
REQUIREMENTS MONITORING
FOR AN AUTONOMIC

COMBAT MANAGEMENT SYSTEM

A FEASIBILITY STUDY

by
Robert Westdijk

February 15, 2008

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

REQUIREMENTS MONITORING

FOR AN AUTONOMIC
COMBAT MANAGEMENT SYSTEM

A FEASIBILITY STUDY

by

Robert Westdijk
Student number: 1197886

Submitted for the degree of
Master of Science

in Media and Knowledge Engineering

February 15, 2008

Graduation Committee:
Dr. Drs. L.J.M. Rothkrantz

Ir. H.J.A.M. Geers
Ir. P. Wiggers

Drs. A.V. van Leijen
J. van der Weijden, MSc.

Abstract

Diagnosis of large and complex software systems is a challenging task that can highly benefit from
monitoring of the high-level functional requirements. This research studies the potential of applying
requirements monitoring for a software system of high complexity: the combat management system
(CMS) of a modern and technological advanced naval platform. An effort is made to apply a
monitoring technique that can be used for autonomizing of this system while limiting implementation
impact. The goal of this thesis is to show the feasibility of using requirements monitoring in a CMS by
presenting the design, implementation and simulation of a diagnostics expert system prototype.
Additional uses such as software developer support and user assistance are also explored. The KAOS
goal-oriented requirements engineering method is used to extract software system goals from
previously documented requirements. With these high-level objectives as a starting point, the ReqMon
requirements monitoring framework is applied. An implementation model is defined, identifying what
data transformations are needed to apply the ReqMon system. This model is implemented as a
prototype in a JESS development environment. Simulations show that detailed diagnosis of a complex
software system as a CMS is feasible. They also demonstrate that the combination of requirements
monitoring and rule-based reasoning provide a solid foundation for various levels of autonomy in an
existing combat management system.

Master thesis February 15, 2008

Robert Westdijk page ii

Master thesis February 15, 2008

Robert Westdijk page iii

Acknowledgements

This thesis marks the completion of a long journey (most will say too long) that has been my
Master of Science program. After the completion of my training at the Royal Netherlands
Naval College, which is now part of the Netherlands Defence Academy (NLDA), I have opted
to continue my education at the Delft University of Technology. Much of my evening and
weekend hours have been spent conducting the research presented in this thesis. My full-
time assignment as a CMS Software Expert in the Test & Integration Team at the Centre for
Automation of Mission- Critical Systems, CAMS/Force Vision has proven to be a busy
occupation, slowing down research progress considerably. Finally, the thesis project has
been completed, but I could not have done it alone.

I would like to thank my supervisor at the NLDA, Drs. A.V. van Leijen, and my supervisor at
the Faculty of Electrical Engineering, Mathematics and Computer Science, Dr. Drs. L.J.M.
Rothkrantz for their guidance, and – considering my graduating period – patience. I would
also like to thank my ex-supervisor at the Royal Netherlands Naval College, Ir. T.I.A. Simons,
with whom it all started.

I would like to thank my employer, CAMS/Force Vision at Den Helder, the Netherlands, for
the time and resources I have been granted to finish the Media and Knowledge Engineering
Master. Special thank goes out to Frank Zwarthoed, the developer and domain expert for the
CMS Goalkeeper software, for his support. I would also like to express gratitude towards the
members of Domain Maintenance for their assistance and feedback.

Not in the least, I would like to thank Dr. William Robinson, the developer of the ReqMon
framework, for his support. I hope my feedback to him was as helpful as his was to me.

Finally, I thank my girlfriend for her support.

Robert Westdijk,
February 2008

Master thesis February 15, 2008

Robert Westdijk page iv

Master thesis February 15, 2008

Robert Westdijk page v

Abstract

Diagnosis of large and complex software systems is a challenging task that can highly
benefit from monitoring of the high-level functional requirements. This research studies the
potential of applying requirements monitoring for a software system of high complexity: the
combat management system (CMS) of a modern and technological advanced naval platform.
An effort is made to apply a monitoring technique that can be used for autonomizing of this
system while limiting implementation impact. The goal of this thesis is to show the feasibility
of using requirements monitoring in a CMS by presenting the design, implementation and
simulation of a diagnostics expert system prototype. Additional uses such as software
developer support and user assistance are also explored. The KAOS goal-oriented
requirements engineering method is used to extract software system goals from previously
documented requirements. With these high-level objectives as a starting point, the ReqMon
requirements monitoring framework is applied. An implementation model is defined,
identifying what data transformations are needed to apply the ReqMon system. This model is
implemented as a prototype in a JESS development environment. Simulations show that
detailed diagnosis of a complex software system as a CMS is feasible. They also
demonstrate that the combination of requirements monitoring and rule-based reasoning
provide a solid foundation for various levels of autonomy in an existing combat management
system.

Master thesis February 15, 2008

Robert Westdijk page vi

Master thesis February 15, 2008

Robert Westdijk page vii

Acronyms

ADCF Air-Defense and Command Frigate
AI Artificial Intelligence
CAMS Centre for Automation of Mission-critical Systems
CIWS Close-In Weapon System
CMS Combat Management System
GORE Goal-Oriented Requirements Engineering
IBM International Business Machines corporation
IDE Integrated Development Environment
JESS Java Expert System Shell
KAOS Knowledge Acquisition in AutOmated Specification
NLDA Netherlands Defence Academy
OCL Object Constraint Language
OODA Observe, Orient, Act and Decide
RE Requirements Engineering
RNLN Royal Netherlands Navy
SEWACO Combat Systems (Dutch: Sensor-, Wapen- en Commando systemen)
SSADM Structured Systems Analysis and Design Method
TUD Delft University of Technology
UML Unified Modeling Language

Master thesis February 15, 2008

Robert Westdijk page viii

Master thesis February 15, 2008

Robert Westdijk page ix

Contents

Acknowledgements ... iii
Abstract .. v
Acronyms ... vii
Contents .. ix
List of figures and tables ... xi

Figures ... xi
Tables .. xi

1 Introduction ... 1
1.1 Problem description .. 1
1.2 Relevance ... 1
1.3 Objectives ... 2
1.4 Outline .. 2

2 Background ... 3
2.1 Guardion combat management system .. 3
2.2 Autonomic computing ... 3
2.3 Requirements monitoring ... 5
2.4 Requirements engineering ... 6
2.5 KAOS .. 7
2.6 ReqMon framework .. 8

3 Model .. 9
3.1 General approach ... 9

3.1.1 Software monitoring .. 9
3.1.2 Diagnostic reasoning .. 9

3.2 Uses for requirements monitoring... 10
3.3 Implementation model .. 11

3.3.1 Implementing the OODA loop ... 11
3.3.2 Prototype implementation ... 12

4 Implementation .. 13
4.1 Requirements monitoring for the CMS ... 13

4.1.1 Goal elicitation .. 13
4.1.2 Goal specification ... 15
4.1.3 Monitor definition .. 17
4.1.4 Monitor compilation ... 18

4.2 Prototype implementation ... 18
4.2.1 Requirements monitoring prototype .. 18
4.2.2 Reasoner prototype .. 21
4.2.3 Prototype development environment .. 24
4.2.4 Knowledge elicitation process .. 26

5 Results .. 29
5.1 Overview of results ... 29
5.2 Case 1: Supporting the developer .. 29
5.3 Case 2: Informing the operator ... 31
5.4 Case 3: Assisting the maintainer .. 33
5.5 Case 4: Closing the loop .. 34

6 Discussion ... 37
7 Summary and conclusion .. 39
8 Recommendations .. 41
9 References .. 43
Annex 1: Research paper ... 45
Annex 2: Paper award .. 57
Annex 3: Research report .. 59
Annex 4: Software component diagram ... 81

Master thesis February 15, 2008

Robert Westdijk page x

Master thesis February 15, 2008

Robert Westdijk page xi

List of figures and tables

Figures

Figure 2.1: The OODA loop for self-healing. page 5
Figure 2.2: Data streams for a software component monitored by a ReqMon

daemon.
page 8

Figure 3.1: Data flow of diagnostic information in the requirements monitoring
system.

page 10

Figure 3.2: Implementation of the OODA loop for self-healing. page 11
Figure 3.3: Steps for implementing requirements monitoring using ReqMon. page 12
Figure 4.1: Goal graph for the “Sea Control” capability statement. page 14
Figure 4.2: Goal graph for the CMS diagnostic software suite. page 14
Figure 4.3: Partial goal graph of the diagnostic suite for the navigation radars. page 16
Figure 4.4: Example goal structures for the diagnostic suite for the navigation

radars.
page 16

Figure 4.5: The Dwyer temporal pattern scopes. page 17
Figure 4.6: Software coordination model for the CMS Navigation Radar

diagnostic software chain.
page 18

Figure 4.7: An example of ReqMon output. page 21
Figure 4.8: Software coordination model for the CMS Goalkeeper software

chain.
page 21

Figure 4.9: Partial KAOS goal graph for the Goalkeeper system. page 22
Figure 4.10: Information flow in the monitoring and reasoning framework, with a

simple pseudo-code example.
page 22

Figure 4.11: Screenshot of the development environment. page 25
Figure 4.12: Resulting output for a OCL message type test scenario. page 26
Figure 5.1: Example of a possible error pop-up for a Goalkeeper operator. page 32
Figure 5.2: Example output from a JESS simulation. page 33
Figure 5.3: Example of a possible reconfiguration plan for the “no-own-ship-

data” failure.
page 35

Tables

Table 2.1: Self-properties of autonomic systems. page 4
Table 4.1: Standardized OCL message types for monitor definition. page 19

Master thesis February 15, 2008

Robert Westdijk page xii

Master thesis February 15, 2008

Robert Westdijk page 1

1 Introduction

In this chapter, the subject of this thesis is presented. The problem is described in Section
1.1. In Section 1.2, the relevance of this problem is explained and in Section 1.3 the
objectives are stated. Section 1.4 will outline this thesis.

1.1 Problem description

Nowadays, naval ships are becoming technologically more advanced due to a higher level of
automation and the growing potential of the onboard sensor suite. This results in combat
management systems (CMS) becoming more and more complex. The CMS of a navel vessel
is the collection of hardware and software integrating the so-called SEWACO subsystems,
which are the combat systems necessary for performing the various operational tasks.

While the complexity of the subsystems and software increases with every new type of ship,
reductions in staff result in fewer personnel available to operate and manage the CMS
software. This paradox of increased complexity versus reduced manning is one of the
reasons to search for novel techniques to support the software maintainer onboard.

The research presented in this thesis focuses on the application of requirements monitoring
for software maintainer support and as a basis for the implementation of autonomic
computing.

1.2 Relevance

Self-management of software systems and the related subject of autonomic computing is a
relatively new research area in component-based software engineering and Artificial
Intelligence (AI). It refers to systems that can manage themselves given high-level objectives
[16]. Self-management means that the system should be able to monitor its behavior, reason
about the data extracted by monitoring and if necessary adapt itself accordingly.

To enable an autonomic system to modify its own behavior, the system must have
knowledge about what its required behavior is. For many systems the behavior can be
described by means of a system model. However, creating a model of a complex software
system is extremely difficult. It is commonly accepted that software systems have grown too
large to statically verify and analyze [35]. Such an endeavor would require disproportionate
time and resources in the development process of a system and would be even more difficult
to apply on already developed systems.

To limit the design and development impact, the use of requirements monitoring is proposed.
This monitoring technique eliminates the need for a comprehensive system model. In
general, the utilization of requirement monitoring introduces the following advantages:

1. The opportunity to model system behavior on a high level without the creation of a
complex behavioral model.

2. A limitation of implementation workload required by designers and developers.
3. An approach to streamline the requirements elaboration process.

While much literature concerns the design of a new requirements monitoring framework, the
emphasis of this work is more on implementing a requirements monitoring system in an
existing software system. To show how requirements monitoring can be implemented and

Master thesis February 15, 2008

Robert Westdijk page 2

that it can serve as a basis for applying autonomic computing, the CMS as found on board
the Dutch air-defense and command frigates (ADCF) is used as an implementation test bed.

1.3 Objectives

The goal of this research is to give a first impulse for the automation and autonomization of
the CMS software management tasks. The main objectives are:

1. To define a model for the implementation of an AI diagnostic expert system based on
requirements monitoring.

2. To create a test environment for simulating and testing of the implementation model.
3. To develop a requirements monitoring prototype as a proof of concept.

1.4 Outline

This thesis is organized as follows. First, some background information is provided in
Chapter 2 about autonomic computing and requirements monitoring. Then Chapter 3
presents the model for requirements monitoring implementation. After that, the
implementation of the requirement monitoring framework and diagnostic reasoning
component are discussed in Chapter 4. The paper [37] found in Annex 1 is mainly based on
this chapter. The results acquired by tests with these prototypes are presented in Chapter 5.
The report [38] found in Annex 3 is mainly based on this chapter. Finally, the conclusions of
this thesis are presented in Chapter 6.

Master thesis February 15, 2008

Robert Westdijk page 3

2 Background

This chapter discusses related work and provides some background to the thesis problem.
First, Section 2.1 introduces the Guardion combat management system. Section 2.2 then
discusses the concept of autonomic computing. Section 2.3 deals with requirements
monitoring. The related subject of requirements engineering is discussed in Section 2.4.
Finally, Sections 2.5 and 2.6 describe the KAOS approach and the ReqMon monitoring
framework.

2.1 Guardion combat management system

The CMS of a naval vessel is the collection of hardware and software which integrates the
SEWACO subsystems, which are necessary for performing the various operational tasks of
the vessel. The following functions are generally performed by the CMS:

1. Data handling
2. Information handling
3. Communication control
4. Message handling
5. System monitoring and control
6. Weapon control.

The non-physical part of the CMS consists of the software that performs the diversity of
functions mentioned above. In this thesis, the emphasis is on the software part of the CMS.

The Royal Netherlands Navy (RNLN) has aimed for integrated combat systems to allow
central operation of the ship’s subsystems, which eventually led to the use of generic all-
purpose workstations in the Operations Room. The CMS software for Dutch naval ships is
developed at the Centre for Automation of Mission-critical Systems (CAMS/Force Vision) in
Den Helder, The Netherlands.

The CMS software of a modern naval vessel is a good example of a complex software
system. It is a highly integrated software system that is both network-based and component-
based. CAMS/Force Vision invests in research and development of software management
tools to support maintenance at sea, taking into account the paradox of increased complexity
versus reduced manning. Beside the development of software support tools for the system’s
maintainers, completely autonomizing the system is also an issue of interest.

2.2 Autonomic computing

An autonomic software system should be able to modify its own behavior in order to adapt
itself given high-level objectives and must be able to manage itself, hence the name “self”-
systems for systems that have this ability. There are four main aspects of autonomic
computing: self-configuration, self-optimization, self-healing and self-protection [18]. Two
more features are mentioned in [34]: self-organization and self-adaptation. This thesis
focuses on the ability of self-healing, meaning that the system can examine, find, diagnose
and react to system malfunctions [22].

Autonomic computing is a relatively new research topic and is a hot issue in software
engineering. This is because of the manifesto and the vision on autonomic computing that
have been released by IBM [16] in which autonomic computing is introduced. However, [21]
points out that the concept of self-managing and self-adapting systems is not new.

Master thesis February 15, 2008

Robert Westdijk page 4

Summarizing, The following self-properties can be identified [16], [18], [34], which are
defined shortly in Table 2.1:

1. Self-configuration
2. Self-optimization
3. Self-healing
4. Self-protection
5. Self-organization
6. Self-adaptation.

Table 2.1: Self-properties of autonomic systems, adapted from [16], [18] and [34].

Self-property Description

Self-configuring The automated configuration of components and systems following high-level
policies.

Self-optimization The automated improvement of the performance and efficiency of systems and
components.

Self-healing The automated detection, diagnoses and repair of software and hardware problems.
Self-protection The automated defense against attacks or cascading failures.
Self-organization The autonomous reconfiguration of interactions among components.
Self-adaptation The automated change of behavior in reaction to changes in the working

environment.

It is clear that all these self-properties are related to each other and have a tendency to
overlap. For instance, the terms self-configuring and self-organization seem the same.
However, the first refers to the configuration of a system, while the latter is related to the
architectural constraints of a system. Furthermore, a self-system is by definition self-
adaptive, since it changes certain properties or elements of itself due to some influence.
However, the self-adaptation property is introduced to make a clear distinction between
internal and external influences. This thesis focuses on the ability of self-healing, meaning
that the system can examine, localize, diagnose and react to system malfunctions.

The process of self-management implements a control loop [1], [16], [26], [34]. The OODA
loop can be applied here, which is a concept that is generally used for strategic military
purposes. It identifies four phases: Observe, Orient, Decide, and Act. These phases are
applied to the self-healing autonomic computing concept. This leads to the phases as
depicted in Figure 2.1 and as described below:

1. The observation phase is the process of monitoring and data collection. This data
could originate from the system itself, but it can also be data from the external
environment in which the system operates.

2. The orient phase features the analysis and interpretation of the collected data. The
collected data should be transformed into information, which can be related to the
high-level goals set for the self-managing system.

3. The decide phase is the phase in which the system may decide that action on its
behalf is needed. Here, the information from the orient phase is used. Generally, a
reconfiguration plan is created.

4. The act phase executes the healing actions that are needed, for instance based on a
reconfiguration plan. The executed actions should bring the system from the current
state to the desired state.

An autonomic computing system must be able to modify its own behavior. In order to
accomplish this, the system must have knowledge about what its required behavior is.
Therefore, the required system behavior must be defined, and that the system should be
enabled to monitor this behavior. Both aspects introduce some form of overhead.

The first aspect involves the creation of some kind of system model. However, creating an
accurate behavioral model of complex software systems such as the CMS is extremely

Master thesis February 15, 2008

Robert Westdijk page 5

difficult. Software systems have grown too large to statically verify and analyze [35]. Doing so
would require much time and resources in the often budget-constraint development process
of a software system.

The second aspect means adding a monitoring framework to the software system. This not
only introduces overhead at run-time, but also at development time. The increase in
overhead is because incorporating new monitoring techniques or adapting existing ones also
has a negative influence on both the time and budget of the development process.

Figure 2.1: The OODA loop for self-healing, based on [1], [16], [26], [34].

2.3 Requirements monitoring

Considering the software development process in general, it can be stated that the behavior
of a system is specified in the requirements of the system and consequently in its design. In
this context, the term requirements monitoring is introduced, which is defined as follows [10],
[31]:

“Requirements monitoring is the tracking of the run-time behavior of a system and the
determination whether that running system is meeting its requirements”.

It is based on the notion that the behavior of a system is specified in the requirements of the
system and consequently in its design. In this monitoring concept, the actual implementation
of the software is of no concern, as long as the desired behavioral properties are
accomplished.

To monitor the requirements of a system, run-time data collection on a low level is
performed. However, requirements monitoring is not the same as exception handling
because of the following aspects [10]:

1. The combined behavior of occurring events in multiple threads or processes over
time are considered.

2. Run-time behavior is linked to the actual design-time requirements.
3. Sufficient information is provided to allow for run-time reconfiguration of software.

Master thesis February 15, 2008

Robert Westdijk page 6

The last aspect links the executing of monitoring requirements to the autonomization of
software systems. In the view of [10], automatic run-time monitoring is a key step towards
making system self-evolving. The link between autonomic computing and requirements
monitoring is also underlined by [19], stating that requirements and their subsequent
requirements goal models can be used as a foundation for software that incorporates
autonomic computing.

2.4 Requirements engineering

A prerequisite for conducting requirements monitoring is the formalization of those
requirements [19], [29]. This is part of the process of Requirements Engineering (RE). RE is
concerned with the identification and refinement of goals, the operationalization of the refined
goals and the assignment of responsibilities for the resulting requirements [6]. A more
elaborate definition is given in [23]:

“Requirements engineering is the branch of software engineering concerned with the real-
world goals for functions of and constraints on software systems. It is also concerned with
the relationship of these factors to precise specifications of the software behavior, and their
evolution over time and across software families.”

In the software development process, the term “requirement” is often used for required
behavior or functionality throughout the various abstraction levels of the system design. The
following definitions with regard to the term requirement can be distinguished in literature
[29]:

1. Goal, which is a desired property of the software and its environment.
2. Requirement, which refines a goal by satisfying three properties:

a. It is described entirely in terms of values monitored by the software.
b. It contains only values that are controlled by the software.
c. The controlled values are not defined in terms of future monitored values.

3. Policy, which is a goal that:
a. Is abstract and broadly scoped.
b. Addresses societal values.
c. Requires human interpretation.

Below, the core activities of the RE process are identified [17], [23]. These activities are
roughly ordered chronically here, but are mostly intertwined:

1. Domain analysis
2. Knowledge elicitation
3. Specification
4. Specification analysis
5. Communication
6. Negotiation and agreement
7. Evolution.

Generally, RE is said to have two main phases. The first is the early requirements phase,
which concentrates on the analysis and modeling of the environment of the system, the
organisation and stakeholders, and the objectives and relationships of these stakeholders.
The domain analysis and elicitation activities are conducted in this phase. The second
phase, called the late requirements phase, is concerned with the modeling the composite
system. Mainly specification activities are executed in this phase. A more elaborate
description of the requirement engineering processes can be found in [36].

Master thesis February 15, 2008

Robert Westdijk page 7

2.5 KAOS

Traditional system analysis methods in requirements engineering such as SSADM
(Structured Systems Analysis and Design Method) are inadequate when dealing with
complex software systems [18]. The main reasons for this are:

1. The lack of support for formal reasoning about the composite system.
2. The inability to cope with non-functional requirements, which are requirements that

represent system qualities or properties as a whole, for instance the maintainability of
a system.

3. The inability of representing and comparing alternative system configurations.

The Goal-Oriented Requirements Engineering (GORE) approach attempts to solve these
problems. GORE focuses on activities that precede the specification phase in the traditional
RE process. It aims for less emphasis on the question how a software system should operate
and more on why a system is needed. GORE approaches provide a breakdown of the
composite system requirements into operationalizable goals. These goals provide a basis for
requirements monitoring, identifying what part of the system is responsible for what goal.

The GORE method KAOS (Knowledge Acquisition in AutOmated Specification) is a
frequently used technique in RE processes and requirements monitors development. The
use of KAOS in this thesis project is adopted based on the conclusions of a literature study
[36]. The main advantages over other GORE methods are:

1 Research and documentation on the KAOS methodology can easily be acquired.
2 Various tools exist that support the sub process and steps within the KAOS method

(e.g., [3], [24]).
3 KAOS uses object models, which can be represented using for instance UML (Unified

Modeling Language) [14].

The KAOS methodology mainly utilizes formal analysis techniques. It combines semantic
nets and implements linear-time temporal logic to formalize and express the goals and other
objects of the system [18]. Objects in KAOS are things of interest in the system, whose
instances can evolve from state to state. Objects can be entities, relationships or events.
Operations are input-output relations over these objects. They can define state transitions
and are declared by signatures over objects. Operations have pre, post and trigger
conditions.

In essence, KAOS strives to describe the functionally of a system in terms of goals. A goal
can lead to one or more requirements. These goals should be operationalized by an agent1,
which is an entity it the composite system. Operations on objects are performed by agents,
which act as the processor for these operations. Agents are active components that can be
humans, devices, software, etc. An agent in a software system can for instance be a specific
software component or a part of the infrastructure.

Goals are refined in hierarchies using “AND” and “OR” relations. Goal refinement ends when
an individual agent operationalizes a sub goal. The relations between goals and agents can
be visualized in a graph. Goal graphs offer a good overview of which elements of the system
are responsible for certain tasks. They are scalable in size, for instance zooming in on parts
of the system, and in depth, for instance by using general goals or really specific goals.

1 A KAOS agent does not have the same qualifications as agents in AI research. KAOS agents can be any active component in
the composite system, such as humans, devices or software.

Master thesis February 15, 2008

Robert Westdijk page 8

2.6 ReqMon framework

Several monitoring systems adopt the KAOS approach to defining and formalizing software
requirements. A summary of these systems can be found in [7]. For prototype development,
the ReqMon monitoring system as presented by Dr. William Robinson in [29-31] has been
adopted, based on the result of a literature study [36].

ReqMon offers an open-source programming interface that simplifies temporal event
reasoning in real-time or near real-time [28]. It uses the JESS (Java Expert System Shell)
programming language and offers a compiler for the OCL Object Constraint Language. OCL
is a well-known expression language that enables one to describe constraints on object-
oriented models and other object modeling artifacts. It is part of the UML framework. The
ReqMon OCL variant extends the UML 2.0 OCL specification to include the Dwyer patterns,
which are based on a collection of common patterns found in requirement specifications [9].
These provide the means to express the linear-time temporal logic needed for the defining
the KAOS goals. ReqMon relies on event-based OCL semantics that have been extended to
include temporal operations based on state and event semantics [30].

When deployed into a distributed component-based software system, the requirement
monitors analyze the event stream that is generated by the monitored software component.
These events contain information about the component’s processing. If a pattern of received
events conflicts with the predefined pattern specified in the monitor definition, the property
evaluation becomes false. This means that a monitored requirement is not satisfied, thus the
system does not behave according to the design requirements. In a component-based and
network-based software system such as the CMS, each component would be monitored by a
daemon process containing all goal specifications for that particular component, as is
depicted in Figure 2.2.

To use the ReqMon framework, it is assumed that formal definitions have been drawn up
about the desired properties of the software system. The KAOS requirement specification
techniques can be applied here. Another assumption is that there must be static and
dynamic traceability between the software objects and the stated requirements [31]. Static
traceability means that a KAOS object can be traced back to its object definition in the
programming code. Dynamic traceability means that the monitor should be able to
distinguish between different instances of a defined object class. Software systems that have
been developed using a modeling technique satisfy the static traceability prerequisite for
ReqMon. To achieve dynamic traceability, instrumentation of the software is necessary,
meaning the software code is enriched to send programming events for monitoring.

Software

Component

ReqMon

daemon

input output

events

Require

ments

requirements

evaluation

Figure 2.2: Data streams for a software component monitored by a ReqMon daemon.

Master thesis February 15, 2008

Robert Westdijk page 9

3 Model

In this chapter, the proposed implementation for requirements monitoring is discussed.
Section 3.1 explains this model in general terms. The related data flows are described in
Section 3.2. The actual implementation model using the KAOS and ReqMon approaches is
presented in Section 3.3.

3.1 General approach

3.1.1 Software monitoring

The main goal of this research is to give a first impulse for the automation and
autonomization of the CMS software management tasks. Section 2.2. presented the OODA-
loop as a tool to identify the main steps in autonomic computing. To accomplish this, the use
of requirements monitoring as a monitoring approach was proposed by a literature study [36].
The main benefits of this technique are:

1. The ability of describing system behavior without the creation of a complex behavioral
model.

2. The limited strain and influence on the work of software designers and developers.
3. Its testability for the current version of the Guardion CMS.
4. Its use of formal requirements specification offers an approach to streamline the

requirements elaboration process in future CMS development.

To implement requirements monitoring, the requirements should somehow be formalized.
The use of a GORE method is proposed here. GORE approaches provide a breakdown of
the composite system requirements into operationalizable goals. These goals provide a basis
for requirement monitoring, because it is made clear what part of the system is responsible
for the operationalization of certain system goals. Thus, GORE can be used as preliminary
step in the development of a requirements monitor.

For new software systems, the goal-elicitation phase should be incorporated in the design
phase. By refining the goals and assigning them to the responsibility of an agent, the lower-
level requirements statements can be created. This serves as a basis for the creation of the
monitor definitions for the requirements monitoring system. In essence, the implementation
will be done following a top-down approach.

If the requirements monitoring framework is implemented in an existing software system, the
requirement engineering process will already have been completed. The software will be
already developed. In this case, a bottom-up implementation strategy should be chosen.
Existing requirement and technical documentation should be used to construct the
formalizations needed for the requirements monitor definitions.

3.1.2 Diagnostic reasoning

The software monitors defined by using the requirements monitoring approach are the basis
for further diagnostic reasoning. By deploying the monitors, it can be detected whether the
requirements for certain software components are met. In case the requirements are not
satisfied, the cause for this fault should be localized. Some sort of diagnostic reasoning is to
be used, implying that diagnostic knowledge must be added to the monitoring system.

Master thesis February 15, 2008

Robert Westdijk page 10

Requirements monitoring has been chosen as a monitoring technique because it reduces the
need for adding domain specific knowledge to the monitors. However, for the creation of fault
hypotheses when requirements become unsatisfied during software execution, diagnostic
knowledge of the monitored system must be available. The advantage here is, that reasoning
can be done on a higher and more understandable level using the available information from
the requirements monitors. Instead of reasoning on the level of the actual programming
code, it will be based on the requirement properties that have been evaluated by these
monitors. However, domain expert knowledge must still be acquired and implemented in the
monitoring and reasoning system.

To ascertain the fault diagnosis, a simple AI rule-based expert system approach is adopted
as a proof of concept. The programming event property evaluations from multiple
requirements monitors are combined into knowledge rules. The combination of these
properties provide information about the specific cause of a problem. The impact of this
problem on the system’s functionality will already be clear, since certain requirements will no
longer be satisfied.

3.2 Uses for requirements monitoring

In this research project, the use of requirements monitoring is proposed as a basis for
performing autonomic computing. The information gathered by the requirements monitors is
used for further diagnostic reasoning. However, requirements monitoring can have more
uses, both during the software development as well as during run-time software execution.
These uses are reviewed here. Figure 3.1 depicts these uses as well.

During the software development phase, the monitoring framework enables the software
developer to define requirements monitor specifications. Based on these specifications, the
monitors will evaluate the event stream that is generated by the software. When a pattern of
events is detected that indicate that a requirement is unsatisfied, an alert can be issued. This
information can be valuable in the process of software testing. The requirement monitors can
detect requirements that are unsatisfied. In turn, the developer can correct the detected
problem by analyzing the unwanted event pattern and make the necessary changes
accordingly.

When the requirement monitoring framework is deployed in a software system, the monitors
will constantly evaluate the required behavior of the system. This information can be used to
provide the users with feedback about system performance and possible errors. For
instance, when a requirement becomes unsatisfied, a user warning can be issued. This
warning can be displayed on the screen. The user can then correct the problem, or contact
the system administrators.

Figure 3.1: Data flow of diagnostic information in the requirements monitoring system.

Master thesis February 15, 2008

Robert Westdijk page 11

3.3 Implementation model

3.3.1 Implementing the OODA loop

This thesis focuses on the an existing software system, the Guardion CMS. The
requirements for this system and its software components have already been drawn up. This
calls for a bottom up goal definition strategy, which means that the stated software
requirements should be used to create formalized goals. New goals may be added if
necessary. The extracted goals will be used to form sub goals of higher level goals, keeping
in mind the existing operation capabilities and the staff requirements. Since goals and
requirements are so closely related, these terms will be used as synonyms in the rest of this
paper.

The GORE method of KAOS will be used for creating the goal definitions, which is a
frequently used technique in requirements engineering processes and requirements monitors
development. This GORE method is discussed in more detail in Section 2.5, in which the
main advantages of this approach were identified:

1. Research and documentation on the KAOS methodology can easily be acquired.
2. Various tools exist that support the sub process and steps within the KAOS method

(e.g., [3], [24]).
3. KAOS uses object models, which can be represented using for instance UML (Unified

Modeling Language) [14].

The ReqMon requirements monitoring framework is used for system monitoring. ReqMon
offers is an open-source framework based on the JESS language for AI programming. It
simplifies the definition of temporal event reasoning by adopting OCL. Section 2.6 discusses
this monitoring framework in more detail. Since the JESS expert system language is used by
ReqMon, the prototype of the AI diagnostic reasoner will also be implemented using this rule-
based language.

The OODA loop for self-healing that was presented in Section 2.2. It was discussed in
general terms. Considering the specification of approaches as explained above, Figure 3.2
depicts the self-healing loop based on the implementation proposed in this thesis.

Figure 3.2: Implementation of the OODA loop for self-healing.

Master thesis February 15, 2008

Robert Westdijk page 12

3.3.2 Prototype implementation

To implement KAOS and ReqMon as a prototype, several steps must be taken. These steps
are depicted in Figure 3.3. In this figure, the top-down approach is presented, meaning that
the monitored CMS software has already been developed. In the actual implementation
process, the monitoring daemons and the diagnostic reasoner would be the software
deliverables. For proof of concept, these deliverables have not been deployed as such, but
have been developed and tested in a off-line test and simulation environment.

Considering the top-down approach, the following steps can be identified for creating the
goals and knowledge rules:

1. Available requirements documentation and related information sources are used to
extract goal definitions using the KAOS methodology.

2. The KAOS goals form the basis for the ReqMon monitor specifications which are
stated in the OCL monitor definition language.

3. The OCL property statements are combined as problem features for constructing the
diagnostic rules using available domain expert knowledge as well as fault history logs
and component specification documentation.

4. The requirements monitor definitions in OCL are compiled to JESS code using the
ReqMon compiler.

5. The feature-based knowledge rules are constructed into JESS rules.

To test the system and run simulations, JESS scenarios are used. These scenarios are
based on real-time log information which has been extracted from the CMS software
components. It is assumed that the software is instrumented to provide the right format of log
data. This is achieved by transforming the standard logging output into the right format.

Figure 3.3: Steps for implementing requirements monitoring using ReqMon.

Master thesis February 15, 2008

Robert Westdijk page 13

4 Implementation

This chapter discusses the design and implementation of requirements monitoring based on
the presented model. Section 4.1 discusses the general implementation for the CMS, while
the implemented prototypes are presented in Section 4.2.

4.1 Requirements monitoring for the CMS

In Section 3.3, the design and implementation model was discussed for the implementation
of requirements monitoring in the Guardion CMS. In general, the following steps must be
carried out to apply the ReqMon requirements monitors:

1. The goals of the monitored system are identified using the KAOS goal-oriented RE
approach.

2. The defined goals are specified into requirement statements.
3. The ReqMon monitors are defined based on the goal specifications.
4. The monitor definitions are compiled to JESS code for use in the simulation

environment.

4.1.1 Goal elicitation

For the creation the ReqMon monitors, first the goals of a software component should be
identified. The KAOS requirement engineering approach is applied here. The general idea is
that the functionality of the composite system is described in terms of goals that should be
achieved. These goals should be operationalized by agents, which are entities within the
composite system. Agents can be humans, devices, software, etc.

Goal graphs are used to visualize the relation between goals and agents. This gives an
overview of the responsibility of system elements for certain tasks. Goal graphs are scalable
in both size and depth. It is possible to create goal graphs for various parts of the system,
and on various levels of detail.

To illustrate how goals and goal graphs work, two example figures are presented. In the goal
graphs presented in this thesis, the goals are represented by parallelograms. The agents will
be presented by octagons. Furthermore, a black dot represents an “AND” hierarchy, while a
white dot represents an “OR” relation between the goals.

The first example is a high-level goal graph which is extracted from the staff requirements
document for the Dutch ADCF naval vessels [27], depicted in Figure 4.1. In this particular
example, the “Sea Control” capability statement is presented. It illustrates how agents (in this
case: weapon systems) can be assigned to the various goals stated for a modern naval
vessel.

The second example is depicted in Figure 4.2 and shows a general goal graph for a the
diagnostic software suite implemented in the CMS. It shows how system goals can be
translated into the assignment of functionality to a specific group of generic CMS software
components2.

2
Most details of this military software system are classified. In the context of the research presented in this thesis, it is sufficient

to mention only the abbreviations of the software components without further comment.

Master thesis February 15, 2008

Robert Westdijk page 14

Sea control

is provided

Anti Air

Warfare can

be deployed

Anti Surface

Warfare can

be deployed

Anti Sub-suface

Warfare can be

deployed

MK41 Vertical

Launch System

AAW Aircraft

Control System

Goalkeeper

Decoy Launch

System

ASW Aircraft

Control System

 MK46 Torpedo

Weaponsystem

NH-90 Helicopter

Harpoon Missile

System

Local Area SAM

Missiles can be

launched

Electronic

countermeasures

can be deployed

Incoming missiles

at short range can

be engaged

AAW aircraft

can be

controlled

Medium Range

SAM Missiles

can be launched

ASW aircraft can

be controlled

Torpedos can

be launched

Remote sub-surface

engagements can

be deployed

Gun Oto-Breda

Surface-to-

surface missiles

can be launched

Over-the-horizon

targeting can be

deployed

Naval gunfire

support can

be provided

Figure 4.1: Goal graph for the “Sea Control” capability statement.

Diagnostic

information is

provided

Functional

information is

provided

Diagnostic data

is extracted

from subsystem

Diagnostics

data is

interpreted

Diagnostic data

is converted to

information

Diagnostic information

is presented to the

maintainer

Remote

diagnostics is

provided

PCSE

MATRIX

PFD
PFDFEU

CODIAG

Figure 4.2: Goal graph for the CMS diagnostic software suite.

Master thesis February 15, 2008

Robert Westdijk page 15

4.1.2 Goal specification

In Section 2.4, the difference between a goal and a requirement was mentioned.
Recapitulating, a goal identifies a desired property of the software and its environment, while
a requirement refines a goal and should be described exclusively in terms of values
controlled and monitored by the software. In practice, goals and requirements are often used
as synonyms, because the stated requirements for a requirement statement are very rigid
and are almost never met. In [30], Robinson points out: “Although goals are widely
recognized as important, their use in object-oriented modeling is rare – particularly, with the
UML methodology”.

To achieve consistency and clarity in the goal statements, goal structures are used. These
goals structures are based on the formal KAOS goal structure, of which examples can be
found in for instance [7], [14], [20], [24]. The formal structures have been adapted to make
them more suitable for use in requirements monitoring. For instance, the formal KAOS
approach to goal names has been replaced by the use of human readable sentences, which
is more in accordance with the common way to specify software requirements. Furthermore,
informal OCL definitions are added to the goal structures. These are the definitions for
monitoring of the goal.

KAOS also offers a temporal specification language to define goal statements. However, it
has been opted to use only informal goal definitions within the structures. This is because
ReqMon itself offers an OCL language to formalize the goals. In this manner, the overhead
for the software developer who has to define the goal statements is minimized.

Summarizing, an adapted, less formal version of the KAOS goal structures is adopted in this
research. This goal structure generally looks like:

 SystemGoal Goal statement

InformalDef
 Description of the goal statement
 ReducedTo

If a goal has sub goals, these are listed here
 GoalPattern

Pattern as defined by the KAOS method; defined patterns are
Achieve, Maintain, Avoid and Cease

 Concerns
 Identifies which objects play a role in the OCL definitions
 OclInformalDef

Description of the OCL definition for monitoring of this goal,

more definitions can be added when required .

The goal structure specification forms the starting point for monitor implementation. Each
informal OCL definition leads to actual OCL constraints. This gives the developer close
control over what should be monitored and over the granularity of the monitors. Important
requirements can be monitored in more detail, while others can be monitored in a simpler
manner or even not at all.

To illustrate the use of defining goal structures, a practical example is given. Figure 4.3
shows partial goal graph for a CMS software chain that performs diagnostic functions for the
navigation radar system, which will be discussed in Section 4.2.1. Figure 4.4 shows some
goal structures examples from the presented graph3.

3 In all examples hereafter that contain information related to the UML models of CMS modules, the names of UML entities have
been altered for reasons of confidentially. However, all examples still reflect the actual implementation of these components.

Master thesis February 15, 2008

Robert Westdijk page 16

Figure 4.3: Partial goal graph of the diagnostic suite for the navigation radars.

Figure 4.4: Example goal structures for the diagnostic suite for the navigation radars.

Systemgoal Diagnostic data is up to date
InformalDef

The diagnostic and status information received from
the navigation radar system should be kept up to
date

ReducedTo
Diagnostic heartbeat is sent, Diagnostic heartbeat
is monitored, Request for data is sent

Systemgoal Diagnostic heartbeat is monitored
InformalDef

A periodic heartbeat should be sent by the
diagnostic software in order to ascertain it is
still running

GoalPattern
Maintain

Concerns
CODIAG_NAVRAD_Hearbeat, PFDFEU_NAVRAD_Heartbeat_In,
PFDFEU_NAVRAD_Hearbeat_Out

OclInformalDef 1
After an instance of Heartbeat is sent, a new
instance should be sent within 10 seconds

OclInformalDef 2
After an instance of Heartbeat_In is received, a ne w
instance should be received within 10 seconds

OclInformalDef 3
In response to receiving an instance of
Heartbeat_In is received, an instance of
Heartbeat_Out should be sent

Master thesis February 15, 2008

Robert Westdijk page 17

4.1.3 Monitor definition

For the definition of the monitors, ReqMon uses the OCL 2.0 specification language. OCL is
the Object Constraint Language and is part of the UML framework. Its main purposes is to
describe additional constraints about the objects in the UML models, which would lead to
ambiguities if the natural language were to be used [25]. The OCL 2.0 enables the use of so-
called messages, which can be transmitted between object instances.

In ReqMon, the standard OCL expressions have been extended to include the Dwyer
patterns, which is collection of common patterns that can be found in requirement
specifications [9]. The standard OCL expressions can be placed within a temporally scoped
pattern, which allows for the expression of the linear-time temporal logic. The scopes
presented by Dwyer are depicted in Figure 4.5. This is needed to define goal specifications
that would normally be defined in the standard KAOS temporal specification language. The
ReqMon framework adopts a proposed variant on the definition of the OCL messages, which
can be found in [32] and [33].

In the previous section, some examples of goal structures were given in Figure 4.4. The goal
“Diagnostic heartbeat is monitored” featured the following informal OCL definition: “After an
instance of Heartbeat is sent, a new instance should be sent within 10 seconds.” In the
context of the UML model for the CODIAG_NAVRAD software module from Figure 4.3, the
“Heartbeat” is a reference to an instance of the object class Heartbeat . Instances of this
class should be created periodically. Using the ReqMon OCL specification language, this
informal definition can be formalized to the following statement:

def : createHB: Sequence(OclMessage) = receivedMessages (createObject())

-> select (m | m.class = 'Heartbeat')

inv : HB_after_HB: after @0d:0h:0m:10s(createHB) always createHB .

The def (definition) statement identifies which OCL message information is relevant for this
monitor definition. In this case, messages stating that a new instance of Heartbeat has been
created are intercepted. The inv (invariant) statement defines the temporal constraints on
the stated definitions. In the example, the after scope is used.

Figure 4.5: The Dwyer temporal pattern scopes [9].

Master thesis February 15, 2008

Robert Westdijk page 18

4.1.4 Monitor compilation

After the OCL monitor definitions have been created for a goal, the monitors can be compiled
to JESS code using the ReqMon compiler. JESS is a rule engine and scripting environment
that can be used to create expert systems. It is written in Java. The standard environment
features a command line interface, but more advanced graphical interfaces are also
available, for instance a plug-in for the Eclipse Integrated Development Environment (IDE)
[15].

For usage in a software system, for instance the CMS, the compiled JESS code can be
made into a deployable monitor. The command line interface is basically a wrapper around
the Jess libraries, which can also be accessed from a Java program [13]. This makes it
possible to embed JESS code in Java, thus offering the ability to make the monitors
executable and deployable.

4.2 Prototype implementation

To see whether the implementation of requirements monitoring is feasible for the CMS, a
prototype has been built. To achieve this, a JESS test and simulation environment has been
created. This simulation environment servers two main purposes:

1. To verify whether the implementation of requirements monitoring for the CMS is
feasible.

2. To show that requirements monitoring can be used as a basis for autonomic
computing.

To show that the use of KAOS and ReqMon is indeed feasible for the CMS, a prototype was
developed as a proof of concept. This prototype is discussed in the following section. A
paper4 [37] has been written on this implementation, which can be found in Annex 1. A
second prototype was built to demonstrate the uses of requirements monitoring. This is
described in Section 4.2.2. A report [38] discussing this part of the research can be found in
Annex 35. A component diagram of the prototype environment can be found in Annex 4.

4.2.1 Requirements monitoring prototype

To prove that the requirements monitoring concept can be implemented in the CMS, a
relatively simple chain of CMS software components has been selected for simulation. The
function of this particular software chain is to collect and interpret diagnostic messages from
the navigation radar subsystem. It consists of four software components. The coordination
model for this software chain is depicted in Figure 4.6.

Figure 4.6: Software coordination model for the CMS Navigation Radar diagnostic software chain.

4 This paper was presented at the IEEE AUTOTESTCON Systems Readiness Technology Conference in Baltimore, September
18-20, 2007. It received the “Best paper in the Health Management Track” award, which is depicted in Annex 2.
5 This report has been published by the Royal Netherlands Naval College, which is part of the Netherlands Defence Academy
(NLDA).

Master thesis February 15, 2008

Robert Westdijk page 19

The CODIAG_NAVRAD and PFDFEU_NAVRAD modules are diagnostic components
specifically designed for interpreting the subsystem messages. The PFD software
component collects and processes all diagnostic data from all diagnostic components in the
CMS. The processed diagnostic information is presented to the maintainer through a user-
interface, which is called Matrix. For the software system maintainer on board a Dutch naval
vessel equipped with Guardion CMS, the Matrix is the main diagnostic software tool.

In order to obtain the ReqMon OCL definitions, the KAOS approach was used to create the
necessary goal structures. To create the goals and goal graph, existing requirement
documentation and available technical documentation can be used. For instance, for the
CODIAG _NAVRAD module, the requirement documentation consists of a requirement
document written by the design team [2] and a component description document written by
the developers [8]. A partial goal graph for the navigation radar system was already
presented in Figure 4.3. Based on the informal OCL statements from the goal structures, the
monitor specifications are defined.

As was mentioned in Section 2.6, ReqMon assumes dynamic traceability between software
objects and requirements. This means that the software should be instrumented to sent
programming events to the ReqMon daemons. In case of the CMS software, the standard
debugging output can be used. The instrumentation for producing this output is added by the
in-house developed compiler. The produced debug output can provide programming
information down to the attribute-level, thus satisfying the dynamic traceability requirement.

Because the CMS debug output differs from the ReqMon OCL messages approach, the
need for mapping actual debug messages to OCL custom message types. Therefore, the set
of possible OCL message types that may be generated by the CMS components has been
standardized. These are the message types that are used in the OCL monitor definitions. An
overview is given in Table 4.1.

After definition, the monitors can be compiled to JESS code using the ReqMon compiler. To
verify the monitors, JESS scenarios are used. These scenarios simulate the event stream
from the CMS software components. The event streams are based on the debug logging
output for the components. The prototype assumes that the standard debugging
instrumentation has been suited to send program events that are compatible with ReqMon.
JESS code has been created for the goals of CODIAG_NAVRAD, PFDFEU_NAVRAD and
PFD.

The scenarios are constructed from jassert statements, which are ReqMon extensions to
the standard assert function for defining facts in JESS. Using these statements, the
programming events for a software component can be simulated, for instance the creation of
an relation between two instances of object classes, or the change in value of a function
parameter. In other words, the JESS scenarios simulate the CMS debug output and are used
to trigger the monitors defined in the OCL definition language.

A simple scenario example is the simulation of a software component crash. In this case, the
periodic heartbeats of the components that are normally sent and received cease to exist.
The resulting output from the ReqMon prototype is depicted in Figure 4.7. It shows that the
defined software goals are satisfied until one of the software component crashes. The output
is presented for illustrative purpose and has been shortened.

Master thesis February 15, 2008

Robert Westdijk page 20

Table 4.1: Standardized OCL message types for monitor definition.

OCL message type Attributes Description

createObject class object class name
key object instance identifier

deleteObject

class object class name
key object instance identifier

setAttribute

class object class name
key object instance identifier
attribute attribute name
type attribute type
value attribute value

getAttribute

class object class name
key object instance identifier
attribute attribute name
type attribute type
value attribute value

linkObject relation relation number
role relation role name
class1 object class name 1
key1 object instance identifier 1
class2 object class name 2
key2 object instance identifier 2

unlinkObject

relation relation number
role relation role name
class1 object class name 1
key1 object instance identifier 1
class2 object class name 2
key2 object instance identifier 2

invokeFunction function function name
type function type
class object class name
key object instance identifier

setParameter

parameter parameter name
function function name
type parameter type
value parameter value

getParameter

parameter parameter name
function function name
type parameter type
value parameter value

receiveEvent

event event name
source source object class
source_key source object instance

identifier
destination destination object class
dest_key destination object instance

identifier
callActivation activation activation name
completeActivation activation activation name

Master thesis February 15, 2008

Robert Westdijk page 21

INFO ReqMon: 90:[_global] ScopeActivation@1fe571f : Scope Global (global)
became active.
14:42:48 INFO Internal: System is ready.
14:42:51 INFO Internal: Running file ‘scenario1.cl p’...
14:42:51 INFO Internal: Setting the focus to the R T Jess module.
14:42:51 INFO Internal: Running JESS...
14:42:51 INFO Internal: Running scenario. Simulati ng event stream...
14:42:51 INFO Internal: Execute ReqMon thread
14:42:51 INFO ReqMon: 101:[default] Peval@1f78b68: Property
IS_Existence[ScopeActivation@1fe571f; ProgramEvent@ 1843a75] is TRUE.
14:42:52 INFO ReqMon: 126:[default] Peval@1f03691: Property
RSM_Sequence[ScopeActivation@1fe571f; ProgramEvent@ d3c65d ProgramEvent@10e35d5]
is TRUE.
~
14:42:52 INFO Internal: Goal ‘Achieve[InterfaceSta tusKnown]’ is satisfied.
14:42:52 INFO Internal: Goal ‘Maintain[SubsystemHe artbeatPresent]’ is
satisfied.
14:42:53 INFO Internal: Simulating periodic activa tions
14:42:53 INFO Internal: Execute ReqMon thread
~
14:43:03 ERROR ReqMon: 268:[default] Peval@28305d: Property
CSO_Sequence[ScopeActivation@1fe571f; ProgramEvent@ 2798e7] is FALSE.
14:43:05 ERROR ReqMon: 278:[default] Peval@3afb99: Property
HBDC_CDNR_Sequence[ScopeActivation@1fe571f; Program Event@1a0d866] is FALSE.
14:43:05 ERROR ReqMon: 287:[default] Peval@19fe451 : Property
HBDC_Chain_Seq[ScopeActivation@1fe571f; ProgramEven t@1a0d866] is FALSE.
14:43:05 INFO Internal: GOAL ‘Maintain[DiagnosticH eartbeatReceived]’ is NOT
SATISFIED!!
14:43:05 INFO Internal: A diagnostic heartbeat fro m a diagnostic chain is not
received any longer.
14:43:06 INFO Internal: Execute ReqMon thread
14:43:07 INFO Internal: End of simulation

Figure 4.7: An example of ReqMon output.

4.2.2 Reasoner prototype

To demonstrate the uses of requirements monitoring, a second prototype has been
developed. For this prototype, the CMS Goalkeeper software is used. The Goalkeeper is the
Close-In Weapon System (CIWS) found onboard Dutch naval vessels. It forms the last line of
defense against incoming missiles. It consists of a Gatling gun, a search radar and a tracking
radar. The system is designed to work fully autonomous.

The Goalkeeper system is a more operational example of a CMS software chain. Various
software modules are needed for remote control of the Goalkeeper from the Command
Centre, which are the COGK, CECIWS modules and D2000 user interface. For analyses of
the diagnostic messages from the system, the modules CODIAG_GK, PFDFEU_GK and
PFD exist. The diagnostic information is presented via the MATRIX maintainer user interface
in the Command Centre. Figure 4.8 depicts the software coordination model for this software
chain.

Figure 4.8: Software coordination model for the CMS Goalkeeper software chain.

Master thesis February 15, 2008

Robert Westdijk page 22

As for the first prototype, a goal graph was created for the system. When it comes to
requirements monitoring, the Goalkeeper is a relative simple system compared to other
weapon systems that exist. Again, available documentation was used for goal elicitation. For
instance, for the monitors of the COGK module a requirement document and a technical
description document were available [4], [11], [12]. Also, the expertise of the developer was
used as domain expert knowledge input. The resulting goal graph is depicted in Figure 4.9.

Figure 4.9: Partial KAOS goal graph for the Goalkeeper system.

The aim of this prototype implementation is to show that requirement monitoring can be used
for applying autonomic computing. To achieve this, the prototype implements a rule-based
diagnostic reasoning component, which uses the monitored requirement properties as
features. The evaluation of these features by the deployed requirement monitors provide the
information for further reasoning. In this system, the features will be represented as facts. A
set of rules will be defined, which models the knowledge about the target system. This
knowledge comes from domain experts, requirements documentation, technical
documentation on the software components, and other sources available.

The ReqMon daemons will evaluate the monitored requirement properties. The properties
will either be satisfied or unsatisfied given the monitored event stream from the software
components. The evaluated values will be sent to the reasoner, which in turn evaluates the
property information. The combination of these property events will cause the defined expert
rules to fire. This process is depicted in Figure 4.10.

Figure 4.10: Information flow in the monitoring and reasoning framework, with a simple pseudo-code

example.

Master thesis February 15, 2008

Robert Westdijk page 23

To demonstrate how the diagnostic rules can be constructed, an elaborate example is given.
Consider the following goal structure for the goal “Goalkeeper status is known”, which
defines five properties that should be monitored:

SystemGoal Goalkeeper status is known

InformalDef
The general system status should be known

 GoalPattern
 Achieve
 Concerns
 System_Monitor, GK_System
 OclInformalDef 1

If the Goalkeeper status is known, an instance of
System_Monitor should be monitoring it

 OclInformalDef 2
If the System_Monitor is activated, the control_mod e and
operating_mode cannot be invalid

OclInformalDef 3
When the Goalkeeper had control, the CMS cannot hav e control
and vice versa

OclInformalDef 4
The fire_status of Goalkeeper can either be ready_t o_fire or
standby

OclInformalDef 5
When the simulation mode of Goalkeeper is started , the

System_Monitor should report this .

In the example, OclInformalDef1 states that when the status of the Goalkeeper is known, the
System_Monitor should be monitoring it. Note that System_Monitor refers to an UML
class in the software model COGK. The name of this object has been changed for reasons of
confidentiality. In all examples hereafter that contain information related to the UML models
of CMS modules, the names have been altered. However, the examples still reflect the
actual implementation of these components.

For OclInformalDef1, the System_Monitor is activated by the creation of relation R15
between that object and GK_System, which is an object representing the Goalkeeper
system. The creation of this link should be monitored, which results in the following monitor
specification:

def : linkMonGK: Sequence(OclMessage) = receivedMessages (linkObject())
 -> select (m | m.relation = 'R15' and m.cla ss1 = 'GK_System' and

 m.class2 = 'System_Monitor')

inv : eventuallyLMonGK: eventually linkMonGK .

The OclInformalDef2 from the goal structure example states that if the System_Monitor is
activated, the control_mode and operating_mode of the Goalkeeper cannot be invalid.
The monitor definitions for this requirement look like:

def : callInit: Sequence(OclMessage) = receivedMessages (callActivation()
 -> select(m | m.activation = 'Initialize')

def : setOpMode_Inv: Sequence(OclMessage) = receivedMessages (setAttribute())

-> select(m | m.class = 'System_Monitor' and m.att ribute =
 'operating_mode' and m.value = 'inva lid')

Master thesis February 15, 2008

Robert Westdijk page 24

def : setConMode_Inv: Sequence(OclMessage)= receivedMessages (setAttribute())
 -> select(m | m.class = 'System_Monitor' and m.attribute =
 'control_mode' and m.value = ' invalid')

inv : OpMode_after_Init: after (callInit) never setOpMode_Inv

inv : ConMode_after_Init: after (callInit) never setConMode_Inv .

Now, suppose that after relation R15 has been created, an invalid value for the
control_mode or operating_mode of the Goalkeeper indicates the manifestation of some
known problem in the system. For all of these properties, an OCL monitor definition has been
created. However, combining these properties requires a JESS rule definition:

(defrule GK-known-problem-detected
 (and (or (monitor-event (property OpMode_after_In it)(evaluated FALSE))
 (monitor-event (property ConMode_after_I nit)(evaluated FALSE)))
 (monitor-event (property eventuallyLMonGK)(e valuated TRUE)))
 =>

 (assert (Goalkeeper-known-problem-has-been-detect ed))) .

In this case, the defined rule only uses information from a single ReqMon daemon which is
instantiated to monitor the COGK module. As was shown in Figure 4.10, the reasoner can
receive property evaluations from multiple instances of the ReqMon daemon. This allows
detection of diagnostic problem throughout the software system. In the Section 5, more
reasoning examples will be presented.

4.2.3 Prototype development environment

The ReqMon requirements monitoring framework forms the core of the development and test
environment. It is based on the JESS Java Expert System Shell programming language for
creating AI expert systems. Beside the standard JESS command line, it also offers a plug-in
for the Java-based Eclipse IDE. However, for prototype development, the command line-
based ReqMon version is used. This is because the Eclipse plug-in was not available at the
time of the implementation of the first requirements monitoring prototype. Moreover, the
updates that are released periodically always feature the command line-based ReqMon
version first. Updates for the Eclipse IDE version follow later on. During the thesis project, the
developer of ReqMon, Dr. Robinson, was regularly consulted.

To accommodate JESS and ReqMon, the Cygwin environment was used. Cygwin is a Linux-
like environment, which enables the use of GNU development tools on Microsoft Windows. It
can be downloaded freely [5]. Various shell scripts have been created to simplify standard
actions, such as starting JESS and ReqMon, compiling ReqMon OCL monitor definitions and
file management. A screenshot of the development environment is depicted in Figure 4.11.
For the definition of scripts, ReqMon monitors, and JESS rules, the XEmacs customizable
text editor [40] has been enhanced with shell script, OCL and JESS highlighting.

To verify the correct functionality of the ReqMon framework, test monitor definitions have
been created. Two types of tests are applied here, which are tests for the OCL message
types and for the OCL invariants. During the course of this thesis project, various
shortcomings and bugs in the framework and the OCL compiler were detected. These have
been reported by the author to Dr. Robinson. All of the bugs reported by the author have
been solved in the most recent version of the ReqMon framework and the OCL compiler6.

6 The latest versions used in this thesis project are ReqMon 1.0.35 and OCL compiler 1.0.10.

Master thesis February 15, 2008

Robert Westdijk page 25

Figure 4.11: Screenshot of the development environment.

An example is given to illustrate how tests for the OCL message types are conducted.
Consider the following OCL test def statements, for which only eventually invariants are
defined:

def : callAct1: Sequence(OclMessage) = receivedMessages (callActivation())
 -> select(m | m.activation = 'Activation1')

def : createObj1: Sequence(OclMessage) = receivedMessages (createObject())
 -> select(m | m.class = 'Object1')
def : createObj2: Sequence(OclMessage) = receivedMessages (createObject())
 -> select(m | m.class = 'Object2')

def : linkR1: Sequence(OclMessage) = receivedMessages (linkObject())
 -> select (m | m.relation = 'R1' and m.clas s1 = 'Object1' and

 m.class2 = 'Object2') .

To test the stated OCL monitor definitions, a JESS scenario is used. This scenario simulates
the debug output that would normally be created by a CMS software component. The test
scenario looks like:

(jassert (OclMessage (component " OCL_Test.COGK")
 (subcomponent " callActivation(String) : void ")
 (parameters " activation ")(arguments " Activation1 ")))

(jassert (OclMessage (component " OCL_Test.COGK")
 (subComponent " createObject(String) : void ") (parameters " class ")
 (arguments " Object1 ")))
(jassert (OclMessage (component " OCL_Test.COGK")
 (subComponent " createObject(String) : void ") (parameters " class ")
 (arguments " Object2 ")))

Master thesis February 15, 2008

Robert Westdijk page 26

(jassert (OclMessage (component " OCL_Test.COGK")
 (subComponent " linkObject(String) : void ")
 (parameters " relation " " class1 " " class2 ")

 (arguments " R1" " Object1 " " Object2 "))) .

In the example scenario showed above, added log info, run commands and comment have
been left out for clarity. The resulting ReqMon output is depicted in Figure 4.12, in which the
debug information has been omitted. By running the test scenario, it can be checked whether
the applied OCL message type actually work. In this case, the use of callActivation ,
createObject and linkObject is demonstrated.

15:38:56 INFO Internal: Activation1 has been calle d
15:38:56 INFO ReqMon: 9:org.reqmon.model.ScopeAc tivation@12f1bf0
15:38:57 INFO ReqMon: 19:[null] Peval@ 3e97df: Property
p@COGK[eventuallyAct1,eventually_1][ScopeActivation @12f1bf0;
ContextVariable@120540c] is TRUE.
15:38:57 INFO Internal: Object 1 has been created
15:38:57 INFO ReqMon: 27:[null] Peval@1 0c0f66: Property
p@COGK[eventuallyObj1,eventually_1][ScopeActivation @12f1bf0;
ContextVariable@878c4c] is TRUE.
15:38:57 INFO Internal: Object 2 has been created
15:38:57 INFO ReqMon: 29:[null] Peval@ e265d0: Property
p@COGK[eventuallyObj2,eventually_1][ScopeActivation @12f1bf0;
ContextVariable@878c4c] is TRUE.
15:38:57 INFO Internal: Link R1 is created
15:38:57 INFO ReqMon: 36:[null] Peval@1 c1f5b2: Property
p@COGK[eventuallyLMonGK,eventually_1][ScopeActivati on@12f1bf0;
ContextVariable@14e45b3] is TRUE.
15:38:58 INFO Internal: End of scenario

Figure 4.12: Resulting output for a OCL message type test scenario.

4.2.4 Knowledge elicitation process

For the creation of the goal graphs as have been presented in previous sections, various
available information sources haven been used. Documentation such as requirements
specifications, software component descriptions and development reports offer information
on the design and implementation of the software modules. Besides the use of
documentation, the knowledge of domain experts also offers a lot of information. Expert
knowledge has been especially useful for the creation of suitable case scenarios.

To develop the first requirements monitoring prototype, which was based on the CMS
Navigation Radar diagnostic software chain as presented in Section 4.2.1, the available
technical documentation was the main information source. Since the author was part of the
diagnostic software development team for some time, domain expert knowledge was
available. For the creation of test scenarios, actual CMS debug output from historic software
development testing has been used7.

While searching for a suitable software chain candidate for the requirements monitoring
prototype, several software developers at CAMS/Force Vision have been interviewed about
their software domain. Furthermore, the requirement sources and related available
documentation on various domains have been examined. Based on the interviews and the
studied requirements, it was concluded that there are no solid guidelines for requirement
specification and software documentations, which have led to a diversity of document styles.

7 This debug output is classified and cannot be presented in this thesis.

Master thesis February 15, 2008

Robert Westdijk page 27

Recently, the requirements extraction process has gained renewed interest at CAMS/Force
Vision. Efforts are being made to create guidelines on both style and contents of
requirements specification documents. Members of the Goalkeeper software development
team have played a role in this process by testing and providing feedback on the proposed
guidelines. After conduction various interviews, it became clear that the Goalkeeper software
chain also offered some good use cases for prototype testing.
Using the documentation and domain knowledge, various goal graphs for the Goalkeeper
system were created. Bases on these goal definitions, monitor specifications were created
and tested in the prototype development environment. A complete overview of the defined
goal structures can be found in [39]. For proof of concept of the proposed diagnostic
reasoner, a set of example cases for the Goalkeeper software chain were drawn up. During
the development and testing of these cases, the domain expert were regularly consulted.

The research of existing requirements documentation and interviews with developers have
shown that the implementation of a rigid formalization such as applied by the KAOS
approach is very difficult. This thesis proposes an approach to goal structure specification
that is less strict, as has been explained in Section 4.1.2. Also, the ReqMon OCL language
for formalization is less rigid than that of KAOS. It must be stressed that the aim of this thesis
project has not been to implement a new requirements engineering process for software
development, but rather to use an existing one as a basis for requirements monitoring
implementation.

Master thesis February 15, 2008

Robert Westdijk page 28

Master thesis February 15, 2008

Robert Westdijk page 29

5 Results

In this chapter, the results of simulations with the prototypes are presented. Section 5.1.
gives an overview of the case examples that will be given. Section 5.2 discusses a case that
shows how the monitoring framework can support the developer. A demonstration for the
assistance for software users and maintainers is discussed in Sections 5.3 and 5.4. Finally,
Section 5.5 explains how the autonomic computing loop should be closed.

5.1 Overview of results

Two prototypes were presented in the previous chapter. They were built to verify the
feasibility of incorporating requirements monitoring in the CMS and to demonstrate that it can
be used for implementing autonomic computing. The first prototype acts as a proof of
concept. Monitor definitions have been created and tested for the navigation radars
diagnostic software chain. They demonstrate the feasibility of using the KAOS approach to
requirements engineering and the ReqMon monitoring framework for CMS software
modules. Based on this prototype, a second prototype has been developed. This prototype
incorporates a diagnostic reasoner to show that the diagnostic information acquired by
requirements monitoring can be used for autonomic computing.

Section 3.2 identified three other uses for requirements monitoring:
1. Requirements monitoring during software development and testing can provide useful

information for the developer.
2. The run-time goal information can be redirected to the operator to provide feedback

about system performance and errors.
3. The collected goal information can be used by an AI system to make a first diagnosis for

the software maintenance technicians on board in case of system malfunctions.

For both prototypes several monitor definitions and test scenarios have been designed. To
illustrate how the requirements monitoring framework and the diagnostic reasoning
component operate, four example cases are presented. Three cases represents the uses for
requirements monitoring as stated above, while a fourth demonstrates the application of
autonomic computing. All examples are based on the Goalkeeper software chain as was
presented in Section 4.2.2.

5.2 Case 1: Supporting the developer

During CMS software development, incremental tests are carried out. The white and black
box tests for a single component can be carried out locally in the development environment.
Integration tests can be done on the so-called Target system at CAMS/Force Vision, on
which the Guardion CMS software is installed. It resembles the Command Centre as found
aboard Dutch naval vessels. Software acceptance are always carried on the actual CMS on
board the ships.

When applying requirements monitoring as proposed in this research, the developer is
enabled to implement monitoring definitions in the software based on the specified
requirements. For testing a single software component, these definitions can provide useful
debugging information.

For instance, the goal “Received diagnostic data is converted to information” is
operationalized by the CODIAG_GK software module. One of the informal OCL definitions

Master thesis February 15, 2008

Robert Westdijk page 30

for this goals reads: “In response to a received Message, a Condition should be sent”, where
Message and Condition both refer to an object class. The corresponding formal OCL
specification looks like:

def : createMsg: Sequence(OclMessage) = receivedMessages (createObject())
 -> select(m | m.class = 'Message')

def : createCond: Sequence(OclMessage) = receivedMessages (createObject())
 -> select(m | m.class = 'Condition')

inv : Cond_response_Msg: response @0d:0h:0m:10s(createCond, createMsg) .

The PFDFEU_GK is the database component, which holds information about possible
diagnostic messages that can be received via the CODIAG_GK from the Goalkeeper system.
The requirement documentation for both components specify which messages should be
contained in the database. Using the previous monitor, the developer can easily check
whether the creation of a Message is followed by the creation of a Condition, thus satisfying
the stated requirement. Using the same approach, it can be checked whether this software
component satisfies all goals that it should operationalize.

By combing this monitor and requirements monitors from other software components, higher-
level monitoring is also possible. The presented the Cond_response_Msg property
monitors the mapping of the incoming diagnostic messages directly from the Goalkeeper
system. The PFDFEU_GK software module receives these generic messages and maps
them as a condition on a certain Goalkeeper technical component, represented by an object
class. This can also be monitored. Using these OCL monitor definitions, a rule can be
created that checks whether the complete message set is presented in the message
database:

(defrule message-not-in-database
 " Message is not in the diagnostic database "
 (and (or (monitor-event (property Msg_response_F1 _True)(evaluated TRUE))
 (monitor-event (property Msg_response_F1 _False)(evaluated TRUE))
 (monitor-event (property Msg_response_F2 _True)(evaluated TRUE))
 (monitor-event (property Msg_response_F2 _False)

 (evaluated TRUE)))
 (monitor-event (property Cond_response_Msg)(evaluated FALSE))
 (monitor-event (property PHB_PFDGK_after_PFD GK)(evaluated TRUE)))
 =>

 (assert (raise-alert d1))) .

In this definition, an extra check is added by incorporating the PHB_PFDGK_after_PFDGK
property. This property will remain satisfied as long as heartbeat objects are sent from
CODIAG_GK to PFDFEU_GK. The assertion of d1 in the rule definition indicates which
database entry in the JESS simulation environment should be raised.

The monitoring of the PHB_PFDGK_after_PFDGK property ensures that when the rule is
fired, the developer does not have to check whether this is because of a failure in the
communication between the two software modules. Thus, when there is no condition
mapping despite the creation of a diagnostic message by the Goalkeeper system, this will
mean that the message is not in the database and should be added.

When this monitor scheme would be deployed in the real CMS environment, it could even
detect diagnostic messages being sent that were not foreseen by the requirement designer,
for instance because the available interface documentation was incomplete.

Master thesis February 15, 2008

Robert Westdijk page 31

5.3 Case 2: Informing the operator

Using the requirements monitors and the diagnostic reasoner, the operator can be informed
about the status of the system. When requirements are not met, the monitors can raise
operator alerts. Here, an example of this use of requirements monitoring is given for the
Goalkeeper software chain.

In order for the Goalkeeper to be able to engage targets, it should eventually become in a
ready-to-fire state. This means, that all firing preconditions have been satisfied. Most
preconditions are hardware-related, for instance fire inhibit switches that should be switched
in the right position or safing pins that should be removed. However, some preconditions
must be satisfied by the COGK software module.

When the fire command is given by the operator using the CMS Goalkeeper user interface,
three software conditions should be satisfied: the controle_mode should be set to the
CMS, the operating_mode should be set to manual and the Goalkeeper should report
ready-to-fire. The latter condition is achieved by removing all necessary hardware
constraints, while the first two should be set by the operator.

By defining a monitor for all three pre-firing software properties, the operator can be warned
when a fire command is given while the Goalkeeper is not able to comply. Using the
precedence expression, the setting of the control_mode , operating_mode and
fire_mode are monitored as a sequence. Before the fire command can be given, all
elements of this sequence should have been received. The System_Monitor class ensures
that the Goalkeeper system status is known. The corresponding monitor definition would look
like:

def : setSysMode_RtF: Sequence(OclMessage)= receivedMessages (setAttribute())
 -> select(m | m.class = 'System_Monitor' and m.attribute =
 'fire_mode' and m.value = 'ready_t o_fire')

def : setConMode_CMS: Sequence(OclMessage)= receivedMessages (setAttribute())
 -> select(m | m.class = 'System_Monitor' and m.attribute =
 'control_mode' and m.value = 'CMS')

def : setOpMode_Man: Sequence(OclMessage) = receivedMessages (setAttribute())
 -> select(m | m.class = 'System_Monitor' and m.attribute =
 'operating_mode' and m.value = 'ma nual')

def : setFireCmd_Fire: Sequence(OclMessage)= receivedMessages (setAttribute())
 -> select(m | m.class = 'Fire_Command' and m .attribute =
 'fire_request' and m.value = ' start')

inv : before setFireCmd_Fire always

 precedence (setConMode_Man,setConMode_CMS,setSysMode_RtF) .

The incorporation of the diagnostic reasoner provides an alternative way for monitoring the
firing preconditions. In the requirement monitor definition, the software conditions and the fire
command can be monitored simply by using the eventually expression, which becomes true
when the defined OCL message is received. The composite requirement for the
preconditions can now be monitored using the JESS rule definitions. By creating multiple rule
definitions, the operator can be informed about the exact cause of the incompliance of the
system. This could be accomplished by a simple pop-up in the user interface, for instance as
depicted in Figure 5.1.

Master thesis February 15, 2008

Robert Westdijk page 32

Figure 5.1: Example of a possible error pop-up for a Goalkeeper operator.8

The rule variant that would lead to the message as depicted in Figure 5.1 would look like:

(defrule goalkeeper-not-ready-to-fire
 " Goalkeeper is not ready to fire "
 (and (monitor-event (property eventuallyFireCmd)(evaluated TRUE))
 (monitor-event (property eventuallyConCMS)(e valuated TRUE))
 (monitor-event (property eventuallyOpMan)(ev aluated TRUE))
 (monitor-event (property eventuallyModeRtf)(evaluated FALSE)))
 =>

 (assert (raise-alert c3))) .

The c3 alert entry is defined as:

(alert (id c3)(module " COGK")(error " Goalkeeper is not ready to fire ")
 (cause " Goalkeeper does not report ready-to-fire ")

 (solution " Confirm that all GK safety features have been remov ed")) .

As a second example, the output of a JESS simulation for another rule variant is given in
Figure 5.2. In this case, the Goalkeeper system reports ready-to-fire and is controlled by
CMS. However, the operator has neglected to switch to manual operation. When the fire
command is given, the diagnostic reasoner issues a warring that will be displayed through
the user interface. The problem can then be corrected accordingly.

8 For reasons of confidentiality, an old (obsolete) user interface design is depicted here.

Master thesis February 15, 2008

Robert Westdijk page 33

Figure 5.2: Example output from a JESS simulation.

5.4 Case 3: Assisting the maintainer

Besides the use of the diagnostic reasoning component for informing the software user, the
information from this component can also be utilized for maintainer assistance. The system
can issue alerts when requirements are not met, but can also provide additional diagnostic
information. This can help the maintainer with the formulation of a fault hypothesis. It is also
possible to let the system check certain hypothesis automatically. To illustrate this, an
example is given.

The Goalkeeper system is designed to operate autonomously . This means that it has its
own suite of sensors to detect and track possible threats. An automatic surveillance sector
can be defined, but it is also possible to cue hostile tracks other sensors. To keep tracking its
targets, the Goalkeeper must be aware of the heading of the ship. The heading is one of the
attribute values of the Own_Ship_Data object class, which can be found throughout the
CMS software. This information is supplied by a hardware sources, which interface with the
CMS via the COOSD software module. Thus, the goal “Own Ship Data is provided” is
operationalized by the COOSD module.

To check if the COGK and CECIWS components receive the data, monitors check the
creation of the input object, which is a direct mapping of Own_Ship_Data instances on the
output of COOSD. To ensure that the COOSD module is still running, the process heartbeat
object is also monitored. If the process heartbeat is created while the input objects are not,
there is a problem. The corresponding rule definition is stated as follows:

(defrule no-own-ship-data
 " Goalkeeper does not receive Own Ship data "
 (and (monitor-event (property OSDCo_after_OSDCo)(evaluated FALSE))
 (monitor-event (property OSDCe_after_OSDCe)(evaluated FALSE))
 (monitor-event (property PHB_COSD_after_PHB_ COSD)(evaluated FALSE)))
 =>

 (assert (raise-alert c12))) .

Using the ReqMon monitors and the rule definition stated above, the operator could be
warned that the Goalkeeper system is not receiving any heading information. However, what
would really be desirable, is for the CMS system itself to react to this error. If the COOSD
process is running, but no instances of Own_Ship_Data are received by COGK and
CECIWS, then the root cause of the problem will properly be software-related or
infrastructural. The diagnostic information retrieved by the system’s actions will increase the
knowledge of the problem for the maintainers onboard, hence decreasing the number of fault
hypotheses for them to check.

Jess> INFO: Property eventuallyOpMan is evaluated F ALSE
INFO: Property eventuallyConCMS is evaluated TRUE
INFO: Property eventuallyModeRtf is evaluated TRUE
INFO: Property eventuallyFireCmd is evaluated TRUE
ALERT: Error in module COGK
ALERT: Description: Goalkeeper is not ready to fire
ALERT: Cause: Goalkeeper is not in mode Manual
ALERT: Solution: Select Goalkeeper Manual mode
~
Jess> INFO: Property eventuallyOpMan is evaluated T RUE
NOTICE: Error "Goalkeeper is not ready to fire" is no longer valid

Master thesis February 15, 2008

Robert Westdijk page 34

Since the monitored PHB_COSD_after_PHB_COSD property is evaluated true, it is known
that the COOSD module is still running. Suppose that the monitored property
HInfo_after_HInfo indicates whether this module receives the heading from the
hardware source. A rule could be added that fires when the “no-own-ship-data” alert (c12) is
raised, which checks the evaluation of this property:

(defrule check-heading-information
 " Check the creation of heading information for Goalk eeper "
 (and (alert (id c12)(raised TRUE))
 (monitor-event (property HInfo_after_HInfo)(evaluated FALSE)))
 =>

 (assert (GK-heading-problem-localized))) .

Thus, when this rule is fired, the system will inform the maintainer that there is a possible
hardware problem. If this rule is not fired, the maintainer knows that the hardware does not
have to be checked. This is just a simple example of using additional diagnostic information
from the requirements monitors for fault localization, but more advanced rules can be applied
when more knowledge is added.

5.5 Case 4: Closing the loop

The use of the ReqMon OCL monitor specifications offers the developer a flexible and
scalable approach for monitoring software requirements. With the development of the JESS
diagnostic reasoner it is demonstrated that requirements monitoring can also be used as a
basis for further diagnostic reasoning. The evaluated goal properties provide knowledge
about the overall state of the monitored software. The previous case illustrated this.

To close the autonomic computing OODA loop as was discussed in Section 3.3, the system
must be able to perform actions in the Act phase that solve the problems detected in the
Observe phase. In the context of self-management, this research project focuses on the
ability of self-healing. Using requirements monitoring, the system can examine, find and
diagnose problems. In general, healing actions will be reconfiguration actions [1], [16], [26],
[34]. This can for instance be a simple restart of a software component or the re-instantiating
of a module on another host computer. By adding a reconfiguration component, it should be
able to react to system malfunctions by carrying out some reconfiguration plan.

In the case described previously in Section 5.4, it was demonstrated how fault hypotheses
can be formed based on the monitored requirement properties. The system knowledge is
enhanced by using information for multiple monitors and adding more advanced diagnostic
rules. By adding the ability of performing reconfiguration actions, the system is enable to not
only reason about problems, but also to solve them.

Recapitulating, the COOSD module is necessary for the goal “Own Ship Data is provided”.
The COGK and CECIWS are control components for the Goalkeeper weapon system. These
components are dependent on information about the own ship. The MTL is introduced, which
is the software process that provides for the relaying of component objects.

Suppose that the CMS software chain for Goalkeeper control is configured such that COGK
and CECIWS are running on the same node, while COOSD is instantiated on a different
node.. Furthermore, assume that the simple reconfiguration component can perform only two
actions: restarting and re-instantiating. Based on this information, a simple example of a
reconfiguration plan is presented in Figure 5.3.

Master thesis February 15, 2008

Robert Westdijk page 35

Figure 5.3: Example of a possible reconfiguration plan for the “no-own-ship-data” failure.

After it has been detected that the heading information is absent on the input of the COGK
and CECIWS modules, the reconfiguration plan is executed as follows. First, the MTL on the
node of COOSD is restarted. If this does not help, the MTL on the Goalkeeper software node
is restarted. The next step would be to restart the COOSD process itself. It this fails, the
CECIWS is restarted on another node. If this helps, the COGK is also re-instantiated.
However, if all actions fail to solve the problem, the maintainer is warned by the system. The
reconfiguration actions are disclosed, giving the maintainer a starting point for further fault
localization.

The reconfiguration plan presented in Figure 5.3 is only a simple example based on basic
reconfiguration actions, in this case restarting a software component or re-instantiating a
component elsewhere. The example is also specific, meaning that domain knowledge is
explicitly used. In reality, a more general approach to reconfiguration should be adopted, for
instance as proposed in [1]. However, it shows that the requirements monitoring approach as
proposed in this thesis provides usable software diagnostic information and can be used
basis for the implementation of autonomic computing.

Master thesis February 15, 2008

Robert Westdijk page 36

Master thesis February 15, 2008

Robert Westdijk page 37

6 Discussion

This thesis has presented a model that offers a scalable and flexible approach to
implementing requirements monitoring. Simulations with requirement monitoring prototypes
have shown that unsatisfied software requirements are detected by the prototype. Software
errors that were otherwise discovered by more comprehensive manual fault analysis can be
detected automatically by the system.

With the creation of the diagnostic reasoning component and by presenting some illustrative
case examples, the benefits of using requirements monitoring as a basis for further
autonomic development have been made clear. These are mainly the scalability of the
approach, the elimination of the need for a comprehensive system model and the relative
simple manner in which monitoring and reasoning capabilities can be defined. However,
some reflections on the use of the proposed methodology are considered here.

Though the KAOS approach to requirements engineering has been around for some time,
the ReqMon project is still work in progress. In the course of this research project, several
new versions of the monitoring framework have been released. New versions are still being
released frequently. The OCL compiler is still under development, but the quality of the
compiler is improving with every new version. Furthermore, additional functionality such as a
graphical IDE are added incrementally to the ReqMon environment. In other words, the
application of this framework in the future looks promising.

Based on the creation of requirement monitors for the first prototype, it was concluded that
the presented implementation model is scalable for larger systems that the software chain on
which is was applied. However, the creation of monitors for the second prototype have
proven that sometimes more domain-specific expert knowledge was required then expected.
In some cases this may reduce the advantage of limited implementation overhead in the
software development phase.

Beside the need for domain-specific knowledge in the development phase, system
complexity is also an issue. The OCL statements and corresponding rule definitions
presented in this work are simple in nature. For a proof of concept, they provide enough
complexity to base conclusions on, but when applying the concept to large-scale software
systems, their complexity will increase. An increase in complexity will lead to more effort to
develop and test the monitor specification and rule definitions. By offering automated tools to
the developer, the increase in complexity can be reduced. Also, more elaborate AI
techniques than the proposed rule-based approach could be used. Furthermore, the
scalability of the ReqMon requirements monitoring framework should be applied here,
meaning that important requirements can be monitored more elaborately than less important
requirements.

ReqMon assumes that there is a dynamic traceability between the software objects and the
stated requirements, meaning that the monitors should be able to distinguish between
different instances of a defined object class. To satisfy this assumption, the software code
should be instrumented to send programming events for monitoring. For the CMS software,
the desired instrumentation can be added since the compiler is developed in-house.
However, instrumentation could be an issue for other systems. ReqMon offers support for
instrumentation only for Java-based programs. For other types of applications,
instrumentation should be added by other means. This is considered to be outside the scope
of this research.

Master thesis February 15, 2008

Robert Westdijk page 38

In the presented cases, the reconfiguration component was only shortly reviewed. In reality,
the issue of dynamic reconfiguration is part of an entire research field with many difficult
aspects. More intelligent techniques for reconfiguration planning should be applied, for
instance as proposed in [1]. However, the focus in this research is mainly on introducing a
novel software monitoring technique and its usage for self-management purposes.

Master thesis February 15, 2008

Robert Westdijk page 39

7 Summary and conclusion

This thesis describes a research project which examines the use of requirements monitoring
for applying autonomic computing complex software systems. The Guardion Combat
Management System (CMS), developed for the Royal Netherlands Navy, is subject to the
present study. As a proof of concept, the use of requirements monitoring combined with a
rule-based diagnostic reasoner has been proposed.

A model has been defined, identifying the transformation steps needed for the
implementation of autonomic computing based on requirements monitoring. This model
proposes the use of the KAOS goal-orient requirements engineering (RE) approach to define
goals for the software components. Monitoring is done using the ReqMon requirements
monitoring framework to create software monitor specification. Reasoning capability is added
by a JESS rule-based diagnostic reasoner.

For testing and simulation of the proposed implementation, two prototypes have been
developed. The event stream from the CMS software components can be simulated, as well
as the evaluated requirements properties as they are received by the reasoner. The
information extracted by applying requirements monitoring to a software system can be used
for software testing during software component development. Furthermore, the goal
information can provide feedback to the operator during run-time. Last, the properties
monitored by the requirements monitoring framework can be used for diagnostic reasoning
about the software system.

To demonstrate the uses of the proposed monitoring framework, four case examples have
been provided for the Goalkeeper Close-In Weapon System (CIWS). The first case features
a problem in the Goalkeeper diagnostic software during the development phase. By checking
the creation of object instances representing diagnostic messages, the integrity of the
diagnostic message database is checked. The second case introduces the preconditions that
needs to be satisfied in order for the Goalkeeper to fire. By monitoring the value of object
attributes representing these preconditions, the operator is warned when these are not met.
The third case focuses on software maintainer support. When heading information is no
longer sent to the Goalkeeper software modules, diagnostic expert rules are applied to
reduce the set of fault hypotheses. The fourth case deals with autonomizing the software. It
shows how the problem of the absence of heading information could be dealt with in an
autonomic computing software system.

Applying the model has proven that while it is not a trivial task to define the goals of a
software component, the overhead introduced in the development phase is limited.
Previously documented requirements and software models can be used as sources for the
goal extraction process. Preferably, the process of formalizing requirements should be
adopted in the requirements engineering phase of software development, although this
research has shown that a bottom-up approach is possible. This means that it is possible to
implement a monitoring system which monitors the behavior of an already developed
software system without the need for a comprehensive system model.

The implementation of the model has shown that the ReqMon framework is scalable, both in
system size as in the depth of the goal monitoring definitions. This enables the software
designer to emphasize important goals in his requirements documents, while it gives the
software developer more control over how monitoring definitions are implemented in the
software model.

Master thesis February 15, 2008

Robert Westdijk page 40

Based on the research presented in this paper, it is concluded that implementing
requirements monitoring an existing combat management system such as the Guardion
CMS is feasible. Multiple uses for this approach to software monitoring have been shown,
which are the support for the software developer, user and maintainer, as well as the use as
a basis for autonomic computing. Requirements monitoring is a promising technique that can
be highly beneficial to the human in the loop, considering that the human will stay in the loop
in the near future.

Master thesis February 15, 2008

Robert Westdijk page 41

8 Recommendations

This research has shown that the use of requirements monitoring has great potential. Not
only does it provide a basis for applying autonomic computing, but it is also useful as a
monitoring framework for supporting the software developers and users. The extracted goal
graphs and the developed prototypes provide an excellent basis for future work. Further
research and development based on this thesis would consist of two main issues, which
would be the monitoring and reasoning framework itself and the action needed for the self-
healing process.

In the context of the monitoring and reasoning framework, further examination on the
following subjects could be conducted:

1. The issue of instrumenting the CMS software should be addressed. The
instrumentation support offered by ReqMon could be used as a starting point.

2. The presented requirements monitors should be deployed in the actual CMS
environment, beginning with the Target system at CAMS/Force Vision. Tests should
be carried out to see how these monitors perform.

3. Different approaches to the implementation of the diagnostic reasoning component
should be considered. The proposed rule-based approach works for smaller
applications, but should probably be enhanced when the size of the system
implementation increases.

4. The presented work features a very deterministic approach to monitoring and
diagnostics. This is sufficient for a proof of concept, but probabilistic aspects such as
dealing with incomplete diagnostic information should also be taken into account. The
use of AI methods like fuzzy logic or Bayesian reasoning should be researched here.

As for dynamic reconfiguration, further research on the following subjects could be
considered:

1. For reasoning within the dynamic reconfiguration component, such as creating
reconfiguration plans, the application of more advanced AI techniques should be
studied.

2. A reconfiguration component prototype could be developed, which is suited to match
the dynamic reconfiguration capabilities as currently implemented in the Guardion
CMS.

Master thesis February 15, 2008

Robert Westdijk page 42

Master thesis February 15, 2008

Robert Westdijk page 43

9 References

[1] Arshad, N., “A Planning-Based Approach to Failure Recovery in Distributed Systems”,

PhD Thesis, 2006. University of Colorado, Department of Computer Science, 2006.
[2] Boudens, H., “Requirements SCC / CODIAG NAVRAD”, CAMS/Force Vision, 07-03-

2005 (internal report).
[3] CETIC, Centre of Excellence in Information and Communication Technologies, “An

Overview of the FAUST Toolbox”, http://www.cetic.be/internal220.html.
http://www.cetic.be, last visited December 2007.

[4] COGK-team., “COGK allocated DAISY-NT requirements”, CAMS/Force Vision,
September 11, 2001 (internal report).

[5] Cygwin website, www.cygwin.com, last visited January 2008.
[6] Darimont R, & Lamsweerde, A. van, “Formal Refinement Patterns for Goal-driven

Requirements Elaboration”, Proceedings of the 4th ACM Symposium on the
Foundations of Software Engineering, pp.179-190, 1996.

[7] Dingwall-Smith, A., “Run-Time Monitoring of Goal-Oriented Requirements”, PhD
Thesis, June 2006. University College London, Department of Computer Science,
2006.

[8] DIR-team, “CODIAG NAVRAD”, CAMS/Force Vision, 06-09-2005 (internal report).
[9] Dwyer, M., Avrunin, S. and Corbbet, J., “Patterns in property specifications for finite-

state verification”, Proceedings of the Twenty-First International Conference on
Software Engineering, pp. 411-420, 1999.

[10] Fickas, S. & Feather, M., “Requirements monitoring in dynamic systems”,
Proceedings of the IEEE International Conference on Requirements Engineering, pp.
140-147, 1995.

[11] Franken, M., “CoGK development v04”, CAMS/Force Vision, June 23, 2005 (internal
report, CONFIDENTIAL).

[12] Franken, M., “CoGK outline v01”, CAMS/Force Vision, Augustus 19, 2003 (internal
report, CONFIDENTIAL).

[13] Friedman-Hill, E., “JESS in action”, 2003. Manning Publications, Greenwich (USA).
[14] Heaven, W. and Finkelstein, A., “A UML profile to support requirements engineering

with KAOS”, IEEE Proceedings - Software, vol. 151, pp. 10-27, 2004.
[15] Jess, “About JESS 7”, http://www.jessrules.com/jess/charlemagne.shtml. JESS

website, www.jessrules.com, last visited December 2007.
[16] Kephart, J. and Chess, D., “The Vision of Autonomic Computing”, IEEE Computer, pp

41-50, January 2003.
[17] Lamsweerde, A. van, “Requirements Engineering in the Year 00: A Research

Perspective”, 2000. Proceedings of the 22nd International Conference on Software
Engineering (ICSE’00), pp. 5-19, June 2000.

[18] Lapouchnian, A., “Goal-oriented Requirements Engineering: An Overview of the
Current Research”. Depth Report, University of Toronto, 2005.

[19] Lapouchnian, A., Liaskos, S., Mylopoulos, J. & Yu, Y., “Towards Requirement-Driven
Autonomic Systems Design”, Design and Evolution of Autonomic Application
Software, May 21, 2005.

[20] Letier,E., “Reasoning about Agents in Goal-Oriented Requirements Engineering”, PhD
Thesis, May 2001. Université Catholique de Louvain, Dépt. Ingénierie Informatique,
2001.

[21] MCCann, J. and Huebscher, M., “Evaluation issues in Autonomic Computing”, 2004.
International Workshop on Agents and Autonomic Computing and Grid Enabled
Virtual Organizations (AAC-GEVO’04) at the 3rd International Conference on Grid
and Cooperative Computing, pp. 597-608, 2004.

[22] Murch, R., “Autonomic Computing”, 2004. IBM Press/Prentice Hall, New Jersey.

Master thesis February 15, 2008

Robert Westdijk page 44

[23] Nuseibeh, B. and Easterbrook, S., “Requirements Engineering: A Roadmap”,
International Conference on Software Engineering, pp. 35-46, June 4-11, 2000.

[24] Objectiver, “A KAOS Tutorial”, September 5, 2003. http://www.objectiver.com/
download/documents/KaosTutorial.pdf. Objectiver website, http://www.objectiver.com,
last visited December 2007.

[25] OMG, Object Management Group, “UML 2.0 OCL Specification”,
http://www.omg.org/docs/ptc/03-10-14.pdf. OMG website, http://www.omg.org, last
visited December 2007.

[26] Oreizy, P., “An Architecture-Based Approach to Self-Adaptive Software”, IEEE
Intelligent Systems, pp. 54-62, May/June 1999.

[27] RNLN, “Staff Requirements for the Air Defence and Command Frigate (LCF)”, Royal
Netherlands Navy, January 1998. (internal report, CONFIDENTIAL).

[28] Robinson W., “About this project”, http://www.wrobinson.cis.gsu.edu/projects/
reqmon/Home/AboutThisProject/tabid/401/Default.aspx. ReqMon website,
http://wrobinson.cis.gsu.edu/projects/reqmon, last visited December 2007.

[29] Robinson, W., “Implementing Rule-based Monitors within a Framework for Continuous
Requirements Monitoring”, Proceedings of the 38th Hawaii International Conference
on Systems Sciences, 2005.

[30] Robinson, W., “Monitoring Software Quality Requirements”, 2007. Georgia State
University, Department of Computer Information Systems, 2007.

[31] Robinson, W., “Monitoring Software Requirements using Instrumented Code”,
Proceedings of the 35th Hawaii International Conference on System Sciences,
January 7-10, 2002.

[32] Flake, S., “Enhancing the Message Concept of the Object Constraint Language”,
Proceedings of the Sixteenth International Conference on Software Engineering and
Knowledge Engineering (SEKE’04), pp. 161-166, June 20-24, 2004.

[33] Flake, S., “Towards the Completion of the Formal Semantics of OCL 2.0”, 27th
Australasian Computer Science Conference (ACSC’04), pp. 73-82, January 2004.

[34] Tosi, D., “Research Perspectives in Self-Healing Systems”, 27-07-04. Department of
Information Technology, Systems and Communications, University of Milano-Bicocca,
2004.

[35] Ward, M. and Heineman, G., “A Framework for Visualizing the Behavior of
Component-Based Software Systems”, Conference on Object-Oriented Programming,
Systems, Languages and Applications, October 14-18, 2001.

[36] Westdijk, R., “Autonomic Computing for the Combat Management System based on
Requirements Monitoring”, Literature study, January 28, 2006. Delft University of
Technology, Department of Electrical Engineering, Mathematics and Computer
Science, 2006.

[37] Westdijk, R., Rothkrantz, L. and Leijen, A.V. van, “Applying requirements monitoring
for autonomic computing in a combat management system”, IEEE AUTOTESTCON
Systems Readiness Technology Conference, pp. 349-358, September 17-20, 2007.

[38] Westdijk, R., Rothkrantz, L. and Leijen, A.V. van, “A monitoring and reasoning
framework for applying autonomic computing in a combat management system”,
Technical report, 21 December 2007. Netherlands Defence Academy, Faculty of
Military Science, 2007.

[39] Westdijk, R., “Thesis Progress Report”, CAMS/Force Vision, August 8, 2007 (internal
report).

[40] XEmacs website, www.xemacs.org, last visited January 2008.

Master thesis February 15, 2008

Robert Westdijk Annex 1 page 45

Annex 1: Research paper

The following pages print the paper “Applying Requirements Monitoring for Autonomic
Computing in a Combat Management System”. This paper has been presented at the IEEE
AUTOTESTCON Systems Readiness Technology Conference in Baltimore, September 18-
20, 2007. It received the “Best paper in the Health Management Track” award.

Master thesis February 15, 2008

Robert Westdijk Annex 1 page 46

Master thesis February 15, 2008

Robert Westdijk Annex 1 page 47

APPLYING REQUIREMENTS MONITORING FOR AUTONOMIC
COMPUTING IN A COMBAT MANAGEMENT SYSTEM

Robert Westdijk
Centre for Automation of
Mission-critical Systems,

Force Vision.
Nieuwe Haven, MPC 10A,

1780 CA Den Helder,
The Netherlands

email:
r.c.westdijk@forcevision.nl

Leon Rothkrantz
Delft University of

Technology, Department of
Media and Knowledge

Engineering,
Mekelweg 4, 2628 CD

Delft, The Netherlands
email:

l.j.m.rothkrantz@ewi.tudelft.nl

A. Vincent van Leijen
Netherlands Defence

Academy, Combat
Systems Department.

P.O. Box 10.000,
1781 CA Den Helder,

The Netherlands
email:

av.v.leijen@nlda.nl

Abstract - Diagnosis of large and complex
software systems is a challenging task that
can highly benefit from monitoring of the
high-level functional requirements. This work
studies the potential of applying
requirements monitoring for a software
system of high complexity: the combat
management system (CMS) of a modern and
technological advanced naval platform. An
effort is made to apply the requirements
monitoring method for autonomizing of this
system while limiting implementation impact.
The KAOS goal-oriented requirements
engineering method is used to extract
software system goals from previously
documented requirements. With these high-
level objectives as a starting point, the
ReqMon requirements monitoring framework
is applied. An implementation model is
defined, identifying what data
transformations are needed to apply the
ReqMon system. Tests with a requirements
monitoring prototype demonstrate that
detailed diagnosis of a complex software
system as a CMS is feasible and furthermore
that comprehensive manual fault analysis
can be replaced by an automated process:
the first step towards a self-healing
autonomic combat management system is
taken.

INTRODUCTION

Self-management of software systems and the
related subject of autonomic computing is a
relatively new research area in component-
based software engineering and Artificial
Intelligence (AI). It refers to systems that can
manage themselves given high-level objectives
from administrators [9]. In order to accomplish
self-management, the system should be
monitored. This paper focuses on software
monitoring for autonomic computing.

Monitoring of any complex software system
confirms whether the system still serves to
satisfaction. However, these monitoring activities
introduce overhead, not only during run-time, but
also in the preceding software development
phase. Overhead increases even more when
new software monitoring systems are added to
an existing software system, as in case of the
combat management systems (CMS) for
modern and technological advanced naval
platforms such as an air-defence and command
frigate.

The Royal Netherlands Navy (RNLN) has aimed
for integrated combat systems to allow central
operation of the ship’s subsystems, which
eventually led to the use of generic all-purpose
workstations in the Operations Room. The CMS
is the collection of hardware and software which
integrates the SEWACO (Sensor, Weapon and
Command systems) subsystems, which are
necessary for performing the various operational
tasks of a naval vessel. This work focuses on
the Guardion CMS software that is developed at
the Centre for Automation of Mission-critical
Systems (CAMS/Force Vision) in Den Helder,
The Netherlands.

While most NATO fleets are faced with reduction
in numbers, naval ships are becoming
technological more advanced due to a higher
level of automation and a high-potential sensor
suite of growing complexity. As a result combat
management systems are also growing
evermore complex. The complexity of the
subsystems and software increases with every
new type of ship. In contrast, reductions in staff
result in fewer personnel available to operate
and manage the software. The paradox of
increased complexity versus reduced manning is
one of the reasons why CAMS/Force Vision
invests in the development of software
management tools to support the maintenance

Master thesis February 15, 2008

Robert Westdijk Annex 1 page 48

at sea, which is by no means a trivial activity.
Beside the development of software support
tools for the system’s maintainers, completely
autonomizing the system is also an issue of
interest.

The focus of this paper is on the application of
requirements monitoring for software maintainer
support and as a basis for autonomic computing.
The main research objectives are:

1. To define a model for implementing
requirements monitoring for the combat
management system;

2. To develop a requirements monitoring
prototype or demonstrator using the
model;

3. To link high-level goals with other
software diagnostic data.

It is examined what information can be obtained
by applying requirements monitoring and how it
may be used. This paper presents the design
and some first results of a prototype
implementation of requirement monitoring
prototype implementation based on the ReqMon
system. This monitoring framework has been
chosen based on the conclusions of a literature
study.

While much literature concerns the design of a
new requirements monitoring framework, the
emphasis of this work is more on implementing
a requirements monitoring system in an existing
software system. In addition, other diagnostic
data sources will be incorporated in the
monitoring system.

The paper is organized as follows. First, some
background information is provided about
autonomic computing and requirements
monitoring. Then the KAOS methodology is
shortly reviewed and the ReqMon requirements
monitoring framework is introduced. After the
presentation of the model for ReqMon
implementation, the prototype is discussed as
well as the feature database. Finally,
conclusions are drawn.

BACKGROUND

Autonomic Computing

An autonomic software system should be able to
modify its own behavior in order to adapt itself
and must be able to manage itself, hence the
name “self”-systems for systems that have this
ability. There are four main aspects of
autonomic computing: self-configuration, self-
optimization, self-healing and self-protection

[12]. The application of requirements monitoring
as presented in this paper is part of self-healing.

The processes of self-management can be
viewed as a control loop, as is commonly seen
in literature (e.g. [1], [9], [15], [19]). The OODA
loop can be applied here, which identifies four
phases: Observe, Orient, Decide, and Act.
System monitoring is in the observation and
orientation phase, in which monitoring data is
collected, analysed and interpreted. In the
decision phase, it may be decided that action is
needed. This decision can be made by some
intelligent system, which produces a
reconfiguration plan. After it is decided if and
what action is to be taken, the reconfiguration
plan must be executed.

As has been stated, an autonomic system must
be able to modify its own behavior. In order to
accomplish this, the system must have
knowledge about what its required behavior is.
For many systems the behavior can be
described by means of a system model.
However, creating a model of a complex system
such as the CMS is extremely difficult. It is
commonly accepted that software systems have
grown too large to statically verify and analyze
[20]. Such an endeavor would require
disproportionate time and resources in the
development process of a system and would be
even more difficult to apply on already
developed systems.

Requirements monitoring

Software development processes are generally
constrained by time and budget mainly.
Incorporating new monitoring techniques or
adapting existing ones has a negative influence
on both the time and budget of the development
process. Therefore it is interesting to see if
techniques can be applied that can be
incorporated into the existing software
development process and require limited
additional development resources.
Considering the software development process
in general, it can be stated that the behavior of a
system is specified in the requirements of the
system and consequently in its design. The
actual implementation of the software is of no
concern here, as long as the desired behavioral
properties are accomplished. In this context, the
term requirements monitoring is introduced,
which is defined as the tracking of the run-time
behavior of a system and the determination
whether that running system is meeting its
requirements [7], [17].

Master thesis February 15, 2008

Robert Westdijk Annex 1 page 49

Using the requirements monitoring approach as
a basis for autonomizing of the CMS has
potential because of the following advantages:
1. It offers the opportunity to model system

behavior on a high level without the creation
of a complex behavioral model;

2. The extra workload required by designers
and developers is limited;

3. The method may be implemented for the
current version of the CMS and is testable;

4. For use on future versions of the CMS, it
offers an approach to streamline the
requirements elaboration process.

A prerequisite for conducting requirements
monitoring is the formalization of those
requirements [10], [18]. This is part of the
process of Requirements Engineering (RE). RE
is concerned with the identification and
refinement of goals, the operationalization of the
refined goals and the assignment of
responsibilities for the resulting requirements [3].
A more elaborate definition is given in [13]:
Requirements engineering is the branch of
software engineering concerned with the real-
world goals for functions of and constraints on
software systems. It is also concerned with the
relationship of these factors to precise
specifications of the software behavior, and their
evolution over time and across software families.

Traditional system analysis methods in
requirement engineering are inadequate when
dealing with complex software systems [11]. The
Goal-Oriented Requirements Engineering
(GORE) approach attempts to solve these
problems. GORE focuses on activities that
precede the specification phase in the traditional
RE process. It aims for less emphasis on the
question how a software system should operate
and more on why a system is needed.

GORE approaches provide a breakdown of the
composite system requirements into
operationalizable goals. These goals provide a
basis for requirements monitoring, identifying
what part of the system is responsible for what
goal.

The GORE method KAOS (Knowledge
Acquisition in Automated Specification) is a
frequently used technique in RE processes and
requirement monitors development. It is very
well documented and various tooling exists that
support the various sub process and steps
within this GORE method (e.g. [6], [14]). KAOS
uses object models, which can be represented
using for instance UML (Unified Modelling
Languange) [8].

KAOS

The KAOS methodology mainly utilizes formal
analysis techniques. It combines semantic nets
and implements linear-time temporal logic to
formalize and express the goals and other
objects of the system [11]. Objects in KAOS are
things of interest in the system, whose instances
can evolve from state to state. Objects can be
entities, relationships or events. Operations are
input-output relations over these objects. They
can define state transitions and are declared by
signatures over objects. Operations have pre,
post and trigger conditions. Operations on
objects are performed by agents. An agent is an
object that acts as a processor for operations.
Agents are active components that can be
humans, devices, software, etc. Agents operate
autonomously.

One or more agents can achieve a goal. Goals
refer to services, which are functional goals, and
to quality of service, which are non-functional
goals. Goals are refined in hierarchies using
“AND” and “OR” relations. Goal refinement ends
when an individual agent operationalizes a sub
goal.

Using the KAOS approach, a goal graph can be
made for a complete software system. This
graph can be based on the high-level
requirements documentation that is available.
For example, the high-level goals for an
envisioned naval vessel - and consequently the
CMS - can be derived from the staff
requirements. The KAOS approach is scalable.
Instead of a complete system, it can also be
applied on parts of a system. For instance, goals
for a single software component can be derived
from existing software requirements.

Since the Guardion CMS is an existing system,
the requirements for the system and its software
components have already been drawn up. This
calls for a bottom up goal definition strategy,
which means that the stated software
requirements should be used to create
formalized goals. New goals may be added if
necessary. The extracted goals will be used to
form sub goals of higher level goals, keeping in
mind the existing operation capabilities and the
staff requirements. Since goals and
requirements are so closely related, these terms
will be used as synonyms in the rest of this
paper.

Master thesis February 15, 2008

Robert Westdijk Annex 1 page 50

IMPLEMENTATION

ReqMon

Several monitoring systems adopt the KAOS
approach to defining and formalizing software
requirements. For prototype development, the
ReqMon monitoring system as presented in [17]
and [18] will be used. ReqMon tools aim to
provide a programming interface (API) that
simplifies temporal event reasoning in real-time
(RT) or near real-time (NRT) [16]. It is
implemented in JESS (Java Expert System
Shell) and recently also in Drools. JESS and
Drools are both Java based rule engines. For
prototyping, the JESS variant will be used.

To use the ReqMon framework, it is assumed
that formal definitions have been drawn up
about the desired properties of the software
system. The KAOS requirement specification
techniques can be applied here. Another
assumption is that there must be static and
dynamic traceability between the software
objects and the stated requirements [17]. Static
traceability means that a KAOS object can be
traced back to its object definition in the
programming code. Dynamic traceability means
that the monitor should be able to distinguish
between different instances of a defined object
class.

Software systems that have been developed
using a modelling technique satisfy the static
traceability prequisite for ReqMon. To achieve
dynamic traceability, instrumentation of the
software is necessary, meaning the software
code is enriched to send programming events
for monitoring. For development purposes, the
CMS software compiler already adds debugging
code to the compiled classes, which can be
used for generating these events.

Because ReqMon is JESS-based, the KAOS
goal definitions are specified in JESS code.
However, ReqMon offers a compiler for the OCL
Object Constraint Language. OCL is a well-
known expression language that enables one to
describe constraints on object-oriented models
and other object modelling artefacts. It is part of
the UML framework. The ReqMon OCL variant
extends the UML 2.0 OCL specification to

provide the use of linear-time temporal logic
needed for the defining the KAOS goals.

To perform requirements monitoring, the monitor
must view the stream of activities of a software
component and interpret their meaning. ReqMon
receives monitoring events, which contain
information about the component’s processing.
As these events arrive, ReqMon will determine if
the predefined requirements are satisfied. It will
raise an event itself when requirements are not
satisfied. Figure 1 illustrates the data streams for
a software component and ReqMon.

The CMS is both component-based and
network-based, so the requirement monitoring
processes must also be. Every software
component has its own set of goals, which will
be checked by a ReqMon thread or daemon that
holds the specific requirement information for
that particular component. These daemons will
be interconnected so that higher-level system
goals can be checked.

Figure 1: Data Streams For A Software

Component Monitored By ReqMon.

Implementation model

Requirements monitoring can be used as a
basis for performing autonomic computing.
However, the run-time requirement monitoring
information may not provide enough information.
Additional system information may be required
by the autonomic computing system in order to
come to the right decisions and consequent
actions. On the other hand, the information
extracted by requirements monitoring can have
more uses then autonomic computing, as can be
seen in Figure 2.

Master thesis February 15, 2008

Robert Westdijk Annex 1 page 51

Software
Component

Reqmon AI System

KB KB

debug info goal info diagnose Autonomic
Computing

System

software developer operator maintainer

Figure 2: Data Flow Of Diagnostic Information In The Requirements Monitoring System.

In Figure 2, the following uses are illustrated:
4. Requirements monitoring during software

development and testing can provide useful
information for the developer;

5. The run-time goal information can be
redirected to the operator to provide
feedback about system performance and
errors;

6. The collected goal information can be used
by an AI system to make a first diagnosis for
the software maintenance technicians on
board in case of software malfunctions.

Based on the data flows as presented in Figure
1 and 2, several transformation steps can be
identified, which are combined in the model for
implementing requirements monitoring for the
CMS as depicted in Figure 3.

Figure 3: Model For The Implementation Of
Requirements Monitoring In The CMS.

Following Figure 3, the model is reviewed
shortly here. Using the KAOS method, goal
information is extracted for each software
component using the available requirement
documentation. These goals form the basis for
the ReqMon goals which are stated in the Object
Constraint Language (OCL) and are compiled to
JESS code.

To test the system and run simulations, JESS
scenarios are used. These scenarios are based
on real-time log information which has been

extracted from the CMS software components. It
is assumed that the software is instrumented to
provide the right format of log data. This is
achieved by transforming the standard logging
output into the right format. The diagnostic data
extracted for the AI system will be transformed
into JESS rules to examine the compatibility
between the goal-based rules and feature-based
rules.

The first aim of the project is to examine the
feasibility of implementing requirements
monitoring into a complex software system.
Furthermore, this implementation should
eventually lead to the incorporation of autonomic
computing the CMS. To address the first goal, a
ReqMon prototype is developed. For the second
statement, a fault feature database is designed.
Both are presented in the following sections.

Applying ReqMon

To see if ReqMon is indeed feasible for the
CMS, a prototype has been built. This small
implementation serves as a first prove of
concept and as a demonstrator. A simple chain
of CMS software components has been selected
for simulation. The function of this particular
software chain is to collect and interpret
diagnostic messages from the navigation radar
(NavRad) subsystem. It consists of four software
components as depicted in Figure 4.

The first two components in the chain are
diagnostic components specifically designed for
interpreting the NavRad messages. CODIAG
stands for Control of Diagnostics. The PFDFEU
is the PFD Front-End Universal. PFD stands for
Perform Fault Detection. The PFD software
component collects and processes all diagnostic
data from all diagnostic components in the CMS.
The processed diagnostic information is
presented to the maintainer through a user-
interface, which is called Matrix (Maintainer
Applications and Technical Resources Interface
Exchange). For the software system
maintainer on board a Dutch

Master thesis February 15, 2008

Robert Westdijk Annex 1 page 52

CODIAG NAVRAD
Control of Diagnostics

Navigation Radars

Navigation Radars
Subsystem

PFDFEU NAVRAD
PFD Front End Universal

Navigation Radars

PFD
Perform Fault Detection

MATRIX
Maintainer Applications

and Technical Resources
Interface eXchange

Figure 4: Software Component Chain For Diagnostics Of The Navigation Radar Subsystem.

naval vessel equipped with Guardion CMS, the
Matrix is the main diagnostic software tool.

To create a ReqMon system the goals for each
component should be identified. The goals can
be extracted form the existing requirement
documentation and the software model that has
been created. For the CODIAG NAVRAD
example, the requirement documentation
consists of a requirement document written by
the design team [2] and a component
description document written by the developers
[5].

As an example, consider the following statement
from the requirements “CODIAG NAVRAD shall
periodically provide a heartbeat object for testing
the diagnostic chain. The period is defined at
once every 10 seconds.” The stated requirement
will be implemented in the software model and
consequent in the compiled programming code.
The requirement can be checked by comparing
input and output objects during runtime. In this
case the requirement can be directly formalized
into a goal of this software component.

The KAOS methodology offers guidelines for
goal elicitation. Examples can be found in
various documents and websites, e.g. in [4] and
[14]. Creating these goal definitions is a non-
trivial task, but the requirements documents and
software models can be used as a source.

In Figure 5, the goal-graph is depicted for the
CODIAG NAVRAD software component. It
features the main goals that have been
identified.

Figure 5: Goal-graph For The CODIAG

NAVRAD Software Component.

The extracted goal must now be implemented in
ReqMon. First, the KAOS specification for the

goal is made. For the stated “Provide periodic
heartbeat” goal, the goal structure looks like:

SystemGoal Maintain[DiagnosticHeartbeatPresent]
 InformalDef A periodic heartbeat should be sent by the

 diagnostic software in order to ascertain it is
 still running.

 Concerns Heartbeat Diagnostic Chain
 FormalDef �<10 sec Sent(HBDC) .

The specified goal structure serves as a basis
for further implementation. It can be added to
existing or new requirement documentation in
order to formalize the requirements. The formal
definition of the goal specification is written in
the KAOS temporal logic specification language.
For the first version of the prototype, the JESS
rule structures have been created manually,
since the OCL compiler was not yet available at
the time. This manually coded goal comprises of
a Sequence property definition, a monitor
definition and a timeout definition:

(defproperty HBDC_CDNR_Sequence Sequence
 (patterns (create$ “Heartbeat_Diagnostic_Chain”
 “Heartbeat_Diagnostic_Chain”))
 (constraints
 “(RT::ProgramEvent(OBJECT ?event-object)
 (className ?cn &nth-pattern-matchp
 ?cn ?n ?patterns)))”)
 (timeouts (create$ HBDC_Timeout)))

(defmonitor HBDC_CDNR_Monitor
 (property HBDC_CDNR_Sequence))

(jassert (RT::Timeout (name HBDC_Timeout)

 (start “+0d:0h:0m:10s”) (count 0))) .

If the ReqMon OCL compiler is used, JESS
code is compiled from the OCL specification. In
this case, the goal can be specified as:

def : Diagnostic_Heartbeat :
 OclMessage = receivedMessage
 (Heartbeat_Diagnostic_Chain())

inv : after@0d:0h:0m:10s
 (Diagnostic_Heartbeat) always
 Diagnostic_Heartbeat .

JESS code has been created for the goals of
CODIAG NAVRAD, PFDFEU and PFD. Using
test scenarios, simulation runs can be made.
The prototype assumes that the standard
debugging instrumentation has been suited to
send program events that are compatible with
ReqMon. For instance, a component
activation followed by the

Master thesis February 15, 2008

Robert Westdijk Annex 1 page 53

INFO ReqMon: 90: [_global] ScopeActivation@1fe571f: Scope Global (gl obal) became active.

14:42:48 INFO Internal: System is ready.

14:42:51 INFO Internal: Running file ‘scenario1.cl p’...

14:42:51 INFO Internal: Setting the focus to the R T Jess module.

14:42:51 INFO Internal: Running JESS...

14:42:51 INFO Internal: Running scenario. Simulati ng event stream...

14:42:51 INFO Internal: Execute ReqMon thread

14:42:51 INFO ReqMon: 101:[default] Peval@1f78b68: Property IS_Existence[ScopeActivation@1fe571f; Pro gramEvent@1843a75] is

TRUE.

14:42:52 INFO ReqMon: 126:[default] Peval@1f03691: Property RSM_Sequence[ScopeActivation@1fe571f; Prog ramEvent@d3c65d

ProgramEvent@10e35d5] is TRUE.

~

14:42:52 INFO Internal: Goal ‘Achieve[InterfaceSta tusKnown]’ is satisfied.

14:42:52 INFO Internal: Goal ‘Maintain[SubsystemHe artbeatPresent]’ is satisfied.

14:42:53 INFO Internal: Simulating periodic activa tions

14:42:53 INFO Internal: Execute ReqMon thread

~

14:43:03 ERROR ReqMon: 268:[default] Peval@28305d: Property CSO_Sequence[ScopeActivation@1fe571f; Pro gramEvent@2798e7] is

FALSE.

14:43:05 ERROR ReqMon: 278:[default] Peval@3afb99: Property HBDC_CDNR_Sequence[ScopeActivation@1fe571 f;

ProgramEvent@1a0d866] is FALSE.

14:43:05 ERROR ReqMon: 287:[default] Peval@19fe451 : Property HBDC_Chain_Seq[ScopeActivation@1fe571f; ProgramEvent@1a0d866]

is FALSE.

14:43:05 INFO Internal: GOAL ‘Maintain[DiagnosticH eartbeatReceived]’ is NOT SATISFIED!!

14:43:05 INFO Internal: A diagnostic heartbeat fro m a diagnostic chain is not received any longer.

14:43:06 INFO Internal: Execute ReqMon thread

14:43:07 INFO Internal: End of simulation

Figure 6: ReqMon Logging Output From The Example Scenario.

creation of a heartbeat output object by the
CODIAG would be logged in real-time as:

15:08:29.192: External Tracing:

A_CODIAG_NAVRAD_Produce_Heartbeat_activation called .

15:08:29.192: External Tracing:

A_CODIAG_NAVRAD_Produce_Heartbeat_activation unpack ed.

15:08:29.195: External Tracing:

A_CODIAG_NAVRAD_Produce_Heartbeat_activation start event

processing.

15:08:29.195: External Tracing:

A_CODIAG_NAVRAD_Produce_Heartbeat_activation proces sed.

15:08:29.195: Output Signature Data:

O_CODIAG_NAVRAD_Heartbeat_Diagnostic_Chain:

 key(28.1.b39cf95b213) ver sion 1.

15:08:29.196: Output Signature Data: get codiag_na me =

 CODIAG_ NAVRAD.

15:08:29.196: Output Signature Data: get scc_id = 1.

15:08:29.197: Output Signature Data: get time_vali d =

 13-13-2006 15:08:17 :958 .

This actual CMS system logging can be stored
in text format and can then be converted into a
test scenario, for example:

(jassert (ProgramEvent

 (className CDNR_Produce_Heartbeat”)))

(jassert (ProgramEvent

 (className “Heartbeat_Diagnostic_Chain”)

 (parameters “name”)

(parameterTypes “CODIAG_NAVRAD”))) .

A complete test scenario is defined as a series
of program events as presented above. An
example of a simple test scenario is simulating
that a software component crashes. In this case,
the periodic heartbeats of the components that
are normally sent and received cease to exist.
The resulting output from the ReqMon prototype
is depicted in Figure 6. It shows that the defined
software goals are satisfied until one of the
software component crashes. The output is
presented for illustrative purpose and has been
shortened.

Feature database

To further investigate the uses of the information
extracted by requirement monitoring, an effort is
made to link software goals to other diagnostic
system information. In order to do so, diagnostic
system data should be collected. This has been
achieved by developing a diagnostic database
for recording faults within the CMS software.
Features of these faults are then extracted and
the faults are linked to possible software goals
that would not be achieved as a result of these
faults.

The diagnostic database is a Microsoft Access
database application. It is based on an existing
diagnostic database, which has been is use by
the Test & Integration Team (T&I) at
CAMS/Force Vision only recently. This
knowledge database is used to store fault data
that is collected while integrating and testing the
CMS software on board the naval vessels. With
this knowledge, recurring faults can be easily
solved and fault information is stored for future
reference.

The T&I database has been adapted to include
fault features. Furthermore, additional
information can be entered about the impact the
fault has on the functionality of the CMS
software components. This information can then
be related to the software goals of these
components. Figure 7 shows a screenshot of
the feature database.

Master thesis February 15, 2008

Robert Westdijk Annex 1 page 54

Figure 7: Screenshot Of The Feature Database.

In Figure 8, a few examples of database entries
are presented which have been translated from
Dutch. Each entry has a short description of the
software problem, which is used for indexing
and referencing. The problem is then more
explained elaborately and a solution is
suggested, if available. Also, a relation is made
with possible unsatisfied goals. Finally, the
problem features are identified.

The use of ReqMon in combination with the
feature database is illustrated using the top
database entry from Figure 8. It states that there
are no “world charts” presented in the D2000
interface by the ChartServer. Suppose this error
would arise again somewhere in the future. If the
ChartServer would be monitored runtime by a
ReqMon daemon, the goal “World charts are

displayed” would not be satisfied. This could
result in a warning message to the operator,
which would read “World charts are not available
due to a software error”. The operator can now
warn the software maintenance technicians.

Based on the unsatisfied goal information and
supplied with additional features of the problem,
a fault diagnosis will be proposed by the AI
system. Some fault features could even be
checked automatically by the system after it has
detected the unsatisfied goal, in which case the
fault diagnosis is narrowed down. Using the
diagnosis, the maintenance personnel can
correct the problem.

In an autonomic computing environment, the
maintenance personnel would be kept out of the
loop. However, current and near-future versions
of the CMS software will probably not be able to
accommodate such advanced forms of
autonomic computing. Conducting automated
fault diagnosis based on a fault feature database
is a first step in exploring future autonomic
possibilities.

By analyzing the diagnostic data, a suitable AI
technique can be chosen for solution extraction.
However, the data collection process and
database development are still in an early stage.
Therefore, more research is required before the
AI system can be implemented.

Short description
No representation of world charts in the D2000 user interface.
Problem
World charts are not displayed in the D2000 user interface by the ChartServer. Both D2000 and ChartServer are running. Also,
world charts do exist in directory /home/cms/imported_charts_ENC/CELLS/world.
Solution
The catalog file was corrupted. Workstation AWS05 should be rebooted. The Chart Management server will then create a new
catalog file. In the Matrix the option “update charts” in the HW/SW menu should be applied. All D2000 interfaces must be
restarted.
Related goals
D2000 goal “World charts are displayed” is unsatisfied.
Features
No world charts shown in D2000. World charts have been loaded into system.
Catalog file is present. ChartServer and D2000 running normally.

Short description
No HTML views in Matrix interface.
Problem
There are no HTML technical drawings presented in the Matrix interface. The root partition on the workstation was full.
Solution
Because the root partition is full, no more files could be added to /var/tmp. Normally, the HTML files are copied here for viewing.
The root partition should be cleaned up. The Matrix interface must be restarted.
Related goals
Matrix goal “Show HTML views” is unsatisfied.
Features
No HTML views shown in Matrix. Root partition on workstation is full.

Figure 8: Two Example Database Entries From The T&I Feature Database.

Master thesis February 15, 2008

Robert Westdijk ANNEX 1 page 55

DISCUSSION

The research presented in this paper is still
work in progress. In order to obtain more
tangible results, the ReqMon prototype must
be tested on more complicated CMS software
components. Also, the feature database should
be further developed. More diagnostic data is
to be collected and analyzed.

The presented model offers a scalable
approach to implementing and testing
requirements monitoring. When applying the
model to a full-scale, some steps may be
automated, such as creating test scenarios
from a log file. Manual steps such as the
creation of goal definitions and subsequent
code can be supported by tools, either of-the-
shelf, e.g. [14], or developed in-house.

Simulations with the prototype have shown that
unsatisfied software requirements are detected
by the prototype. Software errors that were
otherwise only discovered by comprehensive
manual fault analysis can be detected
automatically by the system.

An AI system will combine the information on
high-level goals collected by run-time
requirements monitoring with the diagnostic
data from the feature database. While not all
goals may be linked to faults in the database,
the database does reveal what effects low-
level system faults can have on the high-level
behaviour of the software components. Further
research will identify which AI techniques can
be applied to obtain an automated fault
diagnosis using all diagnostic data available.

CONCLUSION

This paper describes a research project which
examines the use of requirements monitoring
in complex software systems. The Guardion
Combat Management System (CMS),
developed for the Royal Netherlands Navy, is
subject to the present study.

To implement requirements monitoring using
the KAOS method, a model has been defined.
Applying this model has proven that while it is
not a trivial task to define the goals of a
software component, the overhead introduced
in development phase is limited. Previously
documented requirements and software
models can be used as sources for the goal
extraction process. This means that it is
possible to implement a monitoring system
which monitors the behavior of an already

developed software system without the need
for a comprehensive system model.

A ReqMon prototype was developed for a
small software chain to act as a proof of
concept. This has shown that the ReqMon
framework is scalable, both in system size as
in the depth of the goal monitoring definitions.
This enables the software designer to
emphasize important goals in his requirements
documents, while it gives the software
developer more control over how monitoring
definitions are implemented in the software
model.

A fault feature database for storing diagnostic
information on software errors has been
developed. By linking this diagnostic
information to the high-level goals, automatic
diagnosing of software errors by can be
performed by an AI system. This means that
it is possible to combine predefined software
requirements information with experience
diagnostic data, creating a flexible diagnostic
framework that can be enhanced when new
experience diagnostic data comes available.
The implementation of such an AI system is a
first step towards autonomic computing for the
CMS.

Based on the research presented in this paper,
it is concluded that implementing requirements
monitoring for autonomic computing in an
existing combat management system is
feasible.

ACKNOWLEDGMENTS

The research presented in this paper is
sponsored by the Centre for Automation of
Mission-critical Systems, Force Vision. I would
like to thank William Robinson, the developer
of ReqMon, for his support.

REFERENCES

[1] Arshad, N. et al, “Automated Dynamic
Reconfiguration using AI planning”,
Proceedings of the Automated Software
Engineering Conference, September 20-25,
2004.
[2] Boudens, H., “Requirements SCC/ CODIAG
NAVRAD”, Internal document CAMS/Force
Vision, 07-03-2005.
[3] Darimont R, & Lamsweerde, A. van,
“Formal Refinement Patterns for Goal-driven
Requirements Elaboration”, Proceedings of the
4th ACM Symposium on the Foundations of
Software Engineering, pp.179-190, 1996.

Master thesis February 15, 2008

Robert Westdijk ANNEX 1 page 56

[4] Dardenne, A. et al, “Goal-directed
Requirements Acquisition”, Science of
Computer Programming, vol 20, pp 3-50, 1993.
[5] DIR-team, “CODIAG NAVRAD”, Internal
document CAMS/Force Vision, 06-09-2005.
[6] CETIC, Centre of Excellence in Information
and Communication Technologies,
http://www.cetic.be, December 2005.
[7] Fickas, S. & Feather, M., “Requirements
monitoring in dynamic systems”, Proceedings
of the IEEE International Conference on
Requirements Engineering, 1995.
[8] Heaven, W. & Finkelstein, A., “A UML
profile to support requirements engineering
with KAOS”, IEEE Proceedings - Software, vol.
151, pp. 10-27, 2004.
[9] Kephart, J. & Chess, D., “The Vision of
Autonomic Computing”, IEEE Computer,
January 2003.
[10] Lapouchnian, A. et al, “Towards
Requirement-Driven Autonomic Systems
Design”, Design and Evolution of Autonomic
Application Software, May 21, 2005.
[11] Lapouchnian, A., “Goal-oriented
Requirements Engineering: An Overview of the
Current Research”, Depth Report, University of
Toronto, 2005.
[12] Murch, R., “Autonomic Computing”, 2004.
IBM Press/Prentice Hall, New Jersey.
[13] Nuseibeh, B. & Easterbrook, S.,
“Requirements Engineering: A Roadmap”,
International Conference on Software
Engineering, June 4-11, 2000.
[14] “A KAOS Tutorial”, September 5, 2003.
Objectiver website, http://www.objectiver.com,
December 2005.
[15] Oreizy, P., “An Architecture-Based
Approach to Self-Adaptive Software”, IEEE
Intelligent Systems, May/June 1999.
[16] ReqMon, http://wrobinson.cis.gsu.edu/
projects/reqmon, December 2005.
[17] Robinson, W., “Monitoring Software
Requirements using Instrumented Code”,
Proceedings of the 35th Hawaii International
Conference on System Sciences, January 7-
10, 2002.
[18] Robinson, W., “Implementing Rule-based
Monitors within a Framework for Continuous
Requirements Monitoring”, Proceedings of the
38th Hawaii International Conference on
Systems Sciences, 2005.
[19] Tosi, D., “Research Perspectives in Self-
Healing Systems”, Department of IT, Systems
and Communications, University of Milano-
Bicocca.

[20] Ward, M. & Heineman, G., “A Framework
for Visualizing the Behavior of Component-
Based Software Systems”, Conference on
Object-Oriented Programming, Systems,
Languages and Applications, October 14-18,
2001.

Master thesis February 15, 2008

Robert Westdijk Annex 2 page 57

Annex 2: Paper award

Presentation of the “Best paper in the Health Management Track” award at the IEEE
AUTOTESTCON Systems Readiness Technology Conference in Baltimore, September 18-20, 2007.

Left: Robert Westdijk, right: Bill Ross (General Chair), behind: John Sheppard (Technical Program
Chair).

Master thesis February 15, 2008

Robert Westdijk Annex 2 page 58

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 59

Annex 3: Research report

The following pages print the report “A Monitoring and Reasoning Framework for Applying
Autonomic Computing in a Combat Management System”. This report has been published by
the Royal Netherlands Naval College, which is part of the Netherlands Defence Academy
(NLDA). The original transcript featured the paper “Applying Requirements Monitoring for
Autonomic Computing in a Combat Management System” as an annex. This annex has been
left out here, for obvious reasons.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 60

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 61

Abstract

A combat management system (CMS) is the integrated software system that is used on naval
platforms to manage the deployment of a variety of sensors, weapons and command systems. Faced
with an increasing complexity of such naval combat systems and reduced manning concepts, the
Centre for Automation of Mission-critical Systems (CAMS/Force Vision) commenced a feasibility study
of autonomic computing in a CMS. This report presents the design, implementation and simulation of
a diagnostics expert system prototype.

In previous work the ReqMon framework for requirements monitoring in a CMS was introduced, which
is based on the use of the KAOS goal-oriented requirement engineering approach. This resulted in a
JESS prototype for CMS software monitoring. By adopting this approach, the need for a complex
system model is eliminated. Building on this prototype, the current report focuses on the
implementation of a diagnostic reasoner for the software chain of Goalkeeper, a close-in weapon
system deployed on Dutch frigates.

Simulations demonstrate that the combination of requirements monitoring and rule-based reasoning
provide a solid foundation for various levels of autonomy in an existing combat management system.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 62

Contents

Abstract 61
Contents 62
Introduction 62
1 Background 64

1.1 Autonomic computing 64
1.2 Requirements monitoring 65
1.3 ReqMon framework 65

2 Implementation 65
 2.1 Model and prototype implementation 65
 2.2 Monitor creation 67
 2.2.1 Goal elicitation 67
 2.2.2 Goal specification 68
 2.2.3 Monitor definition 68
 2.2.4 Monitor compilation 69
 2.3 Diagnostic reasoner 69
3 Case Examples 71
 3.1 Example 1: Supporting the developer 71
 3.2 Example 2: Informing the operator 73
 3.3 Example 3: Autonomizing the system 73
4 Discussion 75
5 Conclusion 77
Acknowledgements 78
References 78

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 63

Introduction

Nowadays, naval ships are becoming technologically more advanced due to a higher level of
automation and a high-potential sensor suite of growing complexity. This results in combat
management systems (CMS) becoming more and more complex. The CMS of a navel vessel is the
collection of hardware and software which integrates the SEWACO (Sensor, Weapon and Command
systems) subsystems, which are necessary for performing the various operational tasks. In contrast to
the growing complexity of the software, most NATO fleets are faced with reduction in manning and
material. This means that fewer personnel are available to operate and manage the CMS software.

The ships of the Royal Netherlands Navy (RNLN) have an integrated combat system that allows for
central operation of the ship’s subsystems. This high level of integration has led to the use of generic
all-purpose workstations in the Operations Room. The CMS found on board Dutch naval vessels is
developed at the Centre for Automation of Mission-critical Systems (CAMS/Force Vision) in Den
Helder, The Netherlands.

Autonomic computing or self-managing systems are systems that can manage themselves given high-
level objectives. [12]. Self-management means that the system should be able to monitor its behavior,
reason about it and adapt itself accordingly. Implementing self-management in a complex software
system such as a CMS will create overhead, not only during run-time but also in the software
development phase of the system. In order to overcome these drawbacks, the use of requirement
monitoring is suggested.

CAMS/Force Vision invests in research and development of software management tools to support
maintenance at sea, taking into account the paradox of increased complexity versus reduced
manning. Beside the development of software support tools for the system’s maintainers, completely
autonomizing the system is also an issue of interest. The presented research in this report focuses
mainly on the Guardion CMS, which is the latest version of the CMS software product line developed
at CAMS/Force Vision.

This report focuses on the development of a diagnostic expert reasoner for the CMS software system
based on requirement monitoring. The reasoner will provide support for the software developer and
the operational user, and will also provide a basis for applying autonomic computing. The main
objectives of the presented research are:

- to define a model for the implementation of a diagnostic expert system based on requirements
monitoring;

- to create a test environment for simulating and testing of the implementation model;
- to develop a prototype of the diagnostic reasoner as a proof of concept.

The design and development of the diagnostic prototype are based on previous work, as documented
in [25]9. In this work is has been shown how requirements monitoring is used to obtain diagnostic
information from the software system. Using this information as problem features, the diagnostic
expert system is able to detect problems in the software as they arise.

This report is organized as follows. First, some background information is presented about autonomic
computing and requirements monitoring. After that, the implementation model is shortly reviewed.
Then the implementation is introduced, followed by a review of some example cases. Finally, the
conclusions will be presented.

9 The complete transcript of this paper can be found in Annex I.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 64

1 Background10

1.1 Autonomic computing

A software system with autonomic computing has the ability to modify its own behavior. Autonomic
systems are also referred to as self-managing systems. There are four main aspects of autonomic
computing: self-configuration, self-optimization, self-healing and self-protection [14]. This report
focuses on the ability of self-healing, meaning that the system can examine, find, diagnose and react
to system malfunctions [16].

The processes of self-management implements a control loop [1], [12], [13], [14]. The OODA loop can
be applied here, which identifies four phases: Observe, Orient, Decide, and Act. System monitoring, is
part of the Observe and Orient phases, while reasoning about monitored behavior is part of the Decide
phase. Based on the information from the monitors, the automated reasoning component should
produces some reconfiguration plan, which eventually must be executed within the monitored system.

An autonomic system must be able to modify its own behavior. This means that the required system
behavior must be defined, and that the system should be enabled to monitor this behavior. Both
aspects introduce overhead.

The first aspect involves the creation of some kind of system model. However, creating an accurate
behavorial model of complex software systems such as the CMS is extremely difficult: these types of
systems have grown too large to statically verify and analyze [22].

The second aspect means adding a monitoring framework to the software system. This not only
introduces overhead at run-time, but also at development time. The increase in overhead is because
incorporating new monitoring techniques or adapting existing ones also has a negative influence on
both the time and budget of the development process.

1.2 Requirements monitoring

To overcome the drawbacks of creating a complex system model and the increased development
overhead when implementing autonomic computing, the use of requirements monitoring was
proposed in [25]. Requirements monitoring is the tracking of the run-time behavior of a system in order
to determine whether that running system is meeting its requirements [7], [19]. It is based on the
notion that the behavior of a system is specified in the requirements of the system and consequently in
its design. In this monitoring concept, the actual implementation of the software is of no concern, as
long as the desired behavioral properties are accomplished.

The following advantages are offered when autonomizing the CMS using requirements monitoring:

1. The opportunity to model system behavior on a high level without the creation of a complex
behavioral model;

2. Limitation of workload required by designers and developers;
3. Good testability of the system for the current version of the CMS;
4. An approach to streamline the requirements elaboration process for future versions of the

CMS.

A prerequisite for conducting requirements monitoring is the formalization of those requirements [13],
[20]. This is part of the process of Requirements Engineering (RE). RE is concerned with the
identification of real-world goals for functions of and constraints on software systems, the
operationalization of these goals and the assignment of responsibilities for the resulting requirements
[4], [17]. The goal-oriented RE method KAOS (Knowledge Acquisition in Automated Specification) is a
frequently used technique in RE processes and requirement monitors development [5]. It is very well
documented and various tools exist that support the sub processes and steps within this RE method,
for instance [2], [11].

10 An elaborate description of requirements monitoring, the KAOS methodology and the ReqMon framework can be found in
[23].

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 65

KAOS uses object models, which can be represented using for instance UML (Unified Modelling
Language) [10]. In essence, the functionally of the system is described in terms of goals. These goals
should be operationalized by an agent11, which is an entity it the composite system. An agent can for
instance be a specific software component or a part of the infrastructure. A goal can lead to one or
more requirements. These relations can be visualized in a graph. Goal graphs offer a good overview
of which elements of the system are responsible for certain tasks. They are scalable in size, for
instance zooming in on parts of the system, and in depth, for instance by using general goals or really
specific goals.

1.3 ReqMon framework

Several monitoring systems adopt the KAOS approach to defining and formalizing software
requirements. A summary of these systems can be found in [5]. For prototype development in [25], the
ReqMon monitoring system as presented by W. Robinson in [19], [20], [21] has been adopted.
ReqMon offers a programming interface that simplifies temporal event reasoning in real-time or near
real-time [18]. It uses the JESS (Java Expert System Shell) programming language.

ReqMon offers a compiler for the OCL Object Constraint Language. OCL is a well-known expression
language that enables one to describe constraints on object-oriented models and other object
modelling artefacts. It is part of the UML framework. The ReqMon OCL variant extends the UML 2.0
OCL specification to include the Dwyer patterns, which are based on a collection of common patterns
found in requirement specifications [6]. These provide the means to express the linear-time temporal
logic needed for the defining the KAOS goals. REQMON relies on event-based OCL semantics that
have been extended to include temporal operations based on state and event semantics [21].

When deployed into the target system, the requirement monitors analyze the event stream that is
generated by the monitored software component. These events contain information about the
component’s processing. If a pattern of received events conflicts with the predefined pattern specified
in the monitor definition, the property evaluation becomes false. This means that a monitored
requirement is not satisfied, thus the system does not behave according to the design requirements. In
a component-based and network-based software system such as the CMS, each component would be
monitored by a daemon process containing all goal specifications for that particular component, as is
depicted in Figure 1.

Figure 1: Data streams for a software component monitored by a ReqMon daemon.

2 Implementation

2.1 Model and prototype implementation

The model as presented in [25] is reintroduced in Figure 2. It shows the transformation steps needed
to implement and test the requirements monitoring for the CMS. For the deployment of monitors, the
KAOS method is applied to extract goal information for software components based on the

11 A KAOS agent does not have the same qualifications as those of agents as defined in artificial intelligence (AI) research.
KAOS agents can be any active component in the composite system, such as humans, devices or software.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 66

requirements documentation that is available. These goals are converted to OCL descriptions to form
the ReqMon monitor definitions, which can be compiled to executable (JESS) code.

The feature database is filled with diagnostic rules. These rules are constructed using the monitored
properties as defined in the various ReqMon monitors. Expert information is used to create the
diagnostic rules for the reasoner. Other information sources can also be used, such as fault history
logs and component specification documentation.

Figure 2: Implementation model for requirements information in the CMS.

For prototype development, the ReqMon goal definitions and the JESS diagnostic rules are tested in
an simulation environment. The project has the aim to prototype was build to examine the feasibility of
using requirements monitoring in a complex software system such as the CMS. For the research
presented in [25], a prototype was developed for a small CMS software chain to act as a proof of
concept. This prototype has been expanded to incorporate the diagnostic reasoner.

To simulate and test the system, a target CMS software chain is selected. The first prototype featured
a test chain consisting of software components for the collection and interpretation of diagnostic
messages from the navigation radar suite. For further testing, a more operational software chain has
been selected, which is the diagnostic and control software for the Goalkeeper system. When it comes
to requirements monitoring, the Goalkeeper is a relative simple system that consists of a gatling gun, a
search radar and a tracking radar. The system forms the last line of defense of the naval vessel
against incoming missiles and is designed to work fully autonomous.

Figure 3 depicts the software coordination model of the Goalkeeper software chain12. The figure
shows the software modules needed for remote control of the Goalkeeper from the Command Centre,
which are the COGK, CECIWS modules and D2000 user interface. For analyses of the diagnostic
messages from the system, the modules CODIAG_GK, PFDFEU_GK and PFD exist. The diagnostic
information is presented via the MATRIX maintainer user interface in the Command Centre.

12 Full details of this military software system are classified. In the present context, it is sufficient to mention only the
abbreviations of the software components without further comment.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 67

Figure 3: Software coordination model for the CMS Goalkeeper software chain.

2.2 Monitor creation

For the creation of the ReqMon requirements monitors, the following step are carried out:

1. The goals of the monitored system are identified using the KAOS goal-oriented RE approach;
2. The defined goals are specified into requirement statements;
3. The ReqMon monitors are defined based on the goal specifications;
4. The monitor definitions are compiled to JESS code for use in the simulation environment.

2.2.1 Goal elicitation

To create the ReqMon monitors, first the goals of a software component should be identified. For new
software systems, goals could be drawn up using goal-oriented RE techniques during the design
phase of the project. For existing systems such as the CMS, available documentation should be used.
This should mainly be the requirements documentation, supported by other available technical
information. For instance, for the monitors of the COGK module a requirement document and a
technical description document were available [3], [8], [9]. Also, the expertise of the developer was
used as domain expert knowledge input.

Using the KAOS guidelines for goal elicitation, a goal graph can be created for a software system or
part of a software system. Such a graph shows the goals and the agents assigned to operationalize
these goals. Consider Figure 4, which shows the a partial KAOS goal graph for the Goalkeeper
system, starting with the goal “Goalkeeper is remote controllable”13. The goals of the composite
system are represented as parallelograms. They are operationalized by software agents, which are
the octagons. This goal graph clearly shows which parts of a system functionally are achieved by
which software components.

Figure 4: Partial KAOS goal graph for the Goalkeeper system.

2.2.2 Goal specification

The goals have been defined in a goal structure, which is based on the structure used by KAOS.
Examples can be found in for instance [5], [10], [11], [15]. KAOS offers a temporal specification
language to define goal statements. However, it has been opted to use only informal goal definitions
within the structures. This is because ReqMon itself offers an OCL language to formalize the goals. In
this manner, the overhead for the software developer who has to define the goal statements is
minimized. As has been stated, a goal can lead to one or more requirements and thus to one or more
monitor definitions. For instance, the goal structure for “Goalkeeper status is known” defines five
properties that should be monitored:

13 A complete overview of the Goalkeeper goal structures and goal graphs can be found in [24].

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 68

SystemGoal Goalkeeper status is known

InformalDef
The general system status should be known.

 GoalPattern
 Achieve
 Concerns
 System_Monitor, GK_System
 OclInformalDef 1

If the Goalkeeper status is known, an instance of S ystem_Monitor
should be monitoring it

 OclInformalDef 2
If the System_Monitor is activated, the control_mod e and
operating_mode cannot be invalid

OclInformalDef 3
When the Goalkeeper had control, the CMS cannot hav e control and vice
versa

OclInformalDef 4
The fire_status of Goalkeeper can either be ready_t o_fire or standby

OclInformalDef 5
When the simulation mode of Goalkeeper is started , the System_Monitor

should report this .

The goal structure specification forms the starting point for monitor implementation. Each informal
OCL definition leads to actual OCL constraints. This gives the developer close control over what
should be monitored and over the granularity of the monitors. Important requirements can be
monitored in more detail, while others can be monitored in a simpler manner or even not at all.

2.2.3 Monitor definition

For the definition of the monitors, ReqMon uses OCL 2.0. This enables the specification of OCL
messages. The monitor definitions adopt a proposed variant on the definition of the OCL messages is
used [21].

Consider the goal structure example given in the previous section. OclInformalDef1 states that when
the status of the Goalkeeper is known, the System_Monitor should be monitoring it. Note that
System_Monitor refers to an UML class in the software model COGK. The name of this object has
been changed for reasons of confidentiality. In all examples hereafter that contain information related
to the UML models of CMS modules, the names have been altered. However, the examples still reflect
the actual implementation of these components.

For OclInformalDef1, the System_Monitor is activated by the creation of relation R15 between that
object and GK_System, which is an object representing the Goalkeeper system. The creation of this
link should be monitored, which results in the following monitor specification:

def : linkMonGK: Sequence(OclMessage) = receivedMessages (linkObject())
 -> select (m | m.relation = 'R15' and m.cla ss1 = 'GK_System' and

m.class2 = 'System_Monitor')

inv : eventuallyLMonGK: eventually linkMonGK .

As a second example, the OclInformalDef2 states that if the System_Monitor is activated, the
control_mode and operating_mode of the Goalkeeper cannot be invalid. The monitor definitions for
this requirement look like:

def : callInit: Sequence(OclMessage) = receivedMessages (callActivation())

-> select(m | m.activation = 'Initialize')
def : setOpMode_Inv: Sequence(OclMessage) = receivedMessages (setAttribute())

-> select(m | m.class = 'System_Monitor' and m.att ribute = 'operating_mode'
 and m.value = 'invalid')

def : setConMode_Inv: Sequence(OclMessage) = receivedMessages (setAttribute())

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 69

 -> select(m | m.class = 'System_Monitor' an d m.attribute = 'control_mode'
 and m.value = 'inv alid'
inv : OpMode_after_Init: after (callInit) never setOpMode_Inv

inv : ConMode_after_Init: after (callInit) never setConMode_Inv .

2.2.4 Monitor compilation

After definition, the monitors can be compiled to JESS code using the ReqMon compiler. In turn, the
compiled JESS code can be made into a deployable monitor. This is not necessary for the test and
simulation environment of the prototype. To verify the monitors, JESS scenarios are used. These
scenarios simulate the event stream from the software components. The JESS scenarios can be
created by combining various event entries like the own shown above. These scenarios are run in the
ReqMon environment.

Considering the setOpMode_Inv definition from the previous OCL example, the corresponding entry in
a JESS simulation for the System_Monitor object would look like:

(jassert (OclMessage (component " Goalkeeper_Control:COGK ")
 (subComponent " setAttribute(String) : void ")
 (parameters " class " " attribute " " value ")

 (arguments " System_Monitor " " operating_mode " " invalid "))) .

2.3 Diagnostic Reasoner

The diagnostic reasoning component uses the monitored properties as features. The evaluation of
these features by the deployed requirement monitors provide the information for further reasoning. For
prototype development, the JESS language offers a rule engine and scripting environment to create
rule-based expert systems. In this system, the features will be represented as facts. A set of rules will
be defined, which models the knowledge about the target system. This knowledge comes from domain
experts, requirements documentation, technical documentation on the software components, and
other sources available.

The ReqMon daemons will evaluate the monitored requirement properties. The properties will either
be satisfied or unsatisfied given the monitored event stream from the software components. The
evaluated values will be sent to the reasoner, which in turn evaluates the property information. The
combination of these property events will cause the defined expert rules to fire. This process is
depicted in Figure 5.

Figure 5: Information flow in the monitoring and reasoning framework, with a simple pseudo-code example.

As an example, consider the goal structure that was introduced in Section 3.2.2. Suppose that after
relation R15 has been created, an invalid value for the control_mode or operating_mode of the
Goalkeeper indicates the manifestation of some known problem in the system. For all of these

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 70

properties, an OCL monitor definition has been created. However, combining these properties requires
a JESS rule definition:

(defrule GK-known-problem-detected
 (and (or (monitor-event (property OpMode_after_In it)(evaluated FALSE))
 (monitor-event (property ConMode_after_I nit)(evaluated FALSE)))
 (monitor-event (property eventuallyLMonGK)(e valuated TRUE)))
 =>

 (assert (Goalkeeper-known-problem-has-been-detect ed))) .

In this case, the defined rule only uses information from a single ReqMon daemon which is
instantiated to monitor the COGK module. As is shown in Figure 5, the reasoner can receive property
evaluations from multiple instances of the ReqMon daemon. This allows detection of diagnostic
problem throughout the software system.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 71

3 Case Examples

In [25] it was stated, that the information extracted by requirements monitoring can have multiple uses,
as depicted in Figure 6:
7. Requirements monitoring during software development and testing can provide useful information

for the developer;
8. The run-time goal information can be redirected to the operator to provide feedback about system

performance and errors;
9. The collected goal information can be used by an AI system to make a first diagnosis for the

software maintenance technicians on board in case of software malfunctions.

Figure 6: Data flow of diagnostic information in the requirements monitoring system.

To illustrate how the diagnostic reasoning component would operate, three example cases are
presented here. Each case offers an example of one of the uses for requirements monitoring as
described above.

3.1 Example 1: Supporting the developer

During CMS software development, incremental tests are carried out. The white and black box tests
for a single component can be carried out locally in the development environment. Integration tests
can be done on the so-called Target system at CAMS/Force Vision, on which the Guardion CMS
software is installed. It resembles the Command Centre as found aboard Dutch naval vessels.
Software acceptance are always carried on the actual CMS on board the ships.

When applying requirements monitoring as proposed in this research, the developer is enabled to
implement monitoring definitions in the software based on the specified requirements. Furthermore,
rule definitions can be composed. These would be added to the existing rule base of the diagnostic
reasoning component, which resides somewhere within the CMS. This provides the developer with
extra information when testing and debugging his software component in the integrated environment.

In Figure 3, the Goalkeeper software chain was depicted. The software modules for Goalkeeper
diagnostics are CODIAG_GK, PFDFEU_GK and PFD. The PFDFEU_GK is the database component,
which holds information about possible diagnostic messages that can be received via the
CODIAG_GK from the Goalkeeper system. The requirement documentation for both components
specify which messages should be contained in the database.

In the CODIAG_GK, each message is represented by an instance of a generic message object class,
of which the creation can be monitored. The PFDFEU_GK receives these generic messages and
maps these as a condition on a Goalkeeper technical component, also represented by an object class.
This can also be monitored. Using these OCL monitor definitions, a rule can be created that checks
whether the complete message set is presented in the message database:

(defrule message-not-in-database
 " Message is not in the diagnostic database "
 (and (or (monitor-event (property Msg_response_F 1_True)(evaluated TRUE))
 (monitor-event (property Msg_response_F 1_False)(evaluated TRUE))
 (monitor-event (property Msg_response_F 2_True)(evaluated TRUE))
 (monitor-event (property Msg_response_F 2_False)(evaluated TRUE)))

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 72

 (monitor-event (property Cond_response_Msg) (evaluated FALSE))
 (monitor-event (property PHB_PFDGK_after_PF DGK)(evaluated TRUE)))
 =>

 (assert (raise-alert d1))) .

The Msg_response properties represent the monitoring definitions for the creation of the message
instances, while the Cond_response_Msg property monitors the mapping of the messages. An extra
check is added by incorporating the PHB_PFDGK_after_PFDGK property. This property will remain
satisfied as long as heartbeat objects are sent from CODIAG_GK to PFDFEU_GK. The assertion of d1
in the rule definition indicates which database entry in the JESS simulation environment should be
raised.

The monitoring of the PHB_PFDGK_after_PFDGK property ensures that when the rule is fired, the
developer does not have to check whether this is because of a failure in the communication between
the two software modules. Thus, when there is no condition mapping despite the creation of a
diagnostic message by the Goalkeeper system, this will mean that the message is not in the database
and should be added. When this monitor scheme would be deployed in the real CMS environment, it
could even detect diagnostic messages being sent that were not foreseen by the requirement
designer, for instance because the available interface documentation was incomplete.

3.2 Example 2: Informing the operator

In order for the Goalkeeper to be able to engage targets, it should eventually become in a ready-to-fire
state. This means, that all firing preconditions have been satisfied. Most preconditions have are
hardware in nature, for instance fire inhibit switches that should be switched in the right position or
safing pins that should be removed. However, some preconditions must be satisfied by the COGK
software module.

When the fire command is given by the operator using the CMS Goalkeeper user interface, three
software conditions should be satisfied: the controle_mode should be set to the CMS, the
operating_mode should be set to manual and the Goalkeeper should report ready-to-fire. The latter
condition is achieved by removing all necessary hardware constraints, while the first two should be set
by the operator.

By defining monitor definitions for all three pre-firing software properties, the operator can be warned
when a fire command is given while the Goalkeeper is not able to comply. Moreover, by creating
multiple rule definitions, the operator can be informed about the exact cause of the incompliance of the
system. One of the rule variants would look like:

(defrule goalkeeper-not-ready-to-fire
 " Goalkeeper is not ready to fire "
 (and (monitor-event (property eventuallyFireCmd)(evaluated TRUE))
 (monitor-event (property eventuallyConCMS)(e valuated TRUE))
 (monitor-event (property eventuallyOpMan)(ev aluated TRUE))
 (monitor-event (property eventuallyModeRtf)(evaluated FALSE)))
 =>

 (assert (raise-alert c3))) .

The c3 alert entry is defined as:

(alert (id c3)(module " COGK")(error " Goalkeeper is not ready to fire ")
 (cause " Goalkeeper does not report ready-to-fire ")

 (solution " Confirm that all GK safety features have been remov ed")) .

As a second example, the output of a JESS simulation for another rule variant is given in Figure 7. In
this case, the Goalkeeper system reports ready-to-fire and is controlled by CMS. However, the
operator has neglected to switch to manual operation. When the fire command is given, the diagnostic
reasoner issues a warring that will be displayed through the user interface. The problem can then be
corrected accordingly.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 73

Figure 7: Example output from a JESS simulation.

3.3 Example 3: Autonomizing the system

As mentioned before, the Goalkeeper is designed to operate autonomously . This means that it has its
own suite of sensors to detect and track possible threats. An automatic surveillance sector can be
defined, but it is also possible to cue hostile tracks other sensors. To keep tracking its targets, the
Goalkeeper must be aware of the heading of the ship. The heading is one of the attribute values of the
Own_Ship_Data object class, which can be found throughout the CMS software. This information is
supplied by two redundant hardware sources, which interface with the CMS via two different instances
of the same software module, COOSD. Thus, the goal “Own Ship Data is provided” is operationalized
by the COOSD module, as can been seen in Figure 4.

To check if the COGK and CECIWS components receive the data, monitors check the creation of the
input object, which is a direct mapping of Own_Ship_Data instances on the output of COOSD. To
ensure that the COOSD module is still running, the process heartbeat object is also monitored. If the
process heartbeat is created while the input objects are not, there is a problem. The corresponding
rule definition is stated as follows:

(defrule no-own-ship-data
 " Goalkeeper does not receive Own Ship data "
 (and (monitor-event (property OSDCo_after_OSDCo)(evaluated FALSE))
 (monitor-event (property OSDCe_after_OSDCe)(evaluated FALSE))
 (monitor-event (property PHB_COSD_after_PHB_ COSD)(evaluated FALSE)))
 =>

 (assert (raise-alert c12))) .

Using the ReqMon monitors and the rule definition stated above, the operator could be warned that
the Goalkeeper system is not receiving any heading information. However, what would really be
desirable, is for the CMS system itself to react to this error. If the COOSD process is running, but no
instances of Own_Ship_Data are received by COGK and CECIWS, then the root cause of the problem
will properly be software-related or infrastructural. By enhancing the system with autonomic
computing, it can try to establish the cause of the problem. Even when the system’s effort fails, the
diagnostic information retrieved by the system’s actions will increase the knowledge of the problem for
the maintainers onboard, hence decreasing the number of fault hypotheses for them to check.

To close the OODA loop as depicted in Figure 8, the system must be able to perform reconfiguration
actions. This report focuses on the ability of self-healing. Using requirements monitoring, the system
can examine, find and diagnose problems. By adding a reconfiguration component, it should be able
to react to system malfunctions by carrying out some reconfiguration plan.

Jess> INFO: Property eventuallyOpMan is evaluated F ALSE
INFO: Property eventuallyConCMS is evaluated TRUE
INFO: Property eventuallyModeRtf is evaluated TRUE
INFO: Property eventuallyFireCmd is evaluated TRUE
ALERT: Error in module COGK
ALERT: Description: Goalkeeper is not ready to fire
ALERT: Cause: Goalkeeper is not in mode Manual
ALERT: Solution: Select Goalkeeper Manual mode
~
Jess> INFO: Property eventuallyOpMan is evaluated T RUE
NOTICE: Error "Goalkeeper is not ready to fire" is no longer valid

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 74

programming

events

JESS reasoner diagnoses

software faults

Software modules sent

programming events

ReqMon monitors

evaluate event patterns
Reconfiguration component

takes appropriate actions
ACT

evaluated

properties

ORIENT

OBSERVE

DECIDE
asserted

diagnostic facts

reconfiguration

actons

Figure 8: OODA loop for autonomic computing in the simulation environment.

Given the problem described above, a simple example of a reconfiguration plan is presented in Figure
10. This plan uses only the knowledge present based on the defined monitors in the Goalkeeper
software chain. It assumes that COGK and CECIWS are running on the same node, while COOSD is
instantiated on a different node. First, the MTL on the node of COOSD is restarted. The MTL is a
software process that provides for the relaying of component objects. If this does not help, the MTL on
the Goalkeeper software node is restarted. The next step would be to restart the COOSD process
itself. It this fails, the CECIWS is restarted on another node. If this helps, the COGK is also re-
instantiated14. However, if all actions fail to solve the problem, the maintainer is warned by the system.
The reconfiguration actions are disclosed, giving the maintainer a starting point for further fault
localization.

Figure 9 shows only one example of what a reconfiguration plan could look like. If more knowledge is
added, the scheme can get more elaborate. For instance, the fact that other software modules do or
do not receive the Own_Ship_Data object reduces the set of root cause hypotheses. Furthermore,
more intelligent techniques can be used in the planning algorithm, for instance as presented in [1].

Figure 9: Example of a simple reconfiguration plan for the “no-own-ship-data” failure.

14 The current CMS version has dynamic reconfiguration capabilities, but the implementation of dynamic reconfiguration
architectures is outside the scope of this research.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 75

4 Discussion

The research presented in this report is the continuation of the work presented in [25], where the use
of requirements monitoring as a basis for applying autonomic computing was discussed. This
previous research involved the creation of a ReqMon prototype, which was test on a simple CMS
software chain. It was stated that the ReqMon prototype should be tested on more complicated CMS
software components to get more tangible results.

With the creation of the diagnostic reasoning component and by presenting some case examples, the
benefits of using requirements monitoring as a basis for further autonomic development have been
made clear. These are mainly the scalability of the approach, the elimination of the need for a
comprehensive system model and the relative simple manner in which monitoring and reasoning
capabilities can be defined. Also, the feasibility of the implementation of requirements monitoring is
shown.

However, some reflections on the use of the proposed methodology are considered here. The
presented implementation model is scalable for larger systems that the software chain on which is was
applied in this report. However, the creation of the case examples have proven that domain-specific
knowledge is still required in certain phases of monitor implementation, which reduces the advantage
of limited implementation overhead in the software development phase. On the other hand, much can
be regained by applying goal-oriented RE techniques throughout the various stages of the software
development process.

Beside the need for domain-specific knowledge in the development phase, system complexity is also
an issue. The OCL statements and corresponding rule definitions presented in this work are simple in
nature. For a proof of concept, they provide enough complexity to base conclusions on, but when
applying the concept to large-scale software systems, their complexity will increase. An increase in
complexity will lead to more effort to develop and test the monitor specification and rule definitions. By
offering automated tools to the developer, the increase in complexity can be reduced. Also, more
elaborate AI techniques than the proposed rule-based approach could be used. Furthermore, the
scalability of the ReqMon requirements monitoring framework should be applied here, meaning that
important requirements can be monitored more elaborately than less important requirements.

ReqMon assumes that there is a static and dynamic traceability between the software objects and the
stated requirements [19]. Static traceability means that monitored entities can be traced back to their
object definition in the programming code. Dynamic traceability means that the monitor should be able
to distinguish between different instances of a defined object class. The first assumption is satisfied by
all software that has been developed using a modelling technique. To satisfy the second assumption,
the software code should be instrumented to send programming events for monitoring. For the CMS
software, the desired instrumentation can be added since the compiler is developed in-house.
However, instrumentation could be an issue for other systems. ReqMon offers support for
instrumentation only for Java-based programs. For other types of applications, instrumentation should
be added by other means. This is considered to be outside the scope of this research.

An autonomic computing software system is designed to work autonomously and automatically. This
essentially means, that there is no need human interference. However, the complete elimination of
human decisions in a military (weapon) system is often undesirable. For instance, after a missile has
been launched by a naval vessel, automatic reconfiguration of the CMS is out of the question while the
ship is offering missile guidance. More in general, the operator’s and maintainer’s grasp on the system
decreases when the system’s autonomic ability increases. Instead of a full autonomic software
system, a semi-autonomic mode could be introduced. This means that the system does not actually
carry out any reconfiguration actions, but notifies the maintainer when a fault occurs. The system can
then advise the maintainer and suggest which actions should be taken to correct the fault.

In this work, the issue of dynamic reconfiguration was only shortly mentioned. In reality, this is an
entire research field with many difficult aspects. The implementation of dynamic reconfiguration
capabilities in a complex system such as the CMS requires great effort. Currently, work is been
undertaken by CAMS/Force Vision to implement dynamic master/slave switching between
instantiations of CMS software components, but this is not yet a full dynamic reconfiguration ability.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 76

In the presented cases, some examples of simple software reconfiguration actions were given. To
solve more complex problems in a software system, these types of actions will be not be enough. The
reconfiguration component should have the ability to take more elaborate actions. For instance, the
ability to resend certain objects, or the ability to perform certain actions for which normally a operator
should be required. The implementation problem of these abilities is outside the scope of this report,
but adding them is both feasible and practicable in the case of CMS software modules.

In mission-critical systems such as the CMS, system monitoring and diagnostics is crucial. These
systems should be viewed in a composite manner, because the software and hardware of the systems
are both needed. Also, faults occurring in hardware can have effects on the software, and vice versa.
Although goal-oriented RE techniques such as KAOS create a composite view on the system, only the
software monitoring aspect has been researched in this work. This is because reasoning about the
state of the software in respect to its desired behavior is very difficult, but reasoning about the whole
composite system would be even more difficult when using only a single monitoring framework.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 77

5 Conclusion

This report describes a research project which aims to examine the use of requirements monitoring for
applying autonomic computing of complex software systems. To implement autonomic computing, the
use of requirements monitoring combined with a rule-based diagnostic reasoner has been proposed.

A model has been defined, identifying the transformation steps needed for the implementation of
autonomic computing based on requirements monitoring. This model proposes the use of the KAOS
goal-orient requirements engineering (RE) approach to define goals for the software components.
Monitoring is done using the ReqMon requirements monitoring framework to create software monitor
specification. Reasoning capability is added by a JESS rule-based diagnostic reasoner.

For testing and simulation of the proposed implementation, a prototype has been developed. The
event stream from the CMS software components can be simulated, as well as the evaluated
requirements properties as they are received by the reasoner.

The information extracted by applying requirements monitoring to a software system can be used for
software testing during software component development. Furthermore, the goal information can
provide feedback to the operator during run-time. Last, the properties monitored by the requirements
monitoring framework can be used for diagnostic reasoning about the software system.

To demonstrate the uses of the proposed monitoring framework, three case examples have been
provided for the Goalkeeper close-in weapon system. The first case features a problem in the
Goalkeeper diagnostic software during the development phase. By checking the creation of object
instances representing diagnostic messages, the integrity of the diagnostic message database is
checked. The second case introduces the preconditions that needs to be satisfied in order for the
Goalkeeper to fire. By monitoring the value of object attributes representing these preconditions, the
operator is warned when the are not met. The third case focuses on autonomizing the software. When
heading information is no longer sent to the Goalkeeper software modules, a reconfiguration plan
could be executed to solve this problem.

It can be concluded that an implementation of autonomic computing in a CMS is feasible; this was
demonstrated with and discussed by combining requirements monitoring with rule-based diagnostic
reasoning.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 78

Acknowledgements

This work is sponsored by the Centre for Automation of Mission-critical Systems, Force Vision. The
authors like to thank Frank Zwarthoed, the developer and domain expert for the CMS Goalkeeper
software, for his support.

References

 [1] Arshad, N., “A Planning-Based Approach to Failure Recovery in Distributed Systems”, PhD

Thesis, 2006. University of Colorado, Department of Computer Science, 2006.
 [2] CETIC, Centre of Excellence in Information and Communication Technologies, “An Overview

of the FAUST Toolbox”, http://www.cetic.be/internal220.html. http://www.cetic.be, last visited
December 2007.

 [3] COGK-team., “COGK allocated DAISY-NT requirements”, CAMS/Force Vision. September 11,
2001 (internal report).

 [4] Darimont R, and Lamsweerde, A. van, “Formal Refinement Patterns for Goal-driven
Requirements Elaboration”, Proceedings of the 4th ACM Symposium on the Foundations of
Software Engineering, pp.179-190, 1996.

 [5] Dingwall-Smith, A., “Run-Time Monitoring of Goal-Oriented Requirements”, PhD Thesis, June
2006. University College London, Department of Computer Science, 2006.

 [6] Dwyer, M., Avrunin, S. and Corbbet, J., “Patterns in property specifications for finite-state
verification”, Proceedings of the Twenty-First International Conference on Software
Engineering, pp. 411-420, 1999.

 [7] Fickas, S. and Feather, M., “Requirements monitoring in dynamic systems”, Proceedings of
the IEEE International Conference on Requirements Engineering, pp. 140-147, 1995.

 [8] Franken, M., “CoGK outline v01”, CAMS/Force Vision, Augustus 19, 2003 (internal report,
CONFIDENTIAL).

 [9] Franken, M., “CoGK development v04”, CAMS/Force Vision, June 23, 2005 (internal report,
CONFIDENTIAL).

[10] Heaven, W. and Finkelstein, A., “A UML profile to support requirements engineering with
KAOS”, IEEE Proceedings - Software, vol. 151, pp. 10-27, 2004.

[11] “A KAOS Tutorial”, September 5, 2003. http://www.objectiver.com/download/documents/
KaosTutorial.pdf. Objectiver website, http://www.objectiver.com, last visited December 2007.

[12] Kephart, J. and Chess, D., “The Vision of Autonomic Computing”, IEEE Computer, pp 41-50,
January 2003.

[13] Lapouchnian, A., Liaskos, S., Mylopoulos, J. & Yu, Y., “Towards Requirement-Driven
Autonomic Systems Design”, Design and Evolution of Autonomic Application Software, May
21, 2005.

[14] Lapouchnian, A., “Goal-oriented Requirements Engineering: An Overview of the Current
Research”. Depth Report, University of Toronto, 2005.

[15] Letier,E., “Reasoning about Agents in Goal-Oriented Requirements Engineering”, PhD Thesis,
May 2001. Université Catholique de Louvain, Dépt. Ingénierie Informatique, 2001.

[16] Murch, R., “Autonomic Computing”, 2004. IBM Press/Prentice Hall, New Jersey.
[17] Nuseibeh, B. and Easterbrook, S., “Requirements Engineering: A Roadmap”, International

Conference on Software Engineering, June 4-11, 2000.
[18] Robinson W., “About this project”, http://wrobinson.cis.gsu.edu/projects/reqmon/Home/

AboutThisProject/tabid/401/Default.aspx. ReqMon website: http://wrobinson.cis.gsu.edu/
projects/reqmon, last visited December 2007.

[19] Robinson, W., “Monitoring Software Requirements using Instrumented Code”, Proceedings of
the 35th Hawaii International Conference on System Sciences, January 7-10, 2002.

[20] Robinson, W., “Implementing Rule-based Monitors within a Framework for Continuous
Requirements Monitoring”, Proceedings of the 38th Hawaii International Conference on
Systems Sciences, 2005.

[21] Robinson, W., “Monitoring Software Quality Requirements”, 2007. Georgia State University,
Department of Computer Information Systems, 2007.

[22] Ward, M. and Heineman, G., “A Framework for Visualizing the Behavior of Component-Based
Software Systems”, Conference on Object-Oriented Programming, Systems, Languages and
Applications, October 14-18, 2001.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 79

[23] Westdijk, R., “Autonomic Computing for the Combat Management System based on
Requirements Monitoring”, Literature study, January 28, 2006. Delft University of Technology,
Department of Electrical Engineering, Mathematics and Computer Science, 2006.

[24] Westdijk, R., “Thesis Progress Report”, CAMS/Force Vision, August 8, 2007 (internal report).
[25] Westdijk, R., Rothkrantz, L. and Leijen, A.V. van, “Applying requirements monitoring for

autonomic computing in a combat management system”, IEEE AUTOTESTCON Systems
Readiness Technology Conference, pp. 349-358, September 17-20, 2007.

Master thesis February 15, 2008

Robert Westdijk Annex 3 page 80

Master thesis February 15, 2008

Robert Westdijk Annex 4 page 81

Annex 4: Software component diagram

monitor definitions

.ocl-files

<<file>>

reqmon.jar

<<executable>>

jess.jar

<<executable>>

java.exe

<<executable>>

ocl-compiler.jar

<<executable>>

monitors

.ocl.clp-files

<<file>>

event scenarios

.clp-files

<<file>>

is plugin for

is plugin for is plugin for

is compiled by

compiles tois executed by

property scenarios

.clp-files

<<file>>

is executed by is executed by

rule definitions

.clp-files

<<file>>

is executed by

Component diagram (UML 2.0) showing the dependencies among the software components of the
programming and simulation environment.

