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Abstract 
  

Diagnosis of large and complex software systems is a challenging task that can highly benefit from 
monitoring of the high-level functional requirements. This research studies the potential of applying 
requirements monitoring for a software system of high complexity: the combat management system 
(CMS) of a modern and technological advanced naval platform. An effort is made to apply a 
monitoring technique that can be used for autonomizing of this system while limiting implementation 
impact. The goal of this thesis is to show the feasibility of using requirements monitoring in a CMS by 
presenting the design, implementation and simulation of a diagnostics expert system prototype. 
Additional uses such as software developer support and user assistance are also explored. The KAOS 
goal-oriented requirements engineering method is used to extract software system goals from 
previously documented requirements. With these high-level objectives as a starting point, the ReqMon 
requirements monitoring framework is applied. An implementation model is defined, identifying what 
data transformations are needed to apply the ReqMon system. This model is implemented as a 
prototype in a JESS development environment. Simulations show that detailed diagnosis of a complex 
software system as a CMS is feasible. They also demonstrate that the combination of requirements 
monitoring and rule-based reasoning provide a solid foundation for various levels of autonomy in an 
existing combat management system.  
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Abstract 
 
Diagnosis of large and complex software systems is a challenging task that can highly 
benefit from monitoring of the high-level functional requirements. This research studies the 
potential of applying requirements monitoring for a software system of high complexity: the 
combat management system (CMS) of a modern and technological advanced naval platform. 
An effort is made to apply a monitoring technique that can be used for autonomizing of this 
system while limiting implementation impact. The goal of this thesis is to show the feasibility 
of using requirements monitoring in a CMS by presenting the design, implementation and 
simulation of a diagnostics expert system prototype. Additional uses such as software 
developer support and user assistance are also explored. The KAOS goal-oriented 
requirements engineering method is used to extract software system goals from previously 
documented requirements. With these high-level objectives as a starting point, the ReqMon 
requirements monitoring framework is applied. An implementation model is defined, 
identifying what data transformations are needed to apply the ReqMon system. This model is 
implemented as a prototype in a JESS development environment. Simulations show that 
detailed diagnosis of a complex software system as a CMS is feasible. They also 
demonstrate that the combination of requirements monitoring and rule-based reasoning 
provide a solid foundation for various levels of autonomy in an existing combat management 
system.  
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1 Introduction 
 
In this chapter, the subject of this thesis is presented. The problem is described in Section 
1.1. In Section 1.2, the relevance of this problem is explained and in Section 1.3 the 
objectives are stated. Section 1.4 will outline this thesis. 
 

1.1 Problem description 
 
Nowadays, naval ships are becoming technologically more advanced due to a higher level of 
automation and the growing potential of the onboard sensor suite. This results in combat 
management systems (CMS) becoming more and more complex. The CMS of a navel vessel 
is the collection of hardware and software integrating the so-called SEWACO subsystems, 
which are the combat systems necessary for performing the various operational tasks.  
 
While the complexity of the subsystems and software increases with every new type of ship, 
reductions in staff result in fewer personnel available to operate and manage the CMS 
software. This paradox of increased complexity versus reduced manning is one of the 
reasons to search for novel techniques to support the software maintainer onboard.   
 
The research presented in this thesis focuses on the application of requirements monitoring 
for software maintainer support and as a basis for the implementation of autonomic 
computing. 
 

1.2 Relevance 
 
Self-management of software systems and the related subject of autonomic computing is a 
relatively new research area in component-based software engineering and Artificial 
Intelligence (AI). It refers to systems that can manage themselves given high-level objectives 
[16]. Self-management means that the system should be able to monitor its behavior, reason 
about the data extracted by monitoring and if necessary adapt itself accordingly. 
 
To enable an autonomic system to modify its own behavior, the system must have 
knowledge about what its required behavior is. For many systems the behavior can be 
described by means of a system model. However, creating a model of a complex software 
system is extremely difficult. It is commonly accepted that software systems have grown too 
large to statically verify and analyze [35]. Such an endeavor would require disproportionate 
time and resources in the development process of a system and would be even more difficult 
to apply on already developed systems. 
 
To limit the design and development impact, the use of requirements monitoring is proposed.  
This monitoring technique eliminates the need for a comprehensive system model. In 
general, the utilization of requirement monitoring introduces the following advantages: 

1. The opportunity to model system behavior on a high level without the creation of a 
complex behavioral model. 

2. A limitation of implementation workload required by designers and developers. 
3. An approach to streamline the requirements elaboration process. 

 
While much literature concerns the design of a new requirements monitoring framework, the 
emphasis of this work is more on implementing a requirements monitoring system in an 
existing software system. To show how requirements monitoring can be implemented and 
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that it can serve as a basis for applying autonomic computing, the CMS as found on board 
the Dutch air-defense and command frigates (ADCF) is used as an implementation test bed.  
 

1.3 Objectives 
 
The goal of this research is to give a first impulse for the automation and autonomization of 
the CMS software management tasks. The main objectives are:  

1. To define a model for the implementation of an AI diagnostic expert system based on 
requirements monitoring. 

2. To create a test environment for simulating and testing of the implementation model. 
3. To develop a requirements monitoring prototype as a proof of concept. 

 

1.4 Outline 
 
This thesis is organized as follows. First, some background information is provided in 
Chapter 2 about autonomic computing and requirements monitoring. Then Chapter 3 
presents the model for requirements monitoring implementation. After that, the 
implementation of the requirement monitoring framework and diagnostic reasoning 
component are discussed in Chapter 4. The paper [37] found in Annex 1 is mainly based on 
this chapter. The results acquired by tests with these prototypes are presented in Chapter 5. 
The report [38] found in Annex 3 is mainly based on this chapter. Finally, the conclusions of 
this thesis are presented in Chapter 6.    
 
 
 
 
 
 
 
 
 



Master thesis                                                                             February 15, 2008   
 

 
Robert Westdijk  page 3 

2 Background 
 
This chapter discusses related work and provides some background to the thesis problem. 
First, Section 2.1 introduces the Guardion combat management system. Section 2.2 then 
discusses the concept of autonomic computing. Section 2.3 deals with requirements 
monitoring. The related subject of requirements engineering is discussed in Section 2.4. 
Finally, Sections 2.5 and 2.6 describe the KAOS approach and the ReqMon monitoring 
framework. 
   

2.1 Guardion combat management system 
 
The CMS of a naval vessel is the collection of hardware and software which integrates the 
SEWACO subsystems, which are necessary for performing the various operational tasks of 
the vessel. The following functions are generally performed by the CMS: 

1. Data handling 
2. Information handling 
3. Communication control 
4. Message handling 
5. System monitoring and control 
6. Weapon control. 

The non-physical part of the CMS consists of the software that performs the diversity of 
functions mentioned above. In this thesis, the emphasis is on the software part of the CMS.  
 
The Royal Netherlands Navy (RNLN) has aimed for integrated combat systems to allow 
central operation of the ship’s subsystems, which eventually led to the use of generic all-
purpose workstations in the Operations Room. The CMS software for Dutch naval ships is 
developed at the Centre for Automation of Mission-critical Systems (CAMS/Force Vision) in 
Den Helder, The Netherlands. 
  
The CMS software of a modern naval vessel is a good example of a complex software 
system. It is a highly integrated software system that is both network-based and component-
based. CAMS/Force Vision invests in research and development of software management 
tools to support maintenance at sea, taking into account the paradox of increased complexity 
versus reduced manning. Beside the development of software support tools for the system’s 
maintainers, completely autonomizing the system is also an issue of interest. 
 

2.2 Autonomic computing 
 
An autonomic software system should be able to modify its own behavior in order to adapt 
itself given high-level objectives and must be able to manage itself, hence the name “self”-
systems for systems that have this ability. There are four main aspects of autonomic 
computing: self-configuration, self-optimization, self-healing and self-protection [18]. Two 
more features are mentioned in [34]: self-organization and self-adaptation. This thesis 
focuses on the ability of self-healing, meaning that the system can examine, find, diagnose 
and react to system malfunctions [22]. 
       
Autonomic computing is a relatively new research topic and is a hot issue in software 
engineering. This is because of the manifesto and the vision on autonomic computing that 
have been released by IBM [16] in which autonomic computing is introduced. However, [21] 
points out that the concept of self-managing and self-adapting systems is not new. 
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Summarizing, The following self-properties can be identified [16], [18], [34], which are 
defined shortly in Table 2.1: 

1. Self-configuration 
2. Self-optimization 
3. Self-healing 
4. Self-protection 
5. Self-organization 
6. Self-adaptation. 

 
Table 2.1: Self-properties of autonomic systems, adapted from [16], [18] and [34]. 

 
Self-property Description 

Self-configuring The automated configuration of components and systems following high-level 
policies. 

Self-optimization The automated improvement of the performance and efficiency of systems and 
components. 

Self-healing The automated detection, diagnoses and repair of software and hardware problems. 
Self-protection The automated defense against attacks or cascading failures. 
Self-organization The autonomous reconfiguration of interactions among components. 
Self-adaptation The automated change of behavior in reaction to changes in the working 

environment. 

 
It is clear that all these self-properties are related to each other and have a tendency to 
overlap. For instance, the terms self-configuring and self-organization seem the same. 
However, the first refers to the configuration of a system, while the latter is related to the 
architectural constraints of a system. Furthermore, a self-system is by definition self-
adaptive, since it changes certain properties or elements of itself due to some influence. 
However, the self-adaptation property is introduced to make a clear distinction between 
internal and external influences. This thesis focuses on the ability of self-healing, meaning 
that the system can examine, localize, diagnose and react to system malfunctions. 
 
The process of self-management implements a control loop [1], [16], [26], [34]. The OODA 
loop can be applied here, which is a concept that is generally used for  strategic military 
purposes. It identifies four phases: Observe, Orient, Decide, and Act. These phases are 
applied to the self-healing autonomic computing concept. This leads to the phases as 
depicted in Figure 2.1 and as described below: 

1. The observation phase is the process of monitoring and data collection. This data 
could originate from the system itself, but it can also be data from the external 
environment in which the system operates.  

2. The orient phase features the analysis and interpretation of the collected data. The 
collected data should be transformed into information, which can be related to the 
high-level goals set for the self-managing system.   

3. The decide phase is the phase in which the system may decide that action on its 
behalf is needed. Here, the information from the orient phase is used. Generally, a 
reconfiguration plan is created.   

4. The act phase executes the healing actions that are needed, for instance based on a 
reconfiguration plan. The executed actions should bring the system from the current 
state to the desired state. 

 
An autonomic computing system must be able to modify its own behavior. In order to 
accomplish this, the system must have knowledge about what its required behavior is. 
Therefore, the required system behavior must be defined, and that the system should be 
enabled to monitor this behavior. Both aspects introduce some form of overhead.  
 
The first aspect involves the creation of some kind of system model. However, creating an 
accurate behavioral model of complex software systems such as the CMS is extremely 
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difficult. Software systems have grown too large to statically verify and analyze [35]. Doing so 
would require much time and resources in the often budget-constraint development process 
of a software system. 
 
The second aspect means adding a monitoring framework to the software system. This not 
only introduces overhead at run-time, but also at development time. The increase in 
overhead is because incorporating new monitoring techniques or adapting existing ones also 
has a negative influence on both the time and budget of the development process. 
 
 

 
 

Figure 2.1: The OODA loop for self-healing, based on [1], [16], [26], [34]. 
 

2.3 Requirements monitoring 
 
Considering the software development process in general, it can be stated that the behavior 
of a system is specified in the requirements of the system and consequently in its design. In 
this context, the term requirements monitoring is introduced, which is defined as follows [10], 
[31]: 
 
“Requirements monitoring is the tracking of the run-time behavior of a system and the 
determination whether that running system is meeting its requirements”.  
 
It is based on the notion that the behavior of a system is specified in the requirements of the 
system and consequently in its design. In this monitoring concept, the actual implementation 
of the software is of no concern, as long as the desired behavioral properties are 
accomplished. 
 
To monitor the requirements of a system, run-time data collection on a low level is 
performed. However, requirements monitoring is not the same as exception handling 
because of the following aspects [10]:   

1. The combined behavior of occurring events in multiple threads or processes over 
time are considered. 

2. Run-time behavior is linked to the actual design-time requirements. 
3. Sufficient information is provided to allow for run-time reconfiguration of software. 
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The last aspect links the executing of monitoring requirements to the autonomization of 
software systems. In the view of [10], automatic run-time monitoring is a key step towards 
making system self-evolving. The link between autonomic computing and requirements 
monitoring is also underlined by [19], stating that requirements and their subsequent 
requirements goal models can be used as a foundation for software that incorporates 
autonomic computing. 
 

2.4 Requirements engineering 
 
A prerequisite for conducting requirements monitoring is the formalization of those 
requirements [19], [29].  This is part of the process of Requirements Engineering (RE). RE is 
concerned with the identification and refinement of goals, the operationalization of the refined 
goals and the assignment of responsibilities for the resulting requirements [6]. A more 
elaborate definition is given in [23]:  
 
“Requirements engineering is the branch of software engineering concerned with the real-
world goals for functions of and constraints on software systems. It is also concerned with 
the relationship of these factors to precise specifications of the software behavior, and their 
evolution over time and across software families.” 
 
In the software development process, the term “requirement” is often used for required 
behavior or functionality throughout the various abstraction levels of the system design. The 
following definitions with regard to the term requirement can be distinguished in literature 
[29]:  

1. Goal, which is a desired property of the software and its environment. 
2. Requirement, which refines a goal by satisfying three properties: 

a. It is described entirely in terms of values monitored by the software. 
b. It contains only values that are controlled by the software. 
c. The controlled values are not defined in terms of future monitored values. 

3. Policy, which is a goal that: 
a. Is abstract and broadly scoped. 
b. Addresses societal values. 
c. Requires human interpretation. 

 
Below, the core activities of the RE process are identified [17], [23]. These activities are 
roughly ordered chronically here, but are mostly intertwined: 

1. Domain analysis 
2. Knowledge elicitation 
3. Specification 
4. Specification analysis 
5. Communication 
6. Negotiation and agreement 
7. Evolution. 

 
Generally, RE is said to have two main phases. The first is the early requirements phase, 
which concentrates on the analysis and modeling of the environment of the system, the 
organisation and stakeholders, and the objectives and relationships of these stakeholders. 
The domain analysis and elicitation activities are conducted in this phase. The second 
phase, called the late requirements phase, is concerned with the modeling the composite 
system. Mainly specification activities are executed in this phase. A more elaborate 
description of the requirement engineering processes can be found in [36].   
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2.5 KAOS 
 
Traditional system analysis methods in requirements engineering such as SSADM 
(Structured Systems Analysis and Design Method) are inadequate when dealing with 
complex software systems [18]. The main reasons for this are:  

1. The lack of support for formal reasoning about the composite system. 
2. The inability to cope with non-functional requirements, which are requirements that 

represent system qualities or properties as a whole, for instance the maintainability of 
a system. 

3. The inability of representing and comparing alternative system configurations. 
 
The Goal-Oriented Requirements Engineering (GORE) approach attempts to solve these 
problems. GORE focuses on activities that precede the specification phase in the traditional 
RE process. It aims for less emphasis on the question how a software system should operate 
and more on why a system is needed. GORE approaches provide a breakdown of the 
composite system requirements into operationalizable goals. These goals provide a basis for 
requirements monitoring, identifying what part of the system is responsible for what goal. 
  
The GORE method KAOS (Knowledge Acquisition in AutOmated Specification) is a 
frequently used technique in RE processes and requirements monitors development. The 
use of KAOS in this thesis project is adopted based on the conclusions of a literature study 
[36]. The main advantages over other GORE methods are: 

1 Research and documentation on the KAOS methodology can easily be acquired. 
2 Various tools exist that support the sub process and steps within the KAOS method 

(e.g., [3], [24]).  
3 KAOS uses object models, which can be represented using for instance UML (Unified 

Modeling Language) [14]. 
 
The KAOS methodology mainly utilizes formal analysis techniques. It combines semantic 
nets and implements linear-time temporal logic to formalize and express the goals and other 
objects of the system [18]. Objects in KAOS are things of interest in the system, whose 
instances can evolve from state to state. Objects can be entities, relationships or events. 
Operations are input-output relations over these objects. They can define state transitions 
and are declared by signatures over objects. Operations have pre, post and trigger 
conditions.  
 
In essence, KAOS strives to describe the functionally of a system in terms of goals. A goal 
can lead to one or more requirements. These goals should be operationalized by an agent1, 
which is an entity it the composite system. Operations on objects are performed by agents, 
which act as the processor for these operations. Agents are active components that can be 
humans, devices, software, etc. An agent in a software system can for instance be a specific 
software component or a part of the infrastructure.  
 
Goals are refined in hierarchies using “AND” and “OR” relations. Goal refinement ends when 
an individual agent operationalizes a sub goal. The relations between goals and agents can 
be visualized in a graph. Goal graphs offer a good overview of which elements of the system 
are responsible for certain tasks. They are scalable in size, for instance zooming in on parts 
of the system, and in depth, for instance by using general goals or really specific goals. 
 

                                                 
1 A KAOS agent does not have the same qualifications as agents in AI research. KAOS agents can be any active component in 
the composite system, such as humans, devices or software.   



Master thesis                                                                             February 15, 2008   
 

 
Robert Westdijk  page 8 

2.6 ReqMon framework 
 
Several monitoring systems adopt the KAOS approach to defining and formalizing software 
requirements. A summary of these systems can be found in [7]. For prototype development, 
the ReqMon monitoring system as presented by Dr. William Robinson in [29-31] has been 
adopted, based on the result of a literature study [36].     
 
ReqMon offers an open-source programming interface that simplifies temporal event 
reasoning in real-time or near real-time [28]. It uses the JESS (Java Expert System Shell) 
programming language and offers a compiler for the OCL Object Constraint Language. OCL 
is a well-known expression language that enables one to describe constraints on object-
oriented models and other object modeling artifacts. It is part of the UML framework. The 
ReqMon OCL variant extends the UML 2.0 OCL specification to include the Dwyer patterns, 
which are based on a collection of common patterns found in requirement specifications [9]. 
These provide the means to express the linear-time temporal logic needed for the defining 
the KAOS goals. ReqMon relies on event-based OCL semantics that have been extended to 
include temporal operations based on state and event semantics [30].  
 
When deployed into a distributed component-based software system, the requirement 
monitors analyze the event stream that is generated by the monitored software component. 
These events contain information about the component’s processing. If a pattern of received 
events conflicts with the predefined pattern specified in the monitor definition, the property 
evaluation becomes false. This means that a monitored requirement is not satisfied, thus the 
system does not behave according to the design requirements. In a component-based and 
network-based software system such as the CMS, each component would be monitored by a 
daemon process containing all goal specifications for that particular component, as is 
depicted in Figure 2.2. 
 
To use the ReqMon framework, it is assumed that formal definitions have been drawn up 
about the desired properties of the software system. The KAOS requirement specification 
techniques can be applied here. Another assumption is that there must be static and 
dynamic traceability between the software objects and the stated requirements [31]. Static 
traceability means that a KAOS object can be traced back to its object definition in the 
programming code. Dynamic traceability means that the monitor should be able to 
distinguish between different instances of a defined object class. Software systems that have 
been developed using a modeling technique satisfy the static traceability prerequisite for 
ReqMon. To achieve dynamic traceability, instrumentation of the software is necessary, 
meaning the software code is enriched to send programming events for monitoring.  
 
 

Software 

Component

ReqMon

daemon

input output

events

Require

ments

requirements 

evaluation  
 

Figure 2.2: Data streams for a software component monitored by a ReqMon daemon. 
 



Master thesis                                                                             February 15, 2008   
 

 
Robert Westdijk  page 9 

3 Model 
 
In this chapter, the proposed implementation for requirements monitoring is discussed. 
Section 3.1 explains this model in general terms. The related data flows are described in 
Section 3.2. The actual implementation model using the KAOS and ReqMon approaches is 
presented in Section 3.3. 
  

3.1 General approach 
 

3.1.1 Software monitoring 
 
The main goal of this research is to give a first impulse for the automation and 
autonomization of the CMS software management tasks. Section 2.2. presented the OODA-
loop as a tool to identify the main steps in autonomic computing. To accomplish this, the use 
of requirements monitoring as a monitoring approach was proposed by a literature study [36]. 
The main benefits of this technique are:  

1. The ability of describing system behavior without the creation of a complex behavioral 
model. 

2. The limited strain and influence on the work of software designers and developers. 
3. Its testability for the current version of the Guardion CMS. 
4. Its use of formal requirements specification offers an approach to streamline the 

requirements elaboration process in future CMS development.   
 
To implement requirements monitoring, the requirements should somehow be formalized. 
The use of a GORE method is proposed here. GORE approaches provide a breakdown of 
the composite system requirements into operationalizable goals. These goals provide a basis 
for requirement monitoring, because it is made clear what part of the system is responsible 
for the operationalization of certain system goals. Thus, GORE can be used as preliminary 
step in the development of a requirements monitor.  
   
For new software systems, the goal-elicitation phase should be incorporated in the design 
phase. By refining the goals and assigning them to the responsibility of an agent, the lower-
level requirements statements can be created. This serves as a basis for the creation of the 
monitor definitions for the requirements monitoring system. In essence, the implementation 
will be done following a top-down approach. 
 
If the requirements monitoring framework is implemented in an existing software system, the 
requirement engineering process will already have been completed. The software will be 
already developed. In this case, a bottom-up implementation strategy should be chosen. 
Existing requirement and technical documentation should be used to construct the 
formalizations needed for the requirements monitor definitions.  
 

3.1.2 Diagnostic reasoning 
 
The software monitors defined by using the requirements monitoring approach are the basis 
for further diagnostic reasoning. By deploying the monitors, it can be detected whether the 
requirements for certain software components are met. In case the requirements are not 
satisfied, the cause for this fault should be localized. Some sort of diagnostic reasoning is to 
be used, implying that diagnostic knowledge must be added to the monitoring system. 
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Requirements monitoring has been chosen as a monitoring technique because it reduces the 
need for adding domain specific knowledge to the monitors. However, for the creation of fault 
hypotheses when requirements become unsatisfied during software execution, diagnostic 
knowledge of the monitored system must be available. The advantage here is, that reasoning 
can be done on a higher and more understandable level using the available information from 
the requirements monitors. Instead of reasoning on the level of the actual programming 
code, it will be based on the requirement properties that have been evaluated by these 
monitors. However, domain expert knowledge must still be acquired and implemented in the 
monitoring and reasoning system. 
 
To ascertain the fault diagnosis, a simple AI rule-based expert system approach is adopted 
as a proof of concept. The programming event property evaluations from multiple 
requirements monitors are combined into knowledge rules. The combination of these 
properties provide information about the specific cause of a problem. The impact of this 
problem on the system’s functionality will already be clear, since certain requirements will no 
longer be satisfied.  
 

3.2 Uses for requirements monitoring 
 
In this research project, the use of requirements monitoring is proposed as a basis for 
performing autonomic computing. The information gathered by the requirements monitors is 
used for further diagnostic reasoning. However, requirements monitoring can have more 
uses, both during the software development as well as during run-time software execution. 
These uses are reviewed here. Figure 3.1 depicts these uses as well. 
 
During the software development phase, the monitoring framework enables the software 
developer to define requirements monitor specifications. Based on these specifications, the 
monitors will evaluate the event stream that is generated by the software. When a pattern of 
events is detected that indicate that a requirement is unsatisfied, an alert can be issued. This 
information can be valuable in the process of software testing. The requirement monitors can 
detect requirements that are unsatisfied. In turn, the developer can correct the detected 
problem by analyzing the unwanted event pattern and make the necessary changes 
accordingly. 
   
When the requirement monitoring framework is deployed in a software system, the monitors 
will constantly evaluate the required behavior of the system. This information can be used to 
provide the users with feedback about system performance and possible errors. For 
instance, when a requirement becomes unsatisfied, a user warning can be issued. This 
warning can be displayed on the screen. The user can then correct the problem, or contact 
the system administrators. 
 
 

 
 

Figure 3.1: Data flow of diagnostic information in the requirements monitoring system. 
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3.3 Implementation model 
 

3.3.1 Implementing the OODA loop 
 
This thesis focuses on the an existing software system, the Guardion CMS. The 
requirements for this system and its software components have already been drawn up. This 
calls for a bottom up goal definition strategy, which means that the stated software 
requirements should be used to create formalized goals. New goals may be added if 
necessary. The extracted goals will be used to form sub goals of higher level goals, keeping 
in mind the existing operation capabilities and the staff requirements. Since goals and 
requirements are so closely related, these terms will be used as synonyms in the rest of this 
paper. 
 
The GORE method of KAOS will be used for creating the goal definitions, which is a 
frequently used technique in requirements engineering processes and requirements monitors 
development. This GORE method is discussed in more detail in Section 2.5, in which the 
main advantages of this approach were identified: 

1. Research and documentation on the KAOS methodology can easily be acquired. 
2. Various tools exist that support the sub process and steps within the KAOS method 

(e.g., [3], [24]).  
3. KAOS uses object models, which can be represented using for instance UML (Unified 

Modeling Language) [14]. 
 
The ReqMon requirements monitoring framework is used for system monitoring. ReqMon 
offers is an open-source framework based on the JESS language for AI programming. It 
simplifies the definition of temporal event reasoning by adopting OCL. Section 2.6 discusses 
this monitoring framework in more detail. Since the JESS expert system language is used by 
ReqMon, the prototype of the AI diagnostic reasoner will also be implemented using this rule-
based language. 
 
The OODA loop for self-healing that was presented in Section 2.2. It was discussed in 
general terms. Considering the specification of approaches as explained above, Figure 3.2 
depicts the self-healing loop based on the implementation proposed in this thesis.  
 

 
 

Figure 3.2: Implementation of the OODA loop for self-healing. 
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3.3.2 Prototype implementation 
 
To implement KAOS and ReqMon as a prototype, several steps must be taken. These steps 
are depicted in Figure 3.3. In this figure, the top-down approach is presented, meaning that 
the monitored CMS software has already been developed. In the actual implementation 
process, the monitoring daemons and the diagnostic reasoner would be the software 
deliverables. For proof of concept, these deliverables have not been deployed as such, but 
have been developed and tested in a off-line test and simulation environment.   
 
Considering the top-down approach, the following steps can be identified for creating the 
goals and knowledge rules: 

1. Available requirements documentation and related information sources are used to 
extract goal definitions using the KAOS methodology. 

2. The KAOS goals form the basis for the ReqMon monitor specifications which are 
stated in the OCL monitor definition language. 

3. The OCL property statements are combined as problem features for constructing the 
diagnostic rules using available domain expert knowledge as well as fault history logs 
and component specification documentation.  

4. The requirements monitor definitions in OCL are compiled to JESS code using the 
ReqMon compiler.  

5. The feature-based knowledge rules are constructed into JESS rules. 
 
To test the system and run simulations, JESS scenarios are used. These scenarios are 
based on real-time log information which has been extracted from the CMS software 
components. It is assumed that the software is instrumented to provide the right format of log 
data. This is achieved by transforming the standard logging output into the right format.  
 
 

 
 

Figure 3.3: Steps for implementing requirements monitoring using ReqMon. 
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4 Implementation 
 
This chapter discusses the design and implementation of requirements monitoring based on 
the presented model. Section 4.1 discusses the general implementation for the CMS, while 
the implemented prototypes are presented in Section 4.2. 
 

4.1 Requirements monitoring for the CMS 
 
In Section 3.3, the design and implementation model was discussed for the implementation 
of requirements monitoring in the Guardion CMS. In general, the following steps must be 
carried out to apply the ReqMon requirements monitors: 

1. The goals of the monitored system are identified using the KAOS goal-oriented RE 
approach. 

2. The defined goals are specified into requirement statements. 
3. The ReqMon monitors are defined based on the goal specifications. 
4. The monitor definitions are compiled to JESS code for use in the simulation 

environment. 
 

4.1.1 Goal elicitation 
 
For the creation the ReqMon monitors, first the goals of a software component should be 
identified. The KAOS requirement engineering approach is applied here. The general idea is 
that the functionality of the composite system is described in terms of goals that should be 
achieved. These goals should be operationalized by agents, which are  entities within the 
composite system. Agents can be humans, devices, software, etc. 
 
Goal graphs are used to visualize the relation between goals and agents. This gives an 
overview of the responsibility of system elements for certain tasks. Goal graphs are scalable 
in both size and depth. It is possible to create goal graphs for various parts of the system, 
and on various levels of detail. 
 
To illustrate how goals and goal graphs work, two example figures are presented. In the goal 
graphs presented in this thesis, the goals are represented by parallelograms. The agents will 
be presented by octagons. Furthermore, a black dot represents an “AND” hierarchy, while a 
white dot represents an “OR” relation between the goals.   
 
The first example is a high-level goal graph which is extracted from the staff requirements 
document for the Dutch ADCF naval vessels [27], depicted in Figure 4.1. In this particular 
example, the “Sea Control” capability statement is presented. It illustrates how agents (in this 
case: weapon systems) can be assigned to the various goals stated for a modern naval 
vessel.  
 
The second example is depicted in Figure 4.2 and shows a general goal graph for a the 
diagnostic software suite implemented in the CMS. It shows how system goals can be 
translated into the assignment of functionality to a specific group of generic CMS software 
components2.  
 

                                                 
2
Most details of this military software system are classified. In the context of the research presented in this thesis, it is sufficient 

to mention only the abbreviations of the software components without further comment. 
 



Master thesis                                                                             February 15, 2008   
 

 
Robert Westdijk  page 14 

 
Sea control 

is provided

Anti Air 

Warfare can 

be deployed

Anti Surface 

Warfare can 

be deployed

Anti Sub-suface 

Warfare can be 

deployed

MK41 Vertical 

Launch System

AAW Aircraft 

Control System

Goalkeeper

Decoy Launch 

System

ASW Aircraft 

Control System

 MK46 Torpedo 

Weaponsystem

NH-90 Helicopter

Harpoon Missile 

System

Local Area SAM 

Missiles can be 

launched

Electronic 

countermeasures 

can be deployed

Incoming missiles 

at short range can 

be engaged

AAW aircraft 

can be 

controlled 

Medium Range 

SAM Missiles 

can be launched

ASW aircraft can 

be controlled

Torpedos can 

be launched

Remote sub-surface 

engagements  can 

be deployed

Gun Oto-Breda

Surface-to-

surface missiles 

can be launched

Over-the-horizon 

targeting can be 

deployed

Naval gunfire 

support can 

be provided

 
 
 

Figure 4.1: Goal graph for the “Sea Control” capability statement. 
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Figure 4.2: Goal graph for the CMS diagnostic software suite. 
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4.1.2 Goal specification 
 
In Section 2.4, the difference between a goal and a requirement was mentioned. 
Recapitulating, a goal identifies  a desired property of the software and its environment, while 
a requirement refines a goal and should be described exclusively in terms of values 
controlled and monitored by the software. In practice, goals and requirements are often used 
as synonyms, because the stated requirements for a requirement statement are very rigid 
and are almost never met. In [30], Robinson points out: “Although goals are widely 
recognized as important, their use in object-oriented modeling is rare – particularly, with the 
UML methodology”.  
 
To achieve consistency and clarity in the goal statements, goal structures are used. These 
goals structures are based on the formal KAOS goal structure, of which examples can be 
found in for instance [7], [14], [20], [24]. The formal structures have been adapted to make 
them more suitable for use in requirements monitoring. For instance, the formal KAOS 
approach to goal names has been replaced by the use of human readable sentences, which 
is more in accordance with the common way to specify software requirements. Furthermore,  
informal OCL definitions are added to the goal structures. These are the definitions for 
monitoring of the goal.  
 
KAOS also offers a temporal specification language to define goal statements. However, it 
has been opted to use only informal goal definitions within the structures. This is because 
ReqMon itself offers an OCL language to formalize the goals. In this manner, the overhead 
for the software developer who has to define the goal statements is minimized. 
 
Summarizing, an adapted, less formal version of the KAOS goal structures is adopted in this 
research. This goal structure generally looks like:      
 
 SystemGoal    Goal statement 

InformalDef    
  Description of the goal statement 
 ReducedTo  

If a goal has sub goals, these are listed here 
 GoalPattern 

Pattern as defined by the KAOS method; defined patterns are 
Achieve, Maintain, Avoid and Cease  

   Concerns   
  Identifies which objects play a role in the OCL definitions      
 OclInformalDef 

Description of  the OCL definition for monitoring of this goal, 

more definitions can be added when required . 
 
The goal structure specification forms the starting point for monitor implementation. Each 
informal OCL definition leads to actual OCL constraints. This gives the developer close 
control over what should be monitored and over the granularity of the monitors. Important 
requirements can be monitored in more detail, while others can be monitored in a simpler 
manner or even not at all. 
 
To illustrate the use of defining goal structures, a practical example is given. Figure 4.3 
shows partial goal graph for a CMS software chain that performs diagnostic functions for the 
navigation radar system, which will be discussed in Section 4.2.1. Figure 4.4 shows some 
goal structures examples from the presented graph3.  
 

                                                 
3 In all examples hereafter that contain information related to the UML models of CMS modules, the names of UML entities have 
been altered for reasons of confidentially. However, all examples still reflect the actual implementation of these components.  
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Figure 4.3: Partial goal graph of the diagnostic suite for the navigation radars. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: Example goal structures for the diagnostic suite for the navigation radars. 
 
 
 

Systemgoal  Diagnostic data is up to date 
InformalDef 

The diagnostic and status information received from  
the navigation radar system should be kept up to 
date 

ReducedTo 
Diagnostic heartbeat is sent, Diagnostic heartbeat 
is monitored, Request for data is sent 

 
 
Systemgoal   Diagnostic heartbeat is monitored 
InformalDef 

A periodic heartbeat should be sent by the 
diagnostic software in order to ascertain it is 
still running 

GoalPattern 
Maintain 

Concerns 
CODIAG_NAVRAD_Hearbeat, PFDFEU_NAVRAD_Heartbeat_In,  
PFDFEU_NAVRAD_Hearbeat_Out 

OclInformalDef 1 
After an instance of Heartbeat is sent, a new 
instance should be sent within 10 seconds  

OclInformalDef 2 
After an instance of Heartbeat_In is received, a ne w 
instance should be received within 10 seconds 

OclInformalDef 3 
In response to receiving an instance of  
Heartbeat_In is received, an instance of 
Heartbeat_Out should be sent  
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4.1.3 Monitor definition 
 
For the definition of the monitors, ReqMon uses the OCL 2.0 specification language. OCL is 
the Object Constraint Language and is part of the UML framework. Its main purposes is to 
describe additional constraints about the objects in the UML models, which would lead to 
ambiguities if the natural language were to be used [25]. The OCL 2.0 enables the use of so-
called messages, which can be transmitted between object instances.   
 
In ReqMon, the standard OCL expressions have been extended to include the Dwyer 
patterns, which is collection of common patterns that can be found in requirement 
specifications [9]. The standard OCL expressions can be placed within a temporally scoped 
pattern, which allows for the expression of the linear-time temporal logic. The scopes 
presented by Dwyer are depicted in Figure 4.5. This is needed to define goal specifications 
that would normally be defined in the standard KAOS temporal specification language. The 
ReqMon framework adopts a proposed variant on the definition of the OCL messages, which 
can be found in [32] and [33].  
 
In the previous section, some examples of goal structures were given in Figure 4.4. The goal 
“Diagnostic heartbeat is monitored” featured the following informal OCL definition: “After an 
instance of Heartbeat is sent, a new instance should be sent within 10 seconds.” In the 
context of the UML model for the CODIAG_NAVRAD software module from Figure 4.3, the 
“Heartbeat” is a reference to an instance of the object class Heartbeat . Instances of this 
class should be created periodically. Using the ReqMon OCL specification language, this 
informal definition can be formalized to the following statement: 
 
def : createHB: Sequence( OclMessage ) = receivedMessages (createObject())  

-> select (m | m.class = 'Heartbeat') 
 
inv : HB_after_HB: after @0d:0h:0m:10s(createHB) always  createHB   . 
 
The def  (definition) statement identifies which OCL message information is relevant for this 
monitor definition. In this case, messages stating that a new instance of Heartbeat has been 
created are intercepted. The inv  (invariant) statement defines the temporal constraints on 
the stated definitions. In the example, the after  scope is used.              
 
 

 
Figure 4.5: The Dwyer temporal pattern scopes [9]. 
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4.1.4 Monitor compilation 
 
After the OCL monitor definitions have been created for a goal, the monitors can be compiled 
to JESS code using the ReqMon compiler. JESS is a rule engine and scripting environment 
that can be used to create expert systems. It is written in Java. The standard environment 
features a command line interface, but more advanced graphical interfaces are also 
available, for instance a plug-in for the Eclipse Integrated Development Environment (IDE) 
[15].      
 
For usage in a software system, for instance the CMS, the compiled JESS code can be 
made into a deployable monitor. The command line interface is basically a wrapper around 
the Jess libraries, which can also be accessed from a Java program [13]. This makes it 
possible to embed JESS code in Java, thus offering the ability to make the monitors 
executable and deployable.  
 

4.2 Prototype implementation 
 
To see whether the implementation of requirements monitoring is  feasible for the CMS, a 
prototype has been built. To achieve this, a JESS test and simulation environment has been 
created. This simulation environment servers two main purposes: 

1. To verify whether the implementation of requirements monitoring for the CMS is 
feasible. 

2. To show that requirements monitoring can be used as a basis for autonomic 
computing. 

  
To show that the use of KAOS and ReqMon is indeed feasible for the CMS, a prototype was 
developed as a proof of concept. This prototype is discussed in the following section. A 
paper4 [37] has been written on this implementation, which can be found in Annex 1. A 
second prototype was built to demonstrate the uses of requirements monitoring. This is 
described in Section 4.2.2. A report [38] discussing this part of the research can be found in 
Annex 35. A component diagram of the prototype environment can be found in Annex 4.  
     

4.2.1 Requirements monitoring prototype 
 
To prove that the requirements monitoring concept can be implemented in the CMS, a 
relatively simple chain of CMS software components has been selected for simulation. The 
function of this particular software chain is to collect and interpret diagnostic messages from 
the navigation radar subsystem. It consists of four software components. The coordination 
model for this software chain is depicted in Figure 4.6.  
 
 

 
 

Figure 4.6: Software coordination model for the CMS Navigation Radar diagnostic software chain. 

                                                 
4 This paper was presented at the IEEE AUTOTESTCON Systems Readiness Technology Conference in Baltimore, September 
18-20, 2007. It received the “Best paper in the Health Management Track” award, which is depicted in Annex 2.   
5 This report has been published by the Royal Netherlands Naval College, which is part of the Netherlands Defence Academy 
(NLDA). 
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The CODIAG_NAVRAD and PFDFEU_NAVRAD modules are diagnostic components 
specifically designed for interpreting the subsystem messages. The PFD software 
component collects and processes all diagnostic data from all diagnostic components in the 
CMS. The processed diagnostic information is presented to the maintainer through a user-
interface, which is called Matrix. For the software system maintainer on board a Dutch naval 
vessel equipped with Guardion CMS, the Matrix is the main diagnostic software tool. 
 
In order to obtain the ReqMon OCL definitions, the KAOS approach was used to create the 
necessary goal structures. To create the goals and goal graph, existing requirement 
documentation and available technical documentation can be used. For instance, for the 
CODIAG _NAVRAD module, the requirement documentation consists of a requirement 
document written by the design team [2] and a component description document written by 
the developers [8]. A partial goal graph for the navigation radar system was already 
presented in Figure 4.3. Based on the informal OCL statements from the goal structures, the 
monitor specifications are defined.     
 
As was mentioned in Section 2.6, ReqMon assumes dynamic traceability between software 
objects and requirements. This means that the software should be instrumented to sent 
programming events to the ReqMon daemons. In case of the CMS software, the standard 
debugging output can be used. The instrumentation for producing this output is added by the 
in-house developed compiler. The produced debug output can provide programming 
information down to the attribute-level, thus satisfying the dynamic traceability requirement.  
 
Because the CMS debug output differs from the ReqMon OCL messages approach, the 
need for mapping actual debug messages to OCL custom message types. Therefore, the set 
of possible OCL message types that may be generated by the CMS components has been 
standardized. These are the message types that are used in the OCL monitor definitions. An 
overview is given in Table 4.1.   
 
After definition, the monitors can be compiled to JESS code using the ReqMon compiler. To 
verify the monitors, JESS scenarios are used. These scenarios simulate the event stream 
from the CMS software components.  The event streams are based on the debug logging 
output for the components. The prototype assumes that the standard debugging 
instrumentation has been suited to send program events that are compatible with ReqMon. 
JESS code has been created for the goals of CODIAG_NAVRAD, PFDFEU_NAVRAD and 
PFD.  
 
The scenarios are constructed from jassert  statements, which are ReqMon extensions to 
the standard assert  function for defining facts in JESS. Using these statements, the 
programming events for a software component can be simulated, for instance the creation of 
an relation between two instances of object classes, or the change in value of a function 
parameter. In other words, the JESS scenarios simulate the CMS debug output and are used 
to trigger the monitors defined in the OCL definition language.    
 
A simple scenario example is the simulation of a software component crash. In this case, the 
periodic heartbeats of the components that are normally sent and received cease to exist. 
The resulting output from the ReqMon prototype is depicted in Figure 4.7. It shows that the 
defined software goals are satisfied until one of the software component crashes. The output 
is presented for illustrative purpose and has been shortened. 
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Table 4.1: Standardized OCL message types for monitor definition. 

   
OCL message type Attributes Description 

createObject class object class name 
key object instance identifier 

deleteObject 
 

class object class name 
key object instance identifier 

setAttribute 
 

class object class name 
key object instance identifier 
attribute attribute name 
type attribute type 
value attribute value 

getAttribute 
              

class object class name 
key object instance identifier 
attribute attribute name 
type attribute type 
value attribute value 

linkObject relation relation number 
role relation role name 
class1 object class name 1 
key1 object instance identifier 1 
class2 object class name 2 
key2 object instance identifier 2 

unlinkObject 
 

relation relation number 
role relation role name 
class1 object class name 1 
key1 object instance identifier 1 
class2 object class name 2 
key2 object instance identifier 2 

invokeFunction function function name 
type function type 
class object class name 
key object instance identifier 

setParameter 
 

parameter parameter name 
function function name 
type parameter type 
value parameter value 

getParameter 
 

parameter parameter name 
function function name 
type parameter type 
value parameter value 

receiveEvent 
 

event event name 
source   source object class 
source_key  source object instance 

identifier 
destination  destination object class 
dest_key destination object instance 

identifier 
callActivation activation activation name 
completeActivation activation activation name 
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INFO  ReqMon:  90:[_global] ScopeActivation@1fe571f : Scope Global (global) 
became active. 
14:42:48 INFO  Internal: System is ready. 
14:42:51 INFO  Internal: Running file ‘scenario1.cl p’... 
14:42:51 INFO  Internal: Setting the focus to the R T Jess module. 
14:42:51 INFO  Internal: Running JESS... 
14:42:51 INFO  Internal: Running scenario. Simulati ng event stream... 
14:42:51 INFO  Internal: Execute ReqMon thread 
14:42:51 INFO  ReqMon: 101:[default] Peval@1f78b68:  Property 
IS_Existence[ScopeActivation@1fe571f; ProgramEvent@ 1843a75] is TRUE. 
14:42:52 INFO ReqMon: 126:[default] Peval@1f03691: Property 
RSM_Sequence[ScopeActivation@1fe571f; ProgramEvent@ d3c65d ProgramEvent@10e35d5] 
is TRUE. 
~ 
14:42:52 INFO  Internal: Goal ‘Achieve[InterfaceSta tusKnown]’ is satisfied. 
14:42:52 INFO  Internal: Goal ‘Maintain[SubsystemHe artbeatPresent]’ is 
satisfied. 
14:42:53 INFO  Internal: Simulating periodic activa tions 
14:42:53 INFO  Internal: Execute ReqMon thread 
~ 
14:43:03 ERROR  ReqMon: 268:[default] Peval@28305d:  Property 
CSO_Sequence[ScopeActivation@1fe571f; ProgramEvent@ 2798e7] is FALSE. 
14:43:05 ERROR  ReqMon: 278:[default] Peval@3afb99:  Property 
HBDC_CDNR_Sequence[ScopeActivation@1fe571f; Program Event@1a0d866] is FALSE. 
14:43:05 ERROR  ReqMon: 287:[default] Peval@19fe451 : Property 
HBDC_Chain_Seq[ScopeActivation@1fe571f; ProgramEven t@1a0d866] is FALSE. 
14:43:05 INFO  Internal: GOAL ‘Maintain[DiagnosticH eartbeatReceived]’ is NOT 
SATISFIED!! 
14:43:05 INFO  Internal: A diagnostic heartbeat fro m a diagnostic chain is not 
received any longer. 
14:43:06 INFO  Internal: Execute ReqMon thread 
14:43:07 INFO  Internal: End of simulation  

 
Figure 4.7: An example of ReqMon output.  

 

4.2.2 Reasoner prototype 
 
To demonstrate the uses of requirements monitoring, a second prototype has been 
developed. For this prototype, the CMS Goalkeeper software is used. The Goalkeeper is the 
Close-In Weapon System (CIWS) found onboard Dutch naval vessels. It forms the last line of 
defense against incoming missiles. It consists of a Gatling gun, a search radar and a tracking 
radar. The system is designed to work fully autonomous.  
 
The Goalkeeper system is a more operational example of a CMS software chain. Various 
software modules are needed for remote control of the Goalkeeper from the Command 
Centre, which are the COGK, CECIWS modules and D2000 user interface. For analyses of 
the diagnostic messages from the system, the modules CODIAG_GK, PFDFEU_GK and 
PFD exist. The diagnostic information is presented via the MATRIX maintainer user interface 
in the Command Centre. Figure 4.8 depicts the software coordination model for this software 
chain. 
 

 
 

Figure 4.8: Software coordination model for the CMS Goalkeeper software chain. 
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As for the first prototype, a goal graph was created for the system. When it comes to 
requirements monitoring, the Goalkeeper is a relative simple system compared to other 
weapon systems that exist. Again, available documentation was used for goal elicitation. For 
instance, for the monitors of the COGK module a requirement document and a technical 
description document were available [4], [11], [12]. Also, the expertise of the developer was 
used as domain expert knowledge input. The resulting goal graph is depicted in Figure 4.9. 
 
 

 
 

Figure 4.9: Partial KAOS goal graph for the Goalkeeper system. 
 
The aim of this prototype implementation is to show that requirement monitoring can be used 
for applying autonomic computing. To achieve this, the prototype implements a rule-based 
diagnostic reasoning component, which uses the monitored requirement properties as 
features. The evaluation of these features by the deployed requirement monitors provide the 
information for further reasoning. In this system, the features will be represented as facts. A 
set of rules will be defined, which models the knowledge about the target system. This 
knowledge comes from domain experts, requirements documentation, technical 
documentation on the software components, and other sources available.             
 
The ReqMon daemons will evaluate the monitored requirement properties. The properties 
will either be satisfied or unsatisfied given the monitored event stream from the software 
components.  The evaluated values will be sent to the reasoner, which in turn evaluates the 
property information. The combination of these property events will cause the defined expert 
rules to fire. This process is depicted in Figure 4.10. 
 

 
 
Figure 4.10: Information flow in the monitoring and reasoning framework, with a simple pseudo-code 

example. 
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To demonstrate how the diagnostic rules can be constructed, an elaborate example is given. 
Consider the following goal structure for the goal “Goalkeeper status is known”, which 
defines five properties that should be monitored: 
 
SystemGoal    Goalkeeper status is known 

InformalDef    
The general system status should be known 

 GoalPattern 
  Achieve 
   Concerns   
  System_Monitor, GK_System      
 OclInformalDef  1 

If the Goalkeeper status is known, an instance of 
System_Monitor should be monitoring it 

 OclInformalDef  2 
If the System_Monitor is activated, the control_mod e and 
operating_mode cannot be invalid 

OclInformalDef  3 
When the Goalkeeper had control, the CMS cannot hav e control 
and vice versa 

OclInformalDef  4 
The fire_status of Goalkeeper can either be ready_t o_fire or 
standby 

OclInformalDef  5 
When the simulation mode of Goalkeeper is started ,  the 

System_Monitor should report this  . 
 
In the example, OclInformalDef1 states that when the status of the Goalkeeper is known, the 
System_Monitor  should be monitoring it. Note that System_Monitor  refers to an UML 
class in the software model COGK. The name of this object has been changed for reasons of 
confidentiality. In all examples hereafter that contain information related to the UML models 
of CMS modules, the names have been altered. However, the examples still reflect the 
actual implementation of these components.  
 
For OclInformalDef1, the System_Monitor  is activated by the creation of relation R15 
between that object and GK_System, which is an object representing the Goalkeeper 
system. The creation of this link should be monitored, which results in the following monitor 
specification: 
 
def : linkMonGK: Sequence( OclMessage ) = receivedMessages (linkObject()) 
       -> select ( m | m.relation = 'R15' and m.cla ss1 = 'GK_System' and  

      m.class2 = 'System_Monitor') 
 

inv : eventuallyLMonGK: eventually  linkMonGK  . 
 
The OclInformalDef2 from the goal structure example states that if the System_Monitor  is 
activated, the control_mode  and operating_mode  of the Goalkeeper cannot be invalid. 
The monitor definitions for this requirement look like: 
 
def : callInit: Sequence( OclMessage ) = receivedMessages (callActivation() 
      -> select( m | m.activation = 'Initialize') 
 
def : setOpMode_Inv: Sequence( OclMessage ) = receivedMessages (setAttribute())  

-> select( m | m.class = 'System_Monitor' and m.att ribute =   
               'operating_mode' and m.value = 'inva lid' ) 

 
 
 



Master thesis                                                                             February 15, 2008   
 

 
Robert Westdijk  page 24 

def : setConMode_Inv: Sequence( OclMessage )= receivedMessages (setAttribute())  
      -> select( m | m.class = 'System_Monitor' and  m.attribute =  
                     'control_mode' and m.value = ' invalid')  
 
inv : OpMode_after_Init: after (callInit) never  setOpMode_Inv    

inv : ConMode_after_Init: after (callInit) never  setConMode_Inv  . 
 
Now, suppose that after relation R15 has been created, an invalid value for the 
control_mode  or operating_mode  of the Goalkeeper indicates the manifestation of some 
known problem in the system. For all of these properties, an OCL monitor definition has been 
created. However, combining these properties requires a JESS rule definition:  
 
(defrule GK-known-problem-detected  
  (and (or (monitor-event (property OpMode_after_In it)(evaluated FALSE)) 
           (monitor-event (property ConMode_after_I nit)(evaluated FALSE))) 
       (monitor-event (property eventuallyLMonGK)(e valuated TRUE))) 
   => 

  (assert (Goalkeeper-known-problem-has-been-detect ed)))  . 
 
In this case, the defined rule only uses information from a single ReqMon daemon which is 
instantiated to monitor the COGK module. As was shown in Figure 4.10, the reasoner can 
receive property evaluations from multiple instances of the ReqMon daemon. This allows 
detection of diagnostic problem throughout the software system. In the Section 5, more 
reasoning examples will be presented. 
 

4.2.3 Prototype development environment 
 
The ReqMon requirements monitoring framework forms the core of the development and test 
environment. It is based on the JESS Java Expert System Shell programming language for 
creating AI expert systems. Beside the standard JESS command line, it also offers a plug-in 
for the Java-based Eclipse IDE. However, for prototype development, the command line-
based ReqMon version is used. This is because the Eclipse plug-in was not available at the 
time of the implementation of the first requirements monitoring prototype. Moreover, the 
updates that are released periodically always feature the command line-based ReqMon 
version first. Updates for the Eclipse IDE version follow later on. During the thesis project, the 
developer of ReqMon, Dr. Robinson, was regularly consulted.  
 
To accommodate JESS and ReqMon, the Cygwin environment was used. Cygwin is a Linux-
like environment, which enables the use of GNU development tools on Microsoft Windows. It 
can be downloaded freely [5]. Various shell scripts have been created to simplify standard 
actions, such as starting JESS and ReqMon, compiling ReqMon OCL monitor definitions and 
file management. A screenshot of the development environment is depicted in Figure 4.11. 
For the definition of scripts, ReqMon monitors, and JESS rules, the XEmacs customizable 
text editor [40] has been enhanced with shell script, OCL and JESS highlighting. 
 
To verify the correct functionality of the ReqMon framework, test monitor definitions have 
been created. Two types of tests are applied here, which are tests for the OCL message 
types and for the OCL invariants. During the course of this thesis project, various 
shortcomings and bugs in the framework and the OCL compiler were detected. These have 
been reported by the author to Dr. Robinson. All of the bugs reported by the author have 
been solved in the most recent version of the ReqMon framework and the OCL compiler6. 
 
 
                                                 
6 The latest versions used in this thesis project are ReqMon 1.0.35 and OCL compiler 1.0.10. 
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Figure 4.11: Screenshot of the development environment. 
 
An example is given to illustrate how tests for the OCL message types are conducted. 
Consider the following OCL test def  statements, for which only eventually  invariants are 
defined:   
    
def : callAct1: Sequence( OclMessage ) = receivedMessages (callActivation())  
      -> select( m | m.activation = 'Activation1' )  
  
def : createObj1: Sequence( OclMessage ) = receivedMessages (createObject())  
      -> select( m | m.class = 'Object1' )  
def : createObj2: Sequence( OclMessage ) = receivedMessages (createObject())  
      -> select( m | m.class = 'Object2' ) 
  
def : linkR1: Sequence( OclMessage ) = receivedMessages (linkObject()) 
       -> select ( m | m.relation = 'R1' and m.clas s1 = 'Object1' and   

                       m.class2 = 'Object2')  . 
 
To test the stated OCL monitor definitions, a JESS scenario is used. This scenario simulates 
the debug output that would normally be created by a CMS software component. The test 
scenario looks like: 
 
(jassert (OclMessage (component " OCL_Test.COGK")  
         (subcomponent " callActivation(String) : void ")  
         (parameters " activation ")(arguments " Activation1 "))) 
 
( jassert (OclMessage (component " OCL_Test.COGK")  
         (subComponent " createObject(String) : void ") (parameters " class ") 
         (arguments " Object1 "))) 
(jassert (OclMessage (component " OCL_Test.COGK")  
         (subComponent " createObject(String) : void ") (parameters " class ") 
         (arguments " Object2 ")))  
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(jassert (OclMessage (component " OCL_Test.COGK")  
         (subComponent " linkObject(String) : void ")  
         (parameters " relation " " class1 " " class2 ") 

         (arguments " R1" " Object1 " " Object2 ")))  . 
 
In the example scenario showed above, added log info, run commands and comment have 
been left out for clarity. The resulting ReqMon output is depicted in Figure 4.12, in which the 
debug information has been omitted. By running the test scenario, it can be checked whether 
the applied OCL message type actually work. In this case, the use of callActivation , 
createObject  and linkObject is demonstrated.     
  

15:38:56 INFO  Internal: Activation1 has been calle d 
15:38:56 INFO  ReqMon:   9:org.reqmon.model.ScopeAc tivation@12f1bf0 
15:38:57 INFO  ReqMon:  19:[null]            Peval@ 3e97df: Property 
p@COGK[eventuallyAct1,eventually_1][ScopeActivation @12f1bf0; 
ContextVariable@120540c] is TRUE. 
15:38:57 INFO  Internal: Object 1 has been created 
15:38:57 INFO  ReqMon:  27:[null]           Peval@1 0c0f66: Property 
p@COGK[eventuallyObj1,eventually_1][ScopeActivation @12f1bf0; 
ContextVariable@878c4c] is TRUE. 
15:38:57 INFO  Internal: Object 2 has been created 
15:38:57 INFO  ReqMon:  29:[null]            Peval@ e265d0: Property 
p@COGK[eventuallyObj2,eventually_1][ScopeActivation @12f1bf0; 
ContextVariable@878c4c] is TRUE. 
15:38:57 INFO  Internal: Link R1 is created 
15:38:57 INFO  ReqMon:  36:[null]           Peval@1 c1f5b2: Property 
p@COGK[eventuallyLMonGK,eventually_1][ScopeActivati on@12f1bf0; 
ContextVariable@14e45b3] is TRUE. 
15:38:58 INFO  Internal: End of scenario  

                
Figure 4.12: Resulting output for a OCL message type test scenario. 

 

4.2.4 Knowledge elicitation process 
 
For the creation of the goal graphs as have been presented in previous sections, various 
available information sources haven been used. Documentation such as requirements 
specifications, software component descriptions and development reports offer information 
on the design and implementation of the software modules. Besides the use of 
documentation, the knowledge of domain experts also offers a lot of information. Expert 
knowledge has been especially useful for the creation of suitable case scenarios. 
 
To develop the first requirements monitoring prototype, which was based on the CMS 
Navigation Radar diagnostic software chain as presented in Section 4.2.1, the available 
technical documentation was the main information source. Since the author was part of the 
diagnostic software development team for some time, domain expert knowledge was 
available. For the creation of test scenarios, actual CMS debug output from historic software 
development testing has been used7.    
  
While searching for a suitable software chain candidate for the requirements monitoring 
prototype, several software developers at CAMS/Force Vision have been interviewed about 
their software domain. Furthermore, the requirement sources and related available 
documentation on various domains have been examined. Based on the interviews and the 
studied requirements, it was concluded that there are no solid guidelines for requirement 
specification and software documentations, which have led to a diversity of document styles.  

                                                 
7 This debug output is classified and cannot be presented in this thesis.           
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Recently, the requirements extraction process has gained renewed interest at CAMS/Force 
Vision. Efforts are being made to create guidelines on both style and contents of 
requirements specification documents. Members of the Goalkeeper software development 
team have played a role in this process by testing and providing feedback on the proposed 
guidelines. After conduction various interviews, it became clear that the Goalkeeper software 
chain also offered some good use cases for prototype testing.  
Using the documentation and domain knowledge, various goal graphs for the Goalkeeper 
system were created. Bases on these goal definitions, monitor specifications were created 
and tested in the prototype development environment. A complete overview of the defined 
goal structures can be found in [39]. For proof of concept of the proposed diagnostic 
reasoner, a set of example cases for the Goalkeeper software chain were drawn up. During 
the development and testing of these cases, the domain expert were regularly consulted.         
 
The research of existing requirements documentation and interviews with developers have 
shown that the implementation of a rigid formalization such as applied by the KAOS 
approach is very difficult. This thesis proposes an approach to goal structure specification 
that is less strict, as has been explained in Section 4.1.2. Also, the ReqMon OCL language 
for formalization is less rigid than that of KAOS. It must be stressed that the aim of this thesis 
project has not been to implement a new requirements engineering process for software 
development, but rather to use an existing one as a basis for requirements monitoring 
implementation. 
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5 Results 
 
In this chapter, the results of simulations with the prototypes are presented. Section 5.1. 
gives an overview of the case examples that will be given. Section 5.2 discusses a case that 
shows how the monitoring framework can support the developer. A demonstration for the 
assistance for software users and maintainers is discussed in Sections 5.3 and 5.4. Finally, 
Section 5.5 explains how the autonomic computing loop should be closed.   
 

5.1 Overview of results  
 
Two prototypes were presented in the previous chapter. They were built to verify the 
feasibility of incorporating requirements monitoring in the CMS and to demonstrate that it can 
be used for implementing autonomic computing. The first prototype acts as a proof of 
concept. Monitor definitions have been created and tested for the navigation radars 
diagnostic software chain. They demonstrate the feasibility of using the KAOS approach to 
requirements engineering and the ReqMon monitoring framework for CMS software 
modules. Based on this prototype, a second prototype has been developed. This prototype 
incorporates a diagnostic reasoner to show that the diagnostic information acquired by 
requirements monitoring can be used for autonomic computing. 
 
Section 3.2 identified  three other uses for requirements monitoring:  
1. Requirements monitoring during software development and testing can provide useful 

information for the developer. 
2. The run-time goal information can be redirected to the operator to provide feedback 

about system performance and errors. 
3. The collected goal information can be used by an AI system to make a first diagnosis for 

the software maintenance technicians on board in case of system malfunctions. 
 
For both prototypes several monitor definitions and test scenarios have been designed. To 
illustrate how the requirements monitoring framework and the diagnostic reasoning 
component operate, four example cases are presented. Three cases represents the uses for 
requirements monitoring as stated above, while a fourth demonstrates the application of 
autonomic computing. All examples are based on the Goalkeeper software chain as was 
presented in Section 4.2.2.   
    

5.2 Case 1: Supporting the developer   
 
During CMS software development, incremental tests are carried out. The white and black 
box tests for a single component can be carried out locally in the development environment. 
Integration tests can be done on the so-called Target system at CAMS/Force Vision, on 
which the Guardion CMS  software is installed. It resembles the Command Centre as found 
aboard Dutch naval vessels. Software acceptance are always carried on the actual CMS on 
board the ships. 
  
When applying requirements monitoring as proposed in this research, the developer is 
enabled to implement monitoring definitions in the software based on the specified 
requirements. For testing a single software component, these definitions can provide useful 
debugging information.  
 
For instance, the goal “Received diagnostic data is converted to information” is 
operationalized by the CODIAG_GK software module. One of the informal OCL definitions 
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for this goals reads: “In response to a received Message, a Condition should be sent”, where 
Message and Condition both refer to an object class. The corresponding formal OCL 
specification looks like:         
 
def : createMsg: Sequence( OclMessage ) = receivedMessages (createObject())  
      -> select( m | m.class = 'Message' ) 
 
def : createCond: Sequence( OclMessage ) = receivedMessages (createObject())  
      -> select( m | m.class = 'Condition' )  
 

inv : Cond_response_Msg: response @0d:0h:0m:10s(createCond, createMsg)  .       
 
The PFDFEU_GK is the database component, which holds information about possible 
diagnostic messages that can be received via the CODIAG_GK from the Goalkeeper system. 
The requirement documentation for both components specify which messages should be 
contained in the database. Using the previous monitor, the developer can easily check 
whether the creation of a Message is followed by the creation of a Condition, thus satisfying 
the stated requirement. Using the same approach, it can be checked whether this software 
component satisfies all goals that it should operationalize.  
 
By combing this monitor and requirements monitors from other software components, higher-
level monitoring is also possible. The presented the Cond_response_Msg  property 
monitors the mapping of the incoming diagnostic messages directly from the Goalkeeper 
system. The PFDFEU_GK software module receives these generic messages and maps 
them as a condition on a certain Goalkeeper technical component, represented by an object 
class. This can also be monitored. Using these OCL monitor definitions, a rule can be 
created that checks whether the complete message set is presented in the message 
database: 
        
(defrule message-not-in-database  
  " Message is not in the diagnostic database "  
  (and (or (monitor-event (property Msg_response_F1 _True)(evaluated TRUE)) 
           (monitor-event (property Msg_response_F1 _False)(evaluated TRUE)) 
           (monitor-event (property Msg_response_F2 _True)(evaluated TRUE)) 
           (monitor-event (property Msg_response_F2 _False) 

    (evaluated TRUE))) 
       (monitor-event (property Cond_response_Msg)( evaluated FALSE)) 
       (monitor-event (property PHB_PFDGK_after_PFD GK)(evaluated TRUE))) 
   => 

  (assert (raise-alert d1)))  . 
 
In this definition, an extra check is added by incorporating the PHB_PFDGK_after_PFDGK 
property. This property will remain satisfied as long as heartbeat objects are sent from 
CODIAG_GK to PFDFEU_GK. The assertion of d1  in the rule definition indicates which 
database entry in the JESS simulation environment should be raised.  
 
The  monitoring of the PHB_PFDGK_after_PFDGK property ensures that when the rule is 
fired, the developer does not have to check whether this is because of a failure in the 
communication between the two software modules. Thus, when there is no condition 
mapping despite the creation of a diagnostic message by the Goalkeeper system, this will 
mean that the message is not in the database and should be added.  
 
When this monitor scheme would be deployed in the real CMS environment, it could even 
detect diagnostic messages being sent that were not foreseen by the requirement designer, 
for instance because the available interface documentation was incomplete. 
 



Master thesis                                                                             February 15, 2008   
 

 
Robert Westdijk  page 31 

5.3 Case 2: Informing the operator     
 
Using the requirements monitors and the diagnostic reasoner, the operator can be informed 
about the status of the system. When requirements are not met, the monitors can raise 
operator alerts. Here, an example of this use of requirements monitoring is given for the 
Goalkeeper software chain.  
 
In order for the Goalkeeper to be able to engage targets, it should eventually become in a 
ready-to-fire state. This means, that all firing preconditions have been satisfied. Most 
preconditions are hardware-related, for instance fire inhibit switches that should be switched 
in the right position or safing pins that should be removed. However, some preconditions 
must be satisfied by the COGK software module.  
 
When the fire command is given by the operator using the CMS Goalkeeper user interface, 
three software conditions should be satisfied: the controle_mode  should be set to the 
CMS, the operating_mode  should be set to manual and the Goalkeeper should report 
ready-to-fire. The latter condition is achieved by removing all necessary hardware 
constraints, while the first two should be set by the operator.  
 
By defining a monitor for all three pre-firing software properties, the operator can be warned 
when a fire command is given while the Goalkeeper is not able to comply. Using the 
precedence expression, the setting of the control_mode , operating_mode  and 
fire_mode  are monitored as a sequence. Before the fire command can be given, all 
elements of this sequence should have been received. The System_Monitor  class ensures 
that the Goalkeeper system status is known. The corresponding monitor definition would look 
like:  
 
def : setSysMode_RtF: Sequence( OclMessage )= receivedMessages (setAttribute())  
      -> select( m | m.class = 'System_Monitor' and  m.attribute =    
                 'fire_mode' and m.value = 'ready_t o_fire' ) 
 
def : setConMode_CMS: Sequence( OclMessage )= receivedMessages (setAttribute())  
      -> select( m | m.class = 'System_Monitor' and  m.attribute =   
                 'control_mode' and m.value = 'CMS'  ) 
 
def : setOpMode_Man: Sequence( OclMessage ) = receivedMessages (setAttribute())  
      -> select( m | m.class = 'System_Monitor' and  m.attribute =  
                 'operating_mode' and m.value = 'ma nual' ) 
 
def : setFireCmd_Fire: Sequence( OclMessage )= receivedMessages (setAttribute())  
      -> select( m | m.class = 'Fire_Command' and m .attribute =  
                     'fire_request' and m.value = ' start' ) 
 
inv : before  setFireCmd_Fire always    

     precedence (setConMode_Man,setConMode_CMS,setSysMode_RtF)   . 
 
The incorporation of the diagnostic reasoner provides an alternative way for monitoring the 
firing preconditions. In the requirement monitor definition, the software conditions and the fire 
command can be monitored simply by using the eventually expression, which becomes true 
when the defined OCL message is received. The composite requirement for the 
preconditions can now be monitored using the JESS rule definitions. By creating multiple rule 
definitions, the operator can be informed about the exact cause of the incompliance of the 
system. This could be accomplished by a simple pop-up in the user interface, for instance as 
depicted in Figure 5.1. 
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Figure 5.1: Example of a possible error pop-up for a Goalkeeper operator.8 
 
The rule variant that would lead to the message as depicted in Figure 5.1 would look like: 
 
(defrule goalkeeper-not-ready-to-fire  
  " Goalkeeper is not ready to fire " 
  (and (monitor-event (property eventuallyFireCmd)( evaluated TRUE)) 
       (monitor-event (property eventuallyConCMS)(e valuated TRUE)) 
       (monitor-event (property eventuallyOpMan)(ev aluated TRUE)) 
       (monitor-event (property eventuallyModeRtf)( evaluated FALSE))) 
  => 

  (assert (raise-alert c3)))  . 
 
The c3  alert entry is defined as: 
 
(alert (id c3)(module " COGK")(error " Goalkeeper is not ready to fire ") 
       (cause " Goalkeeper does not report ready-to-fire ") 

       (solution " Confirm that all GK safety features have been remov ed"))  . 
 
As a second example, the output of a JESS simulation for another rule variant is given in 
Figure 5.2. In this case, the Goalkeeper system reports ready-to-fire and is controlled by 
CMS. However, the operator has neglected to switch to manual operation. When the fire 
command is given, the diagnostic reasoner issues a warring that will be displayed through 
the user interface. The problem can then be corrected accordingly.      
 
 
 
 

                                                 
8 For reasons of confidentiality, an old (obsolete) user interface design is depicted here.   
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Figure 5.2: Example output from a JESS simulation. 
 

5.4 Case 3: Assisting the maintainer 
 
Besides the use of the diagnostic reasoning component for informing the software user, the 
information from this component can also be utilized for maintainer assistance. The system 
can issue alerts when requirements are not met, but can also provide additional diagnostic 
information. This can help the maintainer with the formulation of a fault hypothesis. It is also 
possible to let the system check certain hypothesis automatically. To illustrate this, an 
example is given. 
 
The Goalkeeper system is designed to operate autonomously . This means that it has its 
own suite of sensors to detect and track possible threats. An automatic surveillance sector 
can be defined, but it is also possible to cue hostile tracks other sensors. To keep tracking its 
targets, the Goalkeeper must be aware of the heading of the ship. The heading is one of the 
attribute values of the Own_Ship_Data  object class, which can be found throughout the 
CMS software. This information is supplied by a hardware sources, which interface with the 
CMS via the COOSD software module. Thus, the goal “Own Ship Data is provided” is 
operationalized by the COOSD module. 
 
To check if the COGK and CECIWS components receive the data, monitors check the 
creation of the input object, which is a direct mapping of Own_Ship_Data  instances on the 
output of COOSD. To ensure that the COOSD module is still running, the process heartbeat 
object is also monitored. If the process heartbeat is created while the input objects are not, 
there is a problem. The corresponding rule definition is stated as follows:         
      
(defrule no-own-ship-data  
  " Goalkeeper does not receive Own Ship data " 
  (and (monitor-event (property OSDCo_after_OSDCo)( evaluated FALSE)) 
       (monitor-event (property OSDCe_after_OSDCe)( evaluated FALSE)) 
       (monitor-event (property PHB_COSD_after_PHB_ COSD)(evaluated FALSE))) 
   => 

  (assert (raise-alert c12)))  . 
 
Using the ReqMon monitors and the rule definition stated above, the operator could be 
warned that the Goalkeeper system is not receiving any heading information. However, what 
would really be desirable, is for the CMS system itself to react to this error. If the COOSD 
process is running, but no instances of Own_Ship_Data  are received by COGK and 
CECIWS, then the root cause of the problem will properly be software-related or 
infrastructural. The diagnostic information retrieved by the system’s actions will increase the 
knowledge of the problem for the maintainers onboard, hence decreasing the number of fault 
hypotheses for them to check.     

Jess> INFO: Property eventuallyOpMan is evaluated F ALSE 
INFO: Property eventuallyConCMS is evaluated TRUE 
INFO: Property eventuallyModeRtf is evaluated TRUE 
INFO: Property eventuallyFireCmd is evaluated TRUE 
ALERT: Error in module COGK 
ALERT: Description: Goalkeeper is not ready to fire  
ALERT: Cause: Goalkeeper is not in mode Manual 
ALERT: Solution: Select Goalkeeper Manual mode 
~ 
Jess> INFO: Property eventuallyOpMan is evaluated T RUE 
NOTICE: Error "Goalkeeper is not ready to fire" is no longer valid 
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Since the monitored PHB_COSD_after_PHB_COSD property is evaluated true, it is known 
that the COOSD module is still running. Suppose that the monitored property 
HInfo_after_HInfo  indicates whether this module receives the heading from the 
hardware source. A rule could be added that fires when the “no-own-ship-data” alert (c12 ) is 
raised, which checks the evaluation of this property:      
 
(defrule check-heading-information 
  " Check the creation of heading information for Goalk eeper "  
  (and (alert (id c12)(raised TRUE)) 
       (monitor-event (property HInfo_after_HInfo)( evaluated FALSE))) 
   => 

  (assert (GK-heading-problem-localized)))  . 
 
Thus, when this rule is fired, the system will inform the maintainer that there is a possible 
hardware problem. If this rule is not fired, the maintainer knows that the hardware does not 
have to be checked. This is just a simple example of using additional diagnostic information 
from the requirements monitors for fault localization, but more advanced rules can be applied 
when more knowledge is added.  
 

5.5 Case 4: Closing the loop 
 
The use of the ReqMon OCL monitor specifications offers the developer a flexible and 
scalable approach for monitoring software requirements. With the development of the JESS 
diagnostic reasoner it is demonstrated that requirements monitoring can also be used as a 
basis for further diagnostic reasoning. The evaluated goal properties provide knowledge 
about the overall state of the monitored software. The previous case illustrated this.           
 
To close the autonomic computing OODA loop as was discussed in Section 3.3, the system 
must be able to perform actions in the Act phase that solve the problems detected in the 
Observe phase. In the context of self-management, this research project focuses on the 
ability of self-healing. Using requirements monitoring, the system can examine, find and 
diagnose problems. In general, healing actions will be reconfiguration actions [1], [16], [26], 
[34]. This can for instance be a simple restart of a software component or the re-instantiating 
of a module on another host computer. By adding a reconfiguration component, it should be 
able to react to system malfunctions by carrying out some reconfiguration plan. 
  
In the case described previously in Section 5.4, it was demonstrated how fault hypotheses 
can be formed based on the monitored requirement properties. The system knowledge is 
enhanced by using information for multiple monitors and adding more advanced diagnostic 
rules. By adding the ability of performing reconfiguration actions, the system is enable to not 
only reason about problems, but also to solve them. 
 
Recapitulating, the COOSD module is necessary for the goal “Own Ship Data is provided”. 
The COGK and CECIWS are control components for the Goalkeeper weapon system. These 
components are dependent on information about the own ship. The MTL is introduced, which 
is the software process that provides for the relaying of component objects. 
 
Suppose that the CMS software chain for Goalkeeper control is configured such that COGK 
and CECIWS are running on the same node, while COOSD is instantiated on a different 
node.. Furthermore, assume that the simple reconfiguration component can perform only two 
actions: restarting and re-instantiating. Based on this information, a simple example of a 
reconfiguration plan is presented in Figure 5.3. 
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Figure 5.3: Example of a possible reconfiguration plan for the “no-own-ship-data” failure. 
 
After it has been detected that the heading information is absent on the input of the COGK 
and CECIWS modules, the reconfiguration plan is executed as follows. First, the MTL on the 
node of COOSD is restarted. If this does not help, the MTL on the Goalkeeper software node 
is restarted. The next step would be to restart the COOSD process itself. It this fails, the 
CECIWS is restarted on another node. If this helps, the COGK is also re-instantiated. 
However, if all actions fail to solve the problem, the maintainer is warned by the system. The 
reconfiguration actions are disclosed, giving the maintainer a starting point for further fault 
localization. 
 
The reconfiguration plan presented in Figure 5.3 is only a simple example based on basic 
reconfiguration actions, in this case restarting a software component or re-instantiating a 
component elsewhere. The example is also specific, meaning that domain knowledge is 
explicitly used. In reality, a more general approach to reconfiguration should be adopted, for 
instance as proposed in [1]. However, it shows that the requirements monitoring approach as 
proposed in this thesis provides usable software diagnostic information and can be used 
basis for the implementation of autonomic computing. 
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6 Discussion 
 
This thesis has presented a model that offers a scalable and flexible approach to 
implementing requirements monitoring. Simulations with requirement monitoring prototypes 
have shown that unsatisfied software requirements are detected by the prototype. Software 
errors that were otherwise discovered by more comprehensive manual fault analysis can be 
detected automatically by the system.  
 
With the creation of the diagnostic reasoning component and by presenting some illustrative 
case examples, the benefits of using requirements monitoring as a basis for further 
autonomic development have been made clear. These are mainly the scalability of the 
approach, the elimination of the need for a comprehensive system model and the relative 
simple manner in which monitoring and reasoning capabilities can be defined. However, 
some reflections on the use of the proposed methodology are considered here.  
 
Though the KAOS approach to requirements engineering has been around for some time, 
the ReqMon project is still work in progress. In the course of this research project, several 
new versions of the monitoring framework have been released. New versions are still being 
released frequently. The OCL compiler is still under development, but the quality of the 
compiler is improving with every new version. Furthermore, additional functionality such as a 
graphical IDE are added incrementally to the ReqMon environment. In other words, the 
application of this framework in the future looks promising.                 
 
Based on the creation of requirement monitors for the first prototype, it was concluded that 
the presented implementation model is scalable for larger systems that the software chain on 
which is was applied. However, the creation of monitors for the second prototype have 
proven that sometimes more domain-specific expert knowledge was required then expected. 
In some cases this may reduce the advantage of limited implementation overhead in the 
software development phase.  
 
Beside the need for domain-specific knowledge in the development phase, system 
complexity is also an issue. The OCL statements and corresponding rule definitions 
presented in this work are simple in nature. For a proof of concept, they provide enough 
complexity to base conclusions on, but when applying the concept to large-scale software 
systems, their complexity will increase. An increase in complexity will lead to more effort to 
develop and test the monitor specification and rule definitions. By offering automated tools to 
the developer, the increase in complexity can be reduced. Also, more elaborate AI 
techniques than the proposed rule-based approach could be used. Furthermore, the 
scalability of the ReqMon requirements monitoring framework should be applied here, 
meaning that important requirements can be monitored more elaborately than less important 
requirements.  
 
ReqMon assumes that there is a dynamic traceability between the software objects and the 
stated requirements, meaning that the monitors should be able to distinguish between 
different instances of a defined object class. To satisfy this assumption, the software code 
should be instrumented to send programming events for monitoring. For the CMS software, 
the desired instrumentation can be added since the compiler is developed in-house. 
However, instrumentation could be an issue for other systems. ReqMon offers support for 
instrumentation only for Java-based programs. For other types of applications, 
instrumentation should be added by other means. This is considered to be outside the scope 
of this research.  
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In the presented cases, the reconfiguration component was only shortly reviewed. In reality, 
the issue of dynamic reconfiguration is part of an entire research field with many difficult 
aspects. More intelligent  techniques for reconfiguration planning should  be applied, for 
instance as proposed in [1]. However, the focus in this research is mainly on introducing a 
novel software monitoring technique and its usage for self-management purposes.      
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7 Summary and conclusion 
 
This thesis describes a research project which examines the use of requirements monitoring 
for applying autonomic computing complex software systems. The Guardion Combat 
Management System (CMS), developed for the Royal Netherlands Navy, is subject to the 
present study. As a proof of concept, the use of requirements monitoring combined with a 
rule-based diagnostic reasoner has been proposed.  
  
A model has been defined, identifying the transformation steps needed for the 
implementation of autonomic computing based on requirements monitoring. This model 
proposes the use of the KAOS goal-orient requirements engineering (RE) approach to define 
goals for the software components. Monitoring is done using the ReqMon requirements 
monitoring framework to create software monitor specification. Reasoning capability is added 
by a JESS rule-based diagnostic reasoner.    
 
For testing and simulation of the proposed implementation, two prototypes have been 
developed. The event stream from the CMS software components can be simulated, as well 
as the evaluated requirements properties as they are received by the reasoner. The 
information extracted by applying requirements monitoring to a software system can be used 
for software testing during software component development. Furthermore, the goal 
information can provide feedback to the operator during run-time. Last, the properties 
monitored by the requirements monitoring framework can be used for diagnostic reasoning 
about the software system.  
 
To demonstrate the uses of the proposed monitoring framework, four case examples have 
been provided for the Goalkeeper Close-In Weapon System (CIWS). The first case features 
a problem in the Goalkeeper diagnostic software during the development phase. By checking 
the creation of object instances representing diagnostic messages, the integrity of the 
diagnostic message database is checked. The second case introduces the preconditions that 
needs to be satisfied in order for the Goalkeeper to fire. By monitoring the value of object 
attributes representing these preconditions, the operator is warned when these are not met. 
The third case focuses on software maintainer support. When heading information is no 
longer sent to the Goalkeeper software modules, diagnostic expert rules are applied to 
reduce the set of fault hypotheses. The fourth case deals with autonomizing the software. It 
shows how the problem of the absence of heading information could be dealt with in an 
autonomic computing software system.  
 
Applying the model has proven that while it is not a trivial task to define the goals of a 
software component, the overhead introduced in the development phase is limited. 
Previously documented requirements and software models can be used as sources for the 
goal extraction process. Preferably, the process of formalizing requirements should be 
adopted in the requirements engineering phase of software development, although this 
research has shown that a bottom-up approach is possible.   This means that it is possible to 
implement a monitoring system which monitors the behavior of an already developed 
software system without the need for a comprehensive system model.    
 
The implementation of the model has shown that the ReqMon framework is scalable, both in 
system size as in the depth of the goal monitoring definitions. This enables the software 
designer to emphasize important goals in his requirements documents, while it gives the 
software developer more control over how monitoring definitions are implemented in the 
software model.           
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Based on the research presented in this paper, it is concluded that implementing 
requirements monitoring an existing combat management system such as the Guardion 
CMS is feasible. Multiple uses for this approach to software monitoring have been shown, 
which are  the support for the software developer, user and maintainer, as well as the use as 
a basis for autonomic computing. Requirements monitoring is a promising technique that can 
be highly beneficial to the human in the loop, considering that the human will stay in the loop 
in the near future. 
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8 Recommendations 
 
This research has shown that the use of requirements monitoring has great potential. Not 
only does it provide a basis for applying autonomic computing, but it is also useful as a 
monitoring framework for supporting the software developers and users. The extracted goal 
graphs and the developed prototypes provide an excellent basis for future work. Further 
research and development based on this thesis would consist of two main issues, which 
would be the monitoring and reasoning framework itself and the action needed for the self-
healing process. 
 
In the context of the monitoring and reasoning framework, further examination on the 
following subjects could be conducted: 

1. The issue of instrumenting the CMS software should be addressed. The 
instrumentation support offered by ReqMon could be used as a starting point.   

2. The presented requirements monitors should be deployed in the actual CMS 
environment, beginning with the Target system at CAMS/Force Vision. Tests should 
be carried out to see how these monitors perform.        

3. Different approaches to the implementation of the diagnostic reasoning component 
should be considered. The proposed rule-based approach works for smaller 
applications, but should probably be enhanced when the size of the system 
implementation increases. 

4. The presented work features a very deterministic approach to monitoring and 
diagnostics. This is sufficient for a proof of concept, but probabilistic aspects such as 
dealing with incomplete diagnostic information should also be taken into account. The 
use of AI methods like fuzzy logic or Bayesian reasoning should be researched here.  

 
As for dynamic reconfiguration, further research on the following subjects could be 
considered: 

1. For reasoning within the dynamic reconfiguration component, such as creating 
reconfiguration plans, the application of more advanced AI techniques should be 
studied.  

2. A reconfiguration component prototype could be developed, which is suited to match 
the dynamic reconfiguration capabilities as currently implemented in the Guardion 
CMS. 
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Annex 1: Research paper 
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Abstract - Diagnosis of large and complex 
software systems is a challenging task that 
can highly benefit from monitoring of the 
high-level functional requirements. This work 
studies the potential of applying 
requirements monitoring for a software 
system of high complexity: the combat 
management system (CMS) of a modern and 
technological advanced naval platform. An 
effort is made to apply the requirements 
monitoring method for autonomizing of this 
system while limiting implementation impact. 
The KAOS goal-oriented requirements 
engineering method is used to extract 
software system goals from previously 
documented requirements. With these high-
level objectives as a starting point, the 
ReqMon requirements monitoring framework 
is applied. An implementation model is 
defined, identifying what data 
transformations are needed to apply the 
ReqMon system. Tests with a requirements 
monitoring prototype demonstrate that 
detailed diagnosis of a complex software 
system as a CMS is feasible and furthermore 
that comprehensive manual fault analysis 
can be replaced by an automated process: 
the first step towards a self-healing 
autonomic combat management system is 
taken.     

INTRODUCTION 
 
Self-management of software systems and the 
related subject of autonomic computing is a 
relatively new research area in component-
based software engineering and Artificial 
Intelligence (AI). It refers to systems that can 
manage themselves given high-level objectives 
from administrators [9]. In order to accomplish 
self-management, the system should be 
monitored. This paper focuses on software 
monitoring for autonomic computing. 
 

Monitoring of any complex software system 
confirms whether the system still serves to 
satisfaction. However, these monitoring activities 
introduce overhead, not only during run-time, but 
also in the preceding software development 
phase. Overhead increases even more when 
new software monitoring systems are added to 
an existing software system, as in case of the 
combat management systems (CMS) for 
modern and technological advanced naval 
platforms such as an air-defence and command 
frigate. 
 
The Royal Netherlands Navy (RNLN) has aimed 
for integrated combat systems to allow central 
operation of the ship’s subsystems, which 
eventually led to the use of generic all-purpose 
workstations in the Operations Room. The CMS 
is the collection of hardware and software which 
integrates the SEWACO (Sensor, Weapon and 
Command systems) subsystems, which are 
necessary for performing the various operational 
tasks of a naval vessel. This work focuses on 
the Guardion CMS software that is developed at 
the Centre for Automation of Mission-critical 
Systems (CAMS/Force Vision) in Den Helder, 
The Netherlands. 
 
While most NATO fleets are faced with reduction 
in numbers, naval ships are becoming 
technological more advanced due to a higher 
level of automation and a high-potential sensor 
suite of growing complexity. As a result combat 
management systems are also growing 
evermore complex. The complexity of the 
subsystems and software increases with every 
new type of ship. In contrast, reductions in staff 
result in fewer personnel available to operate 
and manage the software. The paradox of 
increased complexity versus reduced manning is 
one of the reasons why CAMS/Force Vision 
invests in the development of software 
management tools to support the maintenance 
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at sea, which is by no means a trivial activity. 
Beside the development of software support 
tools for the system’s maintainers, completely 
autonomizing the system is also an issue of 
interest. 
 
The focus of this paper is on the application of 
requirements monitoring for software maintainer 
support and as a basis for autonomic computing. 
The main research objectives are: 

1. To define a model for implementing 
requirements monitoring for the combat 
management system; 

2. To develop a requirements monitoring 
prototype or demonstrator using the 
model; 

3. To link high-level goals with other 
software diagnostic data. 

        
It is examined what information can be obtained 
by applying requirements monitoring and how it 
may be used. This paper presents the design 
and some first results of a prototype 
implementation of requirement monitoring 
prototype implementation based on the ReqMon 
system. This monitoring framework has been 
chosen based on the conclusions of a literature 
study.   
 
While much literature concerns the design of a 
new requirements monitoring framework, the 
emphasis of this work is more on implementing 
a requirements monitoring system in an existing 
software system. In addition, other diagnostic 
data sources will be incorporated in the 
monitoring system. 
 
The paper is organized as follows. First, some 
background information is provided about 
autonomic computing and requirements 
monitoring. Then the KAOS methodology is 
shortly reviewed and the ReqMon requirements 
monitoring framework is introduced. After the 
presentation of the model for ReqMon 
implementation, the prototype is discussed as 
well as the feature database. Finally, 
conclusions are drawn. 
 

BACKGROUND 
 
Autonomic Computing 
 
An autonomic software system should be able to 
modify its own behavior in order to adapt itself 
and must be able to manage itself, hence the 
name “self”-systems for systems that have this 
ability. There are four main aspects of 
autonomic computing: self-configuration, self-
optimization, self-healing and self-protection 

[12]. The application of requirements monitoring 
as presented in this paper is part of self-healing.       
 
The processes of self-management can be 
viewed as a control loop, as is commonly seen 
in literature (e.g. [1], [9], [15], [19]). The OODA 
loop can be applied here, which identifies four 
phases: Observe, Orient, Decide, and Act. 
System monitoring is in the observation and 
orientation phase, in which monitoring data is 
collected, analysed and interpreted. In the 
decision phase, it may be decided that action is 
needed. This decision can be made by some 
intelligent system, which produces a 
reconfiguration plan. After it is decided if and 
what action is to be taken, the reconfiguration 
plan must be executed. 
 
As has been stated, an autonomic system must 
be able to modify its own behavior. In order to 
accomplish this, the system must have 
knowledge about what its required behavior is. 
For many systems the behavior can be 
described by means of a system model. 
However, creating a model of a complex system 
such as the CMS is extremely difficult. It is 
commonly accepted that software systems have 
grown too large to statically verify and analyze 
[20]. Such an endeavor would require 
disproportionate time and resources in the 
development process of a system and would be 
even more difficult to apply on already 
developed systems. 
 
Requirements monitoring 
 
Software development processes are generally 
constrained by time and budget mainly. 
Incorporating new monitoring techniques or 
adapting existing ones has a negative influence 
on both the time and budget of the development 
process. Therefore it is interesting to see if 
techniques can be applied that can be 
incorporated into the existing software 
development process and require limited 
additional development resources. 
Considering the software development process 
in general, it can be stated that the behavior of a 
system is specified in the requirements of the 
system and consequently in its design. The 
actual implementation of the software is of no 
concern here, as long as the desired behavioral 
properties are accomplished. In this context, the 
term requirements monitoring is introduced, 
which is defined as the tracking of the run-time 
behavior of a system and the determination 
whether that running system is meeting its 
requirements [7], [17].   
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Using the requirements monitoring approach as 
a basis for autonomizing of the CMS has 
potential because of the following advantages: 
1. It offers the opportunity to model system 

behavior on a high level without the creation 
of a complex behavioral model; 

2. The extra workload required by designers 
and developers is limited; 

3. The method may be implemented for the 
current version of the CMS and is testable; 

4. For use on future versions of the CMS, it 
offers an approach to streamline the 
requirements elaboration process. 

 
A prerequisite for conducting requirements 
monitoring is the formalization of those 
requirements [10], [18].  This is part of the 
process of Requirements Engineering (RE). RE 
is concerned with the identification and 
refinement of goals, the operationalization of the 
refined goals and the assignment of 
responsibilities for the resulting requirements [3]. 
A more elaborate definition is given in [13]: 
Requirements engineering is the branch of 
software engineering concerned with the real-
world goals for functions of and constraints on 
software systems. It is also concerned with the 
relationship of these factors to precise 
specifications of the software behavior, and their 
evolution over time and across software families. 

Traditional system analysis methods in 
requirement engineering are inadequate when 
dealing with complex software systems [11]. The 
Goal-Oriented Requirements Engineering 
(GORE) approach attempts to solve these 
problems. GORE focuses on activities that 
precede the specification phase in the traditional 
RE process. It aims for less emphasis on the 
question how a software system should operate 
and more on why a system is needed.  
 
GORE approaches provide a breakdown of the 
composite system requirements into 
operationalizable goals. These goals provide a 
basis for requirements monitoring, identifying 
what part of the system is responsible for what 
goal.  
 
The GORE method KAOS (Knowledge 
Acquisition in Automated Specification) is a 
frequently used technique in RE processes and 
requirement monitors development. It is very 
well documented and various tooling exists that 
support the various sub process and steps 
within this GORE method (e.g. [6], [14]). KAOS 
uses object models, which can be represented 
using for instance UML (Unified Modelling 
Languange) [8]. 
 
 

KAOS 
 
The KAOS methodology mainly utilizes formal 
analysis techniques. It combines semantic nets 
and implements linear-time temporal logic to 
formalize and express the goals and other 
objects of the system [11]. Objects in KAOS are 
things of interest in the system, whose instances 
can evolve from state to state. Objects can be 
entities, relationships or events. Operations are 
input-output relations over these objects. They 
can define state transitions and are declared by 
signatures over objects. Operations have pre, 
post and trigger conditions. Operations on 
objects are performed by agents. An agent is an 
object that acts as a processor for operations. 
Agents are active components that can be 
humans, devices, software, etc. Agents operate 
autonomously.  
 
One or more agents can achieve a goal. Goals 
refer to services, which are functional goals, and 
to quality of service, which are non-functional 
goals. Goals are refined in hierarchies using 
“AND” and “OR” relations. Goal refinement ends 
when an individual agent operationalizes a sub 
goal. 
 
Using the KAOS approach, a goal graph can be 
made for a complete software system. This 
graph can be based on the high-level 
requirements documentation that is available. 
For example, the high-level goals for an 
envisioned naval vessel - and consequently the 
CMS - can be derived from the staff 
requirements. The KAOS approach is scalable. 
Instead of a complete system, it can also be 
applied on parts of a system. For instance, goals 
for a single software component can be derived 
from existing software requirements. 
 
Since the Guardion CMS is an existing system, 
the requirements for the system and its software 
components have already been drawn up. This 
calls for a bottom up goal definition strategy, 
which means that the stated software 
requirements should be used to create 
formalized goals. New goals may be added if 
necessary. The extracted goals will be used to 
form sub goals of higher level goals, keeping in 
mind the existing operation capabilities and the 
staff requirements. Since goals and 
requirements are so closely related, these terms 
will be used as synonyms in the rest of this 
paper.  
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IMPLEMENTATION 
 
ReqMon 
 
Several monitoring systems adopt the KAOS 
approach to defining and formalizing software 
requirements. For prototype development, the 
ReqMon monitoring system as presented in [17] 
and [18] will be used. ReqMon tools aim to 
provide a programming interface (API) that 
simplifies temporal event reasoning in real-time 
(RT) or near real-time (NRT) [16]. It is 
implemented in JESS (Java Expert System 
Shell) and recently also in Drools. JESS and 
Drools are both Java based rule engines. For 
prototyping, the JESS variant will be used. 
 
To use the ReqMon framework, it is assumed 
that formal definitions have been drawn up 
about the desired properties of the software 
system. The KAOS requirement specification 
techniques can be applied here. Another 
assumption is that there must be static and 
dynamic traceability between the software 
objects and the stated requirements [17]. Static 
traceability means that a KAOS object can be 
traced back to its object definition in the 
programming code. Dynamic traceability means 
that the monitor should be able to distinguish 
between different instances of a defined object 
class. 
 
Software systems that have been developed 
using a modelling technique satisfy the static 
traceability prequisite for ReqMon. To achieve 
dynamic traceability, instrumentation of the 
software is necessary, meaning the software 
code is enriched to send programming events 
for monitoring. For development purposes, the 
CMS software compiler already adds debugging 
code to the compiled classes, which can be 
used for generating these events.       
 
Because ReqMon is JESS-based, the KAOS 
goal definitions are specified in JESS code. 
However, ReqMon offers a compiler for the OCL 
Object Constraint Language. OCL is a well-
known expression language that enables one to 
describe constraints on object-oriented models 
and other object modelling artefacts. It is part of 
the UML framework. The ReqMon OCL variant 
extends the UML 2.0 OCL specification to 

provide the use of linear-time temporal logic 
needed for the defining the KAOS goals. 
    
To perform requirements monitoring, the monitor 
must view the stream of activities of a software 
component and interpret their meaning. ReqMon 
receives monitoring events, which contain 
information about the component’s processing. 
As these events arrive, ReqMon will determine if 
the predefined requirements are satisfied. It will 
raise an event itself when requirements are not 
satisfied. Figure 1 illustrates the data streams for 
a software component and ReqMon. 
 
The CMS is both component-based and 
network-based, so the requirement monitoring 
processes must also be. Every software 
component has its own set of goals, which will 
be checked by a ReqMon thread or daemon that 
holds the specific requirement information for 
that particular component. These daemons will 
be interconnected so that higher-level system 
goals can be checked.  
 

 
Figure 1: Data Streams For A Software 

Component Monitored By ReqMon. 
 
Implementation model  
 
Requirements monitoring can be used as a 
basis for performing autonomic computing. 
However, the run-time requirement monitoring 
information may not provide enough information. 
Additional system information may be required 
by the autonomic computing system in order to 
come to the right decisions and consequent 
actions. On the other hand, the information 
extracted by requirements monitoring can have 
more uses then autonomic computing, as can be 
seen in Figure 2. 
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Figure 2: Data Flow Of Diagnostic Information In The Requirements Monitoring System. 
 
 
In Figure 2, the following uses are illustrated: 
4. Requirements monitoring during software 

development and testing can provide useful 
information for the developer; 

5. The run-time goal information can be 
redirected to the operator to provide 
feedback about system performance and 
errors; 

6. The collected goal information can be used 
by an AI system to make a first diagnosis for 
the software maintenance technicians on 
board in case of software malfunctions. 

Based on the data flows as presented in Figure 
1 and 2, several transformation steps can be 
identified, which are combined in the model for 
implementing requirements monitoring for the 
CMS as depicted in Figure 3. 
 

 
 

Figure 3: Model For The Implementation Of 
Requirements Monitoring In The CMS. 

 
Following Figure 3, the model is reviewed 
shortly here. Using the KAOS method, goal 
information is extracted for each software 
component using the available requirement 
documentation. These goals form the basis for 
the ReqMon goals which are stated in the Object 
Constraint Language (OCL) and are compiled to 
JESS code.  
 
To test the system and run simulations, JESS 
scenarios are used. These scenarios are based 
on real-time log information which has been 

extracted from the CMS software components. It 
is assumed that the software is instrumented to 
provide the right format of log data. This is 
achieved by transforming the standard logging 
output into the right format. The diagnostic data 
extracted for the AI system will be transformed 
into JESS rules to examine the compatibility 
between the goal-based rules and feature-based 
rules. 
 
The first aim of the project is to examine the 
feasibility of implementing requirements 
monitoring into a complex software system. 
Furthermore, this implementation should 
eventually lead to the incorporation of autonomic 
computing the CMS. To address the first goal, a 
ReqMon prototype is developed. For the second 
statement, a fault feature database is designed. 
Both are presented in the following sections.  
 
Applying ReqMon 
 
To see if ReqMon is indeed feasible for the 
CMS, a prototype has been built. This small 
implementation serves as a first prove of 
concept and as a demonstrator. A simple chain 
of CMS software components has been selected 
for simulation. The function of this particular 
software chain is to collect and interpret 
diagnostic messages from the navigation radar 
(NavRad) subsystem. It consists of four software 
components as depicted in Figure 4.  
 
The first two components in the chain are 
diagnostic components specifically designed for 
interpreting the NavRad messages. CODIAG 
stands for Control of Diagnostics. The PFDFEU 
is the PFD Front-End Universal. PFD stands for 
Perform Fault Detection. The PFD software 
component collects and processes all diagnostic 
data from all diagnostic components in the CMS. 
The processed diagnostic information is 
presented to the maintainer through a user-
interface, which is called Matrix (Maintainer 
Applications and Technical Resources Interface 
Exchange). For the software system     
maintainer on board a Dutch 
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Figure 4: Software Component Chain For Diagnostics Of The Navigation Radar Subsystem. 

 
naval vessel equipped with Guardion CMS, the 
Matrix is the main diagnostic software tool. 
 
To create a ReqMon system the goals for each 
component should be identified. The goals can 
be extracted form the existing requirement 
documentation and the software model that has 
been created. For the CODIAG NAVRAD 
example, the requirement documentation 
consists of a requirement document written by 
the design team [2] and a component 
description document written by the developers 
[5]. 
 
As an example, consider the following statement 
from the requirements “CODIAG NAVRAD shall 
periodically provide a heartbeat object for testing 
the diagnostic chain. The period is defined at 
once every 10 seconds.” The stated requirement 
will be implemented in the software model and 
consequent in the compiled programming code. 
The requirement can be checked by comparing 
input and output objects during runtime. In this 
case the requirement can be directly formalized 
into a goal of this software component.  
 
The KAOS methodology offers guidelines for 
goal elicitation. Examples can be found in 
various documents and websites, e.g. in [4] and 
[14]. Creating these goal definitions is a non-
trivial task, but the requirements documents and 
software models can be used as a source.           
 
In Figure 5, the goal-graph is depicted for the 
CODIAG NAVRAD software component. It 
features the main goals that have been 
identified. 
 

 
Figure 5: Goal-graph For The CODIAG 

NAVRAD Software Component. 
 
The extracted goal must now be implemented in 
ReqMon. First, the KAOS specification for the 

goal is made. For the stated “Provide periodic 
heartbeat” goal, the goal structure looks like: 
 
SystemGoal   Maintain[DiagnosticHeartbeatPresent] 
     InformalDef  A periodic heartbeat should be sent by the 

            diagnostic software in order to ascertain it is 
            still running. 

     Concerns    Heartbeat Diagnostic Chain 
      FormalDef    �<10  sec Sent(HBDC)  . 

 
The specified goal structure serves as a basis 
for further implementation. It can be added to 
existing or new requirement documentation in 
order to formalize the requirements. The formal 
definition of the goal specification is written in 
the KAOS temporal logic specification language. 
For the first version of the prototype, the JESS 
rule structures have been created manually, 
since the OCL compiler was not yet available at 
the time. This manually coded goal comprises of 
a Sequence property definition, a monitor 
definition and a timeout definition: 
 
( defproperty HBDC_CDNR_Sequence Sequence  
  ( patterns  ( create$  “Heartbeat_Diagnostic_Chain”  
                   “Heartbeat_Diagnostic_Chain” )) 
  ( constraints  
    “(RT::ProgramEvent(OBJECT ?event-object)   
     (className ?cn &nth-pattern-matchp  
                            ?cn ?n ?patterns)))” ) 
  ( timeouts  ( create$ HBDC_Timeout ))) 
        
( defmonitor HBDC_CDNR_Monitor  
  ( property HBDC_CDNR_Sequence )) 
 
( jassert  ( RT::Timeout  ( name HBDC_Timeout )  

         ( start  “+0d:0h:0m:10s” ) ( count  0 )))  . 
 
If the ReqMon OCL compiler is used, JESS 
code is compiled from the OCL specification. In 
this case, the goal can be specified as: 
 
def : Diagnostic_Heartbeat :  
     OclMessage = receivedMessage 
             (Heartbeat_Diagnostic_Chain()) 
 
inv : after@0d:0h:0m:10s     
     (Diagnostic_Heartbeat) always   
                     Diagnostic_Heartbeat . 

 
JESS code has been created for the goals of 
CODIAG NAVRAD, PFDFEU and PFD. Using 
test scenarios, simulation runs can be made. 
The prototype assumes that the standard 
debugging instrumentation has been suited to 
send program events that are compatible with 
ReqMon. For instance,  a  component   
activation followed by the 
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INFO  ReqMon:  90: [_global] ScopeActivation@1fe571f: Scope Global (gl obal) became active.  

14:42:48 INFO  Internal: System is ready. 

14:42:51 INFO  Internal: Running file ‘scenario1.cl p’... 

14:42:51 INFO  Internal: Setting the focus to the R T Jess module. 

14:42:51 INFO  Internal: Running JESS... 

14:42:51 INFO  Internal: Running scenario. Simulati ng event stream... 

14:42:51 INFO  Internal: Execute ReqMon thread 

14:42:51 INFO  ReqMon: 101:[default] Peval@1f78b68:  Property IS_Existence[ScopeActivation@1fe571f; Pro gramEvent@1843a75] is 

TRUE. 

14:42:52 INFO ReqMon: 126:[default] Peval@1f03691: Property RSM_Sequence[ScopeActivation@1fe571f; Prog ramEvent@d3c65d 

ProgramEvent@10e35d5] is TRUE. 

~ 

14:42:52 INFO  Internal: Goal ‘Achieve[InterfaceSta tusKnown]’ is satisfied. 

14:42:52 INFO  Internal: Goal ‘Maintain[SubsystemHe artbeatPresent]’ is satisfied. 

14:42:53 INFO  Internal: Simulating periodic activa tions 

14:42:53 INFO  Internal: Execute ReqMon thread 

~ 

14:43:03 ERROR  ReqMon: 268:[default] Peval@28305d:  Property CSO_Sequence[ScopeActivation@1fe571f; Pro gramEvent@2798e7] is 

FALSE. 

14:43:05 ERROR  ReqMon: 278:[default] Peval@3afb99:  Property HBDC_CDNR_Sequence[ScopeActivation@1fe571 f; 

ProgramEvent@1a0d866] is FALSE. 

14:43:05 ERROR  ReqMon: 287:[default] Peval@19fe451 : Property HBDC_Chain_Seq[ScopeActivation@1fe571f; ProgramEvent@1a0d866] 

is FALSE. 

14:43:05 INFO  Internal: GOAL ‘Maintain[DiagnosticH eartbeatReceived]’ is NOT SATISFIED!! 

14:43:05 INFO  Internal: A diagnostic heartbeat fro m a diagnostic chain is not received any longer. 

14:43:06 INFO  Internal: Execute ReqMon thread 

14:43:07 INFO  Internal: End of simulation  
 

Figure 6: ReqMon Logging Output From The Example Scenario. 
 
creation of a heartbeat output object by the 
CODIAG would be logged in real-time as:      
 
15:08:29.192: External Tracing:    

A_CODIAG_NAVRAD_Produce_Heartbeat_activation called . 

15:08:29.192: External Tracing:  

A_CODIAG_NAVRAD_Produce_Heartbeat_activation unpack ed. 

15:08:29.195: External Tracing:  

A_CODIAG_NAVRAD_Produce_Heartbeat_activation start event  

processing. 

15:08:29.195: External Tracing:  

A_CODIAG_NAVRAD_Produce_Heartbeat_activation proces sed. 

15:08:29.195:  Output Signature Data:  

O_CODIAG_NAVRAD_Heartbeat_Diagnostic_Chain: 

                          key(28.1.b39cf95b213) ver sion 1. 

15:08:29.196:  Output Signature Data: get codiag_na me =    

                                            CODIAG_ NAVRAD. 

15:08:29.196:  Output Signature Data: get scc_id = 1. 

15:08:29.197:  Output Signature Data: get time_vali d =  

                                13-13-2006 15:08:17 :958  .  

 
This actual CMS system logging can be stored 
in text format and can then be converted into a 
test scenario, for example: 
 
( jassert  ( ProgramEvent   

         ( className CDNR_Produce_Heartbeat” ))) 

( jassert  ( ProgramEvent   

         ( className  “Heartbeat_Diagnostic_Chain” ) 

         ( parameters “name” )          

( parameterTypes  “CODIAG_NAVRAD”))) . 

 

A complete test scenario is defined as a series 
of program events as presented above. An 
example of a simple test scenario is simulating 
that a software component crashes. In this case, 
the periodic heartbeats of the components that 
are normally sent and received cease to exist. 
The resulting output from the ReqMon prototype 
is depicted in Figure 6. It shows that the defined 
software goals are satisfied until one of the 
software component crashes. The output is 
presented for illustrative purpose and has been 
shortened. 

 
Feature database 
 
To further investigate the uses of the information 
extracted by requirement monitoring, an effort is 
made to link software goals to other diagnostic 
system information. In order to do so, diagnostic 
system data should be collected. This has been 
achieved by developing a diagnostic database 
for recording faults within the CMS software. 
Features of these faults are then extracted and 
the faults are linked to possible software goals 
that would not be achieved as a result of these 
faults. 
 
The diagnostic database is a Microsoft Access 
database application. It is based on an existing 
diagnostic database, which has been is use by 
the Test & Integration Team (T&I) at 
CAMS/Force Vision only recently. This 
knowledge database is used to store fault data 
that is collected while integrating and testing the 
CMS software on board the naval vessels. With 
this knowledge, recurring faults can be easily 
solved and fault information is stored for future 
reference. 
 
The T&I database has been adapted to include 
fault features. Furthermore, additional 
information can be entered about the impact the 
fault has on the functionality of the CMS 
software components. This information can then 
be related to the software goals of these 
components.  Figure 7 shows a screenshot of 
the feature database.  
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Figure 7: Screenshot Of The Feature Database. 
 
In Figure 8, a few examples of database entries 
are presented which have been translated from 
Dutch. Each entry has a short description of the 
software problem, which is used for indexing 
and referencing. The problem is then more 
explained elaborately and a solution is 
suggested, if available. Also, a relation is made 
with possible unsatisfied goals. Finally, the 
problem features are identified. 
 
The use of ReqMon in combination with the 
feature database is illustrated using the top 
database entry from Figure 8. It states that there 
are no “world charts” presented in the D2000 
interface by the ChartServer. Suppose this error 
would arise again somewhere in the future. If the 
ChartServer would be monitored runtime by a 
ReqMon daemon, the goal “World charts are 

displayed” would not be satisfied. This could 
result in a warning message to the operator, 
which would read “World charts are not available 
due to a software error”. The operator can now 
warn the software maintenance technicians.  
 
Based on the unsatisfied goal information and 
supplied with additional features of the problem, 
a fault diagnosis will be proposed by the AI 
system. Some fault features could even be 
checked automatically by the system after it has 
detected the unsatisfied goal, in which case the 
fault diagnosis is narrowed down. Using the 
diagnosis, the maintenance personnel can 
correct the problem. 
 
In an autonomic computing environment, the 
maintenance personnel would be kept out of the 
loop. However, current and near-future versions 
of the CMS software will probably not be able to 
accommodate such advanced forms of 
autonomic computing. Conducting automated 
fault diagnosis based on a fault feature database 
is a first step in exploring future autonomic 
possibilities.  
 
By analyzing the diagnostic data, a suitable AI 
technique can be chosen for solution extraction. 
However, the data collection process and 
database development are still in an early stage. 
Therefore, more research is required before the 
AI system can be implemented.  

 
Short description 
No representation of world charts in the D2000 user interface. 
Problem 
World charts are not displayed in the D2000 user interface by the ChartServer. Both D2000 and ChartServer are running. Also, 
world charts do exist in directory /home/cms/imported_charts_ENC/CELLS/world. 
Solution 
The catalog file was corrupted. Workstation AWS05 should be rebooted. The Chart Management server will then create a new 
catalog file. In the Matrix the option “update charts” in the HW/SW menu should be applied. All D2000 interfaces must be 
restarted. 
Related goals 
D2000 goal “World charts are displayed” is unsatisfied. 
Features 
No world charts shown in D2000. World charts have been loaded into system. 
Catalog file is present. ChartServer and D2000 running normally. 

 
Short description 
No HTML views in Matrix interface. 
Problem 
There are no HTML technical drawings presented in the Matrix interface. The root partition on the workstation was full. 
Solution 
Because the root partition is full, no more files could be added to /var/tmp. Normally, the HTML files are copied here for viewing. 
The root partition should be cleaned up. The Matrix interface must be restarted. 
Related goals 
Matrix goal “Show HTML views” is unsatisfied. 
Features 
No HTML views shown in Matrix. Root partition on workstation is full. 

 
Figure 8: Two Example Database Entries From The T&I Feature Database. 
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DISCUSSION 
 
The research presented in this paper is still 
work in progress. In order to obtain more 
tangible results, the ReqMon prototype must 
be tested on more complicated CMS software 
components. Also, the feature database should 
be further developed. More diagnostic data is 
to be collected and analyzed. 
 
The presented model offers a scalable 
approach to implementing and testing 
requirements monitoring. When applying the 
model to a full-scale, some steps may be 
automated, such as creating test scenarios 
from a log file. Manual steps such as the 
creation of goal definitions and subsequent 
code can be supported by tools, either of-the-
shelf, e.g. [14], or developed in-house.           
 
Simulations with the prototype have shown that 
unsatisfied software requirements are detected 
by the prototype. Software errors that were 
otherwise only discovered by comprehensive 
manual fault analysis can be detected 
automatically by the system.     
 
An AI system will combine the information on 
high-level goals collected by run-time 
requirements monitoring with the diagnostic 
data from the feature database. While not all 
goals may be linked to faults in the database, 
the database does reveal what effects low-
level system faults can have on the high-level 
behaviour of the software components. Further 
research will identify which AI techniques can 
be applied to obtain an automated fault 
diagnosis using all diagnostic data available. 
      

CONCLUSION 
 
This paper describes a research project which 
examines the use of requirements monitoring 
in complex software systems. The Guardion 
Combat Management System (CMS), 
developed for the Royal Netherlands Navy, is 
subject to the present study. 
 
To implement requirements monitoring using 
the KAOS method, a model has been defined. 
Applying this model has proven that while it is 
not a trivial task to define the goals of a 
software component, the overhead introduced 
in development phase is limited. Previously 
documented requirements and software 
models can be used as sources for the goal 
extraction process. This means that it is 
possible to implement a monitoring system 
which monitors the behavior of an already 

developed software system without the need 
for a comprehensive system model.        
 
A ReqMon prototype was developed for a 
small software chain to act as a proof of 
concept. This has shown that the ReqMon 
framework is scalable, both in system size as 
in the depth of the goal monitoring definitions. 
This enables the software designer to 
emphasize important goals in his requirements 
documents, while it gives the software 
developer more control over how monitoring 
definitions are implemented in the software 
model.           
 
A fault feature database for storing diagnostic 
information on software errors has been 
developed. By linking this diagnostic 
information to the high-level goals, automatic 
diagnosing of software errors by can be 
performed by an AI system.   This means that 
it is possible to combine predefined software 
requirements information with experience 
diagnostic data, creating a flexible diagnostic 
framework that can be enhanced when new 
experience diagnostic data comes available. 
The implementation of such an AI system is a 
first step towards autonomic computing for the 
CMS.          
 
Based on the research presented in this paper, 
it is concluded that implementing requirements 
monitoring for autonomic computing in an 
existing combat management system is 
feasible.  
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Annex 3: Research report 
 
The following pages print the report “A Monitoring and Reasoning Framework for Applying 
Autonomic Computing in a Combat Management System”. This report has been published by 
the Royal Netherlands Naval College, which is part of the Netherlands Defence Academy 
(NLDA). The original transcript featured the paper “Applying Requirements Monitoring for 
Autonomic Computing in a Combat Management System” as an annex. This annex has been 
left out here, for obvious reasons. 
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Abstract 

A combat management system (CMS) is the integrated software system that is used on naval 
platforms to manage the deployment of a variety of sensors, weapons and command systems. Faced 
with an increasing complexity of such naval combat systems and reduced manning concepts, the 
Centre for Automation of Mission-critical Systems (CAMS/Force Vision) commenced a feasibility study 
of autonomic computing in a CMS. This report presents the design, implementation and simulation of 
a diagnostics expert system prototype.    

In previous work the ReqMon framework for requirements monitoring in a CMS was introduced, which 
is based on the use of the KAOS goal-oriented requirement engineering approach. This resulted in a 
JESS prototype for CMS software monitoring. By adopting this approach, the need for a complex 
system model is eliminated. Building on this prototype, the current report focuses on the 
implementation of a diagnostic reasoner for the software chain of Goalkeeper, a close-in weapon 
system deployed on Dutch frigates.  

Simulations demonstrate that the combination of requirements monitoring and rule-based reasoning 
provide a solid foundation for various levels of autonomy in an existing combat management system.    
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Introduction 
 
Nowadays, naval ships are becoming technologically more advanced due to a higher level of 
automation and a high-potential sensor suite of growing complexity. This results in combat 
management systems (CMS) becoming more and more complex. The CMS of a navel vessel is the 
collection of hardware and software which integrates the SEWACO (Sensor, Weapon and Command 
systems) subsystems, which are necessary for performing the various operational tasks.  In contrast to 
the growing complexity of the software, most NATO fleets are faced with reduction in manning and 
material. This means that fewer personnel are available to operate and manage the CMS software.  
 
The ships of the Royal Netherlands Navy (RNLN) have an integrated combat system that allows for 
central operation of the ship’s subsystems. This high level of integration has led to the use of generic 
all-purpose workstations in the Operations Room. The CMS found on board Dutch naval vessels is 
developed at the Centre for Automation of Mission-critical Systems (CAMS/Force Vision) in Den 
Helder, The Netherlands.   
 
Autonomic computing or self-managing systems are systems that can manage themselves given high-
level objectives. [12]. Self-management means that the system should be able to monitor its behavior, 
reason about it and adapt itself accordingly. Implementing self-management in a complex software 
system such as a CMS will create overhead, not only during run-time but also in the software 
development phase of the system. In order to overcome these drawbacks, the use of requirement 
monitoring is suggested.     
 
CAMS/Force Vision invests in research and development of software management tools to support 
maintenance at sea, taking into account the paradox of increased complexity versus reduced 
manning. Beside the development of software support tools for the system’s maintainers, completely 
autonomizing the system is also an issue of interest. The presented research in this report focuses 
mainly on the Guardion CMS, which is the latest version of the CMS software product line developed 
at CAMS/Force Vision. 
 
This report focuses on the development of a diagnostic expert reasoner for the CMS software system 
based on requirement monitoring. The reasoner will provide support for the software developer and 
the operational user, and will also provide a basis for applying autonomic computing. The main 
objectives of the presented research are:  

- to define a model for the implementation of a diagnostic expert system based on requirements 
monitoring; 

- to create a test environment for simulating and testing of the implementation model; 
- to develop a prototype of the diagnostic reasoner as a proof of concept. 

 
The design and development of the diagnostic prototype are based on previous work, as documented 
in [25]9. In this work is has been shown how requirements monitoring is used to obtain diagnostic 
information from the software system. Using this information as problem features, the diagnostic 
expert system is able to detect problems in the software as they arise.   
 
This report is organized as follows. First, some background information is presented about autonomic 
computing and requirements monitoring. After that, the implementation model is shortly reviewed. 
Then the implementation is introduced, followed by a review of some example cases. Finally, the 
conclusions will be presented.               
 
 

                                                 
9 The complete transcript of this paper can be found in Annex I. 
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1 Background10 
 
1.1 Autonomic computing 
 
A software system with autonomic computing has the ability to modify its own behavior. Autonomic 
systems are also referred to as self-managing systems. There are four main aspects of autonomic 
computing: self-configuration, self-optimization, self-healing and self-protection [14]. This report 
focuses on the ability of self-healing, meaning that the system can examine, find, diagnose and react 
to system malfunctions [16].       
 
The processes of self-management implements a control loop [1], [12], [13], [14]. The OODA loop can 
be applied here, which identifies four phases: Observe, Orient, Decide, and Act. System monitoring, is 
part of the Observe and Orient phases, while reasoning about monitored behavior is part of the Decide 
phase. Based on the information from the monitors, the automated reasoning component should 
produces some reconfiguration plan, which eventually must be executed within the monitored system.  
 
An autonomic system must be able to modify its own behavior. This means that the required system 
behavior must be defined, and that the system should be enabled to monitor this behavior. Both 
aspects introduce overhead.  
 
The first aspect involves the creation of some kind of system model. However, creating an accurate 
behavorial model of complex software systems such as the CMS is extremely difficult: these types of 
systems have grown too large to statically verify and analyze [22].  
 
The second aspect means adding a monitoring framework to the software system. This not only 
introduces overhead at run-time, but also at development time. The increase in overhead is because 
incorporating new monitoring techniques or adapting existing ones also has a negative influence on 
both the time and budget of the development process. 
 
1.2 Requirements monitoring 
 
To overcome the drawbacks of creating a complex system model and the increased development 
overhead when implementing autonomic computing, the use of requirements monitoring was 
proposed in [25]. Requirements monitoring is the tracking of the run-time behavior of a system in order 
to determine whether that running system is meeting its requirements [7], [19].  It is based on the 
notion that the behavior of a system is specified in the requirements of the system and consequently in 
its design. In this monitoring concept, the actual implementation of the software is of no concern, as 
long as the desired behavioral properties are accomplished. 
 
The following advantages are offered when autonomizing the CMS using requirements monitoring: 

1. The opportunity to model system behavior on a high level without the creation of a complex 
behavioral model; 

2. Limitation of workload required by designers and developers; 
3. Good testability of the system for the current version of the CMS; 
4. An approach to streamline the requirements elaboration process for future versions of the 

CMS. 
 
A prerequisite for conducting requirements monitoring is the formalization of those requirements [13], 
[20].  This is part of the process of Requirements Engineering (RE). RE is concerned with the 
identification of real-world goals for functions of and constraints on software systems, the 
operationalization of these goals and the assignment of responsibilities for the resulting requirements 
[4], [17]. The goal-oriented RE method KAOS (Knowledge Acquisition in Automated Specification) is a 
frequently used technique in RE processes and requirement monitors development [5]. It is very well 
documented and various tools exist that support the sub processes and steps within this RE method, 
for instance [2], [11]. 
 

                                                 
10 An elaborate description of requirements monitoring, the KAOS methodology and the ReqMon framework can be found in 
[23].   
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KAOS uses object models, which can be represented using for instance UML (Unified Modelling 
Language) [10]. In essence, the functionally of the system is described in terms of goals. These goals 
should be operationalized by an agent11, which is an entity it the composite system. An agent can for 
instance be a specific software component or a part of the infrastructure. A goal can lead to one or 
more requirements. These relations can be visualized in a graph. Goal graphs offer a good overview 
of which elements of the system are responsible for certain tasks. They are scalable in size, for 
instance zooming in on parts of the system, and in depth, for instance by using general goals or really 
specific goals. 
 
1.3 ReqMon framework 
 
Several monitoring systems adopt the KAOS approach to defining and formalizing software 
requirements. A summary of these systems can be found in [5]. For prototype development in [25], the 
ReqMon monitoring system as presented by W. Robinson in [19], [20], [21] has been adopted.  
ReqMon offers a programming interface that simplifies temporal event reasoning in real-time or near 
real-time [18]. It uses the JESS (Java Expert System Shell) programming language.  
 
ReqMon offers a compiler for the OCL Object Constraint Language. OCL is a well-known expression 
language that enables one to describe constraints on object-oriented models and other object 
modelling artefacts. It is part of the UML framework. The ReqMon OCL variant extends the UML 2.0 
OCL specification to include the Dwyer patterns, which are based on a collection of common patterns 
found in requirement specifications [6]. These provide the means to express the linear-time temporal 
logic needed for the defining the KAOS goals. REQMON relies on event-based OCL semantics that 
have been extended to include temporal operations based on state and event semantics [21].  
 
When deployed into the target system, the requirement monitors analyze the event stream that is 
generated by the monitored software component. These events contain information about the 
component’s processing. If a pattern of received events conflicts with the predefined pattern specified 
in the monitor definition, the property evaluation becomes false. This means that a monitored 
requirement is not satisfied, thus the system does not behave according to the design requirements. In 
a component-based and network-based software system such as the CMS, each component would be 
monitored by a daemon process containing all goal specifications for that particular component, as is 
depicted in Figure 1. 
 
 

 
 

Figure 1: Data streams for a software component monitored by a ReqMon daemon. 
 
2 Implementation 
 
2.1 Model and prototype implementation 
 
The model as presented in [25] is reintroduced in Figure 2. It shows the transformation steps needed 
to implement and test the requirements monitoring for the CMS. For the deployment of monitors, the 
KAOS method is applied to extract goal information for software components based on the 

                                                 
11 A KAOS agent does not have the same qualifications as those of agents as defined in artificial intelligence (AI) research. 
KAOS agents can be any active component in the composite system, such as humans, devices or software.   
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requirements documentation that is available. These goals are converted to OCL descriptions to form 
the ReqMon monitor definitions, which can be compiled to executable (JESS) code.  
 
The feature database is filled with diagnostic rules. These rules are constructed using the monitored 
properties as defined in the various ReqMon monitors. Expert information is used to create the 
diagnostic rules for the reasoner. Other information sources can also be used, such as fault history 
logs and component specification documentation.  
 

 
 

Figure 2: Implementation model for requirements information in the CMS. 
 
For prototype development, the ReqMon goal definitions and the JESS diagnostic rules are tested in 
an simulation environment. The project has the aim to prototype was build to examine the feasibility of 
using requirements monitoring in a complex software system such as the CMS. For the research 
presented in [25], a prototype was developed for a small CMS software chain to act as a proof of 
concept. This prototype has been expanded to incorporate the diagnostic reasoner.    
 
To simulate and test the system, a target CMS software chain is selected. The first prototype featured 
a test chain consisting of software components for the collection and interpretation of diagnostic 
messages from the navigation radar suite. For further testing, a more operational software chain has 
been selected, which is the diagnostic and control software for the Goalkeeper system. When it comes 
to requirements monitoring, the Goalkeeper is a relative simple system that consists of a gatling gun, a 
search radar and a tracking radar. The system forms the last line of defense of the naval vessel 
against incoming missiles and is designed to work fully autonomous.  
 
Figure 3 depicts the software coordination model of the Goalkeeper software chain12. The figure 
shows the software modules needed for remote control of the Goalkeeper from the Command Centre, 
which are the COGK, CECIWS modules and D2000 user interface. For analyses of the diagnostic 
messages from the system, the modules CODIAG_GK, PFDFEU_GK and PFD exist. The diagnostic 
information is presented via the MATRIX maintainer user interface in the Command Centre.    
 
 

 
 

                                                 
12 Full details of this military software system are classified. In the present context, it is sufficient to mention only the 
abbreviations of the software components without further comment. 
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Figure 3: Software coordination model for the CMS Goalkeeper software chain. 
 
2.2 Monitor creation 
 
For the creation of the ReqMon requirements monitors, the following step are carried out: 

1. The goals of the monitored system are identified using the KAOS goal-oriented RE approach; 
2. The defined goals are specified into requirement statements; 
3. The ReqMon monitors are defined based on the goal specifications; 
4. The monitor definitions are compiled to JESS code for use in the simulation environment. 
 
 

2.2.1 Goal elicitation 
 
To create the ReqMon monitors, first the goals of a software component should be identified. For new 
software systems, goals could be drawn up using goal-oriented RE techniques during the design 
phase of the project. For existing systems such as the CMS, available documentation should be used. 
This should mainly be the requirements documentation, supported by other available technical 
information. For instance, for the monitors of the COGK module a requirement document and a 
technical description document were available [3], [8], [9]. Also, the expertise of the developer was 
used as domain expert knowledge input. 
 
Using the KAOS guidelines for goal elicitation, a goal graph can be created for a software system or 
part of a software system.  Such a graph shows the goals and the agents assigned to operationalize 
these goals. Consider Figure 4, which shows the a partial KAOS goal graph for the Goalkeeper 
system, starting with the goal “Goalkeeper is remote controllable”13. The goals of the composite 
system are represented as parallelograms. They are operationalized by software agents, which are 
the octagons. This goal graph clearly shows which parts of a system functionally are achieved by 
which software components.    

 
 

Figure 4: Partial KAOS goal graph for the Goalkeeper system. 
 
 

2.2.2 Goal specification 
 
The goals have been defined in a goal structure, which is based on the structure used by KAOS. 
Examples can be found in for instance [5], [10], [11], [15]. KAOS offers a temporal specification 
language to define goal statements. However, it has been opted to use only informal goal definitions 
within the structures. This is because ReqMon itself offers an OCL language to formalize the goals. In 
this manner, the overhead for the software developer who has to define the goal statements is 
minimized. As has been stated, a goal can lead to one or more requirements and thus to one or more 
monitor definitions. For instance, the goal structure for “Goalkeeper status is known” defines five 
properties that should be monitored: 

                                                 
13 A complete overview of the Goalkeeper goal structures and goal graphs can be found in [24]. 



Master thesis                                                                             February 15, 2008   
 

 
Robert Westdijk Annex 3 page 68 

 
 
SystemGoal    Goalkeeper status is known 

InformalDef    
The general system status should be known.  

 GoalPattern 
  Achieve 
   Concerns   
  System_Monitor, GK_System      
 OclInformalDef  1 

If the Goalkeeper status is known, an instance of S ystem_Monitor 
should be monitoring it 

 OclInformalDef  2 
If the System_Monitor is activated, the control_mod e and 
operating_mode cannot be invalid 

OclInformalDef  3 
When the Goalkeeper had control, the CMS cannot hav e control and vice 
versa 

OclInformalDef  4 
The fire_status of Goalkeeper can either be ready_t o_fire or standby 

OclInformalDef  5 
When the simulation mode of Goalkeeper is started ,  the System_Monitor 

should report this  . 
 
The goal structure specification forms the starting point for monitor implementation. Each informal 
OCL definition leads to actual OCL constraints. This gives the developer close control over what 
should be monitored and over the granularity of the monitors. Important requirements can be 
monitored in more detail, while others can be monitored in a simpler manner or even not at all. 
 
 
2.2.3 Monitor definition 
 
For the definition of the monitors, ReqMon uses OCL 2.0. This enables the specification of OCL 
messages. The monitor definitions adopt a proposed variant on the definition of the OCL messages is 
used [21].  
 
Consider the goal structure example given in the previous section. OclInformalDef1 states that when 
the status of the Goalkeeper is known, the System_Monitor  should be monitoring it. Note that 
System_Monitor  refers to an UML class in the software model COGK. The name of this object has 
been changed for reasons of confidentiality. In all examples hereafter that contain information related 
to the UML models of CMS modules, the names have been altered. However, the examples still reflect 
the actual implementation of these components.  
 
For OclInformalDef1, the System_Monitor  is activated by the creation of relation R15 between that 
object and GK_System, which is an object representing the Goalkeeper system. The creation of this 
link should be monitored, which results in the following monitor specification: 
 
def : linkMonGK: Sequence( OclMessage ) = receivedMessages (linkObject()) 
       -> select ( m | m.relation = 'R15' and m.cla ss1 = 'GK_System' and  

m.class2 = 'System_Monitor') 
 

inv : eventuallyLMonGK: eventually  linkMonGK  . 
 
As a second example, the OclInformalDef2 states that if the System_Monitor  is activated, the 
control_mode  and operating_mode  of the Goalkeeper cannot be invalid. The monitor definitions for 
this requirement look like: 
 
def : callInit: Sequence( OclMessage ) = receivedMessages (callActivation())  

-> select( m | m.activation = 'Initialize') 
def : setOpMode_Inv: Sequence( OclMessage ) = receivedMessages (setAttribute())  

-> select( m | m.class = 'System_Monitor' and m.att ribute = 'operating_mode'   
                          and m.value = 'invalid' )  

def : setConMode_Inv: Sequence( OclMessage ) = receivedMessages (setAttribute())  
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       -> select( m | m.class = 'System_Monitor' an d m.attribute = 'control_mode'   
                                 and m.value = 'inv alid'  
inv : OpMode_after_Init: after (callInit) never  setOpMode_Inv    

inv : ConMode_after_Init: after (callInit) never  setConMode_Inv  . 
 
 
2.2.4 Monitor compilation 
 
After definition, the monitors can be compiled to JESS code using the ReqMon compiler. In turn, the 
compiled JESS code can be made into a deployable monitor. This is not necessary for the test and 
simulation environment of the prototype. To verify the monitors, JESS scenarios are used. These 
scenarios simulate the event stream from the software components. The JESS scenarios can be 
created by combining various event entries like the own shown above. These scenarios are run in the 
ReqMon environment. 
 
Considering the setOpMode_Inv  definition from the previous OCL example, the corresponding entry in 
a JESS simulation for the System_Monitor  object would look like: 
 
(jassert (OclMessage (component " Goalkeeper_Control:COGK ")  
                     (subComponent " setAttribute(String) : void ")  
                     (parameters " class " " attribute " " value ") 

                     (arguments " System_Monitor " " operating_mode " " invalid ")))  . 
 
 
2.3 Diagnostic Reasoner 
 
The diagnostic reasoning component uses the monitored properties as features. The evaluation of 
these features by the deployed requirement monitors provide the information for further reasoning. For 
prototype development, the JESS language offers a rule engine and scripting environment to create 
rule-based expert systems. In this system, the features will be represented as facts. A set of rules will 
be defined, which models the knowledge about the target system. This knowledge comes from domain 
experts, requirements documentation, technical documentation on the software components, and 
other sources available.            
 
The ReqMon daemons will evaluate the monitored requirement properties. The properties will either 
be satisfied or unsatisfied given the monitored event stream from the software components.  The 
evaluated values will be sent to the reasoner, which in turn evaluates the property information. The 
combination of these property events will cause the defined expert rules to fire. This process is 
depicted in Figure 5. 
 

 
 
 

Figure 5: Information flow in the monitoring and reasoning framework, with a simple pseudo-code example. 
 
As an example, consider the goal structure that was introduced in Section 3.2.2. Suppose that after 
relation R15 has been created, an invalid value for the control_mode  or operating_mode  of the 
Goalkeeper indicates the manifestation of some known problem in the system. For all of these 
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properties, an OCL monitor definition has been created. However, combining these properties requires 
a JESS rule definition:  
 
(defrule GK-known-problem-detected  
  (and (or (monitor-event (property OpMode_after_In it)(evaluated FALSE)) 
           (monitor-event (property ConMode_after_I nit)(evaluated FALSE))) 
       (monitor-event (property eventuallyLMonGK)(e valuated TRUE))) 
  => 

  (assert (Goalkeeper-known-problem-has-been-detect ed))) . 
 
In this case, the defined rule only uses information from a single ReqMon daemon which is 
instantiated to monitor the COGK module. As is shown in Figure 5, the reasoner can receive property 
evaluations from multiple instances of the ReqMon daemon. This allows detection of diagnostic 
problem throughout the software system. 
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3 Case Examples 
 
In [25] it was stated, that the information extracted by requirements monitoring can have multiple uses, 
as depicted in Figure 6: 
7. Requirements monitoring during software development and testing can provide useful information 

for the developer; 
8. The run-time goal information can be redirected to the operator to provide feedback about system 

performance and errors; 
9. The collected goal information can be used by an AI system to make a first diagnosis for the 

software maintenance technicians on board in case of software malfunctions. 
 
 

 
 

Figure 6: Data flow of diagnostic information in the requirements monitoring system. 
 
To illustrate how the diagnostic reasoning component would operate, three example cases are 
presented here. Each case offers an example of one of the uses for requirements monitoring as 
described above. 
    
 
3.1 Example 1: Supporting the developer   
 
During CMS software development, incremental tests are carried out. The white and black box tests 
for a single component can be carried out locally in the development environment. Integration tests 
can be done on the so-called Target system at CAMS/Force Vision, on which the Guardion CMS  
software is installed. It resembles the Command Centre as found aboard Dutch naval vessels. 
Software acceptance are always carried on the actual CMS on board the ships. 
 
When applying requirements monitoring as proposed in this research, the developer is enabled to 
implement monitoring definitions in the software based on the specified requirements. Furthermore, 
rule definitions can be composed. These would be added to the existing rule base of the diagnostic 
reasoning component, which resides somewhere within the CMS. This provides the developer with 
extra information when testing and debugging his software component in the integrated environment.  
 
In Figure 3, the Goalkeeper software chain was depicted. The software modules for Goalkeeper 
diagnostics are CODIAG_GK, PFDFEU_GK and PFD. The PFDFEU_GK is the database component, 
which holds information about possible diagnostic messages that can be received via the 
CODIAG_GK from the Goalkeeper system. The requirement documentation for both components 
specify which messages should be contained in the database.  
 
In the CODIAG_GK, each message is represented by an instance of a generic message object class, 
of which the creation can be monitored. The PFDFEU_GK receives these generic messages and 
maps these as a condition on a Goalkeeper technical component, also represented by an object class. 
This can also be monitored. Using these OCL monitor definitions, a rule can be created that checks 
whether the complete message set is presented in the message database: 
 
(defrule message-not-in-database 
  " Message is not in the diagnostic database "  
   (and (or (monitor-event (property Msg_response_F 1_True)(evaluated TRUE)) 
            (monitor-event (property Msg_response_F 1_False)(evaluated TRUE)) 
            (monitor-event (property Msg_response_F 2_True)(evaluated TRUE)) 
            (monitor-event (property Msg_response_F 2_False)(evaluated TRUE))) 
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        (monitor-event (property Cond_response_Msg) (evaluated FALSE)) 
        (monitor-event (property PHB_PFDGK_after_PF DGK)(evaluated TRUE))) 
    => 

    (assert (raise-alert d1))) . 
 
The Msg_response  properties represent the monitoring definitions for the creation of the message 
instances, while the Cond_response_Msg  property monitors the mapping of the messages. An extra 
check is added by incorporating the PHB_PFDGK_after_PFDGK property. This property will remain 
satisfied as long as heartbeat objects are sent from CODIAG_GK to PFDFEU_GK. The assertion of d1 
in the rule definition indicates which database entry in the JESS simulation environment should be 
raised.  
 
The  monitoring of the PHB_PFDGK_after_PFDGK property ensures that when the rule is fired, the 
developer does not have to check whether this is because of a failure in the communication between 
the two software modules. Thus, when there is no condition mapping despite the creation of a 
diagnostic message by the Goalkeeper system, this will mean that the message is not in the database 
and should be added. When this monitor scheme would be deployed in the real CMS environment, it 
could even detect diagnostic messages being sent that were not foreseen by the requirement 
designer, for instance because the available interface documentation was incomplete. 
 
 
3.2 Example 2: Informing the operator     
 
In order for the Goalkeeper to be able to engage targets, it should eventually become in a ready-to-fire 
state. This means, that all firing preconditions have been satisfied. Most preconditions have are 
hardware in nature, for instance fire inhibit switches that should be switched in the right position or 
safing pins that should be removed. However, some preconditions must be satisfied by the COGK 
software module.  
 
When the fire command is given by the operator using the CMS Goalkeeper user interface, three 
software conditions should be satisfied: the controle_mode  should be set to the CMS, the 
operating_mode  should be set to manual and the Goalkeeper should report ready-to-fire. The latter 
condition is achieved by removing all necessary hardware constraints, while the first two should be set 
by the operator.  
 
By defining monitor definitions for all three pre-firing software properties, the operator can be warned 
when a fire command is given while the Goalkeeper is not able to comply. Moreover, by creating 
multiple rule definitions, the operator can be informed about the exact cause of the incompliance of the 
system. One of the rule variants would look like: 
 
(defrule goalkeeper-not-ready-to-fire  
  " Goalkeeper is not ready to fire " 
  (and (monitor-event (property eventuallyFireCmd)( evaluated TRUE)) 
       (monitor-event (property eventuallyConCMS)(e valuated TRUE)) 
       (monitor-event (property eventuallyOpMan)(ev aluated TRUE)) 
       (monitor-event (property eventuallyModeRtf)( evaluated FALSE))) 
  => 

  (assert (raise-alert c3)))  . 
 
The c3  alert entry is defined as: 
 
(alert (id c3)(module " COGK")(error " Goalkeeper is not ready to fire ") 
       (cause " Goalkeeper does not report ready-to-fire ") 

       (solution " Confirm that all GK safety features have been remov ed"))  . 
 

As a second example, the output of a JESS simulation for another rule variant is given in Figure 7. In 
this case, the Goalkeeper system reports ready-to-fire and is controlled by CMS. However, the 
operator has neglected to switch to manual operation. When the fire command is given, the diagnostic 
reasoner issues a warring that will be displayed through the user interface. The problem can then be 
corrected accordingly.     
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Figure 7: Example output from a JESS simulation. 
 
 

3.3 Example 3: Autonomizing the system  
 
As mentioned before, the Goalkeeper is designed to operate autonomously . This means that it has its 
own suite of sensors to detect and track possible threats. An automatic surveillance sector can be 
defined, but it is also possible to cue hostile tracks other sensors. To keep tracking its targets, the  
Goalkeeper must be aware of the heading of the ship. The heading is one of the attribute values of the 
Own_Ship_Data  object class, which can be found throughout the CMS software. This information is 
supplied by two redundant hardware sources, which interface with the CMS via two different instances 
of the same software module, COOSD. Thus, the goal “Own Ship Data is provided” is operationalized 
by the COOSD module, as can been seen in Figure 4.  
 
To check if the COGK and CECIWS components receive the data, monitors check the creation of the 
input object, which is a direct mapping of Own_Ship_Data  instances on the output of COOSD. To 
ensure that the COOSD module is still running, the process heartbeat object is also monitored. If the 
process heartbeat is created while the input objects are not, there is a problem. The corresponding 
rule definition is stated as follows:         
      
(defrule no-own-ship-data 
  " Goalkeeper does not receive Own Ship data " 
  (and (monitor-event (property OSDCo_after_OSDCo)( evaluated FALSE)) 
       (monitor-event (property OSDCe_after_OSDCe)( evaluated FALSE)) 
       (monitor-event (property PHB_COSD_after_PHB_ COSD)(evaluated FALSE))) 
  => 

  (assert (raise-alert c12))) . 
 
Using the ReqMon monitors and the rule definition stated above, the operator could be warned that 
the Goalkeeper system is not receiving any heading information. However, what would really be 
desirable, is for the CMS system itself to react to this error. If the COOSD process is running, but no 
instances of Own_Ship_Data  are received by COGK and CECIWS, then the root cause of the problem 
will properly be software-related or infrastructural. By enhancing the system with autonomic 
computing, it can try to establish the cause of the problem. Even when the system’s effort fails, the 
diagnostic information retrieved by the system’s actions will increase the knowledge of the problem for 
the maintainers onboard, hence decreasing the number of fault hypotheses for them to check.     
 
To close the OODA loop as depicted in Figure 8, the system must be able to perform reconfiguration 
actions. This report focuses on the ability of self-healing. Using requirements monitoring, the system 
can examine, find and diagnose problems. By adding a reconfiguration component, it should be able 
to react to system malfunctions by carrying out some reconfiguration plan.  
 

Jess> INFO: Property eventuallyOpMan is evaluated F ALSE 
INFO: Property eventuallyConCMS is evaluated TRUE 
INFO: Property eventuallyModeRtf is evaluated TRUE 
INFO: Property eventuallyFireCmd is evaluated TRUE 
ALERT: Error in module COGK 
ALERT: Description: Goalkeeper is not ready to fire  
ALERT: Cause: Goalkeeper is not in mode Manual 
ALERT: Solution: Select Goalkeeper Manual mode 
~ 
Jess> INFO: Property eventuallyOpMan is evaluated T RUE 
NOTICE: Error "Goalkeeper is not ready to fire" is no longer valid 
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Figure 8: OODA loop for  autonomic computing in the simulation environment. 
 
Given the problem described above, a simple example of a reconfiguration plan is presented in Figure 
10. This plan uses only the knowledge present based on the defined monitors in the Goalkeeper 
software chain. It assumes that COGK and CECIWS are running on the same node, while COOSD is 
instantiated on a different node. First, the MTL on the node of COOSD is restarted. The MTL is a 
software process that provides for the relaying of component objects. If this does not help, the MTL on 
the Goalkeeper software node is restarted. The next step would be to restart the COOSD process 
itself. It this fails, the CECIWS is restarted on another node. If this helps, the COGK is also re-
instantiated14. However, if all actions fail to solve the problem, the maintainer is warned by the system. 
The reconfiguration actions are disclosed, giving the maintainer a starting point for further fault 
localization. 
 
Figure 9 shows only one example of what a reconfiguration plan could look like. If more knowledge is 
added, the scheme can get more elaborate. For instance, the fact that other software modules do or 
do not receive the Own_Ship_Data  object reduces the set of root cause hypotheses. Furthermore, 
more intelligent techniques can be used in the planning algorithm, for instance as presented in [1]. 
  

 
 

Figure 9: Example of a simple reconfiguration plan for the “no-own-ship-data” failure. 
 

                                                 
14 The current CMS version has dynamic reconfiguration capabilities, but the implementation of dynamic reconfiguration 
architectures is outside the scope of this research.   
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4 Discussion 
 
The research presented in this report is the continuation of the work presented in [25], where the use 
of requirements monitoring as a basis for applying autonomic computing was discussed.  This 
previous research involved the creation of a ReqMon prototype, which was test on a simple CMS 
software chain. It was stated that the ReqMon prototype should be tested on more complicated CMS 
software components to get more tangible results.  
 
With the creation of the diagnostic reasoning component and by presenting some case examples, the 
benefits of using requirements monitoring as a basis for further autonomic development have been 
made clear. These are mainly the scalability of the approach, the elimination of the need for a 
comprehensive system model and the relative simple manner in which monitoring and reasoning 
capabilities can be defined. Also, the feasibility of the implementation of requirements monitoring is 
shown.  
 
However, some reflections on the use of the proposed methodology are considered here. The 
presented implementation model is scalable for larger systems that the software chain on which is was 
applied in this report. However, the creation of the case examples have proven that domain-specific 
knowledge is still required in certain phases of monitor implementation, which reduces the advantage 
of limited implementation overhead in the software development phase. On the other hand, much can 
be regained by applying goal-oriented RE techniques throughout the various stages of the software 
development process. 
 
Beside the need for domain-specific knowledge in the development phase, system complexity is also 
an issue. The OCL statements and corresponding rule definitions presented in this work are simple in 
nature. For a proof of concept, they provide enough complexity to base conclusions on, but when 
applying the concept to large-scale software systems, their complexity will increase. An increase in 
complexity will lead to more effort to develop and test the monitor specification and rule definitions. By 
offering automated tools to the developer, the increase in complexity can be reduced. Also, more 
elaborate AI techniques than the proposed rule-based approach could be used. Furthermore, the 
scalability of the ReqMon requirements monitoring framework should be applied here, meaning that 
important requirements can be monitored more elaborately than less important requirements.  
 
ReqMon assumes that there is a static and dynamic traceability between the software objects and the 
stated requirements [19]. Static traceability means that monitored entities can be traced back to their 
object definition in the programming code. Dynamic traceability means that the monitor should be able 
to distinguish between different instances of a defined object class. The first assumption is satisfied by 
all software that has been developed using a modelling technique. To satisfy the second assumption, 
the software code should be instrumented to send programming events for monitoring. For the CMS 
software, the desired instrumentation can be added since the compiler is developed in-house. 
However, instrumentation could be an issue for other systems. ReqMon offers support for 
instrumentation only for Java-based programs. For other types of applications, instrumentation should 
be added by other means. This is considered to be outside the scope of this research.  
 
An autonomic computing software system is designed to work autonomously and automatically. This 
essentially means, that there is no need human interference. However, the complete elimination of 
human decisions in a military (weapon) system is often undesirable. For instance, after a missile has 
been launched by a naval vessel, automatic reconfiguration of the CMS is out of the question while the 
ship is offering missile guidance. More in general, the operator’s and maintainer’s grasp on the system 
decreases when the system’s autonomic ability increases. Instead of a full autonomic software 
system, a semi-autonomic mode could be introduced. This means that the system does not actually 
carry out any reconfiguration actions, but notifies the maintainer when a fault occurs. The system can 
then advise the maintainer and suggest which actions should be taken to correct the fault. 
 
In this work, the issue of dynamic reconfiguration was only shortly mentioned. In reality, this is an 
entire research field with many difficult aspects. The implementation of dynamic reconfiguration 
capabilities in a complex system such as the CMS requires great effort. Currently, work is been 
undertaken by CAMS/Force Vision to implement dynamic master/slave switching between 
instantiations of CMS software components, but this is not yet a full dynamic reconfiguration ability. 
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In the presented cases, some examples of simple software reconfiguration actions were given. To 
solve more complex problems in a software system, these types of actions will be not be enough. The 
reconfiguration component should have the ability to take more elaborate actions. For instance, the 
ability to resend certain objects, or the ability to perform certain actions for which normally a operator 
should be required. The implementation problem of these abilities is outside the scope of this report, 
but adding them is both feasible and practicable in the case of CMS software modules.       
         
In mission-critical systems such as the CMS, system monitoring and diagnostics is crucial. These 
systems should be viewed in a composite manner, because the software and hardware of the systems 
are both needed. Also, faults occurring in hardware can have effects on the software, and vice versa. 
Although goal-oriented RE techniques such as KAOS create a composite view on the system, only the 
software monitoring aspect has been researched in this work.  This is because reasoning about the 
state of the software in respect to its desired behavior is very difficult, but reasoning about the whole 
composite system would be even more difficult when using only a single monitoring framework. 
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5 Conclusion 
 
This report describes a research project which aims to examine the use of requirements monitoring for 
applying autonomic computing of complex software systems. To implement autonomic computing, the 
use of requirements monitoring combined with a rule-based diagnostic reasoner has been proposed.  
 
A model has been defined, identifying the transformation steps needed for the implementation of 
autonomic computing based on requirements monitoring. This model proposes the use of the KAOS 
goal-orient requirements engineering (RE) approach to define goals for the software components. 
Monitoring is done using the ReqMon requirements monitoring framework to create software monitor 
specification. Reasoning capability is added by a JESS rule-based diagnostic reasoner.    
 
For testing and simulation of the proposed implementation, a prototype has been developed. The 
event stream from the CMS software components can be simulated, as well as the evaluated 
requirements properties as they are received by the reasoner.  
 
The information extracted by applying requirements monitoring to a software system can be used for 
software testing during software component development. Furthermore, the goal information can 
provide feedback to the operator during run-time. Last, the properties monitored by the requirements 
monitoring framework can be used for diagnostic reasoning about the software system.  
 
To demonstrate the uses of the proposed monitoring framework, three case examples have been 
provided for the Goalkeeper close-in weapon system. The first case features a problem in the 
Goalkeeper diagnostic software during the development phase. By checking the creation of object 
instances representing diagnostic messages, the integrity of the diagnostic message database is 
checked. The second case introduces the preconditions that needs to be satisfied in order for the 
Goalkeeper to fire. By monitoring the value of object attributes representing these preconditions, the 
operator is warned when the are not met. The third case focuses on autonomizing the software. When 
heading information is no longer sent to the Goalkeeper software modules, a reconfiguration plan 
could be executed to solve this problem. 
 
It can be concluded that an implementation of autonomic computing in a CMS is feasible; this was 
demonstrated with and discussed by combining requirements monitoring with rule-based diagnostic 
reasoning. 



Master thesis                                                                             February 15, 2008   
 

 
Robert Westdijk Annex 3 page 78 

Acknowledgements 
 
This work is sponsored by the Centre for Automation of Mission-critical Systems, Force Vision. The 
authors like to thank Frank Zwarthoed, the developer and domain expert for the CMS Goalkeeper 
software, for his support. 
 
 
References 
 
 [1]  Arshad, N., “A Planning-Based Approach to Failure Recovery in Distributed Systems”, PhD 

Thesis, 2006. University of Colorado, Department of Computer Science, 2006.   
 [2] CETIC, Centre of Excellence in Information and Communication Technologies, “An Overview 

of the FAUST Toolbox”, http://www.cetic.be/internal220.html. http://www.cetic.be, last visited 
December 2007. 

 [3]  COGK-team., “COGK allocated DAISY-NT requirements”, CAMS/Force Vision. September 11, 
2001 (internal report). 

 [4]  Darimont R, and Lamsweerde, A. van, “Formal Refinement Patterns for Goal-driven 
Requirements Elaboration”, Proceedings of the 4th ACM Symposium on the Foundations of 
Software Engineering, pp.179-190, 1996.  

 [5]  Dingwall-Smith, A., “Run-Time Monitoring of Goal-Oriented Requirements”, PhD Thesis, June 
2006. University College London, Department of Computer Science, 2006. 

 [6]  Dwyer, M., Avrunin, S. and Corbbet, J., “Patterns in property specifications for finite-state 
verification”, Proceedings of the Twenty-First International Conference on Software 
Engineering, pp. 411-420, 1999. 

 [7]  Fickas, S. and Feather, M., “Requirements monitoring in dynamic systems”, Proceedings of 
the IEEE International Conference on Requirements Engineering, pp. 140-147, 1995.  

 [8]  Franken, M., “CoGK outline v01”, CAMS/Force Vision, Augustus 19, 2003 (internal report, 
CONFIDENTIAL). 

 [9]  Franken, M., “CoGK development v04”, CAMS/Force Vision, June 23, 2005 (internal report, 
CONFIDENTIAL). 

[10]  Heaven, W. and Finkelstein, A., “A UML profile to support requirements engineering with 
KAOS”, IEEE Proceedings - Software, vol. 151, pp. 10-27, 2004. 

[11]  “A KAOS Tutorial”, September 5, 2003. http://www.objectiver.com/download/documents/ 
KaosTutorial.pdf. Objectiver website, http://www.objectiver.com, last visited December 2007. 

[12]  Kephart, J. and Chess, D., “The Vision of Autonomic Computing”, IEEE Computer, pp 41-50, 
January 2003.  

[13]  Lapouchnian, A., Liaskos, S., Mylopoulos, J. & Yu, Y., “Towards Requirement-Driven 
Autonomic Systems Design”, Design and Evolution of Autonomic Application Software, May 
21, 2005.  

[14]  Lapouchnian, A., “Goal-oriented Requirements Engineering: An Overview of the Current 
Research”. Depth Report, University of Toronto, 2005.  

[15]  Letier,E., “Reasoning about Agents in Goal-Oriented Requirements Engineering”, PhD Thesis, 
May 2001. Université Catholique de Louvain, Dépt. Ingénierie Informatique, 2001. 

[16]  Murch, R., “Autonomic Computing”, 2004. IBM Press/Prentice Hall, New Jersey. 
[17]  Nuseibeh, B. and Easterbrook, S., “Requirements Engineering: A Roadmap”, International 

Conference on Software Engineering, June 4-11, 2000.  
[18]  Robinson W., “About this project”,  http://wrobinson.cis.gsu.edu/projects/reqmon/Home/ 

AboutThisProject/tabid/401/Default.aspx. ReqMon website: http://wrobinson.cis.gsu.edu/ 
projects/reqmon, last visited December 2007. 

[19]  Robinson, W., “Monitoring Software Requirements using Instrumented Code”, Proceedings of 
the 35th Hawaii International Conference on System Sciences, January 7-10, 2002.  

[20]  Robinson, W., “Implementing Rule-based Monitors within a Framework for Continuous 
Requirements Monitoring”, Proceedings of the 38th Hawaii International Conference on 
Systems Sciences, 2005.  

[21]  Robinson, W., “Monitoring Software Quality Requirements”, 2007. Georgia State University, 
Department of Computer Information Systems, 2007. 

[22]  Ward, M. and Heineman, G., “A Framework for Visualizing the Behavior of Component-Based 
Software Systems”, Conference on Object-Oriented Programming, Systems, Languages and 
Applications, October 14-18, 2001. 



Master thesis                                                                             February 15, 2008   
 

 
Robert Westdijk Annex 3 page 79 

[23] Westdijk, R., “Autonomic Computing for the Combat Management System based on 
Requirements Monitoring”, Literature study, January 28, 2006. Delft University of Technology, 
Department of Electrical Engineering, Mathematics and Computer Science, 2006.  

[24] Westdijk, R., “Thesis Progress Report”, CAMS/Force Vision, August 8, 2007 (internal report).  
[25]  Westdijk, R., Rothkrantz, L. and Leijen, A.V. van,  “Applying requirements monitoring for 

autonomic computing in a combat management system”, IEEE AUTOTESTCON Systems 
Readiness Technology Conference, pp. 349-358, September 17-20, 2007.  

 
 
     
 
 



Master thesis                                                                             February 15, 2008   
 

 
Robert Westdijk Annex 3 page 80 



Master thesis                                                                             February 15, 2008   
 

 
Robert Westdijk Annex 4 page 81 

Annex 4: Software component diagram 
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Component diagram (UML 2.0) showing the dependencies among the software components of the 
programming and simulation environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


