meet the upper
lip

2 Lowest point where the upper lip curls inward

10 Lowest point of central vermillion tubercle

6, 14 Low and high points on the lower lip on the imaginary
line from 2 to 17

19 Upper left point of left nostril (from camera’s point of
view)

20 Lower right point of left nostril

23 Lower left point of right nostril

24 Upper right point of right nostril

21, 22 Base of the central columnella/starting point of nose
wings

0

2

1

4
3

5

7

6

810
9

11

13

12

14

23 22
21 20

19

18

171615

28

27

26

24 25

0

2

1

4
3

5

7

6

810
9

11

13

12

14

23 22
21 20

19

18

171615

28

27

26

24 25

Figure 6.7: Final model – points are numbered, red lines indicate polylines, purple lines indicate

constraints

6 Lip tracking

72

6.3.3 Improved 29-point lip model
To allow the model to cope with more extreme mouth shapes, we chose to add extra
points halfway between the point pairs (0, 1), (3, 4), (4, 5) and (7, 0), and similarly
for the inner shape of the mouth. This way, the contours could be followed more
accurately, which leads to a better approximation of the mouth area. Using this new
model, the performance of the AAM is expected to increase and training made easier,
because the elements of the mouth would be more separated.

The new model, as shown in Figure 6.7, consists of 29 points: 24 points in the mouth
area; 12 as the outer contour and 12 as the inner contour of the lips, 2 points at the
base of the nose and 3 points at the chin. The definitions of these points can be
found in Table 6.2 and Table 6.3.

Table 6.2: Point definitions of the outer mouth contour

0 Leftmost point still on the lips (left mouth corner)

6 Rightmost point still on the lips (right mouth corner)

2, 3, 4 Points placed in accordance with the philtrum
(infranasal depression), namely, 2 and 4 at the foot of
the philtral column and 3 in the place the where the
philtrum meets the upper lip in the center

8, 9, 10 Points on the lower lip corresponding to point 4, 3 and
2 respectively

1, 5, 7, 11 Points placed such that the lip area is approximted as
closely as possible. Their positions are preferred to be
at equal distances from their neighboring points

Table 6.3: Point definitions of the inner mouth contour

12 Leftmost point in the cavity of the mouth but not on
the lips. However, in the case of a closed mouth this is
not possible to observe, so it should be placed such
that it best describes the mouth line, always to the left
of points 13 and 23 however.

18 Rightmost point in the cavity of the mouth but not on
the lips. Again not observable in the case of a closed
mouth. Instead it should then be placed such that it
best describes the mouth line. Always to the right of
points 17 and 19 however.

15, 21 Points corresponding to points 3 and 9 and following
the philtrum

6.4 Training the lip model

73

6.4 Training the lip model

To train an Active Appearance Model, a number of labeled training examples needed
to be presented to the algorithm. We had no choice but to annotate these by hand.
One of the advantages of AAM is that one occurrence of a shape is enough to have it
modeled, so the amount of training data does not have to be so large. To allow for a
robust model, each allowed lip shape should appear in the training set at least once.

Approach
The way mostly used to perform training of an AAM is he bootstrap method, where
labeling and training are repeated until the model shows appropriate behavior for all
new images. We gave it our own twist by searching for the most extreme mouth
positions first.

To cover as many lip positions as possible, we tried to have a “system” while
nominating the frames that would be annotated by hand. We figured it is best to use
frames from different utterances, to ensure a good coverage of the data. The
following scheme was employed to try and train an AAM efficiently and effectively:

1. Choose a couple of utterances. In whispered ones there may be the most
extreme mouth positions. An attempt should be made to cover closed mouths
and lip smacking as well.

2. Take one frame every 30 frames or so and annotate them. If possible, select
frames that show the most extreme mouth shapes.

3. Put all of the annotated frames into the same folder. This may be a problem
because a lot of images share the same filename. We wrote the tool
“Dir2Filename” (Java) to allow the name of the folder to be appended to the
filenames inside that folder.

4. Build the AAM using the training folder.

5. Add training images/utterances until the AAM seems to do fine, test with
some extreme mouth positions.

Some scripts were written to circumvent limitations of the program during training
(although the other annotator used DOS commands to accomplish the same thing).
All Java programs manipulate the subfolders of the folder they are placed in. They
are called from batch files, but all class files specified in the batch files need to be in
the same folder as well. We will now give their descriptions.

Dir2Filename adds the folder names to all files in that folder as a prefix, allowing to
put images from different utterances in the same folder and using them in the same
training set. The operation is performed on all child directories. Afterwards,
MatchFilename is performed.

DirFromFilename checks if the folder name is prefixing the file names, and removes
it if that is the case. This reverses Dir2Filename. The operation is performed on all
child directories. Afterwards MatchFilename is performed.

MatchFilename changes the BMP filenames in ASF files to whatever the filename
currently is. The operation is performed on all child directories.

SkippedFrames makes a global missing frame report out of the ones produced at
synchronization made for each utterance. It omits all utterances that had no missing

6 Lip tracking

74

frames. The operation is performed on all child directories. This didn’t have anything
to do with training AAM directly, but was pretty useful when evaluating the
recordings.

6.5 Visual validation

Evaluating an Active Appearance Model is not easy. The hardest thing we ran into
while training Active Appearance Models, was to know whether the training set
provided was extensive enough. According to the paper by Cootes, the training set
needs to be representative of the data that could occur, because it will determine
which model deformations are “allowed”. If certain extreme mouth positions are
omitted in the training set, the algorithm will come up with an approximation within
the model boundaries.

Figure 6.8: AAM search. In just 2 steps the final point coordinates are found. The image on the left shows the mean shape

inserted to the frame, the image on the right shows the result after one search.

In the ideal case, we would work with just one model that works for all people in all
lighting conditions. For Single Person New DUTAVSC there were 3 recording sessions,
one in the original setup and two longer once. This amounts to a total of 1463
utterances having been recorded. For each session the subject was wearing different
glasses. From session 1, 71 images were annotated; from session 2, 43 and from
session 3, 23. The AAM trained on the first session images could be successfully
applied to session 2 data, but not session 3 data. A more generic model trained on
images from all sessions performed even worse for session 3, while a model trained
on just sessions 2 and 3 worked perfectly for session 3.

This shows that a model made using one recording session cannot necessarily be
used for subsequent recording sessions, even from the same person. This could be
because AAMs depend on intensity information in the image, so a small change in
lighting conditions could force the researcher to train a whole new model.

In [17] they used active shape models instead of AAMs to follow the lip contours.
Using the model parameters as features they obtained decent results. We are using
the coordinates of the points around the lips instead. This means we have to apply
scaling and normalization afterwards. It could be beneficial to use the shape model
parameters directly.

Another problem we encountered was that of proper initialization. The AAM algorithm
is mainly good at tracking the lips (see Figure 6.8), not detecting them in the first
place. For that, another algorithm is used, and we suspect that it is dependent on
external factors like lighting conditions.

6.5 Visual validation

75

We trained a generic AAM using all the annotated frames for 8 different people. Once
properly initialized, it generalized pretty well to the lip shape, for some random
samples the initialization was perfect, even for one person who was not in the
training set this was the case, and for a subject with a moustache. For 4 out of 9
people, initialization was no problem. We found out that some experiments with
generic versus person dependent AMMs have already been done by others [29]. The
results are that although constructing a generic shape model is relatively easy
(measured in number of images required to train), fitting a generic AAM is far harder
than fitting a person specific AAM because the effective dimensionality of the generic
shape model is far higher than that of the person specific shape models.

An AAM sometimes places points outside of the image. This actually makes it robust
against occlusion, but there appears to be no limit to the number of points that can
be outside the frame, or the scaling and rotation factors for that matter. For faces, it
might not be such a bad idea to set these limits.

AAMs had been trained for 8 different people when we decided to just use Single
Person New DUTAVSC for training our automatic lip reader. We used different models
for each session. At some point we decided to perform manual initialization before
AAM search. The new configuration of AAM Annotation Lab at that point allowed us to
actually see how the AAM performed from beginning to end of the recording. Only
few mistakes were spotted. The mistakes that occurred were mainly after a missing
frame gap, as discussed in section 1.1.1. This is understandable as the previous
frame is always used for initialization of the next. We argue that once a model has
been trained specifically for a session, the initialization should be okay.

77

7 Feature extraction

The feature extraction we performed is closely related to the model we used for the
lips. So, first an Active Appearance Model was trained for the subject. Then, for
every time frame of every recording, coordinates of the face points were computed.
These coordinates were used to compute some features that seemed useful for lip
reading. In this chapter, we will first discuss the chosen feature set (section 7.1),
then discuss the algorithm implemented to perform the feature extraction (7.2).
After that we evaluate the features based on criteria like robustness and correlation
(7.3), and discuss results in section 7.4.

Recognition
Feature

extraction
Lip

tracking
Data

acquisition
Recognition

Feature
extraction

Lip
tracking

Data
acquisition

Figure 7.1: Visual speech recognition overview: feature extraction

7.1 Defining the features

First, we defined some basic visual features that could easily be derived from a point
model and computed. They follow the point definitions given in Figure 6.7 of the
previous chapter. From the landmarks detected on the speaker’s face using AAM we
computed some geometric features such as distances between key points and areas.
The seven features we came up with this way are visualized in Figure 7.2. All
distances are given in pixels.

Figure 7.2: Visualization of the features: 1) Outer lip width, 2) Outer lip height, 3) Inner lip width, 4) Inner

lip height; 5) Chin to nose distance, 6) Outer lip area, 7) Inner lip area.

7 Feature extraction

78

7.1.1 Features computed from the outer lip shape
It was pretty straightforward to define and compute the features based on the global
or outer mouth shape of the lips. We distinguish between mouth height (the length
of the lips vertically), mouth width (the length of the lips horizontally) and mouth
area (the area of the polygon approximating the lip shape). To compute the width,
we took the points on the far sides of the lips, and for the height, we simply used the
points on the middle line of the face, even though it may not result in the full
maximum height being computed.

In terms of the numbered points defined in Figure 6.7 and Figure 7.3, we define
mouth height as the distance between points 3 and 9, mouth width as the distance
between points 0 and 6 and mouth area as the area inside of the outer mouth
contour.

Figure 7.3: Visualization of the features computed from the outer mouth shape

7.1.2 Features computed from the inner lip shape
Defining the features computed from the mouth opening was a little less
straightforward, because there isn’t always a mouth opening. We decided to take this
into account when defining the features. Nevertheless, the opening of the mouth is
intuitively a speech feature important to sound production.

We discovered some problems when defining the height of the mouth opening,
because not all people open their mouths symmetrically. Just taking the height of the
middle points was therefore not accurate enough, so we took the largest observed
opening height instead. Eventually, we defined aperture height as the largest
distance between the pairs of points (13, 23), (14, 22), (15, 21), (16, 20) and (17,

19). This is illustrated in Figure 7.4

Defining the width of the mouth opening required some thought, because the mouth
might be closed or opened only partially. We decided that if out of the pairs of points
(13, 23), (14, 22), (15, 21), (16, 20) and (17, 19) the distance was close to zero
(some error is unavoidable with digital data) that part of the mouth would be
considered closed, and disregarded in determining the width of the mouth opening.
So, if the mouth is opened it would be the distance between the two mouth corners,
if the mouth is closed it would be zero, and if partly opened it would be the minimum
distance between two “closed” point pairs (or mouth corners). We defined aperture
width as the distance between the first point (or coinciding pair of points) to the last
point (or coinciding pair of points) on the inner mouth contour, the points being
counted in a left to right order.

7.1 Defining the features

79

Figure 7.4: Visualization of the features computed from the inner mouth shape

The area of the mouth opening is computed in the same way as the area of the lips,
with the note that there is a chance of the polygon being self-overlapping, especially
in case of a (partly) closed mouth. In our implementation this could lead to negative
values for the area, which we did not mind too much because the mouth would
probably be closed in case of overlap anyway. We define aperture area as the area
covered by the mouth aperture, namely the inner contour.

7.1.3 Features computed from nose and chin positions
From the two points on the nose and the three points on the chin we can compute
the distance between the nose and chin. We chose to use the lowest point on the
chin: the one in the center of the face. For the nose we chose the point exactly at the
center of the two defined noise points. We initially thought that the distance between
the nose and chin could give clues for onset/offset detection. But because a closed
mouth does not necessarily mean that the jaws are closed, the mouth aperture width
could be a better candidate. As a feature, it may still be valuable though: the
visibility of the teeth – an important visual cue – depends on both the upper lip and
the positioning of the lower jaw. This way we can compensate for the fact that our
model is based on points and not on color values. We define nose to chin distance as
the distance between the line formed by points 24 and 25, and point 27 (see Figure
7.2).

7.1.4 Other possible features
Another feature we could have considered to add is for example, the distance
between the center of gravity of the polygon approximating the lips, and the nose or
chin. The distance between the two points of the nose is already used for scaling, as
we will see later on. It is hard to come up with a point-based feature set that is
speaker independent. It would be interesting to see which features are comparable
between speakers. Intuition says some mouth features might be, like inner mouth
area, but after scaling this might not be true anymore.

The displacement and acceleration of the specified features could be a dynamic
addition to the feature set. The options for this are already built into the HTK tools.
The delta and acceleration of point coordinates themselves could probably also be
used as features, in which case the feature vector would have become a motion
vector, as is the case with optical flow.

7 Feature extraction

80

7.2 Feature extracting algorithm

Features had to be extracted from many different files containing model point
coordinates. We designed an algorithm that could process these files automatically.

7.2.1 Formatting
HTK requires a feature vector to follow a certain format. We wrote a Java program to
perform the feature extraction and format the data. The input of the algorithm is a
hierarchy of folders containing frames in .BMP format and coordinates of the found
model points for each frame in .ASF format (see section 6.2.2). Then, a recursive
method goes through all the folders and computes the feature vector for all folders
containing .ASF files.

Computing the distances was straightforward. The areas were a bit harder to
compute, but we implemented an elegant method to compute the area of a polygon
called the trapezium/trapezoid method. Here, the area below the bottom side of the
polygon is subtracted from the area below the upper side, resulting in the area of the
polygon itself. Because the Active Appearance Model sometimes results in a self-
overlapping polygon (for the inner shape of the lips when the mouth is closed) the
area can turn out smaller than it actually is using this method, even resulting in a
negative value. However, in those cases the mouth cavity area is already around
zero anyway, so this behavior doesn’t seem harmful.

Another challenge to implement was the inner mouth width discussed in section
7.1.2. For its definition we said that it should be zero if the mouth is closed. So, for
each pair of points lying above each other had to be checked whether their distance
is zero (or negative in case of a self-intersecting polygon). Then, the width would be
the distance between the last points that were placed on top of each other outward
in from the corners of the mouth. This results in staircase-like graphs for
closing/opening mouths as seen in section 7.3.

Table 7.1: Average mean and variance of “nose width” scaling factor for Single Person New DUTAVSC

session mean mean mean var

0 42.00 2.85

1 26.13 1.14

2 25.43 1.26

3 25.40 2.57

4 25.60 2.55

5 24.75 2.69

6 25.65 1.86

8 23.70 1.06

7.2.2 Normalization
The coordinates returned by the active appearance models had been transformed to
the domain [0, 1) by dividing by the height and width of the frame. Before
computing the distances, we reversed this operation. Then, we introduced another
scaling factor to compensate for variation in distance between the recording subject
and frontal view camera. All distances were normalized according to the most
constant points of our model: the distance between the two points below the nose.
Although a larger distance may have allowed for more accuracy, inspection shows a
small variance in this particular value (see Table 7.1). The areas were normalized by

7.3 Visual validation of feature performance

81

the square of the normalization factor. The only problem is that this scaling factor is
not person-independent. We are not sure that there is any feature in the human face
that is constant across individuals.

The algorithm is fast to process folders of annotated recordings, and would probably
run even faster if the output was kept to a minimum during execution. It is also
backwards compatible with the first AAM definition. The algorithm is initiated by
running “LipFeatureExtracer.bat” provided that it and the required Java class files are
in the same directory as the one of which the subfolders need to be processed. The
description of the algorithm is given in Figure 7.5 and the full source code can be
found in appendix C.

-> LipFeatureExtracter.bat
LipFeatureExtracter.class
DirFilter.class
ASFFilter.class

LipFeatureExtracter reads the coordinates from all asf files,
extracts features and writes them to HTK feature ve ctor format.
A text file is also written for easy access.
With the exception of feature 5 and as long as path 0
is the outer mouth shape and path 1 is the inner mo uth shape,
with a multiple of 4 points counted clockwise from the left-most point,
the features are independent of the model used.
The operation is performed on all child directories ,
child directories of the child directories and so o n.

Figure 7.5: Read-me of lip feature extraction algorithm

7.3 Visual validation of feature performance

It is hard to objectively measure the performance of a feature set. The most accurate
way to validate the feature set is to measure the performance of a speech recognizer
trained on that set and do so for all possible feature configurations. As this would
take many human and computing resources, instead we decided to evaluate the
performance visually by inspecting plots of the feature values.

The reason why a speech signal needs to be modeled by HMM in the first place is
because the utterance of a phoneme/viseme never has the same length. Although to
compare feature plots, they could be reformed using mathematics (with B-splines for
example [30]), it would still be hard to say where a phoneme/viseme begins and
ends in a recording.

7.3.1 Robustness
The first thing we wanted to validate is that the features are robust, i.e. show the
same behavior for all realizations of the same viseme. Of course, it was not possible
to inspect the total of the data, so we merely inspect some random samples taken
from the recordings of single letters and digits. Most letters are composed of only
one or two visemes. This made it easier to identify separate visemes. 13 out of 16

7 Feature extraction

82

Figure 7.6: The seven features plotted for an instance of the letter F, containing the 2 visemes: eeh

and fvw

visemes appear in the alphabet. 2 additional visemes could be inspected by looking
at the digits as well. Figure 7.6 shows for a letter “F” (with the viseme representation
“eeh fvw”) how the feature values change per time frame (i.e. 100 frames per
second). All graphs have been normalized around their mean value so they can be
shown conveniently in one figure. As most features represent distances it should be
easy to rationalize them.

Inner mouth width seems to provide a clue about the start and end points of the
utterance: when the mouth is opened. Not all recordings were as nice as this
example in terms of the mouth being closed before and after the utterance though.
It is perhaps more natural for humans to start with their mouth in the position “@”,
as discussed in section 4.1.2. It could however be a nice cue to use in onset/offset
detection.

It is also interesting to follow the nose/chin distance graph as this represents the
openness of the jaw. The greater the nose-chin distance the more the jaw was
opened. If the mouth is closed, it doesn’t necessarily mean that the jaw is, as can be
seen clearly from this plot.

80 110 150 180

7.3 Visual validation of feature performance

83

The outer mouth width seems to be the last seemingly independently operating
feature, because when we normalize the graphs not only by their mean, but also
their variance, we get graphs like shown in Figure 7.7.

Figure 7.7: Feature values plotted for two utterances of the letter “F”, of which the viseme

representation is “eeh fvw”, normalized according to mean and variance of the feature values over

time

Figure 7.7 shows two instances of the letter F, normalized not only according to their
mean, but also their variance. What is apparent here is that 4 out of 7 features
appear to be so correlated that they end up almost exactly on top of each other.
These are the inner lip area, outer lip area, outer lip height and inner lip height. This
suggests that only one of these needs to be included in the final feature set. We
assumed that inner mouth area would be a characteristic feature, since this is the
opening through which the air has to go to produce sound, but perhaps these other
features are just as good. We saw however that not for all recordings they end up
exactly on top of each other, although they always act similarly. Sometimes it
appears as if the variation is so perfectly balanced around zero, that the graph starts
jagging when it is used as normalization. Sometimes they seem to have some delay,
and at some points one feature is a little off for 10 frames or so.

The two feature plots in Figure 7.7 show similar behavior. Looking at the inner lip
width shows where the utterance starts and ends. Because of the graph
normalization a graph also depends on the behavior during the rest of the recording
time, so our focus should be on the general behavior within this time frame. The
downside is that not all recordings start and end with a closed mouth, but whether
this is the case is immediately evident from a plot. A look at the plots during the time
that the mouth was opened shows that all features made similar movements, not
regarding the exact scaling too closely. This suggests that the features are more or
less robust for the letter “F”. This appears to be the case for most letters we
inspected.

7 Feature extraction

84

A H

K Q

8 O

I IJ
Figure 7.8: Feature values plotted for the letters and digits A (aa), H (h aa), K (gkx aa), Q (gkx oyu), I (ie),

O (oyu), IJ (ei) and 8 (a gkx td).

7.3 Visual validation of feature performance

85

Figure 7.9: Legend for the plots in Figure 7.8.

7.3.2 Classification performance
After exploring how uniformly these features behave across instances, we wanted to
know how well suited these feature are for viseme classification. We will do this by
plotting the features for all the viseme classes that could be covered this way. There
is one viseme that does not appear in the combined set of letters and digits, namely
the “shzj”. For the remaining 15 visemes we will try to find out if this feature set
would be able to make a distinction between them. For the graphs in this section we
will include an average of the features “outer mouth height”, “inner mouth height”,
“outer mouth area” and “inner mouth” instead of including them all, to make the
graphs easier to interpret (naturally after validating whether for that particular
recording this generalization can be made).

Figure 7.8 and Figure 7.10 show the normalized plots of the resulting four features,
for different letters of the alphabet, extended with two digits to cover “at” and “a”.
The viseme representations of the letters and digits can be found in Table 9.1 and
Table 9.4 respectively. Although we have looked at other instances of these
utterances, we chose to display the nicest ones we encountered, or for which the
inner mouth width showed a nice cycle of opening at the beginning and closing at the
end.

1. aa
First of all, we will compare the behavior of the features for all that contain the
viseme “aa”. Figure 7.8 shows feature plots for the letters A (aa), H (h aa) and K
(gkx aa). In each of these cases, the combined height and area feature cluster
shows a single bump, while the outer mouth width and nose to chin distance show a
dip, indicating that the mouth becomes narrower and the jaw is opened. According to
the inner mouth width, the mouth is opened up wider.

2. h
The viseme “h” is only represented by one example (H). For the combined feature, a
second bump shows in front of the bump of the second viseme. Nose to chin distance
seems to show some specific behavior as well.

3. gkx
For the viseme “gkx“ we have several examples. First of all there is the letter K, then
there is Q (gkx oyu) and 8 (a gkx td). Their feature plots mainly show bumps for all
features where “gkx” should be observed.

4. a
Viseme “a” only has the example 8. The behavior of the features seems to be almost
exactly the same as for “aa”. This might mean these viseme classes are not that well
separable.

5. oyu
For “oyu” the examples are Q and O (oyu). The heigt/area feature and outer mouth
width show a similar decrease. According to the nose to chin distance, the jaw
opening becomes smaller for a moment as well.

7 Feature extraction

86

E D

C L

S M

7 F
Figure 7.10: Feature values plotted for the letters and digits E (iee), D (td iee), C (sz iee), L (eeh l), S (eeh

sz), M (eeh m), 7 (sz iee fvw at) and F (eeh fvw).

7.3 Visual validation of feature performance

87

Figure 7.11: Legend for the plots in Figure 7.8.

6. ie
For “ie” (only example I (ie)) all features except for nose to chin distance show a
bump, that seems to last the full time that the mouth is opened. The viseme length
might be a nice additional feature to recognize this viseme.

7. ei
Of “ei” there is also one example: IJ (ei). It seems to look a bit like “aa”, but the
outer mouth width shows some different behavior, with an extra bump at the end.

8. iee
Switching over to Figure 7.10, we will discuss the viseme “iee” next. Examples
shown are letter E (iee), D (td iee), C (sz iee) and 7 (sz iee fvw at). The features
inner mouth width, outer mouth width and the composed feature all show a bump.
The nose to chin distance however shows first a bump and then a dip, and all within
the time span indicated by inner mouth width.

9. td
For viseme “td”, one example is included (D). Before the formation of the “iee”
begins, the features show a lot of complex behavior, with the most prominent being
a sudden peak by the outer mouth width and nose to chin distance. Apparently the
mouth becomes a little wider and the jaw is closed.

10. sz
For “sz”, two instances are included: C and S (eeh sz). The features that seem to
show the same behavior are the outer mouth width, which shows a bump, and inner
mouth width, which is at a slightly lower level as the vowel for these examples.

11. eeh
For the viseme “eeh”, there are 4 examples: S, L (eeh l), M (eeh pbm) and F (eeh
fvw). In the clearest examples, it looks like a short version of “iee”, with the
difference that the nose to chin distance and outer mouth width both show a bump
and a dip.

12. l
For “l” there is one example: L. At the beginning of the viseme, both outer mouth
width and nose to chin distance start in a peak and decrease from there. The other
features also show a decrease, but these are not preceded by a peak.

13. pbm
The example or viseme “pbm” is M. It can be nicely seen from the plot that when the
“pbm” is formed, the mouth is closed (inner mouth width). The other features stay at
a constant level in the mean time.

14. fvw
“fvw” appears in both F and 7. Furthermore, another instance of F was shown in
figure Figure 7.7. The main characteristic seems to be a peak for the outer mouth
width, and movement toward the neutral position for all features.

15. at

7 Feature extraction

88

“at” only appears at the end of digit 7. We cannot be entirely sure however that the
“n” at the end of “zeven” was not uttered. The length of the word should normally
give a clue about that, but 7 already has at least 4 visemes and it is hard to say
where the “fvw” turns into an “at” and optionally a “gkx”. After what appears to be
the “fvw” viseme, the graphs of all features gradually decrease, before at last the
mouth is closed. In other work “at” has been assumed to be the neutral mouth
position, and could perhaps be used as an alternative for onset/offset detection.
After inspecting the feature plots for each viseme in Figure 7.8 and Figure 7.10, we
can conclude that these features seem to be very capable of distinguishing between
at least some of the visemes. Table 7.2 shows which features seem to be important
for which viseme, together with the accompanying characteristic behavior.

Table 7.2: Feature behavior for different visemes: +) bump -) dip -+) increase +-) decrease

 aa h gkx a oyu ie ei iee td sz eeh l pbm fvw at

Outer mouth width - + - - + -+ + + + +- +- +-
Inner mouth width + + + + + + + -
Nose/chin distance - + + - - - - +- + +- +-
Height/area features + + + + - + + + +

This evaluation was also useful because it helped us notice a labeling error with the
letter “Q” as plain “gkx” instead of “gkx oyu”. Wrongly labeled data can make it
harder to train a recognizer and can introduce errors.

7.4 Conclusions

We found that some features are more useful than others. The first thing we
observed was that for normalized graphs (centered around their means and divided
by their standard deviations) four features show great overlap indicating high
correlation. They are inner lip height, outer lip height, inner lip area and outer lip
area. If they are the same it is not useful to include them all. This also shows that
the point tracking and feature extraction used is robust.

Another thing we saw is that because of its definition the feature “inner lip width” is
a useful indicator to see whether the mouth is closed or not. If the mouth is closed
its value everywhere will just be zero. A horizontal line in the graph of any other
feature would mean that there is a series of missing frames in the recording. This
leaves us with two more features that can be used to classify the visemes: outer lip
width and nose to chin distance. That makes a total of at least four distinct features.

One important challenge remains: these features are not person-independent. Even
if another Active Appearance Model is trained for a new person and the points can be
located successfully, people’s facial features are not always the same. In fact, any
computed distance between points could be different, even when they are
normalized by a distance that is the same for all humans (the distance between
“nose points” we used is probably not, though for recordings of the same person it
complies). This renders a recognizer trained on data from one person unreliable for
another. Perhaps some kind of speaker adaptation could be applied.

89

8 Implementation

In this chapter we will describe the final implementation of our visual speech
recognizer. There are four main phases in the development of a speech recognizer:
data preparation (section 8.1), training (section 8.2), testing (section 8.3) and
analysis. For most of the tasks, HTK tools are readily available, and most who have
trained a speech recognizer using HTK before will recognize the approach taken, as it
is also described in the HTK manual [2]. This chapter should provide the reader with
enough background information to train a speech recognizer of their own.

Recognition
Feature

extraction
Lip

tracking
Data

acquisition
Recognition

Feature
extraction

Lip
tracking

Data
acquisition

Figure 8.1: Visual speech recognition overview: recognition

What we implemented was a speaker dependent recognizer, using HMM with three
emitting states for each viseme, using the viseme set presented in chapter 4.
However, while the approach is about the same for all recognizers, it is not possible
to quickly train a recognizer using only a portion of the data or changing a parameter,
as some steps involve the training supervisor to do something, like designing and
copying HMM, or selecting data. In theory, a shell could be used to perform all the
steps, but this was not the focus of our work.

8.1 Data preparation

In the previous chapters we described how feature vectors were attained from the
video material. The training data available for the lip reader were the features
extracted from Single Person New DUTAVSC. Aside from the feature vectors however,
the automatic lip reader would require a formatted dictionary, grammars and labels
for each recording. We started out with the grammar, then the dictionary and finally
the labels.

Within HTK, grammars are stored within a word net. There are two different ways of
defining a grammar in HTK. The first is a restrictive one using Extended Bachus-Naur
Normal Form, which is sufficient for simple recognition tasks, like digit or digit string
recognition (it is important whether a fixed length of such a string is defined or not).
An example of such a grammar is given in Figure 8.2. But also more complex tasks
like the bank application seen before can be captured in a grammar, as presented in
Figure 5.2.

8 Implementation

90

$letter =
 A | B | C | D | E |
 F | G | H | I | J |
 K | L | M | N | O |
 P | Q | R | S | T |
 U | V | W | X |
 IJ | Z;

$digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9;

($digit $digit $digit $digit $digit $digit $digit $ digit |
$letter $letter $letter $letter $letter $letter $le tter $letter |
$digit |$letter)

Figure 8.2: Example grammar in EBNF as accepted by HTK. This grammar allows for single digits, single

letters and letter or digit strings of length 8.

The other type of grammar that can be applied is a bigram language model. To train
N-grams, however, one requires an extensive text corpus of natural language. What
we initially did was using our sentence pool of Polyphone sentences to train a bigram,
while a better approach would have been to take an existing bigram model and
simply delete the words that did not appear in our dictionary.

This brings us to the dictionary. One was already available to us namely the same
dictionary as used by Polyphone and previous work on speech recognition [5]. A
dictionary as required by a speech recognizer consists of words and their phonetic
transcriptions. We edited the dictionary and transcriptions by performing the
phoneme to viseme mapping given in Table 4.6.

Through our recording software most of the data (except for the answers to open
questions) had already been pre-labeled. Labels are used to train and evaluate the
recognizer (by comparing the label to the recognizer output) and consist of (a series
of) dictionary words indicating what was said on the recording. HTK requires all the
labels for training to be listed in a master label file. Also, a mapping is performed
from words to visemes, where silence between words is inserted. A label needs to
match the utterance perfectly, including any mistakes. We decide to only use
utterances that were fluent and without mistakes, because any irregularities that
show in a sound recording would probably be amplified in the visual modality. There
were probably more irregularities in the recordings than we could hear during
auditory validation.

Furthermore, all the words presented needed to appear in the dictionary. HTK does
not cope with special characters well. A HTK compatible dictionary can contain
capitalized and non-capitalized words, numbers, dashes and single quotes, but that
is about all. For English this would be fine, but in Dutch special characters change
the meanings and pronunciations of words sometimes (e.g. “een” vs. “één”), plus a
good spelling often depends on it. In the end, we just capitalized all words and word
labels, wrong spelling or not. The other consequence of this restriction of HTK is that
we were unable to use the standardized ASCII IPA notation for the dictionary.
Instead we had to use phoneme and viseme representations HTK could process. We
discussed this in chapter 4.

8.2 Training

91

8.2 Training

Training a speech recognizer is an incremental process. As pointed out in chapter 3,
the only (currently known) way to train a Hidden Markov Model is to use an
approximate algorithm, namely the Baum-Welch re-estimation algorithm. In the end,
for every speech primitive (in our case visemes extended with one or model
silence/noise models) one Hidden Markov Model will be trained and together with its
state output probability density functions and state transition probabilities stored in
its own file.

A good initial estimate of a triphone HMM using Gaussian mixtures is a trained
monophone HMM using a single Gaussian. To define the model topology, first
prototype HMMs need to be composed. We chose a topology of five states per viseme,
of which three emitting. Prototype HMMs contain the size of the feature vector that
will be presented, the number of states and the initial state transition probabilities.
Initial HMM of this kind are all identical, with identical initial values for mean and
variance. This is how we constructed the prototype using HCompV (words between
% are variables):

HCompV -T 1 -C ../configs/%config% -m -f 0.01 -S .. /lists/%trainset% -
M ../models/hmm0 ../protos/%proto%

To obtain the final set of initialized monophone HMM, they need to be re-estimated
three times by using the HTK tool HERest thrice. Calling HERest is done like this:

HERest -T 1 -C ../configs/%config% -S ../lists/%tra inset% -
I ../../Data/%database%/Labels/%subcorpus%_MLF0_vis eme_transcription.mlf -
H ../models/hmm%lasthmm%/%macros% -H ../models/hmm% lasthmm%/%hmmdefs% -
M ../models/hmm%newhmm% ../blocks/monovisemes0_%dat abase%_%subcorpus%

The long and short pause silence models that are used to model noise among other
things can be made more robust by adding extra state transitions. A short pause is
allowed to be skipped while a long pause may be repeated to occupy a greater time
span with impulsive noise. We added these state transitions and re-estimating twice
more to make the set of HMMs incorporate these variations. The silence models are
fixed using HHEd:

HHEd -A -D -H ../models/hmm%lasthmm%/%macros% -
H ../models/hmm%lasthmm%/%hmmdefs% -M ../models/hmm %newhmm%
sil.hed ../blocks/monovisemes1_%database%_%subcorpu s%

Another thing that had to be accounted for, are words in the dictionary for which
multiple pronunciations exist. Viseme transcriptions that were previously generated
automatically by picking the first available pronunciation in the dictionary, can be
realigned to more accurate versions using the model trained thus far. This is done
using the HTK tool HVite, followed by re-estimating twice more. HVite is called as
such:

HVite -a -b SENT-START -m -o SWT -y lab -T 1 -t 250 .0 150.0 1000.0 -
C ../configs/%config% -H ../models/hmm%lasthmm%/%ma cros% -
H ../models/hmm%lasthmm%/%hmmdefs% -l '*' -
i ../workdata/%database%_%subcorpus%_trainset_MLF1_ viseme_transcription_aligned.
mlf -I ../../Data/%database%/Labels/%subcorpus%_MLF _word_transcription.mlf -
S ../lists/%trainset% ../../Data/%database%/Diction aries/%subcorpus%_viseme_dict
ionary.dic ../blocks/monovisemes1_%database%_%subco rpus%

8 Implementation

92

Figure 8.3: The three phases of a phoneme [21]

Now that monophone HMM had been trained for all the visemes, we could extend
this to triphones that can model the dependency between phones more accurately. A
phone is usually regarded as a having three phases; the onglide, pure phone and
offglide (see Figure 8.3). The onglide and offglide often overlap with those of
previous and sequential phones. With triphones instead of for each phone, one HMM
will be needed for each phone with an onglide to the specific previous phone and
offglide to the specific next phone. As one can imagine this causes an explosion in
the number of HMM that needs to be estimated, making pruning and storing the
HMM in a binary file important to consider for optimization.

Context-dependent triphones can be made by simply cloning monophones and then
re-estimating using triphone transcriptions. Using the label editor HLEd, the
monophone transcription can be made into a triphone transcription, disregarding the
long pause sil at the beginning and ending of the utterance and short pause sp as
the word boundary symbol.

Because this approach would require much more training data than monophones,
there can be made use of parameter tying between HMMs. This way, transition
matrices can be shared by multiple HMMs, increasing the amount of training data for
each such matrix. When re-estimating tied parameters, the data which would have
been used for each of the original untied parameters is pooled such that a much
more reliable estimate can be obtained. Some triphones will occur only once or twice
and so very poor estimates would be obtained if tying was not done. The most
reliable state tying can be done according to a linguistic model by decision tree
clustering using the HTK tool HHEd, but as we didn’t have such a thing at our
disposal, we used a data driven model. This model is also available through the tool
HDMan as well as some scripts provided with HTK. Re-estimation again must be done
twice to obtain the final result.

At the same time, the number of Gaussians mixtures could be increased to make the
probability density function for each state to better fit the data. This process has to
again be performed incrementally, because too many mixtures would cause the
model to be overtrained and perform badly on new data [31]. And again, this
increases the number of parameters so that the required training time is expected to
be longer.

8.3 Evaluation

We trained four types of recognizers. They differ with respect to the inclusion of delta
and acceleration factors of the features described in chapter 1, and whether

8.3 Evaluation

93

monophones or triphones were used. To obtain the best result flat training was
applied, and for all 32 possible combinations of Gaussian mixtures the one that gave
the best performance was chosen. Each recognizer was trained on 85% of the type
of data we wanted to use the recognizer for, leaving a test set of 15%. While it is
possible to train the recognizer on all data, because what we are actually training are
the viseme-level HMMs after all, we thought this way more accurate results could be
obtained.

To evaluate the performance of the completed recognizers, several things are
required: test data that has not been used for training, the recognition network
(generated by our grammar) and the dictionary. Recognition is done using the Viterbi
algorithm implemented by the HTK tool HVite. It can process a whole list of test data
files in sequence and several options concerning the word-cross probability and
weighing factor of the grammar can be set additionally.

The final performance can be determined by comparing the output of HVite to the
known labels using the tool HResults. HResults has many options to draw statistics
from the results. In the standard case, it will give the percentage of sentences and
words that were recognized correctly (the percent correct and percent accuracy, see
section 2.1), the word accuracy rate and the number of errors of each of the types.
If certain instances are allowed to be confused, like in our case at a given point some
of the letters which had the same viseme transcription, there is an option to make
them equivalent to HResults. It can also show a full confusion matrix so we can see
all the substitution errors that were made for each word. Here is how HResults is
called:

HResults %classescluster% -
I ../../Data/%database%/Labels/%subcorpus%_MLF_word _transcription.mlf ../blocks/
monovisemes1_%database%_%subcorpus% ../results/reco ut_%database%_%subcorpus%_%fe
aturestype%_%deltaacc%_1B_word.mlf

In the next chapter we will describe the recognition performance obtained by these
recognizers.

95

9 Experiments and results

Once we finished the implementation of the automatic lip reader, we were able to
design some experiments to test its performance. The data used was from the Single
Person New DUTAVSC subcorpus (see section 5.3.2), which contains recordings of
sentences, single digits, random digit sequences of length 8, single letters and
random letter sequences of length 8, and all of a single person.

The first experiment involved digit recognition (9.1), which is a simple classification
task that took us back to the basics. The second experiment involved letter
recognition (9.2), which would be a spelling task. Then, we will compare the results
of these experiments (9.4) and discuss the project-wide results (9.5).

9.1 Digit recognition

The first and simplest experiment we conducted involved digit recognition. There are
10 words and thus 10 classes the data can fall into. We also did this for series of
digits using a fixed grammar. The “pure chance” performance level is considered to
be 10% for digit recognition. We used a restrictive grammar that only allowed either
a single digit or a string of 8 digits to be recognized. The data presented was also of
this kind. The viseme representations of the words of this recognition task are shown
in Table 9.1.

Table 9.1: Viseme representations of the 10 digits in Dutch

Digit Viseme representation

1 iee gkx

2 td fvw iee

3 td gkx ie

4 fvw ie gkx

5 fvw ei fvw

6 sz eeh sz

7 sz iee fvw at

8 a gkx td

9 gkx iee gkx at

0 gkx oyu l

For a subset of the data corpus consisting of 31 utterances and 73 digits, the best
result obtained was 67.7 % of the sentences correct and 78.1 % of the words, with
an accuracy of 68.5 % considering the insertion errors. To get this result, the delta
and acceleration coefficients were included, and monophones were used with 24
mixtures. The results for each type of recognizer are shown in Table 9.2.

Table 9.2: : Percent correct and Word Recognition Rate for recognition of 73 digits

 No delta/accelaration Including delta/acceleration

Monophones 69.86 %; WRR=61.64 % 78.08 %; WRR=68.49 %

Triphones 65.75 %; WRR=60.27 % 72.60 %; WRR=50.68 %

Regarding the confusion matrix in Table 9.3, the following can be remarked. The
digits to get confused most often are the “3” and “4”, which share a viseme but are
otherwise distinct. And “1” and “9”, but this is no wonder as both letters contain “iee

9 Experiments and results

96

gkx”, and furthermore, the phonetic transcription for 9, ”n ee g at” is perhaps
inaccurate, as the “n” at the ending of the word “negen” may be clearly pronounced
when speech is not uttered at a fast rate.

Table 9.3: Confusion matrix for digit recognition task of 73 digits

 0 1 2 3 4 5 6 7 8 9 total
0 8 0 0 0 0 0 0 0 0 0 8
1 0 3 0 1 0 0 0 0 0 2 6
2 0 0 4 0 0 0 0 0 0 0 4
3 0 0 0 8 3 0 1 1 0 2 15
4 0 0 1 1 8 0 0 0 0 0 10
5 0 0 0 0 0 6 0 0 0 0 6
6 0 1 0 0 0 0 3 0 0 1 5
7 0 0 0 0 0 0 0 3 0 0 3
8 0 0 0 0 0 0 0 0 10 0 10
9 0 2 0 0 0 0 0 0 0 4 6

9.2 Letter recognition

In spelling there are two letters that often seem to get confused by Dutch listeners,
namely “M” and “N”. Adding the visual modality however this task becomes much
easier, because their viseme representations are different. In this example the value
of lip reading in spelling becomes evident.

The next experiment we did was concerned with letter recognition. It is a slightly
more difficult task than digit recognition, because the word representations of the
letters are generally shorter than those of digits, namely 1 to 3 (but usually 2)
phonemes/visemes. It could give some more insight on the recognition of pure
visemes. The number of classes here is 26 (or 20 as we will see later) and the
approach is the same as for digit recognition. We imposed a grammar on the
recognition results that allowed for single letters, letter strings of length 8, and
letters strings of arbitrary length (resulting from spelling of actual words).

There was however one thing we overlooked while performing this task: as seen in
Table 9.4, for some letters of the Dutch alphabet the viseme representations are
equal. Due to the mapping from phonemes to visemes the distinctiveness of the
letters of the alphabet has become less. While for recognition tasks with longer
utterances this would not be a problem, for really short words like word
representations of letters, it is apparent. The HTK recognition tool HVite solves the
problem of multiple dictionary entries for the same viseme representation by picking
the first one. With 26 classes, of which there are 6 pairs of equal looking letters, this
should lead to an error in 6 out of 26 cases (23%). Indeed, clustering these pairs
together in one class gave an increase in performance of about 10%. Considering
they were just 186 random letters, it is possible that the calculated 23% was only
10% in reality. The problem of the propagation of misclassifications was discussed in
section 4.2.2.

9.2 Letter recognition

97

Table 9.4: Viseme representations of the letters of the Dutch alphabet

Letter Viseme representation

A aa

B, P pbm iee

C sz iee

D, T td iee

E iee

F eeh fvw

G, J gkx iee

H h aa

I ie

K gkx aa

L eeh l

M eeh pbm

N, R eeh gkx

O, U oyu

Q gkx oyu

S eeh sz

V, W fvw iee

X iee gkx sz

IJ ei

Z sz eeh td

In the end, there were 20 classes (of which 6 clusters) for the letter recognition task.
This amounts to a 5% pure chance recognition rate. For a subset of 60 utterances
and 186 words in total, the best results obtained were those of the recognizer with
delta and acceleration, using triphones and 18 Gaussian mixtures. According to Table
9.5, 49.5% of all words are correctly recognized with a word recognition rate of -
12.9%. Furthermore 31.7% of all sentences were recognized correctly.

Table 9.5: Percent correct and Word Recognition Rate for recognition of 186 letters

 No delta/accelaration Including delta/acceleration

Monophones 40.32 %; WRR=-35.48 % 44.62 %; WRR=-25.27 %

Triphones 37.10 %; WRR=-44.62 % 49.46 %; WRR=-12.90 %

The confusion matrix given in Table 9.6 can give us some insight about the
classification performance of the feature set, especially since the letter
representations for 6 vowels (A, E, I, [O, U] and IJ) consist of just one viseme.
Apparent is that one viseme that seems to get confused a lot is gkx, probably
because it is formed in the back of the mouth and it is kind of a “garbage collection”
viseme, containing a lot of different consonants. Digits and letters that contain this
viseme are [G, J], [N, R], K, Q, X, 1, 3, 4, 8, 9, 0.

More interesting perhaps than which letters get confused are the letters that do not
get confused. For F, H, I, [O,U] and [V, W], over 70% are correctly recognized.
Because random letters were used, a lot of classes are actually underrepresented. IJ
and [N,R] are never recognized correctly, despite being represented in the test set at
least 5 times.

9 Experiments and results

98

Table 9.6: Confusion matrix for letter recognition task

 A
[B,
P] C

[D,
T] E F

[G,
J] H I IJ K L M N

[O,
U] Q S

[V,
W] X Z total

A 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
[B, P] 0 13 0 0 0 0 0 0 4 0 0 0 2 0 0 0 0 0 0 0 19

C 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 6
[D, T] 0 0 2 1 0 0 0 0 0 0 0 2 0 1 0 0 0 0 2 1 9

E 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
F 0 0 0 0 0 8 0 0 0 0 0 1 0 0 0 0 0 0 0 2 11

[G, J] 0 0 0 2 2 0 3 0 3 0 0 0 0 0 0 0 1 0 3 0 14
H 0 0 0 0 0 0 0 10 1 0 0 1 0 0 0 0 0 0 0 0 12
I 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 4
IJ 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 2 0 5
K 0 0 0 0 0 0 0 2 1 0 6 0 0 0 0 0 0 0 0 1 10
L 0 0 1 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 8
M 0 0 0 0 1 0 0 1 0 0 0 1 6 0 0 0 0 0 0 0 9

[N, R] 0 1 0 0 0 0 0 1 1 0 0 5 0 0 0 0 0 0 2 0 10
[O, U] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 7 0 0 0 0 0 8

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0 0 7
S 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 4 0 2 0 9

[V, W] 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 12 0 0 17
X 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 3 0 7
Z 0 0 1 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 3 7

That the restrictive grammar imposed on the results allows for letter strings of
arbitrary length, could be responsible for part of the insertion errors. Although for
spelling tasks it is only logical to have no length imposed on a word, in our case, we
did not have any recordings of actual spelling, because they were only included in
the original session setup, and because of the frame skipping issue discussed in
section 1.1.1 not any of them were usable (see table Table 9.7). It is possible that
the amount of visible articulation for visemes requires a more restrictive grammar to
be used. We will have to see if using the more restrictive grammar variant will
improve performance and word recognition rate especially.

9.3 Comparison

The results we obtained match the predictions about theoretical lip reader
performance addressed in section 4.2. We cannot be sure whether this can be
improved by increasing the amount of training data. The difference of instances per
symbol to recognize could also have an influence, although the effect should not be
as great because we trained our HMM at viseme level and not at word level. If we did
the latter (and use larger HMM to model the classes) performance can be expected
to increase, even when the visemes are the same. Another possible cause can be the
length of the expression. Letters are of length 1-3, while digits are of length 2-4. A
longer length gives the Viterbi algorithm more opportunity to make use of the
context information.

9.3 Comparison

99

Table 9.7: Number of usable recordings for first session of Single Person New DUTAVSC

Number Speech type Utterance type <10 missing frames

3 normal Random digit sequences of length 8 3

3 fast rate " 0

3 whispering " 0

3 normal Spelling a random word of variable length 0

3 whispering " 0

3 normal Lists of random words of length 8 3

3 fast rate " 1

3 whispering " 2

5 normal Fixed grammar bank application sentences 4

5 fast rate " 5

5 whispering " 5

5 normal Random sentences taken from Polyphone 5

5 fast rate " 4

5 whispering " 4

5 normal Every day use common expressions 5

5 normal Short answers to random open questions 0

The difference in performance of digit and letter recognition may be due to a number
of reasons. First of all, as discussed before the restrictiveness of the grammar for
letter recognition will need to be looked into. After that there are still two possible
reasons. Firstly the number of classes for digit recognition is 10, while for letter
recognition it is 20. Because of this there are more opportunities for confusion,
especially since the words for letters are shorter than those for digits (see Table 9.8).
Secondly, there was more training data available for digits than for letters. Because
there are twice as many letter classes, twice as much training data would be needed
to get the same training result as for the digits.

Table 9.8: Frequency of word lengths for the viseme representations of digits and letters

visemes 1 2 3 4 average
Digits 5 13 2 0 3,7
Letters 0 1 7 2 1,55

After that, whether it is because of lack of data or number of classes or number of
training samples is easy to determine by just cutting back on those training samples
in the case of digit recognition and comparing the results. For now we can only
speculate on that however.

One important thing we omitted to do was evaluating the recognizers on data that
had not been seen before. It is customary to split a data set into a 80% training set,
10% test set (used for performing the training cycles) and 10% evaluation set. This
evaluation set needs to be used to check whether the recognizer has not been
overtrained on the test data.

9 Experiments and results

100

For a better validation of the feature classification performance, it is important to
evaluate the performance for all visemes, or even phonemes if possible. The digit
recognition task covers only 12 out of 16 visemes (omitting “h, shzj, pbm, aa”),
while the alphabet recognition task only covers 13 out of 16 (omitting “at, shzj, a”).
Taken all of them together, only the viseme “shzj” is missing, but that one rarely
appears in the language anyway.

9.4 Discussion

Nearing the end of the descriptional part of this thesis, we need to evaluate to what
extent this work has contributed to the field of speech recognition. The experimental
work includes the following:

• Recording a new, extensive, audio-visual speech data corpus, containing high-

speed footage of both front and profile view of the speakers. 70 people were
recorded, 90 sessions were taken. All data had to be checked and processed.

• A contribution has been made to the old DUTAVSC corpus, transcribing 3 out of 8
recording sessions.

• An attempt was made to integrate the source code of HVite into a C++ project,
but this was stopped after the focus of our project shifted from making a real-
time implementation to documenting the new data corpus.

• Using the method of Active Appearance Models to perform lip tracking. To train a
model (manually) annotated video frames are needed. For 8 people models were
trained. The capabilities of this method were investigated.

• Extracting features based on the lip model point coordinates, and evaluating the
performance of these features.

• A lip reader was trained, and results of several simple experiments were
evaluated.

The previous paragraph was mainly focused on why the letter recognizer performed
poorly, while it is perhaps more interesting to think about how the performance of
the recognizer that was getting good results, the digit recognizer, could be improved.

With respect to the HMM architecture the following can be said. All along, we have
been talking about using visemes to perform automatic lip reading. Using visemes is
a good idea if the objective is to make a versatile speech recognizer that uses viseme
models and searches the dictionary for the viseme representation of certain words.
For simple tasks, like digit recognition, an alternative approach could be to train
word-level HMMs. Here a larger HMM architecture can be used than the typical three-
state HMM that is used for phones, with, for example, five states. This way one could
get around the viseme mapping. This might be a good option, because there is no
general agreement on the visemes set to use.

Also, while we were working with visemes anyway, it would have been perfectly
possible to train the recognizer on all the data. It is a generally good idea to add
training data, and this way no new recordings are needed.

We think we can answer part of the research questions now:

1. Is it possible to build an automatic lip reader comparable to or even
better than a human lip reader?

We don’t know. In the literature we have seen one small speech corpus (TULIPS1)
which provides the recognition performance for humans without lip reading

9.4 Discussion

101

experience and humans with lip reading experience. Using this data corpus to
test a recognizer could answer the question.

2. Is it possible to build an automatic lip reader that performs as well as

an acoustic speech recognizer?

Most probably not. Using a phoneme to viseme mapping some speech

information is lost.

3. In which way should we integrate the results of automatic lip reading

and acoustic speech recognition?

This lies outside the scope of this thesis.

4. Can we make an automatic lip reader that performs real-time?
Not yet. Even though Active Appearance Model search is very fast, it still takes
longer to process than the length of the utterance. Now that we use a frame rate
that is five times higher the recognizer has to be four times as fast to reach real
time.

5. What are the quantitative and qualitative requirements of the data we

use to train an automatic lip reader?

We believe we need high-speed recordings of a decent resolution in the mouth
area.

6. Can the methodology to train an acoustic speech recognizer be

directly applied to train an automatic lip reader?

We have done so and the results seem decent enough.

7. Which feature extraction method should be chosen as the standard

for automatic lip reading in general?

We haven’t encountered a single method yet that is robust, fast and speaker-
independent.

103

10 Conclusions and recommendations

In this final chapter we will discuss and evaluate this project and give
recommendations for further research. For each of the project goals defined in our
problem definition, we will first discuss the results and draw our conclusions (section
10.1). In section 10.2 we will discuss some ideas that this work has brought forth,
but of which the realization fell outside the scope of this thesis.

10.1 Conclusions

1. Exploring the potential of a lip reading system based on Hidden Markov

Models

After going through some literature, especially the previous PhD work of Jacek
Wojdeł and the manual of the Hidden Markov Model Toolkit, we saw that Hidden
Markov Models are very flexible and can be used to model any kind of speech. After
a phoneme to viseme mapping is applied and features have been extracted, an
automatic lip reader can be treated as any other speech recognizer. There are
however some limiting factors that are discussed in chapter 4.

2. Exploring the possibilities for real-time visual speech recognition

The bottleneck in most visual speech recognition systems is the feature extraction.
Active Appearance Models has the property that they can perform face tracking very
fast. Since we are working with high-speed recordings, to reach a real-time
performance it would have to be four times as fast as for regular video though. Once
all elements of visual speech recognition have been lined up to process live input, we
expect satisfactory results. We have not yet measured the speed of the algorithms
used. This way the Real Time Factor could be calculated.

3. Evaluating feature extraction methods discussed in literature according

to the criteria of performance, speed and speaker independence

Although we wanted to come up with a fast and speaker-invariant way to extract
features, this proved to be harder than expected. First of all, the initialization method
of the Active Appearance Models is sensitive to lighting conditions, making it
necessary to train a new model for every recording session, for which hand-
annotated material is required. This makes any kind of live application impossible.
Furthermore, the AAM search returns point coordinates. While we managed to
compensate for any rotation, translation and scaling, the resulting features are
speaker-dependent because of facial differences between people. A way to deal with
this could be to include an adaptation phase in applications.

4. Obtaining a visual speech corpus that is sufficient in size and quality to
train and evaluate an automatic lip reader from scratch

The purpose of this project was to develop a visual speech recognizer for Dutch. The
success of this depended greatly on the available amount of training data.
Experiments with the small audio-visual data corpus DUTCVSC pointed out the need
for a new and larger data corpus. Our efforts produced high-speed video material of
70 different speakers recorded from the front and side. Because of expected
technical difficulties with a speaker-independent system, we made some additional
recordings of one person uttering just letters, digits and natural sentences, and used
these to train the automatic lip reader. The new data corpus increased our
expectations beyond the state of the art.

10 Conclusions and recommendations

104

5. Preparing and implementing the separate parts that make up an

automatic lip reader and linking them together

We identified four steps that were all prerequisites for building an automatic lip
reading; data acquisition, lip tracking, feature extraction and training. The results for
each of these steps had to be evaluated to ensure the quality of the final result. For
the recordings the performance of the speakers and hardware were evaluated. For
Active Appearance Models the accuracy was evaluated, for the features their
classification performance was evaluated and the training was validated by
examining the recognition results.

6. Evaluating the results obtained from experiments conducted using the

implemented lip reader

After implementing the lip reader, we obtained a result of 78.1% correct and a word
recognition rate of 68.5%, for the simplest task: digit recognition. For other tasks
the recognition performance stayed behind. Further experimentation will have to
shed some light on the exact reason behind this.

10.2 Future work

Looking back on this project, we have seen a number of topics pass the revue. Only
the surface of what could be possible in automatic lip reading has been scratched
however. In this section several ideas for future work will be addressed.

First of all, because of the limitations there are to automatic lip reading, we agree to
the general idea that using lip reading in a stand-alone application would not lead to
a satisfactory performance. Future research on visual speech recognition should
therefore be focused on finding the right feature extraction method, model and
training corpus. For real applications, combining modalities into an audio-visual
recognizer has much more potential.

We still don’t know exactly how much training data is required before a lip reader is
sufficiently trained. After a certain amount of training data has been used the
performance should stop to increase and eventually converge. At this time, new
recordings are being processed to investigate when this point is reached. Another
approach could be to decrease the amount of training data used gradually and
display all results in a graph. The only downside to this approach is that training a
speech recognizer is a time consuming process. If it turns out that any of the viseme
models are undertrained, this would suggest that either more training data is
required, or that the viseme classification needs to be revised.

A number of ideas regarding recognition experiments have been posed in this thesis.
New experiments will have to be conducted to evaluate these ideas. Work is
expected to continue in this respect. The visual speech recognizer performance will
also have to be evaluated for other types of utterances, like natural sentences, for
which bigrams would have to be used for the language model.

105

Bibliography

[1] "2006 FIFA World Cup Final," August 2, 2009;
http://en.wikipedia.org/wiki/2006_FIFA_World_Cup_Final.

[2] S. Young, G. Evermann, M. Gales et al., The HTK Book (for HTK Version 3.4):
Cambridge University Press, 2006.

[3] J. C. Wojdeł, “Automatic lipreading in the Dutch language,” Delft University of
Technology, 2003.

[4] T. Starner, and A. Pentland, “Real-time American Sign Language recognition
from video using Hidden Markov Models,” Computational Imaging and Vision,
vol. 9, pp. 227-244, 1997.

[5] P. Wiggers, “Hidden Markov Models for Automatic Speech Recognition and
their Multimodal Applications,” Delft University of Technology, 2001.

[6] T. I. Boogaart, L. Bos, and L. Boves, "Use of the Dutch POLYPHONE corpus for
application development." pp. 145-148.

[7] H. Yashwanth, H. Mahendrakar, and S. David, "Automatic speech recognition
using audio visual cues." pp. 166-169.

[8] A. G. ChiŃu, and L. J. M. Rothkrantz, “On Dual View Lipreading Using High
Speed Camera,” 2008.

[9] J. C. Wojdeł, P. Wiggers, and L. J. M. Rothkrantz, "An audio-visual corpus for
multimodal speech recognition in Dutch language."

[10] M. Damhuis, T. Boogaart, C. Veld et al., "Creation and analysis of the Dutch
Polyphone corpus."

[11] "Persistence of vision," August 4, 2009;
http://en.wikipedia.org/wiki/Persistence_of_vision.

[12] F. Wilson, and P. T. Descamps, “Should we accept anything less than TV
quality: visual communication,” IEEE Conference Publications, vol. 1996, no.
CP428, pp. 606-611, 1996.

[13] M. d. Boo, "De automaat leest uw lippen (multimodale spraakherkenning),"
Delft Integraal, Delft University of Technology, 2002.

[14] A. G. ChiŃu, and L. J. M. Rothkrantz, "The Influence of Video Sampling Rate
on Lipreading Performance." pp. 6-7452.

[15] K. Kumar, T. Chen, and R. Stern, "Profile view lip reading."
[16] T. Yoshinaga, S. Tamura, K. Iwano et al., "Audio-visual speech recognition

using lip movement extracted from side-face images."
[17] J. Luettin, N. A. Thacker, and S. W. Beet, "Visual speech recognition using

active shape models and hidden Markov models." pp. 817-820 vol. 2.
[18] B. Lucas, and T. Kanade, "An iterative image registration technique with an

application to stereo vision." pp. 674–679.
[19] J. C. Wojdeł, and L. J. M. Rothkrantz, "Using aerial and geometric features in

automatic lip-reading."
[20] T. F. Cootes. "Modelling and Search Software," 2009;

http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/software/am_t
ools_doc/index.html.

[21] R. C. v. Dalen, “Lexical Stress in Speech Recognition,” Delft University of
Technology, 2005.

[22] D. Jurafsky, and J. H. Martin, Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and

Speech Recognition: Prentice Hall PTR, 2000.
[23] N. v. Son, T. M. I. Huiskamp, A. J. Bosman et al., “Viseme classifications of

Dutch consonants and vowels,” The Journal of the Acoustical Society of
America, vol. 96, no. 3, pp. 1341-1355, 1994.

Bibliography

106

[24] M. Visser, M. Poel, and A. Nijholt, "Classifying Visemes for Automatic
Lipreading," Text, Speech and Dialogue, pp. 843-843, 1999.

[25] A. G. ChiŃu, and L. J. M. Rothkrantz, "Dutch Multimodal Corpus for Speech
Recognition." p. 56.

[26] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 23, no.
6, pp. 681-685, 2001.

[27] M. Simunek, "Visualization of talking human head," 2009,
http://www.cg.tuwien.ac.at/hostings/cescg/CESCG-
2001/MSimunek/index.html, [2009, 2001].

[28] G. H. Landis, and C. Buckley, "Surgical Repair of the Cleft Lip and Palate,"
http://www.drlandis.com/pro/clsurg.htm, 2001].

[29] R. Gross, I. Matthews, and S. Baker, “Generic vs. person specific active
appearance models,” Image and Vision Computing, vol. 23, no. 12, pp. 1080-
1093, 2005.

[30] P. Eilers, and B. Marx, “Flexible smoothing with B-splines and penalties,”
Statistical Science, vol. 11, no. 2, pp. 89-101, 1996.

[31] P. Wiggers, and L. J. M. Rothkrantz, “Integration of Speech Recognition and
Automatic Lip-Reading,” in Proceedings of the 5th International Conference on
Text, Speech and Dialogue, 2002.

107

A Written instructions for New DUTAVSC recordings

Recordings instructions and progress

Thank you for accepting to join our experiment.

During this experiment you will be asked to utter several language items. The items

to be uttered are going to be presented to you via a prompter like software. The program will
display the next item to be recorded and instruct you on the modality to utter the current
item. Please read these instructions carefully. When you are ready to start the recording
please press the <LEFT MOUSE BUTTON>. When finished uttering please press AGAIN
the <LEFT MOUSE BUTTON> to stop the recording. During the recording it is very
important to follow the instructions given. For the success of the experiment and the
research work that will use the resulted recordings it is very important to have a good
posture on the whole period of recording. Hence, while uttering please keep your back, neck
and head straight at all times and look straight into the camera. Try as much as possible not
to move while recording. We expect that the total length of a recording to be maximum 10-
15 seconds. If for some reasons the last recording was flawed you can retake the recording
by pressing <LEFT MOUSE BUTTON> when ready. To go to the next item press
<RIGHT MOUSE BUTTON>. Sometimes you will be asked to retake an item because the
memory is full. When for some reasons you want to retake a previous item then using the
<MOUSE WHEEL> is possible to go back.

Before starting the recordings please fill in the slots at the end of this document.
After reading this document you can have a small trial, to accommodate with the software
and the recording conditions. To start the recordings you need to register as a user. The
experimenter will assist you in this process. He/She will then provide you with the print out
of the items that are going to be presented to you. Please read the items. When you are ready
you can start the experiment. The detailed expected timing of the experiment is given in
Table 1.

Table A.1. The experiment timings

Timing Description
00:00 Read the software manual.
----- Start a trial session.
00:05 Register the user.
00:07 Print the pool of utterances for the user.
00:10 Ask the user to familiarize with the utterances.
00:15 Start the recordings
00:30 End the session.

Total time of the experiment is thus approximately 30 minutes

Please answer the following questions before going to the next step.

A Written instructions for New DUTAVSC recordings

108

1. You were presented a consent document by the experimenter. Did you read and
understand everything that was said in that document? Please say yes or no here:
______. Did you sign that document? Please say yes or no here:______.

2. Did you read and understand the present document? Please say yes or no
here:______.

Before going further please take a trial with the software.

Thank you very much for agreeing to participate in our exercise. We hope that you will

enjoy working with us, and hope you could come again for a follow up.
After the experiment is over the experimenter will give you some goodies to show our
appreciation.

Please write your name here:______________ Date:________

109

B Consent document for New DUTAVSC recordings

Consent document

Thank you very much for accepting to participate in our experiment.

 This experiment consists of audio-video recordings of speakers uttering a set of
items in Dutch. The data resulted is compiled in a database that will be used for scientific
research purposes, namely training and testing different systems in the domain of audio-
visual speech recognition, affective state recognition, speaker identification, etc. The resulted
systems and analyses are going to be presented in scientific papers and public presentations,
or used for demo during scientific events. We might also make the database available to
other researchers. We might sometimes need to prove the database in some of the papers,
presentations and/or demos, which means that some video or audio frames are going to be
presented. During the experiment we will record your voice and the frontal and the side view
of your head. Only the mouth area will be visible so the anonymity is guaranteed. We also
guaranty that your name will never appear in public.

Please fill in this form and answer the questions at the end. We are very thankful for
you help.

Name: ___
Sex: ___
Age: ___
Level of education : ___
Native language(s): ___
Country and province of origin: _______________________________________

Please answer the following questions:

Do you agree that the recordings that feature you to be used for scientific research as
explained above? Please answer yes or no here: ____.

Do you agree that some images showing your mouth to be included in scientific papers,
public presentations and/or demos? Please answer yes or no here: ____.

Do you agree that complete or partial audio clips that feature your voice to be included in
public presentations and/or demos? Please answer yes or no here: ____.

Have you read and understood this document? Please answer yes or no here: ____.

Please sign the document and hand it to the operator. Thank you for your co-operation and
we hope we can count on you in the future.

Date: ___________ Signature: ___________

111

C Lip feature extracting algorithm
//LipFeatureExtracter computes the feature vectors from a set of model point coordinates
class LipFeatureExtracter{

 public static String report = "" ;

 public static void main (String [] args){
 File current = new File (".");

 try {
 searchDir (current , "");

 PrintWriter out = new PrintWriter (
 new BufferedWriter (
 new FileWriter ("nose_width.txt" , false)));
 out . println (report);
 out . close ();

 }
 catch(IOException e) {
 e . printStackTrace ();
 }
 }
 //substract point2 from point1
 public static double xDistance (double [] point1 , double [] point2){
 return point1 [0] - point2 [0];
 }
 //substract point2 from point1, screen coordinates!
 public static double yDistance (double [] point1 , double [] point2){
 return point2 [1] - point1 [1];
 }
 //Pythagoras
 public static double distance (double [] point1 , double [] point2){
 return Math . sqrt (Math . pow(point1 [0] - point2 [0],2) +

 Math . pow(point1 [1] - point2 [1],2));
 }
 public static double [] middle (double [] point1 , double [] point2){
 double [] array = new double [2];
 array [0] = Math . abs (point1 [0] - point2 [0]);
 array [1] = Math . abs (point1 [1] - point2 [1]);
 return array ;
 }
 public static int nextIndex (int index , int size , int increment){
 int ans = index + increment ;
 if (ans > size - 1)
 ans = 0;
 if (ans < 0)
 ans = size - 1;
 return ans ;
 }
 //pre: point 0 and point length/2 are the mouth corners, only even # points allowed
 //post: returns minimum width of a polygon (inner mouth width)
 public static double polygonWidth (double [][] points , double epsilon){

 if (points . length % 2 != 0)
 return 0;
 int left = points . length /2, right = 0, i =1;
 double distance ;
 while (left == points . length /2 && i < points . length /2){
 distance = distance (points [i], points [points . length - i]);
 if (distance > epsilon)
 left = i -1;
 i ++;
 }
 i = points . length /2-1;
 while (right == 0 && i > 0){
 distance = distance (points [i], points [points . length - i]);
 if (distance > epsilon)

C Lip feature extracting algorithm

112

 right = i +1;
 i --;
 }
 if (xDistance (points [left], points [right])>=0)
 return 0;
 return distance (points [left], points [right]);
 }
 //pre: point 0 and point length/2 are the mouth corners, only even # points allowed
 //post: returns maximum height between point pairs (inner mouth height)
 public static double polygonHeight (double [][] points){

 if (points . length % 2 != 0)
 return 0;
 double max = 0, testValue ;
 for (int i = 1; i < points . length /2; i ++){
 testValue = yDistance (points [i], points [points . length - i]);
 if (testValue > max)
 max = testValue ;
 }
 return max ;
 }
 // pre: points form a closed path
 // post: returns polygon area computed using trapezium method
 public static double polygonArea (double [][] points){

 double minY = points [0][1];
 double [] minX = points [0], maxX = points [0];
 int index = 0, nextIndex = 0, incr = 1;
 for (int i = 0; i <points . length ; i ++){
 if (points [i][1] < minY)
 minY = points [i][1];
 if (points [i][0] < minX [0]){
 minX = points [i];
 index = i ;
 }
 if (points [i][0] > maxX [0])
 maxX = points [i];
 }
 // could also just take the diff between area1 and area2,
 // but this way you can have a negative result for self-intersection
 nextIndex = nextIndex (index , points . length , 1);
 if (points [nextIndex (index , points . length , -1)][1] > points [nextIndex][1])
 incr = -1;

 double area1 = 0, area2 = 0;
 //A(trapezium) = h ((a+b)/2)
 while (points [index][0] < maxX [0]){
 nextIndex = nextIndex (index , points . length , incr);
 area1 = area1 + Math . abs (points [index][0] - points [nextIndex][0])*
 ((points [index][1] + points [nextIndex][1] - 2 * minY)/2.0);
 index = nextIndex ;
 }
 while (points [index][0] > minX [0]){
 nextIndex = nextIndex (index , points . length , incr);
 area2 = area2 + Math . abs (points [index][0] - points [nextIndex][0])*
 ((points [index][1] + points [nextIndex][1] - 2 * minY)/2.0);
 index = nextIndex ;
 }

 //the area of self-intersection is subtracted instead of added:
 //A(trapezia top) - A(trapezia bottom)
 return area1 - area2 ;
 }
 //pre: features contains the features to be written
 //post: the feature vector is written to a file
 public static void writeFeatures (String dirname , float [][] features) throws IOException {
 if (features . length > 0){
 dirname = dirname . replace ("_" , "");
 DataOutputStream dos = new DataOutputStream (
 new FileOutputStream (dirname +".dat" , false));
 //nSamples (4-byte int)
 dos . writeInt (features . length);

113

 //sampPeriod (4-byte int; 10 ms sample rate in 100 ns units)
 dos . writeInt (100000);
 //sampSize (2-byte int; #bytes per sample)
 dos . writeShort (4 * 5);
 //parmKind (2-byte int; code indicating sample kind)
 // + 4 * 8*8 + 8*8*8);
 //user defined + delta + acceleration USER_D_A
 dos . writeShort (9);

 PrintWriter out = new PrintWriter (
 new BufferedWriter (
 new FileWriter (dirname +".txt" , false)));
 //check array contents
 for (int i = 0; i < features . length ; i ++){
 out . print (i + "\t");
 for (int j = 0; j < features [0]. length ; j ++){
 out . print (features [i][j] + "\t");
 //write to HTK file
 dos . writeFloat (features [i][j]);
 }
 out . println ();
 }
 out . close ();
 }
 }
 //post: searches file system recursively for ASF files containing AAM coordinates
 public static void searchDir (File f , String name) throws IOException {

 File [] dirs = f . listFiles (new DirFilter ());
 for (int i = 0; i <dirs . length ; i ++){
 if (dirs [i]. getName (). startsWith ("T") |
 dirs [i]. getName (). equals ("Frontal")|
 dirs [i]. getName (). equals ("Side"))
 searchDir (dirs [i], name);
 else if (name. equals (""))
 searchDir (dirs [i], dirs [i]. getName ());
 else
 searchDir (dirs [i], name + "_" + dirs [i]. getName ());
 }
 System . out . println ("Processing: " + f . getName ());

 File [] files = f . listFiles (new ASFFilter ());
 //sort files by filename
 Arrays . sort (files);
 float [][] features = new float [files . length][7];
 double mean = 0, variance = 0;
 double [] scalings = new double [files . length];

 for (int i = 0; i < files . length ; i ++){

 String fullFilename = f . getCanonicalPath ()+ "\\" +files [i]. getName ();

 BufferedReader in = new BufferedReader (
 new FileReader (fullFilename));

 String line = in . readLine ();
 int numCount = 0, x = -1, y =0;
 int [] path = new int [2];

 double [][] coordinates = new double [1][2];
 StreamTokenizer st = new StreamTokenizer (in);
 //handle #points
 while (st . ttype != st . TT_EOF && numCount <5){
 st . nextToken ();
 if (st . ttype == st . TT_NUMBER){
 coordinates = new double [(int) st . nval][2];
 numCount ++;
 }
 }
 while (st . ttype != st . TT_EOF){ //read coordinates
 st . nextToken ();

C Lip feature extracting algorithm

114

 if (st . ttype == st . TT_NUMBER){
 //you encounter a new row
 if (numCount %10 == 5){
 x ++;
 //store # points for first 2 paths (lip contours)
 if ((int) st . nval < 2)
 pat h[(int) st . nval] = path [(int) st . nval]+1;
 } else if (x > -1 && x < coordinates . length){
 if (numCount %10 == 7)
 coordinates [x][0] = st . nval * 384.0
 else if (numCount %10 == 8)
 coordinates [x][1] = st . nval * 288.0;
 }
 numCount ++;
 }
 }
 in . close ();

 double [][] outer = new double [path [0]][2];
 double [][] inner = new double [path [1]][2];
 for (int j = 0; j < path [0]; j ++){
 outer [j] = coordinates [j];
 }
 for (int j = path [0]; j < path [0]+ path [1]; j ++){
 inner [j - path [0]] = coordinates [j];
 }

 //scaling factor for camera distance normalization
 double scaling ; //nose points distance
 if (coordinates . length == 25) //old model
 scaling = distance (coordinates [19], coordinates [24]);
 else //new model
 scaling = distance (coordinates [24], coordinates [25]);
 mean += scaling /(double) features . length ;
 scalings [i] = scaling ;

 //feature 1: outer lip width

 features [i][0] = (float)(distance (outer [0], outer [outer . length /2])/ scaling);
 //feature 2: outer lip height

 features [i][1] = (float)(distance (outer [outer . length /4],
 outer [3* outer . length /4])/ scaling);

 //feature 3: inner lip width
 //image 384x288, so epsilon = 1.92 & 1.44 px, .005 => .001
 features [i][2] = (float)(polygonWidth (inner , 2.0)/ scaling);
 //feature 4: inner lip height
 features [i][3] = (float)(polygonHeight (inner)/ scaling);
 //feature 5: nose/chin distance
 if (coordinates . length == 25)
 features [i][4] = (float)(distance (coordinates [17],
 middle (coordinates [19], coordinates [24]))/ scaling);
 else //new model (29 points)
 features [i][4] = (float)(distance (coordinates [27],
 middle (coordinates [24], coordinates [25]))/ scaling);
 //feature 6: polygon area of outer lip shape
 features [i][5] = (float)(polygonArea (outer)/(scaling * scaling));
 //feature 7: polygon area of inner lip shape
 features [i][6] = (float)(polygonArea (inner)/(scaling * scaling));
 }
 writeFeatures (name, features);
 //report about mean and var of the distance between nose points
 if (features . length > 0){
 for (int i = 0; i < scalings . length ; i++){
 variance += ((scalings [i] - mean) * (scalings [i] - mean))
 / (double) scalings . length ;
 }
 report = report + name + " Mean: " + mean + " Variance: " + variance + "\n" ;
 }

 }
}

