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Abstract 

 
 

This research focused on the modelling of realistic “human like” driving 
behaviour for the purpose of studying and understanding the complex 
interactions that lead to accidents. The ultimate goal of which is to 
develop a driver behaviour model that can be used in simulations to 
analyze and understand driving behaviour and human errors for the 
purpose of increasing road safety.  
 
A rigid and practical psychological model was selected as the conceptual 
basis for a software model that was designed and implemented in a 
micro-simulation environment. The driver behaviour model extends the 
current simulation providing more realistic traffic and driving conditions 
in a flexible framework. 
 
The research covers the areas of traffic safety, human factors engineering 
and psychology. Ultimately a driver model design will be developed and 
implemented in TNO‟s simulation environment MARS. 
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1. Introduction 

In this chapter a brief  introduction, background information, goals 
and the relevance of  traffic safety research will be explained. 

The Netherlands is one of the safest countries in the world to drive in, with approximately 
eight million people driving everyday and less than 800 traffic related fatalities per year. 
Still society has a vested interest in lowering the accident rate even further – the so called 
“vision zero” policy. 
 
In the past accidents were viewed as a failure of the driver to react fast enough or 
correctly - leading to a focus on the perception-motor skills of the driver (Summala, 
1988). As a result accident prevention initially focused on better training, safer cars and 
roads, with clearer signs so that the driver always knows what to expect. However the 
condition of the roads and other physical factors has reached a level where further 
improvements have a diminished influence on the number of accidents. TNO has 
recognised this theoretical barrier limiting further improvements and believes that new 
insights into improving traffic safety can be achieved by more accurate and realistic 
models and simulations.  
 
90% of all accidents can be contributed to human errors, making the development of a 
driver behaviour model essential to any attempt to improve road safety through 
simulation. A wide array of research from traffic engineering, human factors engineering 
to psychology address these issues and attempt to model and explain the complex set of 
events and interactions that lead to accidents. Another reason to develop simulations (for 
the purpose of studying traffic safety) is the simple fact that fatal accidents rarely occur – 
and causing accidents to occur in real life for purposes of research is obviously not a 
viable option. Therefore many simulations have been developed to study the different 
aspects of traffic. 
 
For these reasons TNO has initiated research into simulations focused on analyzing traffic 
safety in order to gain insight into the circumstance, behaviour and factors that lead to 
accidents, so that accidents can be prevented. Advanced driver assistance systems, 
adaptive cruise control and other new technologies designed to improve traffic safety can 
also be tested using these simulations. 
 
TNO, industry and researchers quickly realized that a realistic driver decision model that 
could produce “human like” behaviour, causing human errors associated with driving, 
would be at the heart of any serious attempt to significantly improve traffic safety. This 

Chapter 
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research was initially carried out by Arshad Abdoelbasier (Abdoelbasier, 2006) at TNO, 
with the goal of creating a driver behaviour model.  
 
Historically, traffic simulations were modelled for highways, focusing on routing, 
congestion problems and increasing efficiency. TNO‟s simulation environment was no 
exception. As a result Abdoelbasier was required to first implement an intersection model 
(statistically this where the most accidents occur) and a vehicle model capable of correctly 
negotiating an intersection. These elements needed to be properly implemented before 
undertaking the development of a realistic driver behaviour model. Unfortunately, this left 
precious little time to create a driver behaviour model, which is inherently complicated. 
Although Abdoelbasier succeeded in implementing a rudimentary driver behaviour model, 
much work still remains and his research forms a basis for this research. Abdoelbasier 
observed (Abdoelbasier, 2005):  
 

“This [the driver model] is arguably the most important part of the model, since all 
behavioural characteristics and simulated human decisions making processes reside here. 
These are commonly thought of as the most important contributors to safety in traffic, 
and because of their nondeterministic nature also the most complicated to emulate.”  

 
The work done by Abdoelbasier is a starting point, which will be continued and extended 
in TNO‟s simulation framework. 

1.1. Background information 

TNO is a research institution that focuses on applied sciences and innovation in sectors 
ranging from defence to quality of life. Within the core area of „Built Environment and 
Geosciences‟, business unit „Mobility & Logistics‟ is concerned with the development of 
intelligent traffic systems, infrastructure and policy that will make travelling efficient, safe 
and sustainable.  
 
To achieve these goals TNO is involved in ongoing research into traffic safety. The work 
conducted during this project will touch on some of areas of this ongoing research. This is 
a brief overview of the research currently being conducted related to this project. 
 

 Continued development of TNO‟s micro simulation environment: MARS (Multi-
Agent Real-time Simulation). 

 Video capture and analysis of traffic. 

 Gap acceptance model by Tim van Dijk, which is currently under development 

 Abdoelbasier‟s research. 

 Nina Schaap is conducting ongoing research into human factors, psychology and 
behaviour of drivers. 
 

Aboelbasier‟s work focused on creation a realistic micro-simulation of intersections, in 
MARS, for the purpose of deriving safety indicators. To construct an intersection model 
for the micro-simulation three steps were recognized: 
 

1. Implement the actual intersection model 
2. Implementation of a vehicle model, with characteristic attributes of vehicles, such 

as breaking and turning circles.  
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3. Implementation of a driver behaviour model.  
 
The final step was only implemented on at basic level.  

1.2. Aim and motivation for this research 

The main goal of this research is to expand the intersection micro-simulation, by 
Abdoelbasier, to include realistic “human like” behaviour. Formally the goal is:  
 

To develop and implement a drive behaviour model (DBM) in the Multi-Agent Real-
time Simulation, so that more realistic experiments can be carried out for the purpose of 
traffic safety analysis. 

 
In order to achieve this goal the key questions will have to be answered: 
 

 Which psychological model is best suited for implementation into a traffic 
simulation? 

 What are the key factors and behaviours that influence driving and safety? 

 How will driver behaviour be transformed and integrated into the Multi-Agent 
Real-time Simulation? 

 
A significant problem with traffic simulations is the fact that the vehicles drive in a 
homogenous fashion. The vehicles all drive in the same way and display identical 
behaviour, and also driving in a flawless, perfect way. Unfortunately this homogenous 
driving behaviour does mirror reality, and is a limiting factor in the study of traffic safety. 
Realistic driving simulations require some form of behaviour of the drivers, in a human 
like way, in order to make the simulation more realistic and accurate. 
 
Since Abdoelbasier‟s intersection model was created in MARS and TNO has a vested 
interest in the continued development of this micro-simulation model, only this 
simulation environment was considered. Furthermore, the modularity and flexibility of 
MARS means that the current intersection model can be expanded to include human like 
behaviour. 

1.3. Societal and scientific relevance 

Statistically seen accidents are rare events, fatal accidents by comparison practically do not 
occur. In order to make roads even safer studying accidents is necessary to understand 
why they occurred. The inevitable paradox is that accidents occur so infrequently making 
accidents difficult to study. Carrying out accidents on purpose is not a viable option 
either. A far better solution would then be to create an artificial environment in which 
realistic accidents occur.  
 
Human behaviour is an integral part of and major contributing factor to the events and 
decisions that lead to an accident. Any realistic simulation for purpose of studying traffic 
safety would need to incorporate some form of human behaviour model. This is one of 
the main motivations for TNO to develop a driver behaviour model. TNO is nearing the 
limit of what safety research can accomplish through improvements to the condition of 
the roads, better and clear information for the driver, etc. no longer greatly improve the 
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safety of traffic. To further improve safety the human driver must be studied and 
understood.  As well as how technologies such as adaptive cruise control (ACC) and 
advanced driver assistance system will interact and help the driver. 
 
Besides the obvious academic interest of doing research in this field, lowering accidents 
and improving safety is of interest to everyone.  

1.4. Expectations and constraints 

Only vehicles such as cars and trucks will be considered in the simulation and models. 
Pedestrians and cyclists will be excluded in order to simplify the model. Once a proper 
and working model has been developed pedestrians and more complicated roads and 
intersections can still be added. 
 
Although TNO has video footage, this data is from highways and has not been analyzed 
for purpose of studying safety. At some stage TNO plans to re-analyze this data focusing 
on safety but this will only happen in the distant future. New video footage, specifically 
for studying traffic safety, is in the making but will most likely not be completed and 
analyzed in time so as to be useful during this research. It is also questionable how useful 
such video footage would be, the age, gender and other characteristics still cannot be 
ascertained. A problem with data in general is that it is either too specific or too generic to 
be useful. For these reasons and time constraints no or limited calibration and validation 
of the model will be possible during this project.  
 
In this research limited attention will be paid to complex emotions and the effect that they 
have on driving behaviour (although these have been studied and considered). This 
constraint is necessary to cut down the complexity of the computational model and 
simulation implementation at later stages. The strategy is to develop a driver behaviour 
model that is a good foundation for future research. The model can be expanded with 
more complex human interactions and emotions. At this point in time these complex 
motives and intentions based on emotions are beyond what is feasible using the current 
computer simulations available. 

1.5. Approach 

First a literature study of the relevant domain specific information was conducted, 
including the areas of traffic safety, human factors engineering and traffic psychology. 
Human factors engineering provides a foundation to model human capabilities and 
decision making (cognition), using traffic engineering as a back drop to provide a context 
to work in. Traffic psychology has a number of models that can be used in conjunction 
with human factors engineering, which was used to develop a conceptual framework that 
is suitable for further development as a computational model.  
 
In this phase of the graduation project the focus will shifted to the actual development of 
a software design based on algorithms from the field of artificial intelligence and other 
areas that will eventually produce a computational model which can be implemented in 
the simulation environment. 
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In broad terms this research, along with the literature study, forms the basis for the final 
graduation project during which the actual driver behaviour model will be implemented. 
Globally, the following approach can be sketched: 
  

i. Literature study: 
a. Traffic engineering 
b. Human factors engineering 
c. Psychological models 
d. Simulation environment 

 

 Result:  

 Development of a conceptual model. 

 Domain specific knowledge base for further, more 
concrete research. 

 
ii. Graduation project: 

a. Development of a computational model 
b. Design 
c. Implementation 
d. Debugging and testing 
e. Simulation and results analysis 

 

 Result:  

 Simulation incorporating a driver behaviour model. 

1.6. A personal note 

Since I am neither a traffic engineer, nor a psychologist or well versed in the area of 
human factors engineering I had several reservations embarking on this project.  
However I enjoyed studying these interesting areas of research, especially psychology 
which has long interested me but I have unfortunately never had the time to pursue this 
interest. Since I am software engineer I will apologize in advance for any naivety displayed 
on my part in these areas and remind the reader, that being a software engineer, I am 
focused on creating models that can be implemented in algorithms. 
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2. Traffic Engineering 

In this chapter concepts from traffic engineering that are relevant to 
simulation will be introduced. 

Since accidents occur so infrequently traffic researchers and engineers sought another 
metric to measure traffic safety. Additionally in many simulations collisions do not 
“physically” occur as the simulated vehicles simply drive through each other and continue 
on their way - as is the case with MARS, a collision detection system has not been 
implemented. These considerations lead to the development of conflict theory and 
surrogate safety measures, these two concepts will be explained. The theories presented 
are specific to traffic simulations (MARS has an extensive logging system that records 
pertinent information pertaining to safety measures). 

2.1. Conflict theory 

In essence conflict theory is formulated on the basis that conflicts, in which two or more 
drivers are converging on a collision course and will collide if one or all of the drivers do 
not take some sort of action to avoid the collision. These types of conflicts happen far 
more often than actual accidents. Making these conflicts easier to research and useful as a 
relative measure of safety for a given traffic system. Before continuing we will first present 
the formal definition of a conflict, taken from (Gettman & Head, 2003) : 
  
An observable situation in which two or more road users approach each other in time and 
space to such an extent that there is a risk of collision if their movements remain 
unchanged. 
 
If we consider common situations while driving then there are several likely conflicts that 
could emerge. Figure 1 shows some of the most common conflicts.  
 

 
Figure 1 Different types of conflicts (Abdoelbasier, 2005). 

Chapter 
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Based on these different conflicts that occur we can define two more specific types of 
conflicts (Gettman & Head, 2003): 
 
The conflict point represents a fixed location in space where the crossing flow intersects 
with the flow proceeding straight through the intersection (Figure 1.a). 
 
The conflict line represents a region of space where the preceding vehicle conflicts with a 
following vehicle in the same lane. This can be true of: 

 Vehicles entering the lane from across street in front of a vehicle proceeding 
straight (Figure 1.b). 

 Vehicles travelling in the same direction when the leader decides to turn left or 
right abruptly (Figure 1.c). 

 Vehicles changing lanes in front of another vehicle, causing braking by the 
follower to maintain a safe following distance (Figure 1.d). 

 
These conflicts enable us to study traffic situations, but we need some measure that can 
be applied to these conflicts such that the simulation can yield a quantitative measure of 
safety, this leads us to the notion of surrogate safety measures. 
 
Statistically more accidents occur on rural roads and intersections than on highways 

2.2. Surrogate safety measures 

Surrogate safety measures or safety indicators are used to derive data from traffic 
simulations for the purpose of evaluating safety. These safety measures either relate to the 
likelihood of an accident occurring or how severe the accident would be (safety measures 
related to the geometry or location are also sometimes defined). Several surrogate safety 
measures have been defined. Some of the most interesting and common safety measures 
are described in Figure 2. Using these safety measures various calculations can be carried 
out to evaluate the safety of a situation, the exact details of which will not be discussed 
here as these have already been described in depth by (Abdoelbasier, 2005). These 
measurements and calculations have already been built into the MARS logging system and 
therefore will not be discussed further. 
 

Conflict point 

Conflict line 
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Figure 2 Generally accepted surrogate safety measures, l = likelihood; s = severity; g = geometry or 
location (Abdoelbasier, 2005). 
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3. Human Factors 

Engineering 

In this chapter human decision making and the factors influencing 
this process will be studied, providing insight into human 
capabilities, limitations and errors associated with this process. 

Human factors engineering deals with how humans interact with each other and the 
system they function in. Of particular interest is the interaction between drivers and the 
traffic system they operate in. Human factors play an important role in traffic safety, as 
much as 90% of all accidents are due to human errors (Wickens, Lee, Liu, & Gorden 
Becker, 2004). Human factors engineering attempts to explain the decisions humans make 
using notions from fields such as psychology and neural science. This research focuses on 
the aspects of human factors that affect driving and traffic safety, specifically those factors 
that may contribute to accidents.  
 
Human factors need to be introduced because these factors will be combined and 
attributed to different behaviours that will ultimately affect driving in the simulation 
environment. Human factors are also a source of reliable and concrete concepts, which 
can be quantified and easily added to a computer simulation.  

3.1. Cognition 

Cognition deals with the way people perceive the environment around them, how humans 
think and remember. According to (Durso, 1999) there are three stages in cognition: 
 

1. Perception of information about the environment  
2. Processing or transformation of that information 
3. Responding to the information. 

 
Many stages of information processing depend on mental or cognitive resources, a sort of 
pool of attention or mental effort that is of limited availability and can be allocated to 
processes as required (Wickens, Lee, Liu, & Gorden Becker, 2004). The human eye for 
instance can only focus on one thing at a time, and most people can only handle a few 
tasks at a time. How well and to what extent these capacities can be utilized is affected by 
emotional and physical state, age, the environment and various other factors. The exact 
effect that each of these factors has on cognition will be discussed in greater detail in the 

Chapter 
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following sections. Needless to say degraded cognitive ability has significant effects on the 
driver and traffic safety. 

3.2. Perception 

Information about the world around us is received by various sensory organs these can be 
referred to as channels. Perception deals with extraction and analyses of raw sensory data 
(from various channels) in such a way that meaningful information is produced that can 
be used for further mental processing. There are many factors that can degrade the level 
of perception (i.e. how well something is perceived) such as weather conditions (poor 
visibility), intoxication, age and the affective state of the driver.  

3.3. Attention 

Attention is an important contributing factor in traffic safety. A major cause of 
automotive accidents is a lack of attention (or being distracted while driving) (Malaterre, 
1990). Selective Attention, or what we pay attention to, is influenced by four factors: 
salience, effort, expectancy and value (Wickens & Xu, 2003).  
 
Salience is attention capture, which is stimulus driven, such as a driver honking the horn, 
focusing our attention. Expectancy and value deals with what we look at or how people 
sample the world around us and where people expect to find that information. The 
frequency of looking at or attending to a channel is also modified by how valuable that 
source is deemed or by how costly it would be to miss an event from that channel (Moray, 
1986).  
 
Expectations are based on past experiences, high expectations similarly are based on 
events that occurred or were encountered frequently in the past. The use of past 
experiences is related to the memory of a person and is discussed in more depth in the 
next section.  
 
Finally, the effort we put into monitoring a channel is normally inhibited by amount of 
effort it takes, this is often the reason that drivers do not check their blind spots when 
changing lanes as it requires more effort than simply looking in the mirror. 

3.4. Memory 

There are two main forms of memory, long term and short-term memory. Short term 
memory or the working memory is transient, acting as a short-term store for use by other 
cognitive transformations. Long term memory is made up of what we have been taught or 
learned and contains our general knowledge on facts and procedures. 
 
Experiences expose the perceiver to sets of experiences and current events or situations. 
These experiences that are recognized as being similar to the current situation are stored 
in long term memory, these sets are said to become “unitized”. Unitization allows for 
more rapid/automatic responses to information. A unitized set allows part of the 
perception processing to be skipped, increasing the reaction speed to a situation (Wickens, 
Lee, Liu, & Gorden Becker, 2004). This also explains why experience (through practice or 
training) plays such an important role in traffic safety, and for this reason is often 
associated with age – the adage: the older, the wiser. 
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There are various limits and factors that influence how short term working memory 
functions. Working memory is limited to approximately 7 chunks of information at any 
one time, meaning that the average person can only keep track of about 7 different things 
simultaneously. Additionally this information can only be held for a short amount of time 
and tends to decay rapidly. These limitations on working memory mean that short term 
memory is affected by attention, availability of resources and other factors, such as 
alcohol, fatigue and the affective state. 

3.5. Situational awareness 

Situational awareness is the awareness that a person has about the changes in the dynamic 
system that makes up a person‟s environment. Many accidents result from the lack of 
situational awareness. Situational awareness also allows one to make projections and 
predictions on how the environment will change. How well a person‟s situation awareness 
performs is based on how successfully the resources (cognitive abilities) are allocated, the 
demand on resources and similarity of tasks that must be carried to meet the task at hand. 

3.6. Decision making  

The decision making task is generally defined as a mental process that a person must carry 
out to achieve a particular goal or task. There are usually several different alternatives to 
choose from. There is usually information available with respect to the options, some 
amount of time (longer than a second) to make the decision and a related amount of 
uncertainty. In human factors engineering the decision making process can be divided 
into three stages. First information is acquired and perceived (relevant to the decision). 
Next, hypothesis and situational assessments are made pertaining to the current and 
future state relevant to the decision. Lastly, planning and the selection of what action to 
take based on the inferred state, costs and values of different outcomes (Wickens, Lee, 
Liu, & Gorden Becker, 2004). 
 
There are two different flavours of decision making models. The first is based on what 
people should do based on rational reasoning or by calculating the probabilities of success 
and the evaluation of potential costs and benefits associated with a specific decision. 
However humans do not necessarily choose the most rational, or most optimal, decision. 
This normative model is often associated with game theoretic models and concepts.  
 
The fact that human decision making frequently does not conform to the rational thinking 
prescribed by the normative model, led researchers to develop another decision making 
model – the descriptive model. These researchers believed that rational consideration of 
all factors associated with all possible outcomes is just too time-consuming and effort 
demanding (Wickens, Lee, Liu, & Gorden Becker, 2004).  
 
The descriptive model suggests that people instead use a simpler and less complete 
decision making process, working by way of simplification and rules of thumb – 
heuristics. These shortcuts can however lead to bias decisions resulting in poor decisions, 
which can eventually end in systematic errors.  
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3.7. Arousal 

The level of arousal (psychological stimulation) also has an effect on the performance. For 
instance, a person driving on a boring road for a long time may be bored and become 
complacent reducing performance and safety due to poor vigilance. Conversely, if a 
person is on an extremely congested road, with rowdy children in the back, this high 
workload could cause driving performance to suffer. The theoretical optimum level of 
arousal is shown in Figure 3. Before and after this optimum the level of performance can 
suffer significantly. 
 

 
Figure 3 Yerkes-Dodson law showing level of arousal (induced by stress) and performance (Wickens, Lee, 
Liu, & Gorden Becker, 2004). 
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3.8. Workload and fatigue 

The concept of workload can best be described by the TR/TA ratio, which is the time 
required to carry out a task compared to the time available. A person is said to be 
overloaded when this ratio drops below one. Obliviously, when a person is overloaded, 
performance will suffer - this relationship is illustrated in Figure 4. 

 
Figure 4 The hypothetical relationship between workload imposed by task (Wickens, 
Lee, Liu, & Gorden Becker, 2004). 

Besides degraded performance, high workloads can also have an accumulated effect 
eventually causing fatigue. Fatigue can cause continued loss of performance even if the 
workload is lowered to a more manageable amount. Fatigue can negatively affect the 
concentration and therefore a driver‟s attention and alertness.   
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3.9. Age 

Empirically seen there is a strong relationship between age and traffic accidents, this can be clearly seen in  

Figure 5 shows the number of fatalities as a percentage of the total drivers for a given age 
group that are in possession of a drivers licence. At a young and old age relatively more 
fatalities are recorded.  
 

 

Figure 5 Driver deaths percentage of driver population split per age group from 2007 in the Netherlands 
(CBS, 2008). 

Several reasons for this phenomenon can be pointed out. The relatively high number of 
fatalities registered at a young age (18 – 24 years) can best be attributed to the lack of skills 
and experience of young, new drivers. Additionally young drivers take more risks due to 
overconfidence (Brown, Groeger, & Biehl, 1988) and are more likely to drive under the 
influence of alcohol. After several years of driving experience starts to pay off and the 
number of fatalities drop rapidly. From around 60 years and onwards there is a marked 
increase in the number of fatalities. The most plausible explanation is the fact that the 
cognitive abilities and reaction speed in elder people starts to degrade, effecting driving 
ability. 
 

3.10. Alcohol and drugs 

Driving under the influence of alochol or drugs has a significant effect on reation time 
and the cognitive abilities of the driver. A blood alcohol concentration of 0.08% already 
increases the chance of an accident by more than double (HSRC). With a blood alcohol 
level of 0.18% the chances of an accident increase by a factor of 30. A recent study from 
the university of Leiden and Amsterdam found that even causal users of cocaine will 
suffer as much as 25 miliseconds delayed reaction speed. This is short but could be critical 
in traffic situations and mean the difference between crashing or not (van Oord, 2008). 
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Younger drivers are more likely to drive under the influence of alcohol and is therefore 
one of the reasons that this age group comprises a large percentage of total fatalities 
(DHHS, 2004). Drug use has a similar trend. Interesting is how the use of alcohol is 
distributed over gender. Men are the biggest violators by far, 85% of all violations are 
committed by men (Rijkswaterstaat, 2006).  

3.11. Summary 

There is an underling structure between the different factors. There is an overlap in the 
form of “cause and effect” relationships between the different factors - mapping these 
relations is key to creating the driver behaviour model. These human factors will be 
combined and attributed to specific behaviours. 
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4. Driver Psychological 

Model 

In this chapter the psychological model, developed by Ray Fuller, 
which was selected as a conceptual basis in the development of  a 
driver behaviour model will be presented. Important considerations 
related to creating a driver model, first introduced by Michon, which 
served as a fundamental and guiding concept during this project will 
also be discussed. Theories related to Fuller’s model will also be 
included. 

In the literature research phase of this project various psychological theories and models 
(specific to driving) were studied and a model created by Ray Fuller was selected to form 
the conceptual basis for the development of a driver behaviour model. Fuller‟s model was 
found to be the best suited psychological model. The model is practical and can be used 
to develop a conceptual framework that can be efficiently translated into a computational 
model (Absil, 2008).  
 
Fuller‟s model is, to a certain extent, a hybrid or combination of other models and 
theories, and where necessary some of these concepts will also be described.  One of the 
concepts that repeatedly appear in psychological models is the concept of risk, which will 
also be discussed. Finally some remarks, largely based on Michon‟s research will be 
discussed. Michon‟s remarks on the general approach to creating a model of a driver has 
been one of the most important, fundamental and guiding concepts during this project. 
Michon (Michon, 1989) introduced a simple model describing the driver‟s task, this model 
will be presented first. 

  

Chapter 

4 
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4.1. The driving task division 

One of the most prominent models, first described in (Michon, 1989), divides the driver‟s 
task into three levels, as shown in Figure 6. 
 

In his research Michon suggests that the driver task can be 
split into three stages or levels of operation. The first level, 
the strategic level, deals with high level decision making. 
Examples are route selection or changing the route during 
the trip in response to congestion and when to leave. 
 
 
The next level deals with tactical decisions focusing on 
choice of manoeuvres such as lane changing, speed 
selection and overtaking. 
 
 
 
 
The lowest level deals with the actual control of the car, 
such as maintaining speed, the actual angle to steer the car 
at through a turn and how hard to push the brake pedal to 
slow down on time. 
 
 
  
 

While driving there are two competing objectives that can be recognized; efficiency - the 
driver wants to reach his destination as soon as possible, but also safely. These two 
objectives can be in stern contrast to each other. A driver that is late may speed in order 
to arrive at meeting on time, thereby compromising his chances of arriving safely (due to 
the increased risk associated with speeding). 
 
Tasks on the control level are important during driving. Staying in a lane and successfully 
executing a turn without crashing are critical to safety. A failure in a control task will often 
lead to an accident. Related to the control level of the driving task, expected events are 
dealt with faster than unexpected events. For instance, people do not expect the driver 
ahead of us on an uncongested highway to abruptly come to a full stop. Most people 
would not have experienced such an event before. Reaction speed and motor 
coordination obviously play an important role at this level. 

 

4.2. Fuller’s model: The Task-Capability Interface 

Model 

Fuller proposed several models, starting with a model based on avoidance of potential 
aversive consequences (Fuller, 1984), followed by the task-capability interface (TCI) 
(Fuller, 2000). Refinements of this model followed in (Fuller & Santos, 2002) and (Fuller, 
2005).   

Tactical Level

Strategic level

Control  Level

 

Figure 6 Michon‟s driving task 
hierarchy. 

Driving task 
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In (Fuller & Santos, 2002), a framework that can be used to understand a driver‟s 
behaviour was developed. This framework is constructed by looking at various parts of 
driving from a “snapshot” or “freeze frame” perspective and  is instructive in 
understanding the various elements of driver behaviour that contribute to the driver‟s way 
of driving. The model developed by Fuller that emerges out of this framework is simple 
and intuitive. 
 
While presenting this model there will be references to human factors engineering which 
come back in Fuller‟s model. The link between human factors engineering and psychology 
combined in one model is what makes Fuller‟s model interesting. 
 
The task-capability interface model relies on the notion of task difficulty homeostasis 
which is to certain extent an attempt by Fuller to reconcile and combine risk homeostasis 
theory and the Taylor study. To motivate this notion of task difficulty homeostasis we will 
start by describing the rest of the TCI first.  
 

4.2.1. The driving task 

Driving requires the driver to carry out several tasks based on external and intern stimuli, 
such as responding to other traffic or executing a turn so as to stay on route, to safely 
reach a destination. On occasion drivers will have to respond to unexpected situations, 
but mostly the drivers will perform planned actions which are shaped by their 
expectations and the unfolding traffic situation (Fuller & Santos, 2002). Several factors 
influence the driving task, these are schematically displayed in the Figure 7 below. 
 

 
Figure 7 Contributing factors to demands on the driver (Fuller, 2000). 

In (Fuller & Santos, 2002), the tasks that the driver must carry out in order to drive safely 
are considered first. The driver must process various sensory inputs, such as visual data. 
Then process that information and carry out appropriate actions. In general, barring an 
unexpected event, such as another car “cutting” in front of the driver, for example, the 
driver carries out planned actions based on expectations in the current traffic situation. 
The following Figure 7 depicts the model describing the driving task. 
 
The demand of the driving task, D, is influenced by the environment and other physical 
factors with which the driver may interact. For instance, speeding and heavy congestion 
may cause the demand of the driving task to increase. It should be noted that speed is an 
important factor in Fuller‟s model, as it is the main way the driver can influence the 
difficulty of his driving task (Fuller, 2000). 
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4.2.2. Driver capability 

Next the driver himself is considered, as different drivers have different behaviours and 
attributes which enable them to deal with the demands of the driving task. In (Fuller & 
Santos, 2002) these are known as the constitutional characteristics of the driver and 
describe the factors that the driver has to drive effectively and safely. Driver capability is 
based on the individual‟s competences, such as motor skills, cognitive ability, reactions 
and skill. Education and experience define the upper limit of a driver‟s capability. In 
addition to these factors a range of variables (human factors, see chapter 3) which include 
fatigue, emotions, stress, distractions, effects of drugs or alcohol and motives like 
aggression can also affect the driver‟s capability. These factors are schematically related to 
each other in Figure 8 below. The combination of all these factors eventually yields the 
driver‟s capability. 
 

 
Figure 8 Determinants of driver capability (Fuller, 2000). 

4.2.3. The task-capability interface 

Combining the driver capability and the task demand produces an interface between the 
two. If the demand of the task(s) exceeds the driver‟s current capability then the driver 
may be overwhelmed and lose control. Conversely, if the driver‟s capability is greater than 
the demand of the task at hand, then the driver is in control and can safely continue. This 
relationship is shown in Figure 9. 

 
Figure 9 Outcomes of the dynamic interface between task demand and capability (Fuller, 2000). 
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Note that the model shows the demand and capability as separate entities, but this is not 
necessarily true. For instance, a high level of demand may eventually cause the capability 
of the driver to deteriorate due to fatigue cause by the stress and excessive workload. A 
low level of arousal can also have a negative affect, resulting in lower vigilance and 
inattention. Losing control does not necessarily mean that the driver will be involved in a 
crash. Another driver could make an evasive manoeuvre to avoid the collision or the 
driver himself may be able to (luckily) take corrective action. The extension of the model 
to accommodate this phenomenon, creating the task-capability interface, is show below in 
Figure 10. 
 

 
Figure 10 The task–capability interface model (Fuller, 2000).  

The basis of the Fuller‟s model is now complete, it however it lacks a mechanism to 
“drive” it. Next a dynamic mechanism will be described. First however the concept of risk 
homeostasis must be introduced. 

4.3. Risk Homeostasis 

Homeostasis refers to a dynamic process which attempts to maintain a stable target level 
through adjustments and regulation mechanisms. The process by which living organisms 
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regulate their internal state so as to maintain a stable condition is an example of 
homeostasis.  
 
Any system that has homeostatic properties exhibits fluctuations. These fluctuations are 
caused by delays in detecting and making adjustments to reach the desired target level. 
This means that the actual level fluctuates around the target level, consequently a 
homeostatic process makes it possible to extract long term steadiness form short-term 
fluctuations (Wilde, 1994).  
 
Homeostasis detects and makes adjustments to regulate a system in order to achieve a 
desired level through a negative feedback mechanism. Homeostasis is a self correcting 
mechanism. Wilde uses the concept of homeostasis to explain how people deal with risk. 
In his book (Wilde, 1994), Wilde summarizes the theory of risk homeostasis as follows: 
 

Risk Homeostasis Theory maintains that, in any activity, people accept a certain level of 
subjectively estimated risk to their health, safety, and other things they value, in 
exchange for the benefits they hope to receive from that activity (transportation, work, 
eating, drinking, drug use, recreation, romance, sports or whatever). 

 
In any ongoing activity, people continuously check the amount of risk they feel they are 
exposed to. They compare this with the amount of risk they are willing to accept, and try 
to reduce any difference between the two to zero. Thus, if the level of subjectively 
experienced risk is lower than is acceptable, people tend to engage in actions that increase 
their exposure to risk. If, however, the level of subjectively experienced risk is higher than 
is acceptable, they make an attempt to exercise greater caution. 

 
Figure 11 provides a simplified version of Wilde‟s risk homeostasis mechanism that Fuller 
used in an earlier version of his model (Fuller & Santos, 2002). In this model the driver 
has a “target risk” (the risk that the driver is willing to accept), which the driver 
continually compares the “his perceived risk”. The driver makes changes to his driving to 
bring the perceived risk and target risk to the same level. So if the perceived risk is higher 
than the driver‟s desired target risk the driver will behave more cautious – lowering the 
perceived level of risk.  
 

 
Figure 11 Simplified representation of risk homeostasis (Fuller & Santos, 2002). 
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Why people take or accept a level of risk higher than zero according to Wilde is shown in 
Figure 12. Moving along the horizontal axis the exposure to risk of an accident increases 
(due to increased speed or amount of driving) and the associated expected gain (y1) and 
loss (y2) increases. The net benefit rises, reaches an optimum and then starts to decline. At 
zero subjective risk the net benefit is zero. With extreme high risks the expected loss 
outstrips the potential gains causing the net benefit to become negative. For this reason 
most people will select some risk to avoid the two extremes mentioned. Wilde argues that 
people set out to maximize their net benefits resulting in a risk level above zero – this is 
the core of risk homeostasis theory. 
 

 
Figure 12 Theoretical representation of road users as net benefit maximizes as risk 
optimizes (Wilde, 1994). 

 
 
Risk compensation is widely accepted, risk homeostasis is not. Proof of risk compensation 
is provided in several studies, the most famous of these is the Munich taxicab study 
(Aschenbrenner & Biehl, 1994), in which one half of the cabs were fitted with new anti 
braking system (ABS) brakes, the other half with conventional brakes. The accident rate 
for the cars with the new ABS brakes was expected to be lower. However the accident 
rate for both groups of taxicabs remained unchanged. Wilde explains this phenomenon 
with risk homeostasis theory, suggesting that the addition of the ABS brakes meant that 
the taxi drivers felt safe and hence took more risks, maintaining their original target risk 
level.  
 
As evidence for risk homeostasis theory Wilde uses the decision to switch from left-hand 
driving to driving on the right-hand side in Sweden and Iceland. Almost immediately after 
the traffic was changed to right-hand driving, the accident rate per head of population 
dropped dramatically. However after sometime (less than two years) the accident rate 
returned to the pre-existing trends. Wilde claims that this phenomenon is a result of risk 
homeostasis. The impact of changing over caused drivers to significantly overestimate the 
danger, this perceived fear was much higher than the target level of risk drivers were 
willing to accept, causing drivers to behave unusually cautious. This extreme cautiousness 
drove people to adjust their driving pattern, after sometime the perceived risk normalized 

Risk compensation 
is the theory that 
individuals will 
change their 
behaviour in 
response to 
perceived changes in 
risk (it is self-evident 
that individuals will 
behave more 
cautious if their 
perception of risk or 
danger increases). 
Risk Homeostasis is 
an extension of this 
theory 
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and eventually approached the target level of risk. At this point people returned to their 
normal driving behaviour which resulted in the accident toll returning to what is was 
before the switch. 
 

4.3.1. Remarks 

It would seem that there is a significant amount of empirical evidence that can be used to 
support Wilde‟s theory of risk homeostasis, yet the theory has garnered much criticism.  
Michon, for instance, in (Michon, 1989), makes the following observations and comments 
on Wilde‟s theory. Risk Homeostasis assumes that (1) risk homeostasis is an individual 
propensity and (2) that the collection of homeostatic behaviours of individuals does 
account for the homeostatic behaviour of the collective. However, Michon argues that the 
assumption that the same homeostat is operating in all individuals is implausible, since 
assuming that human behaviour is in some way generic is flawed. Even though Wilde‟s 
theory seems to make common sense, it does not really describe collective behaviour. 
This is largely due to the fact that the model describes the central tendencies of an 
idealized driver, creating „prototypical‟ descriptions, based on average behaviour of the 
whole population, which rest heavily on the assumption that the average driver, on the 
whole, will act rationally. If drivers would behave in a rational way, a great deal could be 
predicted given the driver‟s intention and environmental information, unfortunately this is 
not the case. 
 
Vaa has several criticisms of risk homeostasis theory, but does acknowledge the following 
characteristics of the theory:  

 Risk homeostasis is frequently discussed and central to many theories. 

 Risk compensation is addressed [In Risk Homeostasis], which definitely exists 

 It may represent a “dead-end” theoretically, as it is not suitable for testing, but 
“There is something in it, after all!” (Vaa, 2001). 

 
Risk compensation can only be considered from the point of view of studies of driver 
behaviour in the sense of aggregate behaviour, such as probability distributions. Risk 
compensation cannot be applied to individual drivers, but merely as a tendency for 
motivational satisfaction (Summala, 1988). 
 
Vaa however believes that the “right track”, in contrast to Wilde‟s theory, is represented 
by the Zero risk model by Näätänen & Summala, which is based on the Taylor study. This 
theory suggests that drivers try to avoid risk by regulating their behaviour according to a 
perception of risk, while Wilde‟s theory states that drivers seek a particular risk level, 
greater than zero.  
 
Vaa also warns that risk homeostasis model (Vaa, 2001): 
 

 “somehow assumes a powerful, hidden, unconscious force that forces you (and  everyone 
else too!) to act in such a way that the target level of risk is sustained individually for 
everyone as well as for everybody else at an aggregate level”. 

 
This seems analogous to Adam Smith‟s “invisible hand” described in his work The 

Wealth of Nations, which has also been widely discussed and criticized: "the reason that the 
invisible hand often seems invisible is that it is often not there." – Joseph E. Stiglitz.  
 

http://en.wikipedia.org/wiki/Joseph_E._Stiglitz
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Vaa continues by pointing out that: 
 

“Wilde is inaccurate in his choices and definitions of concepts. “Cost” and “benefits” is 
central to the model but they are not defined in psychological terms. As they are 
presented, they adhere more to the limitations of economic utility theory, not to a wider 
understanding of behaviour in psychological terms”. 

 
A problem inherent to Wilde‟s model is that it is difficult, perhaps even impossible to 
assign values. Wilde himself states in (Wilde, 1994) that the values should not be used 
explicitly in calculations.  
 

4.3.2. Homeostasis in Fuller’s model 

Fuller uses task difficulty homeostasis, instead of risk homeostasis, and attempts to 
integrate work done by Näätänen and Summala (Näätänen & Summala, 1974), based on 
the Taylor study, but still account for risk in the following way: 
  

As long advocated by, for example, Näätänen and Summala [1976], driver motivation 
is for a crash risk of zero. Where risk varies for the driver is in terms of the experience 
of variations in the difficulty of dealing with driving task demands to achieve a safe 
outcome. It is thus postulated that as task difficulty increases (above a minimum level), 
so does the experience of risk. (Fuller, 2000). 

 
Just as in risk homeostasis theory, Fuller suggests that a driver tries to maintain a target 
level of difficulty (Figure 13), this is mechanism functions similarly to the model shown in 
Figure 11). If the situation becomes too demanding the driver can slow down, thereby 
also lowering his task difficulty. Likewise, if the task is too easy, even boring, the driver 
may speed up to make things more challenging. Even though this seems very much like 
risk homeostasis, Fuller warns that they are not necessarily the same. 
 

 
Figure 13 Task difficulty homeostasis (Fuller, 2005). 

Fuller also suggests that this model may influence the strategic level of a drivers decision 
making process, as a driver may choose another route based on the difficulty associated 
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with it (Fuller, 2005). To keep the level of complexity of the simulation low no attention 
will be paid to the interaction between this conceptual model and the strategic level of a 
driver‟s decision making. 
 
Figure 14 below shows that the perceived difficulty and risk are highly correlated. 
 

 
Figure 14 Ratings of task difficulty, estimates of crash frequency and ratings of risk experience for the 
country road scenario (Fuller, 2005). 

Surprising (for Fuller as well), is how strongly the subjective difficulty correlates to the 
subjective risk (Figure 14). People do not actually calculate risk, but people do have a well 
defined sense of what is difficult and what is easy, and may use difficulty as a substitution 
for the calculation of risk. The difficulty of a task can theoretically also be to a certain 
extent quantified, which is import if this model is to be simulated, in that human factors 
give an indication of how hard a task will be for someone given their age for example. 
 
Fuller used a form of risk homeostasis along with task difficult homeostasis (shown in 
Figure 11) in ealier models. Suggesting that under certain circumstances drivers would be 
willing to accept a risk of crashing greater than zero. 

4.4. Michon’s remarks 

Fuller‟s model has several advantages, first of which has to do with an observation made 
by Michon: there are two levels of explanation regarding driver models. The rational 
(intentional) level generally describes the aggregate behaviour of drivers and the functional 
level, which deals with intra-individual information processing. Michon believes that these 
two levels are often confused resulting in serious theoretical problems. Fuller‟s model 
maintains this separation. 
 
Michon goes further stating that a clear distinction must be drawn between the elementary 
processes and building blocks at the functional level and the complex (aggregate) 
behaviours generated by these elementary processes. To illustrate this relationship Michon 
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uses the example of syntax, which can be used to generate sentences, but does not 
prescribe them.  
 
There are several approaches to model human driver behaviour. Michon suggests that 
„genuine‟ driver models are formulated at the functional level in which behaviour is 
modelled in terms of (mental) function and processes. Instead of assuming that the driver 
is behaving optimally (or rationally) the focus of attention is on actual behaviour. Since 
actual behaviour is usually suboptimal, the model is designed to function sub-optimally 
too, so as to faithfully mimic the driver‟s performance (Michon, 1989). According to 
Michon, (Michon, 1989), Fuller‟s model implicitly separates the functional mechanisms 
from the intentional, adaptive aspects of behaviour. 
 
It is important that the Task-Capability Interface model largely adheres to Michon‟s 
guidelines. The fact that this model also uses well known principle of human factors 
engineering is another advantage. The model is relatively simple and intuitive. 
 
The selection of this model is based on the consideration of how robust, practical and 
ease with which the model can be used as an actual framework in the simulation. The 
psychological model however should not be seen as an exact structure to which the 
software construction will strictly adhere too. The psychological model should rather be 
seen as a loose reference or conceptual framework for the driver behaviour model. 
 
Fuller‟s model along with guiding remarks made by Michon will be combined together to 
form a conceptual model that is described later on in section 6.1- Conceptual Framework. 
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5. Simulation 

Environment 

In this chapter the Multi-Agent Real-time Simulation (MARS) 
will be described. 

Different types of traffic simulations are available. An important distinction is the level 
the simulation operates on. Microscopic simulation (commonly known as a micro-
simulation), allows for high resolution data collection and control. In contrast, 
macroscopic traffic simulations function at a higher level, focusing instead on policy 
influence, routing, capacity and efficiency of the traffic system.  In these simulations focus 
is shifted away from the individual driver to the aggregate level more concerned with 
flows and densities. Micro-simulations focus on deriving detailed information on each 
individual vehicle and on providing precision control. Micro-simulation “zooms” into a 
small piece of the traffic network, putting part of the traffic network under a microscope 
as it were. MARS is a micro-simulation and is the simulation environment that will be 
used throughout this research. 

5.1. Multi-Agent Real-time Simulation 

The Multi-Agent Real-time Simulation (MARS) environment was created by TNO 
Science and Industry and continues to be developed. MARS allows experiments to be 
carried out under temporal constraints within a multi agent-framework. This allows large 
systems, like the traffic system, to be decomposed into independent, intelligent entities, 
with a resolution chosen by the modeller. The focus is on individual drivers and their 
vehicles which are represented as agents operating and interacting in the simulation world.  
MARS has been under development for close to a decade now and is primarily 
implemented in JAVA. 
 
The combination of a vehicle and driver in MARS is known as an Entity. Each entity 
autonomously makes decisions based on a local view of the world and traffic situation 
without the need for a single central controlling agent. This allows each entity have its 
own distinctive characteristics and capabilities.  
 
In the formal representation of MARS, the simulation experiment is known as the model. 
The model describes a collection of autonomous entities (E1,2,..), which interact with 
each other and the surrounding world. The entities in this world are dynamic and evolve 
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A MARS entity is 
the combination of a 
vehicle and driver 
representing an 
independent agent in 
the MARS. 
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based on each entities‟ own internal dynamics (through internal state changes or logic). 
The world is a set of objects, these objects are static (i.e. their attributes cannot change). 
Entities can act on these objects. Objects typically represent road infrastructure or 
physical obstacles. Entities can have sensors (S) and actuators (A). The sensors are used to 
gather information about the entity‟s surroundings in the world. The actuators are used to 
create, destroy or modify the attributes of objects in the world (TNO, 2005). 
 
Entities are represented in the world as bounded objects. Each object has attributes which 
are determined by the states associated with the entity. As an example, an object 
representing a vehicle travelling through the world, as the vehicle moves the position 
attribute will automatically be updated. The composition of the system into independent 
entities means that the behaviour (internal dynamics) of each entity is self-contained, 
interacting only though interfaces represented by the object‟s sensors and actuators. The 
sensors and actuators are defined abstractly, so as to keep the MARS framework generic, 
allowing sensors to be custom built. MARS is schematically represented in Figure 15 
 

 
Figure 15 Entities in MARS world (TNO, 2005). 

The safety measures discussed in Section 2.2 are already implemented in MARS. MARS is 
equipped with an extensive logging system capable of capturing all safety measures with a 
high degree of accuracy. 
 

5.1.1. Structure 

The MARS framework is object oriented, using objects to encapsulate an Entity. Entities 
have no direct communication or interaction other than through their sensors and 
actuators. Entities can also be composed of other entities, this encourages code reuse of 
low level and common components and this is the approach used to implement driver 
behaviour models in MARS (Abdoelbasier, 2006). 
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Figure 16 provides an other view of the MARS entity model. In essence MARS is a 
framework allowing the construction of a world model to which entities can be added.   
 
Each entity is constructed by adding generic components, responsible for sensing and 
decision making, to a platform so manoeuvres and navigation are possible. The basic 
building block of an entity is the Platform, which is a simple container class, to which 
components can be added to model a driver and vehicle.  
 
Although the entity model only constitutes part of the entire simulation, it is the core of 
MARS. References made to MARS (in the rest of this thesis) actually refer to the entity 
model presented here. MARS and entity model will be used interchangeably. 
 
Conceptually MARS can be split into two parts, perception (in red - Figure 16) and 
decision making (in blue). 
 

 
Figure 16 UML diagram of a MARS agent - entity model. 
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The perception part is comprised of the Devices, Detectors and the World (EgoCentricWorld). 
The devices are sensors that observe the surrounding world. A device can represent any 
kind of sensor like eyes, GPS or radar. Any form of sensor can be implemented and 
“plugged” into MARS. The devices produce raw sensory data. This data is collected by 
detectors to which the devices are connected. The information the detectors receive from 
the devices is perfect, by introducing a noise model the data can be “fuzzied”. Adding 
noise can be used to simulate poor visibility for instance. Multiple devices can be plugged 
into a single detector. The detectors are in turn connected to the EgoCentricWorld, 
entities own view of the world surrounding it.  
 
The other half of MARS (in blue, Figure 16) deals with decision making. The tasks and 
decisions made during driving are decomposed into individual elements and captured in 
Controllers. Controllers encapsulate the logical decision making required to manoeuvre and 
navigate through the world. Controllers usually handle one particular aspect of driving, so 
there are controllers for merging, turning, crossing, and navigating. 
 
A single entity will generally have several controllers. These controllers are arranged in 
Subsystem Layers, shown in Figure 17. These layers are arranged hierarchically in four levels. 
The first three levels closely resemble Michon‟s driving task division (Figure 6). The 
navigation layer is the logically highest or most abstract layer and handles the navigation.  
The next layer, the coordination layer, handles actual manoeuvring in the simulation.  The 
control level handles the actual steering and braking.  
 

 
Figure 17 Hierarchical layers in MARS. 



D R I V E R  B E H A V I O U R  M O D E L  

31 

Controllers produce suggested actions, based on their own internal logic and stimuli from 
the outside world.  Other controllers at different levels (or the same level) can act on these 
suggested actions. The suggested actions are simple, containing only 
acceleration/deceleration and a steering angle. It is possible that different controllers will 
produce suggested actions that are contradictory.  The fourth and final level is the 
regulation level and is responsible for resolving any contradicting actions. The regulation 
layer outputs actions that control the entity‟s dynamics such as steering and accelerating. 
The resolution mechanism is simplistic using the following heuristic: if the vehicle is 
already braking then continue to brake.  The same goes for acceleration and steering. 
 
The Settings, MyPreference, Target and Goal classes contain information specific to each 
individual driver and vehicle. The Settings class contains parameters such as age, preferred 
driving speed, comfortable car following distance and many more. Each entity has a Goal 
(for instance drive from A to B). A target is a short term goal, for instance, to over-take 
another vehicle. MyPreferences contains extra settings that can be changed dynamically. 
 

5.1.2. Limitations 

MARS does not include pedestrians or cyclists in its current implementation. The current 
version of MARS only supports unsignalised intersections and relatively simple road 
constructions. While implementing pedestrians and cyclists would entail a significant 
amount of work, conceivably traffic lights should be implemented relatively easy. Based 
on these current limitations the driver behaviour model will be constrained to operation 
on unsignalised intersections, without pedestrians or cyclists. 

5.2. Other simulation environments 

Other simulation environments where initially considered in (Abdoelbasier, 2005) as 
alternatives, but MARS was selected as the main development platform because of its 
robust, flexible and extensible qualities. Other simulations could not provide the level of 
control and allow for modifications suitable to ongoing TNO research. This project 
continues the development of MARS as a micro-simulation capable of providing safety 
analysis specifically for unsignalised intersections.  
 
Considerable time and effort have been put into the development of MARS, and TNO 
has a vested interest in continuing to develop and use MARS. For this reason other 
simulation environments were only briefly reviewed and considered. One of the most 
interesting is VISSIM, which was also considered by Abdoelbasier. VISSIM allows the 
tolerance for practically all variables that play a part in the simulation (such as the size of 
gaps that will be accepted, car following distance and speed) to be modified. Several 
simulation environments were considered by Abdoelbasier and eventually rejected in 
favour of MARS. For an overview of the different traffic simulations the reader is 
directed to (Abdoelbasier, 2005). VISSIM and other simulation environments were 
considered more as a possible reference model that could be used as a comparison for the 
driver model implemented in MARS.  
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6. Driver Behaviour Model 

In this chapter a conceptual model based on Fuller’s model and 
human factors is presented. This model forms the foundation of  the 
driver behaviour model. Concluding with a description of  how the 
conceptual model was integrated into MARS. 

6.1. Conceptual Framework 

By combining the human factors and Fuller‟s model it is now possible to construct a 
conceptual framework. MARS has perception mechanisms and components that act on 
this perceived information, make decisions based on this information on how negotiate 
through the simulated world. MARS is essentially a cognitive architecture that can be 
influenced by different driver behaviours.  An approach similar to the conceptual 
framework suggested here has been put forward by Raghild Davidse at SWOV (the Dutch 
national road safety research institute). In (Davidse, 2004), an approach was suggested to 
combine human factors, Fuller‟s model, a cognitive architecture and game theoretic 
concepts into a theoretical framework to study the effects of age (it is however unclear if 
this research was ever carried out).  
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6.1.1. Placing the conceptual model in context 

The first step towards creating a realistic traffic simulation, with “human like” driver 
behaviour is the following realization, which is to place the driver behaviour model at a 
level above the tactical driving task (Figure 18). There are multiple reasons for this 
approach. The main reason for introducing the driver behaviour model above the tactical 
level, and not directly integrating it into the tactical level, is so that the influence of a 
person‟s behaviour filters down through the tactical level to the control level. 
 

 
Figure 18 Placing the driver behaviour model in context (right) and the effect down of behaviour on the 
driving task (left). 

This small and seemingly simple step is integral to this approach and has important 
ramifications for the conceptual model. Most research at TNO and elsewhere has focused 
on creating models for one aspect of safety. For instance, studying gap acceptance on its 
own based on the behaviour of the driver; this research is of course important, however 
being fatigued or driving aggressively not only affects the sizes of gaps that the aggressive 
driver will accept, but also the driving speed, overtaking and tailgating behaviour. 
 
This relationship between driver behaviour and the way that people drive leads to another 
important feature of Figure 18 (left). The behaviour driver model is placed at a higher 
level than the tactical level, this has several implications. Firstly, a driver‟s behaviour has 
an effect on all aspects of driving at the tactical level and filters down to the control level, 
also affecting that level. This relationship can be visualized is Figure 18 (right), the 
behaviour of the driver affects the tactical level and the control level. The affects of 
aggressive driving behaviour on the tactical level have already been mentioned, but the 
control level is also affected. The reaction time of driver that is fatigued or intoxicated will 
change the speed at which the driver reacts or how fast the he or she brakes. 
 
Another aspect of this approach is that this simulation will be used to study accidents, 
which requires that all aspects of driver behaviour are incorporated into the simulation in 
order to make useful comments on how or why the crash occurred. As accidents are 
normally complex in the manner in which they came about, often no singular event in 
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time is responsible, but rather a multitude of unfortunate events occur that eventually lead 
to a crash.  
 
Another implication of this approach is that the tactical and control level in simulation 
terms can be seen as a layer of variables that are “driven” by the driver behaviour model. 
In terms of software engineering this means that the driver behaviour model can be 
implemented at a higher level and not directly in the tactical level, maintaining the 
modularity of MARS. Additionally this will allow the driver decision model to use existing 
interfaces and software already available in MARS (code reuse) with minimal or no 
changes to other parts of the simulation and keep the driver behaviour model simple and 
easy to implement. The tactical and control level will also not need to be modified and can 
be kept simple. The final advantage is that the driver behaviour model can be kept 
separate increasing portability for other simulation environments at TNO. 
 

6.1.2. Conceptual model 

Now that the driver behaviour model has been placed in context of the driving task and 
where it will reside within the MARS environment our focus can shift to the actual 
conceptualization of the driver behaviour model. 
 
The driver decision model, containing perception and cognition, together form the driver 
behaviour model. Put otherwise the actions carried out by the driver model will display 
behaviour that is the result of various influences and factors, which can be analyzed. The 
conceptual framework will be kept simple and generic so that the underlying software 
design decisions and algorithm choices remain free. 
 
Figure 19 shows a general overview of the driver behaviour model. There are two aspects 
to the model, the one half deals with the perception of the world surrounding the entity – 
the external factors - and how that data is processed. The decision model will receive 
sensory data. This data could be fuzzied by filters representing poor visibility for example. 
The perception unit will then process this data and pass it on. The decision model then 
processes this data and makes decisions based on it (internal half), resulting in actions that 
will be carried out. The chances of a particular action being taken based on statistics (age, 
gender and other human factors) and characteristics of the driver (aggressive, passive, 
fatigued, etc.) will result in actions. 
 
The conceptual model (Figure 19) is an idealized version of how the driver behaviour 
model (DBM) should be structured and function. The undelying structure of MARS is not 
the most important consideration at this point (the structure of MARS was of course used 
as a basis). 



D R I V E R  B E H A V I O U R  M O D E L  

35 

 
Figure 19 Conceptual model schematic. 

This model can be viewed from two different perspectives. First the model has an internal 
and external division. There are external factors, such as the weather, traffic situation and 
road condition that affect the level of demand placed on the driver. There is also an 
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internal part that represents the decision making processes made by the driver. Referring 
back to Fuller‟s model (Figure 10), with the division between the driver capability and 
driving task demand, this same division can be found in the conceptual model displayed in 
Figure 19. The top half of the model can be seen as the factors that define the capability 
of the driver, the lower half of the model is related to the demand on the driver. 
 

6.1.3. Behavioural states 

Several distinct driver behaviours, which will be referred to as behavioural states, have 
been selected and implemented in the DBM – namely: neutral, passive, aggressive, 
intoxicated and fatigued. To avoid any ambiguity or misunderstanding a behavioural state 
is defined as follows:  
 

A behaviour state is a condition (an emotional condition, mood or condition of 
fatigue or intoxication) that the driver finds himself in, that has a substantial 
effect on the way that the person drives.  

 
The behavioural states that were selected for implementation in the DBM are neutral, 
aggressive, passive, fatigued and intoxicated. Each will be described in turn, detailing the 
effect that each state has on the driver. 
 
Aggression 
Aggression is defined as an emotion or mood that has several connotations associated 
with it. Aggressive behaviour is considered solely in the context of driving. There are 
several definitions of aggressive driving in traffic psychology, but the following definition 
will be used (Tasca): 
 

A driving behaviour is aggressive if it is deliberate, likely to increase the risk of collision 
and is motivated by impatience, annoyance and/or an attempt to save time. 

 
This type of behaviour induces risk taking behaviour. 
 
Neutral behaviour state 
The neutral behaviour state can be seen as the control in the simulation experiment.  This 
state is devoid of any behaviour.  The state is neither aggressive nor passive and is risk 
neutral. 
 
Passive behaviour state 
The passive behaviour state is the exact opposite of the aggressive state.  And it has a risk 
adverse nature, representing a cautious driver. 
 
Intoxicated behaviour state 
This state represents and impaired driver under the influence of alcohol, medication or 
drugs.  Being in this state will result in greater perception errors and more erratic driving.   
 
Fatigue behaviour state 
A driver in this state exhibits behaviour that can be attributed to being overworked.  
Common effects of being fatigued while driving are lack of attention, poor vigilance and 
perhaps even falling asleep behind the wheel.   
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Summary of behavioural state 
These behavioural states could be used to simulate various groups of the driver 
population. For instance, attributing aggressive behaviour to young, inexperienced male 
drivers that generally exhibit a more aggressive driving style. This has to do with the 
relative inexperience and overconfidence. However it should be noted that these kinds of 
generalisations are dangerous and often flawed. Using aggregate data to model an 
individual is asking for trouble, and is one of the fundamental mistakes that Michon warns 
against (Michon, 1989).  
 
Each state has a unique set of consequences, their effect on what is called human factors. 
An overview of these effects can be found in Table 1.  
 
Table 1 Simulation parameter modifiers for different behavioural states. 

  Neutral Passive Aggressive Fatigued Intoxicated 

Speed speed limit below limit above limit unaffected erratic 

Acceleration normal slow fast unaffected erratic 

Deceleration normal slow fast unaffected erratic 

Following distance normal large close unaffected erratic 

Gap acceptance average large small average small 

    
 

  
 

  

Risk neutral low high neutral high 

Error rate none normal normal high high 

Reaction time normal normal normal erratic high 

  
Each state and associated parameters are described in detail in Appendix A. 
 
The error rate is used to simulated errors in perception, so that mistakes are introduced in 
judging distances or speeds of other vehicles and objects. 
 
These behavioural states affect various parameters in MARS that are consulted 
continuously during decision making in the simulation. This method was chosen because 
it conforms with the idea expressed earlier that particular behavioural state affects the 
driving task as a whole and not only specific parts of decision making or perception. 
 
The states are static in nature. The driver is in a particular behavioural state at the 
beginning of the experiment, this will not change during the simulation. Similarly, some 
parameters are set based on the age and gender of a driver. A dynamic component is also 
needed. This is where the concept of risk or difficulty can play a role. 

6.2. Integration into MARS 

With the conceptual model complete attention can now be turned to the actual 
implementation in MARS. Implementing the model in MARS requires the various 
elements of the conceptual model to be mapped to appropriate components in MARS. 
Constructing the DBM had several design considerations and constraints that will be 
addressed in the next section. 
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6.2.1. Constraints 

The development of a driver behaviour model, specifically dealing with the integration 
into MARS, had the following design constrains: 
 

1. The underlying architecture of MARS could not be changed. 
2. The driver behaviour model should be loosely coupled to MARS. 

 
The first constraint was set for several reasons. Firstly MARS has many different 
development branches and the developers of MARS are currently implementing a new 
version of MARS that will consolidate and merge these branches together. Parts of MARS 
that do not constitute the core architecture are continuously being improved and replaced, 
such as the visualization and experiment support modules. For these reasons the driver 
behaviour model can only extend the current architecture and not be completely 
integrated into MARS, so that new versions of MARS can easily upgraded with the driver 
behaviour model.  
 
The most important contributor to these constraints is the future use and development of 
MARS. MARS is a generic framework, the controllers, detectors and devices represent a 
library of “plug & play” components that can be easily added to a vehicle platform so that 
experiments can be created and conducted. From a software engineering point of view 
this is an important consideration as it means that these components should remain as 
simple and generic as possible, leaving the complex individual behaviours to the DBM. 
 
Keeping the controllers simple is important to achieving the goals of the DBM. The 
controllers represent the tasks and associated decisions necessary for carrying out 
manoeuvres and navigating in the simulation. As such these controllers should be kept 
simple and allow the DBM to add the non-homogenous and more complex behaviour to 
the entity. Implementing more complex behaviour directly into an individual controller 
would defeat the purpose of the DBM and create far more complex simulation 
environment. Maintaining the simplicity of the controllers and the basic MARS 
framework will greatly diminish the time required to setup and conduct experiments.  
 
The development of experiments is a time consuming and often difficult task. Maintaining 
a simple and generic architecture means that experiment can be setup by simply plugging 
in generic components into the framework. For example, to create a simple experiment of 
cars that drive through an intersection a platform with the necessary devices, detectors 
and a simple controller that moves the vehicle from one point to another in the 
simulation would be added. A crossing controller could be added to those vehicles that 
will attempt to turn onto an intersection. At this stage already a simple experiment has 
been created, albeit with a homogenous in nature. Once the experiment is working as 
intended more complex behaviour can be added to the experiment using the DBM. DBM 
with tailored behaviours could be added to influence some of the drivers in a desired way. 
This simple, yet powerful approach is important to the future of MARS. 
 
Some controllers have started to show significant code-bloat as engineers attempt to 
achieve more realistic and complex behaviours. This also shows the necessity of 
developing an extensible framework on top of the current MARS architecture capable of 
influencing driver behaviour. This will limit the creation of multiple slightly different 
controllers and devices that will only add to the general complexity of the simulation. 
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6.2.2. Design considerations 

One of the main design obstacles that had to be overcome was the lack of detailed data. 
Data available for traffic simulations is often too general or too specific. Using data from 
other countries is not an option as the data can vary greatly between countries. TNO has 
detailed video footage, however this data was from highways and was not analysed with 
behaviour or safety in mind. Furthermore data from video footage will often not provide 
information about who was driving, such as the driver‟s age, gender and behavioural state. 
On the other hand experiments carried out on micro-simulation level usually require 
specific data that will be different for each experiment. The solution to this problem was 
to rely heavily on human factors engineering. Human factors such as average reaction 
time and effects of alcohol are based on empirical data. On average these factors will not 
vary across different countries. Additionally all factors that influence behaviour have been 
implemented in parameters that can be changed or calibrated easily without having to 
make changes to the software.  
 
The design of the DBM was also made as light-weight as possible so as not to add to the 
already considerable computation time of MARS. Because each vehicle in MARS has its 
own decision making mechanisms the simulation is heavy on processor and memory 
resources. The design used here minimises the performance impact on the simulation. 
 

6.2.3. Implementation 

MARS is dominantly implemented in JAVA. Experiments are created in MARS using 
XML and JAVA (Simulink1 can also be used to setup experiments, but the use of 
Simulink is being phased out). MARS was developed in JBuilder2 2005. The Eclipse3 
integrated developer environment was during this project to implement the DBM. 
 
Implementation of the DBM into MARS was relatively easy because it is well designed 
and programmed. The design is modular, flexible and expandable. Moreover the source 
code is neat and well documented. 
 
There are basically three different ways to influence the decision making process in 
MARS, specifically the decisions made by controllers such that behavioural aspects can be 
introduced into the simulation. 
 
The first option was to change the controllers by directly adding behaviour. This however 
would result in the controllers not being generic and would require reprogramming of 
many of the controllers. This option was rejected immediately as it also violates the first 
constraint (that MARS should not be altered). Secondly, a driver‟s behaviour should 
influence all decision making process, not just a few. If each controller has its own 
behaviour there is also a chance that the global behaviour could become inconsistent.  
 

                                                        

1 Simulink - 
https://tagteamdbserver.mathworks.com/ttserverroot/Download/43815_9320v06_Simulink7_v7.pdf 

2 JBuilder 2005 - http://www.borland.com/resources/en/pdf/products/jbuilder/jb2005_feature_matrix.pdf 

3 Eclipse IDE - http://www.eclipse.org/ 
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Next altering the suggested actions generated by the controllers was considered. This 
would involve intercepting and changing the suggested actions produced by controllers 
before passing the suggestion on. The behaviour mechanism would not really influence 
the actual decision making process, just change it. The same decisions would always be 
made by an individual controller regardless what the behaviour of the driver was. This 
approach would lead to decision simply being modified or discarded. This option was also 
rejected, in part because it would not be an easy mechanism (to intercepting the suggested 
actions and place them into the correct context) to implement and would require adding 
extra layers to MARS. 
 
Finally it was decided that the easiest and most efficient (computationally) would be for 
observers to monitor controllers. This only required that the controllers extend a subject 
class, which has generic reporting methods. When important information, such as state 
changes in the controller occurs, a simple notify method could be called which would 
automatically inform interested observers that the controller has new information. The 
new information could then be considered and appropriate changes made to the settings 
file before passing execution back to the controller. In this non-invasive method the 
actual decision making process of the controllers is manipulated by changing parameters 
in the settings file that the controller continuously consult in order to make decisions. 
This realistic and effective method was also the most simple of the three solutions to 
implement. This method also conforms to the conceptual model. 
 
From a software engineering point of view there are several concerns. First and foremost 
is the lack of detailed data for calibration and validation. To address this concern the 
underlying modules that make use of this data will have to be modular, so that when new 
data becomes available, better algorithms and statistical models can easily replace the 
current ones.   
 
Figure 20 shows an overview of the MARS entity (in orange) with the DBM (in blue). 
Each MARS entity has its own DBM, with its own behavioural state, unique 
characteristics and internal logic. The DBM extends the basic MARS entity by adding 
behavioural aspects.  
 
The DBM monitors the state of controllers using a simple observer design pattern. All 
controllers extend the Subject class that contains notify methods that update all the 
Observers that are interested in a particular controller. When an observer has a notification 
about what has changed in the controller the DBM consults its own internal logic, kept in 
the DBM class, and may modify the settings file that the controller consults to make 
decisions. In this simple way the DBM can influences the entities decision making 
process.  
 
The PerceptionUnit deals with the perception and has access to a list of objects that the 
detector has seen in the surrounding world. The PerceptionUnit can alter information 
about these objects, for instance the distance of the object, which can be used to emulate 
misjudgements on how far away the object actually is. An alternative method is to do this 
through observers, as controllers generally also have access information on objects in the 
world (which they use to make decisions). 
 
The DriverProfile class is a wrapper for the Settings class, extending the MyPreference class. 
DriverProfile class protects the DBM module from changes in the settings class. The 



D R I V E R  B E H A V I O U R  M O D E L  

41 

DriverProfile class also adds additional settings that are unique to the DBM module. At 
some point these extra settings may be merged into the MARS settings file. The 
DBMPlatform extends the original Platform class, allowing the original MARS entity to be 
created using this class as well. Besides allowing specific DBM parameters to be added the 
DBMPlatform also protects the module from changes in the rest of MARS. 
 
The behaviour class contains the behaviour states along with the parameters associated 
with each state. Modification or the addition of a new behavioural state can be done in a 
single class. 
 
The DBM also has a logger that allows information specific to the DBM to be gathered 
for research and debugging purposes. This logging system can be merged into the MARS 
logger, but was kept separate so that the DBM could remain independent. 
 
This structure insures that the DBM is flexible and transparent. The implementation has 
kept the DBM independent from MARS and no major changes to the architecture of 
MARS were required. The DBM can be easily added to any existing MARS entity. 
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Figure 20 UML diagram of the DBM extension of the MARS entity. 
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7. Simulation and Results 

In this chapter a proof  of  concept that was implemented to test the 
new DBM in simulation is presented. 

7.1. Proof of concept 

A proof of concept model was implemented to demonstrate the use of the DBM. The 
proof of concept extends an intersection crossing controller. The crossing controller was 
created by Tim van Dijk for his research into gap acceptance at intersections (van Dijk, 
2008). This controller encapsulates the decision making logic necessary to successful 
execute left turn entry into the main flow at a T-junction. This situation is shown in 
Figure 21.  

 
Figure 21 Left hand turn entry into main traffic flow (van Dijk, 2008). 

This gap acceptance model also takes into account multiple gaps when deciding whether 
or not to accept a give gap. The controller looks at up to four gaps (Tg1, Tg2, Tg3, and 
Tg4). The each of the gaps has a weighted score: 1.0, 0.75, 0.5 and 0.25 respectively. The 
gap farthest away receives has the lowest weight. The basic idea is that a driver will pass 
on a relatively short gap (Tg1, directly in front of the driver) in favour of another gap 
down the flow if that gap is larger (i.e. one of the oncoming gaps will receive a higher 
score). The crossing controller considers traffic from coming both sides and joins them 
together forming one array of gaps.  
 
This particular controller is a perfect candidate to use the DBM. This controller is much 
larger than other controllers in MARS, approximately 5 times larger (in lines of code) than 
an average controller. The controller does execute a relatively complex manoeuvre 
requiring additional logic and therefore needs more lines of code, but the controller is 
none the less suffering from code-bloat to a degree. By using the DBM there is a choice 
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to move the logic required to decide which gap to accept to the DBM. This would lower 
complexity and make the crossing controller more generic.  
 
In this experiment the crossing controller was left completely unchanged. Van Dijk 
originally planned to add another dynamic to the crossing controller that would lower the 
size of the gap that the controller would accept based on waiting time. Unfortunately 
there was not enough time. This concept is based on the idea that the longer a driver 
waits the more impatient the driver will become, resulting in acceptance of shorter gaps.  
 

Assumption: The longer a driver weights the smaller the gaps he will accept become (van 
Dijk, 2008), (Pollatschek, Polus, & Livneh, 2002). 

 
An observer was implemented that watches the state that the crossing controller is in. 
This observer receives updates on state changes in the crossing controller and based on 
this information it dynamically changes the size of gap that the driver is willing to accept. 
The crossing controller will only accept gaps that are larger than its critical gap size, which 
is stored in the entities settings file. The observer dynamically changes this critical gap 
size, based on how long the vehicle waits. The advantage of this method is that the 
crossing controller itself remains unchanged, not one line of source code needs to be 
changed (only a simple notify method call need to be added). 
 
The model uses the notion of risk (of an accident occuring) and the impatience (waiting 
time) to dynamically affect decisions. The waiting time is seen as a penalty for not 
accepting a particular gap. The risk represents resistance to accepting gaps (very 
shorts/small gaps in the traffic) that have a higher likelihood of causing an accident. The 
risk model used is based on model developed by (Pollatschek, Polus, & Livneh, 2002). 
The model uses a simple risk function: 
 

𝑟 𝑡  =      
∞

𝑐 (𝑡 − 𝑡𝑠𝑎 )−𝛼                           
 𝑡 ≤  𝑡𝑠𝑎  
 𝑡 >  𝑡𝑠𝑎

    (1) 

 

Where 𝑡 is the size of the observed gap in sec, 𝑐 is a parameter for the cost of time, 𝑡𝑠𝑎  is 

a gap size below which an accident is sure to happen (𝑡𝑠𝑎 = 3.0 seconds for this 

experiment) and 𝛼 is risk parameter. A small value of 𝛼 corresponds to a risk-seeking 

driver and large 𝛼 represents a risk-averse driver. If the observed gap, 𝑡, is smaller or 

equal to 𝑡𝑠𝑎  the risk is infinite (because a crash is certain).   
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A plot of the risk function (1) is shown in Figure 22. 
 

 
Figure 22 Risk functions. 

The model makes a basic assumption that there are people who are risk loving (risk-
seeking) and those that attempt to mitigate all risks (risk averse). This assumption is based 
on economic theories dealing with investments. In the choice of portfolios some investors 
will choose risky investments, while others will diversify and choose safer investments to 
mitigate risks (Levy & Sarnar, 1986). 
 
The method used by (Pollatschek, Polus, & Livneh, 2002) to model the size of gap to 
accept and the modification of critical gap size is based on a passion process that models 
the intensity of traffic on the intersection. The critical gap is changed using a Bayesian 
estimator. In order to keep the model simple a modified version was used that does not 
require exact knowledge of traffic intensities. The risk function shown in (1) was used.  
To be able to relate risk to the time a driver has waited the risk function must be 
expressed in a monetary equivalent. Details can be found in Appendix B. The risk is now 
expressed in seconds and is commensurable with waiting time.  
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The Figure 23 shows the relationship between risk and waiting time. 
 

 
Figure 23 risk related to waiting time in terms of gap size. 

Figure 23 relates risk to waiting time. The longer a driver waits the shorter the gap size 
will become as the driver become less patient and accepts a higher level of risk. The closer 

the driver‟s critical gap comes to 𝑡𝑠𝑎  (3 seconds gap size in Figure 23) the higher the risk 
of an accident becomes. It is also assumed that the driver will not wait much longer than 
30 seconds. The model is easy to adapt as the model is based on only a few parameters. A 
gap of 6.0 seconds is considered to have no risk associated and the driver will go. A risk-
seeking driver will accept a shorter gap sooner than a risk-averse driver. 
 
Based on this relationship and risk the critical gap is shortened as waiting time increases. 
The DBM receives notifications on the current state that the vehicle (controller) is in. The 
observer keeps track of how long the driver has been waiting at the intersection and 
dynamically changes the critical gap of the controller. Eventually after waiting some time 
the critical gap is small enough that a gap can be accepted and the vehicle can make the 
left turn entry. 
 
For this experiment a simple traffic flow was used with continuous and constant gaps of 
3.5 seconds in size. When the vehicle arrives at the intersection the critical gap is initially 
set to 6.0 seconds. The experiment setup is shown in Figure 24.  
 

 
Figure 24 Experiment setup. 
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Two drivers were used, a risk-seeking driver (𝛼 = 1.6) and a risk-averse driver (𝛼 = 3.0). 
The results of the experiment are shown in Figure 25. 
 

 
Figure 25 Experiment results, waiting time and critical gap. 

Initially (after 3.0 seconds of waiting) the risk-averse (in blue, Figure 25) driver has a 
smaller critical gap this is due to the risk function that was used (which was chosen for its 
simplicity). After a waiting another 3.0 seconds the critical gap of the risk-seeking (in red, 
Figure 25) driver decreases faster than the risk-averse driver. The risk-seeking driver 
carries out his left turn after 35 seconds of waiting. The risk-averse driver hower waits 
nearly twice as long be turning onto the main road. Both driver will not accept gaps 

smaller than 3.0 seconds as this is the value of 𝑡𝑠𝑎  in the experiment. 

7.2. Results and model test 

The gap acceptance model controller was easily extended with dynamic gap size reduction 
based on waiting time and risk. A more complex and accurate model could easily be 
implemented using the model described in (Pollatschek, Polus, & Livneh, 2002). The only 
addition that was made to the crossing controller was the addition of one line to update 
the DBM on the status of the controller. The DBM does affect or override the basic 
functionality of the MARS controller. The crossing controller still considers multiple gaps 
in its decision. The only difference is that the critical gap of the controller, which was 
static, is now dynamic.  
 
The experiment was easy to implement using the DBM and demonstrated the strength of 
this approach.  The behavior of the driver, risk-seeking or risk-averse,  was expressed 
using the aggressive and passive behavioural states. The implementation of this proof of 
concept also creates a more realistic gap acceptance model for MARS. Gap acceptance is 
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a critical maneuver and an important area of traffic safety analysis as this is one of the 
more complicated and accident prone manuevers.   
 
The model was verified visually and using a reference model. The reference model was 
first created in excel and was used to calibrate the model. The experiments were then 
carried out in the simulation. The logged data was then compared to the reference model 
to confirm that the model was operating as predicted. The simulations were also visually 
inspected to insure that no unexpected or erratic behaviour occurred. The vehicles in the 

simulation correctly did not enter when the observed gap was smaller than 𝑡𝑠𝑎 . The 
vehicle also did not wait when the observed gap was larger than the current critical gap 
size. The experiment was compared to the normal functionality of MARS and Tim van 
Dijk‟s model to insure that the DBM functioned properly and as expected.  
 
The experiment was also carried out with a more realistic traffic intensity, which was also 
used in van Dijk‟s experiment. The experiment uses a Erlang(2, µ) distribution which is a 
special case of a gamma distribution. This distribution provides a realistic arrival rate of 
vehicles on the intersection. The DBM performed properly in this case as well. 
 
Implementation of this proof of concept, behavioural states and experiment were used to 
test and debug the software to insure that the simulation functioned properly. System 
debugging information is included in the logging system and the real-time simulation 
output. JAVA asserts were used and system exit functions were included to halt the 
simulation when undesired conditions or errors occur. It should be noted that the 
correctness and proper functioning of the DBM dependent on the underlying MARS 
architecture, which were assumed to be correct. 
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8. Conclusion 

In this chapter a conclusion is presented, along with 
recommendations. 

The ultimate goal of this research was to develop and implement a drive behaviour model 
in the Multi-Agent Real-time Simulation, so that more realistic experiments can be carried 
out for the purpose of traffic safety analysis. A driver behaviour model has been designed 
and implemented which creates more realistic driving behaviour. In order to achieve this 
goal several key questions had to be answered, will now be discussed in turn 
 
Which psychological model is best suited for implementation into a traffic simulation? 
 

The selected psychological model by Fuller is a satisfactory framework in which 
the decisions made by drivers can be considered. The model lends it self well to 
implementation in a computer model as it can be made concrete. Regardless of 
the actual mechanism that “drives” the decision making based on subjective risk 
or difficulty was not the determining factor to use this particular model. The 
strength of Fuller‟s model lies in the use of what he calls constitutional features 
and human factors. While trying to implement psychology in software is 
inherently difficult and fraught with problems, human factors in comparison are 
well suited to implementation in software, as the factors based on responses, 
reactions and errors that can be measured and set as parameters in the simulation. 
The framework can easily be adapted if new or more concrete empirical evidence 
is found.  
 
A consistent and coherent structure has been implemented that adheres to 
Michon‟s guidelines. There is a clear separation between the functional level 
(MARS) and aggregate behaviours (DBM) that influence the functional level.   

 
What are the key factors and behaviours that influence driving and safety? 
 

Key factors affecting driving were identified and combined into behavioural 
states. The key behavioural states were aggression, passive, neutral, fatigued and 
intoxicated. Each state has a human factors associated with it in a unique way. 
These behaviours have the most dramatic effect on how a driver behaves and on 
safety measures. The flexibility of the states within the DBM means that the 
states can be modified and new states can easily be added. 
 

Chapter 

8 
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The implementation of moods or behavioural profiles such as aggression, 
intoxication and fatigue are abstract and difficult to quantify for the purposes of 
simulation. Although in the case of aggression, which is an observable behaviour 
that has direct effects on driving behaviour is interesting. Many of these moods 
that affect the level of risk while driving can be translated into theories such as 
economics, in particular investment strategies. We know that some individuals 
will select investments with a higher level of risk versus others that will allocate a 
portfolio that mitigates risk. I believe that these sort of assumptions are not 
perfect but do provide a working hypothesis that can be applied successfully in 
simulation.  

 
How will driver behaviour be transformed and integrated into the Multi-Agent Real-time Simulation? 
 

The integration and implementation of the DBM into MARS had some strict 
constraints. Not being able to change the underlying structure of MARS was a 
challenge, but the resulting framework works well. Extending MARS with the 
DBM, while leaving the core of MARS unchanged, will result in a framework 
with simple and generic components. This will greatly aid future development of 
MARS. 
 
The use of risk in Fuller‟s model, based on Wilde‟s theory of risk homeostasis has 
received a lot of criticism and been drawn into question (Vaa, 2001), (Michon, 
1989). During this research and particularly during the implementation of the 
model it was found that it was impossible to implement a general risk function 
that affect all the decisions made by drivers. This was largely due to the way that 
MARS is structured with controllers making independent specific decisions 
related to the driving task. It is not likely that generalized risk function or 
homeostat that affects all the decisions can be implemented. Rather a risk 
function can be implemented for specific decisions or a set of decisions, such as 
whether or not to accept a gap. The driver always has to accept a certain amount 
of risk which is inherent in driving, but it is better to model risk in each specific 
case. Risk is often associated with the variances in perception or estimations 
made by drivers and the cost of these risks are calculated based on mistakes made 
in the estimates that lead to incorrect or inaccurate decisions. These functions, 
especially in a simulation dominated by parameters and calculations, are 
impossible to define in a generalised way. 
 
The DBM is based on generally accepted human factors that are based on 
empirical and aggregate data. The model will require “tweaking” as is always the 
case when carrying out detailed and accurate experiments in a simulation 
environment. The design of the DBM deals well with the lack of detailed data on 
human behaviour by providing flexibility. As more experimental data becomes 
available the data can be used to improve the DBM. Practically all human factors 
in the DBM are simple parameters and can therefore be easily modified. 
 

A proof of concept was implemented based on the gap acceptance model (van Dijk, 
2008) proving the versatility of the model. The results show how dynamic aspects of 
behaviour can be incorporated into the decisions made by drivers. The DBM influences 
the decision making processes of drivers without the need to alter the underlying decision 
making components, thereby maintaining the simple and generic structure of MARS. 



D R I V E R  B E H A V I O U R  M O D E L  

51 

 
The model reduces complexity of the underlying MARS architecture and provides a more 
realistic simulation that is capable of carrying out detailed research in a multitude of areas. 
More realistic driving behaviour will not only provides better safety analysis but can also 
be used for capacity research on intersections and for emission models. Because of MARS 
robustness conducting experiments on emissions, for instance, will only require the 
addition of logging information. The framework also provides a platform to test advanced 
driver assistance systems in a realistic environment. 
 
Modelling a human being is inherently difficult, if not impossible and I have tried, to 
“steer” away from attempts to implement a complete human. Instead the goal of this 
project was to model an aspect of human behaviour and the effects a particular (or 
combination of behaviours) has on the associated decision making specifically during 
driving only and the resulting affects on safety and other facets of driving. 

8.1. Recommendations 

During the development of the DBM numerous interesting areas of research were 
discovered, many however fell outside of the scope of this project. Nevertheless because 
of the importance of this research and the benefits these areas potentially hold, some of 
these will be discussed here. These issues constitute promising additions to the DBM and 
MARS that should be considered in further development of the simulation. 
 
An important aspect of driving safety is distraction or inattention, which can be caused by 
a work overload, fatigue or under arousal. Distraction is one of the most difficult factors 
to simulate. MARS at the current time does not have an accurate enough model of a 
human being for distraction to be properly implemented. The question is when does the 
driver become distracted and what is the result of being distracted. Being distracted could 
result in a driver not sensing an important event or another vehicle on time or completely 
missing the event all together. Since distraction plays an important role in accidents 
efforts should be made to develop a mechanism to incorporate it. 
 
A related issue to inattention and distraction is workload. There is no clear way to do this 
in MARS, several possible ideas were considered. Using the level of contention, defined as 
the number of conflicting suggested actions produced by the controllers as a possible 
value for Fuller‟s difficulty homeostasis model. Perhaps controllers and associated 
decisions can be used as a relative measure of difficulty or disharmony in a particular 
situation. Theoretically the amount and level of contradictor suggested actions can 
indicate that a driver is in a difficult or complex situation that requires extra consideration. 
The more complex (or “difficult”) a situation is then theoretically there should be a higher 
level contention. Another possibility is to use the number of active controllers (controllers 
are not always active) and the number of objects that the entity is tracking at time as 
measure of workload. This could be modelled as the working memory of the driver. The 
next question then is what to do if a work overload is detected. Should some objects 
being tracked be ignored or lost and which object should these be. These are difficult 
questions that will hopefully be addressed in the future. 
 
The calibration and validation of the model is problem because that there is not enough 
detailed data. It is questionable whether video data alone will be sufficient. From video 
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footage it will not be possible to ascertain who was driving the car, leaving us to guess the 
characteristics of the driver were (age, intoxication or fatigued, etc.).  
 
Concrete and detailed data on drivers, of a particular age, gender and level of experience 
should be gathered for specific situations (various intersections, particular roads with 
different levels of congestion and traffic intensities) and used to calibrate and improve the 
model. This would go along way towards creating a more realistic and accurate simulation. 
The best method for obtaining this data would be by either carrying out real driving or 
simulator experiments. At the same time it should be strenuously stated that the 
experiments should be carried out with drivers making up a diverse part of the driving 
population, there should be several drivers from different age groups and gender. The 
drivers should also fill out questionnaires afterwards to ascertain the subjective side of the 
driving experience (difficulty level, mood and other behavioural information). This data 
can then be incorporated into the DBM. 
 
Because the model is based on a psychological model at its core it will be difficult if not 
impossible to validate the model completely. Faith will have to be put into the correctness 
of the psychological model used. However since the model relies heavily on human 
factors, that can directly measured there is an inherent level of confidence in the model. 
An important consideration is whether all important factors that influence driving 
behaviour have been included in the model. The most important and directly observable 
behaviours have been included, however factors relevant to these behaviours such as 
distraction or inattention are very important and should be include at some stage. 
 
An advantage of the model is that by carrying out concrete should automatically improve 
and calibrate the model. Most experiment focus on particular aspects of driving that 
require detailed data. The better the data used in the experiments the better and more 
reliable the model will become. 
 
Another area that is very difficult to model is the effect of experience. It is clear that 
experience has a definite effect on driving performance, but making this relationship 
concrete in the form of simulation parameters is not possible at the current time, due to 
lack of available data and understanding how experience directly effects driving. However 
given the importance of experience as an important factor that influences driving and 
traffic safety efforts should be made to understand and implement the influence into the 
simulation. It is quite possible that experience “hides” and can only be observed by the 
affect it has on other factors. For example, experience can increase reaction time because 
the driver expects certain events to happen based on similar situations that the driver has 
encountered before. Modifying parameters in the simulation to reflect this mechanism is a 
possible solution. 
 
The behavioural states are static (there are no behavioural state transitions during the 
simulation). The state of a driver is set before the simulation starts, however the states 
were implemented in such away that the behaviour of a driver can change. Dynamically 
changing the behavioural state of a driver was not pursued further because the 
experiments conducted in MARS usually focus on an intersection or short piece of road, 
so that each vehicle is in the simulation for a very short time (not enough time for a 
drivers behaviour to change noticeably). Detecting what circumstance cause a driver to 
shift to a particular behaviour is problematic. An interesting field of research was 
uncovered during this project dealing with what triggers aggression and how the drivers 
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responded (Lajunen & Parker, 2001). This research used a statistical inference method 
know as path analysis and may be interesting in the further development of MARS.  

8.2. Personal perspective 

I have enjoyed studying human factors engineering and psychology in the area of traffic 
safety. This project was ambitious in its scope, essentially attempting to model a human 
being, albeit in a specific situation. Most attempts to model human behaviour have been 
met with limited success.  
 
At the very least this research will provide TNO with a driver model that can be used to 
analyse safety. In the simple event of two cars meeting at an intersection there are an 
extremely large amount of possible outcomes even for such a relatively straight forward 
scenario. This large amount of uncertainty will enable TNO to test their advanced driver 
assistance systems and adaptive cruise control in a realistic environment. It is impossible 
for anyone person to analytically calculate or oversee all the possible outcomes or results 
of human behaviour for such a complicated system like the traffic system.  
 
I have tried to limit the scope of the project, hopefully without sacrificing any important 
factors. The project has significant scientific and practical applications in the important 
area of road safety in which we all have a vested interest. 
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Appendix A: Behavioural 

states 

In this appendix provides an overview of  the parameters associated 
with each behavioural state in greater detail. 

Each of the behavioural state will be described in detail. A detailed overview of each 
behavioural is provided, with specific values for each parameter and sources (if 
applicable). The error rate refers to errors made in perception, specifically errors in 
judging distances and speeds of other vehicles and objects. 

Neutral state 

The neutral state is the state devoid of any behaviour. An entity in the neutral state drives 
without any affect from the DBM. All other states are described relative to this state.  

This state has a risk-neutral behaviour. The parameter for 𝛼 is set to a value that is in 
between risk-seeking and risk-averse. 
 
Table 2 Detailed overview of parameters for the neutral behavioural state. 

  Effect Source 

Speed Speed limit 

 

Acceleration normal 

Deceleration normal 

Following distance normal 

Gap acceptance 𝛼 = 2.4 (Pollatschek, Polus, & Livneh, 2002) 

    
 Risk Risk-neutral 
 Error rate none 
 Reaction time normal 

  

  

Appendix 

A 



D R I V E R  B E H A V I O U R  M O D E L  

58 

Aggressive state 

The following of aggression is used (Tasca): 
 

A driving behaviour is aggressive if it is deliberate, likely to increase the risk of collision 
and is motivated by impatience, annoyance and/or an attempt to save time. 

 
Although literature concerning aggressive driving states that exceeding the speed limit in 
one of the visible effects there is no definitive measure (percentage) how far above the 
speed limit aggressive drivers generally drive. For this reason the speed, acceleration and 
deceleration will be set to 10%, which can be easily changed (data on specific road ways 
and intersections will yield a better estimation in each particular case). 
 
Aggressive driving is considered a form of risky driving and will therefore be associated 
with a risk-seeking behaviour. Aggressive driving has no effects on the error rate or 
reaction time. Table 3 provides an overview of the parameters used for the aggressive 
behavioural state. 
 
Table 3 Detailed overview of parameters for the aggressive behavioural state. 

  Effect Source 

Speed 10 % above limit 
  
 (Tasca) 
  
  

Acceleration 10% faster 

Deceleration 10% faster 

Following distance 50% of normal 

Gap acceptance 𝛼 = 1.6 (Pollatschek, Polus, & Livneh, 2002) 

      

Risk risk-seeking 
 Error rate normal   

Reaction time normal 
 

 

  



D R I V E R  B E H A V I O U R  M O D E L  

59 

Passive state 

The passive state is defined as being opposite to the aggressive state. This state 
corresponds to a cautious driver and is risk-averse. Like the aggressive behavioural state 
there are no affects on the error rate or reaction time. 
 
Table 4 Detailed overview of parameters for the passive behavioural state. 

  Effect Source 

Speed 10 % below limit 
  
  
  
  

Acceleration 10% slower 

Deceleration 10% slower 

Following distance 50% of normal 

Gap acceptance 𝛼 = 3 (Pollatschek, Polus, & Livneh, 2002) 

      

Risk risk-averse 
 Error rate normal   

Reaction time normal 
  

Fatigued state 

This state represents a driver that has become fatigued and no can no longer operate at an 
optimal level. Fatigue diminishes the driver‟s cognitive ability, which affects the driver‟s 
reaction speed (Li, Jiao, Chen, & Wang, 2004) and perception (increasing the error rate). 
The speed driven by the driver will be erratic as the driver struggles to concentrate and 
maintain a constant speed. This state had no effect on the level of risk accepted by the 
driver. 
 
Table 5 Detailed overview of parameters for the fatigued behavioural state. 

  Effect Source 

Speed erratic 
  
  
  
  

Acceleration normal 

Deceleration normal 

Following distance normal 

Gap acceptance 𝛼 = 2.4 (Pollatschek, Polus, & Livneh, 2002) 

      

Risk risk-neutral 
 Error rate high   

Reaction time increased by 20% (Li, Jiao, Chen, & Wang, 2004) 
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Intoxicated state 

This state is associated with the impaired driver, specifically a driver with alcohol 
intoxication. The effect of drugs will not be considered because different drugs have 
different effects on driving. Alcohol affects the forebrain by suppressing caution, 
carefulness, concentration, self criticism and self control (South African Department of 
Transport). The lack of caution exhibited by intoxicated drivers increases the level of risk 
taken. 
 
Alcohol has an effect on perception. Depth perception is depth perception making it 
difficult to correctly judge how far away an object is (Wright State University). At 
moderated blood alcohol levels perceptual speed is also affected (Jones, Chronister, & 
Kennedy, 1998 ). 
 
Alcohol also has a significant affect on reaction time. Figure 26 show the effect of alcohol 
on reaction time. There is a linear relationship indicating that reaction time under the 
influence of alcohol increase by approximately 30%. 
 

 
Figure 26 Affect of alcohol on reaction time (Caird, Lees, & Edwards, 2005). 

Figure 26 is based on a best fit for three difference blood alcohol concentrations (0.01-
0.049; 0.05-0.079; 0.08-0.10). The fit equation accounts for 98.87% of variance in the data 
included (Caird, Lees, & Edwards, 2005). 
 
Intoxicated drivers are unable to maintain a constant speed while driving, either driving 
too fast or slow. Starts and stops are also jerky (Pennsylvania Department of 
Transportation).  
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An overview of all parameters used in for the intoxicated state are shown in Table 6 
 
Table 6 Detailed overview of parameters for the intoxicated behavioural state. 

  Effect Source 

Speed erratic 
  
 (Pennsylvania Department of Transportation) 
  
  

Acceleration erratic 

Deceleration erratic 

Following distance erratic 

Gap acceptance 𝛼 = 1.6  (South African Department of Transport) 

      

Risk risk-seeking  (South African Department of Transport) 

Error rate high  (Wright State University) 

Reaction time increased by 30%  (Caird, Lees, & Edwards, 2005) 
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Appendix B: Experiment 

setup 

In this appendix provides an overview of  the model used in this 
research and simulation experiment. 

The risk model used is a simplified version of the model used in (Pollatschek, Polus, & 
Livneh, 2002). The model uses the following function to calculate the risk of accepting a 
particular gap size. This risk function is shown below. 
 

𝑟 𝑡  =      
∞

𝑐 (𝑡 − 𝑡𝑠𝑎 )−𝛼                           
 𝑡 ≤  𝑡𝑠𝑎  
 𝑡 >  𝑡𝑠𝑎

     (1) 

 

Where 𝑡 is the size of the observed gap in sec, 𝑐 is a parameter for the cost of time, 𝑡𝑠𝑎  is 

a gap size below which an accident is sure to happen (𝑡𝑠𝑎 = 3.0 seconds for this 

experiment) and 𝛼 is risk parameter. A small value of 𝛼 corresponds to a risk-seeking 

driver and large 𝛼 represents a risk-averse driver. If the observed gap, 𝑡, is smaller or 

equal to 𝑡𝑠𝑎  the risk is infinite (because a crash is certain).   
 
The risk function was calibrated in excel before running the experiment.  The model uses 
the following parameters to calibrate the model: 

 waiting time (W) 

 𝑡𝑠𝑎  

 𝑐 

 𝑡𝑛𝑟  - a gap size where the risk is negligible 
 

These are the only parameters need to calibrate the model. The waiting time selected was 

30 seconds. The calibration of the model involved adjusting the risk value, 𝑟 𝑡 , so that it 
was comparable to the waiting time. This meant finding an acceptable value for the cost 

of time (a value multiplied the cost per second for waiting) and an appropriate value of 𝑐 

so that the weighting time would be close to the risk of accepting a gap close to 𝑡𝑠𝑎  when 
the weighting time reached 30 seconds. Based on the time weighted, which is 

commensurable with the risk, the critical gap size was altered to the value of in the 𝑡 in 

the function 𝑟 𝑡 . In other words, after waiting a particular amount of time a certain 

amount of risk is accepted, for which there is a particular value of 𝑡 (gap size). This value 
is then used as the new critical gap value (the minimum size of gap, in seconds, that the 

Appendix 
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driver is willing to accept). In this way the longer the driver waits the shorter the driver‟s 

critical gap will become (until reaching 𝑡𝑠𝑎  after which the critical gap can become no 
smaller). 
 
To test this risk base gap acceptance model a simple experiment was setup as follows: 

 A car, S in Figure 26, arrives at the T-junction intersection attempting to execute 
a left hand turn to enter the main traffic flow 

 Car S starts the experiment upon arriving at the intersection with a initial critical 
gap of 6.0 seconds 

  A continual, constant flow of cars travel over the main road, from both sides. 

 The combined gap between two (one from the left and one from the right) cars 
approaching the T-junction intersection is 3.5 seconds long (as is marked in red 
in Figure 27).  

 

 
Figure 27 Experiment setup. 

 
In order for car S to execute the left hand turn the critical gap must first decrease to 
below 3.5 seconds (this is time between each consecutive gap on the main road). 
 

This experiment was carried out using two values of 𝛼. 1.6 and 3.0 respectively, that 
represent a risk-seeking and risk-averse drivers.  
 
The results of the experiment were compared to the expected values obtained from 
calculations made in excel based on the calibration of the model. 


