
MSc Thesis

Implementing and Improving a Method
for Non-Invasive Elicitation of Probabilities

for Bayesian Networks

ing. Martinus A. de Jongh
Copyright c© January 2007





Implementing and Improving a Method

for Non-Invasive Elicitation of Probabilities

for Bayesian Networks

by

ing. Martinus A. de Jongh

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

Presented at

Delft University of Technology,
Faculty of Electrical Engineering,

Mathematics and Computer Science
Man-Machine Interaction Group

Mekelweg 4, Delft

January 2007



Man-Machine Interaction Group
Faculty of Electrical Engineering,
Delft University of Technology,
Mathematics and Computer Science
Mekelweg 4 2628 CD Delft
Netherlands

Decision Systems Laboratory
Department of Information Science and Telecommunications
University of Pittsburgh
135 North Bellefield Avenue
Pittsburgh
PA 15260
United States of America

Members of the Supervising Committee
drs. dr. L.J.M. Rothkrantz
dr. S. Ooms
dr. K. van der Meer
Dr. ir. M.J. Druzdzel (Decision Systems Laboratory)

Copyright c© 2007
ing. Martinus A. de Jongh
1191713

Keywords
Artificial intelligence, Bayesian networks, conflict detection,
Dirichlet distribution, GeNIe,knowledge elicitation,
linear programming, probability theory, SMILE



Abstract

Implementing and Improving a Method for Non-Invasive
Elicitation of Probabilities for Bayesian Networks

Copyright c© 2007 by ing. Martinus A. de Jongh (1191713)
Man-Machine Interaction Group

Faculty of EEMMCS
Delft University of Technology

Members of the Supervising Committee
drs. dr. L.J.M. Rothkrantz, dr. S. Ooms,

dr. K. van der Meer, dr. ir. M.J. Druzdzel (DSL)

Elicitating knowledge from experts is always a difficult task. Many inter-
viewing techniques exist (N. J. Cooke, 1994), but it is often difficult to select
the right technique for the task at hand. Knowledge elicitation is especially
difficult for expert systems that are based on probability theory. The elici-
tation of probabilities for a probabilistic model of a problem requires a lot
of time and interaction between the knowledge engineer and the expert.
Through games and other techniques the expert has to be calibrated to get
good probability estimates (R. Cooke, 1991).

Bayesian networks (BNs) are an example of a structure that can be used
to create a probabilistic model. They consist out of two parts: a graph rep-
resenting the variables of the model and their conditional dependencies, and
conditional probability tables (CPTs) for every node that represent the prob-
abilistic behavior of a variable of the model. BNs need specific conditional
probabilities for their CPTs. If an expert does not know these probabilities,
but knows other useful probabilistic information, this information generally
cannot be used directly to fill the CPTs of the Bayesian network. It will be
necessary to perform calculations before the information is transformed into
conditional probabilities directly usable for BNs.

Druzdzel and van der Gaag (1995) have proposed a theoretical framework
that would allow for the direct use of other types of probabilistic information.
This framework has been used as a starting point for the implementation of
a non-invasive elication method. Here, non-invasive stands for the ability of
the method to directly use any information the expert is willing to state to
acquire conditional probabilities for a Bayesian network.

There were many possibilities to improve the framework. Among them
were: finding methods for conflict detection and conflict resolution and im-
proving the sampling process that is at the core of the method.

This thesis describes the work and research that was done to imple-
ment and improve the method. It describes the performed research, the
design and implementation of the method, and an empirical evaluation of
the method. The implemented method works, but will need further devel-
opment to achieve better results.
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Chapter 1

Introduction

This thesis reports about the implementation and improvement of a method
for non-invasive elicitation of probabilities that are to be used in Bayesian
networks (BNs). In the last two decades probabilistic modeling and reason-
ing has become one of the main topics in artificial intelligence research. A
Bayesian network is an example of a structure that can be used to create a
probabilistic model. Bayesian networks have recently become quite popular
in the AI community for modeling problems that deal with uncertainty.

1.1 Motivation

Through education or practical experience an individual can acquire a vast
amount of knowledge. If someone works hard and spends a large amount of
time studying or working in a specific field, he or she can get a very deep
understanding of this field. Someone who has such an understanding of a
field is considered an expert. Some example fields where human experts
have a large influence are: medicine, oil exploration, and economics, where
financial experts try to predict the course of the stock market.

Experts are very valuable, their knowledge and opinions can be used
to advice people that have a less extensive understanding of their field.
Consulting an expert may considerably reduce the time necessary to solve
problems or to complete projects. A problem with experts is that they are
human, meaning that they can only be at one place at a time, need sleep,
grow old and will eventually die. The vast amount of knowledge they have
acquired during their lifetime has an expiration date. Unless their knowledge
is stored somewhere it will eventually disappear. To save their knowledge,
experts can write books or papers, or teach what they have learnt to others.

In the 1970s the AI community started working on expert systems, com-
puter programs which purpose it is to store an expert’s knowledge of a
domain and to reason with this knowledge to be able to answer domain re-
lated questions. Expert systems have some advantages over human experts.

1



2 CHAPTER 1. INTRODUCTION

The knowledge stored in an expert system can be accessed at any time and
can be copied as many times as necessary. It is also very likely that the
knowledge stored in an expert system will be available forever.

The first expert systems were rule based. The expert’s knowledge of a
domain was represented as a set of logical rules. The rules of these expert
systems had a IF . . . THEN . . . structure. Facts, statements about the
problem domain, are inputted into expert systems and the rules are applied
to the facts to derive new facts. This process is repeated until no new facts
are generated. Now, by examining the facts that are present in the expert
system, conclusions can be drawn and the expert system can generate an
advice for its user.

These first expert systems worked with boolean logic, a rule could either
be true or false, a fact could only be present or absent. In situations where
a lot of uncertainty is present these expert systems would not perform op-
timally. Different approaches were tried to make expert systems more able
to cope with uncertainty. Some examples are certainty factors (Shortliffe,
1976), fuzzy logic (Zadeh, 1978), and probability theory.

The use of probability theory with expert systems allows for mathe-
matically correct approaches to deal with uncertainty. Different approaches
have been tried, examples are adding probabilities to rules and facts, and
completely representing the knowledge as a joint probability distribution (j-
PDF). A joint probability distribution is a table that assigns a probability
to every possible combination of facts. A big problem with this approach
is if the number of facts, or variables of the problem that is being modeled
increases, the number of probabilities necessary for the j-pdf increases ex-
ponentially. Very quickly the number of probabilities become so large that
it is no longer feasible to use this approach.

Bayesian networks (BNs) (Pearl, 1988), developed in the 80s, are a solu-
tion to this problem. BNs are graphical models that very efficiently represent
joint probability distributions. The number of probabilities a Bayesian net-
work needs to represent a joint probability distribution can be many orders
of magnitude less than the number of probabilities necessary for the j-PDF.
This reduction of probabilities is possible because of extra assumptions that
are added to the model. It is assumed that some of the variables in the model
are conditionally independent of each other. When variables are (condition-
ally) independent of each other it means that the variables do not influence
each other and that it is not necessary to specify a probability for every
possible combination of these variables.

A BN has a graph that contains the modeled variables. Each node of the
graph represents one of the variables of the model and has a local conditional
probability distribution that is conditioned on the parents of the node. This
distribution is a table (CPT) that has probabilities for each possible value of
the node and each possible combination of the node’s parents. If two nodes
in the graph are not connected by an edge, the two variables the nodes
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represent are conditionally independent of each other. The graph typically
represents a causal structure, i.e., the parents of a node represent the cause
of this node. When modeling a causal process using a BN, cause - effect
relations in the process are modeled as parent - child relations in the BN,
where the child is conditionally dependent on the parent(s). An example
BN is shown in Figure 1.1, due to (Beinlich, Suermondt, Chavez, & Cooper,
n.d.).

Figure 1.1: Example Bayesian network used for monitoring patients in in-
tensive care wards

A completely defined Bayesian network can answer any probabilistic
query for the model. Typical queries concern the probability that one of
the nodes has a certain value given that other variables of the model all
have a certain value. An example query for a Bayesian network that models
a desease and its symptoms could be: “what is the probability that the de-
sease is present given the fact that one of its symptoms is present?” Another
could be “What is the most likely combination of symptoms to be present
when a patient has the desease?”

Bayesian networks have many applications, their ability to make pre-
dictions while taking uncertainties into account makes them very useful.
They have been used for applications including medical diagnosis, speech
recognition, face recognition, and decision support. But for any of these
application to work, first their Bayesian networks have to be created. Their
graphs need to be created and the CPTs for every node need to be filled
with the necessary probabilities. Basically three approaches exist:

• Elicit the necessary information from a domain expert.

• Learn the necessary information from data.

• The knownledge engineer that is creating the BN estimates the prob-
abilities himself, using relevant literature.
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Both the graph and the CPTs can be created using all of the methods.
Depending on the application one method may be more appropriate than
the other. For speech recognition applications a lot of data is available,
learning the probabilities for the CPT entries from this data will most likely
give better results than to elicit these probabilities from experts. In other
situations using the opinions of experts may be the only viable option. If for
example a model would be created to predict the possibility of nuclear war,
expert opinions are the only source of information. Generally, in situations
where there is not enough data, or no data at all, elicitation of knowledge
from experts is the only approach to get the necessary probabilities for a
model.

Knowledge elicitation in general can be difficult to perform effectively.
Acquiring knowledge from an expert and putting it into a model can be a
daunting task. It may be very difficult for an expert to explain to a layman,
in this case the knowledge engineer trying to elicit the knowledge from the
expert, what the important aspects of his or her field are and why these
aspects should be included in the model that they are developing. Also an
expert may be unwilling to cooperate, because perhaps he or she is afraid to
be replaced by the system for which knowledge is being supplied. There have
been many studies in several related fields to find optimal procedures for the
elicitation of knowledge (N. J. Cooke, 1994), but in general the result of a
knowledge elicitation procedure depends mostly on how much the expert is
cooperating with the knowledge engineer.

Knowledge elicitation for systems based on probability theory have an
extra difficulty. To describe this difficulty in a nutshell: the expert has to
assign probabilities, which are numerical values, to all the possible events
the application is modeling. Beside the fact that the number of probabili-
ties increases exponentially with the size of the model, experts may find it
difficult to assign an exact value to an event. The probabilities stated by
an expert are subjective, which means they represent the degree of belief
the expert has that the events the probabilities describe will occur. When
an expert is stating a (subjective) probability, he or she is usually not per-
forming mental calculations (R. Cooke, 1991). Experts will generally rely
on rules of thumb, or heuristics. Using heuristics can cause an expert to
become biased. The expert may not be able to provide probabilities that
accurately represent the true probabilities of the events to be modeled. To
counter this bias the expert will need to be calibrated. According to (R.
Cooke, 1991) an expert is well-calibrated if

“for every probability value r, in the class of all event to which
the expert assigns subjective probability r, the relative frequency
of occurrence is equal to r.”

Calibration is a difficult, but necessary process to acquire probabilities that
approach the “real” probabilities more closely.
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After calibration the elicitation process can begin. Research in knowl-
edge elicition has shown that asking an expert to state probabilities directly
generally leads to probability estimates of low quality (R. Cooke, 1991). It is
generally better to use an indirect approach that uses a sort of betting game
to determine the desired probabilities (R. Cooke (1991); Clemen (1996)).

Until now it is assumed that the expert actually can give, maybe by
using betting games, an estimate of the desired probabilities. However, it
is possible that an expert cannot give an estimate for a certain probability
directly, but only implicitly by estimating other probabilities first and calcu-
lating the desired probability using, for instance, Bayes’ rule (Section 2.2.2).
Also an expert may have information that is not quantitative of nature,
i.e. not in the form of numerical probabilities. Other types of probabilistic
information exist that are qualitative of nature and cannot be directly in-
terpreted as probabilities for a Bayesian network. If the expert can provide
these types of information and it is relevant for the model to be developed
it would be very inefficient if it would be impossible to use this information
for the model.

Assuming that the graph necessary for a Bayesian network has been
developed, now only the probabilities for the CPTs will have to be elicited.
Any probability of a CPT entry the expert can estimate directly without
calculations can be considered as relatively “easy” to use for the model.
Probabilities or qualitative statements that are relevant for the model, but
cannot be elicited in a way so that they can be used in the Bayesian network
directly, can be considered to be “hard” to use for the model. How these
probabilities, or qualitative information types, are exactly acquired is not
even really relevant. The main problem is that a Bayesian network requires
conditional probabilities, and only the specific conditional probabilities that
are necessary for the CPTs of its nodes.

If it were possible to use probabilities and probabilistic information other
than the necessary conditional probabilities directly this would make the
eliciation process easier for the expert. Here with easier it is meant that
any information relevant to the model can now be be used for filling the
CPT entries of the Bayesian network, and it would no longer be necessary
to let the expert transform the information he or she has into conditional
probabilities that can be directly put in the BN. According to (Druzdzel
& van der Gaag, 1995) such an elicitation method can be considered to be
non-invasive. They define non-invasive as:

“Allowing any type of probabilistic information, quantitative or
qualitative of nature, the expert is willing to state to be inter-
preted directly for the elicitation of probabilities for a Bayesian
network.”

Druzdzel and van der Gaag (1995) have proposed a theoretical framework
for an elicitation method that lets an expert specify various statements of
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qualitative and quantitative nature and interprets these statements as con-
straints used to guide the determination of the CPT entries for a Bayesian
network.

This framework has been used as a starting point for the implementation
of a non-invasive elicitation method that allows the direct use of different
types of probabilistic information, quantitative and qualitative, and that
guides the elicitation process of the CPT entries for a Bayesian network.

1.2 Problems and Challenges

The proposed framework has never been implemented before, there may be
problems with it that have never been revealed. Some aspects of the original
framework may also need revision to achieve a higher efficiency, and to be
able to take advantage of research conducted after the paper’s publication.
The basic framework and its possible improvements provide for the following
challenges that could lead to a MSc thesis:

• The framework relies on constraints to reduce the sample space of the
probability hyperspace. If there are constraints that are contradicting
each other, we speak of a conflict. If there are conflicting constraints
present, the result is that sampling has become impossible because it
will be impossible for a sample to satisfy all constraints. A conflict
resolution method is necessary to detect when constraints are conflict-
ing and to notify the expert that these constraints will have to be
changed. An investigation should be performed to find conflict detec-
tion and resolution methods.

• The framework uses stochastic sampling to acquire 2nd order distribu-
tions. Since the hyperspace is very large, even when using constraints
to prune the search space, plain sampling will not lead to very good
results. Recently, a lot of work has been done at the DSL lab on
importance sampling (IS) (Yuan & Druzdzel, 2006). Using IS can im-
prove the sampling results and generally requires less samples to reach
a good estimate. The quality of the sampling process, however, de-
pends on the quality of the importance sampling function used in the
process. Applying IS instead of plain sampling might lead to a signif-
icant improvement of efficiency. Designing an IS algorithm should be
considered to improve the sampling process.

• It was proposed to divide the Bayesian networks into smaller networks
To combat the effects of the method’s computational complexity. it
was proposed to transform the BN into a chordal graph, and to de-
compose this graph into cliques. Generally it is easier for an expert
to provide probability statements for a smaller network. But due to
the transformation to a chordal graph the expert might find the new
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structure a bit confusing, because the graph no longer represents a
causal structure. Other types of BN decompositions might lead to
better results. An other potential problem could be merging the de-
composed network parts back into the complete network. Because the
decomposed parts are processed independently, overlapping variables
may need special treatment to get an optimal result when merging
the parts. It should be researched how to decompose and merge a
Bayesian network in such a way that the resulting sub networks are
easy to understand for the experts.

• In the paper a linear programming technique was proposed to de-
termine probability intervals for the constituent probabilities. Linear
programming faces the problem of conflicting constraints as well, and
it may be possible to discover conflicts and pin-point the conflicting
constraints at this point. It should be researched which extra steps are
necessary to make it possible for this linear programming technique to
be used automatically in a non-invasive elicitation method.

• A challenge will be to design an effective user interface that is user
friendly and is capable of efficiently acquiring the necessary statements
from the expert that the method needs to generate the constraints.

1.3 Goals

The main goals to be achieved for my M.Sc. thesis were:

• Research:

– Design an efficient sampling scheme for the method.

– Design a method for conflict detection and conflict resolution for
constraints.

– Develop an importance sampling scheme for deriving 2nd order
probability distributions over the constituent probabilities.

– Design a method for merging decomposed family networks into
the complete BN as accurately and efficiently as possible.

– Design a graphical interface for GeNIe for interactive elicitation
of constraints.
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• Implementation:

– Design and implement a data structure for the constraints.

– Design and implement a data structure for the constituent prob-
abilities.

– Implement a linear programming algorithm for calculating prob-
ability intervals over the constituent probabilities.

– Improve the efficiency of the method.

– Test the method and report the results in the thesis.

1.4 Thesis Outline

The rest of this thesis is organised as follows.
Chapter 2 describes the theoretical background of the different aspects

of this assignment. Chapter 3 addresses the performed research for the
assignment. Chapter 4 discusses the design of the software for the method.
Chapter 5 discusses the implementation of the method. Chapter 6 discusses
an empirical evaluation of the method as a whole, and a separate evaluation
of a part of the method. In Chapter 7 this thesis concludes the contributions,
possible future work, and ends with the last concluding remarks.



Chapter 2

Theoretical Background

2.1 Knowledge Elicitation

2.1.1 Expert Systems

In the 1970’s a new type of Artificial Intelligence (AI) system appeared.
This type of system relied on logic inference using facts and rules. The
facts represent the inputs and outputs of the system and the rules repre-
sent knowledge about the problem being modeled with the system. These
systems were called Expert Systems. Some famous examples are the DEN-
DRAL system (Buchanan, Sutherland, & Feigenbaum, 1969), that was used
for analyzing chemicals, and the MYCIN system (Shortliffe, 1976), which
diagnosed infectious blood diseases. Expert systems can be very general, as
each is build around an inference engine that takes the facts and the rules
as input, and by applying the rules on the facts it computes new facts that
serve as output for the “query”. This inference engine is typically called
“expert system shell”. The rules and facts are specified with the help of a
human expert and describe a certain problem domain. If other rules and
other facts are added to the system that apply to another domain, then the
system will model this domain instead. Examples of expert system shells are
the CLIPS system (Riley, November 1991), and a domain independent ver-
sion of MYCIN: Empty MYCIN (EMYCIN) (Melle, Shortliffe, & Buchanan,
1981).

Expert systems using logical inference have some limitations, especially
when dealing with situations involving uncertainty and erroneous data. The
systems use Boolean logic and this type of logic has no acceptable means
of dealing with errors or uncertainty. Erroneous data could occur because
of some sort of misunderstanding or sensor failure, depending on the type
of inputs the expert system has. Uncertainty plays a role when rules for
a domain are not really crisp like Boolean logic is. A rule might only be
accurate in about 80 percent of the cases, but this cannot be modeled by
using boolean logic. The same could apply to the amount of confidence

9
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one has in an input value presented to the expert system. Researchers have
searched for solutions to take uncertainty into account. The MYCIN system,
for instance, uses an ad-hoc formalism called certainty factors. These factors
are added to rules to give an estimation of the amount of certainty that this
rule is correct. When performing inference the certainty factors of the rules,
the rules, and the facts are used as input and, at the end, a certainty factor
is calculated for the conclusion.

Another approach was to create expert systems based on probability
theory. Specifically, using Bayes’ Rule to update knowledge. Here, instead
of certainty factors, probabilities are added to the rules to represent the
degree of belief in the accuracy of the rule. Now, when performing inference,
the probabilities and Bayes’ rule are used to calculate a degree of belief in
the result of the inference. The first expert system that used Bayesian
updating successfully was PROSPECTOR (Duda, Hart, & Nilsson, 1979),
a consultant system for mineral exploration. This system still used rules
as the representation of knowledge. Another viewpoint is to only work
with a probability distribution. Every factor of the problem would then be
modeled as a stochastic variable and a joint probability distribution function
(J-PDF) over all these stochastic variables would represent the knowledge
of the expert system. Asking the expert system a question would reduce to
calculation a specific probability given some instantiated variables. Since the
J-PDF contains all the information about the domain, every possible query
can be answered. An example of such a system was created by Dombal,
Leaper, Horrocks, and Staniland (1974), which diagnosed acute abdominal
illnesses and was demonstrated to perform better than human experts. The
problem with this approach is that when the number of variables increases,
the number of entries in the J-PDF increases exponentially. The size of the
table will become so huge that it will no longer be feasible to work with the
J-PDF as a form of knowledge representation. This was the reason that this
approach was abandoned very quickly.

Other methodologies exist that are not based on probability theory, ex-
amples are fuzzy logic (Zadeh, 1978) and Dempster-Shafer theory (Shafer,
1976), but during the 1980’s some interesting work has been done to make
probabilistic reasoning systems feasible. To reduce the number of probabil-
ities necessary for modeling a problem, researchers started to exploit avail-
able structure in the problem domains they were modeling. An example of
this are Bayesian Networks (BNs) (Pearl, 1988). Conditional independence
between variables is exploited to reduce the number of probabilities. Now,
instead of having one very large table with the J-PDF, a BN has conditional
distribution tables for every variable in the problem that depends on the
other variables. A BN consists of a directed acyclic graph (DAG), where
every node represents a variable of the problem, and conditional probabil-
ity distributions for every node of the network. Effectively, the J-PDF is
factored into smaller conditional probability distributions for every node.
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This relieves pressure from the complexity problem because now the total
number of probabilities no longer is exponential in the number of variables.
The complexity is more “localized”, since now every variable has it’s own
probability table. The number of probabilities in this table is exponential
in the number of parent nodes. This makes the whole network much more
scalable as long as the number of parents stays small.

2.1.2 Overview of Knowledge Elicitation Technique Families

These different types of expert systems have one thing in common; the
knowledge needs to be gathered and put into the systems. To do this, a
knowledge engineer can use the relevant literature, try to formulate the
knowledge himself, or consult an expert. Consulting an expert will gener-
ally be the best option to pursue, because an expert will probably be able to
easily identify the most important aspects of a problem domain. The pro-
cess of acquiring knowledge from an expert is called Knowledge Elicitation
(KE) and will mostly consist out of the knowledge engineer interviewing or
working with the expert to describe his knowledge in the form that is most
suitable for input in the expert system. In the fields of artificial intelligence
and cognitive psychology, there has been a lot of research, describing knowl-
edge elicitation techniques for different situations. N. J. Cooke (1994) has
organised the different knowledge elicitation techniques into three families:

• Observations and Interviews.

• Process Tracing.

• Conceptual Techniques.

The first family of techniques describes methods where the knowledge engi-
neer either observes the expert at work or interviews the expert to acquire
the desired knowledge. She makes a distinction between three subgroups:
observations, interviews and task analysis. By observation is meant watch-
ing the expert at work and recording his or her actions and deriving the
desired knowledge from these recordings. Interviews are the most common
form of knowledge elicitation. Here the knowledge engineer and the expert
interact with each other. This can be an interview or a discussion. Cooke
describes many variations, examples are unstructured interviews, usage of
the twenty questions game, questionnaires, and role playing. Task analysis
is a more formal set of techniques where the focus is on what the expert does
as opposed to what the expert knows (N. J. Cooke, 1994) and this set of
techniques is not used in knowledge elicitation for expert systems as much.

The second family represents more formal techniques that follow the
execution of tasks performed by the expert. The data that is recorded
during the time the expert performs the task is formatted in a prespecified
type. This, unlike the more informal observations and interviews mentioned
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earlier where more uncertainty exists about what eventually will be observed
or discussed during the interview. The family is subdivided into four groups:
verbal reports, non-verbal reports, protocol analysis and decision analysis.
Most relevant for this thesis is the subgroup called decision analysis, that
also describes techniques for eliciting estimations of probability and utility.

The third family describes so-called conceptual techniques, that pro-
duce representations of domain concepts and their structure or interrelations
(N. J. Cooke, 1994). These techniques generate very general information
and there has been some debate on the usefulness of these techniques. Some
have argued that the generated information by using these techniques may
be unrelated or irrelevant to task performance.

2.1.3 Elicitation Techniques for Probabilities

This thesis describes the implementation and improvement of a method that
allows for non-invasive elicitation of probabilities for a Bayesian network. As
the final part of this section an overview will be given of knowledge elicitation
techniques for probabilities.

Knowledge elicitation is difficult and time consuming, especially if the
model grows in size. This causes, as mentioned earlier, the number of prob-
abilities to grow. Because it is hard to assign numerical values to events,
AI researchers and psychologists have tried to find ways to “sugar coat”
the determination process of the numerical value of the probability. These
“devices” might relax the expert and let the expert come to a better prob-
ability assessment. Clemen and Reilly (2003) describe betting games and
probability wheels as examples of indirect gathering of probabilities. In the
case of a binary variable A with values true and false, a betting game works
as following, two bets are presented to the expert:

1. Win $X if A is true.
Lose $Y if A is false.

2. Lose $X if A is true.
Win $Y if A is false.

X and Y represent the amount of money that is put into the betting “pot”.
The knowledge engineers choose the values for X and Y. The idea is to
ask the expert to choose between the bets and to adjust the values of X
and Y until the expert is indifferent between the bets. When the point
of indifference is reached, the expected values (see section 2.2) of the two
bets must be equal. Equating the two expected values and solving for the
probability that A is true gives:

P (A = true) =
Y

X + Y
.
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Now the determined values of X and Y can be used to approximate the
probability that A is true, and, respectively, the probability that A is false.
The approach is not without problems, some people may not like the betting
analogy. For these people, the game may be more distracting than direct
probability assessment and the result will be opposite of the original inten-
tion of the game. Also, most people do not like the idea of losing money
although the game is purely hypothetical. This “fear” of losing money will
have an influence on the decision that the expert will make when picking
bets (Clemen & Reilly, 2003). Another type of game is the lottery: here the
expert has to choose between two different lotteries:

1. Win Prize X if event A is true.
Win Prize Y if event A is false.

2. Win Prize X with know probability p.
Win Prize Y with probability 1–p.

The second lottery serves as a reference, where the mechanism to get the
probability must be well defined. This might be spinning a wheel with two
areas (true and false) or drawing a colored ball from a collection of balls
that has a color distribution equal to the probability distribution defined by
p. Now, just as with the betting game, the expert is asked to choose the
lottery he would like to try. After the expert chooses a lottery, the knowledge
engineer changes the value of p to make the other lottery more attractive
to the expert. This process continues until the expert is again indifferent
between the lotteries. At this point, the current value of p is the probability
that should be chosen for the event A = true. Interesting to notice is that the
lottery device uses a probability distribution as reference and the expert has
to choose the preferred lottery by looking at the values of the distribution.
The numbers of the distribution might again influence the expert and to
solve this problem, a graphical representation of the distribution could be
used. One example is what Clemen and Reilly call a probability wheel, a pie
chart where the different areas represent the probabilities of the distribution.
By changing the boundaries of the areas, the probabilities change. The
visual representation of this process might give the expert a better view of
the situation, and improve his probability estimates. Also other graphical
representations could be used. GeNIe, software developed at University
of Pittsburgh’s Decision System Lab, allows the use of probability wheels
and bar charts for determining probabilities. Just as betting games are not
always accepted by experts, lotteries also may have some negative aspects.
Again some people may not like playing games or have difficulty getting
‘into’ the game. Both methods can be expanded to be able to handle discrete
variables (with more than two values) and continuous variables. See Clemen
and Reilly (2003) for a more detailed explanation.
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2.2 Probability Theory

2.2.1 Axioms of Probability

We live in a world full of uncertainty. Our perception of this world is lim-
ited by the range and the sensitivity of our senses. What happens outside
our view is unknown to us and we can only guess or try to logically infer
conclusions that help us to define the state of the (unknown) world. On a
smaller scale, let us imagine a world that consists out of a deck of cards.
A deck has 52 cards: the cards are red or black of color, belong to one of
the four suits: hearts, clubs, spades, or diamonds and show either a number
ranging from two to ten or one of the figures: jack, queen, king, or ace. If
we shuffle a deck of cards, we will not know which card will be on top of the
deck. We will be uncertain until we turn the card around. But we can try
to guess the card. If we try to guess a specific card, the ace of spades for
instance, we have a one in 52 chance to be correct. The reason for this is
that there are 52 cards, there is only one ace of spades, and only one card
can be on top of the deck. A little less ambitious would be to try to guess
the suit of the card. Since every suit has 13 cards, one fourth of the total
number of cards, there is a 1 in 4 chance to guess the right suit. For those
who really do not like to take a risk, there is always the color of the card
that can be guessed. Half of the cards is red and the rest is black, so there
is a one in two chance of guessing this right. The observations of the odds
that a certain type of card is on top are interesting, using probability theory
we can formalise them and give them some theoretical backing.

We start by looking at all the different possible outcomes of drawing a
card from the deck. In this case, there are 52 possible outcomes, because
there are 52 different cards in the deck. Together these outcomes form what
is called in probability theory the sample space. Formally, the sample space
of an experiment is a set that contains all the possible outcomes of the
experiment. In the example with the playing cards, the experiment is the
drawing of the top card of the deck. Now a probability function can be used
that assigns a probability, a numerical value between zero and one, to every
outcome. Depending on the experiment, the sample space can be divided
into different subsets called events. Examples of events are: “all cards that
are red”, “all cards that belong to the hearts suit”, and “all aces”. The
probability of an event can be calculated by adding all the probabilities of
the outcomes that belong to the event. The probability of the sample space
is calculated in the same way as the probability of an event. It is calculated
by adding the probabilities of all the outcomes, the result of this calculation
is 1.
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More formally one can say:

A probability function P is defined on a sample space Ω to assign
a numerical value P(A) to an event A in Ω in the range [0, 1]
such that:

1. The probability of the whole sample space, P(Ω), is equal
to 1.

2. If events A and B are disjoint, the probability of the union
of the events equals the sum of the probabilities of the
events: P(A

⋃
B) = P(A) + P(B).

The next step is the definition of the axioms of probability:

1. All probabilities are between 0 and 1: 0 ≤ P(A) ≤ 1.

2. True events have probability 1, false events have probabili-
ties 0: P(true) = 1, P(false) = 0.

3. The probability of a disjunction is given by:
P(A

⋃
B) = P(A) + P(B) – P(A

⋂
B).

The axioms of probability are known as Kolmogorov’s Axioms, named after
the Russian mathematician Andrei Kolmogorov, who showed how to build
the rest of probability theory from these axioms (Kolmogorov, 1950).

2.2.2 Conditional Probabilities

The card guessing example can be changed by adding another person; we
can let someone else draw the card and reveal one of the features of the card
(color, suit or number). Will this influence our ability to guess the right
card and change the probability of guessing the card? Yes, it will. If we
know that the color of the card is red, we can eliminate half the cards of
the deck and this will influence the probability of guessing the right card.
Even more clear is the example where we know that the card is an ace.
Now there are only four possibilities left, which gives us a probability of
25% of guessing the right card. This new probability of 0.25 is known in
probability theory as a conditional or posterior probability and the original
probability of 1

52 is known as the prior probability. The notation for a
conditional probability stating “the Probability of event A given event B”
is P(A|B). The conditional probability that the card drawn is an ace of
spades given that it is known that the card is an ace, using this notation, is:
P(Card = Ace of Spades|Number = Ace) = 0.25. A conditional probability
can be calculated by using prior probabilities:

P (A|B) =
P (A

⋂
B)

P (B)
. (2.1)
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This equation holds when P(B)> 0. Sometimes it is necessary to compute
P(B|A), but it might be hard to calculate P(A

⋂
B). Using Bayes’ Rule this

problem can be solved as follows:

P (B|A) =
P (A|B) · P (B)

P (A)
. (2.2)

A more general form exists, making use of the law of total probability:

P (Bi|A) =
P (A|Bi) · P (Bi)∑
j P (A|Bj) · P (Bj)

. (2.3)

The law of total probability states that P(A) can be found by adding all
the probabilities of conjunctions of A with all events Bj . Probabilities of
conjunctions can be written as a product of a conditional and a prior prob-
ability, this can be derived from equation 2.1 and the axioms of probability.

2.2.3 Random Variables

If one defines a sample space and a probability function that assigns prob-
abilities to every outcome in this sample space, this is sufficient to describe
a probabilistic experiment. But there might be to much information in the
experiment for it to be useful. To focus on the part of the experiment that
is the most interesting or the most relevant random variables are used. A
definition of a random variable is:

“Let Ω be a sample space. A random variable is a function X:
Ω → < which transforms a sample space Ω into another sample
space Ω’, which lies in <. The events of Ω’ are more directly
related to the features of the experiment which are to be studied
(Dekking, Kraaikamp, Lopuhaä, & Meester, 2004).”

In the card game world an example random variable could be a game where
two players each draw a card and the player with the highest card wins. To
be able to do this an order has to be assigned to the cards. The random
variable would assign a number to each card; color and suit can be ignored.
Now it is possible to compare cards and decide which is ranked higher. The
random variable function for this game would map every card to a number.
Let’s name the random variable H. A part of the mapping function for H
would be:

H(card) =





2 card number = 2
3 card number = 3
4 card number = 4
...
13 card = king
14 card = ace
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With this mapping the original sample space Ω is transformed into a new
one, now consisting out of the numbers 2 to 14, each having the probability
1
13 . Now new events are possible, like the event {D > 5} that describes the
probability to draw a card with a value higher than five.

Discrete and Continuous Random Variables

Random variables can be divided into two types: discrete (like the playing
cards example) or continuous random variables. An example of a continuous
variable could be temperature. The easiest way to distinguish between dis-
crete and continuous random variables is that discrete variables in general
can only be assigned a finite number of values. This allows for probabilities
to be assigned to every possible value of the random variable. Continuous
variables on the other hand cannot have a probability assigned to every
possible value. This happens because continuous variables can be assigned
an uncountable number of values. The number of values for continuous
variables is uncountable because they generally lie in the domain of real
numbers. The domain of real numbers is uncountable (Sipser, 1996, Chap-
ter 4), which makes it impossible to assign probabilities to every possible
value of continuous variables. If it were possible to assign probabilities to
every value, then by definition the number of values for a continuous variable
would be countable. When the number of values of a variable is countable it
means that it is possible to assign a unique number to every possible value
of the variable.

Because of the difference between discrete and continuous variables, they
are also treated different when assigning probabilities to the variables. Dis-
crete variables are assigned a probability mass function which work with
discrete numbers and summations to calculate probabilities. Continuous
variables on the other hand are assigned a probability density function,
which works with densities, areas and integrals to calculate probabilities.
More similar is when the probability P (X ≤ a) is calculated. This prob-
ability is also represented by the function F (a), known as the distribution
function or the cumulative distribution function. For the discrete case, the
function is as follows:

F (a) =
∑

i≤a

P (X = i) , (2.4)

where P (X = i) is a probability mass function. For the continuous case, the
function looks as following:

F (a) =
∫ a

−∞
f(x)dx , (2.5)

where f(x) is a probability density function.
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A more formal definition would be (Dekking et al., 2004):

The distribution function F of a random variable X is the func-
tion F : < → [0, 1],defined by:

F (a) = P (X ≤ a) for −∞ < a < ∞ .

Expected Value and Variance

The distribution function completely defines the probability distribution for
a random variable and is used the most for calculating probabilities. Al-
though having the distribution function is sufficient, there are some measures
that can give useful information, even in the situation that the distribution
function is unknown. Here is referred to the expected value and the variance
of a random variable.

The expected value can be described as the average outcome when the
experiment is performed a large number of times. In gambling, expected
value can give an indication if it is profitable to keep playing. Most, if not
all casino games are constructed to have a negative expected value, meaning
that in the long run the house will gain money instead of the players. The
expected value can be calculated using the probability mass function or the
probability density function if they are known, or estimated by calculating
the average of collected samples of the experiment. For the computation of
the expected value there are formulas for discrete and continuous variables,
respectively:

E[X] =
∑

i

xiP (X = xi) , (2.6)

E[X] =
∫ ∞

−∞
xf(x)dx . (2.7)

Actually the computation of the expected values for a probability mass or
density function is equal to calculating the center of mass of a function. The
center of gravity of a function is calculated by evaluating:

∫∞
−∞ xf(x)dx∫∞
−∞ f(x)dx

.

the term
∫∞
−∞ f(x)dx disappears from the calculation of expected value be-

cause according to the axioms of probability this integral evaluates to one.
Another measure that can give some useful information is the variance.

The variance of a random variable gives an indication of how far values of
the random variable typically lie from its expected value. The variance is
calculated in a way that is similar to the calculation of the expected value.
The variance function can be expressed using the expected value operator:

var(X) = E[(X − E[X])2] . (2.8)
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Another form of this equation can be derived and might be a little easier to
compute:

var(X) = E[X2]− E[X]2 . (2.9)

Computing E[X2] is done by evaluating the integral:

E[X] =
∫ ∞

−∞
x2f(x)dx ,

or the equivalent summation for the discrete case. Generally, calculating the
expected value of a function over a random variable is:

E[g(X)] =
∫ ∞

−∞
g(x)f(x)dx . (2.10)

Equation 2.10 can be used to derive Equations 2.8 and 2.9.
Like the expected value, the variance can be estimated when the prob-

ability distribution is not known. If N samples have been collected, the
variance can be calculated, but two variants exist:

σ2 =
1
N

N∑

i=1

(xi − x)2 , (2.11)

s2 =
1

N − 1

N∑

i=1

(xi − x)2 , (2.12)

where x is the sample mean, the estimated version of the expected value,
calculated with:

x =
1
N

N∑

i=1

xi . (2.13)

The difference between the two formulas has to do with the fact that when
one takes a finite sample from the population, the calculated variance of this
sample will not be equal to the variance of the total population since not
all possible samples have been generated. The formulas are estimators, they
estimate the variance of the total population using the data that is collected.
Equation 2.11 is a biased estimator. This means even if the amount of avail-
able data becomes infinitely large, the result of the calculation will always
be not exactly the variance of the population, but very close. Equation 2.12
is an example of an unbiased estimator. Given enough data, the estimator
will be able to exactly calculate the variance of the population. Practically,
when the amount of available data grows, the difference between σ2 and
s2 becomes very small and it does not really matter which one is used to
estimate the variance.

The result of the calculation of variance has an outcome that has the
squared unit of the experiment. For example, if a random variable is used
to model length in m, the variance will give a result in m2. This may be
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inconvenient for working with the results and because of this instead of
the variance the standard deviation is used often. The standard deviation is
defined as the square root of the variance. This way the unit of the standard
deviation is equal to the unit of the random variable.

2.2.4 Joint Probability Distributions

Once a more complex problem is being modeled, it will be very likely that
the model or experiment will contain more than one random variable. If a
model has multiple random variables, it is possible that these variables will
influence each other. If this is the case then it is no longer a good idea to
model the variables independently of each other. This means that there will
be one probability distribution function describing all variables instead of
multiple distribution functions each describing the probability distribution
of one of the random variables in the model. This probability distribution
is called the joint probability distribution, it can be created by assigning
probabilities to every possible combination of outcomes of all the random
variables in the model.

The joint probability distribution is needed to describe the whole model,
but with this function it is possible to calculate the probability distributions
for each of the random variables. This process is called marginalization.
This process only works one way, from a joint distribution you can derive
the distributions for each of the random variables, the marginalized distri-
butions, but you cannot combine marginalized distributions to get the joint
distribution. The reason for this is that different joint probability distribu-
tions can have the same marginal probability distributions.

If we would have a joint distribution function with two variables X and Y,
the marginalized distribution functions would be obtained by the following
procedure:

FX (a) = P (X ≤ a) = F (a, +∞) = lim
b→∞

F (a, b) ,

FY (b) = P (Y ≤ b) = F (+∞, b) = lim
a→∞F (a, b) .

It is also possible to directly marginalize joint probability mass functions
and joint probability density functions. For the probability mass function,
the formulas would be:

pX (a) =
∞∑

i=1

p (a, bi) ,

pY (b) =
∞∑

i=1

p (ai, b) .

And for the probability density function they would be:

fX (x) =
∫ ∞

−∞
f (x, y) dy ,
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fY (x) =
∫ ∞

−∞
f (x, y) dx .

When a model or an experiment has more than two random variables, the
formulas can be easily extended to accommodate for this. For every extra
variable either a summation, an integral or a limit condition has to be added,
depending on the used formula.

2.2.5 Independence

In a model with multiple random variables it is possible, as stated earlier,
that the different random variables influence each other, but also the pos-
sibility exists that different variables do not influence each other. If two
random variables do not influence each other they are called independent
of each other. A more formal definition of independence is (Dekking et al.,
2004):

The random variables X and Y, with joint distribution function
FXY are independent if

P (X ≤ a, Y ≤ b) = P (X ≤ a) P (Y ≤ b) ,

that is,
FXY (a, b) = FX (a) FY (b) ,

for all possible values a and b. Random variables which are not
independent are called dependent.

It is important to be careful with the independence concept when working
with more than two variables: even though the combination of all variables
could signal independence between the variables, it is still possible that
between subsets of variables dependencies still exist. Independence between
variables can be checked with the following formulas:

P (A |B ) = P (A) ,

P (B |A) = P (B) ,

P (A ∩B) = P (A) P (B) .

If any of the formulas hold, they all hold, they are equivalent statements.
These formulas are derived from the axioms of probability, Equations 2.1
and 2.2.

Another form of independence is when two random variables are inde-
pendent given that other random variables have a certain value. This type
of independence is called conditional independence. This concept works in
the same way as regular independence, but with the extra condition that
another variable has a specified value. Checking conditional independence
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for random variables A and B given variable C can be done by means of the
following formulas:

P (A |BC ) = P (A |C ) ,

P (B |AC ) = P (B |C ) ,

P (A ∩B |C ) = P (A |C )P (B |C ) .

The concept of conditional importance is very important for Bayesian net-
works, which will be the subject of the next section.

2.3 Bayesian Networks

2.3.1 Introduction

As mentioned in section 2.1.1, the problem with probabilistic reasoning sys-
tems is that once the size of models increases, the number of necessary
probabilities grows exponentially. Until the 1980s not much progress was
made. Pearl introduced the concept of Bayesian networks (Pearl, 1988).
Bayesian networks exploit conditional independence assertions to be able to
decrease the number of probabilities necessary for the model. The idea is to
break up the original joint probability distribution into smaller conditional
probability distributions. This is possible because of Bayes’ rule (Equation
2.2). For example a J-PDF with four random variables A, B, C and D can
be broken up into four smaller conditional probability distributions using
Bayes’ rule as follows:

P (A,B, C, D) = P (A |B, C, D ) P (B,C, D)
= P (A |B, C, D ) P (B |C, D ) P (C, D)
= P (A |B, C, D ) P (B |C, D ) P (C |D )P (D) .

This is one of the 24 (4!) possible decompositions of the joint probability
distribution. Every conditional probability distribution can be calculated
using Bayes’ rule and by applying marginalization. These decompositions
are not very useful, as they still have many probabilities that need to be
specified. The original J-PDF needs 24−1 = 15 probabilities to be specified
and the above decomposition needs 23 + 22 + 21 + 1 = 8 + 4 + 2 + 1 =
15 probabilities to be specified. Nothing is gained by decomposing this
distribution into conditional distributions. To be able to reduce the number
of probabilities, conditional independence assumptions are necessary. If for
instance, we assume that A and B are conditionally independent of C given
variable D then the J-PDF can be decomposed into:

P (A,B, C, D) = P (A |D ) P (B |D ) P (C |D )P (D) .

This decomposition is more efficient: it only needs 2+2+2+1 = 7 probabil-
ities to be defined, which is less than half of the original number of necessary
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probabilities. As the number of variables in the model grows, the difference
between the number of probabilities of the original distribution and the de-
composition typically becomes much larger. It is important to note that
if the conditional independence assumptions necessary for the BN are not
valid, the BN will not represent the original J-PDF accurately.

This is not always necessarily a bad thing. An example of a model
with an extreme number of conditional independence assumptions is the
naive Bayes model. In this model there are two types of variables: cause or
class variables and evidence or feature variables. Normally a naive Bayes
model will have one cause variable and a number of evidence variables. The
model assumes that all evidence variables are conditionally independent of
each other given the cause variable. This assumption makes it possible to
decompose the J-PDF in the following way:

P (C, E1, . . . , En) = P (C)
∏

i

P (Ei |C ) . (2.14)

The model is called “naive” because it is very unlikely that all evidence
variables will be (conditionally) independent of each other in a real world
situation. Interestingly enough, systems using a naive Bayes model can ac-
tually be quite effective (Russell & Norvig, 2003). Another very important
advantage of using naive Bayes model are its space and time complexities.
They are both linear (O (n)) in the number of evidence variables. So, when
the number of variables doubles, so does the necessary amount of space to
store the model and the amount of time necessary to perform inference.
Compared to using the original joint probability distribution, this is an ex-
treme improvement, for which the time and the space complexity are expo-
nential (O (2n)). Further improvements in space complexity can be achieved
by adding some extra assumptions for the parent-child relationship. An ex-
ample is the noisy-OR relationship, this relationship can further reduce the
number of necessary probability entries but with the cost of the model hav-
ing to satisfy the added assumptions necessary for noisy-OR to be effective
(Russell & Norvig, 2003).

2.3.2 Definition

Naive Bayes models are a special case of Bayesian networks, and are mostly
used for classification problems. Bayesian networks can be used for more
complex problems. A formal definition of Bayesian networks by Russell and
Norvig (2003) is the following:

A Bayesian network is a directed graph in which each node is
annotated with quantitative probability information. The full
specification is as follows:

1. A set of random variables makes up the node of the network.
Variables may be discrete or continuous.
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2. A set of directed links or arrows connect pairs of nodes. If
there is an arrow from node X to node Y , X is said to be
a parent of Y .

3. Each node Xi has a conditional probability distribution
P (Xi |Parents (Xi)) that quantifies the effect of the par-
ents on the node.

4. The graph has no directed cycles (and, hence is an acyclic
directed graph1).

The graph visualizes the conditional (in)dependence relationships between
variables. If two nodes (variables) are connected by an arrow, they are
conditionally dependent. If there is an arrow from node X to node Y , then
node Y is conditionally dependent on node X.

The conditional probability distribution tables for each node define the
conditional probabilities for each node given its parents. If a node does not
have any parents, the node has a prior probability distribution. The total
joint probability distribution is represented by the product of the conditional
(and prior) probability distributions over all nodes. The J-PDF can be
represented as follows:

P (x1, . . . , xn) =
n∏

i=1

P (xi |parents (Xi)) . (2.15)

This representation is correct when Bayes’ rule is applied to break up the
the joint probability distribution into conditional distributions, the ordering
of the variables fits the decomposition, and the variables are conditionally
independent of their predecessors in the variable ordering given their parents.
The conditional independence relations between nodes of a BN fulfill the
following conditions (Russell & Norvig, 2003):

• A node is conditionally independent of its non-descendants, given its
parents.

• A node is conditionally independent of all other nodes in the network,
given its parents, children, and children’s parents (this subset of nodes
is also know as the node’s Markov Blanket).

An example Bayesian network, created by Pearl (1988), is displayed in Fig-
ure 2.1.

2.3.3 Inference

Bayesian networks are used to efficiently store and represent a joint prob-
ability distribution. But the purpose of the J-PDF is to be used to calcu-
late probabilities for events; to perform inference. Posterior probabilities of

1Historically called a DAG
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Figure 2.1: Example Bayesian Network

query variables are calculated given a set of evidence variables. A general
probabilistic inference procedure of J-PDFs and BNs is given by Russell and
Norvig (2003):

“Let X be the query variable, let E be the set of evidence vari-
ables, let e be the observed values for them, and let Y be the
remaining unobserved variables, the query P (X |e)2 can then be
evaluated as

P (X |e) = αP (X, e) = α
∑
y

P (X, e,y) , (2.16)

where the summation is over all possible combinations of the
unobserved variables Y.”

This inference procedure simply uses marginalization to sum out all the
unobserved variables. The factor α is a normalization factor that ensures
that the calculated probabilities of the distribution sum up to one. The
factor is necessary because the procedure uses Bayes’ rule, but leaves out
the denominator of its equation. So α can be determined by:

P (X |e) =
P (X, e)
P (e)

= αP (X, e) ⇒ α =
1

P (e)
.

It is not necessary to calculate α separately. When all the probabilities of the
distribution P (X, e) are calculated, it suffices to sum all the probabilities to
get P (e). This is a valid procedure to perform inference on J-PDFs and BNs

2The bold notation used by Russell and Norvig for the letter P of the probability
function means that a complete probability distribution is being calculated for the query
variable(s) (in this case X).
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but practically it is useless. It is very inefficient and when used for Bayesian
networks, it has a worst case time complexity of O (n2n) (Russell & Norvig,
2003). This is even worse than performing the procedure on a full joint
probability distribution. To improve efficiency, algorithms using dynamic
programming techniques calculate intermediate results of the inference only
once and reuse these results later. An example of an algorithm that uses
dynamic programming techniques is the Variable Elimination Algorithm.

Variable Elimination Algorithm

The variable elimination algorithm works by evaluating query expression in
right-to-left order. First the necessary summations (to sum variables out)
are moved inwards as far as possible. Then for every conditional probability
a factor is created. A factor is represented as a matrix or a vector and con-
tains the probabilities needed for multiplication and summation to compute
the final answer. Starting at the summation that is moved most inward the
different factors are multiplied with each other using a special multiplication
technique called a point-wise product. The result of a point-wise product of
two factors is another factor, whose variables are the union of the variables
of the two original factors. The probability entries of the new factor are
the product of the of the probability entries of the two input factors (for a
more in-depth explanation see Russell and Norvig (2003)). After the factors
have been multiplied, the variable of the summation is summed out, giving
a new factor containing the remaining variables. The process is repeated
until the last variable is summed out. Now only one factor remains and
after normalization of the entries of the factor the answer of the query is
found.

Approximate Inference

The variable elimination algorithm and the general probabilistic inference
process are examples of exact inference procedures. These procedures can
compute a query exactly, without any error. Another form of inference is
approximate inference. This type of inference can only calculate an approx-
imation of the query, but can sometimes find this approximate result much
faster. It is known that exact inference in Bayesian networks is #P-hard
(Russell & Norvig, 2003), which means that performing exact inference in
BNs is even more difficult than solving NP-complete problems. This is also
the case for the approximate networks, but in the situations that approx-
imate algorithms outperform the exact algorithms the time difference in
computation can be very large. Popular approximate inference algorithms
are based on randomized sampling algorithms, also known as Monte Carlo
algorithms. Two examples for approximate inference are direct sampling
and Markov chain sampling.
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Direct Sampling Methods

Direct sampling methods are relatively easy; they use an easy-to-sample
distribution to produce samples from a hard-to-sample distribution. In this
case, the hard-to-sample distribution is the joint probability distribution
represented by the Bayesian network. There are some different variations of
direct sampling methods, differing in complexity and quality. The simplest
one samples from the prior distribution, beginning at the root variables of
the network and moving down to the leaves. At every variable, it generates
a random number and using the prior distribution of the variables it assigns
a value to the variable. If the variable has parents, the conditional distribu-
tion is conditioned on the values of the parents. After all variables have been
assigned a value, a sample has been generated. This sample can be assigned
a probability by multiplying the prior probabilities of the values of all the
variables. This probability can be used as an estimate of query. If the sam-
pling process is repeated a large number of times, more accurate estimates
of the real probability of the query can be acquired. To get an estimate
of a query, probabilities necessary for the query have to be sampled. For a
query with query variable X and evidence variables e, this means estimating
the probability distribution P (X, e). Since sampling is a random process
samples will be generated that will have evidence that is not consistent with
the desired query. These samples are not very useful for the approximation
of the query and to get better estimates these samples have to be dealt with.

Rejection Sampling

One way of dealing with this problem is a method called rejection sampling.
The prior probability distribution is sampled N times and every sample
which is not consistent with the evidence of the query is discarded. The
remaining samples are used to obtain the estimate of the probability distri-
bution P (X, e). A frequency table is created where the number of times X
takes a certain value is counted. This table is normalized to get the estimate
of the probability distribution. The problem with rejection sampling is when
there are many evidence variables, the number of samples with consistent
evidence will drop exponentially. The exponential drop is caused by the ex-
ponential growth of the possibilities of the evidence. This means that there
will be only a very small number of samples with consistent evidence for the
calculation of the estimate of the probability distribution of the query. The
result is that the rejection sampling method is simply unusable for large,
complex problems (Russell & Norvig, 2003).

A method that gives better results and does not throw away any of the
samples is likelihood weighting. It calculates the likelihood of a sample and
weights the sample with this likelihood. Now, samples with inconsistent
evidence will only have a small influence on the final result. When the
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number of evidence variables increases, likelihood weighting will also perform
worse, again because of the exponential growth of evidence possibilities.

Markov Chain Simulation

Totally different from direct sampling algorithms is Markov chain simula-
tion. Events created by direct sampling algorithms are independent from
each other. For every event, the algorithm starts again with the prior prob-
ability distribution. The Markov Chain Monte Carlo (MCMC) algorithm
generates a new event by making a random change to the current event.
More accurately (Russell & Norvig, 2003):

“The next state is generated by randomly sampling a value for
one of the non-evidence variables Xi, conditioned on the current
values of the variables in the Markov blanket of Xi.”

In this context, a state is a complete assignment of values to all variables.
The MCMC algorithm walks through the state space by randomly assigning
values to non-evidence variables. The evidence variables are kept constant
during the process. Every state visited represents a sample for the estima-
tion of the query probability. The number of times a query variable has a
certain value is used for computing the probability estimate. The values are
normalized by the total numbers of states visited.

The MCMC algorithm works because of properties of Markov chains.
When the process is run for a long time, the process stabilizes into a dynamic
equilibrium. When this equilibrium is reached, the time spent in each state
is proportional to the posterior probability of being in this state. So, as with
the other sampling algorithms: the longer the algorithm is run, the better
the estimate of the query probability will become.

2.4 Importance Sampling

2.4.1 Monte Carlo

During the 1940s, at the Los Alamos laboratory in New Mexico, stochastic
simulations were used to numerically evaluate integrals for the Manhattan
project. These stochastic simulations were code-named “Monte Carlo” (MC)
(E. C. Anderson, 1999). The MC method can be used to estimate integrals.
A general definition of MC is (E. C. Anderson, 1999):

“Monte Carlo is the art of approximating an expectation by the
sample mean of a function of simulated random variables.”

The method makes use of properties of the expected value of a random vari-
able (see Section 2.2.3). Most importantly, the general form of calculating
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the expected value is being used (Equation 2.10). The expected value can
be estimated by calculating the average of N samples, in general:

E [g (X)] ≈ 1
N

N∑

i=1

g (xi) . (2.17)

The right side of the equation is called the Monte Carlo estimator. If
E [g (X)] exists, then a result from the weak law of large numbers states
that for any arbitrarily small ε

lim
N→∞

P

(∣∣∣∣∣
1
N

N∑

i=1

g (xi)−E [g (X)]

∣∣∣∣∣ ≥ ε

)
= 0 .

It explains that when N increases, it will become very unlikely that the
Monte Carlo estimator will deviate much from the expected value. To esti-
mate an integral like

∫ b
a g (x) dx, we change it into an expected value for a

random variable. To do this, we add the probability density function of the
random variable we are going to use for the sample process to the integral:

V

∫ b

a
g (x) f (x) dx ,

where V is the total volume to be integrated over (here b− a). The EV can
now be estimated with the summation in Equation 2.17. The result serves
as an estimation for the integral. The estimator for this integral would look
like:

V

N

N∑

i=1

g (xi) .

The quality of the estimate depends on the variance of the random variable.
The smaller the variance, the better the estimate will be of the real value of
the integral.

2.4.2 Importance Sampling

This is where importance sampling (IS) comes in. IS, also developed at
the Los Alamos lab (H. L. Anderson, 1986), is a technique to reduce vari-
ance. This is achieved by adding an importance function to the integral, the
integral now looks like:

V

∫ b

a

g (x)
f (x)

f (x) dx . (2.18)

The Monte Carlo estimator now looks like:

V

N

N∑

i=1

g (xi)
f (xi)

.
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Now, the estimator will almost surely converge towards the real expected
value (and the real value of the integral) if the following weak assumptions
are met (Geweke, 1989):

Assumption 1 g (x) is proportional to a proper probability density func-
tion defined on Ω.

Assumption 2 {Xi}∞i=1 is a sequence of i.i.d. random samples, the com-
mon distribution have a probability density function f (x).

Assumption 3 The support of f (x) includes Ω.

Assumption 4 The integral exists and is finite.

IS now will assign more weight to regions where g (x) > f (x) and less
weight to the regions where g (x) < f (x) to correctly estimate the integral
(Yuan & Druzdzel, 2006). The only assumption we have any control over is
assumption 3. We can choose which importance function we are going to use
for f (x) as long as it contains the domain Ω we want to sample. The other
assumptions are either inherent properties of the integral or characteristics
of Monte Carlo simulation.

Theoretically there exists an optimal importance function that will lead
to 0 variance. Rubinstein (1981) has proven that if g (x) > 0, then the
optimal importance function is:

f (x) =
g (x)

I
, (2.19)

where I is the result from the integral of Equation 2.18. The problem is that
this importance function can only be found by evaluating the integral that
we are trying to find an importance function for. The result does not look
very useful, but it does say that the importance function should preferably
be proportional to the function g (x). Or it should at least approximate
g (x) as close as possible.

2.4.3 Advantages and Disadvantages

Using IS for a problem has consequences, some can be positive and other
are negative. Depending on the situation, it may or may not be desirable
to use IS. Some advantages of IS are the following:

• With respect to normal MC methods, using IS can reduce the variance
of the sampling process. This leads to more accurate sampling. The
proportion of samples that fall into the desired area that has to be
examined is larger and now less samples have to be discarded. The
importance function is used to “direct” more samples towards the more
important regions in the sample space. This way IS improves sampling
efficiency because now fewer samples are necessary to reach the desired
level of accuracy (Yuan & Druzdzel, 2006).



2.5. LINEAR PROGRAMMING 31

• Because of the ability of the importance function to steer samples to-
wards certain areas of the sample space, this ability can be used to
direct samples to areas where samples normally are probabilistically
unlikely to occur when using normal Monte Carlo methods. This pro-
cess is known as rare-event simulation (Denny, 2001). For example it
has applications in physics and communication systems (Smith, Shafi,
& Gao, 1997).

• IS allows to generate samples from a difficult-to-sample distribution.

Using IS can also have some disadvantages or cause some difficulties. Two
disadvantages or difficulties are listed:

• To get an optimal result, the importance function should resemble
the original function as much as possible. This means that to get
good results it is necessary to create a new importance function for
every problem that IS is to be applied to. The fact that importance
functions are very problem specific means that it is hard to make a
general purpose IS implementation and it will take extra time to find
an importance function that fits the problem well.

• Another problem is that when the original problem gets more complex,
it will become increasingly harder to find an importance function that
will be easy to sample from. This is due to the requirement that to get
a good estimator, the importance function must resemble the problem
function. The shape of the importance function may make easy sam-
pling impossible and may cause the sampling process to become very
slow when generating samples from the importance function. How-
ever, if a simpler importance function is chosen that does not fit the
problem function very well, but is easy to sample from, the generation
of samples might be fast but the overall result could be worse. Be-
cause it is now possible that a large number of samples may need to
be discarded because they do not “fit” the problem function, it could
be the case that using IS is slower and less accurate then simply using
plain MC sampling.

2.5 Linear Programming

2.5.1 Introduction

Linear Programming is a mathematical framework that emerged from dif-
ferent fields, most prominently the fields of military, economy, industry, and
mathematics. During and shortly after the second world war, a large num-
ber of research groups was working on describing a diverse group of large
logistical problems in different areas. In 1947, the area of LP emerged by
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the creation of the simplex algorithm by Dantzig (1948). The availability
of this algorithm gave a huge boost to the different research areas, because
now there was an unifying mathematical framework that could be used to
model and solve these problems. Very quickly LP was being used in many
areas, solving problems ranging from planning crop rotations to planning
large scale military actions to routing ships between harbors and the assess-
ment of the flow of commodities between industries of the economy (Dantzig,
1966).

2.5.2 Linear Programming Model

LP belongs to the family of optimization techniques, more accurately it is
used to describe constrained optimization problems. A constrained opti-
mization problem has four main elements (Chinneck, 2001):

• Variables, which represent factors of the problem that can be changed
or controlled.

• Objective function, which is a mathematical function that has the
variables of the problem as input and maps this to a numerical result
that represents the goal of the optimization procedure.

• Constraints, which are mathematical expressions used to describe rules
and limitations that apply to the variables of the system.

• Variable bounds, which are used to limit the the values the variables
can take.

These elements are defined for general constrained optimization prob-
lems. LP is a subset of these problems and makes some extra assumptions
about the elements. LP assumes that both the objective function and the
constraints are linear functions. So, only linear models are used to model
problems. Although this looks like a very severe restriction on the types of
problems that can be modeled with LP, this is not the case. A very large,
diverse number of problems can be solved by using LP. The method is the
most widely used method of constrained optimization.

Building a Linear Model

Creating a linear model means decomposing a problem into a number of
elementary functions called activities. Dantzig (1966) defines an activity as
a “black box” which has inputs and inputs. Raw materials can flow into
the box and the processed result, whatever it may be, flows out of the box.
The different types of flows of products or materials are called items. The
quantity of the output of each activity is called the activity level. To change
the activity level it is necessary to change the flows into and out of the
activity.
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Dantzig has stated four assumptions necessary for LP models:

Assumption 1: Proportionality The quantities of flow of items in and
out of an activity should be proportional to the activity level.

Assumption 2: Nonnegativity Negative quantities of activities are not
possible.

Assumption 3: Additivity It is required for each item that the total
amount specified by the system as a whole equals to the sum of the
amounts flowing into the various activities minus the sum of the
amounts flowing out.

Assumption 4: Linear Objective Function The objective function is
the (weighted) sum of the different items that contribute either positive
or negative.

These assumptions must be satisfied when building a LP model. Building a
model consists of performing five steps (Dantzig, 1966):

1. Define the Activity Set.

2. Define the Item Set.

3. Determine the Input-Output Coefficients.

4. Determine the Exogenous Flows.

5. Determine the Material Balance Equations.

After performing these steps, the LP model is finished and it can be solved
by a LP solver.

2.5.3 Simplex Algorithm

Solving a LP model means maximizing or minimizing the objective func-
tion while satisfying the constraints and the variable bounds. The most
frequently used algorithm for this action is the simplex algorithm defined
by Dantzig in 1947. Even now it is the most popular algorithm, despite its
exponential worst case complexity and the availability of guaranteed poly-
nomial algorithms. The simplex method exploits some inherent properties
of linear programs. One of those is that a feasible linear program, a pro-
gram without errors in the the constraints, forms a convex polyhedron in
the space spanned by the variables of the linear program. The constraints of
the linear program describe what the convex polyhedron looks like. A con-
vex polyhedron is a geometrical shape. A very simple example of a convex
polyhedron is a cube, but more complex versions exist. Another well know
example is the truncated icosahedron, which is the shape of a soccer ball.
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These shapes are both examples of three dimensional convex polyhedra, but
convex polyhedra also exist in higher dimensions. The simplex algorithm
works by moving from corner point-to-corner point of the convex polyhe-
dron. The simplex algorithm was designed to take into account three key
properties of linear programs (Chinneck, 2001):

1. The optimum point is always at a feasible corner point. By feasible
is meant that all the constraints and bounds are satisfied. This is the
result of working with linear constraints which are straight lines, or
more general: straight hyperplanes, and the highest point will be at
the intersection of two lines, i.e., a corner point.

2. If a corner point feasible solution has an objective function value that
is better than or equal to all adjacent corner point feasible solutions,
then it is optimal.

3. There are a finite number of corner point feasible solutions. This means
that the algorithm will eventually stop after looking at all corner points
of the polyhedron and then must have found the optimal value.

Other algorithms exist that do not move from corner point-to-corner point.
Examples are the ellipsoid algorithm by Leonid Khachiyan in 1979 and
interior-point algorithms, pioneered by Narendra Karmarker in 1984. These
algorithms have a polynomial worst case complexity, but only become more
efficient than the simplex algorithm when performed on very large linear
programs.

2.5.4 Applications

Linear programming has many applications. It is an optimization method, so
any problem where parameters may need optimization under the restriction
of (linear) constraints LP may be applicable. There are many areas where LP
has been used with success, examples can be found in the areas of economics,
logistics, production, agriculture, military and many others. When used
correctly LP can be used to either reduce expenses or increase profits, this
has been one of the reasons that it has been used in so many different areas.

One famous example is the input-output table with 500 linear equations
that describe 170 sectors of the US economy, developed by Wassily Leontief
in 1949. He received the Nobel prize in economics in 1973 for this work.
His model describes the flows of goods between the different sectors and can
be used the predict the change in demand of prerequisite materials if the
production volume of the end product changes. His work stimulated research
in economic planning and the collection of large amounts of empirical data.
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Research

3.1 Introduction Non-Invasive Elicitation Method

The research assignment is mostly based on the paper written by Druzdzel
and van der Gaag (1995). The paper, “Elicitation of Probabilities for Belief
Networks: Combining Qualititative and Quantitative Information”, intro-
duces a method that can combine information from various types of sources
and does this in a way so the elicitation process is non-invasive. For infor-
mative purposes the paper is reviewed here. The section is concluded with
a discussion of the strong and weak points of the proposed method.

3.1.1 Summary

Introduction

The authors give a short introduction to Bayesian networks and note that
the construction of a BN consists out of two parts: the qualitative part,
the construction of the network structure, and the quantitative part, the
creation of the CPTs of the nodes in the BN. The quantitative part is con-
sidered the hardest part, eliciting probabilities from experts can be difficult
because of an expert’s possible reluctance of specifying exact numbers for
the probabilities of the CPTs. Sometimes the available information cannot
be used directly for CPTs or experts cannot provide exact numbers. But
an expert may be able to define an interval within the real value should lie.
Other types of probabilistic information exist than just pure probabilities
and different schemes have been developed for using these other types of
probabilistic information for reasoning under uncertainty. The authors note
that none of these schemes can handle all types of probabilistic information
and that a unifying principle that handles the various types probabilistic
information has been lacking so far.

35
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The authors propose a method that can use both qualitative and quan-
titative probabilistic information that describes a yet unknown probability
distribution Pr over a set of variables V . The approach of the authors is
to consider the distribution hyperspace of all possible joint probability dis-
tributions over V . A point somewhere in this hyperspace will be the true
probability distribution, Pr, over the set of variables V . If there is no infor-
mation available, qualitative or quantitative, then the Pr can be any point
in the hyperspace. Once more information is known about Pr, some of the
probability distributions in the hyperspace will become incompatible with
this information. Using the method proposed by the authors, probability
elicitation can be looked upon as constraining the distribution hyperspace as
much as possible to find the true distribution Pr. The authors now express
all information for the distribution Pr as constraints for the hyperspace, and,
assuming that all compatible distributions are equally likely, then derive 2nd

order probability distributions over the probabilities of the distribution Pr.
These 2nd order distributions can then be used for determining the proba-
bilities of the joint probability distribution. Since the method allows the use
of various types of probabilistic information it is possible to use any infor-
mation the expert is willing to state. This allows for the process of eliciting
probabilities to be non-invasive.

Example

Throughout their paper the authors have used an example Bayesian network.
This network is a very simple model of the causes of HIV virus infection.
The network has 4 variables: HIV infection (H), needle sharing (N), sexual
intercourse (I), and use of a condom (C). The network is illustrated in
Figure 3.1. To make this network complete the CPTs of the nodes need to

Figure 3.1: Example Bayesian network for HIV infection

be filled with the necessary probabilities. Some of these probabilities can
be estimated directly by using statistical data, examples are the probability
of having HIV Pr (h), frequency of sexual intercourse Pr (i), and condom
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usage Pr (c |i). Others can be determined by using some common sense.
Condoms are primarily used during intercourse, so Pr (̄i |c) will be very
close to 0. Also some more indirect information is available: looking at the
general population there a lot more people that are sexually active than
there are people using intravenous drugs. This means that it is very likely
that Pr (i) > Pr (n).

The types of probabilistic information described above are of a quantita-
tive or (semi-)numerical nature. Also some information exists on the subject
that is more qualitative of nature. The authors mention that sharing a nee-
dle and sexual intercourse with a HIV carrier will make HIV infection more
likely. This interaction is known as a positive additive synergy. The presence
of N and I make H more likely to be true. An example of a negative additive
synergy would be using a condom during intercourse. The presence of C
and I make H less likely to be true. Other types of qualitative information
exist, but these are discussed later.

Canonical Form

The basic idea of the approach of the authors is to have a canonical form
for the interpretation of probabilistic information. Their form builds on the
property that any joint probability distribution on a set of variables V is
uniquely defined by the probabilities of all possible combinations of values
for all variables from V . With all these values known, any probability over
the set V can be computed by using marginalization (Section 2.2.4) and
conditioning (Section 2.2.2). The authors call combinations of values for
all variables constituent assignments. The probabilities of constituent as-
signments in a joint probability distribution are called its constituent prob-
abilities. The authors look upon the set of all possible joint probability
distributions on V as spanning a hyperspace whose dimensions correspond
with constituent probabilities.

Any information about the true distribution Pr can now be represented
as a system of (in)equalities with the constituent probabilities as unknowns.
Any solution of this system will be a joint probability distribution that is
compatible with all the specified probabilistic information. If there are no
solutions, then the provided information is inconsistent. The authors have
based their view of probability on the early work of Boole (1958) on the
foundations of probability theory.

For the canonical form the authors have introduced some notational
conventions:

“We take V = {V1, . . . , Vn} , n ≥ 1, to be a set of variables,
where each variable Vi can take one of ki values. We will use vij

to denote Vi taking the j-th value from its domain, j = 1, . . . , ki.
Note that the set of all constituent assignments for V comprises∏

i=1,...,n ki elements.”
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Now, using these conventions an assignment b for an arbitrary subset
of variables from V and its unknown probability Pr (b) can be considered.
The assignment b can be written as a disjunction of constituents ci using
basic logical laws. In fact, there exists a unique set indices Ib ⊆ {1, . . . , k},
called the index set for b, such that b =

∨
i∈Ib

ci. An example could be
that b consists out of the disjunction of the constituents c1, c2,and c5. The
result would be that b = c1 ∨ c2 ∨ c5. Since all constituent assignments are
mutually exclusive, the probability Pr (b) can be expressed as the sum of
the probabilities of the constituent assignments b is built from. So from
Pr (b) =

∑
i∈Ib

Pr (ci) the authors found that Pr (b) can be expressed as

d1x1 + d2x2 + · · ·+ dkxk ,

where xi = Pr (ci), i = 1, . . . , k, and di = 1 if i ∈ Ib and di = 0 otherwise.

Interpretation of Probabilistic Information

With the canonical form defined, now different types of probabilistic infor-
mation can be interpreted and translated into the canonical form so that it
can be used for the elicitation process. The most basic form of probabilistic
information that has to be interpreted are the axioms of probability. A point
in the hyperspace must be compatible with the axioms or it will not be a
valid probability distribution.

One of the axioms states that the probability of a true event, Pr (true),
is equal to 1. This means that the sum of the probabilities of the distribution
should add up to 1. This axiom can be translated into the canonical form
by the equality

x1 + · · ·+ xk = 1 ,

where xi = Pr (ci) , i = 1, . . . , k. Another axiom states that any probability
must be a nonnegative, real number. So this means that all constituent
probabilities must be larger or equal to 0. In canonical form this can be
expressed as

xi ≥ 0 ,

for i = 1, . . . , k. Also all probabilities must be smaller than or equal to 1,
but this is implied by the two statements above.
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The authors have defined some types of probabilistic information of a
quantitative nature. These three types are:

1. Point estimate.

2. Probability intervals.

3. Comparison.

A point estimate is a statement in the form Pr (b) = p, 0 ≤ p ≤ 1, where b
is an assignment for an arbitrary subset of variables. Let Ib be the index set
for b. Then the point estimate is expressed in canonical form as

d1x1 + · · ·+ dkxk = p ,

where xi = Pr (Ci) , i = 1, . . . , k, and di = 1 if i ∈ Ib and di = 0 otherwise.
For a conditional probability Pr (b1 |b2 ) a point estimate is in roughly the
same form, but the conditional probability is first transformed into Pr(b1b2)

Pr(b2)

(using Equation 2.2) and the final canonical form will become:

Pr (b1b2)− p · Pr (b2) = 0 .

Also because of Equation 2.2 an extra constraint has to be added to the
system. Pr (b2) has to be larger than 0 or else the conditional probability
will become infinite and thus invalid. So, the extra added constraint is the
inequality:

Pr (b2) > 0 .

Probability intervals and comparisons have similar canonical representa-
tions. A probability interval has instead of one bound, an upper and a
lower bound: p1 ≤ Pr (b) ≤ p2. A comparison is between two probabilities
and has the form: a1 ·Pr (b1) ≤ a2 ·Pr (b2), where a1 and a2 are non-negative
real numbers.

The authors have also defined some types of probabilistic information
that are qualitative of nature, these are:

1. Qualitative influences.

2. Qualitative synergies.

A qualitative influence is a symmetric property describing the sign of prob-
abilistic interaction between two variables V1 and V0, and builds on an or-
dering of these variables’ values. The authors have described three different
types of qualitative influences: positive, negative, and zero qualitative influ-
ences. A positive qualitative influence expresses that when a higher value
of V1 is observed, it is more likely that higher values for V0 will also be
observed. This is denoted by S+ (V1, V0). The condition is that this relation
is valid if and only if for all values v0m of V0, for all pairs of distinct values
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v1i > v1j of V1, and for all possible assignments b for the set of V0’s direct
predecessors other than V1, it is valid that

Pr (V0 ≥ v0m |v1ib) ≥ Pr
(
V0 ≥ v0m

∣∣∣v1jb
)

.

For the negative and zero qualitative influences a similar expression exists.
The only difference is the expression type. For the negative influence the left
probability must be smaller or equal to the right one, and for zero qualitative
influence it becomes an equation instead of a inequality.

To express the statement in canonical form a set of inequalities is needed.
A inequality is necessary for each combination of one value v0m of V0, one
pair of values v1i , v1j of V1, and one assignment b of V0’s other predecessors
than V1. Every inequality has the form

k0∑

l=m

Pr (v0l
|v1ib) ≥

k0∑

l=m

Pr
(
v0l

∣∣∣v1jb
)

,

and there are

(
k1

2

)
· (k0 − 1) ·K such inequalities, where K is the number

of possible assignments for the set of direct predecessors of V0 other than V1.
As these inequalities involve conditional probabilities, each of them creates
two additional inequalities to ensure that that conditional probabilities exist.
Another type of qualitative probabilistic information is a qualitative synergy.
The authors describe two types of synergies: additive synergies and product
synergies. Both these types come in the form of positive, negative, or zero
variants. An additive synergy describes the joint influence of two variables
V1 and V2 on a third variable V0, and, similarly to qualitative influence,
builds on an ordering of these variables’ values. A positive additive synergy
of V1 and V2 with respect to V0 expresses that the joint influence of V1 and
V2 is greater than the sum of their individual influences. This is denoted by
Y + ({V1, V2} , V0). The condition is that this relation is valid if and only if
for all values v0m of V0, for all pairs of values v1i > v1j of V1 and v2i′ > v2j′
of V2, and for all possible assignments b for the set of V0’s direct predecessors
not including V1 and V2, it is valid that

Pr
(
V0 ≥ v0m

∣∣∣v1iv2i′ b
)

+ Pr
(
V0 ≥ v0m

∣∣∣v1jv2j′ b
)

≥ Pr
(
V0 ≥ v0m

∣∣∣v1iv2j′ b
)

+ Pr
(
V0 ≥ v0m

∣∣∣v1jv2i′ b
)

.

As with the qualitative influences, negative additive synergy and zero ad-
ditive synergy are defined in a similar manner. Also the above statement
is transformed into canonical form in the same way as with the qualitative
influences. The number of inequalities that the statement transforms in is

different, there are

(
k1

2

)
·
(

k2

2

)
· (k0 − 1) ·K inequalities, where K is the
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number of possible assignments for the set of direct predecessors of V0 other
than V1 and V2. Again these inequalities involve conditional probabilities, so
extra inequalities are added to ensure that all the conditional probabilities
will be valid.

Another form of qualitative synergies are product synergies. Product
synergies describe the interaction between two variables V1 and V2 condi-
tional on their common descendant V0 and expresses the sign of what is
known as inter causal influence between V1 and V2. The most common type
of product synergy is the negative product synergy. This type captures the
notion of “explaining away.” The authors state that the variables V1 and V2

exhibit negative product synergy with respect to a particular value v0m of
variable V0, written as X− ({V1, V2} , v0m), if for all pairs of values v2i > v2j

of V2 and for all possible assignments b for the set of V0’s direct predecessors
not including V1 and V2, it is valid that

Pr (V1 ≥ v1i |v2iv0mb) ≤ Pr
(
V1 ≥ v1i

∣∣∣v2jv0mb
)

.

Positive and zero product synergy are defined in a similar manner and the
translation to the canonical form is performed in the same way as qualitative
influences and additive synergies. A difference between product synergies
and additive synergies is that product synergies are with respect to separate
values of the common effect V0. Thus there are as many product synergies
as there are values of V0.

Elicitation of Probabilities

To derive the 2nd order distributions for the probabilities to be assessed the
authors have proposed to use sampling. For the computation of the 2nd

order distributions randomly selected points from the distribution hyper-
space, under the assumption that all points in the hyperspace are equally
likely to be the true distribution, are selected. Every selected distribution
is verified to be sure that it is compatible with all available information. All
distributions that are compatible with all constraints are collected and used
for the generation of the 2nd order distributions over the probabilities. The
process is computationally expensive as it involves generating and investi-
gating joint probability distributions. These J-PDFs are described by their
constituent probabilities and the number of these probabilities is exponen-
tial in the number of variables in the BN. The authors have created a very
simple prototype for the method, but it is very straightforward and there is
a lot of room for algorithmic improvement.

When there is very restrictive information available about the real dis-
tribution, a large number of the randomly selected distributions will be not
be compatible with all the available information. This makes the method
very inefficient. To improve the ratio of compatible samples the authors
propose a preprocessing step prior to the sampling process. They would like
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to use all the linear constraints to calculate upper and lower bounds for all
the constituent probabilities. This step will restrict the sampling space and
thus will exclude some samples that certainly would have been rejected.

To battle the computational complexity of the method the authors pro-
pose to divide the BN into smaller sub networks and to perform the method
on each of the sub networks. The authors propose to transform the BN
into a chordal graph1, using the transformation scheme designed by Lau-
ritzen and Spiegelhalter (1988), and then to divide this graph into smaller
subgraphs. Besides the computational complexity of the method, another
reason to divide a BN into smaller parts is that human experts typically
express information about short causal reasoning chains and feel uncom-
fortable when forced to provide more global information.

Discussion

The authors state that even though a non-invasive method of collecting in-
formation from experts may be less prone to conflicts, the constraints elicited
may still turn out to be inconsistent. Conflicts need to be detected and dealt
with. The authors see an opportunity here to use the conflicts to refine the
elicitation by confronting the expert with the conflicting statements.

3.1.2 Evaluation

The method presented in (Druzdzel & van der Gaag, 1995) has been exam-
ined thoroughly, and advantages and disadvantages of using the elicitation
method have been identified. Advantages of using the method are listed
below:

• The method allows for non-invasive elicitation, which means that it
can accept many different types of probabilistic information as input.
Any probabilistic information, the expert may have can directly be
used by the method without any conversions. The method translates
all the different types of information into one canonical form that is
used for further computations.

• The method’s use of a canonical form allows for flexibility when new
types of probabilistic information become available. the method can
easily be adapted to be able to handle the new information types as
input.

• The method allows for the use of quantitative and qualitative infor-
mation. Generally, other elicitation methods are usually restricted to
use probabilistic information that is either quantitative or qualitative.

1A chordal graph is a graph that is triangulated, meaning that if a graph contains
cycles larger than 3, extra vertices are added to turn these cycles into triangles.
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The ability of the elicitation method to use both is the result of using
the described canonical form for the constraints.

Disadvantages of using the elicitation method are:

• The method uses sampling to generate the joint probability distribu-
tions used to determine the histograms. If the number of variables
the input Bayesian network has increases, the dimension of the sam-
ple space will increase exponentially in the number of variables. If the
number of dimensions of the sample space becomes sufficiently large,
the method may become intractable. Finding samples that satisfy all
constraints will become increasingly difficult and the method as pro-
posed in the paper currently has a very basic sample generator that is
very inefficient.

• Another problem with the method as it was proposed in the paper
is that it does not currently allow for the detection or resolution of
conflicts between constraints. In the situation that a conflict occurs
between constraints the method will run indefinitely.

The method looks very interesting and promising, but it definitely needs im-
provement to be sure that the necessary computation time stays reasonable.
Improvements must be made to the sampling process, as few samples as
possible should be rejected. Also conflict detection and resolution methods
are necessary to ensure that the method will terminate.

3.2 Decomposing a Bayesian Network

The elicitation method works by sampling the hyperspace of possible joint
probability distributions of the Bayesian network provided by the expert.
The problem is that if the joint probability space for the whole BN would
be used for sampling, the method would become computationally intractable
in space and time. The reason BNs are used in the first place is that they
are far more efficient at representing the complete J-PDF.

An obvious solution is to decompose the BN into smaller sub networks
that contain fewer variables and thereby have smaller J-PDFs, that are only
valid for their respective subnetwork. This way the J-PDFs that the method
has to work with have a more manageable size. In the paper a transforma-
tion scheme designed by Lauritzen and Spiegelhalter (1988) is mentioned.
This transformation extracts from the BN’s directed acyclic graph (DAG)2

an undirected triangulated graph and creates a tree whose vertices are the

2A directed acyclic graph is a directed graph, a graph that only has directed arcs (arcs
that are only valid in one direction), and it does not have a set of nodes that point at each
other in such way that together they form a circle of nodes.
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cliques3 of this triangulated graph (Neapolitan, 1990). The original BN is
turned into a chordal graph, which has the property that the whole J-PDF
nicely marginalizes over the cliques created by the transformation.

However, for the expert who has created the BN, this new graph may not
be as easy to understand and to create meaningful probabilistic statements
for. Although the transformation guaranties that no causal links are broken,
for the expert the original BN may be more clear.

Another way of decomposing a BN is proposed, which might be more
clear for the expert and is easier to implement. The idea is to break up the
BN into families; sub networks that consist out of a node and its parents.
Using family networks (FNs), the expert can focus on providing information
for a only a small part of the network without having to worry about other
nodes.

Breaking up a Bayesian network into FNs is very easy. There is only
one way of breaking it up into its set of family networks. The process is
linear in the number of variables the BN has. Every node is checked to see
if it has parents. If this is the case, then a family network must be created
containing this node and its parents. Once all nodes have been checked and
all the family networks have been generated, each of these networks can now
be processed by the elicitation method.

It is important to note that a single node can appear in multiple fam-
ily networks, once as the child and zero or more times as parent of other
nodes. This means that after the J-PDFs of the family networks have been
estimated by the elicitation method, somehow this information will have to
be merged into the J-PDF of the original BN. Using this procedure will also
influence the accuracy of the method, because some causal links are tem-
porarily removed from some family networks. This will happen in the case
that one of the parents of the child node is also a child in another family
network. The merging process (Section 3.7) addresses this problem.

3.3 Translation of Expert Statements into Con-
straints

With the BN decomposed, the expert can provide probabilistic statements
per family for each family. Once the expert is done, the statements will
have to be translated into constraints for the probability hyperspace. These
constraints are, as stated in Section 3.1, equations and inequalities that have
the constituents as variables. Since the constraints are going to be used to
evaluate samples generated by the system, it is important that the form
chosen for the constraints makes this computation possible and preferably
also easy. It has been decided to represent the equations/inequalities by

3A clique is a set of nodes that are completely connected to each other. In this case
every node of the clique is connected to every other node of the clique by an arc.
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using binary expression trees. The reason for this choice was that binary
expression trees are most commonly used for similar problems, so a lot of
reference material would be available.

To translate the statements into binary expression trees, a parser has
been used. The SMILE library already had a basic parser implemented for
the parsing of expressions in text form into expression trees. This parser
was extended so that it was be able to parse the probabilistic statements
presented in text form. Letting the expert write down his probabilistic
statements in text as input for the system might be a bad idea. In this case
the system must be able to handle errors in statements, which if detected
too late could cause the program to crash. Therefore a better idea is to
create a user interface that the expert uses to create statements and that
these statements are automatically converted into the text format necessary
for the parser. Perhaps, if this is desirable, the option could be left open to
add statements directly in text form, for “expert” users.

The parsing of the different types of probabilistic statements was de-
signed in such a way that the more complex probability statements make
use of the simpler ones. An example is the qualitative influence statement.
This statement can first be translated into a number of (quantitative) prob-
ability statements. The number of statements depends on the number of
variables in the family network. These probability statements can be trans-
lated into one or more equations/inequalities consisting out of constituents
and the basic arithmetic elements. These equations are the final form and
are represented using expression trees. Instead of generating the resulting
expression trees directly from the qualitative statement, first the probability
statements are generated, which are then parsed and then from each prob-
ability statement the resulting trees are generated. A similar mechanism
is necessary for conditional probability statements. An extra constraint
must be added to ensure that the conditional part of the probability has
a probability larger than 0. A simple example would be: the statement
P (A |B ) > 0.2 needs an extra statement P (B) > 0 because otherwise the
conditional probability does not exist (this is due to Equation 2.2).

3.4 Identification of Probability Bounds

When the system has acquired the constraints from the expert, it could
start the sampling process, but this will be quite inefficient. Druzdzel and
van der Gaag (1995) propose that first a preprocessing step should be per-
formed to reduce the size of the sample space. They have envisioned using
linear programming (LP) to tighten the bounds for every constituent.

To calculate the upper and lower bounds for each constituent, the pro-
posed LP method has been used.
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Upper Bound

Maximize P (ci)
Subject to

Dc = p

c ≥ 0

Lower Bound

Minimize P (ci)
Subject to

Dc = p

c ≥ 0

Figure 3.2: Linear Program definition for calculating probability intervals
for constituents

Figure 3.2 shows the linear programing problems that should be solved to
calculate a probability interval for a constituent:

Where ci is the constituent where the bounds are calculated for, D is the
matrix containing the linear constraints, p are the respective right hand side
values of the constraints and c is a vector containing all the constituents.
This problem can now be solved by every standard LP algorithm. To calcu-
late probability bounds, this process has to be repeated for every constituent.

It is important to notice that only the linear constraints provided by the
expert can be used for these calculations. It was researched how it would
be possible to automatically determine if a constraint was linear and to
extract the necessary information from the constraints to create the matrices
necessary for the LP procedure.

Using some knowledge of how the different constraints typically look
like and by implementing some symbolic mathematical operations for the
expression trees, a method was developed that manipulates the trees into
a standard form that makes it very easy to decide if a constraint is linear
or nonlinear. There may exist situations where this method will fail, but in
these cases the method will mistake a linear equation for an nonlinear. In
this situation the constraint will be excluded from the LP process, which is
not as bad as trying to include a nonlinear constraints in the LP process.

The developed method works as follows. After examination of the differ-
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ent constraints that will be processed by the method, it became clear that
the constraints would only contain the basic arithmetic operators: addition,
subtraction, multiplication, and division. Furthermore divisions only appear
when dealing with conditional probabilities (as a result of Equation 2.1). If
there are divisions present in the constraint, it can be manipulated in such
way that all the divisions are multiplied out of the expression, only addi-
tion subtraction and multiplication operators will remain. The next step is
to place all the multiplications as “deep” in the tree as possible. This is
accomplished by “multiplying out”, a simple example where variables are
multiplied out is shown below:

x1 ∗ (x2 + x3) = x1 ∗ x2 + x1 ∗ x3 .

The multiplying out procedure is performed repeatedly on the expression
tree until it is no longer possible to perform the procedure on the tree. Now,
the tree has been been manipulated enough that it is possible to deter-
mine if it is linear, but some extra tree manipulation procedures have been
added to simplify the expression even further, which has advantages when
the constraint is being used to evaluate a sample. An example of further
simplification is that terms that have identical variables, but have different
multiplying constants are merged into a new term with a new multiplying
constant. A simple example:

5 ∗ x1 + 4 ∗ x1 = 9 ∗ x1 .

To make the merging easier a few preprocessing steps are performed. First
all the terms are collected. Three types of terms can be distinguished, a
term can consist out of:

• one constant,

• one variable,

• or a combination of constants and variables.

Terms consisting out of one variable are (temporarily) transformed into the
third type by adding a multiplication with one to the tree:

x1 = 1 ∗ x1 .

This preprocessing step simplifies the merging process, since now the con-
straint will only have two different types of terms and less code is necessary
for identifying if two constraints are eligible to be merged. To make it eas-
ier to compare two terms consisting out of multiple variables and constants
they are changed into a standard form. The constants are multiplied to-
gether and the result is put in front of the term. The variables, which are
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always in the form x1, x2, . . . , xn, are sorted so that they appear in the term
in ascending order. An example would be:

x4 ∗ 3 ∗ x2 ∗ 7 ∗ 2 ∗ x1 ∗ x3 ∗ 2 = 84 ∗ x1 ∗ x2 ∗ x3 ∗ x4 .

Deciding if two terms are eligible for merging has now become very easy.
Constants can only merge with constants and terms with combinations of
variables and constants can be merged if both have the same number of
variables and the variables are identical. Since the variables are sorted it
can be determined very quickly if two terms cannot be merged. If the two
terms that are to be compared have different number of variables it can be
concluded directly that they cannot be merged. When the terms have an
equal number of variables, the variables in the terms are compared from
left to right and when two variables are found that are unequal, it can be
concluded that the whole terms are unequal and that they cannot be merged.
Finally, after merging all eligible terms, all variables are moved to the left
hand side of the expression and all the constants to the right hand side of
the expression. Now, when the constraints have been manipulated into this
form the linearity of the constraints can be checked by checking if there are
any multiplications of variables with variables in the left hand side of the
constraints. If these multiplications are found, a constraint is not linear and
cannot be used for the LP procedure.

After all the manipulations, extracting the necessary information from
the linear constraints to perform the LP procedure is easy. The coefficients
of the variables can easily be found in the expression trees because the trees
have been standardized. A term now consists out of a multiplication of a
variable and a coefficient, the coefficient will always be on the left hand side
of the multiplication node and can be easily extracted. All the coefficients
of all the linear constraints are collected and put into a matrix to be used
in the LP procedure.

Using the LP procedure does indeed decrease the size of the sample space
and thus will improve the efficiency of the sampling process, but because the
nonlinear constraints are not considered in this process, there should still be
more to gain in sampling efficiency.

3.5 Derivation of the 2nd Order Distributions

To derive the the 2nd order distributions over the CPT entries, the hyper-
space of joint probability distribution has to be sampled. After the LP
preprocessing step described in Section 3.4 the size of the sample space has
most likely been decreased, but still, especially if the number of dimensions
increases, the sample space can be very large and finding samples that sat-
isfy all constraints is still a very inefficient process. Two approaches have
been proposed that try to generate samples as efficient as possible. The first
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proposed approach, described in Section 3.5.1 focuses on using a projection
algorithm to move samples towards the feasible region where all constraints
are satisfied. The second proposed approach, descibed in Section 3.5.2 re-
volves around using a truncated Dirichlet distribution to generate samples.
In Section 3.5.3 the approaches have been evaluated and an approach has
been selected for implementation. Section 3.5.4 describes the necessary cal-
culations after sampling has been completed.

3.5.1 Projection Approach

To improve the sampling efficiency several heuristics were created that should
decrease the sample space and speed up the sampling process by trying to
force the samples to satisfy the axioms of probability so that less samples,
that are unvalid by default, have to be evaluated by the constraints. This
approach uses a projection algorithm to iteratively move samples towards
the feasible region, the region in the hyperspace where samples satisfy all
constraints.

Order Heuristic

The first created heuristic changes the ordering of the constituents in such
way that constituents with the smallest sample interval are sampled first.
Using the global upper and lower bounds that have been calculated by the
LP procedure, the difference between upper and lower bounds are calculated
to get the width of the sample intervals of the constituents. The heuristic is
very simple; it calculates the interval size for the constituents and then sorts
the constituents accordingly. It is performed as a preprocessing step for the
second heuristic, so that it performs better when it creates the importance
function.

Importance Heuristic

The second created heuristic approaches sampling in a manner similar to im-
portance sampling (Section 2.4). Since the shape of the constrained space
(assuming that it exists) will differ for every set of constraints it is neces-
sary to learn the shape of the importance function every time the method is
performed. To learn the shape, an algorithm designed by Chinneck (2004)
called the constraint consensus algorithm was used. This algorithm has
the ability to find points in the sample space that are close to the feasible
region, i.e. the region where all constraints are satisfied. It works by itera-
tively moving an arbitrary point towards the feasible region. The algorithm
resembles gradient descent algorithms and Chinneck has classified the algo-
rithm as “a form of simultaneous component-averaging gradient-projection
algorithm.” The constraint consensus algorithm is described in Figure 3.3.
For more information on the algorithm see (Chinneck, 2004).
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Inputs:

• a set of constraints,

• an initial point x,

• a feasibility distance tolerance α,

• a movement tolerance β.

1. NINF = 0; for all j: nj = 0, sj = 0.

2. For every constraint ci:

1. If ci is violated (without considering a tolerance) then:

1. Find the feasibility vector and the feasibility dis-
tance.

2. If the feasibility distance is greater than α then:
1. NINF = NINF + 1.
2. For ever variable xj in ci:

nj ← nj + 1; sj ← sj + fij .

3. If NINF = 0 then exit successfully.

4. For every variable xj :

1. tj = sj

nj
.

5. If ‖t‖ ≤ β then exit unsuccessfully.

6. x ← x + t.

7. If necessary, reset x to respect any violated variable bounds.

8. goto Step 1.

Figure 3.3: Constraint Consensus Algorithm

To gather information about the shape of the joint distribution func-
tion the constraints describe, a number of samples was generated, and the
constraint consensus algorithm was applied to each of the samples. The
number of samples depends on the number of dimensions of the sample
hyperspace. After applying the constraint consensus algorithm on the sam-
ples, they should now be close to the feasible region, if it exists. Now these
samples can be used to create an importance function.

To keep the sampling process simple, uniform sampling was used to sam-
ple values for each of the constituents (dimensions). Uniform sampling has
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only two simple parameters: the upper bound and the lower bound. Values
between the two bounds are selected as sample with equal probability. The
implemented importance function is based on a simple idea: currently there
are only global bounds for every variable. These global bounds describe the
absolute minimum and maximum values of the variables. But all variables
are linked to each other by the constraints and the probabilistic axioms.
Once one variable has been given a value, this will influence the values the
other variables can take. A simple example is the probability axiom that
states that the sum of the variables should be one. If a variable gets value
a, then there is only 1− a left for the other variables.

It can be assumed that the variables are conditionally dependent on each
other. If the variables are ordered and sampled in this order, a Bayesian
network can be created that contains all the variables (which represent the
values of the constituents) and the links of the Bayesian network represent
the dependencies between the variables. This Bayesian network represents a
joint probability distribution and this J-PDF could represent the importance
function for the problem.

A simpler representation was chosen for the importance function. It was
assumed that there are only dependencies between constituents adjacent
in the chosen constituent ordering. This is where the results of the first
created heuristic are used. The constituent with the smallest sample interval
is sampled first, followed by the constituents with larger intervals, ending
with the constituent with the largest interval. The next step was to divide
the sample interval for each constituent into ten subintervals of equal size.
Using the Bayesian network analogy this would mean to create discrete
nodes with ten different value possibilities and connecting the nodes with
only one arrow. The structure of the BN would resemble a linked chain,
node C1 is connected to node C2, node C2 is connected to node C3, etc until
node Cn−1 is connected to node Cn.

At this point the earlier collected samples that should be near the feasible
reason come into the picture. Assuming that enough samples were generated
and that the randomness of the sampling has caused the samples to be dis-
persed over the sample space to surround the feasible area, the samples can
be used to generate bounds for a constituent conditioned on the value of the
previous constituent in the sample order. For every constituent the collected
samples are distributed over ten bins, each representing a subinterval of the
constituent. After the samples are distributed over the bins, minimum and
maximum values are calculated for each bin for the next constituent in the
sample order. The minimum and the maximum value become the lower and
the upper bound for the next constituent when the current constituent has
a value that falls into the subinterval represented by this bin. The process
is repeated for all but the last constituent, the last one has nothing to con-
dition so the process is not necessary here. The heuristic is summarized in
Figure 3.4.
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1. Generate a number of samples, the number is dependent on
the number of constituents.

2. Perform the constraint consensus algorithm on these sam-
ples.

3. For every constituent:

1. Initialise the constituent’s upper and lower bounds with
the global upper and lower bounds calculated by the LP
procedure for this constituent.

4. For every constituent except the last one:

1. Put every sample in one of the bins by using a simple
calculation to find the right bin index. The index i is
found by using the global upper bound u, the global
lower bound l, and the sample value of the current con-
stituent, x as follows: i =

⌊
x−l
u−l ∗ 10

⌋
.

2. Calculate for every bin the minimum and the maximum
of the sample values from the next constituent.

3. Assign the minimum and maximum values found in
the bins as upper and lower bounds for the next con-
stituent.

Figure 3.4: Heuristic based on importance sampling

Axiom Heuristic

The third created heuristic tries to reduce the number of samples that has
to be discarded due to noncompliance to the axioms of probability. Very
soon in the development of the sampling process, it became clear that the
axiomatic constraint that states that all the constituents should sum to
1 causes a very large number of samples to be discarded. By using an
implementation of the constraint consensus algorithm, especially optimized
for using the axiomatic constraints, the heuristic moves the samples to the
probability plain in the hyperspace. On this plain a sample satisfies the
axioms of probability. The heuristic is run after all the constituents of the
sample have been generated. Since only the axioms are used as constraints
for the algorithm it was possible to remove the constraint dependent parts
of the algorithm and optimize the algorithm for faster run times.
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Sampling Process

All these heuristics are used to create a sampling process that can be used
to generate samples that can be evaluated by the constraints. The whole
process is summarized in Figure 3.5.

1. Perform LP using the available linear constraints, to tighten
the probability bounds (Section 3.4).

2. Order the constituents in such way that they are sorted ac-
cording to the size of the sampling interval (heuristic 1).

3. Create an importance function to be used for improved sam-
pling (heuristic 2, Figure 3.4).

4. Create 1000 valid samples:

1. Generate a sample:

1. Generate a value for each of the constituents:
1. For the first constituent, the global bounds are

selected.
2. A value is generated for the constituent, using

uniform sampling and the selected bounds.
3. using the value of the previous constituent, the

correct set of bounds for the next constituent
is chosen.

4. Step 2 and 3 are repeated until all constituents
have been assigned a value.

2. After all constituents have been assigned a value,
the constraint consensus algorithm is run with only
the axioms of probability as constraints (heuristic
3). This heuristic ensures that the sample is on the
probability plain in the hyperspace.

2. The sample is now evaluated by all constraints. If one
of the constraints evaluates the sample as false, it is
discarded, otherwise it is saved.

Figure 3.5: The Sampling Process
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3.5.2 Dirichlet Approach

The second sampling approach proposed in Section 3.5 uses a truncated
Dirichlet distribution to generate samples for evaluation by the constraints.
The Dirichlet distribution is a continuous, multivariate distribution. The
distribution is a generalisation of the beta distribution for any number of
dimensions. It has the following density function:

f (X; α) =
1

B (α)

N∏

i=1

xαi−1
i δ

(
1−

N∑

i=1

xi

)
, (3.1)

where α is a parameter vector with N real elements ≥ 0, X is vector with
elements that lie in the range [0, 1], δ (x) is the Dirac delta function, and
B (α) is the multidimensional beta function. The beta function is expressed
by using the gamma function, an extension of the factorial function:

B (α) =
∏N

i=1 Γ (αi)

Γ
(∑N

i=1 αi

) . (3.2)

Samples generated by a Dirichlet distribution are distributed over a (N − 1)-
dimensional simplex. For a point X in N-dimensional space to lie on the
(unit) simplex it must satisfy the following requirement:

N∑

i=1

xi = 1 . (3.3)

This is represented by the density function of the Dirichlet distribution by
using the Dirac function. Only points on the (N − 1)-dimensional simplex
get a probability density f (X; α) 6= 0. The general beta function B (α)
is used as a normalisation factor to make the density function satisfy the
axioms of probability, in this situation ensuring that

∫ ∞

x1=−∞
· · ·

∫ ∞

xN=−∞
f (X;α) dx1, . . . , dxn = 1 .

The Dirichlet distribution is an excellent choice to generate samples for
the method. This can be understood by examining the distribution and
equation 3.3 a little closer. The elements xi of a sample vector X generated
by a Dirichlet distribution must be nonnegative, i.e. xi ≥ 0, and all elements
must sum to 1 (eq. 3.3). These are exactly the requirements for a sample
to be a valid joint (discrete) probability distribution. Any sample from a
Dirichlet distribution with any parameter vector α is automatically a sample
that represents a valid joint distribution for the method. This means that
no longer samples will need to be rejected because they do not satisfy the
axioms of probability.
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One interesting property of Dirichlet distributions is when the parame-
ters αi are all chosen to be 1, the resulting samples from the distribution will
be distributed uniformly over the simplex. This parameter setting could be
a starting point for when the sampling process is just started. Later when
more information comes available the parameters of the distribution could
be adapted to steer the sampling process towards the area in the simplex
that yields more samples that satisfy all the constraints.

Sample Generation

To generate samples from a Dirichlet distribution the following algorithm
can be used (Devroye, 1986):

Input:

• a parameter vector α = {α1, . . . , αN},

1. Generate N independent samples Y1, . . . , YN

from Gamma(αi) distributions with density

yαi−1
i e−yi

Γ (αi)

2. Generate the sample X = {x1, . . . , xn} for the Dirichlet(α)
by using

xi =
yi∑N

i=1 yi

Figure 3.6: Algorithm for generating samples from a Dirichlet(α) distribu-
tion

The generation of samples from a Dirichlet distribution can be reduced
to generation of samples from a Gamma Distribution. Many approaches
and algorithms exist to generate samples from a Gamma(α) distribution.
Some examples are described in (Press, Teukolsky, Vetterling, & Flannery,
1992) and (Devroye, 1986). Exact details are not important since eventually
another approach was chosen to generate samples that did not rely on using
samples from Gamma distributions.

Although the approach proposed above works, problems start to arise
when trying to use the probability bounds provided by the linear program-
ming preprocessing step. Using this information means that now the differ-
ent entries of the sample vector from the Dirichlet distribution should only
be able to be assigned values that lie between the bounds for these entries.
It is not possible to directly start sampling between these bounds since the
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values for the different entries of the vector are calculated in two steps, be-
ginning with samples from Gamma distributions which are then normalized
by the sum of these samples to get the samples for the vector entries.

The simplest method of incorporating the probability bounds into the
Dirichlet sampler was to use rejection sampling. If a sample does not lie in
the volume described by the probability bounds, reject it. This is a workable
solution if the bounds are not too tight. Once the volume that is constructed
from the bounds becomes sufficiently small, a large number of the samples
will be rejected and it will no longer be efficient to use rejection sampling.

Another approach that was tried was to view the problem from a ge-
ometrical perspective. By looking at what the probability bounds do to
the shape of the simplex the idea was that it might be possible to derive
a transformation, that would make it possible to sample from that part of
the simplex that intersects the volume of the probability bounds without
resorting to rejection sampling.

Geometric Approach

This approach was only partially successful. There are two different types
of probability bounds, lower bounds and upper bounds. The result of a
probability bound on a simplex is shown in Figure 3.7.

(a) 2-Simplex (b) 2-Simplex with a probability bound

Figure 3.7: Simplices in a three dimensional hypercube
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The figure shows a very simple example of what a (unit) 2-simplex looks
like in 3 dimensional space. In this situation the simplex has the shape of
a triangle (Figure 3.7(a)). It is called a 2-simplex because the simplex itself
has a 2-dimensional surface. If a probability bound is defined for one the
axes, this will cut the hypercube (defined by the axes xi, 0 ≤ xi ≤ 1) into
two parts. Depending on the type of the probability bound the remaining
simplex will be the blue part, if it is an upper bound, or the red part if
it is a lower bound. If examined closer, it is clear that the red area of
the simplex bounded by the specified lower bound and the standard upper
bound actually is another simplex that has the same shape as the initial
unit simplex. This fact can be used to create samples for the sub simplex
without using rejection sampling. The principle is very simple:

1. Generate a sample for the unit simplex.

2. Scale the simplex (and the sample in it) to the size of the sub simplex.

3. move (translate) the simplex to the position of the sub simplex.

This idea can be generalized to N dimensions and N lower bounds. It can
be done in the following way: Assume that S is a (N − 1)-simplex, X is a
point in N dimensional space, A is a N dimensional vector containing the
lower bounds, B a N dimensional vector containing the upper bounds, and
V is the volume that is bounded by vectors A and B. For a standard unit
simplex in a unit hypercube the values for the entries of A and B will be:

∀i (ai = 0) ,

∀i (bi = 1) .

The simplex has vertices:

s1 = (1, 0, 0, . . . , 0)T

s2 = (0, 1, 0, . . . , 0)T

...
sn = (0, 0, 0, . . . , 1)T .

A point X lies on the unit simplex if the following conditions are met:

∀i (xi ≥ 0) ,
N∑

i=1

xi = 1 .

If one of the lower bounds ai in A becomes nonzero this will have a direct
effect on all the upper bounds in B. For a point X to be on the simplex,
it must meet the above specified conditions. This means that if one of the
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entries xj has a minimum bound 0 < aj ≤ 1, there is only 1− aj left for the
rest of the entries of X. So, assuming all entries of A except aj are 0, this
will create a new upper bound vector B′ with entries:

∀i (
b′i = 1− aj

)
.

The vector B′ can be created by multiplying vector B with scalar 1− aj :

B′ = (1− aj) B . (3.4)

The intersection of the new volume V ′, created by A and B′, and the simplex
S results in a sub simplex S′. Now, a point X lies on S′ when the following
conditions are met:

∀i (ai ≤ xi ≤ bi) ,
N∑

i=1

xi = 1 .

S′ is not a standard simplex, its vertices do not resemble these of the stan-
dard simplex. The resulting vertices for S′ are:

s′1 = ((1− aj) , 0, 0, . . . , 0)T

s′2 = (0, (1− aj) , 0, . . . , 0)T

...
s′j = (0, 0, 0, . . . , 1, . . . , 0)T

...
s′n = (0, 0, 0, . . . , (1− aj))

T .

With a very simple operation S′ can be changed into a scaled version of S.
All the vertices of S′, except s′j , are already scaled versions of the vertices
of S; They are scaled by a factor of 1 − aj . Vector s′j can be changed into
a scaled version of the standard vector sj , by subtracting aj from element
j of the vector. In this particular situation this would be equivalent to
subtracting vector A from vertex sj . Since S′ is now a scaled version of S,
and S′ can be changed into S by dividing all the vertices of S′ by 1 − aj ,
it is possible to define a transformation scheme to translate a point X on
simplex S to a point X ′ on simplex S′. This transformation scheme would
work as following:

1. Multiply a point X on simplex S with the scale factor 1− aj .

2. Add the value aj to the entry xj of the scaled vector X.

Now X has become a point X ′ on the simplex S′.
It is easy to extend this schema to allow for multiple lower bounds.

Adding another lower bound simply means creating a sub simplex in S′.
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This happens the same way as S′ was created in S, thus the general trans-
formation scheme will be similar to the one used for one lower bound. The
general transformation scheme to transform a point X on S to a point X ′

on a simplex S′ bounded by N lower bounds is:

1. Multiply a point X on simplex S with the scale factor 1−∑N
i=1 ai.

2. Add the vector A to the scaled vector X.

The differences between the two transformation schemes are easy to explain.
The difference in the scaling factor comes from the fact that for every entry
xi that must have at least the value ai, there is less left to assign freely to the
entries X. Since the entries must sum to 1, the amount that can freely be
assigned to the all entries will decrease by the size of every lower bound that
is added. If a lower bound aj = 0.2 is added there is only 0.8 left to assign
freely. If another bound ak = 0.35 is added, there is now only 0.45 left to
be assigned to the entries. The assigning of this smaller amount to entries
happens in the scaled simplex. If one entries gets the complete remaining
amount, the others must get 0 and then the generated point will be on one
of the vertices of the simplex. In the example from above, this would mean
that the entry would get assigned 0.45 on top of its lower bound. Since this
0.45 is the result of subtracting the lower bounds from 1, the simplex must
be scaled with factor 1−∑N

i=1 ai to ensure that the vertices have a maximum
value of 0.45.

After scaling, the simplex S′ must be placed in the right position of
S to represent the sub simplex created by the lower bounds. This can be
accomplished by adding the values of the lower bounds to the values of the
point X ′ that is on the scaled simplex. This moves the simplex to the correct
position. Since selecting a point on the scaled simplex represents dividing
the amount that is left after subtracting the values of the lower bounds from
1, it is logical that after this amount is divided over the entries, the values
of the lower bounds of the entries are added to the entries. Adding the
bounds to the entry values creates entries that together form a point that
lies on both simplices S′ and S. The point will satisfy all the conditions for
the unit simplex, but will only appear in the volume described by simplex
S′. Since S′ is created by applying the lower bounds to S, it is proven
that sampling on a simplex constrained by lower bounds is possible without
rejection sampling.

Upper Bounds

Using a geometric approach it is possible to, using a simple transformation
scheme, sample in a part of a simplex that is constrained by lower bounds.
Upper bounds on the other hand are a lot more difficult to deal with. If Fig-
ure 3.7(b) is examined again, but with the bound now representing an upper
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Figure 3.8: Subdivision of a 2-Simplex

bound, the area that needs to be sampled now is the blue area. This area is
a truncated simplex and the unit simplex cannot be easily transformed into
this shape. There does not exist an easy transformation scheme like the one
found for the part of the simplex constrained by the lower bounds.

One idea of dealing with this problem was to subdivide the simplex into
smaller sub simplices and then to only sample in the sub simplices that
would fall in, or would overlap the area of the simplex bounded by the
upper bounds. The effect of subdividing a simplex is shown in Figure 3.8:
By subdividing the simplex into smaller simplices it would again be possible
to use a simple transformation scheme to sample in the area constrained
by lower and upper bounds. An extra difficulty would be the selection of
the sub simplices. If it would be implemented poorly, it could influence the
results of the whole sampling process.

After searching in the literature a method was found that could be used
to subdivide a simplex into sub simplices of the same shape and volume
(Edelsbrunner & Grayson, 1999). The authors use a so called abacus model,
which is an algebraic interpretation of simplices. The advantage of using an
algebraic interpretation for simplices is that when simplices in high dimen-
sional spaces are considered, it is no longer feasible to work with geometric
interpretations. The method allows for a d-simplex to be subdivided into kd

d-simplices, where k is an integer k ≥ 1 that specifies the number of pieces,
of equal width, each dimension of the simplex is subdivided in.

This method will subdivide the whole simplex into sub simplices, but
most of these simplices will be unnecessary because of the defined upper
bounds. Sub simplices that completely fall outside of the area of the simplex
do not need to be sampled since these samples will never be valid. The paper
describes how the coordinates of the vertices of the sub simplices can be
calculated, using this information it is possible, by using the information of
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the upper bounds, to only select simplices that will fall into, or overlap the
bounded area. In total, at most kd−(k − 1)d sub simplices will be needed to
fill the volume created by the upper bounds. To accomplish this the value
of k most be chosen according to the smallest upper bound bi ≥ 0:

k =
⌈

1
min (bi)

⌉
. (3.5)

The dimensions will be cut into k pieces, but for the dimension with the
smallest upper bound, only 1 of the k pieces will be used. For the other
dimensions the same observations can be made and a vector K can be created
containing the maximum indices to be used when generating simplices. This
would further reduce the total number of necessary subsimplices.

Still, when the number of dimensions starts to increase and when the
upper bounds become smaller, the number of subsimplices will become ex-
tremely large and eventually this solution will become intractable. It will
take so many samples to have at least one sample in every sub simplex, that
the advantage of using sampling in the area described by the subsimplices
instead of rejection sampling has disappeared.

The geometrical approach was abandoned and the search was continued
to find another approach for sampling on a simplex between lower and upper
probability bounds. After some search a solution was found that would
solve the problem completely. A paper was found that described truncated
Dirichlet distributions (Fang, Geng, & Tian, 2000).

Truncated Dirichlet Distributions

A truncated Dirichlet distribution (TDD) is a variant of the Dirichlet dis-
tribution where the entries of the sample vector can be constrained by lower
and upper bounds. A vector X generated from a TDD, with

X = (x1, . . . , xN )T ,

and

x−N = 1−
N−1∑

i=1

xi,

has a density function for vector X (x1, . . . , xN−1)
T (Fang et al., 2000):

c−1
n−1∏

i=1

xγi−1
i

(
1−

n−1∑

i=1

xi

)γN−1

, X−N ∈ VN−1 (A,B) , (3.6)

where c is the normalizing constant, and VN−1 (A,B) is the volume cre-
ated by lower bound vector A = (a1, . . . , aN ) and upper bound vector
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B = (b1, . . . , bN ):

VN−1 (A,B) =





X :
0 ≤ ai ≤ xi ≤ bi ≤ 1,

i = 1, . . . , N − 1,

aN ≤ 1−∑N−1
i=1 xi ≤ bN





. (3.7)

When all entries of vector A are 0 and the entries of vector B are 1, the
TDD reduces to a standard Dirichlet distribution. Again, as with a standard
Dirichlet distribution, when all the parameters γi are chosen to be 1 the
distribution reduces to a uniform distribution. This time the samples are
uniformly distributed over a convex polyhedron

TN (A,B) =

{
X : 0 ≤ ai ≤ xi ≤ bi, i = 1, . . . , N,

N∑

i=1

xi = 1

}
. (3.8)

To generate samples from a TDD (Fang et al., 2000) used the conditional
distribution method (Devroye, 1986). The idea of this method is that any
joint distribution can be broken up into a product of marginal, conditional
distributions (as discussed in Section 2.3.1). To generate a vector X from a
TD (A,B; γ1, . . . , γN ) distribution, the joint density function of the vector
X−N is broken up into

f (x1, . . . , xN−1) = f (xN−1) ∗ f (xN−2|xN−1) ∗ · · ·
· · · ∗ f (x1|x2, x3, . . . , xN−1) .

(3.9)

Samples from the TDD are generated by sequentially generating samples
from the marginal distributions, which according to (Fang et al., 2000) are
truncated beta distributions, Tbeta

(
γk,

∑N
i=1 γi −

∑N−1
i=k γi; ξk, ηk

)
. Tbeta

is a truncated version of the standard Beta (α, β) distribution, where ξ is
the lower bound and η is the upper bound. For every entry of the TDD
vector new values for ξk and ηk must be calculated, this is done by using

ξk = max

(
ak

1−∑N−1
j=k+1 xj

, 1−
∑N

i=1 bi −
∑N−1

j=k bj

1−∑N−1
j=k+1 xj

)
, (3.10)

ηk = min

(
bk

1−∑N−1
j=k+1 xj

, 1−
∑N

i=1 ai −
∑N−1

j=k aj

1−∑N−1
j=k+1 xj

)
. (3.11)

Where
∑N−1

j=k+1 xj is defined as 0 when k + 1 > N − 1.
An algorithm can be created for generating samples from a TDD by

sequentially generating samples from a truncated beta distribution with the
appropriate parameters. This algorithm has been described in Figure 3.9.
Here F−1

k (·) is the inverse of the cumulative distribution function of the
Tbeta

(
γk,

∑N
i=1 γi −

∑N−1
i=k γi; ξk, ηk

)
distribution.
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Input:

• a parameter vector γ = (γ1, . . . , γN )T ,

1. For k = N − 1, k > 0, k = k − 1

1. Calculate the values for ξk and ηk using eq. 3.10 and
3.11.

2. Generate a random value uk from a uniform U [0, 1]
distribution.

3. Calculate xk =
(
1−∑N−1

j=k+1 xj

)
F−1

k (uk)

2. Calculate xN = 1−∑N−1
i=1 xi

3. Output vector X = (x1, . . . , xN )T ∼ TD (A,B; γ1, . . . , γN )

Figure 3.9: Algorithm for generating samples from a truncated Dirichlet
distribution using the method described by Fang et al. (2000)

To calculate F−1
k (x), the cumulative distribution function Fβ (x) and the

inverse cumulative distribution function F−1
β (x) of the standard Beta (α, β)

distribution are used.

F−1
k (x) = F−1

β (Fβ (ξk) + x ∗ (Fβ (ηk)− Fβ (ξk))) . (3.12)

The algorithm described in Figure 3.9 allows for the sampling between upper
and lower bounds on a simplex. This is accomplished without the use of
rejection sampling. It is important to note that for the calculation of Fβ (x)
and F−1

β (x) numerical approximations have been used. To evaluate these
functions the incomplete beta function and its inverse must be calculated.
The incomplete beta function is defined as:

Bx (a, b) =
∫ x

0
ta−1 (1− t)b−1 dt . (3.13)

To calculate the inverse of the incomplete beta function, an iterative tech-
nique is used to find the root of

Bx (a, b)− y = 0, (3.14)

where y is the input value of the inverse incomplete beta function. The
function returns the value x that equates Equation Bx (a, b) to y.

A C++ software library has been found that implemented Bx (a, b) and
its inverse. This library, Cephes (Moshier, 1989), has been used to imple-
ment the TDD sample generator.
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Importance Sampling Possibilities

Dirichlet distributions have a parameter vector α that can be used to con-
trol the behavior of the distribution. The Dirichlet distribution is a multi-
dimensional generalisation of the beta distribution and behaves in a similar
manner. When the values for the vector α all are αi = 1, the samples gen-
erated by the distribution will be uniformly distributed over the simplex.
When all α’s are larger than 1, the distribution over the simplex resem-
bles a Gaussian distribution. The simplex will have a Gaussian shaped area
where it will be more likely for samples to appear. The coordinates for this
area depends on the α vector. This allows control over where the Gaussian
(N − 1)-dimensional “bell” curve will appear on the simplex. This is shown
graphically in Figure 3.10. This property of the Dirichlet distribution can

Figure 3.10: Several images of probability densities of the Dirichlet dis-
tribution as functions on the 2-simplex. Clockwise from top left: α =
(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4). The z-axis in the figure shows the value of
the density functions in relation to the (x, y, z) coordinate on the 2-simplex.

be used for an importance sampling scheme (Section 2.4) for the sampling
process. The Dirichlet distribution can be used as the importance function
used to approximate the probability distribution of points in the hyperspace
that satisfy all constraints. The probability density function for these points
can be written as:

g (X) =

{
c ∀i (si = true)
0 otherwise

, (3.15)
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where c is a constant and si are the constraints provided by the expert.
According to the requirements stated by (Cheng & Druzdzel, 2000), the
Dirichlet distribution can be used as an importance function. These re-
quirements are:

• There must exist an algorithm for generating samples from importance
function f (X).

• Importance function may only be 0 when the original function is 0:

f (X) = 0 ⇒ g (X) = 0 .

This simply means that the importance function must be able to generate
samples everywhere where the original distribution can generate samples.
Since samples generated from a Dirichlet distribution can represent valid
probability distributions, a property that is also inherent to the region de-
scribed by the expert constraints, it is certain that any possible sample that
would satisfy all constraints can be generated by a Dirichlet distribution.

A possible importance sampling scheme has been explored, but not im-
plemented. It has been decided to put this under future work. The scheme
has been based on the approach presented by Cheng and Druzdzel (2000).
The idea is to start with a Dirichlet distribution with parameters

αi = 1, i = 1, . . . , N ,

and after a number of samples has been found that satisfies all the con-
straints to iteratively adapt the parameters so the Dirichlet distribution will
increasingly start to approximate the real distribution. To accomplish this
an algorithm is proposed that estimates a parameter vector for the Dirichlet
distribution using the acquired samples that satisfy all, or perhaps if this
leads to better results, a very large portion of the constraints. The algo-
rithm (Figure 3.11), will have to be refined further before it will be ready
for implementation in the sampling process.

The literature was searched to find methods for estimating the parame-
ters of a Dirichlet distribution. An overview paper was found that compared
4 different methods for maximum likelihood estimation of the Dirichlet pa-
rameters (Huang, 2005). The 4 methods that were compared are:

1. Gradient Ascent.

2. Fixed Point iteration.

3. Newton-Raphson Method.

4. Separately estimating Mean and Precision.
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1. Initialise the α vector with values αi = 1;

2. Initialise the upper and lower bound vectors A and B with
the values from the linear programming process.

3. While 1000 valid samples have not been generated

1. Generate a sample X from distribution TD (A,B, α)

2. If the sample satisfies all the constraints keep it, else
discard it.

3. After d valid samples have been generated, update the
parameter vector

1. Save the current vector α for later use.
2. Using the gathered valid samples, calculate new

values for the entries of α by using a Maximum
Likelihood Estimation procedure.

4. Assign the samples appropriate weights using the likelihood
function, the saved α vectors, and perhaps other factors.

Figure 3.11: Proposed algorithm for adaptive importance sampling by
changing the Dirichlet parameter vector

Further research will be necessary to determine if one of the compared meth-
ods should be used for the estimation process, or that the search would have
to be continued to find other methods. Important criteria will be speed of
convergence, and precision.

Using the importance sampling algorithm will result in differences in like-
lihood between samples. This results from generating samples from Dirichlet
distributions using different α’s, and samples generated from a Dir (α) dis-
tribution can have different likelihood values. The generated samples will
have to be weighted to be able to incorporate the differences in likelihood
between samples into the calculation process of the CPT entries.

Currently no importance sampling algorithm has been implemented and
all the entries of parameter vector α will, during the complete sampling
process, have the value 1. Thus the area of the simplex, truncated by the
lower and upper bounds, will be sampled uniformly.
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3.5.3 Evaluation

The 2 discussed approaches have been compared with each other, criteria for
selecting an approach were the ability to generate samples uniformly over
a simplex and the easy of extending the approach to allow for importance
sampling. Section 6.1.2 describes an experiment that compares 7 different
sampling approaches, including the Dirichlet and the projection approaches,
using the criteria mentioned above. The result of the experiment was that
the Dirichlet approach was chosen to be implemented as the sampling pro-
cess. The approach has a strong mathematical background, which allows
for controllable behavior during sampling. Extending the approach to use
importance sampling techniques can also be done with relatively ease, when
compared to the projection approach, in a mathematically correct manner.

The problem with the projection approach is that it generates samples in
a very simplistic way and then relies on the constraint consensus algorithm
to move a sample point from a random point in the hyperspace to the
surface of the simplex. Since it is possible that different samples may be
projected on the same point on the simplex, there is no simple definition of
a density function for the sampling process using the projection approach.
This makes it a lot more difficult to implement an importance sampling
scheme. A heuristic has been created that tries to work in a similar way,
but test results during implementation of the heuristic showed that when
the number of dimensions started to increase, Performance would eventually
drop to a level where no real benefit was gained by running the heuristic.

Generally, using the projection approach will most likely not lead to very
good results, but perhaps some heuristics of the approach can be used to
improve the Dirichlet approach. It might be useful to investigate if ordering
the constituents in a certain way improves the Dirichlet sample generator.
Ordering criteria could be related to the lower or the upper bounds, or a
function of the two. The proposed importance sampling algorithm can also
possibly be improved by using parts of the constraint consensus algorithm.
A part of this algorithm calculates feasibility vectors and feasibility distance
scalars that give an estimation of how far a sample lies from the feasible
area where samples satisfy all constraints. An idea could be to store rejected
samples with a feasibility distance lower than a specific value and use these
samples in addition to the samples that satisfy all the constraints when
estimating the α vector. Another criterium to add rejected samples to this
calculation could be to look at the ratio of constraints that have accepted
or rejected the sample. With a sufficiently high acception ratio the sample
could be used as data for the parameter estimation. Further investigation
will be neccesary to determine if these suggestions will in fact improve the
Dirichlet approach.
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3.5.4 Post-Sampling Processing

After the sampling process has finished and 1000 valid samples have been
collected, all information is now present to calculate all the necessary his-
tograms for all the nodes in a FN. To calculate a histogram for a CPT entry
the set of samples is transformed into a new set of samples that contains
samples of the CPT entry. The transformation process here is equivalent to
performing inference on a J-PDF (see Section 2.3.3, Equation 2.16). The
basic general inference procedure is used to perform the calculations. It is
performed for every sample, so the 1000 samples of probability distributions
of the FN are transformed into 1000 samples of the desired CPT entry. This
process is repeated for all the CPT entries of all the nodes. Once all en-
tries are processed the histograms for the entries can be generated at any
time. The histograms represent the estimates of the 2nd order distributions
over the CPT entries. The generation of histograms is not implemented in
the method itself. The raw data, sets of samples for all the CPT entries,
is exported to GeNIe where there already is code implemented to generate
histograms.

3.6 Conflict Detection

One of the goals set in Chapter 1 was to design a method for the detec-
tion and resolution of conflict between constraints. All the constraints have
to be satisfied for a sample to be valid, any sample that does not satisfy
all constraints must be discarded. There is one big problem with this ap-
proach: conflicting constraints will prohibit any sample to be valid. A set
of constraints is conflicting with each other when it is impossible for all the
constraints to be satisfied at the same time. Detecting conflicts is hard, one
can never be sure that the absence of valid samples is because of conflicting
constraints or that the sampling procedure just has not hit inside the feasi-
ble area. Pin-pointing the conflicting constraints is even harder, and there
does not yet exist a good procedure for finding conflicting constraints for the
nonlinear, non convex case, which is the worst case situation encountered
when applying the method.

3.6.1 Method Overview

For the case that all the constraints are linear, there are good algorithms
that can find Irreducible Infeasible Subsystems (IIS). An IIS is a subset
of the complete set of constraints that contains a conflict. If one of the
constraints is removed from the subset, the subset becomes feasible.
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Some proposed algorithms for finding IIS are (Chinneck, 1996):

• Deletion filter (Chinneck & Dravnieks, 1991).

• Elastic filter (Chinneck & Dravnieks, 1991).

• The simplex algorithm (Loon, 1981).

• Algorithm based on isolating IIS set covers (Gleeson & Ryan, 1990).

Finding IIS is only very effective when there are only linear constraints, once
there are also nonlinear constraints, the algorithms do not perform very well
anymore. Some special cases may exist where the constraints satisfy certain
conditions, like the nonlinear constraints are quadratic, that using IIS algo-
rithms still may lead to reasonable results. In other cases checking feasibility
is very difficult. In general, solving nonlinear programs is difficult and re-
searchers normally will specialise on a certain type of nonlinear programs.
Some examples are:

• Linear constraint optimization. Here all the constraints are linear.

• Quadratic programming. In this case the objective function is at most
quadratic.

• Unconstrained optimization. Here there are no constraints.

• General NLPs with nonlinear constraints. In the worst case scenario
here both the objective function and the constraints are nonlinear.

To be able to give an indication of the feasibility of nonlinear programs, in-
formation needs to gathered. If an indication of the shape of the constraints
can be given, this can simplify the process of determining feasibility. Nor-
mally one would like to check if the shape of a constraint is convex or not.
If the complete set of constraints is convex, then deciding feasibility is much
easier, but according to Pardalos (1994) “there is no known computable
procedure to decide convexity.” This is problematic, but reasonably good
results can be obtained by using sampling (Chinneck, 2002). Chinneck has
defined a measure called constraint effectiveness, this measure is defined as
“the fraction of the sample points that violate the inequality.” The higher
the effectiveness of the constraints, the more sample points it has rejected
during the sampling process. The highest possible value for constraint effec-
tiveness is 1.0, this means that the constraint has rejected all sample points.
If a constraints has a constraint effectiveness of 1.0 this could mean that
the constraint by itself is causing infeasibility, although there still exists the
possibility that a sample that will satisfy the constraints has not been gener-
ated yet. There are some differences for calculating constraint effectiveness
for equality and inequality constraints. This is necessary because otherwise
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equality constraints will almost always have a constraint effectiveness of 1.0,
because it is very unlikely that samples will satisfy the constraint. Con-
straint effectiveness can be used to draw some conclusions about feasibility.
If there is at least one constraint with a constraint effectiveness of 1.0, it
is likely that the system is infeasible. Still there is the possibility that the
feasible region has not been sampled yet. In the case that all constraints
have a effectiveness less than 1.0 no real conclusion can be given on the
feasibility of the total set of constraints.

The feasibility problem for the nonlinear case is very difficult and perhaps
unsolvable deterministically. The absence of a feasibility check can cause the
method to run indefinitely, because it is not known if the set of constraints
is infeasible or that the feasible region has not been found yet. To be sure
that the method will eventually terminate, successfully or not, a maximum
number of samples has been defined. However, once a valid sample has been
found, it is known that the set of constraints is feasible and the maximum
number of samples can be removed. Eventually, the desired number of valid
samples will be found by the method. If the set of constraints is infeasible, no
valid samples will be found and once the total number of samples reaches the
maximum value, the method will terminate. After unsuccessful termination
of the sampling process, the method will heuristically try to suggest changes
to the set of constraints supplied by the expert so the method can be run
again with perhaps a better result.

3.6.2 Heuristics

Two heuristics are being used to aid the the expert when deciding which con-
straint(s) need to be changed or removed. One heuristic (majority heuristic)
was devised by the author and the other, the constraint effectiveness heuris-
tic, was created by Chinneck (2002). The majority heuristic is based on the
idea that when the majority of the constraints evaluates a sample as true
that there might be something wrong with the minority of constraints that
has evaluated the sample as false. In this situation 1 is added to the minority
counter for each constraint that belonged to the minority. In the situation
that the majority evaluated the sample as false, the minority counters are
left unchanged. The reason for this is that there are no conflicting con-
straints only when all constraints have simultaneously evaluated a sample
as true at least once, when all constraints have simultaneously evaluated a
sample as false there is no guarantee that the set of constraints does not con-
tain any conflicting constraints. Thus when a constraint evaluates a sample
as true, this can be considered as stronger evidence then when it evaluates
the sample as false. After all samples have been processed by the heuristic,
some steps are performed to normalize the results so that each statement
provided by the expert gets a heuristic value between 0 and 1. The closer
the value is to 1.0 the “worse” the constraint is. The heuristic is described
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in Figure 3.12:

1. Re-evaluate all saved, failed samples and save the results of
the evaluations.

2. For every sample:

1. Calculate the ratio of true evaluations versus false eval-
uations.

2. If the ratio is larger than 0.5 then add 1 the minority
counters of the constraints in the minority and add 1
to the counter for the summing variable.

3. If an statement from an expert consists out of multiple con-
straints, add the counters of the constraints together to get
the value for the statement.

4. Divide the minority counter values of all the statements by
the value of the summing variable to get values between 0
and 1.

Figure 3.12: Majority Heuristic

The majority heuristic will most likely work better if the set of con-
straints is larger. If the number of constraints is very small it might become
less frequent that a majority of constraints evaluates samples as true. In this
situation the minority counters of the constraint will be hardly updated or
even not at all. When this occurs the results from the heuristic may not be
very useful and it might be better that Chinneck’s constraint effectiveness
heuristic is used for making decisions. The constraint effectiveness heuristic,
as implemented in the program, is described in Figure 3.13.

In both the heuristics high values are “bad”, and when the results are
presented to the user, the constraints are sorted so that the highest ranking
ones are on the top of the list. A high value for the constraint effectiveness
heuristic means that a constraints has rejected a large number of the samples
and that it might be to constraining. A high value for the majority heuristic
means that a constraint or constraints from an expert statement have been
minority “voters” for a large number of the samples and that it may need
to be changed or removed. Using the heuristics is only a attempt to offer
the expert the possibility to refine his or her probability statements so that
revised statements may generate constraints that have feasible region. The
heuristics are not foolproof, but they are the only available option at the
moment.
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1. Re-evaluate all saved, failed samples and save the results of
the evaluations.

2. For every sample:

1. If a constraint has evaluated the sample as false then
add 1 to the constraint effectiveness counter of the con-
straint.

3. If an expert statement has multiple constraints, take the
maximum value among the constraints as the value for the
statement.

4. Divide the values of the constraint effectiveness counters of
the statements by the number of samples to get a value be-
tween 0 and 1.

Figure 3.13: Constraint Effectiveness Heuristic

3.7 Merging Family Networks

After the method is performed on each of the family networks, the results
must be combined into the original Bayesian network. One of the goals set
in Chapter 1 was to find a method that was able to merge family networks
and their results back into the original Bayesian network.

To give the expert as much influence on the probabilities for the CPT
entries as possible, the histogram for each CPT entry is to be shown to
the expert. These histograms are calculated using the collected constituent
samples. For most nodes this will be relatively easy, but some nodes are in
multiple family networks, and therefore multiple batches of samples and his-
tograms, calculated from these samples, can exist for the same CPT entry.
The different sets of samples and histograms for the CPT entries in overlap-
ping nodes must be merged into one set of samples and one histogram for
each CPT entry.

Merging the family networks and the samples generated for the nodes in
the different family networks is not an easy process. The sample process has
been performed on each of the family networks independently and possibly
the results for the CPT entries may vary per FN. Since different FNs contain
different variables it is likely that different FNs do not have the same set
of constraints. The difference in constraints has influenced the sampling
process and through the collected samples, the shapes of the histograms for
the different CPT entries of the nodes. Another problem that contributes to
the difficulty of merging FNs is that when the BN is decomposed in the FNs,
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some nodes will be a child node in one FN and a parent in possibly multiple
other FNs. When this happens the node will have different CPTs for the
different FNs. When the node is a child, its values will be conditioned on
all its parents. When the node is a parent, it may not have any parents
itself in this FN and in this case it will have a prior distribution and not a
conditional one. This will result in probability tables with different sizes.
A binary node without parents only has 2 entries, but in another FN the
same node may be a child with 2 parents and have a CPT with 8 entries.
Somehow, when merging the FNs, the different sample sets must be merged
together to get the sample sets and the histograms for the CPT entries for
the node in the original BN. After merging the FNs into the BN, the size of
the CPT for every node is equal to the largest CPT size of the node among
the FNs. For nodes that have parents this will be the FN where they are
the child of the FN. Nodes that do not have any parents, will have the same
size CPT in any FN they appear in. The CPT size for these nodes will also
not change after merging the FNs into the BN.

A possible method was devised for the merging of the samples of the
nodes by creating a weighted average of the samples for a CPT entry. From
this weighted average of samples the final histogram for a CPT entry would
be created. Samples of a CPT entry would be put together into a new
“bin”. The weighting would be accomplished by adding samples multiple
times to the bin. The more times the sample would be added, the heavier
it would count for the end result. The number of times a sample would be
added was to depend on the number of parents the node had in the FN the
sample originated from. If a node had no parents the sample would only
be added once, if a node had x parents, it would be added x + 1 times.
The samples of nodes with less or no parents would be added to the bins of
multiple CPT entries to be sure that they have still approximately the same
effect. In the case that the node would have any parents, but less than in
another FN, then samples would be added to bins where the parents match
as much as possible. After closer inspection the proposed method was not
mathematically sound.

The merging method must be mathematical sound to be sure that after
merging the samples from the different FNs, the resulting histograms for
the node’s CPT entries still represent good probability distributions for the
values of the CPT entries. Theoretically, the proposed merging process runs
in the wrong direction. Samples from a node in parent form are merged
with samples of the node in child form. Figure 3.14 shows the merging of
two FNs into the original BN.
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The CPTs are omitted from the figure, but they contain the following prob-
abilities:

• FN A:

– The node X has two: P (X) and P
(
X̄

)
.

– The node Y has four: P (Y |X ), P
(
Ȳ |X )

, P
(
Y

∣∣ X̄ )
, and

P
(
Ȳ

∣∣ X̄ )
.

• FN B:

– The node Y has two: P (Y ) and P
(
Ȳ

)
.

– The node Z has four: P (Z |Y ), P
(
Z̄ |Y )

, P
(
Z

∣∣ Ȳ )
, and

P
(
Z̄

∣∣ Ȳ )
.

Figure 3.14: Merging two FNs into a BN

During the merging process, the nodes X and Z will be processed without
problems. These nodes do not appear in multiple FNs and thus no merging
has to be performed for these nodes. The node Y on the other hand appears
in both of the FNs, and merging will be necessary. In FN A, the node Y
is a child and has a CPT with 4 entries. in FN B, the node has a prior
distribution and only has 2 entries. After merging, the node will have a
CPT with 4 entries, which is exactly the same as in FN A. Node Y in FN
B has the entries P (Y ) and P

(
Ȳ

)
, these then must be merged with the

entries from Y in FN A. Since these entries are conditioned on the node X,
a problem arises. FN B does not contain the node X and thus for example,
there are no samples available that can be used to calculate P (Y |X ). The
other way around, it is possible to calculate P (Y ) from samples of FN A.
This is a result of Bayes’ Rule (Equation 2.2):

P (Y ) =
∑

i

P (Y ∩Xi) =
∑

i

P (Y |Xi ) P (Xi) . (3.16)
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So it is possible to calculate P (Y ) using the distributions P (Y |X ) and
P (X) and although this could be used when a BN is decomposed into the
FNs, this is useless for merging FNs. As mentioned before, samples from
a prior distribution must be changed into samples for a conditional distri-
bution to be able to merge them with the other conditional samples of the
other FN. The necessary information is simply not available in the other FN
(in the case of the example in Figure 3.14 this is FN B).

A merging method for merging the FNs into the BN that is mathematical
sound was not found. Therefore there was decided that at this time to not
include FN merging in the program. Now the FNs with their samples and
histograms are shown to the user of program (most likely a domain expert
and/or a knowledge engineer), and the user must decide how he or she wants
to fill in the BN. This was already the original idea, to give the user more
control over the end result, but with just one histogram for each entry of
the nodes. Perhaps as part of some future work a merging method can be
found that is mathematically sound, or that is a very close approximation.
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Chapter 4

Design

4.1 General Overview

The proposed elicitation method can be used as a tool to make the neccesary
knowledge elicitation process to develop a Bayesian network less invasive for
the domain expert. It is to be integrated in GeNIe, where a knowledge
engineer and/or a domain expert can graphically create a Bayesian network
and use the noninvasive method to fill the CPTs.

To develop a Bayesian network the following steps will normally be per-
formed by the knowledge engineer and/or domain expert:

1. Design a BN structure.

2. Elicit probabilities for the CPTs that resulted from step 1.

3. Test the BN to see if it accurately represents the knowledge from the
domain expert.

4. If necessary, revisit step 1 and/or 2 to adjust the BN structure or CPT
entries to improve the result.

When using the method for the elicitation process, step 2 will need to be
changed to represent the change in the elicitation process:

1. Elicit probabilistic information statements.

2. Run the method.

3. Using the results from the method determine probabilities for the
CPTs.

These new steps will replace the original step 2. Figure 4.1 shows the steps,
new and old, in a block diagram. Most of these steps are already present in
some way in GeNIe. It can already be used to develop a BN. The structure
can be designed, the CPTs can be filled, and the BN can be tested by using

77



78 CHAPTER 4. DESIGNDesign BN structure Elicit Probabilities for the CPTs Test BNDesign BN structure Determine  Probabilities for the CPTs Test BNElicit Probabilistic information Run Method
Figure 4.1: Steps to develop a BN

the inference engine provided by the SMILE library. The missing steps are
the elicitation of probabilistic information, the execution of the method, and
determining the CPT entries using the result of the method.

Thus, still missing are the implementation of the method and a graphical
interface to use the method in GeNIe. These are the parts that have been
designed. The GUI is designed as an extension of GeNIe and the method is
implemented as a subsystem used by GeNIe, as illustrated in Figure 4.2. The
method makes use of the SMILE library and a few very small adjustments
and additions have been make to the SMILE library that were necessary to
ensure that the method would be working correctly. The design of the user
interface will be discussed in Section 4.4, this section will end with a general
overview of the design of the method.

The method, as proposed in (Druzdzel & van der Gaag, 1995) and fur-
ther extended in Chapter 3, can be divided into a couple of steps. First, the
inputted Bayesian network is decomposed into the different family networks
and the inputted statements are presented to all the FNs. Second, every FN
translates every relevant probability statement into constraints. A proba-
bility statement is relevant when it only contains information on nodes that
are in the FN. Irrelevant statements are discarded. Third, every FN gathers
all linear constraints and uses them to tighten the probability bounds for all
its constituent probabilities. If a FN does not have linear constraints, the
boundaries stay unchanged with an lower value of 0 and an upper value of 1.
Fourth, the FNs perform sampling in their respective probability hyperspace
to generate 1000 valid samples for each FN. The samples must be compat-
ible with all the constraints relevant for the FN. Fifth, all the FNs process
the acquired samples to generate samples for each of the CPT entries of all
the nodes in the FN. Finally, this data is outputted back to GeNIe where
it will be able to display histograms for all the CPT entries. In Figure 4.3
these steps are shown in a block diagram.
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Figure 4.2: The different subsystemsFor every FN Decompose BN into FNs Translate Statements into Constraints Use Linear constraints to tighten probabiliity bounds for Constituents Perform Sampling to generate 1000 samples of the FNs J-PDF. Process the J-PDF samples to generate sample sets for every CPT for every node. Output results to GeNIe
Figure 4.3: Overview of the method

4.2 Actors and Use Cases

This section discusses the actors and use cases that are relevant for the
design of the method and its user interface.

4.2.1 Actors

Actors are people, organisations, or external systems that will be using a
system. In the case of GeNIe and the method three different actors can be
identified:

• Domain expert,

• Knowledge engineer,

• Decision maker.

The domain expert is someone that has a considerable amount of knowledge
in the domain that is to be modeled by a Bayesian network. It is the
knowledge of this expert that normally will have to be elicited to build the
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BN. The expert may or may not build the BN in GeNIe himself, this depends
on the situation.

When the problem that has to be modeled by a BN becomes more com-
plex it is likely that a knowledge engineer will work with the domain expert
to build the BN. In this situation the knowledge engineer will elicit knowl-
edge from the expert and translate this knowledge into a BN structure and
CPT entries for the nodes of the BN. Then together the expert and the engi-
neer will test the BN to see if it accurately represents the elicited knowledge.

The decision maker is the person or organisation that will actually use
the BN developed by the expert and the knowledge engineer for making
decisions. By feeding the BN information, by setting evidence variables,
and performing inference on the BN the decision maker will get a posteriori
distributions over the other variables in the BN and he or she will be able to
use this information to hopefully make better decisions. The decision maker
actor is only mentioned for completeness. The actor plays no role in the
knowledge elicitation process, which is the focus of the method, and it will
not be necessary to use it in use cases for the method and its GUI.

4.2.2 Use Cases

Use cases are used to describe functional requirements of a system. They
describe scenarios of how an actor will interact with the system. In Table
4.1 the most important use cases for the method and its GUI are presented.
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Table 4.1: Use Cases
Use case name AddConstraint Use case name EditConstraint

Actor domain expert, knowledge engineer Actor domain expert, knowledge engineer

Entry condition 1. The actor has left-clicked the
‘Add constraint’ button.

Entry condition 1. The actor has left-clicked a
constraint in the constraint list.
2. The actor has left-clicked the
‘Edit constraint’ button.

Flow of events 2. The ‘Add constraint’ window
appears.
3. The actor creates a constraint
using the controls in the window.
4. The actor left-clicks the ‘Add’
button.

Flow of events 3. The ‘Edit constraint’ window
appears.
4. The actor edits constraint using
the controls in the window.
5. The actor left-clicks the ‘Done’
button.

Exit condition 5. The constraint is added to
the constraint list and the ‘Add
constraint’ window is closed.

Exit condition 6. The constraint is edited and
the ‘Add constraint’ window is
closed.

Use case name RemoveConstraint Use case name ExecuteMethod

Actor domain expert, knowledge engineer Actor domain expert, knowledge engineer

Entry condition 1. The actor has left-clicked a
constraint in the constraint list.
2. The actor has left-clicked the
‘Remove constraint’ button.

Entry condition 1. A Bayesian network structure
must be present.
2. The constraint list contains at
least one constraint.
3. The actor has left-clicked on
the ‘Start method’ button.

Flow of events 3. The actor is prompted by a
confirmation box.
4. The actor left-clicks on the
‘Yes’ button.

Flow of events 4. The method is performed using
the constraints and the BN.

Exit condition 5. The constraint is removed from
the constraint list.

Exit condition 5. The ‘Results’ window is opened
and the actor can now view the
Histograms.

Use case name SetCPTValue

Actor domain expert, knowledge engineer

Entry condition 1. The method must have been
executed and completed.
2. The ‘Results’ window must be
opened.
3. The actor has selected a node
and a CPT entry int the ‘Results’
window.

Flow of events 4. The actor types the value in
the appropriate edit box in the
‘Results’ window.
5. The actor left-clicks on the
‘Save entry’ button.

Exit condition 6. The value for the CPT entry is
saved to the BN.

4.3 Classes

GeNIe and SMILE are written in C++, an object-oriented programming
language. Since the method was to be implemented in GeNIe it was a
natural choice to also implement the method using C++. When designing
software using an object-oriented design methodology the focus of the design
is centered around objects. Objects encapsulate relevant data and program-
ming code. The programming code is referred to as methods, functions that
are (normally) performed on the encapsulated data of the object. Different
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types of objects can interact with each other by calling each others methods.
Objects are described in what is called a class. When an object is created
in a program it is instantiated. An object is an instance of a class. A class
could be called the blueprint of the object. In the class all the variables and
the methods are defined.

UML class diagrams have been created that describe the different classes
created for the method and the interaction between the different classes.
First an overview of the classes is discussed, then the classes are discussed
in a little more detail.

4.3.1 Overview

As mentioned in Section 4.1 and illustrated in Figure 4.2 the method is
implemented as a subsystem that is used by GeNIe and that uses parts
of SMILE. An overview of its class structure is illustrated in Figure 4.4.
The method’s GUI is a part of GeNIe and is not shown separate of Ge-
NIe. The main classes are DSL noninvasiveElicitation, DSL familyNetwork,
DSL Order, and the classes used for the implementation of an expression
tree. To keep the class diagram clear the classes that implement the expres-DSL_noninvasiveElicitationDSL_familyNetworkSMILE 1* DSL_Order1 1 «struct»nodeData«struct»probinfo1 *1 *Expression tree1 *CLP library

GeNIe 1 1
«struct»nodeAssignment1 *

1*
«struct»LPdata

Cephes Library
Figure 4.4: Overview of the classes

sion tree have been grouped into a package, called Expression tree. Figure
4.5 shows the class structure of those classes. Here the main classes are
DSL expTree and DSL Ineq algebraicElement. The former acts as a con-
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Top Package::SMILE DSL_expTree Top Package::DSL_Order«struct»Top Package::probinfo DSL_Ineq_algebraicElement11«struct»Top Package::nodeData

«struct»Top Package::LPdata

DSL_Ineq_operandDSL_Ineq_operandNode1 1
11 1 1

DSL_Ineq_operandConstantDSL_Ineq_operator 12
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Figure 4.5: Expression tree package

tainer for the expression tree and the latter is the base class of all the differ-
ent types of nodes that the tree can have. The different nodes represent the
different operators that can be used to create an expression. The different
types of operators and operands that are implemented are:

• Variables,

• Constants,

• Arithmetic operators: +,−, ∗, /,

• Comparators: =, >, <,>=, <=,

• Logical operators: AND and OR,
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• Special node to support the creation of conditional probabilities,

• Functions:

– Probability function: P (· · ·),
– Qualitative Influence function: S (V0, V1,+).

The implementation of the expression tree is based on the implementation of
an equation tree in SMILE. It was necessary to create a new implementation
because inequalities needed to be supported by the expression tree to be able
to implement some of the probabilistic statements proposed by (Druzdzel &
van der Gaag, 1995).

4.3.2 DSL noninvasiveElicitation

The DSL noninvasiveElicitation class, is the class that directly interacts with
the method’s user interface. To use the method an object of this class must
be created and initialised with the Bayesian network the method must be
run on. After initialisation the execute method can be called to run the
elicitation method. Necessary parameters are the probability statements
from the expert and an object to store the results from the method in.

The class’ execute method decomposes the BN into the different family
networks and then creates instances of the DSL familyNetwork class for each
of the FN. All the probability statements are sent to each of the FNs. Later,
each FN decides which statements are relevant for itself.

The method has been divided into 4 phases:

1. Setup,

2. Linear Programming,

3. Sampling,

4. Output Generation.

These phases are all implemented in the DSL familyNetwork class. The
DSL noninvasiveElicitation class is responsible for the execution of these
phases. To detect possible errors in the probability statements earlier each
of the phases is processed by all the DSL familyNetwork instances before the
start on the next phase. This way a lot of time can be saved by terminating
the method before some of the more time consuming phases are executed.
The sampling phase for instance, depending on the number of dimensions
of the sample space, can take many hours to complete.

When all the phases are performed by all the FNs the output data is
passed back to the user interface and then the DSL noninvasiveElicitation
object can be deleted.



4.3. CLASSES 85+DSL_noninvasiveElicitation(in here : DSL_network*)+DSL_noninvasiveElicitation(in here : DSL_network*, in child : int)+~DSL_noninvasiveElicitation()+Execute(in constraints : const std::string&, out info : std::string&, out outputdata : std::map<int, std::pair< DSL_network, std::map< int, std::map< int, std::vector<double>>>>>&) : bool-GetKids() : void-CreateFamilies() : void-net : DSL_network*-kids : std::vector<int>-families : std::vector<DSL_familyNetwork*>-allconstraints : std::string DSL_noninvasiveElicitation
Figure 4.6: The DSL noninvasiveElicitation class

4.3.3 DSL familyNetwork

The DSL familyNetwork class can be considered the work horse of the whole
system. It contains a complete implementation of the method which, as
mentioned in Section 4.3.2, is divided into four phases. Each phase is im-
plemented using a couple of functions.

The setup phase creates the datastructure that will contain all the
FNs probabilistic statements. It will decide if a statement is relevant for the
FN and will discard it if it is not. The relevant statements are translated
into the expression trees necessary for checking samples, and these trees are
linked with the datastructure that will contain the values of the constituent
probabilities during sampling. This constituent probability datastructure
(CPD) that the trees are linked to has been created earlier, during the
initialisation of the DSL familyNetwork object.

Linking the trees to the datastructure means that variables in the trees
will point to the values of the same variables in the probability datastruc-
ture. This way values can be updated in the datastructure and then when
determining if a sample is valid, it is not necessary to copy the new sample
values to the variables of all the trees. The trees read these values directly
from the CPD. This can save a lot of time, especially when the trees get
larger and contain a lot of variables.

In the Linear Programming phase the linear expression trees are gath-
ered and used to try to tighten the probability bounds of the constituent
probabilities. Using symbolic math the expression trees are manipulated
into a form that makes it easier to decide if an expression is linear. The
steps necessary to decide linearity of an expression are implemented in the
classes that together form the expression tree package (Figure 4.5). Once
the linear trees are collected, the coefficients of the variables are extracted
to create the matrix necessary for the CLP library to perform LP. The LP
process is performed for every constituent probability variable twice: once
to calculate the minimum bound and once to calculate the maximum bound.
There is no need to change the matrix, but the objective function will need
to be changed everytime the calculation is performed. The results of the
calculation, the new upper and lower bounds for the constituent, are saved
in the CPD of the family network.

If there are conflicts (Section 3.6) between the linear constraints the CLP
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library can detect this, and the conflicting probability statements, which can
be found by using a link to the statement in the conflicting constraint, are
reported back to the user using a text message. After a conflict has been
detected the method is terminated.

During the Sampling phase samples of joint probability distributions
for the FN are generated and then are evaluated by the constraints. The
Dirichlet sample generator discussed in Section 3.5.2 is used in this phase to
generate samples as efficient as possible. Also, as long as no valid sample is
found, rejected sampled are saved to be used as data to determine if there
are constraints that are causing conflicts. Once a valid sample is found, the
saved samples are discarded. The sampling process as described in Figure
3.9 has been implemented as functions for the DSL familyNetwork class.

The Output generation phase is the last phase of the method. Here
the samples of the joint probability distribution of the FN are transformed
into samples for all the CPT entries of all the nodes in the FN. This has been
implemented hierarchically. The DSL noninvasiveElicitation object calls a
function to start the phase. This function, CreateFNSamples, ensures that
all the nodes get samples for their CPT entries. It does this by calling
another function for each node in the FN. This function, CreateNodeSam-
ples, will ensure that samples will be created for all CPT entries of 1 node.
CreateNodeSamples relies again on another function, CreateEntrySamples,
that all the samples will be created for an entry. And finally, the Cre-
ateEntrySamples function relies on the getCPTEntry function to calculate
a sample for the CPT entry from the original J-PDF sample. After all the
data has been collected it is sent back to the DSL noninvasiveElicitation
object, where it will combine it with the data from the other FNs so the end
result can be sent to the user interface of the method.

4.3.4 DSL Order

For every family network the method creates the equivalent joint probability
distribution. Every constituent in this distribution represents a state of
all the variables. Although it does not really matter in what order the
constituents are placed in the CPD, it does become relevant when the output
data is being generated. The data is presented to GeNIe, and GeNIe uses a
certain format (provided by SMILE) to store CPT entries.

The DSL Order class is designed to define a node ordering for the nodes,
so that a (complete) state of nodes can be translated to the respective con-
stituent variable and vice versa. Other classes use the class to translate
a probability into the equivalent summation of constituents, to check if a
probability statement is relevant for the FN, or to get more information on
the nodes in the FN and their outcome values.

Some useful information that the DSL Order class can give is: the names
of parent nodes of a node, the names of the outcomes of a node, the number
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Figure 4.7: The DSL familyNetwork class

of outcomes of all the nodes, and the constituent index of a state of the FN.
The availability of this information makes implementing other parts of the
method easier.

4.3.5 DSL expTree

An important part of the method consists out of translating the expert’s
probability statements into constraints that consist out of the constituent
variables. These constraints are represented using a (binary) expression
tree. The constraints are inputted as plain text. The text is parsed to
build the expression tree. The parser used for the method is based upon a
parser that is implemented in SMILE which is used for parsing equations
and creates equation trees. The parser has been extended to be able to deal
with probabilities and qualitative probability statements.

The implementation for the expression tree can be divided into two parts:
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Figure 4.8: The DSL Order class

the DSL expTree class that acts as a container of the expression tree and
the DSL Ineq algebraicElement class and its descendants that represent the
nodes of the tree. The DSL expTree class contains the parser that reads a
probabilistic statement in text form and creates the expression tree. The
class is the interface to the tree. When a constraints needs to be evaluated,
or when there needs to be determined if a constraint is linear, relevant
functions from the DSL expTree class are called.

4.3.6 DSL Ineq algebraicElement

All the different types of nodes in the expression tree are derived from this
class. The class contains some of the basic attributes and functions that
are necessary for all the different types of nodes. The class is based on
a similar class used in SMILE for equation trees. Most of the functions
were left unchanged but some were altered and several functions were added
to the class. Extra functions were necessary to be able to perform some
symbolic mathematic actions on the expression tree. The extra symbolic
math operations were necessary to be able to manipulate the expression
tree into a form that would simplify checking if a constraint is linear.

The functions that implement the symbolic math procedures described in
Section 3.4 and other simplification procedures are divided over the different
types of nodes. Most of it is implemented in the different operator nodes,
but most of these functions are defined in the DSL Ineq algebraicElement
class to ensure that the functions can always be used.

The different types of nodes available to create expressions can be divided
into three types: operands, operators, and functions. This is represented in
the design by the three classes that inherit from DSL Ineq algebraicElement.
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Figure 4.9: The DSL expTree class

These classes are:

• DSL Ineq operand,

• DSL Ineq operator,

• DSL Ineq function.
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Again, these classes are based on their equation tree counterparts from the
SMILE library. These classes stay abstract; they are not instantiated. Only
classes that represent actual nodes in the tree will be instantiated. But the
classes that represent the actual nodes inherit functionality, specific for the
type of node, from the base classes mentioned above. This includes specific
symbolic math functions that are relevant for these nodes.

Figure 4.10: The DSL Ineq algebraicElement class
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4.3.7 DSL Ineq operand

The DSL Ineq operand class serves as the base class for the two different
operands implemented for the expression tree: constants and variables. Con-
stants are represented by DSL Ineq operandConstant objects that have the
value as data. Variables are represented by DSL Ineq operandNode objects
that have a pointer to the constituent variable they represent as data. Both
classes have some basic functionality used for getting and setting data. The
DSL Ineq operandNode class has also some functions that makes it possible
to compare and sort variables.

Figure 4.11: The DSL Ineq operand Class
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4.3.8 DSL Ineq operator

The DSL Ineq operator class is the base class of all the different operator
classes. The class implements the basic functionality necessary for all the
operators. The class has two DSL Ineq algebraicElement pointers that are
used to create the tree. Furthermore some common functions for getting
and setting the pointer data are implemented and also some symbolic math
functions that are used by all operators are implemented in the class.

The different types of operators can be divided into three groups:

• Arithmetic operators,

• Comparator operators,

• logic operators.

For the four different arithmetic operators (+,−, ∗, /) four classes have been
created that are based on their counterparts from the equation tree imple-
mentation from SMILE. The created classes are:

• DSL Ineq operatorPlus,

• DSL Ineq operatorMinus,

• DSL Ineq operatorMultiply,

• DSL Ineq operatorDivide.

These classes each implement functions for the specific arithmetic operation
that is to be performed by the node they represent. In these classes parts
of the symbolic math functionality is implemented. Each class has specific
math routines that are relevant for the arithmetic operator that the objects
of the class represent. The other types of operators are represented by the
base classes DSL Ineq operatorComparator and DSL Ineq operatorLogic,
and their respective derived classes.

4.3.9 DSL Ineq operatorComparator

The original tree implementation in SMILE was meant for equation trees,
but constraints provided by the expert could also be inequalities. This
meant that the SMILE implementation needed to be changed so that equa-
tions and inequalities could be represented with the tree. Originally the
equation operator was implemented in a class similar to DSL expTree, but
simply adding the other comparator operators to the class was not an
option. It was necessary to create a base class for all the comparators,
DSL Ineq operatorComparator, and the comparators are implemented as
derived classes of this base class. The reason that this was necessary was
that comparators were going to be used in more locations in the tree than
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Figure 4.12: The DSL Ineq operator class

just the root. Another type of node that was added to the expression tree
was the probability node. The node is used as an intermediate form to
represent probabilities before the constraint is translated into its canonical
form. The node represents the probability of a certain event:

P (V ariableName = value) .

In the expression tree the function P (. . .) is represented by the function
node object DSL Ineq functionProbability, and underneath this node there
is a subtree that represent the logical expression V ariableName = value.
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Besides equations valid logical expressions for probabilities can also be in-
equalities, so it is necessary to have nodes that represent all the different
comparators in the probability subtree. To represent variable name and
variable value, the class DSL Ineq operandNode has been used. The sub-
tree under the probability node only exists temporarily and is removed with
the probability node and replaced by a subtree that contains a representa-
tion of the probability using the constituent variables.

The DSL Ineq operatorComparator class contains a large part of the
symbolic math routines. Since comparators will always be the root of the
expression tree of the constraints, math routines for the merging of terms,
determining of linearity, and standardization of the constraint are imple-
mented in the base class. This way all types of expressions (equations and
inequalities) have easy access to the math routines.

Figure 4.13: The DSL Ineq operatorComparator class
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4.3.10 DSL Ineq operatorLogic

The DSL Ineq operatorLogic class has been created to support the AND
and the OR operators for the probability subtree (mentioned in Section
4.3.9). This allows for more elaborate probabilities to be specified. Also
the operators are necessary for the conversion of probabilities of the type
P (A ≥ a). For further processing the inequality needs to be changed into
a equation. For a variable A with three different, ordered, outcomes a1, a2,
and a3, and probability P (A ≥ a2), this is done in the following way:

P (A ≥ a2) = P ((A = a2) ∨ (A = a3))
= P (A = a2) + P (A = a3)− P ((A = a2) ∧ (A = a3))
= P (A = a2) + P (A = a3) .

In this simple example the third term with the AND operator disappears
because the example only has one variable and a variable can only have
one outcome at a time. Since A cannot be a2 or a3 at the same time
P ((A = a2) ∧ (A = a3)) must be 0. In situation where there are multiple
variables the AND term does not have to be 0. The desired form of the
probability subtree is the situation where the sub tree consists only out of one
variable assignment or multiple assignments connected by AND operators.
This is because probabilities in this form can easily changed into the form
using constituent probability variables. This is done by using an algorithm
based on the marginalization process (Section 2.2.4).

Three different classes are derived from DSL Ineq operatorLogic:

• DSL Ineq operatorAND,

• DSL Ineq operatorOR,

• DSL Ineq operatorConditional.

The first two represent the AND and the OR nodes, the third is used to be
able to define conditional probabilities in the expression tree. The condi-
tional node is only used temporarily, as quickly as possible the conditional
probability is changed into the form:

P (A |B ) =
P (A ∧B)

P (B)
.

At this point a new constraint is created that ensures that P (B) > 0.

4.3.11 DSL Ineq function

The original SMILE equation tree defined some functions that were used
a lot in the context the equation tree was designed for. These functions
were not as useful for the context the expression tree is used in. However, it
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Figure 4.14: The DSL Ineq operatorLogic class

was necessary to be able to represent functions in the expression tree. The
same structure for representing functions was used for the expression tree.
This was more because of the way functions are parsed than for actually
using functions as part of a constraint. The parser used in the SMILE
implementation sees a function as follows:

functionname (parameter1, . . . , parametern) .

By examining the functionname the parser know what type of function it is
and then creates the correct function object than knows how to handle the
supplied parameters.

Two implementations for functions have been designed and implemented:

• DSL Ineq functionProbability,

• DSL Ineq functionSign.

The first represents probability nodes and the second represents qualita-
tive influences. As explained in Section 4.3.9 probability nodes only stay
in the expression tree temporarily. They are replaced by a subtree with
constituents. This is done in three steps. First, the probability node and its
subtree are manipulated in such way that there are no OR or inequality op-
erators in the subtree. These are replaced by AND and equation operators.
When necessary extra probability nodes are added in the tree. This happen
when OR operators are replaced with AND operators:

P (A ∨B) = P (A) + P (B)− P (A ∧B) ,

or when changing the inequalities into equations (see Section 4.3.10). Sec-
ond, the subtree of the probability tree is replaced by an array representing
the state of the family network. Each entry of the array represents a variable
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and the data stored in the array represents the indices of the outcomes of the
variables. When a probability represents a complete state of the FN, every
entry of the array will contain the index of the outcome that the respective
variable has in the state of the FN. When a probability does not represent
a complete state but a marginalization, it will be necessary to sum out the
variables that do not have an outcome assigned to them. In the array this
is represented by giving the respective entries the value -1. Third, the ar-
ray is used to create the subtree containing the summation of constituent
assignments that will replace the probability node in the expression tree.
A recursive algorithm has been designed that moves through the array and
everytime a variable is encountered that needs to be summed out, a copy is
created of the array, the index of the variable is set to 0, and the algorithm
is called again using the new array as an input parameter. This process
repeats itself until the array has a complete assignment of outcomes for all
the variables. Then, using the DSL Order object the index for constituent
variable can be calculated and the constituent variable is added to a text
string. Then the algorithms ends, and control is given back to the recur-
sive algorithm that called it. Now, the index of the variable in the array
is increased by one and another recursive call is performed. This process
repeats itself until all relevant variables are summed out. When the process
is done the text string contains the summation of the constituent variables.
To create the subtree a DSL expTree object is created and the text string
is parsed. After parsing the probability node is replaced by the new tree
containing the constituents.

The node that describes the qualitative influence works in the same way.
It creates multiple new constraints (see Section 3.1.1), consisting out of
probability nodes. These constraints will be processed like explained above
until they only have constituent variables. The new constraints are created
by the DSL Ineq functionSign object in text form, so they will need to be
parsed first. This makes it easier to implement since each of the expression
trees for the new constraints are now created by the parser and not by the
DSL Ineq functionSign object. The object creates new DSL expTree objects
and initialises them with the constraints in text form. The tree objects then
create the expression trees. The original qualitative influence constraint is
changed into one of the new probability constraints that resulted from it.
There can still be determined that originally it was a qualitative influence
constraint.

4.4 User Interface Design

Most of the work performed by the method is done “under the hood”, i.e. it
is not visible to the user. But the user does need to input the probabilistic
information and has to evaluate the end result provided by the method. A
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Figure 4.15: The DSL Ineq function class

good user interface will be necessary to make the interaction between user
and the program as simple and effective as possible. A first design for a
prototype graphical user interface has been created, but it will be necessary
to perform usability studies to create an interface that can be used in a
“production environment”. At the moment more research and work needs
to be done to perfect the method and currently any user interface usable by
researchers and developers working on the method will do.

The user interface for the method is to be implemented in GeNIe. This
implementation work will be done by Tomek Sowinski, the Decision Sys-
tems Lab Main programmer and the maintainer of the GeNIe code. The
User interface can be divided into two parts: inputting the probabilistic
information so the method can process them and presenting the results of
the method to the user. Depending on if the method was successful the
interface will display the different histograms for each of the CPT entries,
or it will inform the user that something has gone wrong and will advise the
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user what to do to get a valid result.
It is important that the collection of the probabilistic information from

the user is performed in a user friendly way. This step represents the knowl-
edge elicitation process and if it is performed in a way that confuses the
user, the user may have problems inputting all the probabilistic information
he or she has.

Since the method supports various types of probabilistic information, it is
a good idea to examine the different information types and to specialise parts
of the user interface for each of the information types. This specialisation
will allow the elicitation process of the different types of information to be
optimised.

Figure 4.16: Main Screen
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4.4.1 Prototype

Work has begun on designing a graphical user interface (GUI) for the method.
Some very preliminary designs have been created for the different screens of
the GUI. When the method is started, the main screen appears where the
user will be able to add, edit, and remove constraints. The possibility to load
and save a set of constraints is also to be possible. When all constraints are
entered the method can be executed by pressing the “Start Method” but-
ton. When constraints are added to user will see a new screen where the
constraints can be created. The basic design is shown in Figure 4.17, this
particular screen allows for the creating of a point probability constraint.
The upper right drop down box in the screen allows for the selection of the
type of constraint to be created. The screen shows the Bayesian network

Figure 4.17: Adding a point probability constraint

that needs elicitation in the left half of the screen. At the moment it is as-
sumed that this will be the current active BN opened in GeNIe. This screen
is used to create a constraint of the type P (·)#x, where · is a node assign-
ment created by using the popup window shown in Figure 4.18, the buttons
AND, OR, and (. . .). The button (. . .) allows the use of operator prece-
dence in the logical expression ·. The symbol # is one of the (in)equality
signs # = {=, >, <,≥,≤}, and x is a numerical value between 0 and 1. An
example valid constraint that can be created with this window is:

P (A = true ∧ (B = false ∨ C = true)) ≥ 0.25 .

The progress of the creation of the constraint is shown in the bottom of the
screen where the constraint is displayed in text form.
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Figure 4.18: Adding an probability assignment

The node assignment popup window allows for a simple way to create
a node assignment. Using the drop down boxes on the screen the node, its
value and the desired expression type (=, >, <,≥,≤). The result is shown
underneath and when the assignment is done, it can be added to the con-
straint by clicking the “Add assignment” button.

For the determination of the value x the graphical aids already imple-
mented in GeNIe are to be used. GeNIe allows for the use of a pie chart or
a bar chart to graphically determine values for (conditional) probabilities of
a node.

(a) Pie Chart (b) Bar Chart

Figure 4.19: Graphically determining values for node entries in GeNIe

Although this is less useful for point probability constraints, for prob-
ability interval constraints this will be more effective since there are two
values that need to be determined. In this situation using the pie chart
representation may be the best approach. The pie chart can be divided into
two parts, an area created by the upper and the lower value, and the rest.
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Figure 4.20: Adding a probability interval constraint

The probability interval constraint screen is very similar to the point
probability screen. The only difference is that are two numerical values
necessary. The constraint has the following form:

x1#P (·)#x2 ,

x1, x2 ∈ [0, 1] ,

# ∈ {=, >, <,≥,≤} .

The constraint is created in the same way as with the point probability
constraint. Comparison constraints, again, are created in the same way as
point probability and probability interval constraints. The constraint has
the following form:

a1 ∗ P (·)#a2 ∗ P (·) ,

a1, a2 > 0 ,

# ∈ {=, >, <,≥,≤} .

The only notable difference between this constraint and the others is that the
values a1 and a2 do not represent probabilities but real number, and that the
constraint has two probabilities that are compared with each other instead
of one. The three previous constraint types were quantitative constraints.
The last constraint type that was implemented, was the one modeling qual-
itative influences. A first version of the GUI screen has been designed. At
the moment it is very simplistic, it only contains drop down boxes for the
parameters necessary to create the constraint. Necessary are two nodes and
the type of qualitative influence (positive, negative, zero). The form of this
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type of constraint is:

S (Node1, Node2, InfluenceType) .

The exact meaning of this statement is explained in Section 3.1.1.
It will be necessary to make the constraint input screens easier to under-

stand. Adding online help that describes the different types of constraints
and shows some examples might improve the GUI. At the present some
knowledge of the different constraints will be necessary to be able to use

Figure 4.21: Adding a comparison constraint

Figure 4.22: Adding a qualitative influence constraint
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Figure 4.23: Screen showing results

the proposed GUI screens for the constraints effectively. The final screen
designed for the GUI shows the results generated by the method. This first
version of this screen shows the results of the method for every family net-
work. Using a drop down box the family network can be selected. With a
FN selected the results generated by the method for each node and CPT
entry can be selected by using drop down boxes. When a node and an entry
have been selected the screen shows the histogram of the data exported by
the method to GeNIe. GeNIe already has code available for showing his-
tograms of data. It allows for the bin size of the histogram to be changed by
the user. The user can specify the number of bins used to divide the data.
This code is to be used in the GUI.

At the moment it is still unclear how to transform results from the
method (histograms) into concrete values for the different CPT entries. The
histograms are to serve as guidelines when choosing the values of CPT en-
tries. To make the GUI more effective, it will be necessary to be able to
assign values for the CPT entries from the GUI. It still has to be examined
how this can be accomplished with the main goals being that the GUI should
be clear and user friendly.
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4.4.2 Conclusion

The currently designed GUI is still just on the drawing board, mostly be-
cause effort and attention was focused on implementing and improving the
method itself first before creating the GUI. Before the GUI will be com-
pleted several design iterations and usability studies will be necessary to get
a GUI that is user friendly. When creating the constraints help should be
available about the constraints. If something goes wrong when executing the
method, i.e. conflicting constraints or not finding any valid samples within
the set maximum number of samples, this must be communicated to the
user in such a way that he or she should be able solve the problem. When
the method does return results, the user should be guided in the process
of choosing values for the entries. Further GUI design will be future work,
currently no GUI has been implemented.
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Chapter 5

Implementation and Testing

5.1 Approach

The method was implemented in an incremental fashion. five phases were
identified that each needed to be completed before moving on to the next
one. The five phases are:

1. Implementing the parts that process the input data.

2. Finding and integrating a suitable linear programming solver library.

3. Implementing Sampling.

4. Implement the parts that generate the output data.

5. implementing the user interface.

The implemented objects and functions of every phase were all tested to
ensure correct operation.

5.2 Current Software

5.2.1 SMILE

SMILE stands for Structural Modeling, Inference, and Learning Engine and
has been developed by the Decision Systems Laboratory of the University
of Pittsburgh. It is a library of functions and classes that can be used for
reasoning in graphical probability models. It is written in C++ and it is
platform independent and fully portable.

Some parts of the SMILE library have been used for the implementation
of the method. Some classes of the implementation have been based on
classes originally in SMILE, but these classes have been extended in such a
way that they no longer would be directly compatible with classes using the
original classes from the SMILE library.
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5.2.2 GeNIe

GeNIe, coming from Graphical Network Interface, is a development envi-
ronment for building graphical decision-theoretic models. Like SMILE, it
has been developed at the Decision Systems Laboratory of the University
of Pittsburgh. It is written in C++ and it makes use of the MFC (Mi-
crosoft Foundation Classes) framework. Due to the heavy use of the MFC
framework GeNIe is not as portable as SMILE and runs only on Windows
operating systems. It is mainly used to develop graphical probabilistic or
decision-theoretic models, once such a model is developed it can be used by
other programs that use the SMILE library. This way models can be devel-
oped and tested in GeNIe, running on Windows, and then be implemented
in an application that runs on another operating system.

The implemented method is a tool to simplify knowledge elicitation for
Bayesian networks and will be used in GeNIe to make it easier for an Expert
or a knowledge engineer to fill in the CPTs of a BN. A user interface has
been designed (see Section 4.4) that will be implemented so that the method
will be usable in GeNIe.

 

Figure 5.1: GeNIe screenshot

5.2.3 CLP Library

The CLP (COIN-OR Linear Programming) library is an open source (under
the Common Public License (CPL)) linear programming solver that is writ-
ten in C++. It has been developed by The Computational Infrastructure for
Operations Research (COIN-OR) project. It is primarily meant as a library
that is to be called from an application, but there does exist a standalone
version that can solve lp problems in a certain file format.
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The LP solver provided by the library has been used for calculating
of new probability bounds for the constituent probabilities to reduce the
sample space.

5.2.4 Cephes Library

The Cephes library (Moshier, 1989) is a C++ library written by Stephen
Moshier that contains a large number of special mathematical functions. It
is downloadable from http://www.moshier.net/#Cephes and can be used
freely. The functions come in different types of precision.

5.2.5 Tools

For the implementation of the method Microsoft Visual Studio C++ has
been used. The method implementation needs to have access to the SMILE
library and the CLP library to function properly. GeNIe has been used
for testing purposes. It has been used to create Bayesian networks used as
input data for the method, and it has been used to analyse the output data
generated by the method. GeNIe has extensive data analysis features that
were useful to determine if there was anything wrong with the functions that
generated the output data.

5.3 Processing Input Data

The method deals with two types of input data: Bayesian networks and
probabilistic information. The Bayesian networks are specified in the format
defined by SMILE, a DSL network object. The probabilistic statements are
specified in text form. When the method is run the Bayesian Network and
the statements are provided by GeNIe. A prototype program was created
that, using the SMILE library, could read a Bayesian network from a .xdsl
file1 and could read the statements from a .txt file. This way integration with
GeNIe could be postponed until the method was implemented completely.

First the processing of the BN was implemented. This was implemented
in the DSL noninvasiveElicitation and the DSL familyNetwork classes as
described in Sections 4.3.2 and 4.3.3.

To implement the processing of the probabilistic statements the equation
tree implementation of SMILE was examined to see if it could be modified
so that it could be used as an implementation of an expression tree. At first
the number of changes to the equation tree implementation was kept at a
minimum, but soon it became clear that major changes were necessary to
be able to provide all the functionality needed by the method. New classes
were created that were based on the original SMILE classes. These classes

1The file format used by SMILE and GeNIe to store Bayesian networks.
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were rewritten so that they would contain the necessary functionality. New
classes were added that implemented new types of nodes for the expression
tree. The parser supplied by the SMILE classes was extended so that it
would support the new types of nodes of the tree. The basic symbolic math
capabilities present in the SMILE implementation were expanded to fit the
needs of the method, i.e. the ability to determine linearity of a constraint.

5.4 Finding and Implementing a Linear Program-
ming Solver

After implementing input data processing, a preprocessing step to reduce the
sample space was implemented. This step uses linear programming to calcu-
late bounds for the constituents variables. To implement the preprocessing
step a LP solver was necessary. There were 2 implementation options: cre-
ate an own LP solver, or use a LP solver from a library. The choice was
made to use a LP solver from a library. This would save time that otherwise
would be spent designing, implementing, and testing a LP solver.

5.4.1 Choosing a Library

By choosing to use a solver from a library, it would need to satisfy cer-
tain requirements. Besides being capable to handle the input provided by
the method some nonfunctional requirements needed to be satisfied. These
requirements are:

• The license of the library should not influence the license of SMILE or
GeNIe.

• The code of the library needs to be portable.

During the selection process the license under which the library is distributed
was considered carefully. GeNIe and SMILE are not open source software.
They have been developed over several years and to remain competitive with
the competition the decision has been made to not make the source code
available to the public. GeNIe and SMILE are, however, available free of
charge. This rules out the usage of commercial LP solvers, since then it is
likely that licenses for the LP library will be necessary for every download
of GeNIe and SMILE, making it impossible to keep distributing them for
free.
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Since it is the intention of the DSL lab to keep GeNIe and SMILE avail-
able for free, it is necessary to use an open source library. Using an open
source library, however, can also cause some problems. There are different
types of open source licenses that have different effects on its “user”. Some
well known open source licenses are:

• GNU General Public License (GPL),

• GNU Lesser (Library) General Public License (LGPL),

• Berkeley Software Distribution License (BSD),

• Mozilla Public License (MPL).

The GPL has a big influence on non GPL software that uses GPL code.
It does not allow proprietary programs to link with a GPL library. Only
GPL software may link GPL libraries. So using a GPL LP solver would
mean either voilating the GPL or changing the license of GeNIe and SMILE
into a GPL, which is not what the decision systems laboratory wants. To
provide a little more flexibility the LGPL was defined to make library linking
by proprietary software possible. A LP solver licensed under the LGPL is
therefore a valid candidate for use in the implementation of the method.
Another candidate could be a solver that is licensed under the BSD license.
Here the user can do almost everything with the code what he or she wants.
The BSD license resembles public domain very closely. After some searching
3 different open source LP solvers were found:

• GNU Linear Programming Kit (GLPK),

• lp solve,

• COIN-OR Linear Programming (CLP).

All solvers were licensed under a different license: GLPK uses the GPL,
lp solve uses the LGPL, and CLP uses the Common Public License (CPL).
Since GLPK is licensed under the GPL it is eliminated by default since it
is not allowed to be used in SMILE and GeNIe under their current license.
The other 2 solvers could be used for implementation since their licenses
allow proprietary software to link the libraries without repercussions.

The other requirement that the solver would need to satisfy, portability,
was necessary because SMILE was designed to be a platform independent
library. If any part of the method implementation would end up in SMILE,
it would have to comply to the same requirements as SMILE. To be sure
that these requirements are met the library used for the LP solver should
also be platform independent. After some evaluation of the two LP solvers,
it was concluded that both solvers could be used in a platform independent
manner.
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There was chosen to use the CLP solver. The reason for this choice was
that the CLP license would fit the current license view of the decision systems
lab better than the LGPL. Under the LGPL it is possible that source code
licensed under the LGPL is re-licensed under the GPL. Although this does
not cause all current code licensed under LGPL to be now licensed under
GPL, just the version of the code where the license was changed and its
derivatives, but if newer versions of the code would now only appear under
the GPL license it could no longer be used in a proprietary program. The
CPL does not have such a construction. As long as the DSL license mentions
that is uses the CLP library and that the CPL applies to the library, it can
be included in GeNIe and SMILE without any problem.

5.4.2 Integrating the Library

After deciding to use the CLP library it was examined more closely to de-
termine how it should be integrated into the implementation of the method.
An approach was chosen to feed the solver the data, execute the solver and
then to retrieve the data from the solver. The library offered several meth-
ods to initialise the solver with the input data. It could read the data from
different (standard) file types used by other LP solvers, or using the library’s
API to create the necessary matrix directly in the format used by the solver.
Since the way files are handled differs per platform, it was decided to use
classes and functions from the library’s API to feed the input data to the
solver. This would automatically mean that the output generated by the
solver would also be provided by objects from the API.

After the integration of the CLP library in the implementation of the
method, the process to execute the LP preprocessing step is as follows:

1. The input data for the LP solver is extracted from the linear con-
straints.

2. The data is put into a matrix by using functions and objects from the
API.

3. The solver is called to process the matrix.

4. The result is retrieved from the solver and is put into the appropriate
form to be used by the method.

5.5 Implementing Sampling

The sampling process is the main part of the method and most of the execu-
tion time will be spent sampling. Sampling is the area where improvements
will have the most influence on the speed of the method. First, the most



5.6. CALCULATING RESULTS 113

basic version of sampling was implemented to see where optimizations could
be applied.

This basic sample generator would randomly pick a value between 0 and
1 for every constituent variable and would then present the sample to the
constraints. If the sample complies with all the constraints it would be
saved, otherwise it would be discarded.

It became clear that the axiomatic requirement that all constituent vari-
ables must sum to 1 caused almost all samples to be rejected, and that if
the sample generation process is optimized to satisfy the axiom, the ratio
of rejected samples would decrease. Different approaches have been tried,
some examples are:

• Pick values between 0 and 1 for all constituents ci but the last con-
stituent cn, and calculate cn by using cn = 1−∑

ci.

• Pick a value for c1 between 0 and 1, and Pick values for c2 . . . cn by
picking a value for ci+1 between 0 and 1−∑i

j=1 cj .

• Pick values between 0 and 1 for all constituents and divide the value
of each constituent by the sum of all constituent values.

• Using the constraint consensus algorithm to move the sample to the
plain where the constituents do sum to 1 (see Section 3.5.1).

• Use the method described by (Caprile, 2001) to generate the samples.

• Use a Dirichlet distribution to generate samples (Section 3.5.2).

After some testing of the different variants the standard sample bounds (0
and 1) were replaced by the results from the LP preprocessing step. This did
not have a big influence on the sampling efficiency. Eventually the variants
using the constraint consensus algorithm, the modified Caprile approach,
and the Dirichlet distribution remained. The other approaches were deemed
to inefficient to use for the method. In the end the sample generator using
the truncated Dirichlet distribution was implemented for the system.

To be able to deal with conflicting constraints (Section 3.6), in the fi-
nal implementation heuristic were devised and implemented to help detect
the conflicts. Discarded samples are saved until a sample is accepted or 1
million samples are rejected. Once the million samples are collected, the
majority heuristic (Figure 3.12) and the constraint effectiveness heuristic
(Figure 3.13) are run om the samples to try to advise the user which con-
straint to change or to delete.

5.6 Calculating Results

Implementing the functions for calculating samples for all the CPT entries
of all the family networks was straightforward. The functions were imple-
mented in a bottom-up fashion. First, at the lowest level, functions were



114 CHAPTER 5. IMPLEMENTATION AND TESTING

written to calculate a single sample. At the next level functions were needed
that were able to calculate all samples for a CPT entry. Moving up to the
next level, functions were written for calculating all the samples for all CPT
entries of a node. The functions for the next level would ensure that all the
samples for all nodes of a family network would be calculated. Finally, at
the top level, functions were written that would calculate the samples for
all the FNs.

With some advice from Tomek Sowinski, DSL’s lead programmer, a
datastructure was designed that holds all the calculated samples. This
structure is sent to GeNIe as the result of the method. Using the datas-
tructure GeNIe will show the data to the user by creating histograms from
the samples. There was chosen to sent the raw samples to GeNIe so that it
would be possible to allow variable bin sizes for the histograms. The current
implementation of histograms in GeNIe supports variable bin sizes and this
can be used by the user to get a clearer view of the results.

5.7 User Interface

Most of the work focused on implementing the method itself. A console
application was created that had a simple command line interface, and that
outputted some development and debugging information to the screen. This
application was used to develop and test the implementation of the method.
Designing a graphical user interface, despite the important role it has in
creating a successful application, was not the biggest priority during the im-
plementation and design process. The implementation of the user interface
in GeNIe is to be done by Tomek Sowinski. Tomek is responsible for pro-
gramming and maintaining GeNIe and will be able to implemented the user
interface and integrate the method code much faster. As with designing the
GUI, further implementation will be future work.

5.8 Testing

The implementation of the method has been tested during the different
implementation phases. Testing was done to ensure that the different parts
were implemented correctly. During development of new code, simple test
cases would be devised to see if the added code functioned correctly.

Some examples of tests conducted during implementation of C++ code
for different phases are:

• Input data phase:

– To test if the supplied Bayesian network would decomposed cor-
rectly into the collection of family networks some extra code was
added that would write the newly created FNs to a .xdsl file.
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Using GeNIe the different FNs could be checked to see if all the
nodes and the links between the nodes that should be in the
respective FN were actually put there by the used algorithm.

– During the implementation of the expression tree, the parsing
of probabilistic statements and the application of symbolic math
on the generated expression trees was test by creating a number
of test statements and expressions. These statements and ex-
pressions were presented as input to the program. The result of
the parsing and tree manipulations were shown as output on the
screen. When differences occurred, breakpoints were set in the
code and step-by-step execution of code was used to determine
the cause of the differences.

• Linear programming phase:

– The implementation of the LP procedure that calculates prob-
ability bounds for the constituent variables has been tested by
comparing the results to results generated by a stand alone LP
solver. A free LP program, Qsopt, was downloaded to be used
as a reference. The linear programs that needed to be solved for
the method were inputted in the program and the results were
manually processed using the algorithm that was designed for the
method. Results were compared to see if there were any differ-
ences.

• Sampling phase

– To determine which variant should be used to generate samples
(Section 5.5), all variants were tested. The primary criterium that
was checked was if the different variants could generate samples
that are uniformly distributed over a simplex. This experiment
is described in Section 6.1.2.

– The heuristics developed for detecting conflicting constraints were
tested by creating a simple Bayesian network (the network from
(Druzdzel & van der Gaag, 1995) was used) and several sets of
constraints were there was at least one conflict between two or
more constraints. The results of the heuristics were evaluated to
see if they were able to detect the conflicting constraints.

After finishing the complete implementation, it was necessary to test if the
whole implementation would also function correctly. To test the implemen-
tation the example from (Druzdzel & van der Gaag, 1995) was used and the
results produced by the implementation were compared with the results from
the paper. This experiment and its results and consequenses are described
in Section 6.1.1.
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Chapter 6

Empirical Evaluation

After implementation of the method it was necessary to evaluate if it would
perform as expected. Since the method had never been implemented before,
there were no programs also based on (Druzdzel & van der Gaag, 1995) that
the implementation could be compared with. Druzdzel and van der Gaag
did create a prototype, but it was only created for illustrative purposes.
The prototype implementation was straightforward without any algorithmic
optimization and it could only generate samples for the example described
in the paper.

The results generated by the method, histograms for all the CPT en-
tries, cannot be easily compared. A possible experiment could be to take
a completely defined BN and to define several probabilistic statement that
describe the BN. Then the generated histograms could be compared to the
CPT entries to see if the histograms would accurately predict that the val-
ues of the CPT entries are likely to be “correct.” if the statements are too
general, a large number of probability distributions will satisfy all the con-
straints and this will cause the histograms to be less accurate in specifying
which values that will likely be correct. On the other hand if the state-
ments are too constraining, it may take a very long time for the method to
find enough valid samples. In reality complete or near-complete informa-
tion is never available so a set of statements that will describe the desired
probability distribution very closely will most likely not be available.

Comparing results from the implementation of the method with the re-
sults from (Druzdzel & van der Gaag, 1995) is almost impossible. The only
available information of the experiment done by Druzdzel and van der Gaag
are the illustrations of two histograms in the paper. No data or any infor-
mation about the prototype developed by dr. van der Gaag was available
anymore. The prototype and the raw data were discarded after generating
the results for the paper. Its implementation was deemed too inefficient to
continue work on it, and it was decided that it should be reimplemented
when research would be continued on the method.

117
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The lack of results from the prototype makes it harder to interpret the
results generated by the implementation of the method. With no data avail-
able the data needs to be interpreted by examining if the histograms fit the
intuitive meaning of the different CPT entries.

An interesting opportunity for comparison is how the method generates
samples. Different approaches can be used to generate the samples. Some
are more efficient than others, and some will perform better. Preferably,
when no extra information is available, the probability hyperspace is sampled
uniformly so the whole space is searched equally to find samples that satisfy
all the constraints. When more information comes available it should be
possible to use this information to refine the sample generator.

6.1 Experiments

Two experiments have been defined. The first experiment examines a run
of the implementation using the Bayesian network and the set of constraints
from the example of (Druzdzel & van der Gaag, 1995). During the execution
of the experiment it became clear that an error in the probability statements
provided by the paper would make it impossible to generate any results. The
cause was found and a new experiment was defined to replace the original.

The second experiment compares different approaches for generating
samples of probability distributions. It was examined how well the dif-
ferent approaches could generate samples that were uniformly distributed
over a 2-simplex. Approaches that performed equally well, were subjected
to further investigation.

6.1.1 Experiment 1: Implementation Run

Experiment 1.1: HIV Network

Goal The goal of this experiment is to compare results from the cre-
ated implementation of the method and the prototype used in (Druzdzel
& van der Gaag, 1995).

Design The experiment uses the example presented in the paper. The
HIV network and the probability statements mentioned in the paper are
used as input for the implementation of the method. The histograms that
are outputted are compared with the ones shown in the paper.
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The input data for the method was:

• The HIV network (Figure 3.1),

• Probabilistic constraints:

◦ P (i |c) = 1,

◦ P (i) > P (n),

◦ P (h |n) > P (h |i),
◦ 0.1 ≤ P (n |h) ≤ 0.25.

Results The data was inputted in the method and it was executed. Two
family networks were identified and the method was run on both. The
two discovered family networks are shown in Figure 6.1. The constraints

(a) FN 1 (b) FN 2

Figure 6.1: Family networks discovered by the method

generated for the family network from Figure 6.1(a) are (see also Appendix
A.1):

• P (i |c) = 1:

◦ −x2 = 0,

◦ x2 + x3 > 0.

Extra constraints were added by the method to ensure that the CPT entries
would exist.

• P (¬i) > 0:

◦ x0 + x2 > 0.

• P (i) > 0:



120 CHAPTER 6. EMPIRICAL EVALUATION

◦ x1 + x3 > 0.

These constraints are here to ensure that every CPT entry exists and that
the situation

P (X |Y ) =
P (XY )
P (Y )

=
P (XY )

0
= ∞

cannot occur. For the FN in Figure 6.1(b) several constraints were gener-
ated. One example is shown, the rest can be seen in Appendix A.2:

• P (h |n) > P (h |i):
◦ x2x9 + x3x9 + x6x9 + x7x9 + x2x11 + x6x11

+ x2x13 + x3x13 + x6x13 + x7x13 + x2x15 + x6x15

− x1x10 − x3x10 − x5x10 − x7x10 − x1x11 − x5x11

− x1x14 − x3x14 − x5x14 − x7x14 − x1x15 − x5x15 > 0,
◦ x1 + x3 + x5 + x7 + x9 + x11 + x13 + x15 > 0,
◦ x2 + x3 + x6 + x7 + x10 + x11 + x14 + x15 > 0.

Extra constraints were again added to ensure that all the CPT entries would
exist. One example is

P (¬n¬i¬c) > 0 :
x0 + x8 > 0. (6.1)

Problems arose when the method started to try to generate samples for
the family network shown in Figure 6.1(b). After a long period of time no
valid samples were found for the FN. The problem was pinpointed to the
probability statement P (i |c) = 1. This statement is an equality constraint
that would be translated into multiple constraints. It was translated into
the following expressions

−x4 − x5 − x12 − x13 = 0 ,

x4 + x5 + x6 + x7 + x12 + x13 + x14 + x15 > 0 .

The first expression causes a conflict with the extra added expressions x4 +
x12 > 0 and x5+x13 > 0. The statement P (i |c) = 1 causes the probabilities
P (¬n¬ic) and P (n¬ic) to become 0, which in turn causes the CPT entries
P (h |¬n¬ic), P (¬h |¬n¬ic), P (h |n¬ic), and P (¬h |n¬ic) to become un-
defined.

This means even without the presence of the extra added constraints
the method would not be able to generate samples for all the CPT entries.
It would be terminated after a division by 0 was detected when calculating
samples for the above mentioned entries.

Conclusion The example from (Druzdzel & van der Gaag, 1995) was
abandoned and a new example was found to perform a similar experiment
on.
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Experiment 1.2 Alarm System Network

Goal The goal for the new experiment is to compare the influence of two
different probability statement sets on the resulting histograms.

Design The new Bayesian network used in the experiment is the alarm
system network discussed in Section 2.3.2. The network is shown in Figure
2.1. Two sets of constraints were created for this network. The first set of
constraints can be considered as a sort of control group. For half of the CPT
entries of the BN probability statements were created that would be in the
form

0.9x ≤ P (·) ≤ 1.1x,

where P (·) is the probability of a CPT entry and x is the real value of
the entry. These statements create an interval around the real value, where
the upper and lower bound differ 10% from the real value. The created
statements for the “strict” statement set are:

• 0.0009 ≤ P (b) ≤ 0.0011,

• 0.0018 ≤ P (e) ≤ 0.0022,

• 0.0009 ≤ P (a |¬b,¬e) ≤ 0.0011,

• 0.846 ≤ P (a |b,¬e) ≤ 1.0,

• 0.261 ≤ P (a |¬b, e) ≤ 0.319,

• 0.855 ≤ P (a |b, e) ≤ 1.0,

• 0.045 ≤ P (j |¬a) ≤ 0.055,

• 0.81 ≤ P (j |a) ≤ 0.99,

• 0.009 ≤ P (m |¬a) ≤ 0.011,

• 0.63 ≤ P (m |a) ≤ 0.77.

When a calculated bound would have a value outside of the valid range of
[0, 1] the bound was clipped at the appropriate value.

The second set of probability statements was created in a manner that
is more likely to be encountered in real life. Normally an expert would be
necessary to create the statements and he or she would probably be able
to translate rules of thumb into probability statements. For the experiment
probability statements have been created that describe the CPT entries of
the BN loosely. The statements are still based on the true values of the
CPTs, but no intervals have been specified and values in the statements
have been chosen to be less restrictive.
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The created statements for the “loose” statement set are:

• P (e) < 0.003,

• P (e) > P (b),

• P (b) < 0.002,

• P (¬a |¬b,¬e) > 0.95,

• P (a |b, e) > 0.9,

• P (a |¬b, e) < 0.4,

• P (¬a |b,¬e) < 0.09,

• P (¬j |¬a) > 0.9,

• P (¬j |a) < 0.15,

• P (m |¬a) < 0.02,

• P (¬m |a) < 0.3.

Results Both the probability statement sets have been inputted in the
method together with the alarm system BN. Three different family networks
were identified. The networks are shown in Figure 6.2.

(a) FN 1 (b) FN 2 (c) FN 3

Figure 6.2: Identified family networks for the alarm system network

For both sets of probability statements the method has generated con-
straints that were used for the sampling process. The probability statements
are divided over the FNs. Only statements that are relevant for a FN are
translated into constraints for the sampling process. The generated con-
straints for the “strict” statement set have been put in Appendix B.1 and
Appendix C.1 contains the constraints for the “loose” statement set. After
these constraints were generated the Linear Programming process described
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in Section 3.4 was run using the linear constraints. All the constraints were
linear, so all could be used to determine probability bounds for all the fam-
ily networks. The generated probability bounds for the different FNs of the
experiments are put in Appendix B.2 (strict set) and Appendix C.2 (loose
set). As an example the probability bounds from the first FN of the strict
experiment are shown below.

0.995604 ≤ x0 ≤ 0.997301,
0 ≤ x1 ≤ 0.000169323,
0.00047704 ≤ x2 ≤ 0.00162543,
0 ≤ x3 ≤ 0.000159428,
0.00089703 ≤ x4 ≤ 0.00109802,
4.23 · 10−7 ≤ x5 ≤ 0.001099,
0.000182831 ≤ x6 ≤ 0.00070164,
4.275 · 10−7 ≤ x7 ≤ 0.0010995.

The probability bounds improve the efficiency of the method enormously.
Only a very small sub volume of the whole hypercube needs to be sampled
now. In the case of FN 1 the probability bounds create a new hypercube
that has a volume of only 6.6·10−27 times the whole hypercube volume. And
only the intersection of the 7-simplex with this hypercube will be searched
by the sample generator.

After the generation of the constraints and the calculation of the prob-
ability bounds the sampling process is started. After the method has found
1000 samples that satisfy all the constraints, the samples are used to calcu-
late samples for the CPT entries of the FNs. The result of these calculations
can be shown as histograms for the different CPT entries. The complete col-
lection of generated histograms of the probability statement sets have been
put in Appendix B.3 and Appendix C.3.

Conclusion Some general observations can be made about a large number
of the generated histograms. The shape of most of the histograms is similar.
The histograms resemble a uniform distribution. One example is Figure
6.3(a), a histogram generated from the “strict” probability statement set
for the Alarm node.

A likely cause for this shape to be present in so many histograms is
the use of uniform sampling on the simplex. The generated samples of the
joint probability distributions are all as likely to occur, so when calculating
samples for the CPTs these samples will also show the same characteristics.

Not all the histograms of the two experiments have a uniform shape. In
the smaller family networks consisting out of the nodes Alarm and JohnCalls
or Alarm and MaryCalls, the histograms created for the Alarm node did not
have a uniform shape. An example is shown in figure 6.3(b). The histogram
has a shape that resembles a normal distribution. This resemblance can be
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(a) Histogram for entry P (¬a |¬b, e ) (b) Histogram of P (a) with a nonuni-
form shape

Figure 6.3: Example histograms

explained by examining the constraints used for these family networks. In
both experiments constraints were created specifically for CPT entries of
the complete BN. No constraints were created for the node Alarm for the
specific situation that it would be a parent in one of the family networks.
Now the histogram is the result of the calculations of the samples for the FNs
which were constrained only for the JohnCalls and MaryCalls nodes. Since
the samples and the histograms for the nodes JohnCalls and MaryCalls are
uniformly distributed, and calculating samples for the CPT entries of the
Alarm node basically means summing entries, this will cause the distribution
of the samples for the CPT entries of the Alarm node to resemble a normal
distribution. This is due to the central limit theorem (Dekking et al., 2004).

Other examples exist for nonuniform histogram shapes. These differ-
ences resulted from using different constraints. The “strict” and “loose”
probability statement sets have resulted in different histograms for the same
entries. Mostly the differences are in respect to upper and lower bounds, but
in a few situations the shape also was different. An example is given in Fig-
ure 6.4. The “strict” version of the histogram is much more precise than its
“loose” counterpart. This is due to the constraint 0.0009 ≤ P (b) ≤ 0.0011.
This is the only constraint in the “strict” statement set that has a direct
influence on the the entry P (b). The other statements describing the same
family network will have an influence, but not as much as this one. The
“loose” statement set has 3 constraints that have a direct influence on P (b):

• P (b) < 0.002,

• P (e) < 0.003,

• P (e) > P (b).
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(a) P (b), “strict” statements (b) P (b), “loose” statements

Figure 6.4: Different histograms resulting from the difference in the state-
ment sets

Since these constraints are less precise than the constraints from the
“strict” set this allows for more samples to be valid. Which results in his-
tograms that will vary over a larger range. In this case the exact shape is
not easy to explain, it also depends on the other constraints used to sam-
ple the family network. And since the “loose” constraints allow for more
samples to be valid, it could be possible that 1000 samples is not enough in
larger dimensional spaces to get a good distribution of the samples in the
constrained volume that satisfies all constraints.

An estimate can be given of the size of the constrained volume created by
the two probability statement sets. The exact volumes are hard to calculate
so they are approximated by a n-dimensional bounding box. This bounding
box is created by the probability bounds calculated by the linear program-
ming process. The lower bounds are subtracted from the upper bounds to
get the size of the edges of the box. By multiplying the edges the volume of
the bounding box is calculated. The volumes for the boxes are:

• “Strict” set: 6, 62355 · 10−27,

• “Loose” set: 2, 27375 · 10−21.

This means that the volume of the sample space of the “loose” probability
statement set is a factor 343283, 1356 larger than the volume of the “strict”
set. A supporting fact for the hypothesis that the size of the sample space has
an influence on the histograms is that the nodes Earthquake and Burglary
are a priori nodes. The nodes are not conditioned on other variables and
only have 2 entries: true and false. Calculating a sample for one of these
entries means summing half of the entries of a raw sample.

The exact influence of the volume of the sample space is unknown, and
the influence of finding more samples on the shape of the histograms has
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not been investigated any further. For now the differences in the histogram
shapes are attributed to the differences in the relevant probability state-
ments.

6.1.2 Experiment 2: Sampling Approaches

The basis for an efficient sampling process is to ensure that the generated
samples at least are valid probability distributions. Otherwise samples will
be discarded even before they are evaluated by the constraints provided by
the expert. Another desired property of the sample generator is that with
the absence of any extra information it should uniformly generate probabil-
ity distributions, i.e. all distributions should be generated with the same
probability. This ensures that the whole probability space is searched.

Goal The goal of this experiment is to compare different approaches for
generating samples, and to determine which of the approaches should be
implemented.

Design Criteria for comparison are the ability to generate samples that are
uniformly distributed over a simplex and the ease of adapting the approach
to include an importance sampling scheme.

In total there were 8 different approaches tried for generating samples.
One was abandoned very quickly because it did not allow for sampling the
probability plain directly. It used rejection sampling and was very inefficient.
The 7 remaining approaches would allow for sampling on the probability
plain without the use of rejection sampling. The question remained if the
approaches would allow for uniform sampling on the plain. The remaining
approaches were tested by generating 1000 samples of discrete probability
distributions in a 3 dimensional space. The remaining approaches were:

• Use a truncated Dirichlet distribution.

• Use a Dirichlet distribution to generate samples.

• Use the method described by (Caprile, 2001) to generate the samples.

• (Caprile, 2001), but with shuffling of the constituents.

• Uniformly pick values between 0 and 1 for all constituents and divide
the value of each constituent by the sum of all constituent values.

• Pick a value for c1 between 0 and 1, and Pick values for c2 . . . cn by
picking a value for ci+1 between 0 and 1−∑i

j=1 cj (Fraction Approach).

• Using the constraint consensus algorithm to move the sample to the
plain where the constituents do sum to 1.
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If after comparison of the different approaches there would remain multiple
candidates for implementation, further comparison would be performed by
generating samples on a 15-simplex in a 16 dimensional space. For each
of the remaining approaches 1000 and 100000 samples are generated and
3D scatter plots of the first three axes are compared. Any differences are
investigated by examining the sampling process of the different approaches
more closely.

Results The samples generated by the different sampling approaches were
put in 3D scatter plots to visualise the distribution of the samples over the
2-simplex. All the scatter plots are gathered in Figure 6.5.
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(d) Caprile Method (Shuffling)
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(f) Fraction Approach
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(g) Constraint Consensus

Figure 6.5: Results from the sample approach experiment
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By examining the scatter plots 4 approaches could be eliminated imme-
diately. The fraction approach, the divide by sum approach, the approach
using the constraint consensus algorithm, and the method from (Caprile,
2001) exactly as it was described in the paper, all do not result in a uniform
distribution over the 2-simplex.

The 3 remaining approaches, the Dirichlet variants and the modified
version of (Caprile, 2001), all allow for a uniform distribution of samples
over the simplex. Evidently this is also claimed in the literature describing
these approaches. To select an approach for implementation in the method
further investigation is necessary.

The requirement that it should be possible to sample between probabil-
ity bounds, reduces the candidates even further. Now only the truncated
Dirichlet distribution and the modified approach from (Caprile, 2001) re-
main, since the original implementation of the Dirichlet distribution as de-
scribed in Figure 3.6 does not allow for sampling between bounds.
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(b) Caprile Method (Shuffling)
1000 samples

(c) Truncated Dirichlet Distribu-
tion 100000 samples

(d) Caprile Method (Shuffling)
100000 samples

Figure 6.6: Results from further comparison

To determine if the remaining approaches were equivalent in uniformly
generating samples on simplices, experiments were performed using higher
dimensional simplices. For both the approaches it is claimed that they allow
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for uniform sampling on general n-simplices. Two experiments were per-
formed. In a 16 dimensional space samples were generated on a 15-simplex.
For both approaches 1000 and 100000 samples were generated. The results
of the experiments, 3D scatter plots of the the first 3 axes of the 16 dimen-
sional space, are shown in Figure These results show that the approaches
are not equivalent. The scatter plots show that the distributions of the sam-
ples generated by the approaches are different. From these observations two
hypothesis can be formulated. Either only one of the two approaches can
exactly generate samples with a uniform distribution over a n-simplex, or
one of the two is a better approximation of the true uniform distribution
over a n-simplex.

When the dimension of the sample space increases the difference between
the two approaches becomes larger. This suggest that when generating
samples the dimension of the sample space has a direct influence on the
sample process.

The approaches calculate their samples in a similar manner. For N − 1
entries of the sample vectors values are generated using a marginal distri-
bution dependent on the previous entries and the value for the last entry is
calculated by xN = 1 − ∑N−1

i=1 xi. For the truncated Dirichlet distribution
the process to generate samples uniformly distributed over a simplex reduces
to the algorithm shown in Figure 6.7.

Input:

• a parameter vector γ = (11, . . . , 1N )T ,

1. Set ξk = 0

2. Set ηk = 1

3. For k = N − 1, k > 0, k = k − 1

1. Generate a random value uk from a uniform U [0, 1]
distribution.

2. Calculate xk =
(
1−∑N−1

j=k+1 xj

)
F−1

k (uk), where

F−1
k (uk) is a standard beta distribution with α = 1

and β = k

4. Calculate xN = 1−∑N−1
i=1 xi

5. Output vector X = (x1, . . . , xN )T

Figure 6.7: TDD Sampling algorithm specifically for generating uniform
samples
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The algorithm for generating samples using the method described in
(Caprile, 2001) is shown in Figure 6.8. The last step was added to improve

1. set r1 = 1

2. set j = 1

3. until j = N − 1

1. Randomly extract xj from [0, rj ] according to the
marginal distribution of xj over the simplex SN−1,
given outcomes X1 = x1, . . . , Xj−1 = xj−1, that is ac-
cording to:

FC (x) = P (Xj = x |X1 = x1, . . . , Xj−1 = xj−1 )

2. Set rj+1 = rj − xj

3. Set j = j + 1

4. Set xN = rN

5. Output vector X = (x1, . . . , xN )T

6. Shuffle entries of the vector so next time entries are processed
in a different order.

Figure 6.8: Generate samples according to the method described by Caprile

the results of the algorithm. Without it, even in a 3 dimensional space
the distribution of the samples would not be uniform. The problem with
this correction is that the randomness of the approach now also depends on
the randomness of the shuffle function. This is one reason to not use this
approach in the final implementation. The marginal distribution function
necessary by the Caprile algorithm is easy to calculate. The distribution
and its inverse are:

FC (xj) = 1−
(

rj − xj

rj

)N−1

, (6.2)

F−1
C (u) = rj

(
1− (1− u)

1
N−1

)
. (6.3)

The factor rj used in the Caprile algorithm is equal to the expression 1 −∑N−1
i=1 xi used in the truncated Dirichlet algorithm. When the formulas for

calculating an entry of the sample vector are compared the similarities and
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the differences become clear:

xk =


1−

N−1∑

j=k+1

xj


 Beta (α = 1, β = k) , (6.4)

versus

xk = rk

(
1− (1− U [0, 1])

1
N−1

)
. (6.5)

What the two have in common is that both can be calculated in a similar
matter. A random value between 0 and 1 is generated using a random
distribution and the value is then scaled to fit the sampled value into the
remaining available “space”. With “space” the remaining free amount in
[0, 1] is meant that will allow all the entries to sum to 1.

The difference between the two formulas is that the “distribution part” of
the formula used by the Dirichlet algorithm changes per entry of the sample
vector. The “distribution part” of the formula used by the Caprile algorithm
on the other hand does not change during the generation of a sample and
only depends on the total number of entries of the sample vector.

When the dimension of the sample space starts to increase this will have
an effect on the values of the entries of the sample vectors generated by
the two algorithms. For both algorithms this means that the values for the
entries will become smaller. This is visible in the cumulative distribution
functions of the approaches. Figure 6.9 shows different cumulative distribu-
tion functions for different situations. Figure 6.9(a) shows the cdf for the
Caprile approach for sampling in a 3 dimensional space. It closely resembles
the first cdf used by the dirichlet approach (Figure 6.9(b)) when it is also
sampling in a 3 dimensional space.

In the 3 dimensional situation both sample 2 entries from probability
distributions and calculate the last entry by subtracting the sum of the 2
samples from 1. The Caprile approach draws samples twice from the distri-
bution in Figure 6.9(a), but the second time the sample from the distribution
is scaled to [0, 1− x1]. The TDD approach first samples from the beta dis-
tribution illustrated in Figure 6.9(b). For the next entry a sample is drawn
from another beta distribution, the one illustrated in Figure 6.9(f). This
sample is also scaled to [0, 1− x1]. As shown in Equation 6.4 the parameter
β of the beta distribution depends on the entry to be calculated. Also a
specific sampling order has been defined in (Fang et al., 2000). First entry
N − 1 must be sampled followed by N − 2, N − 3, . . . , 1, and finally entry N
can be calculated.

Sampling in a 16 dimensional space is done in a similar manner. The
Caprile approach samples 15 times from the distribution in Figure 6.9(c),
each sampled is scaled accordingly, and the last entry is calculated by sub-
tracting the sum of the sampled entries from 1. The truncated Dirichlet
distribution first samples from a beta distribution with parameter β = 15
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(Figure 6.9(d)). The next entry will be a scaled sample from a beta distri-
bution with parameter β = 14. This process continues until the entry x1 has
been given a value from the beta distribution with parameter β = 1 (Figure
6.9(f)). Figure 6.9(e) shows another step in the changing of the shape of
the beta distributions the TDD algorithm samples from while generating a
sample vector. With all this information it can be explained why the orig-
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(f) TDD, β = 1

Figure 6.9: Different cumulative distribution functions

inal Caprile algorithm needed to be extended with the shuffling, and why
the truncated Dirichlet distribution approach should be preferred above the
Caprile approach. When sampling in increasingly higher dimensional spaces
the probability distribution function used by the Caprile approach will gen-
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erate more and more samples for the entries that have very small values.
Since the same distribution function is used for the N − 1 entries and a
scaling factor is applied to let each entry to be sampled from [0, 1−∑

xk],
the values for these N − 1 entries will become so small that a large amount
will remain for entry xn. This entry will have a marginal probability dis-
tribution that is radically different from the rest. It will in fact resemble
a normal distribution. An example is shown in Figure 6.10. The figure
shows the histogram of entry x16, which was calculated in the manner de-
scribed above. Shuffling the sample order prevents the entries from getting

Figure 6.10: Histogram of entry x16

a marginal probability distribution that resembles a normal distribution.
These larger values are now distributed over all the entries. This still has
an effect on the marginal probability distributions of the entries. This effect
is visible in Figure 6.6(d). Most of the samples for an entry will have a very
small value, but there are a significant number of samples that have large
values.

The Dirchlet approach does not show this behavior because of the chang-
ing parameter in the beta distribution used to generate samples for the
entries. When moving through the entries, the value for the parameter β
decreases. Lower β values make larger sample values (within [0, 1−∑

xi])
more likely which prevents the entry xn from getting a marginal probability
distribution that resembles a normal distribution.

Conclusion Since it is very likely that, during execution of the method,
samples will have to be generated in high dimensional spaces, the Dirichlet
approach is to be preferred over the (modified) Caprile approach and the
others. Another advantage may be that since the Dirichlet distribution has
a parameter vector and the caprile approach does not have any parameters,
it will most likely be easier to adapt the Dirichlet approach to be able to
perform importance sampling.
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6.2 Discussion

After performing the experiments some observations have been made that
will have an influence on the direction of the further development of the
method. Discussed are the use of histograms as output of the method and
suggestions on how to improve the use of the histograms. Further discussion
focuses on generating samples and the influence of higher dimensional spaces
on the sample process.

6.2.1 Use of Histograms

The quality and usefulness of using histograms as outputs will have to be
investigated further. The experiments show that the quality of the set of
probability statements has a large influence on the quality of the histograms.
If the constraints are defined very precisely the generated histograms for the
CPT entries will not be very helpful in the process of determining values for
the entries.

At the moment all valid samples that satisfy all constraints are treated
equally when creating the histogram. A weighting scheme that makes some
statements more important than others may make the histograms more pre-
cise, but feasibility of this approach will need to be determined.

Another point of attention for the current use of histograms in the im-
plementation is that by calculating the histograms some useful information
is lost. To create the histograms 1000 samples of the joint probability dis-
tribution of the FN are found by the method and these samples are used
to calculated new samples for all the entries of the FN. From each sample
values for all CPT entries of the FN are calculated. The histograms show
the distribution of the 1000 calculated values from all the samples. What
would be helpful in the process of determining values for the CPT entries,
using the generated histograms, is the ability to specify a range for a CPT
entry withing the user believes the real value of the CPT entry lies. By
selecting this range only a subset of the samples will be valid and only these
samples should now be used when showing histograms of other CPT entries
of the FN to the user. At present it is unclear how the different histograms
are connected to each other, but a fact is when a value is chosen for a CPT
entry of a node it will influence the possible values the other entries can be
assigned.
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6.2.2 Sampling and Higher Dimensional Sample Spaces

The sample process has the largest impact on the total performance of the
method. Any improvement made here will have a large influence on the
necessary computation time and the quality of the results. As mentioned
in Section 6.1.2 the minimal requirement for a sample generator is that it
should be able to directly generate samples that are valid joint probability
distributions, i.e. it should be able to generate samples that lie on the unit
n-simplex.

Next it is preferable that the sample generators allows for uniform sam-
pling of the n-simplex. This property guarantees that all possible joint
distributions can be generated by the sample generator, which is useful
when no extra information is available. When more information does be-
come available this should be used to improve the efficiency of the sample
generator.

One example is the use of probability bounds for the different con-
stituents. These bounds, calculated by using linear programming on the
linear constraints, can drastically reduce the size of the sample space. This
has been demonstrated by the experiments in Section 6.1.1. The usage of
the calculated probability bounds ensured that only a very small fraction
of the total volume of the sample space was to be searched. It would have
been completely unfeasible to generate samples from the constrained volume
without these bounds.

Intractability is a problem that never can be completely avoided. The
tractability of the method, the ability to produce results in a reasonable
amount of time, depends on the quality of the probabilistic statements and
the number of variables in a family network. If a FN has a large number
of variables, the sample space will have a large number of dimensions. The
number of dimensions increases exponentially in the number variables, this
definitely has an influence on the running time of the method.

In Section 6.1.2 it was discovered that the uniform sampling performance
of the modified Caprile approach decreases when the number of dimensions
of the sample space starts to increase. It is not completely certain that the
truncated Dirichlet approach does not have the same problems when the
number of dimensions increases sufficiently. Although theoretically speaking
the Dirichlet distribution should be able to represent a uniform distribution
over a simplex in any number of dimensions, when the parameter vector 1
is entered the density function reduces to a constant, it is possible that the
implementation of the sample generator might be limited in performance by
factors as variable precision.

In general it is a good idea to limit the number of dimensions of the
sample space. An acceptable maximum number of dimensions might be
somewhere between 64 or 128 dimensions. If this is translated back to a
number of variables this would that a node in a BN can have a maximum
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of 5 or 6 parents. Here it is assumed that the nodes are binary, i.e. they
can only be assigned 2 different values (most of the time true and false).
When multivalued variables are used the maximum number of parents will
decrease further.

The probability statements have a large influence on the running time
of the method. The statements create the constrained volume where valid
samples are to be found. If the samples are not very restricting the volume
will be large and it will be easier to find valid samples. If the samples
are constricting or even conflicting it can take a very long time to find a
valid sample or to conclude that no valid samples will ever be found. This
part of the sample process is simply a form of rejection sampling, no real
improvements can be made in this area.

By setting a maximum number of samples it can be prevented that the
method will keep running forever. However, until it can be determined
without error that a set of constraints has conflicts, one can never be sure
if there actually are conflicting constraints that prevent the generation of
valid samples.
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Chapter 7

Conclusion

This chapter concludes this thesis, the goals set in Section 1.3 are reviewed
to see how many have been reached. A summary of contributions is given,
followed by opportunities for future work. This chapter ends with the last
concluding remarks.

7.1 Goals

When work begun goals were set for the assignment regarding research and
implementation. Al the goals are discussed one-by-one to show in which
extend the goals have been reached.

7.1.1 Research

• Design an efficient sampling scheme for the method.
Finding an efficient way to generate samples was difficult. In the end
the method works with rejection sampling and if the constraints de-
scribe a very small feasible area a lot of samples will still be rejected.
But a lot of progress has been made in trying to reduce the number of
rejected samples as much as possible. The truncated Dirichlet distri-
bution now used to generate samples, in combination with the linear
programming process, allows for finding samples in very small feasible
areas that would have been impossible to find otherwise.

• Design a method for conflict detection and conflict resolution for con-
straints.
The elicitation method only works if the constraint sets do not have
any conflicts. Otherwise it will be impossible for valid samples to ap-
pear and the method will run indefinitely trying to find valid samples.
In the worst case scenario there are nonlinear constraints in the con-
straint set, thus it is important to ensure that any conflict detection

139
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and resolution method can handle this scenario. The problem of con-
flict detection and conflict resolution with nonlinear constraints is an
open problem, and it is not clear if a solution exist. The relevant
literature (see Section 3.6.1) describes different heuristics that try to
pin-point possible conflicts in constraint sets.

Two heuristics have been implemented, one was due to Chinneck
(2002), and the other was developed by the author. Both heuristics
show promise, but must be researched further to see how effective they
really are.

• Develop an importance sampling scheme for deriving 2nd order proba-
bility distributions over the constituent probabilities.
An importance sampling scheme has been developed that is based
on the Dirichlet distribution. The basic idea of the scheme is to use
collected valid samples to estimate a new parameter vector for the
Dirichlet distribution. The new parameter vector will influence the
density function of the Dirichlet distribution which will make it more
likely for samples to be generated in the area where the other valid
samples are. The scheme has not been implemented or tested yet.

• Design a method for merging decomposed family networks into the com-
plete BN as accurately and efficiently as possible.
Work has been done on designing a merging method that could merge
samples of different CPT entries from a node that appeared in mul-
tiple FNs. The idea was based on using weighted averaging, but in
the end this approach did not lead to a method that could merge FNs
in a mathematically sound way. No other method was found or de-
veloped that could accurately merge decomposed family networks into
the complete BN. It was chosen to leave this as an open problem and
to present the user the results from the generated FNs as output of
the method.

• Design a graphical interface for GeNIe for interactive elicitation of
constraints.
Most of the available time was spent on implementing the complete
method and finding answers for the other research goals that were
important for the inner workings of the method. A very basic and
preliminary user interface has been designed. It has not been imple-
mented in GeNIe yet. Further design and development of the user
interface is suggested as future work.
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7.1.2 Implementation

• Design and implement a data structure for the constraints.
An existing datastructure for equation trees from SMILE has been
modified and expanded so that it could be used for equations and
inequalities. More extensive symbolic mathematic functions have been
added to the implementation to allow for checking of linearity.

• Design and implement a data structure for the constituent probabili-
ties.
A datastructure for the constituents has been designed and imple-
mented.

• Implement a linear programming algorithm for calculating probability
intervals over the constituent probabilities.
The CLP library, which implements a linear programming solver, has
been found and it has been used for the calculation of the probability
bounds of the constituents.

• Improve the efficiency of the method.
A lot of work has been done to improve the efficiency of the method.
The use of linear programming to determine probability bounds, as
proposed in (Druzdzel & van der Gaag, 1995) has been implemented.
Work has been done to automatically extract the linear constraints
from the constraint set, that was generated during the parsing of the
probability statements provided by the expert. The truncated Dirich-
let distribution used for generating samples as described in Section
3.5.2, was implemented to use the calculated probability bounds. It
can be used in the future in the proposed importance sampling scheme.

• Test the method and report the results in the thesis.
After finishing the implementation experiments were done (Section
6.1.1) to see how the method performed as a whole. The method itself
works, but will need further improvement. The experimental results
show that the histograms generated by the method are, at the moment,
not really helpful when choosing values for CPT entries (Section 6.2.1).
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7.2 Summary of Contributions

This section describe the parts of the work done that can be considered as
contributions to field.

The method described by (Druzdzel & van der Gaag, 1995) has never
been implemented beyond a very simple prototype. The created implemen-
tation allows for the automatic processing of the necessary input data into
the end results, the histograms for the CPT entries. The implementation
shows that the proposed approach by Druzdzel and van der Gaag is usable,
but further research will be necessary to make the approach more tractable
and more precise.

In the area of sampling a lot of work has been done to make the sampling
process as efficient as possible. The main goal was to reduce the number of
samples that had to be rejected as much as possible. The biggest achieve-
ment in this area was to use combine the truncated Dirichlet distribution
proposed by (Fang et al., 2000) with the calculation of probability bounds
for the constituents proposed by (Druzdzel & van der Gaag, 1995). The
resulting sample generator allows for the much more efficient generation
of samples of joint probability distributions. Use of the truncated dirich-
let distribution ensures that every sample will be a valid joint probability
distribution, and the ability of the distribution to directly sample between
bounds without the use of rejection sampling makes it possible to completely
exploit the information extracted from the linear constraints provided by the
expert.

Further improvement of sampling can most likely be achieved by imple-
menting the importance sampling scheme that was designed. The designed
scheme, based on the idea presented in (Cheng & Druzdzel, 2000) that the
importance function should be adapted by using samples previously gener-
ated by the importance sampling mechanism, adapts the Dirichlet distribu-
tion to focus the sampling process on the region in the sample space where
the volume that is constrained by the probability statements is believed to
be.

Finally, two heuristics have been implemented to allow for some basic
conflict detection and conflict resolution. One of the two heuristics was
designed by the author. This heuristic, named the Majority Heuristic, allows
for a ranking of probability statements that indicates how likely a probability
statement is the cause of a (possible) conflict. The heuristic, based on the
idea that if a samples satisfies a majority of the constraints, there may
possibly be a conflicting constraint in the minority that the sample did
not satisfy. Some preliminary tests were done with the heuristic and when
there was enough data (rejected samples) available the results looked very
promising.

The method proposed by (Druzdzel & van der Gaag, 1995) is meant for
the elicitation of probabilities for Bayesian networks, but there is possibly
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another use for the method in other fields. Part of the method could be used
to generate mixtures for mixture experiments that have to satisfy certain
(non)linear constraints. The output for such an application would be the
“raw” samples generated by the truncated Dirichlet distribution that satisfy
all collected constraints. Mixture experiments are used to determine the
optimal proportions of ingredients of a product. This product could be
soup, deodorant, steel alloys, or other products that consist out of a mixture
of ingredients. The (modified) method could contribute to fields that use
mixture experiments by randomly generating possible mixtures that must
satisfy a large set of requirements.

7.3 Future Work

When working on the implementation of the method and when doing re-
search to improve it, there was not always time to actually implement or
to pursue all ideas. This section summarizes these ideas and the work that
still has to be done.

• Merging of Family Networks
One of the goals not currently met was finding a method for the merg-
ing of the results of the family network into results for the complete
Bayesian network. A method will have to be found that can merge
results from nodes of different family networks with a different number
of CPT entries into result for the node in the complete BN. The cur-
rent problem was that no method was found that was mathematically
correct. Future research for this problem should focus on the question
if a mathematical correct method exist for merging family networks.
If it can be proven that such a method does not exist, research should
focus on what other type of network decomposition should be used so
merging of the results can be done in a mathematically correct manner.

• Implementing a Graphical User Interface
At the moment no graphical user interface has been implemented.
Currently the implementation works with a simple console interface
and takes .txt files as input for the constraints. An GUI design has
been made, but this design will have to be improved and tested with
real users before actually integrating the method into GeNIe.
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• Implementing Importance Sampling
An importance sampling scheme has been designed, but it has not
been implemented yet. It will be necessary to experiment with the
proposed algorithm to see how effective it can be in reducing the num-
ber of rejected samples. The importance sampling schema relies on
the estimation of a new Dirichlet parameter vector using data. Sev-
eral methods were proposed by (Huang, 2005). It will be necessary
to determine which of the proposed estimation techniques works best
with the rest of the implementation of the method.

• Use of Histograms as Output
In Section 6.2.1 the current use of histograms was criticised. A research
opportunity here is to investigate the current quality of the generated
histograms and to see if for example weighting the samples will improve
the quality of the histograms. Another proposed idea in Section 6.2.1
is to let choosing a value for one of the CPT entries (by means of
bounds) influence all the histograms of all other CPT entries of the
family network.

• Mixture Experiments
During the search for a good sample generator, a very short litera-
ture study was done regarding mixture experiments. This was done
because mixtures have properties that resemble the discrete probabil-
ity distribution that have to be generated by the method. Both have
elements that cannot be negative, and all the elements of both must
sum to one. For the design of mixture experiments standard models
are used, examples are Simplex-Lattice designs or Simplex-Centroid
designs. The study of mixture experiments did not result in finding a
better sample generator. After finding and implementing the current
sample generator, the idea evolved that generating mixtures using the
sample generator developed for the method might be useful for mix-
ture experiments. It would be possible to specify constraints for the
mixtures and to let a program generate mixtures. Possible future re-
search is to investigate if there are any applications for automatically
and probabilistically generating mixtures.
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7.4 Concluding Remarks

This thesis ends with the last concluding remarks regarding the assignment,
the performed research, and the work done to implement the method.

Since not all goals set in Section 1.3 were met, the work is not completely
done. Some research questions still need to be solved and the created im-
plementation is not completely ready for integration with GeNIe. What has
been accomplished is an implementation that proves the concept presented
in (Druzdzel & van der Gaag, 1995). It is indeed possible to let an expert
state probabilistic information and to use this information to derive 2nd or-
der distributions over all the CPT entries. But experimental results show
that the method needs further fine-tuning, considering the results it cur-
rently generates. Even with very strictly specified constraints the generated
histograms currently do not give very clear advice on what value to choose
for a CPT entry. Possible solutions for this problem have been suggested in
Section 6.2.1.

Furthermore the method has its limitations. A limiting factor for the
method is the maximum number of parents a node has in a Bayesian net-
work. A node with a large number of parents, has a very large number of
CPT entries, which in turn results in a sample space with a very high num-
ber of dimensions. One possible problem connected to sampling in a space
with a high number of dimensions is a possible limitation of the accuracy
of the implementation of the truncated Dirichlet distribution. Inaccuracies
could possibly lead to a higher rejection ratio of samples. Another problem,
more likely to occur, is that sets of probability statements provided by the
expert can result in very few linear constraints. This can cause the linear
programming process to be not very successful in reducing the size of the
sample space. If the constrained volume is very small and the remaining
sample space is much larger, this will again cause a higher ratio of rejected
samples.

Basically what will happen is that it will take a very long time before
a valid sample, if it exists, will be found. Since there is currently an upper
limit implemented on the number of samples to generate before assuming
the existence of a conflict somewhere in the set of constraints, it will become
more likely that the method will be aborted before a valid sample is found.
The upper limit of samples will be reached more frequently.

Ending with a more positive note, the computation time the method
needs to generate results completely depends on the input of the user. Fac-
tors that are present independent of user input, for example the requirement
that every sample must be a valid probability distribution, have been dealt
with as efficient as possible. Every generated sample by default satisfies the
axioms of probability, and the ability to sample between probability bounds
without the use of rejection sampling has increased the efficiency of generat-
ing samples by many orders of magnitude. When the proposed importance
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sampling scheme is implemented, the efficiency of generating samples may
increase even more. It is even likely that, when using importance sampling,
the method will perform better in the situation the generated probability
bounds have not adequately reduced the sample space. Once valid samples
are found the method will increasingly focus on the area where the valid
samples were found.
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Appendix A

Results Experiment 1.1: HIV
Network

A.1 Constraints Family Network 1

• P (i |c) = 1:

◦ −x2 = 0,

◦ x2 + x3 > 0.

Extra constraints were added by the method to ensure that the CPT entries
would exist.

• P (¬i) > 0:

◦ x0 + x2 > 0.

• P (i) > 0:

◦ x1 + x3 > 0.
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A.2 Constraints Family Network 2

• P (i |c) = 1:

◦ −x4 − x5 − x12 − x13 = 0,

◦ x4 + x5 + x6 + x7 + x12 + x13 + x14 + x15 > 0.

• P (i) > P (n):

◦ x2 + x6 + x10 + x14 − x1 − x5 − x9 − x13 > 0.

• P (h |n) > P (h |i):
◦ x2x9 + x3x9 + x6x9 + x7x9 + x2x11 + x6x11

+ x2x13 + x3x13 + x6x13 + x7x13 + x2x15 + x6x15

− x1x10 − x3x10 − x5x10 − x7x10 − x1x11 − x5x11

− x1x14 − x3x14 − x5x14 − x7x14 − x1x15 − x5x15 > 0,

◦ x1 + x3 + x5 + x7 + x9 + x11 + x13 + x15 > 0,

◦ x2 + x3 + x6 + x7 + x10 + x11 + x14 + x15 > 0.

• 0.1 ≤ P (n |h) ≤ 0.25:

◦ 0.75x9 + 0.75x11 + 0.75x13 + 0.75x15

− 0.25x8 − 0.25x10 − 0.25x12 − 0.25x14 ≤ 0,

◦ x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 > 0,

◦ 0.1x8+0.9x9+0.1x10+0.9x11+0.1x12+0.9x13+0.1x14+0.9x15 ≤ 0.

Extra constraints were again added to ensure that all the CPT entries would
exist.

• P (¬n¬i¬c) > 0:

◦ x0 + x8 > 0.

• P (¬n¬ic) > 0:

◦ x4 + x12 > 0.

• P (¬ni¬c) > 0:

◦ x2 + x10 > 0.

• P (¬nic) > 0:

◦ x6 + x14 > 0.

• P (n¬i¬c) > 0:

◦ x1 + x9 > 0.
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• P (n¬ic) > 0:

◦ x5 + x13 > 0.

• P (ni¬c) > 0:

◦ x3 + x11 > 0.

• P (nic) > 0:

◦ x7 + x15 > 0.
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Appendix B

Results Experiment 1.2:
“Strict” Set

B.1 Generated Constraints

Family Network 1

• 0.0009 ≤ P (b) ≤ 0.0011:

◦ x1 + x3 + x5 + x7 ≤ 0.0011,

◦ −x1 − x3 − x5 − x7 ≤ −0.0009.

• 0.0018 ≤ P (e) ≤ 0.0022:

◦ x2 + x3 + x6 + x7 ≤ 0.0022,

◦ −x2 − x3 − x6 − x7 ≤ −0.0018.

• 0.0009 ≤ P (a |¬b,¬e) ≤ 0.0011:

◦ 0.9989 ∗ x4 − 0.0011 ∗ x0 ≤ 0,

◦ x0 + x4 > 0,

◦ 0.0009 ∗ x0 +−0.9991 ∗ x4 ≤ 0.

• 0.846 ≤ P (a |b,¬e) ≤ 1.0:

◦ −x1 ≤ 0,

◦ x1 + x5 > 0,

◦ 0.846 ∗ x1 +−0.154 ∗ x5 ≤ 0.

• 0.261 ≤ P (a |¬b, e) ≤ 0.319:

◦ 0.681 ∗ x6 − 0.319 ∗ x2 ≤ 0,

◦ x2 + x6 > 0,
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◦ 0.261 ∗ x2 +−0.739 ∗ x6 ≤ 0.

• 0.855 ≤ P (a |b, e) ≤ 1.0:

◦ −x3 ≤ 0,

◦ x3 + x7 > 0,

◦ 0.855 ∗ x3 +−0.145 ∗ x7 ≤ 0.

added statements

• P (¬b,¬e) > 0:

◦ x0 + x4 > 0.

• P (¬b, e) > 0:

◦ x2 + x6 > 0.

• P (b,¬e) > 0:

◦ x1 + x5 > 0.

• P (b, e) > 0:

◦ x3 + x7 > 0.
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Family Network 2

• 0.045 ≤ P (j |¬a) ≤ 0.055:

◦ 0.945 ∗ x2 − 0.055 ∗ x0 ≤ 0,

◦ x0 + x2 > 0,

◦ 0.045 ∗ x0 +−0.955 ∗ x2 ≤ 0.

• 0.81 ≤ P (j |a) ≤ 0.99:

◦ 0.01 ∗ x3 − 0.99 ∗ x1 ≤ 0,

◦ x1 + x3 > 0,

◦ 0.81 ∗ x1 +−0.19 ∗ x3 ≤ 0.

added statements

• P (¬a) > 0:

◦ x0 + x2 > 0.

• P (a) > 0:

◦ x1 + x3 > 0.

Family Network 3

• 0.009 ≤ P (m |¬a) ≤ 0.011:

◦ 0.989 ∗ x2 − 0.011 ∗ x0 ≤ 0,

◦ x0 + x2 > 0,

◦ 0.009 ∗ x0 +−0.991 ∗ x2 ≤ 0.

• 0.63 ≤ P (m |a) ≤ 0.77:

◦ 0.23 ∗ x3 − 0.77 ∗ x1 ≤ 0,

◦ x1 + x3 > 0,

◦ 0.63 ∗ x1 +−0.37 ∗ x3 ≤ 0.

added statements

• P (¬a) > 0:

◦ x0 + x2 > 0.

• P (a) > 0:

◦ x1 + x3 > 0.
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B.2 Generated Probability Bounds

Family Network 1

0.995604 ≤ x0 ≤ 0.997301,
0 ≤ x1 ≤ 0.000169323,
0.00047704 ≤ x2 ≤ 0.00162543,
0 ≤ x3 ≤ 0.000159428,
0.00089703 ≤ x4 ≤ 0.00109802,
4.23 · 10−7 ≤ x5 ≤ 0.001099,
0.000182831 ≤ x6 ≤ 0.00070164,
4.275 · 10−7 ≤ x7 ≤ 0.0010995.

Family Network 2

4.725 · 10−7 ≤ x0 ≤ 0.955,
5 · 10−9 ≤ x1 ≤ 0.19,
2.25 · 10−8 ≤ x2 ≤ 0.055,
4.05 · 10−7 ≤ x3 ≤ 0.99.

Family Network 3

4.945 · 10−7 ≤ x0 ≤ 0.991,
1.15 · 10−7 ≤ x1 ≤ 0.37,
4.5 · 10−9 ≤ x2 ≤ 0.011,
3.15 · 10−7 ≤ x3 ≤ 0.77.
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B.3 Histograms

Family Network 1

(a) P (¬e) (b) P (e)

Figure B.1: Entries for the node Earthquake

(a) P (¬b) (b) P (b)

Figure B.2: Entries for the node Burglary
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(a) P (¬a |¬b,¬e ) (b) P (a |¬b,¬e )

(c) P (¬a |b,¬e ) (d) P (a |b,¬e )

(e) P (¬a |¬b, e ) (f) P (a |¬b, e )

(g) P (¬a |b, e ) (h) P (a |b, e )

Figure B.3: Entries for the node Alarm
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Family Network 2

(a) P (¬j |¬a ) (b) P (j |¬a )

(c) P (¬j |a ) (d) P (j |a )

Figure B.4: Entries for the node JohnCalls

(a) P (¬a) (b) P (a)

Figure B.5: Entries for the node Alarm
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Family Network 3

(a) P (¬m |¬a ) (b) P (m |¬a )

(c) P (¬m |a ) (d) P (m |a )

Figure B.6: Entries for the node MaryCalls

(a) P (¬a) (b) P (a)

Figure B.7: Entries for the node Alarm



Appendix C

Results Experiment 1.2:
“Loose” Set

C.1 Generated Constraints

Family Network 1

• P (e) < 0.003:

◦ x2 + x3 + x6 + x7 < 0.003.

• P (e) > P (b):

◦ x2 + x6 − x1 − x5 > 0.

• P (b) < 0.002:

◦ x1 + x3 + x5 + x7 < 0.002.

• P (¬a |¬b,¬e) > 0.95:

◦ 0.05 ∗ x0 − 0.95 ∗ x4 > 0,

◦ x0 + x4 > 0.

• P (a |b, e) > 0.9:

◦ 0.1 ∗ x7 − 0.9 ∗ x3 > 0,

◦ x3 + x7 > 0.
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• P (a |¬b, e) < 0.4:

◦ 0.6 ∗ x6 − 0.4 ∗ x2 < 0,

◦ x2 + x6 > 0.

• P (¬a |b,¬e) < 0.09:

◦ 0.91 ∗ x1 − 0.09 ∗ x5 < 0,

◦ x1 + x5 > 0.

added statements

• P (¬b,¬e) > 0:

◦ x0 + x4 > 0.

• P (¬b, e) > 0:

◦ x2 + x6 > 0.

• P (b,¬e) > 0:

◦ x1 + x5 > 0.

• P (b, e) > 0:

◦ x3 + x7 > 0.

Family Network 2

• P (¬j |¬a) > 0.9:

◦ 0.1 ∗ x0 − 0.9 ∗ x2 > 0,

◦ x0 + x2 > 0.

• P (¬j |a) < 0.15:

◦ 0.85 ∗ x1 − 0.15 ∗ x3 < 0,

◦ x1 + x3 > 0.

added statements

• P (¬a) > 0:

◦ x0 + x2 > 0.

• P (a) > 0:

◦ x1 + x3 > 0.
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Family Network 3

• P (m |¬a) < 0.02:

◦ 0.98 ∗ x2 − 0.02 ∗ x0 < 0,

◦ x0 + x2 > 0.

• P (¬m |a) < 0.3:

◦ 0.7 ∗ x1 − 0.3 ∗ x3 < 0,

◦ x1 + x3 > 0.

added statements

• P (¬a) > 0:

◦ x0 + x2 > 0.

• P (a) > 0:

◦ x1 + x3 > 0.

C.2 Generated Probability Bounds

Family Network 1

0.945256 ≤ x0 ≤ 0.999983,
0 ≤ x1 ≤ 0.000179005,
4.13333 · 10−6 ≤ x2 ≤ 0.0029945,
0 ≤ x3 ≤ 0.000198894,
0 ≤ x4 ≤ 0.0499987,
5.55556 · 10−6 ≤ x5 ≤ 0.0019945,
0 ≤ x6 ≤ 0.0011973,
5 · 10−6 ≤ x7 ≤ 0.00199394.

Family Network 2

5 · 10−6 ≤ x0 ≤ 0.999997,
0 ≤ x1 ≤ 0.149999,
0 ≤ x2 ≤ 0.0999992,
3.33333 · 10−6 ≤ x3 ≤ 0.999995.
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Family Network 3

2.5 · 10−5 ≤ x0 ≤ 0.999998,
0 ≤ x1 ≤ 0.299992,
0 ≤ x2 ≤ 0.0199995,
1.66667 · 10−6 ≤ x3 ≤ 0.999975.
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C.3 Histograms

Family Network 1

(a) P (¬e) (b) P (e)

Figure C.1: Entries for the node Earthquake

(a) P (¬b) (b) P (b)

Figure C.2: Entries for the node Burglary
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(a) P (¬a |¬b,¬e ) (b) P (a |¬b,¬e )

(c) P (¬a |b,¬e ) (d) P (a |b,¬e )

(e) P (¬a |¬b, e ) (f) P (a |¬b, e )

(g) P (¬a |b, e ) (h) P (a |b, e )

Figure C.3: Entries for the node Alarm
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Family Network 2

(a) P (¬j |¬a ) (b) P (j |¬a )

(c) P (¬j |a ) (d) P (j |a )

Figure C.4: Entries for the node JohnCalls

(a) P (¬a) (b) P (a)

Figure C.5: Entries for the node Alarm
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Family Network 3

(a) P (¬m |¬a ) (b) P (m |¬a )

(c) P (¬m |a ) (d) P (m |a )

Figure C.6: Entries for the node MaryCalls

(a) P (¬a) (b) P (a)

Figure C.7: Entries for the node Alarm
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Abstract

Knowledge elicitation is difficult for expert systems that are based on probability theory. The elicitation
of probabilities for a probabilistic model of a problem requires a lot of time and interaction between the
knowledge engineer and the expert.

Bayesian networks (BNs) are an example of a structure that can be used to create a probabilistic
model. BNs need specific conditional probabilities. If an expert does not know these probabilities,
but knows other useful probabilistic information, this information generally cannot be used directly for
BNs. It will be necessary to perform calculations before the information is transformed into conditional
probabilities directly usable for BNs.

Druzdzel and van der Gaag (1995) have proposed a theoretical framework that would allow for the
direct use of other types of probabilistic information. This framework has been used as a starting point
for the implementation of a non-invasive elication method. There were many possibilities to improve
the framework. Among them were: finding methods for conflict detection and conflict resolution and
improving the sampling process that is at the core of the method.

1 Introduction

Bayesian networks (BNs) (Pearl, 1988) can be used
to store the knowledge of human experts in proba-
bilistic models. BNs are graphical models that very
efficiently represent joint probability distributions.
This efficiency is the result of conditional indepen-
dence assumptions that are added to the model.

To create a Bayesian network, its graph needs to
be defined and its CPTs for every node need to be
filled with the necessary probabilities.
Basically three approaches exist:

• Elicit the necessary information from a domain
expert.

• Learn the necessary information from data.

• The knownledge engineer that is creating the
BN estimates the probabilities himself, using
relevant literature.

Both the graph and the CPTs can be created us-
ing all of the methods. Depending on the applica-
tion one method may be more appropriate than the
other. Generally, in situations where there is not
enough data, or no data at all, elicitation of knowl-
edge from experts is the only viable approach to
get the necessary probabilities for a model.

Knowledge elicitation for systems based on prob-
ability theory is difficult. To describe this difficulty
in a nutshell: the expert has to assign probabili-
ties, which are numerical values, to all the possible
events the application is modeling. Beside the fact
that the number of probabilities increases exponen-
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tially with the size of the model, experts may find
it difficult to assign an exact value to an event.
The probabilities stated by an expert are subjec-
tive, which means they represent the degree of be-
lief the expert has that the events the probabilities
describe will occur. When an expert is stating a
(subjective) probability, he or she is usually not
performing mental calculations (R. Cooke, 1991).
Experts will generally rely on rules of thumb, or
heuristics. Using heuristics can cause an expert to
become biased. The expert may not be able to
provide probabilities that accurately represent the
true probabilities of the events to be modeled. To
counter this bias the expert will need to be cal-
ibrated. Calibration is a difficult, but necessary
process to acquire probabilities that approach the
“real” probabilities more closely.

After calibration the elicitation process can be-
gin. Research in knowledge elicition has shown that
asking an expert to state probabilities directly gen-
erally leads to probability estimates of low quality
(R. Cooke, 1991). It is generally better to use an
indirect approach that uses a sort of betting game
to determine the desired probabilities (R. Cooke
(1991); Clemen and Reilly (2003)).

Until now it is assumed that the expert actually
can give, maybe by using betting games, an esti-
mate of the desired probabilities. However, it is
possible that an expert cannot give an estimate for
a certain probability directly, but only implicitly by
estimating other probabilities first and calculating
the desired probability using, for instance, Bayes’
rule. Also an expert may have information that is
not quantitative of nature, i.e. not in the form of
numerical probabilities. Other types of probabilis-
tic information exist that are qualitative of nature
and cannot be directly interpreted as probabilities
for a Bayesian network. If the expert can provide
these types of information and it is relevant for the
model to be developed it would be very inefficient
if it would be impossible to use this information for
the model.

If it were possible to use probabilities and prob-
abilistic information other than the necessary con-
ditional probabilities directly this would make the
eliciation process easier for the expert. Here with
easier it is meant that any information relevant to
the model can now be be used for filling the CPT
entries of the Bayesian network, and it would no
longer be necessary to let the expert transform the

information he or she has into conditional probabil-
ities that can be directly put in the BN. According
to (Druzdzel & van der Gaag, 1995) such an elicita-
tion method can be considered to be non-invasive.
They define non-invasive as:

“Allowing any type of probabilistic infor-
mation, quantitative or qualitative of na-
ture, the expert is willing to state to be
interpreted directly for the elicitation of
probabilities for a Bayesian network.”

Druzdzel and van der Gaag (1995) have proposed
a theoretical framework for an elicitation method
that lets an expert specify various statements of
qualitative and quantitative nature and interprets
these statements as constraints used to guide the
determination of the CPT entries for a Bayesian
network.

2 Related Work

A lot of work has been done in knowledge elici-
tation in general (N. J. Cooke, 1994), many dif-
ferent types of interviewing and observation tech-
niques exist. Specifically for eliciting probabilities
usually indirect elicitation techniques are used to
elicit probabilities from experts. The most popular
techniques are betting games and lotteries (Clemen
& Reilly, 2003). In the case of a binary variable A
with values true and false, a betting game works as
following, two bets are presented to the expert:

1. Win $X if A is true.
Lose $Y if A is false.

2. Lose $X if A is true.
Win $Y if A is false.

X and Y represent the amount of money that is put
into the betting “pot”. The knowledge engineers
choose the values for X and Y. The idea is to ask
the expert to choose between the bets and to adjust
the values of X and Y until the expert is indifferent
between the bets. When the point of indifference is
reached, the expected values of the two bets must
be equal. Equating the two expected values and
solving for the probability that A is true gives:

P (A = true) =
Y

X + Y
.
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Now the determined values of X and Y can be used
to approximate the probability that A is true, and,
respectively, the probability that A is false. The ap-
proach is not without problems, some people may
not like the betting analogy. For these people, the
game may be more distracting than direct probabil-
ity assessment and the result will be opposite of the
original intention of the game. Also, most people
do not like the idea of losing money although the
game is purely hypothetical. This “fear” of losing
money will have an influence on the decision that
the expert will make when picking bets (Clemen &
Reilly, 2003). Another type of game is the lottery:
here the expert has to choose between two different
lotteries:

1. Win Prize X if event A is true.
Win Prize Y if event A is false.

2. Win Prize X with know probability p.
Win Prize Y with probability 1–p.

The second lottery serves as a reference, where the
mechanism to get the probability must be well de-
fined. This might be spinning a wheel with two ar-
eas (true and false) or drawing a colored ball from
a collection of balls that has a color distribution
equal to the probability distribution defined by p.
Now, just as with the betting game, the expert is
asked to choose the lottery he would like to try.
After the expert chooses a lottery, the knowledge
engineer changes the value of p to make the other
lottery more attractive to the expert. This pro-
cess continues until the expert is again indifferent
between the lotteries. At this point, the current
value of p is the probability that should be cho-
sen for the event A = true. Interesting to notice is
that the lottery device uses a probability distribu-
tion as reference and the expert has to choose the
preferred lottery by looking at the values of the dis-
tribution. The numbers of the distribution might
again influence the expert and to solve this prob-
lem, a graphical representation of the distribution
could be used. One example is what Clemen and
Reilly call a probability wheel, a pie chart where the
different areas represent the probabilities of the dis-
tribution. By changing the boundaries of the areas,
the probabilities change. The visual representation
of this process might give the expert a better view
of the situation, and improve his probability esti-
mates. Also other graphical representations could

be used. GeNIe, software developed at University
of Pittsburgh’s Decision System Lab, allows the use
of probability wheels and bar charts for determin-
ing probabilities. Just as betting games are not
always accepted by experts, lotteries also may have
some negative aspects. Again some people may not
like playing games or have difficulty getting ‘into’
the game. Both methods can be expanded to be
able to handle discrete variables (with more than
two values) and continuous variables.

These techniques are helpfull when an expert can
give an estimation of the desired probability. When
the expert cannot produce an estimate for the de-
sired probability, but has other relevant and useful
knowledge, it should be possible to use the informa-
tion for the model. There do exist several method-
ologies that are not based on probability theory
and that can incorperate other types of knowledge
into a model. Two examples are Possibility Theory
(Zadeh, 1978), that by using non-crisp logic allows
for dealing with uncertain and imprecise informa-
tion, and Dempster-Shafer theory (Shafer, 1976),
which is a generalization of the Bayesian theory
of subjective probability and focuses more on be-
lief functions and the degree of belief one has in a
statement.

The approach proposed by Druzdzel and
van der Gaag (1995) is to consider the distribution
hyperspace of all possible joint probability distri-
butions over V . A point somewhere in this hyper-
space will be the true probability distribution, Pr,
over the set of variables V . If there is no infor-
mation available, qualitative or quantitative, then
the Pr can be any point in the hyperspace. Once
more information is known about Pr, some of the
probability distributions in the hyperspace will be-
come incompatible with this information. Proba-
bility elicitation can be looked upon as constraining
the distribution hyperspace as much as possible to
find the true distribution Pr. All information for
the distribution Pr is expressed as constraints for
the hyperspace, and, assuming that all compatible
distributions are equally likely, 2nd order probabil-
ity distributions over the probabilities of the distri-
bution Pr are derived. These distributions are used
for determining the probabilities of the joint prob-
ability distribution. Since the method allows the
use of various types of probabilistic information it
is possible to use any information the expert is will-
ing to state. This allows for the process of eliciting
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probabilities to be non-invasive.

2.1 Canonical Form

The basic idea of the approach is to have a canon-
ical form for the interpretation of probabilistic in-
formation. The form builds on the property that
any joint probability distribution on a set of vari-
ables V is uniquely defined by the probabilities of
all possible combinations of values for all variables
from V . With all these values known, any prob-
ability over the set V can be computed by using
marginalization and conditioning. Combinations
of values for all variables are called constituent as-
signments. The probabilities of constituent assign-
ments in a joint probability distribution are called
its constituent probabilities. The authors look upon
the set of all possible joint probability distributions
on V as spanning a hyperspace whose dimensions
correspond with constituent probabilities.

Any information about the true distribution Pr
can now be represented as a system of (in)equalities
with the constituent probabilities as unknowns.
Any solution of this system will be a joint prob-
ability distribution that is compatible with all the
specified probabilistic information. If there are no
solutions, then the provided information is incon-
sistent.

Since all constituent assignments are mutually
exclusive, a probability Pr (b) can be expressed
as the sum of the probabilities of the constituent
assignments b is built from. So from Pr (b) =∑

Pr (ci) the authors found that Pr (b) can be ex-
pressed as

d1x1 + d2x2 + · · ·+ dkxk ,

where xi = Pr (ci), i = 1, . . . , k, and di = 1 if the
constituent xi is part of b and di = 0 otherwise.

2.2 Interpretation of Probabilistic
Information

Different types of probabilistic information can be
interpreted and translated into the canonical form
so that it can be used for the elicitation process.
The most basic form of probabilistic information
that has to be interpreted are the axioms of prob-
ability. A point in the hyperspace must be com-
patible with the axioms or it will not be a valid
probability distribution.

One of the axioms states that the probability of
a true event, Pr (true), is equal to 1. This means
that the sum of the probabilities of the distribution
should add up to 1. This axiom can be translated
into the canonical form by the equality

x1 + · · ·+ xk = 1 ,

where xi = Pr (ci) , i = 1, . . . , k. Another axiom
states that any probability must be a nonnegative,
real number. So this means that all constituent
probabilities must be larger or equal to 0. In canon-
ical form this can be expressed as

xi ≥ 0 ,

for i = 1, . . . , k. Also all probabilities must be
smaller than or equal to 1, but this is implied by
the two statements above.

The authors have defined some types of proba-
bilistic information of a quantitative nature:

1. Point estimate.

2. Probability intervals.

3. Comparison.

A point estimate is a statement in the form Pr (b) =
p, 0 ≤ p ≤ 1, where b is an assignment for an arbi-
trary subset of variables. For a conditional proba-
bility Pr (b1 |b2 ) a point estimate is in roughly the
same form, but the conditional probability is first
transformed into Pr(b1b2)

Pr(b2)
and the final canonical

form will become:

Pr (b1b2)− p · Pr (b2) = 0 .

An extra constraint has to be added to the system.
Pr (b2) has to be larger than 0 or else the con-
ditional probability will become infinite and thus
invalid. So, the extra added constraint is the in-
equality:

Pr (b2) > 0 .

Probability intervals and comparisons have similar
canonical representations. A probability interval
has instead of one bound, an upper and a lower
bound: p1 ≤ Pr (b) ≤ p2. A comparison is between
two probabilities and has the form: a1 · Pr (b1) ≤
a2 · Pr (b2), where a1 and a2 are non-negative real
numbers.

The authors have also defined some types of
probabilistic information that are qualitative of na-
ture:
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1. Qualitative influences.

2. Qualitative synergies.

A qualitative influence is a symmetric property de-
scribing the sign of probabilistic interaction be-
tween two variables V1 and V0, and builds on an
ordering of these variables’ values. Three different
types of qualitative influences exist: positive, neg-
ative, and zero qualitative influences. A positive
qualitative influence expresses that when a higher
value of V1 is observed, it is more likely that higher
values for V0 will also be observed. This is denoted
by S+ (V1, V0). The condition is that this relation
is valid if and only if for all values v0m

of V0, for
all pairs of distinct values v1i > v1j of V1, and for
all possible assignments b for the set of V0’s direct
predecessors other than V1, it is valid that

Pr (V0 ≥ v0m |v1ib ) ≥ Pr
(
V0 ≥ v0m

∣∣v1j b
)

.

For the negative and zero qualitative influences a
similar expression exists.

Another type of qualitative probabilistic infor-
mation is a qualitative synergy. Two types of syner-
gies are: additive synergies and product synergies.
Both types come in the form of positive, negative,
or zero variants.

Additive synergies describes the joint influence
of two variables V1 and V2 on a third variable V0,
and, similarly to qualitative influence, builds on
an ordering of these variables’ values. A positive
additive synergy of V1 and V2 with respect to V0

expresses that the joint influence of V1 and V2 is
greater than the sum of their individual influences.
This is denoted by Y + ({V1, V2} , V0). The condi-
tion is that this relation is valid if and only if for
all values v0m of V0, for all pairs of values v1i > v1j

of V1 and v2i′ > v2j′ of V2, and for all possible as-
signments b for the set of V0’s direct predecessors
not including V1 and V2, it is valid that

Pr
(
V0 ≥ v0m

∣∣v1iv2i′ b
)

+

Pr
(
V0 ≥ v0m

∣∣∣v1j v2j′ b
)

≥ Pr
(
V0 ≥ v0m

∣∣∣v1iv2j′ b
)

+

Pr
(
V0 ≥ v0m

∣∣v1j v2i′ b
)

.

As with the qualitative influences, negative additive
synergy and zero additive synergy are defined in a
similar manner.

Product synergies describe the interaction be-
tween two variables V1 and V2 conditional on their
common descendant V0 and expresses the sign of
what is known as inter causal influence between V1

and V2. The most common type of product synergy
is the negative product synergy. This type captures
the notion of “explaining away.” The authors state
that the variables V1 and V2 exhibit negative prod-
uct synergy with respect to a particular value v0m

of variable V0, written as X− ({V1, V2} , v0m
), if for

all pairs of values v2i > v2j of V2 and for all possible
assignments b for the set of V0’s direct predecessors
not including V1 and V2, it is valid that

Pr (V1 ≥ v1i
|v2i

v0m
b ) ≤

Pr
(
V1 ≥ v1i

∣∣v2j v0mb
)

.

Positive and zero product synergy are defined in a
similar manner and the translation to the canonical
form is performed in the same way as qualitative
influences and additive synergies. A difference be-
tween product synergies and additive synergies is
that product synergies are with respect to separate
values of the common effect V0. Thus there are as
many product synergies as there are values of V0.

2.3 Elicitation of Probabilities

To derive the 2nd order distributions for the proba-
bilities to be assessed the authors have proposed to
use sampling. For the computation of the 2nd or-
der distributions randomly selected points from the
distribution hyperspace, under the assumption that
all points in the hyperspace are equally likely to be
the true distribution, are selected. Every selected
distribution is verified to be sure that it is compati-
ble with all available information. All distributions
that are compatible with all constraints are col-
lected and used for the generation of the 2nd order
distributions over the probabilities. The process is
computationally expensive as it involves generating
and investigating joint probability distributions.

3 Theory

The framework proposed by (Druzdzel &
van der Gaag, 1995) was used as a starting
point for an implemenation of a non-invasive elici-
tation method. The framework was implemented
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and improved, which was necessary to make it
feasible.

3.1 Decomposing a Bayesian Net-
work

The BN is decomposed into smaller sub networks
to make the J-PDFs that the method has to work
with have a more manageable size. A method for
decomposing a BN has been designed. The idea is
to break up the BN into families; sub networks that
consist out of a node and its parents. Using family
networks (FNs), the expert can focus on providing
information for a only a small part of the network
without having to worry about other nodes.

3.2 Translation of Expert State-
ments into Constraints

When the BN is decomposed, the expert can pro-
vide probabilistic statements per family for each
family. Once the expert is done, the statements will
have to be translated into constraints for the prob-
ability hyperspace. The equations/inequalities are
represented by binary expression trees. The reason
for this choice was that binary expression trees are
most commonly used for similar problems.

The parsing of the different types of probabilis-
tic statements was designed in such a way that the
more complex probability statements make use of
the simpler ones. An example is the qualitative
influence statement. This statement can first be
translated into a number of (quantitative) probabil-
ity statements. The number of statements depends
on the number of variables in the family network.
These probability statements can be translated into
one or more equations/inequalities consisting out
of constituents and the basic arithmetic elements.
These equations are the final form and are repre-
sented using expression trees. Instead of generat-
ing the resulting expression trees directly from the
qualitative statement, first the probability state-
ments are generated, which are then parsed and
then from each probability statement the resulting
trees are generated. A similar mechanism is nec-
essary for conditional probability statements. An
extra constraint must be added to ensure that the
conditional part of the probability has a probabil-
ity larger than 0. A simple example would be: the
statement P (A |B ) > 0.2 needs an extra statement

P (B) > 0 because otherwise the conditional prob-
ability does not exist.

3.3 Identification of Probability
Bounds

When the system has acquired the constraints from
the expert, it could start the sampling process,
but this will be quite inefficient. Druzdzel and
van der Gaag (1995) propose that first a prepro-
cessing step should be performed to reduce the size
of the sample space. They have envisioned using
linear programming (LP) to tighten the bounds
for every constituent. To calculate the upper and
lower bounds for each constituent, the proposed LP
method has been used.

It is important to notice that only the linear con-
straints provided by the expert can be used for
these calculations. It was researched how it would
be possible to automatically determine if a con-
straint was linear and to extract the necessary in-
formation from the constraints to create the matri-
ces necessary for the LP procedure.

Using some knowledge of how the different con-
straints typically look like and by implementing
some symbolic mathematical operations for the ex-
pression trees, a method was developed that manip-
ulates the trees into a standard form that makes
it very easy to decide if a constraint is linear or
nonlinear. There may exist situations where this
method will fail, but in these cases the method will
mistake a linear equation for an nonlinear. In this
situation the constraint will be excluded from the
LP process, which is not as bad as trying to include
a nonlinear constraints in the LP process.

Using the LP procedure does indeed decrease the
size of the sample space and thus will improve the
efficiency of the sampling process, but because the
nonlinear constraints are not considered in this pro-
cess, there should still be more to gain in sampling
efficiency.

3.4 Derivation of the 2nd Order Dis-
tributions

To generate samples for evaluation, a truncated
Dirichlet distribution (TDD) has been used. This
is a variant of the Dirichlet distribution where the
entries of the sample vector can be constrained by
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lower and upper bounds. A vector X generated
from a TDD, with

X = (x1, . . . , xN )T
,

and

x−N = 1−
N−1∑

i=1

xi,

has a density function for vector X (x1, . . . , xN−1)
T

(Fang, Geng, & Tian, 2000):

c−1
n−1∏

i=1

xγi−1
i

(
1−

n−1∑

i=1

xi

)γN−1

,

X−N ∈ VN−1 (A,B) ,

where c is the normalizing constant, and
VN−1 (A,B) is the volume created by lower bound
vector A = (a1, . . . , aN ) and upper bound vector
B = (b1, . . . , bN ):

VN−1 (A,B) =



X :

0≤ai≤xi≤bi≤1,

i=1,...,N−1,

aN≤1−
∑N−1

i=1
xi≤bN



 .

When all entries of vector A are 0 and the entries
of vector B are 1, the TDD reduces to a standard
Dirichlet distribution. When all the parameters γi

are chosen to be 1 the distribution reduces to a
uniform distribution, its samples are uniformly dis-
tributed over a convex polyhedron

TN (A, B) =
{
X :0≤ai≤xi≤bi,i=1,...,N,

∑N

i=1
xi=1

}
.

Samples from the TDD are generated by sequen-
tially generating samples from the marginal dis-
tributions of the TDD, which according to (Fang
et al., 2000) are truncated beta distributions,
Tbeta

(
γk,

∑N
i=1 γi −

∑N−1
i=k γi; ξk, ηk

)
. Tbeta is a

truncated version of the standard Beta (α, β) dis-
tribution, where ξ is the lower bound and η is the
upper bound. For every entry of the TDD vector
new values for ξk and ηk must be calculated.

An algorithm can be created for generating sam-
ples from a TDD by sequentially generating sam-
ples from a truncated beta distribution with the
appropriate parameters. This algorithm has been
described in Figure 1.

Here F−1
k (·) is the inverse of the cu-

mulative distribution function of the

Tbeta
(
γk,

∑N
i=1 γi −

∑N−1
i=k γi; ξk, ηk

)
distri-

bution.
To calculate F−1

k (x), the cumulative distribution
function Fβ (x) and the inverse cumulative distri-
bution function F−1

β (x) of the standard Beta (α, β)
distribution are used.

F−1
k (x) = F−1

β (Fβ (ξk) + x ∗ (Fβ (ηk)− Fβ (ξk))) .

3.5 Conflict Detection

All the constraints have to be satisfied for a sam-
ple to be valid, any sample that does not satisfy
all constraints must be discarded. There is one big
problem with this approach: conflicting constraints
will prohibit any sample to be valid. A set of con-
straints is conflicting with each other when it is
impossible for all the constraints to be satisfied at
the same time. Detecting conflicts is hard, one can
never be sure that the absence of valid samples is
because of conflicting constraints or that the sam-
pling procedure just has not hit inside the feasi-
ble area. Pin-pointing the conflicting constraints is
even harder, and there does not yet exist a good
procedure for finding conflicting constraints for the
nonlinear, non convex case, which is the worst case
situation encountered when applying the method.

Two heuristics are being used to aid the the
expert when deciding which constraint(s) need to
be changed or removed. One heuristic (major-
ity heuristic) was devised by the author and the
other, the constraint effectiveness heuristic, was
created by Chinneck (2002). The majority heuris-
tic is based on the idea that when the majority
of the constraints evaluates a sample as true that
there might be something wrong with the minor-
ity of constraints that has evaluated the sample
as false. In this situation 1 is added to the mi-
nority counter for each constraint that belonged to
the minority. In the situation that the majority
evaluated the sample as false, the minority coun-
ters are left unchanged. The reason for this is that
there are no conflicting constraints only when all
constraints have simultaneously evaluated a sam-
ple as true at least once, when all constraints have
simultaneously evaluated a sample as false there is
no guarantee that the set of constraints does not
contain any conflicting constraints. Thus when a
constraint evaluates a sample as true, this can be
considered as stronger evidence then when it eval-
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Input:

• a parameter vector γ = (γ1, . . . , γN )T ,

1. For k = N − 1, k > 0, k = k − 1

(a) Calculate the values for ξk and ηk using

ξk = max

(
ak

1−∑N−1
j=k+1 xj

, 1−
∑N

i=1 bi −
∑N−1

j=k bj

1−∑N−1
j=k+1 xj

)
, (1)

ηk = min

(
bk

1−∑N−1
j=k+1 xj

, 1−
∑N

i=1 ai −
∑N−1

j=k aj

1−∑N−1
j=k+1 xj

)
. (2)

Where
∑N−1

j=k+1 xj is defined as 0 when k + 1 > N − 1.

(b) Generate a random value uk from a uniform U [0, 1] distribu-
tion.

(c) Calculate xk =
(
1−∑N−1

j=k+1 xj

)
F−1

k (uk)

2. Calculate xN = 1−∑N−1
i=1 xi

3. Output vector X = (x1, . . . , xN )T ∼ TD (A,B; γ1, . . . , γN )

Figure 1: Algorithm for generating samples from a truncated Dirichlet distribution using the method
described by Fang et al. (2000)

uates the sample as false. After all samples have
been processed by the heuristic, some steps are per-
formed to normalize the results so that each state-
ment provided by the expert gets a heuristic value
between 0 and 1. The closer the value is to 1.0 the
“worse” the constraint is.

The majority heuristic will most likely work bet-
ter if the set of constraints is larger. If the num-
ber of constraints is very small it might become
less frequent that a majority of constraints evalu-
ates samples as true. In this situation the minority
counters of the constraint will be hardly updated or
even not at all. When this occurs the results from
the heuristic may not be very useful and it might
be better that Chinneck’s constraint effectiveness
heuristic is used for making decisions.

In both the heuristics high values are “bad”, and
when the results are presented to the user, the con-
straints are sorted so that the highest ranking ones
are on the top of the list. A high value for the
constraint effectiveness heuristic means that a con-
straints has rejected a large number of the samples

and that it might be to constraining. A high value
for the majority heuristic means that a constraint
or constraints from an expert statement have been
minority “voters” for a large number of the samples
and that it may need to be changed or removed.

3.6 Merging Family Networks

Merging the family networks and the samples gen-
erated for the nodes in the different family networks
is not an easy process. The sample process has been
performed on each of the family networks indepen-
dently and possibly the results for the CPT entries
may vary per FN. Since different FNs contain differ-
ent variables it is likely that different FNs do not
have the same set of constraints. The difference
in constraints has influenced the sampling process
and through the collected samples, the shapes of
the histograms for the different CPT entries of the
nodes. Another problem that contributes to the
difficulty of merging FNs is that when the BN is
decomposed in the FNs, some nodes will be a child
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node in one FN and a parent in possibly multiple
other FNs. When this happens the node will have
different CPTs for the different FNs. When the
node is a child, its values will be conditioned on all
its parents. When the node is a parent, it may not
have any parents itself in this FN and in this case it
will have a prior distribution and not a conditional
one. This will result in probability tables with dif-
ferent sizes. A binary node without parents only
has 2 entries, but in another FN the same node
may be a child with 2 parents and have a CPT
with 8 entries. Somehow, when merging the FNs,
the different sample sets must be merged together
to get the sample sets and the histograms for the
CPT entries for the node in the original BN. After
merging the FNs into the BN, the size of the CPT
for every node is equal to the largest CPT size of
the node among the FNs. For nodes that have par-
ents this will be the FN where they are the child of
the FN. Nodes that do not have any parents, will
have the same size CPT in any FN they appear in.
The CPT size for these nodes will also not change
after merging the FNs into the BN.

A merging method for merging the FNs into the
BN that is mathematical sound was not found.
Currently, the FNs with their samples and his-
tograms are shown to the user of program (most
likely a domain expert and/or a knowledge engi-
neer), and the user must decide how he or she wants
to fill in the BN. This was already the original idea,
to give the user more control over the end result,
but with just one histogram for each entry of the
nodes.

4 Experiment

An experiment was done to evaluate the per-
formance of the implementation created for the
method.

Goal The goal for the experiment is to compare
the influence of two different probability statement
sets on the resulting histograms.

Design The Bayesian network used in the experi-
ment is the alarm system network by (Pearl, 1988).
Two sets of constraints were created for this net-
work. The first set of constraints can be considered

as a sort of control group. For half of the CPT en-
tries of the BN probability statements were created
that would be in the form

0.9x ≤ P (·) ≤ 1.1x,

where P (·) is the probability of a CPT entry and
x is the real value of the entry. These statements
create an interval around the real value, where the
upper and lower bound differ 10% from the real
value.

The second set of probability statements was cre-
ated in a manner that is more likely to be encoun-
tered in real life. Normally an expert would be nec-
essary to create the statements and he or she would
probably be able to translate rules of thumb into
probability statements. For the experiment prob-
ability statements have been created that describe
the CPT entries of the BN loosely. The statements
are still based on the true values of the CPTs, but
no intervals have been specified and values in the
statements have been chosen to be less restrictive.

Results Both the probability statement sets have
been inputted in the method together with the
alarm system BN. Three different family networks
were identified.

For both sets of probability statements the
method has generated constraints that were used
for the sampling process. The probability state-
ments are divided over the FNs. Only statements
that are relevant for a FN are translated into con-
straints for the sampling process. After these con-
straints were generated the Linear Programming
process described in Section 3.3 was run using the
linear constraints. All the constraints were lin-
ear, so all could be used to determine probability
bounds for all the family networks.

The probability bounds improve the efficiency of
the method enormously. Only a very small sub vol-
ume of the whole hypercube needs to be sampled
now. In the case of FN 1 the probability bounds
create a new hypercube that has a volume of only
6.6 ·10−27 times the whole hypercube volume. And
only the intersection of the 7-simplex with this hy-
percube will be searched by the sample generator.

After the generation of the constraints and the
calculation of the probability bounds the sampling
process is started. After the method has found 1000
samples that satisfy all the constraints, the samples
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are used to calculate samples for the CPT entries
of the FNs. The result of these calculations are
histograms for the different CPT entries.

Conclusion Some general observations can be
made about a large number of the generated his-
tograms. The shape of most of the histograms is
similar. The histograms resemble a uniform distri-
bution. One example is Figure 2(a), a histogram
generated from the “strict” probability statement
set for the Alarm node.

A likely cause for this shape to be present in so
many histograms is the use of uniform sampling on
the simplex. The generated samples of the joint
probability distributions are all as likely to occur,
so when calculating samples for the CPTs these
samples will also show the same characteristics.

Not all the histograms of the two experiments
have a uniform shape. In the smaller family net-
works consisting out of the nodes Alarm and John-
Calls or Alarm and MaryCalls, the histograms cre-
ated for the Alarm node did not have a uniform
shape. An example is shown in figure 2(b).

(a) Histogram for entry
P (¬a |¬b, e )

(b) Histogram of P (a)
with a nonuniform shape

Figure 2: Example histograms

Other examples exist for nonuniform histogram
shapes. These differences resulted from using dif-
ferent constraints. The “strict” and “loose” proba-
bility statement sets have resulted in different his-
tograms for the same entries. Mostly the differ-
ences are in respect to upper and lower bounds,
but in a few situations the shape also was differ-
ent. An example is given in Figure 3. The “strict”
version of the histogram is much more precise than
its “loose” counterpart. This is due to the con-
straint 0.0009 ≤ P (b) ≤ 0.0011. This is the only
constraint in the “strict” statement set that has a

(a) P (b), “strict” state-
ments

(b) P (b), “loose” state-
ments

Figure 3: Different histograms resulting from the
difference in the statement sets

direct influence on the the entry P (b). The other
statements describing the same family network will
have an influence, but not as much as this one. The
“loose” statement set has 3 constraints that have a
direct influence on P (b):

• P (b) < 0.002,

• P (e) < 0.003,

• P (e) > P (b).

Since these constraints are less precise than the con-
straints from the “strict” set this allows for more
samples to be valid. Which results in histograms
that will vary over a larger range. In this case the
exact shape is not easy to explain, it also depends
on the other constraints used to sample the family
network. And since the “loose” constraints allow
for more samples to be valid, it could be possi-
ble that 1000 samples is not enough in larger di-
mensional spaces to get a good distribution of the
samples in the constrained volume that satisfies all
constraints.

An estimate can be given of the size of the con-
strained volume created by the two probability
statement sets. The exact volumes are hard to cal-
culate so they are approximated by a n-dimensional
bounding box. This bounding box is created by the
probability bounds calculated by the linear pro-
gramming process. The lower bounds are sub-
tracted from the upper bounds to get the size of
the edges of the box. By multiplying the edges the
volume of the bounding box is calculated.
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The volumes for the boxes are:

• “Strict” set: 6, 62355 · 10−27,

• “Loose” set: 2, 27375 · 10−21.

This means that the volume of the sample space
of the “loose” probability statement set is a factor
343283, 1356 larger than the volume of the “strict”
set.

The exact influence of the volume of the sample
space is unknown, and the influence of finding more
samples on the shape of the histograms has not
been investigated any further. For now the differ-
ences in the histogram shapes are attributed to the
differences in the relevant probability statements.

5 Conclusions

Work on the method is not completely done yet.
Some research questions still need to be solved and
the created implementation is not completely ready
for integration with GeNIe1. What has been ac-
complished is an implementation that proves the
concept presented in (Druzdzel & van der Gaag,
1995). It is indeed possible to let an expert state
probabilistic information and to use this informa-
tion to derive 2nd order distributions over all the
CPT entries. But experimental results show that
the method needs further fine-tuning, consider-
ing the results it currently generates. Even with
very strictly specified constraints the generated his-
tograms currently do not give very clear advice on
what value to choose for a CPT entry.

Furthermore the method has its limitations. A
limiting factor for the method is the maximum
number of parents a node has in a Bayesian net-
work. A node with a large number of parents, has
a very large number of CPT entries, which in turn
results in a sample space with a very high number
of dimensions. One possible problem connected to
sampling in a space with a high number of dimen-
sions is a possible limitation of the accuracy of the
implementation of the truncated Dirichlet distribu-
tion. Inaccuracies could possibly lead to a higher
rejection ratio of samples. Another problem, more
likely to occur, is that sets of probability statements
provided by the expert can result in very few linear

1Software for developing Bayesian Networks, developed
at the Decision Systems Laboratory

constraints. This can cause the linear program-
ming process to be not very successful in reducing
the size of the sample space. If the constrained vol-
ume is very small and the remaining sample space
is much larger, this will again cause a higher ratio
of rejected samples.

Basically what will happen is that it will take a
very long time before a valid sample, if it exists, will
be found. Since there is currently an upper limit
implemented on the number of samples to generate
before assuming the existence of a conflict some-
where in the set of constraints, it will become more
likely that the method will be aborted before a valid
sample is found. The upper limit of samples will
be reached more frequently.

Ending with a more positive note, the computa-
tion time the method needs to generate results com-
pletely depends on the input of the user. Factors
that are present independent of user input, for ex-
ample the requirement that every sample must be a
valid probability distribution, have been dealt with
as efficient as possible. Every generated sample by
default satisfies the axioms of probability, and the
ability to sample between probability bounds with-
out the use of rejection sampling has increased the
efficiency of generating samples by many orders of
magnitude. When the proposed importance sam-
pling scheme is implemented, the efficiency of gen-
erating samples may increase even more. It is even
likely that, when using importance sampling, the
method will perform better in the situation the gen-
erated probability bounds have not adequately re-
duced the sample space. Once valid samples are
found the method will increasingly focus on the
area where the valid samples were found.
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