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Summary 

This thesis describes how an automatic lip reader was realized. Visual speech 
recognition is a precondition for more robust speech recognition in general. The 
development of the software comprised the following steps: gathering of training 
data, extracting meaningful features from the obtained video material, training the 
speech recognizer and finally evaluating the resulting product.  
 
First, research was done to gain insight on the theoretical aspects of automatic lip 
reading, the state of the art, speech corpus development, face tracking and feature 
extraction.  
 
Gathering training data came down to the recording and composing of a new audio-
visual speech corpus for Dutch. With frontal and side images of 70 different speakers 
recorded at a frame rate of 100 frames per second this is the most diverse corpus 
currently in existence. Analysis of the new data corpus shows an increase in quality 
compared to other corpora.  
 
Visual information is obtained by searching the video footage. Using Active 
Appearance Models, points of an a priori defined model of the lower half of the face 
are tracked over time. Based on the model point coordinates, distance and area, 
features are computed that are used as input to the speech recognizer.  
 
Training was accomplished by presenting labeled training data to viseme-based 
Hidden Markov Models that model speech production. In a few steps the model 
parameters were adjusted, so that it could be used to perform recognition of visual 
speech signals from then on. The recognizer was implemented using tools from the 
Hidden Markov Model Toolkit.  
 
The results of a visual speech recognizer based on training data from a single person 
depend on the utterance type of the unlabeled data. For the simple word-level task 
of digit recognition 78% was recognized correctly with a word recognition rate of 
68%. For letter recognition tasks it did not perform nearly as well, but considering 
the limitations that the use of visemes over phonemes imposes, these results are at 
the expected level. The data corpus and visual speech recognizer will be a valuable 
asset to future research.  
 
Karin F. Driel 
Student number: 1149784 
E-mail address: karindriel@gmail.com 
 
Thesis committee 
 
Prof. Dr. Drs. Leon J.M. Rothkrantz 
Dr. Ir. Pascal Wiggers 
Ir. Hans J.A.M. Geers 
Ir. Alin G. ChiŃu 





7 

Samenvatting 

Dit afstudeerverslag beschrijft hoe een automatische liplezer tot stand kwam. Visuele 
spraakherkenning is een voorwaarde voor betrouwbaardere spraakherkenning in de 
nabije toekomst. De ontwikkeling van deze software omvatte de volgende stappen: 
het verzamelen van trainingsdata, het extraheren van zinvolle visuele informatie uit 
de verkregen video-opnamen, het trainen van de spraakherkenner en tenslotte de 
evaluatie van het eindproduct.   
 
Eerst is er onderzoek gedaan ter voorbereiding op het liplezen. Het huidige niveau 
van automatische liplezers, spraakdatabases en methodes om het gezicht te volgen 
in een video en hier kenmerken aan te onttrekken, kwamen aan bod.   
 
Het verzamelen van trainingdata kwam neer op de opname en samenstelling van een 
audio-visuele spraakdatabase voor het Nederlands. Met opnamen van de voorkant en 
het profiel van 70 proefpersonen op een snelheid van 100 beelden per seconde biedt 
deze verreweg de meeste mogelijkheden van het moment. Uitgebreide analyse van 
de nieuwe database wijst op een sterke kwaliteitsverbetering ten opzichte van 
bestaande audio-visuele spraakcorpora.  
 
Visuele informatie wordt verkregen door het doorzoeken van videobeelden. Door 
middel van Active Appearance modellen worden de punten van een vooraf 
gedefiniëerd model van de onderste helft van het gezicht gevolgd door de 
videobeelden heen. Aan de hand van de puntcoördinaten worden afstanden en 
oppervlaktes berekend die als invoer voor de spraakherkenner dienen.  
 
Training vond plaats door de presentatie van gelabelde trainingdata aan op visemen 
gebaseerde Hidden Markov modellen die de spraakproductie modelleren. In een 
aantal stappen worden de modelparameters aangepast zodanig dat nieuwe videodata 
kan worden “gelezen” met behulp van het Viterbi algoritme.  
 
De resultaten van de spraakherkenner gebaseerd op trainingsdata van één persoon 
lopen uiteen naar gelang de aard van de te herkennen uitspraak. De telwoorden 0-9 
geven een herkenning van 78% en een nauwkeurigheid van 68%. Bij taken zonder 
grammatica van vaste lengte blijft het resultaat achter, maar uitgaande van de 
beperkingen die alleen al het gebruik van visemen ten opzichte van fonemen met 
zich meebrengt, was dit te verwachten. De data corpus en visuele spraakherkenner 
zullen voor verder onderzoek van grote waarde zijn.  
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Preface 

At the Department of Man Machine Interaction at Delft University of Technology, 
there is an ongoing project on multimodal speech recognition. For this Master’s 
project one aspect of multimodal speech recognition has been tackled, namely visual 
speech recognition. 
 
People are subconsciously lip reading all the time. This is apparent from practical 
situations – it’s easier to understand someone in a noisy bar if you’re looking at their 
face, and scientific evidence (like the well-known McGurk effect). There are some 
things we hoped to learn from this project. First of all, it would be interesting to see 
whether a computer could be taught to read lips as well as human professionals. The 
ultimate goal would be a combination of visual and acoustic speech recognition. 
Though beyond the scope of this thesis, it has the best potential to bring the 
performance of speech recognition to a level where it could be more integrated in our 
daily lives.  
 
Not to be underestimated is the amount of work involved with the processing of 
video to perform visual speech recognition. A lot of it involves manual work. First 
there was the recording of the data itself; then there was the transcription of the 
data. Then annotating of training images had to be performed by hand to train the 
tracking model, and applying the trained model also required supervision. Lastly we 
had to select the data for training the recognizer by hand, and perform some more 
manual labor while fine-tuning the recognizer. Luckily our efforts have been paid off 
with the vast audio-visual speech corpus that is now at our disposal, and the other 
results that will be discussed throughout this thesis.  
 
Visual speech recognition has some practical applications that could help the 
speaking-disabled, like my uncle who is paralyzed from the neck down. I hope my 
work has contributed to the quick realization of a real-time implementation people 
like him could benefit from.  
 
I would like to thank Leon Rothkrantz and Alin ChiŃu for their guidance, the people in 
the student lab for their friendship, my partner Hans van Gurp and my father Marijn 
Driel for their moral support and efforts to proof-read. And last but not least, I would 
like to thank all the people who agreed to become part of the new data corpus, 
especially Ank Voets who has by now sat through five recording sessions, some of 
which lasted a few hours.
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1 Introduction 

Over the years, we have seen computers become much faster and smarter. 
Computers of only a couple of years old are nothing compared to the latest ones in 
terms of computing power and graphic capabilities. This is why it is almost 
unbelievable that we keep working with the same keyboard and mouse interface that 
causes us to develop repetitive strain injury and headaches. Interfacing with a 
computer would be much more natural and healthy if we could just talk to it.  
 
So, what is stopping us from incorporating automatic speech recognition into our 
daily lives? The answer to that is the limited performance: especially when the 
environment is the smallest bit noisy, automated speech recognition does not 
achieve a perfect recognition yet. One step outside a quiet laboratory or office will 
make the accuracy rapidly degrade. At least one thing to look forward to is that 
solving the noise problem will take us one step closer to that idealistic “Star Trek” 
computer interface we all dream of.   
 
However, the options are limited. If the problem lies in the quality of the sound 
despite attempts to filter out noise, one might want to start looking at other media, 
like vision, to make recognition more robust. When people are trying to understand 
someone in a noisy environment, they subconsciously start looking at the face and 
interpret the speech information lying within. The face seems to provide a rich source 
of information about speech. Experienced speech readers do not even need sound at 
all to understand speech. Teaching a computer to read lips may provide that extra 
information channel needed to achieve robust recognition.  
 
This thesis describes how such an automatic lip reader was developed. The reader 
should keep in mind that training a speech recognizer, both acoustic and visual, is 
tedious work and a “quick fix” for any problems encountered is not realistic. With 
every change of plans data has to be rearranged and training has to be done over, 
taking hours. To train a visual speech recognizer large quantities of speaker video 
data are required. Mainly due to the storage limitations of the past, these were not 
available before. Therefore, recording training data has been an integral part of this 
graduation project. 

1.1 Applications of automatic lip reading 

The societal relevance of automatic lip reading may not be as obvious as that of 
speech recognition in general, but there are some cases where pure automatic lip 
reading is the best candidate to solve the problem. Generally speaking, a visual 
speech recognizer could tackle every speech recognition task where there is video 
but no or non-retrievable sound. An example of this is mute or deteriorated film. 
Especially extensive tasks like subtitling film archives would benefit from automatic 
speech processing as opposed to hiring a human lip reader. Figure 1.2 shows a 
similar application. 
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An automatic lip reading application 
would open up a world of opportunity 
to help the disabled. Just like the 
hearing impaired benefit from lip 
reading as a skill, automatic lip reading 
could help in training applications. For 
people who just recently lost their 
hearing and have not learned lip 
reading or sign language (see Figure 
1.1) yet, a mobile speech recognizer 
could help in daily life. While the most 
important part would be the 
recognition from sound, a lip reading 
attachment would make it robust, as 
daily life is a very noisy environment. 
Another group of disabled that could be aided by visual speech recognition are the 
speaking impaired; those who can move their lips but lost the ability to produce an 
adequate sound level could use an automatic lip reader to make themselves 
understandable by the people around them.  
 
Another opportunity lies in long-distance communication. Private phone 
conversations in public places could remain private if speakers could whisper over 
the phone. If the phone used is not a video phone, humans already have trouble 
understanding whispering over the phone. For a speech recognizer (think of 
automatic dictation applications) this would be practically impossible. An automatic 
lip reader could provide a solution in both cases. The only speech recognizer that will 
understand whispering is an automatic lip reader.  
 
Another application that pops to mind 
is video surveillance. Video recorded by 
surveillance cameras in public places, 
shops or trains, isn’t usually 
accompanied by sound. Now if the 
video is recorded at a sufficiently high 
resolution, an automatic lip reader 
could still make out what was said (e.g. 
verbal threats), providing evidence of a 
possible irregularity. If recognition is 
done live an alarm could be triggered 
and security guards could arrive at the 
scene in time. A combination of 
automatic surveillance done by motion 
detection (to detect physical 
aggression) and lip reading has the 
most potential of replacing human 
watchmen eventually.  
 
One of the major areas where a visual 
speech recognizer would be of value is 
research. It is expected that multimodal speech recognition is the key to robust 
recognition. Apart from the problems that arise when trying to combine the 
modalities, there will always be a need to objectively compare the methods used for 
video processing alone. The performance of a pure lip reader based on the 

 
Figure 1.1: Fragment of the Dutch NOS 

“Jeugdjournaal” news bulletin of July 31, 2009, 

supported by a sign language interpreter. 

(http://nos.nl) 

 

 
Figure 1.2: Zinedine Zidane headbutting Marco 

Materazzi after having been insulted during the 2006 

FIFA World Cup football final. After video evidence 

suggested that Materazzi had verbally provoked 

Zidane, three British media newspapers claimed to 

have hired lip readers to determine what Materazzi 

had said. [1]  
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techniques that are desired to be used in a bimodal recognizer, allows the evaluation 
of just that method, so other aspects of multimodal processing can be evaluated 
separately. Furthermore, from a scientific point of view it’s interesting to see whether 
it is possible to build an automatic lip reader that performs as well as a human lip 
reader.   

1.2 Problem definition 

The purpose of this graduation project was to develop a visual speech recognizer for 
the Dutch language that would preferably be able to run in real time. By making 
certain improvements like using a more extensive data corpus, we aimed for results 
that would exceed those achieved by our predecessors. 
 
A large portion of the work would involve the recording of a new data corpus 
extensive enough to train a recognizer (visual or bimodal) thoroughly. The most 
common reason for an automatic lip reader to perform suboptimal is insufficient 
quality training data being available.  
 
This project was part of the ongoing project of multimodal human computer 
interaction conducted at the department of Man-Machine Interaction at Delft 
University of Technology. Our automatic lip reader will give insight on the potential of 
the visual modality for such a recognizer.  
 
The goals we set for this project are the following: 

1. Exploring the potential of a lip reading system based on Hidden Markov 
Models 

2. Exploring the possibilities for implementing a lip reader that can be run 
real-time 

3. Evaluating feature extraction methods discussed in literature according to  
the criteria of performance, speed and speaker independence 

4. Obtaining a visual speech corpus that is sufficient in size and quality to 
train and test a pure lip reader from scratch 

5. Preparing and implementing the separate parts that make up the 

automatic lip reader (data formatting, feature extraction, language model) 
6. Evaluating the results obtained from experiments using the trained lip 

reader, according to expectations 
 
The approach we took to reach the goals we set for this project is outlined in Table 
1.1, which shows out methodology. It also includes the numbers of the chapters 
containing the results of the specific actions taken.  
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Table 1.1: Methodology 

Action Goal Chapter 

Researching related 
topics 

Getting a grasp on the theory, avoiding common 
mistakes, avoiding reinventing the wheel 

2 

Researching Hidden 
Markov Models 

Being able to define a good model, preparing for 
implementation 

3, 4 

Comparing feature 
extraction methods 

Being able to choose a good method with respect to 
performance, speed and speaker independence 

2 

Recording a new 
speech corpus 

Gathering sufficient training data to train a lip 
reader 

5 

Processing 
recordings 

Ensuring the quality of the training data 5 

Annotating video 
frames  

Training the lip tracking model, data 
parameterization of raw video 

6 

Implementing 
feature extraction 
from points 

Providing the speech recognizer with some 
meaningful speech features 

7 

Evaluating feature 
performance 

Being able to determine which part of the 
recognizer leaves room for improvement 

7 

Implementing an 
automatic lip 
reader 

Being able to determine the performance of an 
automatic lip reader following our design  

8 

Reporting 
everything into 
detail 

Enabling others to continue the work 9, 10 

1.3 Research challenges 

The scientific community faces many challenges when trying to integrate different 
modalities into speech recognition. Questions waiting to be answered are, for 
example: 
 

1. Is it possible to build an automatic lip reader comparable to or even better 
than a human lip reader? 

2. Is it possible to build an automatic lip reader that performs as well as an 
acoustic speech recognizer? 

3. In which way should we integrate the results of automatic lip reading and 
acoustic speech recognition? 

4. Can we make an automatic lip reader that performs real-time? 
5. What are the quantitative and qualitative requirements of the data we use to 

train an automatic lip reader? 
6. Can the methodology to train an acoustic speech recognizer be directly 

applied to train an automatic lip reader? 

7. Which feature extraction method should be chosen as the standard for 
automatic lip reading in general? 

 
By the end of this thesis, we will hopefully have (partially) answered some of these 
questions and have brought science that much further.  
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1.4 Thesis outline 

The structure of this thesis follows the flow of this project. The first part revolves 
around the development, the second around the realization, and finally the 
evaluation of obtained results.  
 
Development begins with the study of existing systems and theory. These, and the 
resulting design choices, are addressed in chapter 2 (Related Work). Chapter 3 
(Basics of speech recognition) explains the statistical approach of speech recognition, 
as this is also the approach that we will adopt; we discuss the theory, algorithms and 
tools. In chapter 4 (Visual speech recognition) the aspects more specific to visual 
speech recognition are looked into: we choose the speech units and make predictions 
about the performance. The result of the development phase is a set of tools, an 
approach and a model for visual speech recognition, that shows how we envision 
training and recognition. 
 
In the realization phase, the different aspects of the visual speech recognizer are 
implemented and finally linked together. In chapter 5 (Data acquisition) we describe 
how a new speech corpus was composed. The chapters thereafter explain how we 
poured this data into a format a speech recognizer can handle. Data 
parameterization starts with chapter 6 (Lip tracking), where we used Active 
Appearance Models to track points on the face, while in chapter 7 (Feature extraction) 
we explain how these points were used to extract features for training and testing 
the recognizer. In chapter 8 (Implementation) we describe how all the pieces of the 
puzzle were put together, and a functioning recognizer was realized. The realization 
phase resulted in an implementation of a visual speech recognizer, which we will 
evaluate in the final phase.  
  
Evaluation starts by analysis of recognizer performance, the results produced of 
which are described in chapter 9 (Experiments and results). In chapter 10 
(Conclusions and recommendations) we present the final findings for this research 
and make recommendations for future work. 
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2 Related work 

Automatic speech recognition has many aspects ranging from signal processing to 
probabilistic models. Some more details about speech recognition will be given in 
chapter 3. The aspects that are unique to visual speech recognition will be 
highlighted in chapter 4.  
 
All the way though this project, the available literature has helped us decide on the 
best courses of action. This chapter starts out with some definitions of recurring 
terms (2.1). Next, section 2.2 provides an overview of the current state of the art in 
visual speech recognition. Some related topics are highlighted in section 2.3.  
 
Since the bottleneck of most other automatic lip reading projects appears to be a 
lack of data, we investigated some existing data corpora to decide which one to use 
(2.4). In section 2.5 we explore different feature extraction methods that could be 
used on this data: while for audio there are pretty straightforward ways to derive 
meaningful features, for video this is not such a trivial task just yet.  

2.1 Definitions 

In this section, a few easily confusable terms that occur a number of times 
throughout this thesis are defined.  
 
Visual speech recognition 
First of all, the terms automatic lip reader and visual speech recognizer are used 
interchangeably, with automatic lip reading being the way we hope to accomplish 
visual speech recognition. “Visual speech recognizer” was chosen for the title of this 
thesis because it is more general and for “automatic lip reader” there exist different 
spellings. 
 
Visemes 
The basic units of acoustic speech that can be distinguished are often referred to as 
phonemes. Likewise, a set of visually indiscriminable phonemes can be referred to as 
a visual phoneme or “viseme”. In human lip reading, visemes are considered the 
basic information one should have at their disposal to be able to read lips. The term 
also recurs in speech therapy and speech animation.  
 
Measures for recognizer performance 
Once the output of a speech recognizer is ready, it can be compared to known labels 
to determine the “percent correct” and “percent accuracy” performance measures. [2] 
An optimal string match is found using dynamic programming, where a score is 
calculated for the match with respect to the reference and penalty values for each 
occurring error are added to the final score. The optimal string match is the label 
alignment which has the lowest possible score.  
 
Once the optimal alignment has been found, the “percent accuracy” and the 
“percentage correct” (that ignores insertion errors) can be found according to the 
number of present deletion (D), substitution (S) and insertion (I) errors, with a total 
of N sentences or words.  
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Percent Correct = 100%
N D S

N

− − ×  (2.1) 

 

Percent Accuracy 100%
N D S I

N

− − −= ×  (2.2) 

The accuracy is also referred to as word recognition rate (WRR). Also word error rate 
(WER) is used, which is equal to 1 - WRR. It is generally agreed that performance 
accuracy at a rate below 95% is not acceptable for applications.  
  
The speed measure often used to evaluate a speech recognizer is the “real time 
factor” (RTF). As long as the processing time is more than the duration of the speech 
input, the RTF is greater than 1 and the real-time requirement has not been met.   
 

processing time

input duration
RTF =  (2.3) 

2.2 State of the art in automatic lip reading 

Laying aside the problem of lip reading for a while, speech recognizers can be 
classified according to their vocabulary size or input speech type: word-level (single 
words), sentence-level (according to a grammar), or continuous (ongoing signal). 
Word-level speech recognition is the easiest task, while continuous is the hardest. In 
continuous speech recognition the task of identifying meaningful chunks is left up to 
the recognizer. This imposes a need to detect the onset and offset of speech. 
Sentence level recognition is the minimum requirement for simple dialogue systems.  
 
The state of the art in automatic speech recognition is at the level of continuous 
speech recognition for applications like dictation systems (even though they require 
speakers to work in a noise-clean environment, have a profile that matches the 
training data and have opportunity to perform speaker adaptation). For automatic lip 
reading, we noticed that current systems perform at no more than word level. The 
reason for that is probably that most of them exist only as a proof of concept for a 
certain feature extraction technique or to evaluate the quality of an audio-visual 
speech corpus. For this reason those existing lip reading systems will be discussed in 
the relevant sections. The next section is about some PhD work done on automatic 
lip reading.  
 
Previous work 
Jacek Wojdeł, who was a PhD student at Delft University of Technology, researched 
visual speech recognition for his promotion some years ago. His work can be seen as 
preparation for our project. The approach he took was also similar. In this section we 
will discuss his findings. [3]  
 
His work began with comparing different feature extraction methods and developing 
his own, Lip Geometry Estimation (LGE), which will be discussed in section 2.5.3. He 
then explored the possible approaches to building a recognizer. A type of artificial 
neural network that is able to handle the temporal dimension is considered, but the 
final choice is the Hidden Markov Model (HMM), which is a statistical model that can 
model speech quite naturally.  
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Strings of digits (limited vocabulary) were used in a lip reading experiment. Binding 
the number of digits per utterance with a grammar improved the accuracy results 
significantly, probably due to an undertrained silence model. Using intensity features 
along with LGE boosted the results even more. However, training on data from five 
different people as opposed to a single person brought the recognition rate down 
significantly. This suggests that the features are not speaker-independent after all.  
 
Some of his work involved lip reading options for continuous speech. To perform 
onset/offset detection an Artificial Neural Network (ANN) was used. Results were 
verified using the presence of audio. A problem was the difference in timing between 
the video and audio channels. Vowel/consonant discrimination could also be done 
using an ANN.  
 
To explain these results, the disadvantages that are implied by the use of visemes, 
were given as a possible reason. A second reason for the lack of performance might 
have been that the viseme models for “silence” were undertrained. This could be 
solved by using a larger speech corpus. Also, a larger HMM could be used, but the 
more free parameters an HMM contains, the larger the data set needs to be in order 
to train them properly. Because of the temporal dimension, other, trajectory-based 
models might be better suited than HMM to model visual speech.   
 
Eventually, the project was dropped due to unsatisfactory performance and 
continued as a multi-modal project, for fusion of audio and visual media. The lip 
reader they wanted to use for late integration feature fusion reached a performance 
of only 10%. One reason for this might be that coarticulation between visemes is 
more evident than for phonemes. To model this coarticulation, a triphone model 
would be needed where a monophone model would be sufficient for phonemes (see 
section 8.2 for details). There wasn’t enough data to train a larger model, however. 
The other reason is the lack of context. Context information is essential for 
continuous speech recognition, especially for a lip reader that is theoretically always 
outperformed by an acoustic speech recognizer (see section 4.2.2). 
 
The final conclusions of this work are the following: 

• The expected performance of lip reading lies far below that of acoustic speech 
recognition 

• Although a small data corpus was recorded, a bigger one would be needed for 
further research 

• The feature extraction method that will probably be most successful is 
geometry based (e.g. LGE), extended with intensity features  

• Search has to go on for a robust feature extraction method that is invariant to 
different speakers, orientation, lighting conditions and occlusions. 

2.3 Related topics 

This section will scratch the surface of some topics that are related to automatic lip 
reading. We will talk about speech animation, sign language recognition and audio-
visual speech recognition.  



2 Related work 

22 

2.3.1 Speech animation 
Lip synchronization of computer generated 
talking faces often shows an amazing accuracy. 
Although the 3D models of the lips used for 
these cannot be mapped directly onto the 
typical 2D video footage in actual data corpora, 
it’s interesting to see the parallels between 
both areas.  
 
Applications of speech animation can be found 
in entertainment and long-distance 
communication. In entertainment it is used to 
make virtual actors of movies and video games 
“talk” (see Figure 2.1). In communication, 
talking faces can provide an extra medium 
where bandwidth costs make an actual video 
phone infeasible. A talking head is then made 
to synchronize with the speech. In a similar 
application, talking faces could enable hearing-
impaired to talk on the phone, be it with a 
small delay.  
 
Generally, “visemes” (in the sense of mouth 
positions) are used to provide the key frames 
for synthesis of visual speech. Research topics 
in speech animation are modeling the speech 
apparatus accurately, lip synchronization, and 
interpolation between animation key frames. Examples of speech animation software 
are Baldi (CSLU toolkit, the more recent version is known as CUAnimate), Xface 
(http://xface.itc.it), and many more.  

2.3.2 Sign language recognition 
In much the same way as automatic lip reading, sign language can be recognized 
using an HMM implementation, as seen in [4]. Here visual speech recognition is 
applied to sign language instead of the face. A practical difficulty is the segmentation 
of the video; the position of the hands needs to be clear. This can be done by 
applying a color filter for skin tone. An advantage of using sign language over normal 
speech is that sign language is especially designed for the visual medium, making it 
potentially much more accurate. Although the applicability in daily life is limited - 
most people don’t even know sign language; much less produce it - understanding 
the deaf without knowledge of sign language is made possible. 
 

2.3.3 Audio-visual speech recognition 
The type of multimodal speech recognition that appears to have the most potential is 
audio-visual speech recognition, because sound and vision are the two most 
prominent channels through which speech is communicated. Often the chosen 
approach is to use the video signal to enhance the results of acoustic speech 
recognition.  
 
At the time of the work described in section 2.2, some additional work was done on 
audio-visual speech recognition [5]. A bimodal speech recognizer needs to combine 

 
Figure 2.1: Viseme set of Annosoft Lipsync 

Tool 3.0 (http://www.annosoft.com) 
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the two modalities. Ways to do this are early integration (combining the audio/video 
features), late integration (combining output of 2 recognizers) or intermediate 
integration (the road in-between). Both early and intermediate recognition requires 
an HMM to be trained on both media.  
 
It was decided to extend a speech recognizer trained on the Polyphone speech 
corpus [6] with a state-synchronous multi-stream HMM architecture. The Polyphone 
recognizer was first trained using the audio from the audio-visual speech corpus to 
adjust to the better audio quality. The lip reading was added using feature fusion 
(early integration) and the system was retrained using bimodal input. In the end, the 
lip reading originally did not boost the performance, but when the signal-to-noise 
ration (SNR) of the signal was less than 8 dB, it helped the system cope.  
 

 
Figure 2.2: How a typical audio-visual speech recognition (AVSR) system benefits from visual speech 

recognition (VSR) at low signal-to-noise ration (SNR) for audio, compared to normal automatic speech 

recognition (ASR).  [7] 

2.4 Overview of audio-visual speech corpora 

One of the main bottlenecks in speech recognition, and even more so in visual 
speech recognition, is the lack of a sufficiently large and representative data corpus. 
In our case, we would obviously need a speech corpus to contain video, but in 
evaluating a speech corpus with the application of automatic lip reading in mind, 
there are several other criteria that are not to be overlooked. Some of the important 
issues spotted were the resolution of the video recordings, the video sample rate, the 
richness of the language pool and last but not least the size of the corpus. All of 
these need to be considered to evaluate a data corpus.  
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Table 2.1: Overview of existing speech corpora according to [8]  

 

2.4.1 Criteria to evaluate speech corpora 
The first criterion to evaluate an audio-visual speech corpus is the language of a data 
corpus. As much as one would like to, speech data of one language cannot be 
mapped onto, added to or transferred to a data set of another language. While there 
are a number of English speech corpora that include video, for Dutch there is only 
DUTAVSC, the Dutch Audio-Visual Speech Corpus, recorded at this university several 
years ago. [9] 
 

Corpus Language Sessions Number of 
speakers 

Audio Quality Video Quality Language 
Quality 

Stated 
purpose 

TULIPS1 English 1 12: 9 male, 3 
female 

11.1kHz, 8bits 
controlled 

audio 

100x75, 8bit, 
30fps mouth 

region 

first 4 digits in 
English 

small 
vocabulary 

isolated words 
recognition 

AVletters English 1 10: 5 male, 5 
female 

22kHz, 16bits 
controlled 

audio 

80x60, 8buts, 
25fps mouth 

region 

the English 
alphabet 

spelling English 
alphabet 

AVOZES English 1 20: 10 male, 
10 female 

48kHz, 16bits 
controlled 

audio 

720x480, 24bits, 
29.97fps  entire 
face, stereo view 

digits from ‘0’ to 
‘9’ continuous 

speech 
application driven 

utterances 

continuous 
speech 

recognition for 
Australian 

English 

CUAVE English 1 36: 19 male, 
17 female 

44kHz, 16bits 
controlled 

audio  

720x480, 24bits 
29.970fps 

passport view 

7,000 utterances 
connected and 
isolated digits 

continuous 
speech 

recognition 

Vid-
TIMIT 

English 3 43: 24 male, 
19 female 

32kHz, 16bits 
controlled 

audio  

512x384, 24bits, 
25fps upper body 

TIMIT corpus 10 
sentences per 

person 

automatic lip 
reading, face 
recognition 

DAVID English 12 258: 132 
male, 126 

female (in 4 
groups) 

? entire face, upper 
body, profile view 

multi corpora: 
controlled and 

degraded 
background, 

highlighted lips 

vowel – 
consonants 
alternation, 

English digits 

speech or 
person 

recognition 

IBM 
LVCSR 

English 1 290 - 
unknown 
gender 

22kHz, 16bits  
? 

? connected digits 
isolated words 

audio-visual 
speech 

recognition 

AVICAR English 5 100: 50 male, 
50 female 

48kHz, 16bits, 
8channels 5 

levels of noise 
car specific 

4 cameras from 
different angles, 
passport view car 

environment 

isolated digits, 
isolated letters, 

connected digits, 
TIMIT sentences 

speech 
recognition in a 

car 
environment 

DUTAVSC Dutch 10 to 14 8: 7 male, 1 
female 

48kHz, 16bits, 
controlled 

audio  

384x288, 24bits, 
25fps lower face 

view 

spelling, 
connected digits, 
application driven 

utterances, 
POLYPHONE 

corpus 

audio-visual 
speech 

recognition, lip 
reading 
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The size of the corpus in terms of number of recording subjects is also important. 
Especially if one wants to make a speaker independent recognizer, a diverse group of 
subjects is key. It is also important that the group of subjects is composed of both 
males and females. If either group is underrepresented, it might lead to bad 
recognition with respect to that group. This is especially important for audio, since 
female voices are generally higher pitched. For lip reading we expect some variance 
in the measures of the facial features.  
 
Other important factors are the quality of audio and video. Due to the requirements 
on video storage it might be tempting to compress the data heavily, introducing 
artifacts. But for automatic lip reading computer vision has to be performed, so the 
video should be of a decent quality concerning lighting and resolution. In section 
2.4.4 we will go into the frame rate issue more deeply. It is one of the main reasons 
why we decided to devise a new data corpus.  
 
Another thing is the language coverage of the corpus. Most audio-visual corpora 
shown in Table 2.1 are meant to be used for simple word-level recognition tasks. We 
would like to see a corpus that can also be used for continuous speech recognition, 
or natural language. Also, the corpus had to be available in order for us to be able to 
use it in our research. Some corpora were available to us online (e.g. VidTIMIT 
(http://www.itee.uq.edu.au/~conrad/vidtimit)), but after consideration we decided 
that the video quality wasn’t good enough (especially the resolution of the mouth). 
Another available corpus was DUTAVSC, which we will elaborate on in section 2.4.3.   

2.4.2 Storage of visual speech data 
An obstacle those wanting to implement visual speech recognizers often seem to run 
into is a lack of training data. However, there is a reasonably explanation for this: 
the amount of disk space needed to capture and store such a corpus. In comparison, 
the entire Polyphone corpus (1994, [10]) is 330 MB. The size of DUTAVSC (2001) is 
under 10 GB. The size of the new data corpus we will discuss in chapter 5 (2008), is 
1580 GB. In short, the advancement in computer technology only recently enabled 
us to develop a larger data corpus.   

2.4.3 Dutch Audio-Visual Speech Corpus 
The DUTAVSC speech corpus is a small audio-visual data corpus that was recorded 
for the previous project. Therefore, we had full access to it. DUTAVSC stands for 
Dutch (or Delft University of Technology) Audio-Visual Speech Corpus  [9] and 
contains 8 sessions of 8 different people speaking. This amounts to a total of over 4 
hours of constant recordings (between 25 and 45 minutes per subject). The recorded 
subjects are all native Dutch speakers: 7 male subjects and one female.  
 
The language covered by the data corpus consists of words and sentences. Per 
prompt set, of which between 10 and 14 were gathered for each subject, there were 
the utterance types given in Table 2.2 and illustrated in Figure 2.3. For some prompt 
sets subjects were asked to speak fast, speak extra clearly, or whisper.  
 
The recording subjects were asked to read prompts shown on the screen of a laptop 
in front of a digital video camera. The operator controlled the progress of the 
prompts. The camera used was a SONY TRV20E digital camcorder on standard DV 
tapes equipped with Cassette Memory chips, placed on a tripod. An external 
computer microphone was used, which was hung on the speakers' neck. The audio 
was recorded at using a sampling of 44 kHz with 16 bit resolution. For use in these 
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experiments the audio files were converted to 8 bit A-law format. The video was 
sampled at 25 Hz. 
 
Table 2.2: DUTAVSC prompt set 

Number Utterance type 

1 Sentence of 10 short unrelated words 

10 Phonetically rich sentences from Polyphone 

3 Random digit sequences of length 10 

4 Spelled words 

5 Sentences with fixed grammar (see Figure 2.4) 

 
Each of the recorded sessions was edited using video editing software and cut into 
smaller sequences. The video sequences were then converted from a standard DV 
format to MPEG1 stream. Moreover, from all of the scenes audio data was extracted 
and saved externally. Furthermore, the proper transcriptions of the utterances were 
added. 
 
After the recordings were made, data from 5 out of 8 subjects was transcribed and 
used for experiments on audio-visual speech recognition. [5] From each subject 4 or 
5 sessions were used. This data set was split in a training set of approximately 500 
utterances from all speakers and a test set containing 30 utterances from all 
speakers.  
 
During our own project we transcribed the data of the remaining 3 subjects, with the 
initial purpose of using it for our project. The dataset will be made available online 
for researchers throughout the world.  
 

 
Figure 2.3: Example prompts illustrating language coverage of DUTAVSC according to [5] 
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$number10 = twee | drie | vier | vijf | zes | zeven  | acht | negen; 
$number20 = tien | elf | twaalf | dertien | veertie n | vijftien | zestien | zeventien | 
achttien | negentien; 
$number100 = [(1 | $number10) en] (twintig | dertig  | veertig | vijftig | zestig | 
zeventig | tachtig | negentig); 
$number =  
 [$number10] honderd [en] ($number100 | $number20 |  $number10 | 1) |  
 [$number10] honderd | 
 $number100 |  
 $number20 |  
 $number10 ; 
$digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9; 
$amount = $number (euro | euro's) | een euro | 1 eu ro; 
$greeting = goedemorgen | goedemiddag | goedenavond ; 
$please = alstublieft | alsjeblieft; 
$want = wil | wilde | wou;  
$type = [prive] [bank] rekening; 
$account =  
 [mijn] $type [nummer] $digit $digit $digit $digit $digit $digit $digit $digit | 
 (mijn | m'n | een) $type; 
$action =  
 $amount van $account [naar $account] overmaken |  
 $amount op $account storten |  
 $amount storten op $account |  
 $amount opnemen van $account | 
 $amount van $account opnemen| 
 een [nieuwe] $type openen | 
 $account sluiten; 
([$greeting] ik $want [graag] $action [$please] |  
 [$greeting] ik ($want | zou) $action graag |  
 [$greeting] ik zou graag $action [$please])  

 
Figure 2.4: Telebanking application grammar in EBNF used to generate prompt for DUTAVSC [5] 

2.4.4 Video frame rate issues 
One of the main reasons why we decided to record a new data corpus is the poor 
coverage of visual speech by traditionally used video sample rates. For the corpora in 
Table 2.1, audio was sampled at around 48 kHz, which results in 100 Hz once feature 
extraction is performed using MFCC with a Hamming window of 30 ms, while video 
was recorded at a frame rate of 25-30 Hz. For a human observer, 25 frames per 
second is assumed to be sufficient to perceive fluent motion [11]. However, human 
lip readers benefit from higher frame rate [12], so it can be assumed that a machine 
lip reader would as well.  
 
In audio-visual speech recognition, one tries to merge the auditory and visual 
channels. If the sample rates for the auditory and visual channels are not equal, they 
have to be synchronized. This can be done by interpolation or copying video frames. 
This is without taking into account that for the auditory speech units and their visual 
counterparts, although dependent, their timing may be off: visual evidence of sound 
production may show before the sound is heard. [13] 
 
Another problem lies in the model one would like to impose on the data. Figure 2.5 
shows the duration of a great number of visemes appearing in some speech 
fragment. For DUTAVSC, the video was recorded taking 25 frames per second, so the 
majority of visemes (the visual counterparts of phonemes as will be discussed in 
chapter 4) occupy 2-3.5 time frames (0.08-0.14 seconds). This is troublesome, 
because Hidden Markov Models that represent a speech unit should have at least the 
as many states as the number of time frames required for the shortest instance of 
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that speech unit. As seen in the figure, the majority of the speech units cannot be 
modeled by an HMM with 3 states or less.  
 

 
Figure 2.5: The number of time frames per viseme, in case of fast speech rate based on analysis of 

DUTAVSC and artificial data [14] 

 
A study was done to see which sample rate would be needed to capture all speech 
information in a video signal [14]. The lip reading accuracy is estimated based on the 
Root Mean Square Deviation measure.  
 

( ) ( ) ( )( )2ˆ ˆ ˆRMSD MSE Eθ θ θ θ= = −  (2.4) 

Both real high-speed data and synthetic data generated using CUAnimate (CSLU 
Toolkit) were analyzed using two types of features; mouth width and height, and 
optical flow. The conclusions with respect to speech rate are that the gain on low 
speech rate is not significant enough to justify the extra use of resources implied by 
recording at high speed. But when the speech rate increases, a recording rate of 24 
to 30 frames per second is definitely insufficient.   

2.4.5 Using side view images 
In most work, we see visual features being extracted from images of the speaker 
taken from the front. There are however some possible applications in which the 
camera is not positioned directly in front of the speaker. Mapping identified face 
points on a 3D model of a human head for example, would require more than just 
the front view. Also, automatic lip reading from a telephone would almost certainly 
not result in the front view. Besides, it is not impossible to read lips from another 
viewpoint. Humans for example are very much capable of it.  
 
Several experiments have been conducted to decide the success of features 
extracted from profile view video, for example [15]. Here, they extract simple 
geometric features from front (upper lip height, lower lip height, and lip width) and 
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profile view (maxima of the face contour resulting in both lips, nose and chin) and 
compare them. The conclusion is that profile view features (WRR: 40%) perform 
about 10% better than front view features (WRR: 30%).  
 
In [16] an experiment is described where optical flow features extracted from side 
images are used in audio-visual recognition. They don’t say anything about the 
individual performance of the lip reading, but the combination is more robust against 
noise.   

2.4.6 Conclusion 
After analysis of existing speech corpora, we arrived at the conclusion that none of 
them were sufficient to meet our goals and that recording a new data corpus was 
required. The new speech data corpus received the code name New DUTAVSC.  
 
The recording of New DUTAVSC had to be carefully prepared. Because of the scale of 
the new corpus we needed to make sure that all material would be gathered in a 
correct way. The new corpus would have to follow the quality requirements we 
gathered after the research done on other speech corpora; a high frame rate, 
capturing of both frontal and profile view of the face and a rich utterance pool fit for 
continuous speech recognition experiments. Furthermore, we decided that it would 
be useful if people would be recorded at both normal and fast speech rate, and 
whispering (instead of low speech rate, as it appears to be more natural).  
 
We decided to record at a frame rate of 100 Hz, which would give four times as 
much speech unit coverage as for DUTAVSC, which as recorded at 25 Hz. While one 
might decrease the frame rate of a recording during analysis, it is not possible to add 
data that was never recorded.  
 
For our new data corpus, we decided to capture both frontal and profile views of the 
lower half of the face. This will keep all options open for mapping onto and 
recognition from a 3D model of the frontal hemisphere of the face, and any other 
research people might think of.  

2.5 Methods for feature extraction 

One aspect none of the existing visual speech recognizers have in common is their 
feature extraction method. Computer vision techniques from a wide range of origins 
can be applied to this task. Feature extraction is probably also the most important 
part of the scientific endeavor and thus the most visible one with the most 
development. The best feature extraction method has yet to be determined and in 
many cases seems to depend on the application.  
 
Feature extraction for visual speech often comprises two steps: locating the face and 
mouth and then extracting the actual features used for classification. Since the 
nature of the features that can be extracted depends heavily on the representation of 
the face after localization, these two problems have to be seen as one approach. 
That is why we have taken tracking and feature extraction together in this section.   

2.5.1 Classification of feature extraction methods 
Feature extraction needs to be performed for two reasons:  
1. to reduce the dimensionality of the classification task,  
2. to capture the relevant information about the process being modeled. 
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We will use the categorization introduced by a paper on active shape models by 
Luettin et al. [17] Two main approaches for extracting speech information from 
image sequences are the image-based approach and the model-based approach. 
Combinations of these are also widely used.  
 
In the image-based approach, the image intensities are preprocessed and then used 
as the feature vector. Preprocessing normally consist of filtering and dimension 
reduction. The advantage of this approach is that no data is thrown away. 
Disadvantage is that the data is not normalized and the high dimensionality and high 
redundancy of the feature vector. The data driven approach does not use any 
previously defined model of the lip area and attempts to capture information based 
on the data alone. An example is optical flow analysis, which only uses the motion of 
an image sequence. Also mentioned is the processing of raw data which preserves a 
lot of details about the speaker like skin textures, but this only makes sense for 
speaker recognition, not lip reading.  
 
In the model-based approach, a model of the visible speech articulators, mainly the 
lip contours, is built and its configuration is described by a small set of parameters. 
The advantage of the model-based approach is that important features are 
represented in a low dimensional space and are invariant. A disadvantage is that a 
particular model may not consider all relevant speech information. The main difficulty 
in the model based approach is to build a model which represents the lip shape 
efficiently and which is able to locate and track the lip contours of different speakers 
and under different illumination conditions. The model-based approach seeks to first 
make a model of the features of the face that could contain speech, allowing for a 
compact notation. It is difficult to come up with a generic lip model though. The 
feature set then consists of a set of parameters for such a model. 

2.5.2 Optical flow analysis 
Optical flow is a data driven approach to video tracking and feature extraction. It is 
used widely in video compression standards. A common definition of optical flow is 
“the distribution of apparent velocities of movement of brightness patterns in an 
image”. From the differences between subsequent images, a guess is made about 
the movement between images, resulting in a grid of motion vectors. Video 
compression can then be accomplished by storing just the starting image and the 
motion vectors.   
 
A motion field of this kind contains one motion vector for each block of pixels. Optical 
flow can also be used as a source for speech features. After localization, only the 
motion field around the mouth is considered.   
 
There are many algorithms for optical flow recovery differentiated by the 
assumptions taken to alleviate the mouth cavity problem (sometimes the mouth is 
open, sometimes it is closed). However, the most used and accurate is the algorithm 
developed by Lucas and Kanade. [18] 
 
Optical flow has been applied successfully to visual speech recognition. The optical 
flow features directly recover the motion information apparent around the speaker’s 
mouth. The idea is to split the region of interest into a number of interesting zones, 
then compute and statistically describe the optical flow in each zone. It was shown 
that the motion vectors are better at describing the mouth movement than the delta 
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and acceleration of static features. However, it can be very slow, especially when the 
number of chosen motion vectors is very high.  

2.5.3 Lip geometry estimation 
Lip Geometry Estimation is a combination of the image-based and the model-based 
approach. LGE was designed by Jacek Wojdeł to obtain robust lip features [19]. One 
advantage is that no geometrical lip model needs to be defined in advance. In this 
approach, the geometry of the mouth is represented by an estimate of some of its 
statistic properties, making it insensitive to noise and personal characteristics of the 
speaker. 
 
With Lip Geometry Estimation, two types of features are computed; geometric 
features and features based on area. Geometric feature extraction starts by 
identifying the region on interest by color filtering the image to locate the lip pixels. 
Hue, hue-value, grayscale, pseudo-hue histogram, and simple artificial neural 
networks based on different color spaces were tried. The best results were obtained 
with RGB based neural networks. More statistical methods were used to further 
reduce the artifacts of the filtered image (outliers). 
 
After that, the center of gravity of the lip pixels is used as the center point around 
which the image is transformed into polar coordinates. The resulting intensity 
function has two interesting properties; its conditional mean (thickness of the lips) 
and variance (distance from the center of the mouth) for specific angles, thus 
describing the shape of the lips: 
 

( ) ( ) ( )( ), cos , sincenter centerJ r I x r y rα α α= + +  (2.5) 

 
The formula to calculate the mean from equation (2.5): 
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The formula to compute the variance from equation (2.5): 
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Sampling this function in 18 predefined directions provides the geometrical features. 
The feature set can be extended by adding area features to obtain better recognition 
results. These features are based on the visibility of the teeth and tongue in a video 
frame. To determine the area occupied by the teeth, a color intensity filter is simply 
used on the region of interest (bright pixels are probably the teeth). The tongue is 
about the same color as the lips, but using an intensity filter to find the mouth cavity 
area (which is dark) and comparing it to the full area of the lips, the area occupied 
by the tongue can still be computed. Besides the areas, also the position of their 
centers of gravity relative to the center of the mouth are added to the feature vector, 
which ultimately forms the input to an artificial neural network or Hidden Markov 
Model. Including these intensity features increased performance from 60% to almost 
80% for simple recognition tasks.  
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Although this method is supposedly speaker-independent, recognition experiments 
done using LGE decreased in performance when recordings of multiple people were 
used for training. Reasons for this could be that the method may not be robust to 
lighting conditions, occlusions and variations skin tone and presence of facial hair. 
We also do not see how it could handle lip shapes that also vary per person.  
 

 

 
Figure 2.6: Lip geometry estimation applied on a video frame [3] 

2.5.4 Active Shape Models 
This approach is model-based but the training phase can be considered image-based. 
Active Shape Models are statistical models that approximate the shape of an object. 
It is used in computer vision to locate objects in new images. This is done by 
iteratively reforming the model, but with the constraint to vary only in ways seen in 
a training set of labeled examples. The algorithm makes use of the appearance of an 
image by assuming the points lie on edges.  
 
Going from an initial estimate for the pose and shape parameters (e.g. the mean 
shape), a variant on the Expectation Maximisation algorithm is applied. The shape is 
iteratively updated as follows:  

• Look along the normals through each model point to find the best local match 
for the model of the image appearance at the landmark (e.g. strongest 
nearby edge)  

• Update the pose and shape parameters to best fit the model instance to the 
found points  

• Repeat until convergence  

This method has been applied successfully to lip reading. Luettin et al. [17] describe 
a model-based speech reading system where a model of the lips is constructed from 
a training set. The model is used to subsequently locate, track and parameterize lip 
contours in image sequences. These are the lip shape features that are handed to a 
HMM modeling visual speech.  
 
Active shape models are flexible models which represent the boundary or other 
significant location of an object by a set of labeled points. ASMs use a priori 
knowledge about shape deformation from the statistics of a training set which was 
labeled by hand. PCA is used to map the main modes of shape variation into a linear 
subspace. Any shape can then be approximated by a linear combination of the 
“mean” shape and the first few modes of variation.  
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The parameters describing the shape of the lips are extracted at each time frame 
and used as feature vectors. They are invariant to scale, rotation, translation and 
illumination (parameters associated with these are not used) and can directly be 
used by the recognition network. Much speech information is contained in the 
dynamics of the lip movement rather than the actual shape. Therefore the delta 
shape parameters are added as features. Also the delta scaling parameter was added, 
even though scaling varies per speaker. Visual speech is modeled by representing 
each utterance as a sequence of visual speech vectors. Their emission probabilities 
are modeled by continuous Gaussian distributions and temporal changes are 
modeled by HMM.  
 
They achieved a 85% recognition rate by using whole-word HMM with 5 or 6 states 
with the TULIPS1 corpus (see Table 2.1), which contains just the first four digits, but 
of which it is known that untrained humans performed at a word recognition rate of 
90%, while trained lip readers perform at 95%. The nicest part is that these features 
are speaker-independent.  

2.5.5 Introducing Active Appearance Models 
The Active Appearance Model (AAM) is a generalisation of the Active Shape Model 
that uses all texture information of an image, instead of just the edges. The ASM 
essentially seeks to minimize the distance between model points and the 
corresponding points found in the image, whereas the AAM seeks to minimize the 
difference between the synthesized model image and the target image. 
 
Because of this, AAMs have the following advantages over Active Shape Models: 

• It is more robust because it explicitly minimizes texture errors.  
• It takes advantage of all the grey-level information available across an object, 

making it more reliable. 
• A convincing model can be built with a relatively small number of landmarks. 

Any extra shape variation is expressed in additional modes of the texture 
model. The ASM needs points around boundaries so as to define suitable 
directions for search.  

 
Both methods have the drawback that an amount of labeled training examples is 
required to build a good model. They have the advantage that they are well suited to 
track objects through image sequences, using the previous frame as initiation of the 
next frame. This way only a few iterations are required to lock on.   
 
We ended up using this method for mouth tracking because of its speed, robustness 
and convenience. More will be explained about Active Appearance Models in chapter 
6.  

2.5.6 Conclusion 
After researching these methods (and seeing some of them put to action), there 
were some criteria that made up our mind about which technique to use for our goals. 
Feature extraction can be a real time bottleneck in an automatic lip reader that is 
meant to run live. Especially in a data driven (and thus computationally expensive) 
approach like optical flow this proved to be true. The more motion vectors were used, 
the worse the performance became. For the other method that works without a 
predefined model, LFG, the performance, although better than for OF, is still not that 
good because still whole images are processed each time step.  
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For the model-based point tracking methods, ASMs and AAMs, the difference was 
that for AAM fewer landmark points were required to build a model. Because of the 
considerable work required to get reliable image labeling, this is an advantage. 
Furthermore, there was an implementation readily available [20], which would save 
implementation time. Point tracking proved to be faster than the other methods.  
 
Other ways we explored to perform data parameterization are optical flow and lip 
geometry estimation. Neither were as fast as AAMs, and because they were not 
based on point tracking resulted in many more model parameters (which would 
require more training data to train properly).  
 
The reasons why we choose to use Active Appearance Models as our method for 
point tracking are the promised speed and robustness of the tracking. There was also 
an implementation readily available to prove this point. It was faster than other 
investigated methods for data parameterization. 



 

35 

3 Basics of speech recognition 

How does one build an automatic speech recognizer? While this may not have been 
trivial question in the past, today a standard approach exists. The purpose of this 
chapter is to give a basic introduction to the theory and techniques that are usually 
applied to speech recognition problems. For automatic lip reading, this basic 
approach is the same. Specific aspects of visual speech recognition will be discussed 
in chapter 4. 
 
In section 3.1 the problem of language modeling, which is fundamental to speech 
recognition, is introduced. In section 3.2 we discuss the application of Hidden Markov 
Models (HMM) to speech recognition. Training (3.3) and recognition (3.4) using these 
Markov models are discussed after that. In section 3.5 we talk about acoustic 
modeling in some more detail. In section 3.6 we introduce the tool we used to 
implement our automatic lip reader: the Hidden Markov Model Toolkit (HTK).  

3.1 Statistical speech recognition 

In the past, there have been different approaches to speech recognition. Artificial 
intelligence techniques such as expert systems, pattern matching and neural 
networks have been applied with mixed results. To date, the most successful 
approach appears to be the statistical one. Statistical speech recognition is based on 
the fact that words, or sub-word units like phonemes, are mutually dependent. The 
probability that certain words are observed given the previous words, can be 
captured in a language model.  
 
According to this approach, the problem of speech recognition can be solved if the 
most likely sequence of (sub) words W given an observation sequence O is found, 
which is given by equation (3.1). 
 

( )ˆ arg max |
W

W P W O=  
(3.1) 

 
In this equation, P(W|O) is the probability of a word sequence w given observation 

sequence O. The word in W for which this probability is maximized is Ŵ , the most 

likely utterance. This is however not directly computable, but using the Bayes rule 
this formula can be rewritten as equation (3.2). 
 

( ) ( )ˆ arg max |
W

W P W P O W=  
(3.2) 

 
Here, P(W) is the a priori probability that the word string W is uttered, called the 
language model and P(O|W) is the probability that when a (sub)word string W is 
uttered evidence O will be observed, called the likelihood. P(O), which would appear 
in the denominator after application of the Bayes rule, can be disregarded because of 
the properties of the maximum operation.  
 
The language model P(W) should provide a way to calculate the probability that the 
(sub)word sequence W will be uttered in the language as a whole. For a single word 
wi the probability depends on all previously recognized words. The bigram grammar 
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provides a simple and effective method to calculate this probability using the 
following equation:  
 

( ) ( ) ( ) ( )1 2 1 1| ... |n nP W P w P w w P w w −=  (3.3) 

 

The probabilities ( )1|i iP w w − can easily be estimated by counting the occurrence of 

each word pair in a representative and preferably huge (text-based) data corpus. 
Bigrams assume the current word only depends on the previous word. A better 
approximation of the language could be obtained by extending this to n-gram 
grammars that depend on n-1 previous words (trigrams or more), but apart from 
needing an even larger data corpus to train it properly, the most widely used 
algorithm for recognition, Viterbi, discussed in section 3.4, is unable to work with 
temporal dependencies exceeding bigrams.   
 
A language model like n-grams is only required for continuous speech recognition 
that can recognize natural sentences. If the data consists of separate words or is 
bound by a fixed grammar, a simpler language model can be used.  
 
In case of acoustic speech recognition, the likelihood P(O|W) is often called the 
acoustic model. It determines what sounds or observations will be produced when a 
given string of words is uttered. One way to model this is by using Hidden Markov 
Models.  

3.2 Hidden Markov Models 

The Hidden Markov Model (HMM) is a powerful mathematical tool to model time 
series. It is a finite state machine in which the system being modeled is assumed to 
be a Markov process. The state sequence however cannot be directly observed. Apart 
from state transition probabilities, an HMM also has emission probabilities, which 
means that for the same state sequence, numerous observation sequences are 
possible. The HMM can model the varying duration that is common for speech units 
well.   
 
 

 
Figure 3.1: A standard three-state Hidden Markov Model, with non-emitting states 1 and 5, and 

emitting states 2, 3, and 4. Emitting states are associated with an output distribution bi [21] 

 
A Hidden Markov Model (see Figure 3.1) consists of a number of states, a number of 
state transition probabilities stored in a transition probability matrix A, and output 
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distributions bt (ot) for each emitting state. For an HMM to learn all of these 
probabilities, is not a trivial task: it can only be estimated. An algorithm that does 
just that will be explained in the next section.  
 
It should be clear how an HMM can generate an observation sequence O by 
traversing states, but in speech recognition, we already know the observation 
sequence and are only interested in the underlying process that generated those 
observations, i.e. the (sub)word sequence. Because we are using a Hidden Markov 
Model the state sequence is not directly visible to us though. In fact, there can be 
many solutions to the problem we want to solve. The only approach we can take 
here is trying to find the most likely underlying state sequence given the 
observations made.  
 
Although the state transition probabilities and emission probabilities of an HMM can 
be estimated by an algorithm, the topology of an HMM can only be designed by hand. 
The architecture of the HMM to use depends greatly on the primitives of speech one 
wants to recognize, and the available training data. If words are used as speech 
units and each word is represented by one HMM, within-word co-articulation effects 
are well modeled, but training data will be required for every word, and retraining is 
required for every word added to the dictionary. Usually sub-word units like 
phonemes are used as units of speech so data can be shared among words.  
 
Each unit of speech will be modeled by its own HMM. For phonemes, usually 
triphones are used to model the relation to surrounding phonemes, which should 
partially account for between-phone co-articulation. An HMM should not have too 
many states; adding more states means introducing more parameters and thus more 
degrees of freedom. Variations in sub-word units can be modeled more accurately 
but this also requires more training data to avoid undertraining. If a sub-word unit 
only occupies a limited amount of time frames the HMM should not have more states 
than that, or there should be short-cuts. [5] 

3.3 Training: Baum-Welch re-estimation algorithm 

One algorithm that can be used to train a Hidden Markov Model, although it is not 
guaranteed to give the best possible solution) is the forward-backward or Baum-
Welch algorithm. The forward-backward algorithm will let us train the transition 

probabilities aij and emission probabilities bt (ot) of an HMM.  

 
For a transparent Markov Model for which every state emits a fixed symbol, we could 
find the transition probabilities by counting the times a transition occurs. For HMMs, 
the approach is to iteratively estimate these counts. It starts with an estimate for 
transition and emission probabilities, and refines the estimated probabilities by 
computing the forward probability for an observation and dividing the probability 
mass among the different paths that lead to this observation, with the previously 
estimated transition probabilities as weighing factors. The forward probability is the 
probability of being in state i after seeing the first t observations. It can be computed 
by the algorithm displayed in Figure 3.2, which is closely related to the Viterbi 
algorithm. 
 
Similarly, the backward probability is the probability of seeing the observations from 
time t + 1 to the end, given that we are in state j at time t.  
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function FORWARD(observations, state graph) returns  forward-probability 
 
num-states <- NUM-OF-STATES(state-graph) 
num-obs <- length(observations) 
Create probability matrix forward[num-states+ 2, nu m-obs + 2] 
forward[0, 0] <- 1.0   
for each time step t from 0 to num-obs do 
  for each state s from 0 to num-states do 
  for each transition s’ from s specified by state- graph 
   forward[s’, t + 1] <- forward[s’, t + 1]  + forw ard[s, t] * 

a[s, s’] * b[s’, o t ] 
return the sum of the probabilities in the final co lumn of forward  
 
Figure 3.2: Forward algorithm for computing likelihood of observation sequence given a word model. a[s, 

s’] is the transition probability from current state s to next state s’, and b[s’, ot] is the observation 

likelihood of s’ given to  [22]  

 
On the basis of the forward and backward probabilities, the frequency of the 
transition-emission pair values is determined and divided by the probability of the 
entire sequence. This amounts to calculating the expected count of the particular 
transition-emission pair. Each time a particular transition is found, the value of the 
quotient of the transition divided by the probability of the entire string increases, and 
this value can then be made the new value of the transition. 
 
Transition probabilities can be estimated by equation (3.4), and the observation 
probabilities by equation (3.5). 
 

expected number of transitions from state  to state 
ˆ

expected number of transitions from state ij

i j
a

i
=  (3.4) 

 

( ) expected number of times in state  and observing symbol ˆ
expected number of times in state 

k
j k

j v
b v

j
=  (3.5) 

 
So, the algorithm provides ways to re-estimate these probabilities from an 
observation sequence O, assuming that we already have a previous estimate of a 
and b. The entire embedded training procedure for HMM chooses a first estimate and 
calculate a and b until convergence.  
 
Pseudo-code of the algorithm to guess a state sequence given an observation 
sequence is given in Figure 3.2. 
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num-states <- NUM-OF-STATES(state-graph) 
num-obs <- length(observations) 
Create probability matrix forward-backward[num-stat es + 2, num-obs + 2] 
 
FORWARD-BACKWARD (guessed initial state position, 0 ) 
 
function FORWARD-BACKWARD (state s, time step t) re turns forward probability 
 
if t > num-obs then 
 return 1 
if forward-backward[s, t] > 0 then 
 return forward-backward[s, t] 
forward-backward[s, t] <- 0 
for each transition s’ from s specified by state-gr aph do 
 forward-backward[s, t] = forward-backward[s, t] +  
 FORWARD-BACKWARD(s’, t + 1) *  
 computed a[s, s’] given observation element at t 
return forward-backward[s, t] 
 
Figure 3.3: Simple pseudo-code representation of the forward-backward algorithm. The requirements are 

a state-graph, an observation sequence and guesses for the transition probabilities a[s, s’] and initial state 

position. 

3.4 Recognition: Viterbi algorithm 

Once there is a fully trained HMM at one’s disposal, a common used algorithm for 
speech recognition is the Viterbi algorithm. The Viterbi algorithm can be used to find 
the most likely path through a Hidden Markov Model, as well as find the probability 
of the observation sequence given this most likely path. To decode (and in case of 
continuous speech find the word boundaries in) an observation sequence, first a 
large HMM is constructed that combines all words in the dictionary according to the 
grammar if there is one. Each cell viterbi[t, i] of the matrix contains the probability 
of the best path which accounts for the first t observations and ends in state I of the 
HMM. This is the most probable path out of all possible sequences of states of length 
t – 1: 
 

[ ] [ ]( ) ( ), max 1, ij j t
i

viterbi t j viterbi t i a b o= −  (3.6) 

 
In order to compute viterbi[t, i], the Viterbi algorithm assumes the dynamic 
programming invariant or Markov property. This is the simplifying (but incorrect) 
assumption that if the ultimate best path for the entire observation sequence 
happens to go through a state qi, that this best path must include the best path up to 
and including state q. This doesn’t mean that the best path at any given time t is the 
best path for the whole sequence: a path can look bad at the beginning but turn out 
to be the best path. Because of this assumption the Viterbi algorithm breaks down 
for certain kinds of grammars, including trigram grammars.  
 
Once the viterbi matrix and an accompanying matrix of back pointers have been 
constructed, the algorithm continues by looping through all time frames and states, 
calculating the most probable path for each “next” state. When the final time frame 
is reached, this leads to an optimal solution we can backtrack to find the path that 
led there. The probabilities are usually so small that the logarithmic scale is used to 
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represent them. This way, multiplication operations can be replaced by simple 
additions as well.  
 
 
function VITERBI(observations of length T, state-gr aph) returns best-path 
 
num-states <- NUM-OF-STATES(state-graph) 
Create a path probability matrix viterbi[num-states +2, T+2] 
viterbi[0,0] <- 1.0 
for each time step t from 0 of T do 
 for each state s from 0 to num-states do 
  for each transition s’ from s specified by state- graph 

   new-score <- viterbi[s,t] * a[s,s’] * 'sb ( to ) 

   if ((viterbi[s’,t+1]=0||(new-score > viterbi[s’, t+1])) 
   then 
    viterbi[s’,t+1] <- new-score 
    back-pointer[s’,t+1] <- s 
 
Backtrace from highest probability state in the fin al column of viterbi[] and 
return path.  

 
Figure 3.4: Viterbi algorithm for finding optimal sequence of states in continuous speech recognition, 

simplified by using phones as inputs. Given an observation sequence of phones and a weighted automaton 

(state graph), the algorithm returns the path through the automaton which has minimum probability and 

accepts the observation sequence. A[s,s’] is the transition probability from current state s to next state s’ 

and 'sb ( to ) is the observation likelihood of s’ given to . [22] 

 
The Viterbi algorithm is an algorithm that runs in exponential time and can thus take 
long to get to a result. Also, the memory requirement can be large if the HMM is 
large (for word-level recognition for example, all words of the dictionary have to be 
combined into one big HMM before performing the search). Pruning of the search 
tree can be performed to make it more efficient.  

3.5 Going into more detail: Features 

To train and run a speech recognizer, data first needs to be poured in a numeric 
format that can be classified. Data parameterization or feature extraction has two 
functions: firstly and most importantly, it reduces the amount of data that needs to 
be processed; secondly, it makes the data more meaningful to the recognizer, and 
thus training easier. For an acoustic speech recognizer, recordings of sound are cut 
into samples according to a chosen time frame. Using the Fourier transform of the 
signal, the sound is split into more and less characteristic components that together 
make up a feature vector for every time frame, which is handed over to the HMM for 
recognition.  
 
For the probability density functions of the HMM’s states Gaussians are often used. 
For every feature eventually one Gaussian is trained per state, leading to the mean 
and variance of the normal distribution to be model parameters. If a Gaussian is 
expected not to approximate the actual probability density function, which is mostly 
the case, a mixture of Gaussians is used to obtain a better approximation. Added 
together, a multitude of normal distributions can approximate any probability 
function, as long as one allows enough of them to be used, and the number of 
Gaussians required is limited because a time frame is also limited. The model 
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parameters will be a number of mean and variance values in this case, one for each 
Gaussian. This is how most acoustic speech recognizers operate.  
 
In the case where the signal to be recognized is not just one waveform that can be 
transformed, the features will have to come from a different source. Care has to be 
taken that the numeric format chosen for the features can accurately be modeled by 
an HMM. Though it is possible to have discrete values, like Booleans, continuous 
values are better suited to be modeled with Gaussians. Requirements for the feature 
set depend on what one wants to recognize. In case of video, the features should 
preferably be invariant to lighting conditions, scaling and rotation for example. Other 
requirements can be speaker independency or speed of the feature extraction 
algorithm. Features can be object model parameters, distances between certain 
points or the derivative or acceleration values thereof.  

3.6 Hidden Markov Model Toolkit 

The Hidden Markov Model Toolkit (HTK) is often used for automatic speech 
recognizer implementation, because it contains generally applicable tools for HMM-
based speech processing that are optimized for speed. The tools can be run from the 
command line and each program has many options for customization. It is also well 
documented: the manual [2] contains theory, examples, tutorials and detailed 
descriptions of all available tools. There are tools for each step of building a speech 
recognizer: data preparation, training, testing and analysis.  
 
For data preparation, some available tools are HCopy that can conveniently extract 
features from audio files (e.g. Mel Frequency Cepstral Coefficients), HList, that can 
be used to inspect for example binary feature files, and HLed, that can format the 
labels of the data.  
 
For training, one usually starts with defining the HMM topology by writing a 
prototype definition. The tools HInit and HRest can be used to make the initial guess. 
HERest is used to perform embedded training using the Baum-Welch algorithm. The 
philosophy of system construction in HTK is that HMM should be refined 
incrementally. The usual process is to modify a set of HMM in stages using HMM 
definition editor HHEd and then re-estimate the parameters of the modified set using 
HERest after each stage. Also HVite can be used here to adapt the HMM to a speaker.  
 
HTK has one recognition tool called HVite, which implements the Viterbi algorithm. It 
has many options, including the option to run the algorithm with live (audio) input to 
enable on-line recognition, and pruning search trees to speed up recognition. HVite 
requires a word network describing the allowable word sequences, possibly 
generated by using the HParse tool on a grammar in Extended Backus Naur Form 
(EBNF), a dictionary defining the word pronunciations and a set of HMM. The tool 
HDMan can be used to merge dictionaries.  
 
Analysis can be done using the tool HResults which compares the recognition results 
to the labels and counts the substitution, deletion and insertion errors among other 
things. Also useful are the speaker-by-speaker breakdowns, confusion matrices and 
time-aligned transcriptions.  
 
With all these tools at our disposal, developing an automatic lip reader should come 
down to processing our data, computing our features and then pouring everything 
into the format required by HTK. The theory seen in this chapter will be applied in 
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the design of our lip reader. Visual and acoustic speech recognition can both be 
accomplished by Hidden Markov Models, so we can use the HTK toolkit for our 
implementation.  
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4 Visual speech recognition 

Training a visual speech recognizer can be done in much the same way an acoustic 
speech recognizer can be trained. There are however some factors that make it a 
fundamentally harder task. That is why we will first go over the similarities and 
differences between acoustic and visual speech recognition. In this chapter we will 
first discuss the primitives of lip reading (section 4.1) and then explore the 
theoretical performance boundaries of automatic lip reading (section 4.2). At the end 
of this chapter, we will also have reached the end of the development phase. In 
section 4.3 we will present our design choices and model for the rest of this thesis.  

4.1 Visemes 

In this section we will discuss the “viseme” (introduced in section 2.1). In speech 
recognition systems, HMMs can be used to model sub-word units. This way a 
recognizer does not have to be retrained when items (with their representations) are 
added to the dictionary. For acoustic speech recognition, phonemes are used to 
represent words. They will be discussed in section 4.1.1. For visual speech, not as 
many sub-word units can be distinguished as there are phonemes. In order to still be 
able to use the phoneme representations of available dictionaries (which are 
essential to train a recognizer), a mapping from phonemes to visemes can be applied. 
There is however no general agreement to which mapping this should be. In section 
4.1.2 we present the results of a study of which viseme classes can be distinguished 
by humans, and in section 4.1.3 the final mapping we applied for our automatic lip 
reader.  

4.1.1 Phoneme set 
For the Dutch language, around 40 phonemes are distinguished, one for each 
consonant or vowel. Table 4.1 shows the consonants and Table 4.2 shows the vowels 
acknowledged by the dictionary of the Polyphone speech corpus [10]. There exist 
different types of notation for these phones. IPA and SAMPA are internationally 
recognized with the big advantage of SAMPA being that the transcriptions are in 
ASCII format. However, HTK doesn’t allow all the symbols of SAMPA to be used. That 
is why we had to embrace an alternative notation (found in the “HTK” column of the 
table). Through this text, we will try to be consistent and use the SAMPA notation.  
 
It has to be noted that not all language research agrees on the same phoneme set. 
Not all phonemes included here are native to the Dutch language for example. 
Foreign phonemes are usually only used in “loan” words. Sounds that have their 
origin in French (g, Z, E:, 9:, O: in SAMPA notation) have become part of the 
language, but are still underrepresented compared to native Dutch sounds. This 
makes it hard for a speech recognizer to learn the statistical models (HMM) for those 
phonemes reliably.   
 
We used the natural sentences that originated from the Polyphone transcriptions as 
prompts for recording New DUTAVSC. It therefore makes sense to use the same 
dictionary and phoneme set as the one available. 
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Table 4.1: Phoneme set: consonants 

IPA SAMPA HTK Example Phonetic transcription 

p p p pak  p a k 

b b  b bak b a k 

t t  t  tak  t a k 

d d  d  dak  d a k 

k k  k  kap  k a p 

g g  gg  goal  gg oo l 

f f  f  fel  f e l 

v v  v  vel  v e l 

s s  s  sein  s ei n 

z z  z  zijn  z ei n 

x x  x  toch  t o x 

ɣ G  g  goed  g u t 

ɦ h  h  hand  h a n t 

ʒ Z  zj  bagage  b a g aa zj at 

ʃ S  sh  sjaal  sh aa l 

m m  m  met  m e t 

n n  n  net  n e t 

ŋ N  nn  bang  b a nn 

l l  l  land  l a n t 

R R  r  rand  r a n t 

ʋ w  w  wit  w i t 

j j  j  ja  j aa 

4.1.2 Human viseme classification 
Before trying to establish what a good mapping between phonemes and visemes 
would be, it might be a good idea to explore first which classes humans can 
distinguish. If a trained human lip reader cannot see the difference between certain 
spoken phonemes, there is no reason to believe that a computer could. Humans will 
probably always be the reference point when it comes to language processing tasks.    
 
Most viseme classifications are deduced from linguistics theory. Here we will discuss 
a paper that bases classification on empirical evidence. Van Son et al. [23] describe 
an experiment where they try to determine three things that could all be of use to 
our project to some extent:  
 

1. A general viseme classification for Dutch vowels and consonants (which could 
help us find a viseme set), 

2. The relation between this classification and acoustic speech cues (which could 
help us decide which features would be valuable), and  

3. The effect of lip reading expertise on viseme categorization (which could give 
us a reference point for performance at similar tasks). 

 



4.1 Visemes 

45 

Table 4.2: Phoneme set: vowels 

IPA SAMPA HTK Example Phonetic transcription 

I I  i pit  p i t 

ɛ E  e  pet  p e t 

ɑ A  a  pat  p a t 

ɔ O  o  pot  p o t 

ʏ Y  y  put  p y t 

ə @ at de d at 

i i  ie  vier  v ie r 

y y  yy  vuur  v yy r 

u u  u  voer  v u r 

a: a:  aa  vaar  v aa r 

e: e:  ee  veer  v ee r 

ø: 2:  eu deur  d eu r 

o: o:  oo door d oo r 

ɛi Ei  ei  fijn  f ei n 

œ 9y  ui  huis  h ui s 

ʌu Au  ou  goud  x ou t 

ɛ: E:  eh  crème  k r eh m 

œ: 9:  euh  freule  f r euh l at 

ɔ: O:  oh  roze  r oh z at 

 
The experiment was done by presenting soundless video of syllables built from the 
phoneme of interest to subjects with different levels of lip reading expertise. The 
confusion between the perceived and actually uttered phonemes taken over all 
subjects provided the eventual classification, which can be seen in Table 4.3 and 
Table 4.4. An explanation will be given below.  
 
Table 4.3: Viseme classification: consonants 

1 p, b, m bilabial consonants 
2 f, v, w labiodental consonants 
3 s, z, S nonlabial front fricatives 
4a t, d, n, j, l other nonlabial front consonants 
4b k, R, x, N, h other nonlabial back consonants 

 
For consonants, mistakes were almost exclusively made within the three sets of 
bilabial consonants (p, b m), labiodental consonants (f, v, w) and nonlabial 
consonants (t, d, s, z, n, l, j, k, r, x, N, h). These sets can be distinguished most 
evidently by visibility of lip articulation. Within the non-labial set, the separation of 
front-articulated consonants (t, d) and back-articulated consonants (R, h) can be 
explained by the actual place of articulation, and identification of the fricatives (s, z, 
S) can be based on the (limited) degree of opening of the oral cavity. Table 4.3 gives 
the final consonant classification, where subsets 4a and 4b are only recognized by 
the better phoneme identifiers. The number of consonants that can be distinguished 
for Dutch are only 4 compared to 6 to 7 in English. 
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Table 4.4: Viseme classification: vowels 

1a i, I, e:, E close and half-close front vowels (unrounded) 
1b Ei, a:, A half-open and open vowels (unrounded) 
2 u, y, 9:, O short back vowels (rounded) 
3 2:, o: long back vowels (rounded) 
4 Au, 9y closing and rounding diphthongs 
 
Four sets of visually similar vowels can be recognized, namely unrounded vowels (I, i, 
e:, E, Ei, a:, A), short rounded vowels (u, y, Y, O), long rounded vowels (2:, o:) and 
closing and rounding diphthongs (Au, 9y). Mistakes also occur between sets though. 
Lip rounding appears to be the most important feature in distinguishing these sets. 
Within the rounded vowels, vowel duration plays an important role, and for the 
diphthongs (which end in a rounded position) both lip rounding and lip opening play 
a role. In the final vowel classification in table Table 4.4, subsets 1a and 1b were not 
observed, but their existence was suggested by another study.  
 
Initially, only 8 classes are distinguished in this paper, but at the final conclusion two 
of these are split resulting in 4 visemes for consonants and 4 visemes for vowels. 
The better lip readers find one more consonant and one more vowel viseme. If a 
classification for which the between-class correlation is weaker is allowed, there can 
be 10 classes in total.  
 
Possibilities for features we saw in this paper are lip articulation, place of articulation, 
degree of lip opening, lip rounding and vowel duration. Using these features, the 
classification seen in this section can be made.  
 
The analysis of the viseme classification abilities of people with different levels of lip 
reading ability, shows that pure viseme classification is not influenced by lip reading 
expertise, which is in agreement with earlier experiments. The skilled everyday lip 
readers (hearing impaired persons who were considered to be experienced and 
skilled lip readers) performed slightly better at viseme recognition than the other 
groups however. So, if lip reading skills and viseme classification performance are 
independent, we should also evaluate the classification abilities of our features and 
the recognizer Hidden Markov Model (the “expertise”) separately.  

4.1.3 Viseme set 
The choice of which viseme set to use for a mapping from phonemes to visemes, is 
essential for the final performance of a visual speech recognizer. There cannot be too 
few or too many classes, because that will cause the viseme models to be badly 
trained due to poorly separated data classes. This is more important than the 
decrease in word distinguishability that the use of a small viseme set implies.  
 
In the last section we have seen a human viseme classification. However, this 
classification is not sacred, since some of their conclusions were not even established 
by the authors. Besides, for our purpose, we are not just looking for a classification, 
but a set. Certain phonemes (such as “@”) are missing from the final classification.  
 
By most linguistics 10 to 14 visemes are distinguished. The viseme set used by 
Wojdeł (see section 2.2) is the one given in Table 4.5, extended by adding classes 
for “h” and “Ei”, which were not included in the original set. This leads to a viseme 
set of 16 classes, which can be found in Table 4.6.  
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Table 4.5: Viseme set according to [24] 

Viseme Phoneme class Viseme Phoneme class 
1 f v w 8 I e: 
2 s z 9 E E: 
3 S Z 10 A 
4 p b m 11 @ 
5 g k x n N r j 12 i 
6 t d 13 O Y y u 2: o: 9 9: O: 
7 l 14 a: 

 
Looking at the source of Table 4.5, we are not too confident about the viseme set 
established there. The researchers are computer scientists, not linguists, and they do 
not say what they based this viseme set on. Furthermore they missed two phonemes. 
However, which viseme set to use is never a clear issue. We decided to use the same 
set as Wojdel so as to ensure that our obtained could be comparable to his.  
 
Table 4.6: Chosen viseme set: mapping onto 16 classes 

 Viseme Phoneme set SAMPA Phoneme set HTK 

1 at @ at 

2 ie I ie 

3 a A a 

4 aa a: aa 

5 iee I e: i ee 

6 eeh E E: e eh 

7 oyu O Y y u 2: o: 9 9: O: o y yy u eu oo ui euh oh ou 

8 ei Ei ei 

9 fvw f v w f v w 

10 sz s z s z 

11 shzj S Z sh zj 

12 pbm p b m p b m 

13 gkx G k x n N r j g g k x n nn r j gg 

14 td t d t d 

15 h h h 

16 l l l 

 
Now that we have discussed visemes, it has to be noted that using them may not 
always be the logical choice. When the dictionary of the recognition task is small, and 
no words are ever expected to be added to the dictionary, one might decide to use 
word-level HMMs, which make both phoneme and viseme representations obsolete. 
This approach can be quite successful as we saw in section 2.5.4.  
 
It could also be decided to not apply any mapping and train a lip reader on 
phonemes. It would be interesting to see the results of this, although we would not 
expect these to be very good. To compare viseme sets for lip reading applications, 
the surest way is to train a new recognizer for every candidate, and compare the 
results of these. Looking at the many possibilities this would however be very time 
consuming. A faster way might be to base the choice of which viseme set to use on 
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how well they can be classified using a chosen feature set. In section 7.3 we tried to 
do this, although not for the purpose of choosing the viseme set.    

4.2 Performance boundaries 

In this section we show the differences between acoustic and visual speech 
recognition and how they theoretically influence the performance. In section 4.2.1 
we discuss the performance of visual features, in section 4.2.2, we discuss the 
performance of a recognizer based on HMMs and visemes.  

4.2.1 Comparison between acoustic and visual speech 
The main difference between acoustic and visual speech recognition is the type of 
input. As should be evident, the use of video imposes extra requirements on a visual 
speech recognizer that an acoustic speech recognizer does not have to deal with.  
 
First of all, the information over the visual channel is not that rich compared to audio. 
When they speak, humans use sound as the primary means of communication, the 
movement of the lips can be seen as just a byproduct. Furthermore, a lot of it 
happens inside of the mouth and throat, and is not directly visible. Human lip readers 
can compensate for this because they actually understand language and know which 
context applies, but an automatic lip reader depends primarily on the features.  
 
For audio, features can be extracted by splitting the sound into time frames, applying 
a Fourier transform, and using the Mel Frequency Cepstral Coefficients (MFCC). For 
video, first the face has to be located in the image, then features important to lip 
reading have to be extracted. However, there are a lot of different ways to 
accomplish this, some of which were discussed in section 1.1. It is not agreed upon 
what the best method is. We do know that any such approach should: 
 

• Capture the most essential speech characteristics, 
• Be fast, because video processing can take a lot of time, 
• Preferably be person-independent.  

4.2.2 Implications of using visemes 
If a many-to-one mapping from phonemes to visemes is applied, it will be clear that 
this has consequences for recognition.  
 
Because of the one-to-many mapping, we see that some dictionary entries end up 
with the same viseme (mostly consonants) repeated within a word (e.g. “romp”, 
“hangkast”). The question is whether it is alright for the representations to have 
double entries. They may be perceived as one, in which case, one of these double 
entries should be removed. How they are perceived could also depend on their 
syllabic structure. In Dutch, a syllable has the form C*VC*, where “C” denotes a 
consonant, “V” denotes a vowel, and “*” means there can be any number of them, 
including zero. It might be worthwhile to find out whether these double viseme 
entries are combined in case they appear within the same “C*” part of a syllable.   
 
Dictionary analysis performed by Wojdeł on the Polyphone dictionary [3] shows that 
a mapping from phonemes to visemes can lead up to 10% less word separability. 
However, the viseme set used to compute this was not specified.  
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One last thing to consider is the propagation of misclassifications. If visemes are 
misclassified on the lowest level of the recognizer, the available word list N should be 
searched for the most probably candidate that matches the recognized 
phoneme/viseme sequence best. Only after candidate matching we obtain the 
resulting word that best matches the observation. When there are multiple 
candidates in the dictionary that share the same representation, correcting the 
misclassifications in this way can end up at some other word, yielding a false positive. 
Since this affects the number of insertion errors, this has a negative effect on the 
word recognition rate.  
 

 
Figure 4.1: False positives as a function of misclassification of basic recognition entities [3].  R-1 is the  

full phonetic representation, R-2 is the viseme representation with syllable boundaries, vowel duration 

and stress point, R-3 is the viseme representation with syllable boundaries and vowel duration, R-4 is 

the viseme-only representation. For the Polyphone corpus, the percentage of words that are 

distinguishable assuming the most common option will be chosen is 99%, 93%, 92% and 91% for 

each representation respectively.  

 
As shown by Figure 4.1 , even with a viseme recognition rate as high as 90%, 
already almost 35% of the words will be recognized incorrectly. For the phoneme 
representation where 99% of the words have a unique representation (note that for 
written language it would be 100%, the 1% error for phonemes represents the 
portion of words that sound the same but are spelled differently), the number of 
false positives would remain under 3%. And in a real-life system, the low-level 
misclassification rates will be much higher than 90%. That said, it might be 
overoptimistic to expect the same kind of performance from a viseme-based speech 
recognizer as from a phoneme-based recognizer.  

4.3 Model 

According to [3], building a typical automatic lip reader involves 4 steps. After 
discussing the remaining theoretical issues of visual speech recognition, the rest of 
the chapters will each explain one of the following steps: 
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1 Data aqcuisition (chapter 5) 
2 Lip tracking (chapter 6) 
3 Feature extraction (chapter 7) 
4 Recognition (chapter 8) 
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Figure 4.2: Visual speech recognition overview 

 
These steps are also illustrated in Figure 4.2, and this picture will return in each of 
the chapters 5 to 8, to illustrate what the reader can expect to read about in those 
chapters. The pictures represent our design choices: a high-speed camera for 
recording, Active Appearance Models for lip tracking, point-based distances for 
feature extraction and Hidden Markov Models for the recognition framework. At the 
same time it models how a visual speech recognizer performs recognition.  
 
The conclusion drawn from our research on existing speech corpora was that to 
really handle the task properly, a new data corpus was required. The chosen method 
for feature extraction is Active Appearance Models. This will result in a set of 
landmark points, which may not be directly usable as features for training. For 
training the recognizer, we will apply Hidden Markov Models based on visual 
phonemes (visemes).  
 
As a consequence of using a phoneme to viseme mapping all dictionary entries have 
to be rewritten. For our lip reader we use the set of 16 visemes as seen in Table 4.6. 
Each viseme is modeled with Gaussian mixtures continuous density left to right 
Hidden Markov Models with five states, of which three are emitting. The same model 
is used successfully to model phonemes.  
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5 Data Acquisition 

Training a speech recognizer requires large quantities of speech data. Data 
acquisition has been a big part of this project, because we the only training data we 
had at our disposal initially was the relatively small DUTAVSC speech corpus, and to 
train a lip reader successfully from scratch requires a large corpus. Furthermore we 
wanted to honor the conclusions from the research discussed in section 1.1. 
 
This chapter starts by explaining the things that were considered before starting the 
recording sessions. First decisions had to be made about the speech that was going 
to be recorded (section 5.1), then we needed to think about the recording setup 
(section 5.2). After that we started recording many people, of which the results are 
given in section 5.3. The resulting data corpus was named New DUTAVSC. In section 
5.4, we show the result of multiple recording sessions we had with a single person 
(Single Person New DUTAVSC) An analysis of the recorded data corpus can be found 
in section 5.5, and the result is discussed in section 5.6. 
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Figure 5.1: Visual speech recognition overview: data acquisition 

5.1 Language coverage 

The recording of New DUTAVSC had to be carefully prepared. Because of the scale of 
the new corpus we needed to make sure that all material would be gathered in a 
correct way. The new corpus would have to follow the quality requirements we had 
devised after the research done on other speech corpora; a high frame rate, capture 
of both frontal and profile view of the face and a rich utterance pool fit for continuous 
speech recognition experiments. Furthermore, we decided that it would be useful if 
people would be recorded at both normal and fast speech rate, and whispering 
(instead of low speech rate, as it appears to be more natural).  

5.1.1 Utterance types 
Here we will discuss the different types of utterances that were included in recording 
sessions and why. A large portion of it is based on the original DUTAVSC corpus. 
Digit sequences were included because it is a relatively easy task for a speech 
recognizer to accomplish and useful to see how well it performs at this basic task.  
 
Spelling random words is different from reading a letter sequence, because firstly the 
length is unknown, making the task more difficult, and secondly the word itself is an 
existing one, which could provide some context information. Of course in practice 
mostly unfamiliar words like strange names would be spelled, in which case the 
context information would not be of much use.  
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Lists of random words were included to provide phoneme or viseme transitions that 
are rarely seen in actual sentences.  
 
Bank application sentences were included to make the recognizer perform 
recognition tasks a little more difficult than digit sequences but still bound by a 
grammar. However, the original DUTAVSC grammar as can be seen in Figure 2.4 
allows for grammatical errors confusing the speaker. Sentences have been corrected 
before they were presented to the speakers, but for future recordings an improved 
version of this grammar should be used to generate recording prompts. One such 
grammar is given in Figure 5.2. However, for recognition purposes the grammar 
should cover all recorded material, even if it does contain errors.  
 
 
$number10 = twee | drie | vier | vijf | zes | zeven  | acht | negen; 
$number20 = tien | elf | twaalf | dertien | veertie n | vijftien | zestien | zeventien | 
achttien | negentien; 
$number100 = [(1 | $number10) en] (twintig | dertig  | veertig | vijftig | zestig | 
zeventig | tachtig | negentig); 
$number =  
 [$number10] honderd [en] ($number100 | $number20 |  $number10 | 1) |  
 [$number10] honderd | 
 $number100 |  
 $number20 |  
 $number10 ; 
$digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9; 
$amount = $number (euro | euro's) | een euro | 1 eu ro; 
$greeting = goedemorgen | goedemiddag | goedenavond ; 
$please = alstublieft | alsjeblieft; 
$want = wil | wilde | wou;  
$type = [prive] [bank] rekening; 
$account =  
 [mijn] $type [nummer] $digit $digit $digit $digit $digit $digit $digit $digit | 
 (mijn | m'n | een) $type; 
$action =  
 $amount van $account [naar $account] overmaken |  
 $amount op $account storten |  
 $amount storten op $account |  
 $amount opnemen van $account | 
 $amount van $account opnemen| 
 een [nieuwe] $type openen | 
 $account sluiten; 
([$greeting] ik $want [graag] $action [$please] |  
 [$greeting] ik ($want | zou) $action graag |  
 [$greeting] ik zou graag $action [$please])  

 
Figure 5.2: Adaptation of the grammar given in Figure 2.4 that will only allow for grammatically correct 

telebanking  application sentences. HTK expects EBNF and requires the dollar sign $ to indicate non-final 

symbols 

 
Generating prompts from a grammar formatted like this can be done using the 
following HTK commands: 
 

> HParse bank_grammar.txt bank_wdnet.slf 
> HSGen -l -n 50 bank_wdnet.slf dict.txt (> prompts .txt) 

 
Where “bank_grammar.txt” contains the grammar, “bank_wdnet.slf” is a file that will 
contain the word network in standard lattice format, “50” is the number of prompts 
that will be generated and “dict.txt” contains a dictionary with a list of at least all the 
words that occur in the grammar. Viseme transcriptions are not yet required. “> 
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prompts.txt” can optionally be added to save the generated prompts to a file 
“prompts.txt”.  
 
Random sentences taken from Polyphone are especially useful for continuous speech 
recognition experiments. Because of the rich variety of sentence structures it is not 
really possible to constraint them by a grammar, unless it is by N-grams. N-grams 
are usually trained on large (textual) data corpora to get an accurate language 
model. It mainly counts how many times a given word is preceded by another word 
or combination of words. The resulting probabilities P (n| n-1, …, n-N) provide some 
context for a speech recognizer. Use of the Viterbi algorithm for alignment is 
dependent on the dynamic programming invariant, making it bigrams the only model 
we can use.  
 
Common expressions like greetings and thanks were included because they would be 
useful for (dialogue) applications that require social interaction. Again it is hard to 
find a fitting grammar for this type of data, but many common expressions could 
almost be considered “words” (apart from the word combinations that already have 
become words, like “goedemiddag”).  
 
Finally, we included some open questions in hopes of recording some spontaneous 
speech. Most of them were formulated as questionnaire questions. The downside is 
that the answers had to be labeled by hand. Another practical disadcantage is that in 
our case the speakers had time to think before answering the question because they 
were recording themselves, thus eliminating part of their spontaneous reaction. To 
prevent one-word answers like just “ja” or “nee” next time, questions should be 
asked in such a way that people are provoked to give medium-long answers.  

5.1.2 Speech types 
We asked speakers to perform normal speech, fast speech and whispering. 
Recognizing speech spoken at the usual speed should not be a big problem for an 
average speech recognizer. Fast speech might be. Words are not articulated as 
clearly; subsequent words may be seemingly merged together, entire visemes or 
phonemes may be omitted. For automatic lip reading purposes, all previous video 
material was recorded at an insufficient rate, so recognizing fast speech was not 
even possible before. 
 
Something sign language interpreters sometimes apply to facilitate lip reading, is lip 
speaking. This is done by emphasizing useful clues during speech. Obviously, normal 
people are not skilled at that, so to obtain a similar effect, we resorted to whispering. 
Whispering is something a lip reader might actually perform better at than an audio 
based recognizer. When people whisper, all sound they produce is unvoiced. Males 
and females even sound the same when they whisper. On the other hand, the mouth 
movements they make tend to be very articulated to compensate for the lack of 
sound.  
 
Some side notes have to be made for recording this type of speech, though. First of 
all, people do not whisper a lot in daily life. Most subjects had to be reminded how to 
do it by the operator. Without instructions, some people were just speaking softly 
into the microphone with minimal mouth articulation, which wasn’t what we had 
hoped for.  
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5.2 Recording setup 

To record a large data corpus required the recording setup to be carefully thought 
through, because it was to remain in use over a longer period of time. For this 
corpus, we wanted the recordings to be dual-view and taken at high speed. First, we 
tried a setup with only one camera and a mirror placed at 45 degrees [25], but this 
proved troublesome because of distortions in the mirror image (it would appear 
further away than the original for instance) and it disallowed for high-resolution 
recordings. That is why we eventually went for a setup with two cameras, one in 
front and one at the side of the speaker. In the next sections we will give a 
description of that setup.  
 

Figure 5.3: Photograph of the recording setup with recording subject and operator 

5.2.1 Environment 
The environmental conditions of the recordings determine the illumination and 
background of the scene. We used (blue) monochrome background panels so that 
speakers could be given custom backgrounds using “chroma keying” also used for 
weather forecasts on television. 
 
To create the right environmental conditions we needed to have complete control 
over the room’s lighting and noise level. Although the MMI department has a sound 
studio, the lighting conditions there could not be regulated making it infeasible to set 
up our lab there. The room we used to record was not isolated and we had no control 
over the light coming front the window and air-conditioning. That is why we first had 
to darken the room by covering the windows with packing foam panels and garbage 
bags, and introduce our own controllable light sources. We put 2 x 2 500 W 
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construction site lamps on stands and placed them at both sites of the speaker such 
that the scene would have uniform lighting (see Figure 5.5). Furthermore, the air-
conditioning slits under the window were blocked with packing foam.  

5.2.2 Equipment 
We used two high-speed cameras and two directional microphones. We decided to go 
for 100 Hz video recording at half PAL resolution. The audio signal was sampled at 48 
kHz on 16 bits. Just a computer with great RAM capacity was not acceptable for our 
experiments due to lack of speed. Instead the computer was one with a stripe driver 
setup (4 hard drives packed together in a RAID 0 configuration) so the 
uncompressed raw data of multiple recordings could be temporarily stored on it.  
 

 
Figure 5.4: AVT Pike F-032C high-speed camera 

 
We used two Pike F-032C cameras built by AVT (see Figure 5.4). The cameras are 
capable of recording at 200 Hz in black and white, 139 Hz when using the chroma 
sub-sampling ratio 4:1:1 and 105 Hz when using the chroma sub-sampling ratio 
4:2:2 while capturing at the maximum resolution of 640 x 480. By setting a smaller 
Region Of Interest (ROI) the frame rate can be increased. In order to increase the 
Field Of View (FOV), we recorded in full VGA resolution at 100 Hz. We used the fire 
wire card bus’ clock for synchronization into a 125 µs range.  
 
For recording the audio signal we used NT2-A Studio Condensators. We recorded a 
stereo signal using a sample rate of 48 kHz and a sample size of 16 bits. The data 
was stored in PCM audio format. After the equipment was ordered, it took some time 
to arrive. Accomplishing the synchronization of the two cameras and linking it to the 
recording software also took time.  

5.2.3 Laboratory setup 
Two cameras were placed at eye height (120 cm from the floor) at a distance of 162 
cm from the subject, one directly in front and one directly from the side. The subject 
was seated in a chair that couldn’t turn or be adjusted in height, in a tradeoff 
between comfort and keeping subjects from moving. In cases where subjects were 
too short to be in view of the cameras (mostly females), we improvised by having 
them sit on packs of paper since adjusting the camera for each new subject would be 
time consuming and prone to errors.  
 
We aimed to capture the lower half of the face, because we were recording at a high 
resolution and to lip reading the mouth and chin area is more relevant than the eyes. 
We also wanted to guarantee some anonymity of the speaker this way, but in 
practice the busy schedule didn’t allow for camera adjustments between recording 
sessions, and there was a risk that the nostrils would fall out of the frame, which we 
need for computing later on. That is why we ended up capturing roughly the lower 
half of the face; sometimes the eyes were in the picture as well.  
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Figure 5.5: Map of the recording setup: 1) frontal camera (height 1.20 m); 2) side camera (height 

1.20 m) and environment microphone (height 1.50 m); 3) recording subject and speech microphone 

(height 80 cm); 4) monitor showing prompts (36 x 26 cm); 5) computer running operating and 

recording software and microphone controller; 6) operator checking speaker performance on second 

monitor. 

 
A monitor for the subject to read off was placed in front of the subject out of the line 
of sight of the cameras. One microphone was placed close to the subject; the other 
was placed some distance away to record the background noise. Figure 5.5 shows 
the precise setup of the laboratory and Figure 5.3 shows a photograph.  

5.2.4 Operator 
The operator was sitting behind the background panel of the side view camera, and 
was looking at the same prompts as the subject on a second monitor, allowing them 
to have the subject retake items in case of error or disturbing background noise 
(usually from outside the room). The operator also explained the courses of action to 
the subject and had them sign a consent document in advance. In appendices A and 
B respectively we present the written instructions and consent document as 
presented to the subjects.  

5.2.5 Operating software 
The tool we used to prompt the subjects for utterances was also used to control the 
video and audio devises. The subject was given a wireless mouse to operate the 
software with. The left mouse button would start and stop a recording; the right 
mouse button would take them to the next item. The screen would display the item 
to be uttered together with some instructions about the speaking style, e.g. normal 
speech rate, fast speech rate, or whispering. To make reading easier on the speaker, 
prompts were presented in black sans-serif letters on a white background (see Figure 
5.6). Each recording session was preceded by a short trial to familiarize the subject with 
the software controls.  
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Figure 5.6: Screenshot of the prompter/recording software 

 
Using a high-speed camera increases the storage needs for the recordings. It is 
almost impossible to record everything and cut the clips afterwards at the required 
lengths, mainly because the (large amount of) video data is temporarily captured in 
the RAM of the computer and needs to be written to the hard disk at set times. 
Giving the speaker control over the recordings allowed all video and audio for every 
utterance to be neatly synchronized and saved in a new folder, with the labels 
already known because they were used to prompt the speaker (although the speaker 
could have made mistakes). The tool was also used to keep track of the user’s data, 
recording takes and recording sessions. 
 
While it was convenient to us that the subject was taking their own recordings, we 
also had to carefully instruct them not to start a recording too late or end it too early, 
which people would inevitably start to do especially when they were asked for fast 
speech rate. We also instructed them to close their mouths between utterances, but 
of course this still wasn’t something we had complete control over. 

5.3 Recording of New DUTAVSC 

In this section we will discuss the results of the recording of the New DUTAVSC 
corpus, using the setup previously discussed. In section 5.3.1, we will describe the 
planning of a recording session, of which we gathered one or two per recording 
subject. The  variety  of people that participated will be illustrated in section 5.3.2.  
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5.3.1 Recording session composition 
When compiling an entirely new data corpus, there is a lot of freedom to decide what 
exactly to record. However, good language coverage is required. We decided to 
present the user with random sentences drawn from a pool and random digit and 
letter sequences. We wanted a recording session to last about 20 minutes, during 
which the items given in Table 5.1 needed to be recorded.  
 
Table 5.1: Original build-up of a recording session for New DUTAVSC 

Number Speech type Utterance type 

3 normal Random digit sequences of length 8 

3 fast rate " 

3 whispering " 

3 normal Spelling a random word of variable length 

3 whispering " 

3 normal Lists of random words of length 8 

3 fast rate " 

3 whispering " 

5 normal Fixed grammar bank application sentences 

5 fast rate " 

5 whispering " 

5 normal Random sentences taken from Polyphone 

5 fast rate " 

5 whispering " 

5 normal Every day use common expressions 

5 normal Short answers to random open questions 

 
For this data corpus, we recorded a large variety of people. The original DUTAVSC 
corpus consisted of only 8 people. For this our new data corpus, we recruited as 
many people as we could find (though most were from inside the university). We set 
a goal of around 50 people, but in the end, we recorded a total of 70 different people, 
for some of them multiple sessions were recorded.  
 
Seven of the subjects recorded multiple sessions. This was very welcome because 
one recording session was only good for about 10 minutes of material. While the 
data is rich because of the frame rate, the number of utterances per session was 
only 64. We recorded 79 sessions this way.  
 
This results in a total of 64 utterances per recording session. One session lead to 
approximately 10 minutes of recorded material. Most categories also appeared in the 
original DUTAVSC data corpus. With all of this in mind, we made recordings of 70 
people. A total of 79 sessions were recorded 

5.3.2 Demography 
We asked all participants of recording sessions for some basic information on gender, 
age, level of education, occupation, whether they were native Dutch speakers, and 
which province they originated from to find out about possible dialects (see appendix 
B). 
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A data corpus should consist of both male and female speech material, ideally with a 
ratio of 50%-50%. For some reason, the faculty of EEMCS at this university is low on 
female students and staff. To approach the ideal ratio, we had to recruit at the 
administration department, where, funny enough, most employees are female.  
 
Our 70 recording subjects were all adults aged 19 to 64. Most subjects were students 
in the age range from 19 to 28, mostly male, originating from around the country. 
The next group was that of staff members in the age range from 25 to 50, most of 
them female. Their level of education varies, and most of them are originally from 
the province of Zuid-Holland (where Delft is also located). The professors and PhD 
students we recorded were from all over the country also, only one of them female, 
and obviously all of them with a Master’s degree.  
 
Of the 70 people recorded, 2 were not native Dutch speakers. Also, because the 
question about the province of origin could be interpreted as “where do you currently 
live”, we fear our information is not always complete. In total there were 49 males 
and 21 females recorded. 41 students, 8 PhD students, 6 professors and 15 staff 
members. This is illustrated in Figure 5.7.  
 

 
Figure 5.7: Age distribution and gender of all 70 recording subjects 

5.4 Recording of Single Person New DUTAVSC 

In this section we will give the results of the recording of Single Person New 
DUTAVSC, which was decided upon when our feature set turned out not to be 
person-independent.  
 
We asked one person (female, 52 years of age, secretary) to help us gather more 
data so we could train a speaker dependent recognizer. This person recorded 1 
session of 64, 5 sessions of 125 utterances and 5 sessions of 155 utterances. For 
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convenience, we will denote this as a separate one-person data corpus, and call it 
Single Person New DUTAVSC for the remainder of this thesis.  
 
64 utterances for one person is not a lot of material to train on. We decided to record 
10 more sessions composed a little differently for one willing subject. We came up 
with the session planning given in Table 5.2. 
 
Table 5.2: Original build-up of a recording session for Single Person New DUTAVSC 

Number Speech type Utterance type 

45 normal Sentences taken from Polyphone 

10 " Random digit strings of length 8 

10 " Random letter strings of length 8 

30 " Isolated digits 

30 " Isolated letters 

 
This schedule accounted for a total of 125 utterances per session. For the second day 
of recordings and last 5 sessions we changed the numbers around to match the 
differences in dictionary size (10 for digits, 26 for letters), for a total of 155 
utterances per session, as illustrated in table Table 5.3.  
 
Table 5.3: Final build-up of a recording session for Single Person New DUTAVSC 

Number Speech type Utterance type 

45 normal Sentences taken from Polyphone 

10 " Random digit strings of length 8 

30 " Random letter strings of length 8 

20 " Isolated digits 

50 " Isolated letters 

 
The idea behind all of this was that to train for simple tasks like digit and letter 
recognition we wanted to make sure we gathered enough data. We only wanted to 
record normal speech rate this time, because for the previous recordings, roughly 
2/3 of the data was at either fast speech rate or whispered, so deciding not to use 
them for training would not be an option, while for some applications this might be 
the logical choice. For all of this goes “less is more”, less categories for the same 
data means more data per category. Bank application sentences, word lists, common 
expressions and open questions were left out due to their not so directly obvious use.  
 
A problem we had seen before concerning the randomization of the prompts was that 
it happened quite a lot that the same prompt would come up twice in the same 
session, even twice in a row. This time, we wanted every single Polyphone sentence 
to be recorded, so we just iterated through them all alphabetically.  
 
The motivation to include isolated digits and letters now, is that the model would not 
have to deal so much with co-articulation effects this way, making it easier to train. 
We instructed the subject more explicitly to start at a neutral (closed) mouth position 
and to take time before and after speaking, leading to nicer recordings from a lip 
reading perspective.  
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In the previous spelling assignments, for words that had the letter “IJ” in them it had 
been split up into “I” and “J”, causing IJ as letter to never appear. This time we 
included IJ as letter instead of Y (which is “foreign” in Dutch anyway, people tend to 
call it either “Griekse IJ” or “Y-grèc”, which is French).  
 
Because of the many short recordings, a recording session took just a little longer 
than originally. Our subject insisted that doing five sessions in a row with just one 
short break was perfectly doable.  

5.5 Processing the recordings 

Before using data to train a speech recognizer, it is important to validate it. While 
Hidden Markov Model based speech recognition can deal with a certain amount of 
noise, it still has to be possible to extract something useful from it. Errors could have 
been introduced in several ways we all had to check.  
 
Firstly, the speaker could have made mistakes. Both speaking errors and errors 
handling the recording controls (mouse buttons) occur frequently. This we checked 
by auditory validation described in the next section. Secondly, the hardware was 
responsible for quite a lot of mistakes as well. However, this is probably unavoidable 
while recording at this frame rate. Lastly we performed some visual validation on the 
data.  

5.5.1 Auditory validation 
The first thing we checked about the recordings was the audio, because it was the 
easiest and quickest to access. Often, the operator had already asked the speaker to 
retake something during the recording when a mistake was made, but there were 
always things slipping through. The main purpose was to make sure the 
transcriptions for the recordings were correct, as they did not always match the 
prompts.  
 
We checked for the following anomalies: 
• Words skipped by the speaker (deletion) , 
• Words inserted by the speaker (insertion), 
• Words distorted by the speaker, 
• Words missing due to premature stop of the recording, 
• Words incomplete due to premature stop of the recording, 
• Recordings for which the speech style is different from the instruction, 
• Background noise. 
 
Insertion and deletion mainly occurred because the speakers were not always 
familiar with - or used to - the expressions appearing on the prompter. Sometimes 
the prompts contained grammatical or spelling mistakes. Word distortions were 
mainly expected for recordings at fast speech rate, but also occurred naturally 
depending on the speaker. Bad timing sometimes caused the speaker to cut off 
words at the beginning or ending of a sentence.  
 
Also, even though the speaker could retake something, the original take was not 
overwritten and still needed to be checked. Sometimes, noise was introduced by the 
environment. For the open questions, the answers had to be transcribed. 
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All the audio clips were lined up in a play list and observed. The results of the 
auditory validation were files for every recording session organized as seen in Table 
5.4. 
 
Table 5.4: Example of a verification report for a recording session 

# Utt # Take # Quality Environment Actual Label 

1 1 1 g     

2 2 1 g     

3 3 1 g     

4 4 1 g     

5 5 1 g     

6 6 1 g     

7 7 1 g     

8 8 1 g     

9 9 1 g     

10 10 1 g operator <n> e...<o> <e> <m> <e> <n> 

11 10 2 g   <n> <nul> 

12 10 3 g   <n> <nul> <e> 

13 10 4 g     

14 11 1 g     

15 12 1 g     

16 13 1 g   incomplete 

17 13 2 g     

18 14 1 g     

19 15 1 g     

20 16 1 g   ja, één 

5.5.2 Visual validation 
Visual errors like the subject moving out of the frame were checked in the point 
tracking stage. At the time of the recordings, the operator could only see the first 
and last frame of a recording, giving some indication about the posture of the 
speaker, but not all the time. Many speakers tended to bend forward a bit as they 
sat down for some duration of time, forcing the operator to correct them. We do not 
exactly know for how many recordings this is the case, but sometimes the camera or 
chair was not properly adjusted to the speaker’s height, causing the chin to go out of 
the picture while talking.  Figure 5.8 shows a dual view example frame of New 
DUTAVSC.  

5.5.3 Hardware issues 
Some important errors were caused by the hardware. The audio signal was okay 
most of the time, although a little unclear during whispering. The recording of the 
video put far more strain on the systems, however, and this led to errors. 
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Figure 5.8: Sample front and profile view frames of New DUTAVSC  

 
A lot of the data proved to be affected by a lagging hard disk and/or camera. 
Apparently, 100 Hz is hard to deal with for the devices we used. And of course there 
were two cameras recording at 100 Hz each at the same time. The result is data with 
temporal gaps in them: if frames were missing, a whole series of them would be 
missing.   
 
The number of affected recordings is large, we estimate that one quarter of the 
complete data set is affected. However, for a large part the number of skipped 
frames is not that high. In spite of these errors we decided to use recordings for 
which the number of skipped frames was under 10 (0.10 seconds).  Because 
recordings were made at the relatively high frame rate of 100 Hz, missing some 
frames in practical applications is not unthinkable, so we decided that under 10 
missing frames with a recording of perhaps 2 seconds (200 frames) is acceptable. 
We estimate that about one third of all recordings with missing frames and thus one 
ninth of all data could not be used. For the single person recordings more accurate 
statistics are given in Table 5.5. 27% of all recordings had at least some missing 
frames, but in about 40% of the cases the number of missing frames is under 10. 
Session 0 (part of the original New DUTAVSC) was a very bad recording session in 
this sense.  

5.6 Conclusion 

After the recording of this data corpus was complete, we were able to concentrate on 
building the automatic lip reader. This would take the new speech corpus to the test. 
With respect to this data corpus, the main question we ended up with was, whether 
we had gathered enough data to train an automatic lip reader from scratch. And if so, 
whether this lip reader would be either person-dependent, or person-independent, 
like we had hoped.  
 
Table 2.1 can now be extended with the information of our new corpora, given in 
Table 5.6. 
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Table 5.5: Percentage of missing frames, and percentage of that for which the number of missing frames 

is under 10 for frontal and profile frames. Single Person New DUTAVSC sessions were used.  

Session missing frames < 10 (front) < 10 (side) 

0 38.1% 8.3% 12.5% 

1 12.0% 33.3% 33.3% 

2 18.4% 52.2% 47.8% 

3 20.8% 26.9% 23.1% 

4 22.4% 46.4% 46.4% 

5 31.2% 53.8% 56.4% 

6 37.4% 43.1% 43.1% 

7 29.7% 45.7% 45.7% 

8 34.2% 52.8% 52.8% 

9 29.0% 46.7% 44.4% 

10 25.8% 30.0% 30.0% 

Mean 27.1% 39.9% 39.6% 

 

Table 5.6: Extension of Table 2.1 showing the data for New DUTAVSC 

 

Corpus Language Sessions Number of 
speakers 

Audio Quality Video Quality Language 
Quality 

Stated purpose 

New 
DUTAVSC 

Dutch 79 70: 49 male, 
21 female 

48 kHz on 16 
bits 

384x288, 8bit, 
100 fps, lower half 

of the face 

Connected digits, 
spelling, 

application and 
natural 

sentences, 
normal, fast and 

whispered, 
common 

expressions and 
open questions 

Multi-purpose: 
word-level, 

sentence-level 
and continuous 

speech 
recognition, 
restricted or 

unrestricted by 
grammar 

Single-
person 
New 

DITAVSC 

Dutch 11 1 (female) 48 kHz on 16 
bits 

384x288, 8bit, 
100 fps, lower half 

of the face 

Single and 
connected digits 

and letters, 
natural sentences 

Small vocabulary 
isolated/connected 
words recognition 
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6 Lip tracking 

The first step we took to accomplish data parameterization on the recorded video 
material was that of finding the face and mouth. While there also exist other 
approaches, as seen in section 1.1, ours was to track certain landmark points. For 
this we used Active Appearance Models (AAM), which will first be discussed in section 
6.1, and the AAM Annotation Lab, discussed in section 6.2.  
 
The application to lip reading starts by defining the lip model (section 6.3), and 
training it (section 6.4). In section 6.5 we finally evaluate the results of point 
tracking using Active Appearance Models. The resulting face points will be used for 
feature extraction in the next chapter.  
 

Recognition
Feature 

extraction
Lip 

tracking
Data 

acquisition
Recognition

Feature 
extraction

Lip 
tracking

Data 
acquisition

 
Figure 6.1: Visual speech recognition overview: lip tracking 

6.1 Active Appearance Models 

Active Appearance Models (AAM, introduced in section 2.5.5) are a convenient tool 
for certain computer vision tasks. Using a model of the shape and appearance of an 
object, similar objects can be found in images. How the model is allowed to 
transform depends on the set of annotated images it was trained on.  Active 
Appearance Models were first introduced in a paper by Cootes et al. [26]. 
 
Approach 
An Active Appearance Model combines statistical shape and grey-level appearances 
of certain objects to be identified in an image. The application of Active Appearance 
Models comprises of two steps. The first step involves an offline training phase that 
will estimate the model parameters. The second step involves searching new images 
for a fit of the model based on an initial estimate.  
 
To train an AAM, the training supervisor first needs to present a training set labeled 
with landmark points that appear in all images. These are usually generated 
manually and takes a lot of time. A “bootstrap” approach to training can be to use 
the current model to help label new images, which are then added to the model. 
Incrementally building a model in this way is repeated until the AAM finds the points 
of new examples sufficiently accurately every time, which means it requires no more 
training.  
 
AAM search 
After an AAM has been trained for an object, it can be used to search new images for 
that object. The search starts from the mean model and iteratively modifies the 
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model parameters inside the learning range while minimizing the difference in 
appearance between the real image and the image synthesized based on the new 
model. The required number of parameters is computed in both cases by using 
Principal Component Analysis (PCA). In order to match to an image, we measure the 
current residuals and use the model to predict changes to the current parameters, 
resulting in a better fit. A good overall match is obtained in a few iterations, even 
from poor starting estimates. 
 
The use of a face/mouth detection/tracking algorithm (Viola/Jones face detection) as 
an initial guess was found to greatly accelerate the search for the shape parameters 
during AAM based processing. This enhancement enabled a real-time implementation 
of the algorithm. The face is located in an Active Shape Model search, and the shape 
parameters are extracted. The face patch is then deformed to the average shape, 
and the grey-level parameters are extracted. The shape and grey-level parameters 
are used together for classification. Active Appearance Models combine both shape 
and texture parameters into one compact model.  
 
Given a new image, the aim is to identify the object in a way that is invariant to 
confounding factors such as lighting, pose and expression. This is done using the 
Mahalanobis distance measure, which enhances the effect of inter-class variation, 
whilst suppressing the effect of between-class variation.  

6.2 AAM Annotation Lab 

The AAM Annotation Lab is the software tool we used to annotate video and perform 
point extraction, all using Active Appearance Models. It was developed by Alin ChiŃu, 
who in turn used an external implementation by Cootes at al. [20]. A screenshot is 
displayed in Figure 6.2. 

6.2.1 Functional Description 
The software can be used both to train AAMs and apply AAM search. Frames can be 
annotated by hand (mark certain points on the face) and those annotated images 
used as training examples when training an Active Appearance Model. A saved model 
can then be loaded into the program and used to find the face points for new images.  
 
Training a new model is done by loading a new image and adding model points 
organized in paths. In the case that the object is a face, different paths could be 
added around the contours of the face, eyes, nose and mouth for example. An 
addition by Alin ChiŃu is the ability to put constraints on the placement of these 
points, as to ensure a more uniform annotation. Edges between points are forced to 
be parallel or perpendicular to each other. The AAM algorithm itself is not affected by 
these constraints. There are more options available to make annotating easier, for 
example the mean shape or previous annotation can be copied to the next image, 
and points that were found by a (partially) trained model can be moved around 
manually.  
 
Training an AAM with this program is done by providing a folder with annotated 
training examples. The training time is dependent on the number of training samples 
provided. The model parameters are trained until at least 95% of the variance can be 
explained. The training time and size of the resulting model (stored in binary format) 
depend on the quantity and diversity of the training set.  
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Using this tool for point tracking is done by first loading a suitable model and image 
sequence, and perform a search. The AAM algorithm comes into play when points are 
tracked. For the first frame an initial guess is made by inserting the mean shape. 
Providing the initial guess can also be done manually by providing the annotation. 
Although this is not the procedure we want to follow - we want point extraction to be 
fully automatic - it does guarantee reliable results.  
 
In the current version of the program, all frames for an (uninterrupted) recording are 
opened simultaneously before tracking is performed. During the search, the frames 
pop-up after each like a video sequence, allowing immediate visual validation. Most 
recordings take just a few seconds to be processed entirely.  
 

 
Figure 6.2: Screenshot of AAM Annotation Lab, with detected model points indicated on the loaded 

frame 

6.2.2 File format 
After an AAM is trained, it is stored in a binary format with the extension AMF.  
 
The image annotations returned by the software are poured in a set of point 
coordinates in ASCII format. First the number of points is specified, then the relative 
coordinates of those points. Normalization of x and y coordinates is done according 
to the image resolution (384 x 288 in our case). The relations between the points are 
also given, showing which points form a path together. It also gives the name of the 
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image counterpart. Both annotating by hand and applying an AAM result in such a 
file. An example .ASF file is given in Figure 6.3. 

 
################################################### ################### 
# 
#    AAM Shape File  -  written: Monday December 15  - 2008 [15:26] 
# 
################################################### ################### 
 
# 
# number of model points 
# 
25 
 
# 
# model points 
# 
# format: <path#> <type> <x rel.> <y rel.> <point#>  <connects from> <connects to> <user1> <user2> <use r3> 
# 
0  1  0.42607439  0.45010457  0  7  1 0.00 0.00 0.0 0 
0  1  0.49949555  0.38849644  1  0  2 0.00 0.00 0.0 0 
0  1  0.54768693  0.39242752  2  1  3 0.00 0.00 0.0 0 
0  1  0.59027567  0.37919278  3  2  4 0.00 0.00 0.0 0 
0  1  0.66781477  0.42058484  4  3  5 0.00 0.00 0.0 0 
0  1  0.58141502  0.48384775  5  4  6 0.00 0.00 0.0 0 
0  1  0.54841500  0.48982627  6  5  7 0.00 0.00 0.0 0 
0  1  0.48850343  0.48843980  7  6  0 0.00 0.00 0.0 0 
1  1  0.45399342  0.44162939  8  15  9 0.00 0.00 0. 00 
1  1  0.49576520  0.39856323  9  8  10 0.00 0.00 0. 00 
1  1  0.54763896  0.40857251  10  9  11 0.00 0.00 0 .00 
1  1  0.59916921  0.39788249  11  10  12 0.00 0.00 0.00 
1  1  0.63395605  0.41811975  12  11  13 0.00 0.00 0.00 
1  1  0.59354006  0.42725822  13  12  14 0.00 0.00 0.00 
1  1  0.54982364  0.43767984  14  13  15 0.00 0.00 0.00 
1  1  0.49112842  0.43150759  15  14  8 0.00 0.00 0 .00 
2  5  0.46685836  0.69888635  16  18  17 0.00 0.00 0.00 
2  5  0.55169464  0.71679567  17  16  18 0.00 0.00 0.00 
2  5  0.60614983  0.69688417  18  17  16 0.00 0.00 0.00 
3  5  0.47582450  0.26400430  19  24  20 0.00 0.00 0.00 
3  5  0.51690497  0.27177300  20  19  21 0.00 0.00 0.00 
3  5  0.50063739  0.29660528  21  20  22 0.00 0.00 0.00 
3  5  0.57881567  0.29554871  22  21  23 0.00 0.00 0.00 
3  5  0.56178800  0.26712764  23  22  24 0.00 0.00 0.00 
3  5  0.59318058  0.24862790  24  23  19 0.00 0.00 0.00 
 
# 
# host image 
# 
xfontal__0000020.bmp  

Figure 6.3: Example of Active Appearance Model shape file containing model point co-ordinates 

6.3 Defining the lip model 

With Active Appearance Models it is possible to track any kinds of objects in images. 
In the original paper [26] they are applied to perform face tracking for identification 
purposes, and used on medical images. For the purpose of lip reading, we will use 
them to track the lower part of the face. More points than necessary would lead to 
more work for the annotators, while we still needed enough points to accommodate 
for the requirements of our features. The model should contain enough points to 
cope with all shape variations that occur on the object (e.g. lips). That is why our  
considerations for the chosen model points were based on the nature of the features 
we hoped to extract. 
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For every frame point its coordinates would be calculated. A logical choice would be 
to take certain distances and areas as features. The lips seem to provide the most 
visual cues in speech production, so first we included certain points on and around 
the lips. We wanted to add the area of the lips and mouth opening as features, so 
there would have to be enough points to approximate the shape of the lips closely. 
Lips are affected by many muscles and can thus take a great variety of different 
shapes (see Figure 6.4).  
 
Having a reference point to enable us to determine the scaling and orientation of the 
face is useful. This made us decide to include fixed points around the nose.  
 
 

 
Figure 6.4: Facial muscles around the mouth and directions of muscle contraction.  A. levator labii 

superioris. B) m. zygomaticus minor. C) m. zygomaticus major. D) m. risorius. E) m. depressor anguli 

oris. F) m. labii inferioris. G) m. orbicularis oris [27] 

 
In the work of Jacek Wojdeł, we have seen that it had paid off to determine whether 
the tongue and teeth were visible using a color filter. While we would just be tracking 
the points instead of using color information, we figured that the visibility of the 
teeth would also be apparent from the distance from the nose to the chin, since the 
teeth are attached to the jaws. So, we decided to include some chin points in the 
model.  

6.3.1 Terminology 
Before defining the model, we had to be clear about some anatomical descriptions. 
For the annotators to come up with a uniform annotation of the images, the model 
points had to be carefully defined. Each point was given a definition to be used by 
annotators to manually produce (or correct) key point positions using the software.  
 
First, we need to explain some anatomical terminology in the lip area. Figure 6.5 
shows a nose and mouth seen from a low angle, with the lips and nostrils fully visible. 
The central vermillion tubercle is the “lump” most people have in the center of their 
upper lip. It often sticks out a bit and can be easily recognized. The philtrum is the 
narrow area between the nose and lips between two “lines”. The nasal columnella is 
what separates the nostrils.  
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Figure 6.5: Lip anatomy. A) Central vermillion tubercle. B) Philtral column. C) Nasal columnella [28] 

6.3.2 Original 25-point lip model 
The first model we used for annotation was mainly based on intuition. Although most 
of the points could be placed unmistakably according to their definitions, not all of 
them could. The initial model had 24 points: 6 around the nose, 3 around the chin 
and 16 in the mouth area, following the point definitions in table Table 6.1. 
 

 
Figure 6.6: Initial model – points are numbered, red lines indicate polylines, purple lines indicate 

constraints 

 
There were however some limitations to this model. It was not able to cope with all 
mouth shapes we could present, e.g. a widely opened mouth. Furthermore not all 
points had an unambiguous definition. Some definitions were just plain unclear or 
only valid when the mouth was open. Because we wanted to include area features, 
the interior shape of the mouth should cover the area of the mouth more exactly. A 
more rigorous definition was needed.  
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Table 6.1: Initial model point definitions 

0, 4 Points at the corners of the lips 

8, 12 Intersection points of upper and lower lip when mouth 
is opened 

17 Lowest point at the center of the chin 

16, 18 Points on the jaw flanking the chin (no exact definition) 

0-7 Polygon describing the outer shape of the lips as well as 
possible 

8-15 Polygon describing the shape of the mouth opening as 
well as possible 

1, 3 Points where the “lines” of the philtrum meet the upper 
lip 

2 Lowest point where the upper lip curls inward 

10 Lowest point of central vermillion tubercle 

6, 14 Low and high points on the lower lip on the imaginary 
line from 2 to 17 

19 Upper left point of left nostril (from camera’s point of 
view) 

20 Lower right point of left nostril  

23 Lower left point of right nostril  

24 Upper right point of right nostril 

21, 22 Base of the central columnella/starting point of nose 
wings 
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Figure 6.7: Final model – points are numbered, red lines indicate polylines, purple lines indicate 

constraints 
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6.3.3 Improved 29-point lip model 
To allow the model to cope with more extreme mouth shapes, we chose to add extra 
points halfway between the point pairs (0, 1), (3, 4), (4, 5) and (7, 0), and similarly 
for the inner shape of the mouth. This way, the contours could be followed more 
accurately, which leads to a better approximation of the mouth area. Using this new 
model, the performance of the AAM is expected to increase and training made easier, 
because the elements of the mouth would be more separated.   
 
The new model, as shown in Figure 6.7, consists of 29 points: 24 points in the mouth 
area; 12 as the outer contour and 12 as the inner contour of the lips, 2 points at the 
base of the nose and 3 points at the chin. The definitions of these points can be 
found in Table 6.2 and Table 6.3. 
 
Table 6.2: Point definitions of the outer mouth contour 

0 Leftmost point still on the lips (left mouth corner) 

6 Rightmost point still on the lips (right mouth corner) 

2, 3, 4 Points placed in accordance with the philtrum 
(infranasal depression), namely, 2 and 4 at the foot of 
the philtral column and 3 in the place the where the 
philtrum meets the upper lip in the center  

8, 9, 10  Points on the lower lip corresponding to point 4, 3 and 
2 respectively 

1, 5, 7, 11 Points placed such that the lip area is approximted as 
closely as possible. Their positions are preferred to be 
at equal distances from their neighboring points 

 

Table 6.3: Point definitions of the inner mouth contour 

12 Leftmost point in the cavity of the mouth but not on 
the lips. However, in the case of a closed mouth this is 
not possible to observe, so it should be placed such 
that it best describes the mouth line, always to the left 
of points 13 and 23 however. 

18 Rightmost point in the cavity of the mouth but not on 
the lips. Again not observable in the case of a closed 
mouth. Instead it should then be placed such that it 
best describes the mouth line. Always to the right of 
points 17 and 19 however.  

15, 21 Points corresponding to points 3 and 9 and following 
the philtrum  
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6.4 Training the lip model 

To train an Active Appearance Model, a number of labeled training examples needed 
to be presented to the algorithm. We had no choice but to annotate these by hand. 
One of the advantages of AAM is that one occurrence of a shape is enough to have it 
modeled, so the amount of training data does not have to be so large. To allow for a 
robust model, each allowed lip shape should appear in the training set at least once.  
 
Approach 
The way mostly used to perform training of an AAM is he bootstrap method, where 
labeling and training are repeated until the model shows appropriate behavior for all 
new images. We gave it our own twist by searching for the most extreme mouth 
positions first.  
  
To cover as many lip positions as possible, we tried to have a “system” while 
nominating the frames that would be annotated by hand. We figured it is best to use 
frames from different utterances, to ensure a good coverage of the data. The 
following scheme was employed to try and train an AAM efficiently and effectively: 
 

1. Choose a couple of utterances. In whispered ones there may be the most 
extreme mouth positions. An attempt should be made to cover closed mouths 
and lip smacking as well. 

2. Take one frame every 30 frames or so and annotate them. If possible, select 
frames that show the most extreme mouth shapes. 

3. Put all of the annotated frames into the same folder. This may be a problem 
because a lot of images share the same filename. We wrote the tool 
“Dir2Filename” (Java) to allow the name of the folder to be appended to the 
filenames inside that folder.  

4. Build the AAM using the training folder. 

5. Add training images/utterances until the AAM seems to do fine, test with 
some extreme mouth positions. 

 
Some scripts were written to circumvent limitations of the program during training 
(although the other annotator used DOS commands to accomplish the same thing). 
All Java programs manipulate the subfolders of the folder they are placed in. They 
are called from batch files, but all class files specified in the batch files need to be in 
the same folder as well. We will now give their descriptions.  
 
Dir2Filename adds the folder names to all files in that folder as a prefix, allowing to 
put images from different utterances in the same folder and using them in the same 
training set. The operation is performed on all child directories. Afterwards, 
MatchFilename is performed. 
 
DirFromFilename checks if the folder name is prefixing the file names, and removes 
it if that is the case. This reverses Dir2Filename. The operation is performed on all 
child directories. Afterwards MatchFilename is performed. 
 
MatchFilename changes the BMP filenames in ASF files to whatever the filename 
currently is. The operation is performed on all child directories.  
 
SkippedFrames makes a global missing frame report out of the ones produced at 
synchronization made for each utterance. It omits all utterances that had no missing 
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frames. The operation is performed on all child directories. This didn’t have anything 
to do with training AAM directly, but was pretty useful when evaluating the 
recordings.  

6.5 Visual validation 

Evaluating an Active Appearance Model is not easy. The hardest thing we ran into 
while training Active Appearance Models, was to know whether the training set 
provided was extensive enough. According to the paper by Cootes, the training set 
needs to be representative of the data that could occur, because it will determine 
which model deformations are “allowed”. If certain extreme mouth positions are 
omitted in the training set, the algorithm will come up with an approximation within 
the model boundaries.   
 

 
Figure 6.8: AAM search. In just 2 steps the final point coordinates are found. The image on the left shows the mean shape 

inserted to the frame, the image on the right shows the result after one search.  

 
In the ideal case, we would work with just one model that works for all people in all 
lighting conditions. For Single Person New DUTAVSC there were 3 recording sessions, 
one in the original setup and two longer once. This amounts to a total of 1463 
utterances having been recorded. For each session the subject was wearing different 
glasses. From session 1, 71 images were annotated; from session 2, 43 and from 
session 3, 23. The AAM trained on the first session images could be successfully 
applied to session 2 data, but not session 3 data. A more generic model trained on 
images from all sessions performed even worse for session 3, while a model trained 
on just sessions 2 and 3 worked perfectly for session 3.  
 
This shows that a model made using one recording session cannot necessarily be 
used for subsequent recording sessions, even from the same person. This could be 
because AAMs depend on intensity information in the image, so a small change in 
lighting conditions could force the researcher to train a whole new model.  
 
In [17] they used active shape models instead of AAMs to follow the lip contours. 
Using the model parameters as features they obtained decent results. We are using 
the coordinates of the points around the lips instead. This means we have to apply 
scaling and normalization afterwards. It could be beneficial to use the shape model 
parameters directly.  
 
Another problem we encountered was that of proper initialization. The AAM algorithm 
is mainly good at tracking the lips (see Figure 6.8), not detecting them in the first 
place. For that, another algorithm is used, and we suspect that it is dependent on 
external factors like lighting conditions.  
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We trained a generic AAM using all the annotated frames for 8 different people. Once 
properly initialized, it generalized pretty well to the lip shape, for some random 
samples the initialization was perfect, even for one person who was not in the 
training set this was the case, and for a subject with a moustache. For 4 out of 9 
people, initialization was no problem. We found out that some experiments with 
generic versus person dependent AMMs have already been done by others [29]. The 
results are that although constructing a generic shape model is relatively easy 
(measured in number of images required to train), fitting a generic AAM is far harder 
than fitting a person specific AAM because the effective dimensionality of the generic 
shape model is far higher than that of the person specific shape models.  
 
An AAM sometimes places points outside of the image. This actually makes it robust 
against occlusion, but there appears to be no limit to the number of points that can 
be outside the frame, or the scaling and rotation factors for that matter. For faces, it 
might not be such a bad idea to set these limits.  
 
AAMs had been trained for 8 different people when we decided to just use Single 
Person New DUTAVSC for training our automatic lip reader. We used different models 
for each session. At some point we decided to perform manual initialization before 
AAM search. The new configuration of AAM Annotation Lab at that point allowed us to 
actually see how the AAM performed from beginning to end of the recording. Only 
few mistakes were spotted. The mistakes that occurred were mainly after a missing 
frame gap, as discussed in section 1.1.1. This is understandable as the previous 
frame is always used for initialization of the next. We argue that once a model has 
been trained specifically for a session, the initialization should be okay. 
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7 Feature extraction 

The feature extraction we performed is closely related to the model we used for the 
lips. So, first an Active Appearance Model was trained for the subject. Then, for 
every time frame of every recording, coordinates of the face points were computed. 
These coordinates were used to compute some features that seemed useful for lip 
reading. In this chapter, we will first discuss the chosen feature set (section 7.1), 
then discuss the algorithm implemented to perform the feature extraction (7.2). 
After that we evaluate the features based on criteria like robustness and correlation 
(7.3), and discuss results in section 7.4.  

Recognition
Feature 

extraction
Lip 

tracking
Data 

acquisition
Recognition

Feature 
extraction

Lip 
tracking

Data 
acquisition

 
Figure 7.1: Visual speech recognition overview: feature extraction 

7.1 Defining the features 

First, we defined some basic visual features that could easily be derived from a point 
model and computed. They follow the point definitions given in Figure 6.7 of the 
previous chapter. From the landmarks detected on the speaker’s face using AAM we 
computed some geometric features such as distances between key points and areas. 
The seven features we came up with this way are visualized in Figure 7.2. All 
distances are given in pixels.  
 

 
Figure 7.2: Visualization of the features: 1) Outer lip width, 2) Outer lip height, 3) Inner lip width, 4) Inner 

lip height; 5) Chin to nose distance, 6) Outer lip area, 7) Inner lip area. 
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7.1.1 Features computed from the outer lip shape 
It was pretty straightforward to define and compute the features based on the global 
or outer mouth shape of the lips. We distinguish between mouth height (the length 
of the lips vertically), mouth width (the length of the lips horizontally) and mouth 
area (the area of the polygon approximating the lip shape). To compute the width, 
we took the points on the far sides of the lips, and for the height, we simply used the 
points on the middle line of the face, even though it may not result in the full 
maximum height being computed.  
 
In terms of the numbered points defined in Figure 6.7 and Figure 7.3, we define 
mouth height as the distance between points 3 and 9, mouth width as the distance 
between points 0 and 6 and mouth area as the area inside of the outer mouth 
contour. 

 
Figure 7.3: Visualization of the features computed from the outer mouth shape 

7.1.2 Features computed from the inner lip shape 
Defining the features computed from the mouth opening was a little less 
straightforward, because there isn’t always a mouth opening. We decided to take this 
into account when defining the features. Nevertheless, the opening of the mouth is 
intuitively a speech feature important to sound production.   
 
We discovered some problems when defining the height of the mouth opening, 
because not all people open their mouths symmetrically. Just taking the height of the 
middle points was therefore not accurate enough, so we took the largest observed 
opening height instead. Eventually, we defined aperture height as the largest 
distance between the pairs of points (13, 23), (14, 22), (15, 21), (16, 20) and (17, 

19). This is illustrated in Figure 7.4 
 
Defining the width of the mouth opening required some thought, because the mouth 
might be closed or opened only partially. We decided that if out of the pairs of points 
(13, 23), (14, 22), (15, 21), (16, 20) and (17, 19) the distance was close to zero 
(some error is unavoidable with digital data) that part of the mouth would be 
considered closed, and disregarded in determining the width of the mouth opening. 
So, if the mouth is opened it would be the distance between the two mouth corners, 
if the mouth is closed it would be zero, and if partly opened it would be the minimum 
distance between two “closed” point pairs (or mouth corners). We defined aperture 
width as the distance between the first point (or coinciding pair of points) to the last 
point (or coinciding pair of points) on the inner mouth contour, the points being 
counted in a left to right order. 
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Figure 7.4: Visualization of the features computed from the inner mouth shape 

 
The area of the mouth opening is computed in the same way as the area of the lips, 
with the note that there is a chance of the polygon being self-overlapping, especially 
in case of a (partly) closed mouth. In our implementation this could lead to negative 
values for the area, which we did not mind too much because the mouth would 
probably be closed in case of overlap anyway. We define aperture area as the area 
covered by the mouth aperture, namely the inner contour. 

7.1.3 Features computed from nose and chin positions 
From the two points on the nose and the three points on the chin we can compute 
the distance between the nose and chin. We chose to use the lowest point on the 
chin: the one in the center of the face. For the nose we chose the point exactly at the 
center of the two defined noise points. We initially thought that the distance between 
the nose and chin could give clues for onset/offset detection. But because a closed 
mouth does not necessarily mean that the jaws are closed, the mouth aperture width 
could be a better candidate. As a feature, it may still be valuable though: the 
visibility of the teeth – an important visual cue – depends on both the upper lip and 
the positioning of the lower jaw. This way we can compensate for the fact that our 
model is based on points and not on color values. We define nose to chin distance as 
the distance between the line formed by points 24 and 25, and point 27 (see Figure 
7.2). 

7.1.4 Other possible features 
Another feature we could have considered to add is for example, the distance 
between the center of gravity of the polygon approximating the lips, and the nose or 
chin. The distance between the two points of the nose is already used for scaling, as 
we will see later on. It is hard to come up with a point-based feature set that is 
speaker independent. It would be interesting to see which features are comparable 
between speakers. Intuition says some mouth features might be, like inner mouth 
area, but after scaling this might not be true anymore.  
 
The displacement and acceleration of the specified features could be a dynamic 
addition to the feature set. The options for this are already built into the HTK tools. 
The delta and acceleration of point coordinates themselves could probably also be 
used as features, in which case the feature vector would have become a motion 
vector, as is the case with optical flow.   
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7.2 Feature extracting algorithm 

Features had to be extracted from many different files containing model point 
coordinates. We designed an algorithm that could process these files automatically.  

7.2.1 Formatting 
HTK requires a feature vector to follow a certain format. We wrote a Java program to 
perform the feature extraction and format the data. The input of the algorithm is a 
hierarchy of folders containing frames in .BMP format and coordinates of the found 
model points for each frame in .ASF format (see section 6.2.2). Then, a recursive 
method goes through all the folders and computes the feature vector for all folders 
containing .ASF files.  
 
Computing the distances was straightforward. The areas were a bit harder to 
compute, but we implemented an elegant method to compute the area of a polygon 
called the trapezium/trapezoid method. Here, the area below the bottom side of the 
polygon is subtracted from the area below the upper side, resulting in the area of the 
polygon itself. Because the Active Appearance Model sometimes results in a self-
overlapping polygon (for the inner shape of the lips when the mouth is closed) the 
area can turn out smaller than it actually is using this method, even resulting in a 
negative value. However, in those cases the mouth cavity area is already around 
zero anyway, so this behavior doesn’t seem harmful.   
 
Another challenge to implement was the inner mouth width discussed in section 
7.1.2. For its definition we said that it should be zero if the mouth is closed. So, for 
each pair of points lying above each other had to be checked whether their distance 
is zero (or negative in case of a self-intersecting polygon). Then, the width would be 
the distance between the last points that were placed on top of each other outward 
in from the corners of the mouth. This results in staircase-like graphs for 
closing/opening mouths as seen in section 7.3.   
 
Table 7.1: Average mean and variance of “nose width” scaling factor for Single Person New DUTAVSC 

session mean mean mean var 

0 42.00 2.85 

1 26.13 1.14 

2 25.43 1.26 

3 25.40 2.57 

4 25.60 2.55 

5 24.75 2.69 

6 25.65 1.86 

8 23.70 1.06 

7.2.2 Normalization 
The coordinates returned by the active appearance models had been transformed to 
the domain [0, 1) by dividing by the height and width of the frame. Before 
computing the distances, we reversed this operation. Then, we introduced another 
scaling factor to compensate for variation in distance between the recording subject 
and frontal view camera. All distances were normalized according to the most 
constant points of our model: the distance between the two points below the nose.  
Although a larger distance may have allowed for more accuracy, inspection shows a 
small variance in this particular value (see Table 7.1). The areas were normalized by 
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the square of the normalization factor. The only problem is that this scaling factor is 
not person-independent. We are not sure that there is any feature in the human face 
that is constant across individuals.  

The algorithm is fast to process folders of annotated recordings, and would probably 
run even faster if the output was kept to a minimum during execution. It is also 
backwards compatible with the first AAM definition. The algorithm is initiated by 
running “LipFeatureExtracer.bat” provided that it and the required Java class files are 
in the same directory as the one of which the subfolders need to be processed. The 
description of the algorithm is given in Figure 7.5 and the full source code can be 
found in appendix C. 
 
-> LipFeatureExtracter.bat 
LipFeatureExtracter.class 
DirFilter.class 
ASFFilter.class 
 
LipFeatureExtracter reads the coordinates from all asf files,  
extracts features and writes them to HTK feature ve ctor format. 
A text file is also written for easy access. 
With the exception of feature 5 and as long as path  0  
is the outer mouth shape and path 1 is the inner mo uth shape, 
with a multiple of 4 points counted clockwise from the left-most point,  
the features are independent of the model used. 
The operation is performed on all child directories ,  
child directories of the child directories and so o n. 
 
Figure 7.5: Read-me of lip feature extraction algorithm 

7.3 Visual validation of feature performance 

It is hard to objectively measure the performance of a feature set. The most accurate 
way to validate the feature set is to measure the performance of a speech recognizer 
trained on that set and do so for all possible feature configurations. As this would 
take many human and computing resources, instead we decided to evaluate the 
performance visually by inspecting plots of the feature values.  
 
The reason why a speech signal needs to be modeled by HMM in the first place is 
because the utterance of a phoneme/viseme never has the same length. Although to 
compare feature plots, they could be reformed using mathematics (with B-splines for 
example [30]), it would still be hard to say where a phoneme/viseme begins and 
ends in a recording. 

7.3.1 Robustness 
The first thing we wanted to validate is that the features are robust, i.e. show the 
same behavior for all realizations of the same viseme. Of course, it was not possible 
to inspect the total of the data, so we merely inspect some random samples taken 
from the recordings of single letters and digits. Most letters are composed of only 
one or two visemes. This made it easier to identify separate visemes. 13 out of 16  
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Figure 7.6: The seven features plotted for an instance of the letter F, containing the 2 visemes: eeh 

and fvw 

 
visemes appear in the alphabet. 2 additional visemes could be inspected by looking 
at the digits as well. Figure 7.6 shows for a letter “F” (with the viseme representation 
“eeh fvw”) how the feature values change per time frame (i.e. 100 frames per 
second). All graphs have been normalized around their mean value so they can be 
shown conveniently in one figure. As most features represent distances it should be 
easy to rationalize them.  
 
Inner mouth width seems to provide a clue about the start and end points of the 
utterance: when the mouth is opened. Not all recordings were as nice as this 
example in terms of the mouth being closed before and after the utterance though. 
It is perhaps more natural for humans to start with their mouth in the position “@”, 
as discussed in section 4.1.2. It could however be a nice cue to use in onset/offset 
detection.  
 
It is also interesting to follow the nose/chin distance graph as this represents the 
openness of the jaw. The greater the nose-chin distance the more the jaw was 
opened. If the mouth is closed, it doesn’t necessarily mean that the jaw is, as can be 
seen clearly from this plot.  

80 110 150 180 
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The outer mouth width seems to be the last seemingly independently operating 
feature, because when we normalize the graphs not only by their mean, but also 
their variance, we get graphs like shown in Figure 7.7. 
 

 
Figure 7.7: Feature values plotted for two utterances of the letter “F”, of which the viseme 

representation is “eeh fvw”, normalized according to mean and variance of the feature values over 

time 

 
Figure 7.7 shows two instances of the letter F, normalized not only according to their 
mean, but also their variance. What is apparent here is that 4 out of 7 features 
appear to be so correlated that they end up almost exactly on top of each other. 
These are the inner lip area, outer lip area, outer lip height and inner lip height. This 
suggests that only one of these needs to be included in the final feature set. We 
assumed that inner mouth area would be a characteristic feature, since this is the 
opening through which the air has to go to produce sound, but perhaps these other 
features are just as good. We saw however that not for all recordings they end up 
exactly on top of each other, although they always act similarly. Sometimes it 
appears as if the variation is so perfectly balanced around zero, that the graph starts 
jagging when it is used as normalization. Sometimes they seem to have some delay, 
and at some points one feature is a little off for 10 frames or so.  
 
The two feature plots in Figure 7.7 show similar behavior. Looking at the inner lip 
width shows where the utterance starts and ends. Because of the graph 
normalization a graph also depends on the behavior during the rest of the recording 
time, so our focus should be on the general behavior within this time frame. The 
downside is that not all recordings start and end with a closed mouth, but whether 
this is the case is immediately evident from a plot. A look at the plots during the time 
that the mouth was opened shows that all features made similar movements, not 
regarding the exact scaling too closely. This suggests that the features are more or 
less robust for the letter “F”. This appears to be the case for most letters we 
inspected.  
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A  H  

K  Q  

8 O  

I IJ  
Figure 7.8: Feature values plotted for the letters and digits A (aa), H (h aa), K (gkx aa), Q (gkx oyu), I (ie), 

O (oyu), IJ (ei) and 8 (a gkx td).  
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Figure 7.9: Legend for the plots in Figure 7.8. 

7.3.2 Classification performance 
After exploring how uniformly these features behave across instances, we wanted to 
know how well suited these feature are for viseme classification. We will do this by 
plotting the features for all the viseme classes that could be covered this way. There 
is one viseme that does not appear in the combined set of letters and digits, namely 
the “shzj”. For the remaining 15 visemes we will try to find out if this feature set 
would be able to make a distinction between them. For the graphs in this section we 
will include an average of the features “outer mouth height”, “inner mouth height”, 
“outer mouth area” and “inner mouth” instead of including them all, to make the 
graphs easier to interpret (naturally after validating whether for that particular 
recording this generalization can be made).  
    
Figure 7.8 and Figure 7.10 show the normalized plots of the resulting four features, 
for different letters of the alphabet, extended with two digits to cover “at” and “a”. 
The viseme representations of the letters and digits can be found in Table 9.1 and 
Table 9.4 respectively. Although we have looked at other instances of these 
utterances, we chose to display the nicest ones we encountered, or for which the 
inner mouth width showed a nice cycle of opening at the beginning and closing at the 
end.  
 
1. aa 
First of all, we will compare the behavior of the features for all that contain the 
viseme “aa”. Figure 7.8 shows feature plots for the letters A (aa), H (h aa) and K 
(gkx aa).  In each of these cases, the combined height and area feature cluster 
shows a single bump, while the outer mouth width and nose to chin distance show a 
dip, indicating that the mouth becomes narrower and the jaw is opened. According to 
the inner mouth width, the mouth is opened up wider.  
 
2. h 
The viseme “h” is only represented by one example (H). For the combined feature, a 
second bump shows in front of the bump of the second viseme. Nose to chin distance 
seems to show some specific behavior as well. 
 
3. gkx 
For the viseme “gkx“ we have several examples. First of all there is the letter K, then 
there is Q (gkx oyu) and 8 (a gkx td). Their feature plots mainly show bumps for all 
features where “gkx” should be observed.  
 
4. a 
Viseme “a” only has the example 8. The behavior of the features seems to be almost 
exactly the same as for “aa”. This might mean these viseme classes are not that well 
separable.  
 
5. oyu 
For “oyu” the examples are Q and O (oyu). The heigt/area feature and outer mouth 
width show a similar decrease. According to the nose to chin distance, the jaw 
opening becomes smaller for a moment as well.  
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E  D  

C L  

S  M  

7  F  
Figure 7.10: Feature values plotted for the letters and digits E (iee), D (td iee), C (sz iee), L (eeh l), S (eeh 

sz), M (eeh m), 7 (sz iee fvw at)  and F (eeh fvw).  
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Figure 7.11: Legend for the plots in Figure 7.8. 

6. ie 
For “ie” (only example I (ie)) all features except for nose to chin distance show a 
bump, that seems to last the full time that the mouth is opened. The viseme length 
might be a nice additional feature to recognize this viseme.  
 
7. ei 
Of “ei” there is also one example: IJ (ei). It seems to look a bit like “aa”, but the 
outer mouth width shows some different behavior, with an extra bump at the end.  
 
8. iee 
Switching over to Figure 7.10, we will discuss the viseme “iee” next. Examples 
shown are letter E (iee), D (td iee), C (sz iee) and 7 (sz iee fvw at). The features 
inner mouth width, outer mouth width and the composed feature all show a bump. 
The nose to chin distance however shows first a bump and then a dip, and all within 
the time span indicated by inner mouth width.  
 
9. td 
For viseme “td”, one example is included (D). Before the formation of the “iee” 
begins, the features show a lot of complex behavior, with the most prominent being 
a sudden peak by the outer mouth width and nose to chin distance. Apparently the 
mouth becomes a little wider and the jaw is closed.  
 
10.  sz 
For “sz”, two instances are included: C and S (eeh sz). The features that seem to 
show the same behavior are the outer mouth width, which shows a bump, and inner 
mouth width, which is at a slightly lower level as the vowel for these examples.  
 
11.  eeh 
For the viseme “eeh”, there are 4 examples: S, L (eeh l), M (eeh pbm) and F (eeh 
fvw). In the clearest examples, it looks like a short version of “iee”, with the 
difference that the nose to chin distance and outer mouth width both show a bump 
and a dip.   
 
12.  l 
For “l” there is one example: L. At the beginning of the viseme, both outer mouth 
width and nose to chin distance start in a peak and decrease from there. The other 
features also show a decrease, but these are not preceded by a peak.  
 
13.  pbm 
The example or viseme “pbm” is M. It can be nicely seen from the plot that when the 
“pbm” is formed, the mouth is closed (inner mouth width). The other features stay at 
a constant level in the mean time.  
 
14.  fvw 
“fvw” appears in both F and 7. Furthermore, another instance of F was shown in 
figure Figure 7.7. The main characteristic seems to be a peak for the outer mouth 
width, and movement toward the neutral position for all features.   
 
15.  at 
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“at” only appears at the end of digit 7. We cannot be entirely sure however that the 
“n” at the end of “zeven” was not uttered. The length of the word should normally 
give a clue about that, but 7 already has at least 4 visemes and it is hard to say 
where the “fvw” turns into an “at” and optionally a “gkx”. After what appears to be 
the “fvw” viseme, the graphs of all features gradually decrease, before at last the 
mouth is closed. In other work “at” has been assumed to be the neutral mouth 
position, and could perhaps be used as an alternative for onset/offset detection.     
After inspecting the feature plots for each viseme in Figure 7.8 and Figure 7.10, we 
can conclude that these features seem to be very capable of distinguishing between 
at least some of the visemes. Table 7.2 shows which features seem to be important 
for which viseme, together with the accompanying characteristic behavior.   
 
Table 7.2: Feature behavior for different visemes: +) bump -) dip -+) increase +-) decrease 

  aa h gkx a oyu ie ei iee td sz eeh l pbm fvw at 

Outer mouth width -  + - - + -+ + + + +- +-  +-  
Inner mouth width +  + +  + + +   +  -   
Nose/chin distance - + + - - - - +- +  +- +-    
Height/area features + + + + - + + +   +     
 
This evaluation was also useful because it helped us notice a labeling error with the 
letter “Q” as plain “gkx” instead of “gkx oyu”. Wrongly labeled data can make it 
harder to train a recognizer and can introduce errors.  

7.4 Conclusions 

We found that some features are more useful than others. The first thing we 
observed was that for normalized graphs (centered around their means and divided 
by their standard deviations) four features show great overlap indicating high 
correlation. They are inner lip height, outer lip height, inner lip area and outer lip 
area. If they are the same it is not useful to include them all. This also shows that 
the point tracking and feature extraction used is robust.   
 
Another thing we saw is that because of its definition the feature “inner lip width” is 
a useful indicator to see whether the mouth is closed or not. If the mouth is closed 
its value everywhere will just be zero. A horizontal line in the graph of any other 
feature would mean that there is a series of missing frames in the recording. This 
leaves us with two more features that can be used to classify the visemes: outer lip 
width and nose to chin distance. That makes a total of at least four distinct features.  
 
One important challenge remains: these features are not person-independent. Even 
if another Active Appearance Model is trained for a new person and the points can be 
located successfully, people’s facial features are not always the same. In fact, any 
computed distance between points could be different, even when they are 
normalized by a distance that is the same for all humans (the distance between 
“nose points” we used is probably not, though for recordings of the same person it 
complies). This renders a recognizer trained on data from one person unreliable for 
another. Perhaps some kind of speaker adaptation could be applied. 
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8 Implementation 

In this chapter we will describe the final implementation of our visual speech 
recognizer. There are four main phases in the development of a speech recognizer: 
data preparation (section 8.1), training (section 8.2), testing (section 8.3) and 
analysis. For most of the tasks, HTK tools are readily available, and most who have 
trained a speech recognizer using HTK before will recognize the approach taken, as it 
is also described in the HTK manual [2]. This chapter should provide the reader with 
enough background information to train a speech recognizer of their own.  
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Figure 8.1: Visual speech recognition overview: recognition 

 
What we implemented was a speaker dependent recognizer, using HMM with three 
emitting states for each viseme, using the viseme set presented in chapter 4. 
However, while the approach is about the same for all recognizers, it is not possible 
to quickly train a recognizer using only a portion of the data or changing a parameter, 
as some steps involve the training supervisor to do something, like designing and 
copying HMM, or selecting data. In theory, a shell could be used to perform all the 
steps, but this was not the focus of our work.   

8.1 Data preparation 

In the previous chapters we described how feature vectors were attained from the 
video material. The training data available for the lip reader were the features 
extracted from Single Person New DUTAVSC. Aside from the feature vectors however, 
the automatic lip reader would require a formatted dictionary, grammars and labels 
for each recording. We started out with the grammar, then the dictionary and finally 
the labels.  
 
Within HTK, grammars are stored within a word net. There are two different ways of 
defining a grammar in HTK. The first is a restrictive one using Extended Bachus-Naur 
Normal Form, which is sufficient for simple recognition tasks, like digit or digit string 
recognition (it is important whether a fixed length of such a string is defined or not). 
An example of such a grammar is given in Figure 8.2. But also more complex tasks 
like the bank application seen before can be captured in a grammar, as presented in 
Figure 5.2.  
 



8 Implementation 

90 

$letter =  
 A | B | C | D | E |  
 F | G | H | I | J |  
 K | L | M | N | O |  
 P | Q | R | S | T |  
 U | V | W | X |  
 IJ | Z; 
 
$digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9; 
 
($digit $digit $digit $digit $digit $digit $digit $ digit |  
$letter $letter $letter $letter $letter $letter $le tter $letter |  
$digit |$letter) 

 
Figure 8.2: Example grammar in EBNF as accepted by HTK. This grammar allows for single digits, single 

letters and letter or digit strings of length 8. 

 
The other type of grammar that can be applied is a bigram language model. To train 
N-grams, however, one requires an extensive text corpus of natural language. What 
we initially did was using our sentence pool of Polyphone sentences to train a bigram, 
while a better approach would have been to take an existing bigram model and 
simply delete the words that did not appear in our dictionary.   
 
This brings us to the dictionary. One was already available to us namely the same 
dictionary as used by Polyphone and previous work on speech recognition [5]. A 
dictionary as required by a speech recognizer consists of words and their phonetic 
transcriptions. We edited the dictionary and transcriptions by performing the 
phoneme to viseme mapping given in Table 4.6.  
 
Through our recording software most of the data (except for the answers to open 
questions) had already been pre-labeled. Labels are used to train and evaluate the 
recognizer (by comparing the label to the recognizer output) and consist of (a series 
of) dictionary words indicating what was said on the recording. HTK requires all the 
labels for training to be listed in a master label file. Also, a mapping is performed 
from words to visemes, where silence between words is inserted. A label needs to 
match the utterance perfectly, including any mistakes. We decide to only use 
utterances that were fluent and without mistakes, because any irregularities that 
show in a sound recording would probably be amplified in the visual modality. There 
were probably more irregularities in the recordings than we could hear during 
auditory validation.  
 
Furthermore, all the words presented needed to appear in the dictionary. HTK does 
not cope with special characters well. A HTK compatible dictionary can contain 
capitalized and non-capitalized words, numbers, dashes and single quotes, but that 
is about all. For English this would be fine, but in Dutch special characters change 
the meanings and pronunciations of words sometimes (e.g. “een” vs. “één”), plus a 
good spelling often depends on it. In the end, we just capitalized all words and word 
labels, wrong spelling or not. The other consequence of this restriction of HTK is that 
we were unable to use the standardized ASCII IPA notation for the dictionary. 
Instead we had to use phoneme and viseme representations HTK could process. We 
discussed this in chapter 4.   
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8.2 Training 

Training a speech recognizer is an incremental process. As pointed out in chapter 3, 
the only (currently known) way to train a Hidden Markov Model is to use an 
approximate algorithm, namely the Baum-Welch re-estimation algorithm. In the end, 
for every speech primitive (in our case visemes extended with one or model 
silence/noise models) one Hidden Markov Model will be trained and together with its 
state output probability density functions and state transition probabilities stored in 
its own file.  
 
A good initial estimate of a triphone HMM using Gaussian mixtures is a trained 
monophone HMM using a single Gaussian. To define the model topology, first 
prototype HMMs need to be composed. We chose a topology of five states per viseme, 
of which three emitting. Prototype HMMs contain the size of the feature vector that 
will be presented, the number of states and the initial state transition probabilities. 
Initial HMM of this kind are all identical, with identical initial values for mean and 
variance. This is how we constructed the prototype using HCompV (words between 
% are variables): 
 
HCompV -T 1 -C ../configs/%config% -m -f 0.01 -S .. /lists/%trainset% -
M ../models/hmm0 ../protos/%proto% 

 
To obtain the final set of initialized monophone HMM, they need to be re-estimated 
three times by using the HTK tool HERest thrice. Calling HERest is done like this: 
 
HERest -T 1 -C ../configs/%config% -S ../lists/%tra inset% -
I ../../Data/%database%/Labels/%subcorpus%_MLF0_vis eme_transcription.mlf -
H ../models/hmm%lasthmm%/%macros% -H ../models/hmm% lasthmm%/%hmmdefs% -
M ../models/hmm%newhmm% ../blocks/monovisemes0_%dat abase%_%subcorpus% 
 
The long and short pause silence models that are used to model noise among other 
things can be made more robust by adding extra state transitions. A short pause is 
allowed to be skipped while a long pause may be repeated to occupy a greater time 
span with impulsive noise. We added these state transitions and re-estimating twice 
more to make the set of HMMs incorporate these variations. The silence models are 
fixed using HHEd: 
 
HHEd -A -D -H ../models/hmm%lasthmm%/%macros% -
H ../models/hmm%lasthmm%/%hmmdefs% -M ../models/hmm %newhmm% 
sil.hed ../blocks/monovisemes1_%database%_%subcorpu s% 

 
Another thing that had to be accounted for, are words in the dictionary for which 
multiple pronunciations exist. Viseme transcriptions that were previously generated 
automatically by picking the first available pronunciation in the dictionary, can be 
realigned to more accurate versions using the model trained thus far. This is done 
using the HTK tool HVite, followed by re-estimating twice more. HVite is called as 
such: 
 
HVite -a -b SENT-START -m -o SWT -y lab -T 1 -t 250 .0 150.0 1000.0 -
C ../configs/%config% -H ../models/hmm%lasthmm%/%ma cros% -
H ../models/hmm%lasthmm%/%hmmdefs% -l '*' -
i ../workdata/%database%_%subcorpus%_trainset_MLF1_ viseme_transcription_aligned.
mlf -I ../../Data/%database%/Labels/%subcorpus%_MLF _word_transcription.mlf -
S ../lists/%trainset% ../../Data/%database%/Diction aries/%subcorpus%_viseme_dict
ionary.dic ../blocks/monovisemes1_%database%_%subco rpus% 
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Figure 8.3: The three phases of a phoneme [21] 

 
Now that monophone HMM had been trained for all the visemes, we could extend 
this to triphones that can model the dependency between phones more accurately. A 
phone is usually regarded as a having three phases; the onglide, pure phone and 
offglide (see Figure 8.3). The onglide and offglide often overlap with those of 
previous and sequential phones. With triphones instead of for each phone, one HMM 
will be needed for each phone with an onglide to the specific previous phone and 
offglide to the specific next phone. As one can imagine this causes an explosion in 
the number of HMM that needs to be estimated, making pruning and storing the 
HMM in a binary file important to consider for optimization.  
 
Context-dependent triphones can be made by simply cloning monophones and then 
re-estimating using triphone transcriptions. Using the label editor HLEd, the 
monophone transcription can be made into a triphone transcription, disregarding the 
long pause sil at the beginning and ending of the utterance and short pause sp as 
the word boundary symbol.       
 
Because this approach would require much more training data than monophones, 
there can be made use of parameter tying between HMMs. This way, transition 
matrices can be shared by multiple HMMs, increasing the amount of training data for 
each such matrix. When re-estimating tied parameters, the data which would have 
been used for each of the original untied parameters is pooled such that a much 
more reliable estimate can be obtained. Some triphones will occur only once or twice 
and so very poor estimates would be obtained if tying was not done. The most 
reliable state tying can be done according to a linguistic model by decision tree 
clustering using the HTK tool HHEd, but as we didn’t have such a thing at our 
disposal, we used a data driven model. This model is also available through the tool 
HDMan as well as some scripts provided with HTK. Re-estimation again must be done 
twice to obtain the final result. 
 
At the same time, the number of Gaussians mixtures could be increased to make the 
probability density function for each state to better fit the data. This process has to 
again be performed incrementally, because too many mixtures would cause the 
model to be overtrained and perform badly on new data [31]. And again, this 
increases the number of parameters so that the required training time is expected to 
be longer.  

8.3 Evaluation 

We trained four types of recognizers. They differ with respect to the inclusion of delta 
and acceleration factors of the features described in chapter 1, and whether 
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monophones or triphones were used. To obtain the best result flat training was 
applied, and for all 32 possible combinations of Gaussian mixtures the one that gave 
the best performance was chosen. Each recognizer was trained on 85% of the type 
of data we wanted to use the recognizer for, leaving a test set of 15%. While it is 
possible to train the recognizer on all data, because what we are actually training are 
the viseme-level HMMs after all, we thought this way more accurate results could be 
obtained.  
 
To evaluate the performance of the completed recognizers, several things are 
required: test data that has not been used for training, the recognition network 
(generated by our grammar) and the dictionary. Recognition is done using the Viterbi 
algorithm implemented by the HTK tool HVite. It can process a whole list of test data 
files in sequence and several options concerning the word-cross probability and 
weighing factor of the grammar can be set additionally.  
 
The final performance can be determined by comparing the output of HVite to the 
known labels using the tool HResults. HResults has many options to draw statistics 
from the results. In the standard case, it will give the percentage of sentences and 
words that were recognized correctly (the percent correct and percent accuracy, see 
section 2.1), the word accuracy rate and the number of errors of each of the types. 
If certain instances are allowed to be confused, like in our case at a given point some 
of the letters which had the same viseme transcription, there is an option to make 
them equivalent to HResults. It can also show a full confusion matrix so we can see 
all the substitution errors that were made for each word. Here is how HResults is 
called: 
  
HResults %classescluster% -
I ../../Data/%database%/Labels/%subcorpus%_MLF_word _transcription.mlf ../blocks/
monovisemes1_%database%_%subcorpus% ../results/reco ut_%database%_%subcorpus%_%fe
aturestype%_%deltaacc%_1B_word.mlf 

 
In the next chapter we will describe the recognition performance obtained by these 
recognizers.  
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9 Experiments and results 

Once we finished the implementation of the automatic lip reader, we were able to 
design some experiments to test its performance. The data used was from the Single 
Person New DUTAVSC subcorpus (see section 5.3.2), which contains recordings of 
sentences, single digits, random digit sequences of length 8, single letters and 
random letter sequences of length 8, and all of a single person.  
 
The first experiment involved digit recognition (9.1), which is a simple classification 
task that took us back to the basics. The second experiment involved letter 
recognition (9.2), which would be a spelling task. Then, we will compare the results 
of these experiments (9.4) and discuss the project-wide results (9.5).  

9.1 Digit recognition 

The first and simplest experiment we conducted involved digit recognition. There are 
10 words and thus 10 classes the data can fall into. We also did this for series of 
digits using a fixed grammar. The “pure chance” performance level is considered to 
be 10% for digit recognition. We used a restrictive grammar that only allowed either 
a single digit or a string of 8 digits to be recognized. The data presented was also of 
this kind. The viseme representations of the words of this recognition task are shown 
in Table 9.1.  
 
Table 9.1: Viseme representations of the 10 digits in Dutch 

Digit Viseme representation 

1 iee gkx 

2 td fvw iee 

3 td gkx ie 

4 fvw ie gkx 

5 fvw ei fvw 

6 sz eeh sz 

7 sz iee fvw at 

8 a gkx td 

9 gkx iee gkx at 

0 gkx oyu l 

 
For a subset of the data corpus consisting of 31 utterances and 73 digits, the best 
result obtained was 67.7 % of the sentences correct and 78.1 % of the words, with 
an accuracy of 68.5 % considering the insertion errors. To get this result, the delta 
and acceleration coefficients were included, and monophones were used with 24 
mixtures. The results for each type of recognizer are shown in Table 9.2. 
 
Table 9.2: : Percent correct and Word Recognition Rate for recognition of 73 digits 

 No delta/accelaration Including delta/acceleration  

Monophones 69.86 %; WRR=61.64 % 78.08 %; WRR=68.49 % 

Triphones 65.75 %; WRR=60.27 % 72.60 %; WRR=50.68 % 

 
Regarding the confusion matrix in Table 9.3, the following can be remarked. The 
digits to get confused most often are the “3” and “4”, which share a viseme but are 
otherwise distinct. And “1” and “9”, but this is no wonder as both letters contain “iee 
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gkx”, and furthermore, the phonetic transcription for 9, ”n ee g at” is perhaps 
inaccurate, as the “n” at the ending of the word “negen” may be clearly pronounced 
when speech is not uttered at a fast rate.  
 
Table 9.3: Confusion matrix for digit recognition task of 73 digits 

 0 1 2 3 4 5 6 7 8 9 total 
0 8 0 0 0 0 0 0 0 0 0 8 
1 0 3 0 1 0 0 0 0 0 2 6 
2 0 0 4 0 0 0 0 0 0 0 4 
3 0 0 0 8 3 0 1 1 0 2 15 
4 0 0 1 1 8 0 0 0 0 0 10 
5 0 0 0 0 0 6 0 0 0 0 6 
6 0 1 0 0 0 0 3 0 0 1 5 
7 0 0 0 0 0 0 0 3 0 0 3 
8 0 0 0 0 0 0 0 0 10 0 10 
9 0 2 0 0 0 0 0 0 0 4 6 

9.2 Letter recognition 

In spelling there are two letters that often seem to get confused by Dutch listeners, 
namely “M” and “N”. Adding the visual modality however this task becomes much 
easier, because their viseme representations are different. In this example the value 
of lip reading in spelling becomes evident.  
 
The next experiment we did was concerned with letter recognition. It is a slightly 
more difficult task than digit recognition, because the word representations of the 
letters are generally shorter than those of digits, namely 1 to 3 (but usually 2) 
phonemes/visemes. It could give some more insight on the recognition of pure 
visemes. The number of classes here is 26 (or 20 as we will see later) and the 
approach is the same as for digit recognition. We imposed a grammar on the 
recognition results that allowed for single letters, letter strings of length 8, and 
letters strings of arbitrary length (resulting from spelling of actual words).  
 
There was however one thing we overlooked while performing this task: as seen in 
Table 9.4, for some letters of the Dutch alphabet the viseme representations are 
equal. Due to the mapping from phonemes to visemes the distinctiveness of the 
letters of the alphabet has become less. While for recognition tasks with longer 
utterances this would not be a problem, for really short words like word 
representations of letters, it is apparent. The HTK recognition tool HVite solves the 
problem of multiple dictionary entries for the same viseme representation by picking 
the first one. With 26 classes, of which there are 6 pairs of equal looking letters, this 
should lead to an error in 6 out of 26 cases (23%). Indeed, clustering these pairs 
together in one class gave an increase in performance of about 10%. Considering 
they were just 186 random letters, it is possible that the calculated 23% was only 
10% in reality. The problem of the propagation of misclassifications was discussed in 
section 4.2.2. 
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Table 9.4: Viseme representations of the letters of the Dutch alphabet 

Letter Viseme representation 

A aa 

B, P pbm iee 

C sz iee 

D, T td iee 

E iee 

F eeh fvw 

G, J gkx iee 

H h aa 

I ie 

K gkx aa 

L eeh l 

M eeh pbm 

N, R eeh gkx 

O, U oyu 

Q gkx oyu 

S eeh sz 

V, W fvw iee 

X iee gkx sz 

IJ ei 

Z sz eeh td 

 
In the end, there were 20 classes (of which 6 clusters) for the letter recognition task. 
This amounts to a 5% pure chance recognition rate. For a subset of 60 utterances 
and 186 words in total, the best results obtained were those of the recognizer with 
delta and acceleration, using triphones and 18 Gaussian mixtures. According to Table 
9.5, 49.5% of all words are correctly recognized with a word recognition rate of -
12.9%. Furthermore 31.7% of all sentences were recognized correctly. 
 
Table 9.5: Percent correct and Word Recognition Rate for recognition of 186 letters 

 No delta/accelaration Including delta/acceleration  

Monophones 40.32 %; WRR=-35.48 % 44.62 %; WRR=-25.27 % 

Triphones 37.10 %; WRR=-44.62 % 49.46 %; WRR=-12.90 % 

 
The confusion matrix given in Table 9.6 can give us some insight about the 
classification performance of the feature set, especially since the letter 
representations for 6 vowels (A, E, I, [O, U] and IJ) consist of just one viseme. 
Apparent is that one viseme that seems to get confused a lot is gkx, probably 
because it is formed in the back of the mouth and it is kind of a “garbage collection” 
viseme, containing a lot of different consonants. Digits and letters that contain this 
viseme are [G, J], [N, R], K, Q, X, 1, 3, 4, 8, 9, 0.  
 
More interesting perhaps than which letters get confused are the letters that do not 
get confused. For F, H, I, [O,U] and [V, W], over 70% are correctly recognized. 
Because random letters were used, a lot of classes are actually underrepresented. IJ 
and [N,R] are never recognized correctly, despite being represented in the test set at 
least 5 times. 
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Table 9.6: Confusion matrix for letter recognition task 

  A 
[B, 
P] C 

[D, 
T] E F 

[G, 
J] H I IJ K L M N 

[O, 
U] Q S 

[V, 
W] X Z total 

A 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 
[B, P] 0 13 0 0 0 0 0 0 4 0 0 0 2 0 0 0 0 0 0 0 19 

C 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 6 
[D, T] 0 0 2 1 0 0 0 0 0 0 0 2 0 1 0 0 0 0 2 1 9 

E 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
F 0 0 0 0 0 8 0 0 0 0 0 1 0 0 0 0 0 0 0 2 11 

[G, J] 0 0 0 2 2 0 3 0 3 0 0 0 0 0 0 0 1 0 3 0 14 
H 0 0 0 0 0 0 0 10 1 0 0 1 0 0 0 0 0 0 0 0 12 
I 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 4 
IJ 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 2 0 5 
K 0 0 0 0 0 0 0 2 1 0 6 0 0 0 0 0 0 0 0 1 10 
L 0 0 1 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 8 
M 0 0 0 0 1 0 0 1 0 0 0 1 6 0 0 0 0 0 0 0 9 

[N, R] 0 1 0 0 0 0 0 1 1 0 0 5 0 0 0 0 0 0 2 0 10 
[O, U] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 7 0 0 0 0 0 8 

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0 0 7 
S 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 4 0 2 0 9 

[V, W] 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 12 0 0 17 
X 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 3 0 7 
Z 0 0 1 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 3 7 

 
That the restrictive grammar imposed on the results allows for letter strings of 
arbitrary length, could be responsible for part of the insertion errors. Although for 
spelling tasks it is only logical to have no length imposed on a word, in our case, we 
did not have any recordings of actual spelling, because they were only included in 
the original session setup, and because of the frame skipping issue discussed in 
section 1.1.1 not any of them were usable (see table Table 9.7). It is possible that 
the amount of visible articulation for visemes requires a more restrictive grammar to 
be used. We will have to see if using the more restrictive grammar variant will 
improve performance and word recognition rate especially.  

9.3 Comparison 

The results we obtained match the predictions about theoretical lip reader 
performance addressed in section 4.2. We cannot be sure whether this can be 
improved by increasing the amount of training data. The difference of instances per 
symbol to recognize could also have an influence, although the effect should not be 
as great because we trained our HMM at viseme level and not at word level. If we did 
the latter (and use larger HMM to model the classes) performance can be expected 
to increase, even when the visemes are the same. Another possible cause can be the 
length of the expression. Letters are of length 1-3, while digits are of length 2-4. A 
longer length gives the Viterbi algorithm more opportunity to make use of the 
context information.  
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Table 9.7: Number of usable recordings for first session of Single Person New DUTAVSC 

Number Speech type Utterance type <10 missing frames 

3 normal Random digit sequences of length 8 3 

3 fast rate " 0 

3 whispering " 0 

3 normal Spelling a random word of variable length 0 

3 whispering " 0 

3 normal Lists of random words of length 8 3 

3 fast rate " 1 

3 whispering " 2 

5 normal Fixed grammar bank application sentences 4 

5 fast rate " 5 

5 whispering " 5 

5 normal Random sentences taken from Polyphone 5 

5 fast rate " 4 

5 whispering " 4 

5 normal Every day use common expressions 5 

5 normal Short answers to random open questions 0 

 
The difference in performance of digit and letter recognition may be due to a number 
of reasons. First of all, as discussed before the restrictiveness of the grammar for 
letter recognition will need to be looked into. After that there are still two possible 
reasons. Firstly the number of classes for digit recognition is 10, while for letter 
recognition it is 20. Because of this there are more opportunities for confusion, 
especially since the words for letters are shorter than those for digits (see Table 9.8). 
Secondly, there was more training data available for digits than for letters. Because 
there are twice as many letter classes, twice as much training data would be needed 
to get the same training result as for the digits.  
  
Table 9.8: Frequency of word lengths for the viseme representations of digits and letters  

# visemes 1 2 3 4 average 
Digits 5 13 2 0 3,7 
Letters 0 1 7 2 1,55 
 
After that, whether it is because of lack of data or number of classes or number of 
training samples is easy to determine by just cutting back on those training samples 
in the case of digit recognition and comparing the results. For now we can only 
speculate on that however.  
 
One important thing we omitted to do was evaluating the recognizers on data that 
had not been seen before. It is customary to split a data set into a 80% training set, 
10% test set (used for performing the training cycles) and 10% evaluation set. This 
evaluation set needs to be used to check whether the recognizer has not been 
overtrained on the test data.  
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For a better validation of the feature classification performance, it is important to 
evaluate the performance for all visemes, or even phonemes if possible. The digit 
recognition task covers only 12 out of 16 visemes (omitting “h, shzj, pbm, aa”), 
while the alphabet recognition task only covers 13 out of 16 (omitting “at, shzj, a”). 
Taken all of them together, only the viseme “shzj” is missing, but that one rarely 
appears in the language anyway.  

9.4 Discussion 

Nearing the end of the descriptional part of this thesis, we need to evaluate to what 
extent this work has contributed to the field of speech recognition. The experimental 
work includes the following: 
 
• Recording a new, extensive, audio-visual speech data corpus, containing high-

speed footage of both front and profile view of the speakers. 70 people were 
recorded, 90 sessions were taken. All data had to be checked and processed. 

• A contribution has been made to the old DUTAVSC corpus, transcribing 3 out of 8 
recording sessions.  

• An attempt was made to integrate the source code of HVite into a C++ project, 
but this was stopped after the focus of our project shifted from making a real-
time implementation to documenting the new data corpus. 

• Using the method of Active Appearance Models to perform lip tracking. To train a 
model (manually) annotated video frames are needed. For 8 people models were 
trained. The capabilities of this method were investigated.  

• Extracting features based on the lip model point coordinates, and evaluating the 
performance of these features.  

• A lip reader was trained, and results of several simple experiments were 
evaluated.  

 
The previous paragraph was mainly focused on why the letter recognizer performed 
poorly, while it is perhaps more interesting to think about how the performance of 
the recognizer that was getting good results, the digit recognizer, could be improved.  
 
With respect to the HMM architecture the following can be said. All along, we have 
been talking about using visemes to perform automatic lip reading. Using visemes is 
a good idea if the objective is to make a versatile speech recognizer that uses viseme 
models and searches the dictionary for the viseme representation of certain words. 
For simple tasks, like digit recognition, an alternative approach could be to train 
word-level HMMs. Here a larger HMM architecture can be used than the typical three-
state HMM that is used for phones, with, for example, five states. This way one could 
get around the viseme mapping. This might be a good option, because there is no 
general agreement on the visemes set to use.   
 
Also, while we were working with visemes anyway, it would have been perfectly 
possible to train the recognizer on all the data. It is a generally good idea to add 
training data, and this way no new recordings are needed.  
 
We think we can answer part of the research questions now: 
 

1. Is it possible to build an automatic lip reader comparable to or even 
better than a human lip reader? 

We don’t know. In the literature we have seen one small speech corpus (TULIPS1) 
which provides the recognition performance for humans without lip reading 
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experience and humans with lip reading experience. Using this data corpus to 
test a recognizer could answer the question.  

 
2. Is it possible to build an automatic lip reader that performs as well as 

an acoustic speech recognizer? 

Most probably not. Using a phoneme to viseme mapping some speech 

information is lost.  
 
3. In which way should we integrate the results of automatic lip reading 

and acoustic speech recognition? 

This lies outside the scope of this thesis. 
 
4. Can we make an automatic lip reader that performs real-time? 
Not yet. Even though Active Appearance Model search is very fast, it still takes 
longer to process than the length of the utterance. Now that we use a frame rate 
that is five times higher the recognizer has to be four times as fast to reach real 
time.  

 
5. What are the quantitative and qualitative requirements of the data we 

use to train an automatic lip reader? 

We believe we need high-speed recordings of a decent resolution in the mouth 
area.   
 
6. Can the methodology to train an acoustic speech recognizer be 

directly applied to train an automatic lip reader? 

We have done so and the results seem decent enough. 
  
7. Which feature extraction method should be chosen as the standard 

for automatic lip reading in general? 

We haven’t encountered a single method yet that is robust, fast and speaker-
independent.  
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10 Conclusions and recommendations 

In this final chapter we will discuss and evaluate this project and give 
recommendations for further research. For each of the project goals defined in our 
problem definition, we will first discuss the results and draw our conclusions (section 
10.1). In section 10.2 we will discuss some ideas that this work has brought forth, 
but of which the realization fell outside the scope of this thesis.  

10.1 Conclusions 

1. Exploring the potential of a lip reading system based on Hidden Markov 

Models 

After going through some literature, especially the previous PhD work of Jacek 
Wojdeł and the manual of the Hidden Markov Model Toolkit, we saw that Hidden 
Markov Models are very flexible and can be used to model any kind of speech. After 
a phoneme to viseme mapping is applied and features have been extracted, an 
automatic lip reader can be treated as any other speech recognizer. There are 
however some limiting factors that are discussed in chapter 4.  

 

2. Exploring the possibilities for real-time visual speech recognition 

The bottleneck in most visual speech recognition systems is the feature extraction. 
Active Appearance Models has the property that they can perform face tracking very 
fast. Since we are working with high-speed recordings, to reach a real-time 
performance it would have to be four times as fast as for regular video though.  Once 
all elements of visual speech recognition have been lined up to process live input, we 
expect satisfactory results. We have not yet measured the speed of the algorithms 
used. This way the Real Time Factor could be calculated.  
 

3. Evaluating feature extraction methods discussed in literature according 

to  the criteria of performance, speed and speaker independence 

Although we wanted to come up with a fast and speaker-invariant way to extract 
features, this proved to be harder than expected. First of all, the initialization method 
of the Active Appearance Models is sensitive to lighting conditions, making it 
necessary to train a new model for every recording session, for which hand-
annotated material is required. This makes any kind of live application impossible. 
Furthermore, the AAM search returns point coordinates. While we managed to 
compensate for any rotation, translation and scaling, the resulting features are 
speaker-dependent because of facial differences between people. A way to deal with 
this could be to include an adaptation phase in applications.  

 

4. Obtaining a visual speech corpus that is sufficient in size and quality to 
train and evaluate an automatic lip reader from scratch 

The purpose of this project was to develop a visual speech recognizer for Dutch. The 
success of this depended greatly on the available amount of training data. 
Experiments with the small audio-visual data corpus DUTCVSC pointed out the need 
for a new and larger data corpus. Our efforts produced high-speed video material of 
70 different speakers recorded from the front and side. Because of expected 
technical difficulties with a speaker-independent system, we made some additional 
recordings of one person uttering just letters, digits and natural sentences, and used 
these to train the automatic lip reader. The new data corpus increased our 
expectations beyond the state of the art. 
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5. Preparing and implementing the separate parts that make up an 

automatic lip reader and linking them together 

We identified four steps that were all prerequisites for building an automatic lip 
reading; data acquisition, lip tracking, feature extraction and training. The results for 
each of these steps had to be evaluated to ensure the quality of the final result. For 
the recordings the performance of the speakers and hardware were evaluated. For 
Active Appearance Models the accuracy was evaluated, for the features their 
classification performance was evaluated and the training was validated by 
examining the recognition results.   

 

6. Evaluating the results obtained from experiments conducted using the 

implemented lip reader 

After implementing the lip reader, we obtained a result of 78.1% correct and a word 
recognition rate of 68.5%, for the simplest task: digit recognition. For other tasks 
the recognition performance stayed behind. Further experimentation will have to 
shed some light on the exact reason behind this.   

10.2 Future work 

Looking back on this project, we have seen a number of topics pass the revue. Only 
the surface of what could be possible in automatic lip reading has been scratched 
however. In this section several ideas for future work will be addressed.  
 
First of all, because of the limitations there are to automatic lip reading, we agree to 
the general idea that using lip reading in a stand-alone application would not lead to 
a satisfactory performance. Future research on visual speech recognition should 
therefore be focused on finding the right feature extraction method, model and 
training corpus. For real applications, combining modalities into an audio-visual 
recognizer has much more potential.  
 
We still don’t know exactly how much training data is required before a lip reader is 
sufficiently trained. After a certain amount of training data has been used the 
performance should stop to increase and eventually converge. At this time, new 
recordings are being processed to investigate when this point is reached. Another 
approach could be to decrease the amount of training data used gradually and 
display all results in a graph. The only downside to this approach is that training a 
speech recognizer is a time consuming process. If it turns out that any of the viseme 
models are undertrained, this would suggest that either more training data is 
required, or that the viseme classification needs to be revised.  
 
A number of ideas regarding recognition experiments have been posed in this thesis. 
New experiments will have to be conducted to evaluate these ideas. Work is 
expected to continue in this respect. The visual speech recognizer performance will 
also have to be evaluated for other types of utterances, like natural sentences, for 
which bigrams would have to be used for the language model.  
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A Written instructions for New DUTAVSC recordings 

Recordings instructions and progress 
 
 

Thank you for accepting to join our experiment.  
 
During this experiment you will be asked to utter several language items. The items 

to be uttered are going to be presented to you via a prompter like software. The program will 
display the next item to be recorded and instruct you on the modality to utter the current 
item. Please read these instructions carefully. When you are ready to start the recording 
please press the <LEFT MOUSE BUTTON>. When finished uttering please press AGAIN 
the <LEFT MOUSE BUTTON> to stop the recording. During the recording it is very 
important to follow the instructions given. For the success of the experiment and the 
research work that will use the resulted recordings it is very important to have a good 
posture on the whole period of recording. Hence, while uttering please keep your back, neck 
and head straight at all times and look straight into the camera. Try as much as possible not 
to move while recording. We expect that the total length of a recording to be maximum 10-
15 seconds. If for some reasons the last recording was flawed you can retake the recording 
by pressing <LEFT MOUSE BUTTON> when ready. To go to the next item press 
<RIGHT MOUSE BUTTON>. Sometimes you will be asked to retake an item because the 
memory is full. When for some reasons you want to retake a previous item then using the 
<MOUSE WHEEL> is possible to go back. 

Before starting the recordings please fill in the slots at the end of this document. 
After reading this document you can have a small trial, to accommodate with the software 
and the recording conditions. To start the recordings you need to register as a user. The 
experimenter will assist you in this process. He/She will then provide you with the print out 
of the items that are going to be presented to you. Please read the items. When you are ready 
you can start the experiment. The detailed expected timing of the experiment is given in 
Table 1. 
 
Table A.1. The experiment timings 

Timing Description 
00:00 Read the software manual. 
----- Start a trial session. 
00:05 Register the user. 
00:07 Print the pool of utterances for the user. 
00:10 Ask the user to familiarize with the utterances. 
00:15 Start the recordings 
00:30 End the session. 

Total time of the experiment is thus approximately 30 minutes 
 
Please answer the following questions before going to the next step. 
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1. You were presented a consent document by the experimenter. Did you read and 
understand everything that was said in that document? Please say yes or no here: 
______. Did you sign that document? Please say yes or no here:______. 

2. Did you read and understand the present document? Please say yes or no 
here:______. 

 
Before going further please take a trial with the software. 

 
Thank you very much for agreeing to participate in our exercise. We hope that you will 

enjoy working with us, and hope you could come again for a follow up. 
After the experiment is over the experimenter will give you some goodies to show our 
appreciation. 
 
 
 
 
 
Please write your name here:______________  Date:________ 
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B Consent document for New DUTAVSC recordings 

Consent document 
 

Thank you very much for accepting to participate in our experiment. 
 
 This experiment consists of audio-video recordings of speakers uttering a set of 
items in Dutch. The data resulted is compiled in a database that will be used for scientific 
research purposes, namely training and testing different systems in the domain of audio-
visual speech recognition, affective state recognition, speaker identification, etc. The resulted 
systems and analyses are going to be presented in scientific papers and public presentations, 
or used for demo during scientific events. We might also make the database available to 
other researchers. We might sometimes need to prove the database in some of the papers, 
presentations and/or demos, which means that some video or audio frames are going to be 
presented. During the experiment we will record your voice and the frontal and the side view 
of your head. Only the mouth area will be visible so the anonymity is guaranteed. We also 
guaranty that your name will never appear in public.  
 

Please fill in this form and answer the questions at the end. We are very thankful for 
you help.  
 
Name: _______________________________________________________________ 
Sex: _______________________________________________________________ 
Age: _______________________________________________________________ 
Level of education :     ___________________________________________________ 
Native language(s): ___________________________________________________ 
Country and province of origin: _______________________________________ 
 
Please answer the following questions: 
 
Do you agree that the recordings that feature you to be used for scientific research as 
explained above? Please answer yes or no here: ____. 
 
Do you agree that some images showing your mouth to be included in scientific papers, 
public presentations and/or demos? Please answer yes or no here: ____. 
 
Do you agree that complete or partial audio clips that feature your voice to be included in 
public presentations and/or demos? Please answer yes or no here: ____. 
 
Have you read and understood this document? Please answer yes or no here: ____. 
 
Please sign the document and hand it to the operator. Thank you for your co-operation and 
we hope we can count on you in the future. 
 
 
Date: ___________                           Signature: ___________ 
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C Lip feature extracting algorithm 
//LipFeatureExtracter computes the feature vectors from a set of model point coordinates 
class LipFeatureExtracter{  
 
        public static String report = "" ;  
 
        public static void  main ( String []  args ){  
                File current = new File ( "." );  
 
                try {  
                        searchDir ( current ,  "" );  
                         
                        PrintWriter out = new PrintWriter (  
                                new BufferedWriter (  
                                        new FileWriter ( "nose_width.txt" ,  false)));  
                        out . println ( report );  
                        out . close ();  
 
                }  
                catch( IOException e )  {  
                        e . printStackTrace ();  
                }  
        }  
        //substract point2 from point1 
        public static double  xDistance ( double []  point1 ,  double []  point2 ){   
                return point1 [0]  -  point2 [0];  
        }  
        //substract point2 from point1, screen coordinates! 
        public static double  yDistance ( double []  point1 ,  double []  point2 ){   
                return point2 [1]  -  point1 [1];  
        }  
        //Pythagoras 
        public static double  distance ( double []  point1 ,  double []  point2 ){   
                return Math . sqrt ( Math . pow( point1 [0]  -  point2 [0],2)  +  

   Math . pow( point1 [1]  -  point2 [1],2));  
        }  
        public static double []  middle ( double []  point1 ,  double []  point2 ){  
                double []  array = new double [2];  
                array [0]  = Math . abs ( point1 [0]  -  point2 [0]);  
                array [1]  = Math . abs ( point1 [1]  -  point2 [1]);  
                return array ;  
        }  
        public static int  nextIndex ( int  index ,  int  size ,  int  increment ){  
                int  ans = index + increment ;  
                if ( ans > size -  1)  
                        ans = 0;  
                if ( ans < 0)  
                        ans = size -  1;  
                return ans ;  
        } 
 //pre: point 0 and point length/2 are the mouth corners, only even # points allowed 
 //post: returns minimum width of a polygon (inner mouth width)  
        public static double  polygonWidth ( double [][]  points ,  double  epsilon ){  
                                 
                if ( points . length  % 2 !=  0)  
                        return 0;   
                int  left = points . length /2,  right = 0,  i =1;  
                double  distance ;  
                while ( left == points . length /2  && i < points . length /2){  
                        distance = distance ( points [ i ],  points [ points . length - i ]);  
                        if ( distance > epsilon )  
                                left = i -1;  
                        i ++;  
                }  
                i = points . length /2-1;  
                while ( right == 0 && i > 0){  
                        distance = distance ( points [ i ],  points [ points . length - i ]);  
                        if ( distance > epsilon )  
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                                right = i +1;  
                        i --;  
                }  
                if ( xDistance ( points [ left ],  points [ right ])>=0)  
                        return 0;  
                return distance ( points [ left ],  points [ right ]);  
        } 
 //pre: point 0 and point length/2 are the mouth corners, only even # points allowed 
        //post: returns maximum height between point pairs (inner mouth height) 
        public static double  polygonHeight ( double [][]  points ){   
                 
                if ( points . length  % 2 !=  0)  
                        return 0;   
                double  max = 0,  testValue ;  
                for ( int  i = 1;  i < points . length /2;  i ++){  
                        testValue = yDistance ( points [ i ],  points [ points . length - i ]);  
                        if ( testValue > max )  
                                max = testValue ;  
                }  
                return max ;  
        } 
 // pre: points form a closed path 
        // post: returns polygon area computed using trapezium method 
        public static double  polygonArea ( double [][]  points ){                   
 
                double  minY = points [0][1];  
                double []  minX = points [0],  maxX = points [0];  
                int  index = 0,  nextIndex = 0,  incr = 1;  
                for ( int  i = 0;  i <points . length ; i ++){  
                        if ( points [ i ][1]  < minY )  
                                minY = points [ i ][1];  
                        if ( points [ i ][0]  < minX [0]){  
                                minX = points [ i ];  
                                index = i ;  
                        }  
                        if ( points [ i ][0]  > maxX [0])  
                                maxX = points [ i ];  
                }  
                // could also just take the diff between area1 and area2, 
                // but this way you can have a negative result for self-intersection 
                nextIndex = nextIndex ( index ,  points . length ,  1);  
                if ( points [ nextIndex ( index ,  points . length ,  -1)][1]  > points [ nextIndex ][1])  
                        incr = -1;  
 
                double  area1 = 0,  area2 = 0;  
                //A(trapezium) = h ((a+b)/2) 
                while ( points [ index ][0]  < maxX [0]){   
                       nextIndex = nextIndex ( index ,  points . length ,  incr );  
        area1 = area1 + Math . abs ( points [ index ][0]  -  points [ nextIndex ][0])*  
                       (( points [ index ][1]  + points [ nextIndex ][1]  -  2 *  minY )/2.0);  
                       index = nextIndex ;  
                }  
                while ( points [ index ][0]  > minX [0]){  
                       nextIndex = nextIndex ( index ,  points . length ,  incr );  
                       area2 = area2 + Math . abs ( points [ index ][0]  -  points [ nextIndex ][0])*  
                               (( points [ index ][1]  + points [ nextIndex ][1]  -  2 *  minY )/2.0);  
                        index = nextIndex ;  
                } 

         //the area of self-intersection is subtracted instead of added: 
                //A(trapezia top) - A(trapezia bottom) 
                return area1 -  area2 ;   
        } 
 //pre: features contains the features to be written 
 //post: the feature vector is written to a file 
        public static void  writeFeatures ( String dirname ,  float [][]  features )  throws IOException {  
                if ( features . length  > 0){  
                        dirname = dirname . replace ( "_" , "" );  
                        DataOutputStream dos = new DataOutputStream (  
                                new FileOutputStream ( dirname +".dat" ,  false));  
                        //nSamples (4-byte int) 
                        dos . writeInt ( features . length );  
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                        //sampPeriod (4-byte int; 10 ms sample rate in 100 ns units) 
                        dos . writeInt (100000);  
                        //sampSize (2-byte int; #bytes per sample) 
                        dos . writeShort (4  *  5);  
                        //parmKind (2-byte int; code indicating sample kind) 
                        // + 4 * 8*8 + 8*8*8);  
         //user defined + delta + acceleration USER_D_A 
                        dos . writeShort (9);  
 
                        PrintWriter out = new PrintWriter (  
                                new BufferedWriter (  
                                        new FileWriter ( dirname +".txt" ,  false)));  
                        //check array contents 
                        for ( int  i = 0;  i < features . length ;  i ++){   
                                out . print ( i + "\t" );  
                                for ( int  j = 0;  j < features [0]. length ;  j ++){  
                                        out . print ( features [ i ][ j ]  + "\t" );  
        //write to HTK file 
                                        dos . writeFloat ( features [ i ][ j ]);   
                                }  
                                out . println ();  
                        }  
                        out . close ();  
                }  
        } 
 //post: searches file system recursively for ASF files containing AAM coordinates 
        public static void  searchDir ( File f ,  String name )  throws IOException {  
 
                File []  dirs = f . listFiles ( new DirFilter ());  
                for ( int  i = 0;  i <dirs . length ; i ++){  
                        if (  dirs [ i ]. getName (). startsWith ( "T" )  |  
                         dirs [ i ]. getName (). equals ( "Frontal" )|   
                         dirs [ i ]. getName (). equals ( "Side" ))  
                                 searchDir ( dirs [ i ], name);  
                        else if  ( name. equals ( "" ))  
                                searchDir ( dirs [ i ],  dirs [ i ]. getName ());  
                        else 
                                searchDir ( dirs [ i ],  name + "_"  + dirs [ i ]. getName ());  
                }  
                System . out . println ( "Processing: "  + f . getName ());  
 
                File []  files = f . listFiles ( new ASFFilter ());  
                //sort files by filename 
                Arrays . sort ( files );  
                float [][]  features = new float [ files . length ][7];  
                double  mean = 0,  variance = 0;  
                double []  scalings = new double [ files . length ];  
                 
                for ( int  i = 0;  i < files . length ;  i ++){  
 
                        String fullFilename = f . getCanonicalPath ()+  "\\" +files [ i ]. getName ();  
 
                        BufferedReader in = new BufferedReader (  
                                new FileReader ( fullFilename ));  
 
                        String line = in . readLine ();  
                        int  numCount = 0,  x = -1,  y =0;  
                        int []  path = new int [2];  
 
                        double [][]  coordinates = new double [1][2];  
                        StreamTokenizer st = new StreamTokenizer ( in );  
                        //handle #points 
                        while ( st . ttype  !=  st . TT_EOF && numCount <5){   
                                st . nextToken ();  
                                if ( st . ttype  == st . TT_NUMBER){  
                                        coordinates  = new double [( int ) st . nval ][2];  
                                        numCount ++;  
                                }  
                        }  
                        while ( st . ttype  !=  st . TT_EOF){  //read coordinates 
                                st . nextToken ();  
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                                if ( st . ttype  == st . TT_NUMBER){  
                                   //you encounter a new row 
                                        if ( numCount %10 == 5){  
                                              x ++;  
                                        //store # points for first 2 paths (lip contours) 
                                              if (( int ) st . nval  < 2)   
                                                pat h[( int ) st . nval ]  = path [( int ) st . nval ]+1;  
                                        } else if ( x > -1  && x < coordinates . length ){  
                                              if ( numCount %10 == 7)  
                                                    coordinates [ x][0]  = st . nval  *  384.0  
                                              else if  ( numCount %10 == 8)  
                                                    coordinates [ x][1]  = st . nval  *  288.0;  
                                        }  
                                        numCount ++;  
                                }  
                        }  
                        in . close ();  
 
                        double [][]  outer = new double [ path [0]][2];  
                        double [][]  inner = new double [ path [1]][2];  
                        for ( int  j = 0;  j < path [0];  j ++){  
                                outer [ j ]  = coordinates [ j ];  
                        }  
                        for ( int  j = path [0];  j < path [0]+ path [1];  j ++){  
                                inner [ j - path [0]]  = coordinates [ j ];  
                        }  
 
                        //scaling factor for camera distance normalization 
                        double  scaling ;  //nose points distance 
                        if ( coordinates . length  == 25)  //old model 
                                scaling = distance ( coordinates [19], coordinates [24]);  
                        else //new model 
                                scaling = distance ( coordinates [24], coordinates [25]);  
                        mean += scaling /( double ) features . length ;  
                        scalings [ i ]  = scaling ;  
 
                        //feature 1: outer lip width 

        features [ i ][0]  = ( float )( distance ( outer [0], outer [ outer . length /2])/ scaling );  
                        //feature 2: outer lip height 

        features [ i ][1]  = ( float )( distance ( outer [ outer . length /4],   
       outer [3* outer . length /4])/ scaling );  

                        //feature 3: inner lip width 
                        //image 384x288, so epsilon = 1.92 & 1.44 px, .005 => .001 
                        features [ i ][2]  = ( float )( polygonWidth ( inner ,  2.0)/ scaling );   
                        //feature 4: inner lip height 
                        features [ i ][3]  = ( float )( polygonHeight ( inner )/ scaling );  
                        //feature 5: nose/chin distance 
                        if ( coordinates . length  == 25)  
                                features [ i ][4]  = ( float )( distance ( coordinates [17],  
                                middle ( coordinates [19], coordinates [24]))/ scaling );  
                        else //new model (29 points) 
                                features [ i ][4]  = ( float )( distance ( coordinates [27],  
                                middle ( coordinates [24], coordinates [25]))/ scaling );  
                        //feature 6: polygon area of outer lip shape 
                        features [ i ][5]  = ( float )( polygonArea ( outer )/( scaling * scaling ));  
                        //feature 7: polygon area of inner lip shape 
                        features [ i ][6]  = ( float )( polygonArea ( inner )/( scaling * scaling ));  
                }  
                writeFeatures ( name,  features );  
                //report about mean and var of the distance between nose points 
         if ( features . length  > 0){  
                        for ( int  i = 0;  i < scalings . length ; i++){  
   variance += (( scalings [ i ]  -  mean )  *  ( scalings [ i ]  -  mean ))   
   /  ( double )  scalings . length ;  
                        }  
          report = report + name + " Mean: "  + mean + " Variance: "  + variance + "\n" ;  
                }  
 
        }  
}  
 


