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ABSTRACT

Machine learning techniques have become increasingly more sophisticated and useful over the last
decades. In particular, the class of Kernel Machines has been shown to outperform many other techniques
in various classification and regression problems. Its performance, however, depends to a large extent on
the kernel function and hyperparameters that are being used. Unfortunately, there is no analytic method to
aid the user in finding a proper kernel function and hyperparameters. This selection procedure normally
comes down to a “trial-and-error” approach, which limits the user in the range of kernel functions that can
be considered. In this report we present an automated approach for finding a good kernel function and
optimal hyperparameters using Evolutionary Computation techniques. Evolutionary Computation is class
of optimization techniques that is inspired by biological evolution. Potential solutions to the problem under
consideration are iteratively generated, mutated, recombined, and evaluated. The search process converges

to good solutions, since it biases reproduction toward the fittest individuals (cf. “survival of the fittest”).

Two separate evolutionary models are proposed in this report. The first of these two models uses Evolution
Strategies to rapidly find optimal hyperparameters. The second model aims to improve the generalization
capacity of the machine by evolving complex kernel functions using Genetic Programming. Empirical stud-
ies show that our Evolution Strategies approach is able to find competitive hyperparameters, as compared
with traditional methods, in less time for regression problems. Classification problems are problematic, due
to the discontinuity of the error surface. Nonetheless, it has to be noted that the approach is still able to find
reasonable solutions in a time efficient manner. The Genetic Programming approach, however, is shown
to improve the generalization capacity of the machine only marginally. In most practical applications this

minor improvement will not justify the high computational requirements of the model.

Lastly, we present a study on the reliability of Kernel Target Alignment as a performance measure for Kernel
Machines. The main advantage of Kernel Target Alignment is the computational efficiency, as compared
with other performance measures. Nonetheless, our empirical study suggests that Kernel Target Alignment
does not reliably approximate the true generalization performance of a Kernel Machine. Therefore, the use

of this measure as an objective function should be avoided.
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INTRODUCTION

Over the last half decade the computer has shown to be a versatile instrument, which can be used for
a wide variety of problems. As computers have grown more powerful, we humans have become more
ambitious regarding the tasks that we assign to them. Perhaps the most audacious of all is to let machines
behave in a human-like, intelligent manner. We desire to move into an era in which the computer is no
longer a mere instrument, but instead becomes an autonomous, cooperative companion. This implies that
the machine is able to behave in an “intelligent” way and can develop skills on its own!.

A clear example in which a machine is expected to behave intelligently is a humanoid robot, which is a type
of robot that is modeled after humans in both the physical and the behavioral sense. Obviously, from a robot
that looks like a human we expect that it behaves like a human as well. A recent approach for making a
robot behave like humans is to let it undergo a similar developmental process as we humans do. This means
that the machine is not preprogrammed with knowledge and skills, but mostly obtains them by means of
interaction with its environment. In order to do so, we need techniques and algorithms that help the machine

to “learn” from experience, i.e. to infer knowledge from observations.

The field of machine learning is concerned with developing such techniques. A major focus in machine
learning research is on automatically extracting useful information from data, a process which is named
pattern recognition. An important aspect in pattern recognition in general — and within the context of
humanoid robotics in particular — is the generalization capacity of the machine. Generalization is the act
of responding to an unfamiliar situation in a manner similar to responding to a trained situation. One
class of machine learning algorithms that has been particularly successful in the last decade, with regard to
generalization performance, is that of Kernel Machines. The success of its practical application, however,
depends to a great extent on certain preliminary settings of the algorithm, which need to be configured by
the user.

In this report we propose a model for finding optimal settings for Kernel Machines efficiently and with-

out any human intervention. Our model uses a technique inspired by biological evolution to find these

IThe definition of “intelligence” is point of a perdurable philosophical debate. We will not replicate this debate here, as it is
irrelevant in the context of this report.
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settings. In short, several possible solutions are randomly generated and tested for their quality, i.e. their
fitness. Then the process continues by constructing a new generation of solutions based on those solutions
that have an above-average fitness. This way the search process iteratively converges to solutions of high
quality. Furthermore, we propose a second model that uses similar evolutionary techniques to improve the

generalization capacity of Kernel Machines.

We will begin by explaining the context of this study, after which we will briefly introduce the field of ma-
chine learning. We will emphasize on the two machine learning techniques that are relevant for this report,
namely Kernel Machines and Evolutionary Computation. This will bring us to our problem definition. We

will conclude this chapter with the outline of this report.

1.1 The RobotCub Project

The work presented in this report has been conducted as part of the RobotCub project. This project is a
research initiative on developing an open humanoid robotic platform. It is funded by the European Union
and is a collaboration of several universities and research institutes spread over the world. The purpose of
developing this platform is to facilitate research in embodied cognition, both from a psychological as well as
arobotic point of view [72]. One particular aim of the project is to aid research on epigenetic robotics, or the
much similar field of developmental robotics [67]. In this paradigm the cognitive development of the robot
is inspired by the development of humans themselves. The belief is that cognition emerges while the subject,
either human or robot, has experiences and makes observations. This requires a dynamic interaction with the
environment, in forms such as manipulation, locomotion, interpretation, perception, and communication.
The cognitive capabilities of the subject then self-organize (i.e. it learns), thanks to these experiences and
observations. Obviously, interaction with an environment implies that the robot is embodied, otherwise
locomotion and manipulation would not be possible. The epigenetic approach to cognitive skills has the
following advantages:

* A robot that is programmed to learn will be able to adapt to changing environments. It is intractable to
program a priori the appropriate knowledge and skills for every possible situation that a robot might
encounter; therefore, it must learn how to deal with unfamiliar situations. This requires the capacity

to generalize in the cognitive system of the robot.

* Itis less difficult to teach a robot at the hand of examples than it is to literally program this knowledge.
A great deal of human knowledge is extremely hard to define in such a precise manner that it is useful
for a machine. For instance, try to think of a precise definition of the word “game”. Note that we
humans usually have no problem whatsoever to classify a given activity as a “game”, despite not
having a precise definition at hand.

* The ability to learn from experience means that the machine can continuously improve on itself.
Hence, its cognitive capacity is not necessarily limited to the knowledge it has inherited from its
creators.

* The study on human development can benefit from letting a robot undergo a similar cognitive devel-

opment. For instance, a hypothesis on human cognitive development could be confirmed experimen-

2This particular thought experiment was put forward by philosopher Ludwig Wittgenstein in his Philosophische Untersuchungen
[119].
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(a) iCub (b) James

Figure 1.1: Two humanoid robots at the Italian Institute of Technology. The iCub is currently being developed
as part of the RobotCub project. James is a predecessor of the iCub developed by the Laboratory for Integrated
Advanced Robotics of the University of Genoa. The picture of James is taken from [9].

tally using robotics. In many situation it is not regarded ethical to perform similar experiments on

real humans.

The influential paper “Elephants don’t play chess” marked the beginning of the approach of embodied
cognition in robotics [7]. In this paper Brooks claims that physical interaction with an environment is
a primary source of constraint on the design of intelligent systems. The traditional approach within the
field of Artificial Intelligence and robotics, however, had up until that point in time emphasized on abstract
symbolic representations. Since then, the approach of emergent cognition and embodiment has been applied
in the development of various (humanoid) robots, e.g. [8, 18].

The particular robot being developed within the RobotCub project is the iCub, which is physically modeled
after a 3%-years old child. The robot has 53 degrees of freedom and must eventually be able to crawl. The
robot is situated at the Italian Institute of Technology, although more copies will be made available to other
research institutes after completion. Also situated at the Italian Institute of Technology is “James”, which
is an upper-torso humanoid robot that predates the iCub. This robot is approximately the size of a ten-years

old boy and has 22 degrees of freedom. Both humanoid robots are shown in Fig. 1.1.

The software framework that runs on the robots is Yet Another Robot Platform (YARP) [71]. The main aim of
YARP is to simplify the development of robots by creating an abstraction layer for devices (e.g. a camera or
sensor) and other common entities in robotics (e.g. image representations). This is done by encapsulating
devices and other modules in so-called ports. A port is a transmitter or receiver of information, which
can be connected to other ports using the observer design pattern [41]. The information that travels over
these network channels can be either binary data (e.g. an image stream from a camera) or textual data
(e.g. sensor data). The architecture of the robot as a whole can then be defined as a set of ports and
their interconnections, which together form a directed graph. This structure increases the modularity of the
system and the processes can be arranged over multiple physical machines. Furthermore, YARP is platform

independent, thus machines with different operating systems can cooperate in one global system. Lastly,
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YARP is a publicly available open-source project that is written in the C++ programming language.

1.2 Machine Learning

As explained above, machine learning deals with extracting useful information from data. Usually, we
can refer to this data as observations and we wish to recognize one or more patterns. For instance, a
pattern found in the data can be used to to predict an properties (e.g. an output value) of new, unseen
observations. That is, the machine is said to be able to generalize. Usually, three types of learning problems
are distinguished, based on the type of feedback [97]. The first and probably most common type of machine
learning is supervised learning, in which an algorithm creates a function that maps inputs to desired outputs.
This requires, of course, that the desired outputs are available to the machine during the training phase. In
other words, the training examples must be labeled. These labels can be provided either by a teacher or
be obtained by means of measurements, depending on the type of problem. For instance, the labels will
be provided by a teacher for a task like face recognition. On the other hand, measurements will be more
likely in case the machine has to learn a physical phenomenon. Supervised learning is the type of machine

learning that we will consider in this report.

Opposed to supervised learning is unsupervised learning, in which no labeled examples are available. This
technique can be used to model a set of inputs, for instance to cluster the observations. It is important to
realize that a purely unsupervised machine cannot have any notion about the correctness of its function-
ing. Intermediate variants of supervised and unsupervised learning fall in the category of semi-supervised

learning, in which the set of examples is only partially labeled.

Another popular machine learning technique — especially within the context of developmental robotics —
is reinforcement learning [110]. In this type of learning the machine has to learn a model by means of
action and reaction. The machine itself initiates an action and a corresponding reaction is “given” by the
environment in the form of a consequence. This consequence can either be a positive or negative reward. In
other words, the machine learns to act in an environment by observing the impact of its actions and trying
to maximize its utility. The model that is obtained using reinforcement learning is a stimulus-response

association [103].

All of these types of machine learning can be encountered in the development and functioning of a humanoid
robot. For instance, consider the following situations:

* A robot needs to communicate with people. Therefore, it is important to understand both from visual
and auditory cues which person is communicating with the robot. An important visual cue is the gaze

direction of the person that is speaking.

* When a human-like robot is developing in an environment with multiple persons, then it must be able

to uniquely identify these persons. This can be done, for instance, using face recognition.

* For locomotion and manipulation skills it is necessary that the robot is aware of its morphology. In
a robust robotics platform this morphology should be learned — as we humans do — instead of being
preprogrammed.

* In order to explore an environment it is necessary that a robot is able to grasp an object, for instance, to
see how this affects the object and to learn certain properties (e.g. the weight) of the object. Grasping

an object involves locating the object visually, moving toward the object if it is not within reach, then
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reaching the hand toward the object, and finally grasping it. These steps can incorporate machine
learning at a visual level (e.g. object recognition, object tracking, and location estimation), a motor-
sensory level (e.g. moving its hand toward a certain position), and a cognitive level (e.g. predicting
certain properties of the object) [78]. A prior belief about certain properties of the object is useful,
since these properties determine to a great extent how the object should be approached and which
type of grasp should be applied.

* Locomotion of the robot requires that it is able to plan a path from its current position toward the
goal position. Often this involves creating a map of the environment and using visual information for
object avoidance. Furthermore, the motor control system of the robot needs to take various aspects of
the environment into account during locomotion, such as elevation (e.g. stairs or slopes) or the type
of ground surface.

These situations are just a small set of examples in which machine learning plays an important role for a
humanoid robot. Nonetheless, we wish to emphasize that the field of machine learning is much broader
applicable than just robotics. It has been used in many other fields, such as economics, physics, biology,
and medicine. In many of these applications the machines are able to recognize patterns that humans would

not have been able to identify.

Machine learning techniques can be based on different theories, e.g. based on logical or statistical infer-
ence. One statistical method that has been shown to give excellent results is the class of Kernel Machines.
A particular instance of this class is the Support Vector Machine, which outperformed many existing tech-
niques on certain tasks over the last decade. The different algorithms within the Kernel Machine paradigm
share the fact that similarity between observations is measured by a so-called kernel function. The quality
of the machine, however, depends heavily on the kernel function and the corresponding parameters (i.e. the
hyperparameters). It is therefore important to optimize both the selected kernel function and the hyperpa-
rameters. However, selecting a good kernel function can take a serious amount of time, which is why the
user usually has to resort to a small set of well-known kernel functions. Results could possibly be improved
upon by considering a larger set of kernel functions. This way a kernel function can be selected that is a is
suited for the problem under consideration.

Another interesting approach in machine learning are techniques that are inspired by biology. This class
of machine learning techniques include Artificial Neural Networks, Swarm Optimization and Evolutionary
Computation. The latter is a very versatile paradigm, which can be applied on optimization, classification,
regression, and even programming problems. In this paradigm a set of initial potential solutions is randomly
generated. Then the quality of these solutions is evaluated and the process converges to good solutions by
applying mutation and natural selection, similar to biological evolution.

1.3 Problem Definition

Kernel Machines are a relatively new and powerful class of machine learning algorithms. This makes them
very interesting candidates for being applied within a humanoid robot. However, applying the technique
is by no means trivial, as it requires a careful selection of the kernel function and hyperparameters. Most
commonly this selection is done by an expert and it has been referred to as being more of an “art” than a
“science”. It would be desirable to completely automate this selection procedure, so that Kernel Machines

can easily be used at their full power by less experienced users. Perhaps more importantly, a fully automated
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approach also implies that a robot could perform this routine autonomously. A possible scenario in which
this could be beneficial is when a robot would wish to retrain one of its systems. With unpredictable
environments it is not very unlikely that such a scenario might happen. For instance, the robot could be
damaged, after which a new training session could help to regain some its original function. Compare this

to humans that have to learn motor skills again after a serious injury.

We believe that Evolutionary Computation would be suitable for optimizing both the kernel function and
the hyperparameters. It is a highly generalized paradigm that can be applied to many problems. In this
study we want to investigate the following two research questions:

1. Can we use Evolutionary Computation techniques in order to rapidly optimize the hyperparameters
of a Kernel Machine?

2. Can we use Evolutionary Computation techniques to evolve an optimal kernel function for a Kernel

Machine given a certain problem?

We want to note that both questions have a slightly different goal. In the first question we aim to find optimal
hyperparameters in a way that is computationally less demanding than the common optimization method
(i.e. a grid search). Therefore, we do not emphasize on finding necessarily a better solution, but instead
on finding a comparable solution in less time. In the second research question we do not only consider
optimizing the hyperparameters, but also automate the selection of a kernel function. Currently, there is
no common way to select a suitable kernel function, other than testing two or three well-known kernel
functions by hand. The total class of potential kernel functions is, however, much larger than just these
well-known kernels. We wish to investigate if we can exploit this fact and find kernel functions that perform
better than these default functions. In short, for the second research question we emphasize on improving
the quality of the solution, with only a minor priority on the computational expenses.

Previously, we noted that Evolutionary Computation works by evaluating potential individuals and assigning
a certain fitness to them, similar to biological evolution. This raises a very important question, namely, how
do we define the quality of a solution? Not only do we have to define what quality is in the context of kernel
functions and hyperparameters, we also need to formalize a quantitative measure for this notion of quality.
This is the third (minor) research question that we wish to answer in this report. More formally, we state
this question as:

3 What measure of quality can be used for kernel functions and hyperparameters, in the context of the

previous two research questions?

1.4 Outline

In this report we will propose solutions to the two main research questions that we just described. These
solutions will be explained, evaluated, and reflected upon in the course of 5 parts:

* We commence with describing the Preliminaries in Part 1. we will describe all the theory regarding
machine learning that is necessary to come to our model and implementation. Kernel Machines will
be explained in detail in Chapter 2, at the hand of Support Vector Machines and the closely related

Least Squares Support Vector Machines variant. Evolutionary Computation will be dealt with in
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Chapter 3. In that chapter we will learn the basics of Genetic Algorithms, Evolution Strategies and
Genetic Programming. The first part will be concluded with Chapter 4, in which we will give a
thorough overview of the related work. We will primarily — but not exclusively — describe approaches
on hyperparameter and kernel selection using evolutionary techniques.

In Part IT we will explain our Model and Implementation. We will propose two models, one for each
of the two main research questions posed above. These models will be described in Chapter 5. The
implementation phase of these two models will be covered in Chapter 6.

The Experimental Results of our two models will be described in Part III. The primary results of our
two proposed models will be dealt with in Chapter 7. Previously, however, we also identified the
sub-question of which fitness measure is suitable for use with a Kernel Machine. This sub-question

is covered in Chapter 8.

Part IV will contain our Conclusions. These will described in Chapter 9, as well as directions that we
have identified for future work.

Finally, in Part V we present the appendices, which contain documentation on the design of our
implementation and example configuration files that have been used for our experiments.






Part 1

Preliminaries






KERNEL MACHINES

The field of machine learning has developed rapidly over the last decades. This field of research deals
with learning a certain model from empirical observations. Ideally, the learning is done in such a way that
the knowledge can be generalized to predict observations that had not been encountered during the training,
much similar to the human capacity to generalize. For instance, a human does not need to have seen each
distinct tree in order to classify a certain object as a tree. Instead, the person is able to classify the object
by matching it with certain known features of trees (e.g. structure, color, context) that he or she has learned
from previous observations. Machine learning aims to replicate this capacity in a computational sense.

Several different machine learning techniques and algorithms have been proposed over the years. Among
these the class of Artificial Neural Networks is probably the most well-known [45, 91]. This class of
techniques is vastly inspired by the physiology of the brain. Since its introduction it has successfully been
applied to a plethora of problems, such as control and classification systems. More recently, however,
the class of Kernel Machines has received a large amount of attention from academics [102]. This class
of algorithms, and the subtype of Support Vector Machines in particular, has been shown to outperform
Artificial Neural Networks and other techniques in various aspects [99, 11, 16, 122].

In this chapter we will explain the class of Kernel Machines in detail, at the hand of Support Vector Machines
and the closely related Least Squares variant. This cannot be done without a sound theoretical introduction
into the field of machine learning, which will be presented in Section 2.1. In that section we will formalize
the goals of (supervised) machine learning and introduce the related terminology. Thereafter, the Support
Vector Machine algorithm will be laid out in Section 2.2. The common aspect of all Kernel Machines is
the so-called kernel function, which improves the performance of these machines on non-linear problems.
The kernel function will be dealt with in Section 2.3. Once the so-called kernel trick has been explained
in detail, we will have a look into the Least Squares variant of Support Vector Machines in Section 2.4.
An important phase in applying Kernel Machines to a problem is the proper selection of parameters. This

problem will be covered in the final section of this chapter.
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2.1 Theory on Machine Learning

In order to describe the theory behind machine learning it is useful to describe this process in mathematical
terms. Suppose that we are investigating an actual model that takes a certain input, let us define this input
with vectors x € X C R™. The n elements of these input vectors are called the features. The model
assigns a certain output value to these input vectors, which we define as y € ). In case ) denotes a set
of discrete classes, e.g. V C {—1,1}, then the problem is considered a classification problem. On the
other hand, if Y C R, then we are dealing with a regression problem. The input vectors and output values
together form observations, or samples, which can be denoted with a tuple (x,y). We wish to construct
a machine that will learn a corresponding function f : X — ) from a — finite — set of ¢ observations
(ie. S = (x1,¥1),-.-,(Xe,y¢)). It is important to note that we do not want our machine to just learn
the observations, otherwise a simple lookup table would suffice. Instead, it should learn the actual model
underlying these observations, so that it will be able to make predictions for unknown input. This capacity

to correctly evaluate unseen samples is called the generalization capacity.

We can describe the process of machine learning using three main components [114]:

1. A generator of random vectors x € X. These samples are drawn independently from a fixed but
unknown probability distribution function P(x)!.

2. A supervisor that returns an output value y € ) for any input vector x. This is done according to a
conditional probability function P(y|x), which is unknown but fixed as well.

3. The learning machine that can implement a set of functions f(x, a) — y. Here « is a set of param-
eters for the machine. The function that is implemented by the machine should return a prediction y,
given a input vector x and the parameters . It is common to denote the output of the machine with
9, as to distinguish it from the desired output value y. Obviously, the goal is to learn the machine in

such a way that the difference between y and g is minimal for any input vector x.

Let us consider this process in a less formal way using a simple classification example. Assume we have
a machine that needs to determine whether someone is ill, given certain features (e.g. body temperature).
The generator determines the distribution of the input vectors and thus the distribution of persons that have
certain features. Given the fact that most people are — hopefully — healthy, this means that the generator will
be most likely to “generate” people with a body temperature around 37°C. The supervisor will produce a
distribution for the output of the system, given an input vector. In other words, the supervisor will take the
input vector and will determine the probability that this person is really ill. The learning machine receives
a set of samples of body temperatures and has the task to classify these samples in the same way as the
supervisor has done.

More formally, the generator and the supervisor determine the model that the learning machine has to learn.
The learning machine receives a set of independent and identically distributed (i.i.d.) samples from the
generator (i.e. P(x)), which are supplied with an output value by the supervisor (i.e. P(y|x)). This makes
up the set of observations S = (x1,¥;),-- ., (X¢, y¢), drawn according to P(x,y) = P(x)P(y|x). From
this set of observations the learning machine has to induce a model (i.e. f(x, ) = §) with an error that is

as small as possible.

The requirement that the probability function must be fixed excludes some types of problem from this theory, such as certain
forms of time-series prediction. Nevertheless, Kernel Machines have successfully been used for time-series prediction [77].
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The expected value of loss between the response of the supervisor and the learning machine can be formal-
ized by the so-called risk functional [114]

R(a) = /X | . £ 0) dP(xcy) @.1)

where L(y, f(x, )) is a function that measures the loss for a prediction. For the classification case, one
could consider a loss function that returns 1 for a misclassification and 0 otherwise. In case of regression a
suitable loss function would be

Ly, f(x,@) = (y - f(x,@)) , (2.2)

which yields the least-squares optimization problem. Henceforth we will focalize on the regression case,
although the theory is easily adapted to the classification case.

The ideal goal of a learning machine is to find a function f(x, ) that minimizes the risk functional de-
scribed in Eq. 2.1. However, it is impossible to optimize this risk functional, as the underlying model
P(x,y) is unknown. The only information that we have about this model is the set of i.i.d. samples S. This

information can be used to define an empirical risk function

e m p

4
Z (s, f(xq, @) . (2.3)

N\»—A

If we insert the least squares loss function for the regression case (i.e. Eq. 2.2), we obtain

emp

)4
Z ), (2.4)

r\\»—t

which yields the standard least squares error criterion. One could opt to try to minimize this empirical
criterion directly, which is called empirical risk minimization. On the other hand, Vapnik proposes structural
risk minimization, which aims to minimize an upper bound on the actual risk. If we choose some 7, so that
0 < n < 1, then with probability 1 — 1 we can state the following bound [114]:

R(a) = Bupny(e) + \/(h(log(%/hﬂ-é 1) —log <n/4>) | 5)

where h is a measure on the capacity of the machine (i.e. the Vapnik Chervonenkis (VC) dimension). The
right part of the right term is denoted the VC confidence term. This VC dimension is determined by the
class of functions and the parameters that are being used. In most techniques the capacity is controlled by
the number of free parameters, such as the number of hidden nodes in Artificial Neural Networks. More
theoretically, the measure is the largest number of arbitrary data points that can be shattered by the class
of functions?. If the capacity of the machine is high, it will be able to shatter many data points and the
empirical error can be reduced to a minimum. However, this will result in overfitting, as the machine starts
to capture all details (e.g. noise) in the input data. On the other hand, a low capacity can prevent the machine
from being able to represent the actual model, i.e. underfitting. In this situation the VC confidence term
will be low, but the overall risk will be high, due to a high empirical error. Therefore, we need to minimize

2 A function set can shatter data points if it is able to classify them in any arbitrary way.
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A underfitting optimal model overfitting
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Figure 2.1: A demonstration of structural risk minimization [114]. The optimal model lies at the point where the
combination of the capacity of the machine and the empirical error is at a minimum. The sets 71 C F> C F3
represent three classes of functions. Their capacities / follow the order i1 < hy < hs.

the capacity, in order to prevent overfitting, while maintaining a low empirical error at the same time (i.e.
preventing underfitting). This scenario, where there is a balance between the capacity of the machine and
the empirical error, is depicted in Fig. 2.1. Interestingly, we can also observe that the limit of the VC
confidence term for ¢ — oo is 0. This confirms our intuition that for an infinite amount of observations the
actual risk and the empirical risk are equal. The VC dimension is described in more detail by Vapnik or
Burges [114, 10].

However, the VC dimension has two disadvantages that make it less suitable in practical situations. Firstly, it
can be very difficult to calculate the VC dimension for certain classes of functions and parameters. Secondly,
the VC dimension is a very loose upper bound on the capacity of the machine, which means that the actual
risk may be much lower than this bound. Other measures are usually preferred to perform structural risk
minimization in a practical context. These measures include various types of cross validation, in which the
risk is estimated by an empirical error on a separate validation set. Cross validation will be covered in more
detail in Section 8.2.1.

2.2 Support Vector Machines

A machine learning technique that is well suited for structural risk minimization is the Support Vector
Machine (SVM) [114, 23]. The standard variant of SVM has been proposed for binary classification prob-
lems [10]. The idea behind this technique is to classify data by means of a separating hyperplane be-
tween the positive and negative examples. The samples x that lie on the hyperplane satisfy the condition

(x,w) 4+ b = 0. The weight vector w is normal to the separating hyperplane and the minimal distance from
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(xi, W) +b=+1 { N *

(xi,w) +b=—1 |,

Z2

\Margln. T

Figure 2.2: The linear hyperplane that separates positive and negative data points with the largest margin. This
figure shows the three support vectors and the hyperplanes that they are “supporting”.

the origin to the hyperplane is % The hyperplane is thus completely described by means of the weight
vector w and the bias b. Obviously, many different linear hyperplanes may exist that separate the positive

from the negative data points.

The SVM algorithm revolves around finding the separating hyperplane that has the largest margin. In other
words, the hyperplane must be as distant as possible from the data points that have a distinct output value
(i.e. either —1 or +1). Let us define the distance between the separating hyperplane and the closest positive
and negative sample as d and d_, respectively. The total margin between both classes can then be defined
as the sum of both distances, i.e. d+ + d_. This can be formalized with the following constraints:

(xi, W) +b>+1 for y; = +1 (2.6)
(xi, W) +b< —1 fory; = —1 2.7
yi ((xi,w)+b)—12>0 forV; , (2.8)

where the latter is a combination of the first two inequalities®. The two constraints in Eq. 2.6 and Eq. 2.7
define two hyperplanes, which can be seen in Fig. 2.2. The distance from the origin to these two parallel
[ [—1-b]

L=t and 122221 respectively. From this we can conclude that d; = d_ = = and
[ fTwl] Twl

hyperplanes is
that the margin between the two hyperplanes is thus ﬁ Obviously, the separating hyperplane with the
largest margin lies centered between these two hyperplanes. This placement guarantees a maximal distance
to positive data points on the one side and negative data points on the other side. The maximum margin
hyperplane can thus be found by minimizing the norm ||w||, subject to the constraints in Eq. 2.8.

In Fig. 2.2 we can observe that there are three data points that lie on either of the two hyperplanes. For these
vectors the equality y; ((x;, w) + b) — 1 = 0 holds. These vectors are called the support vectors, since they
“support” the separating hyperplane. In case that one or more of these support vectors would be removed
from the data set, then the found solution would change. After the hyperplane with the largest margin has
been determined, the weight and bias can be used to predict output values for given input vectors. These
predictions can be made using the equation

3In this reformulation we make use of the fact that for binary classification problems the output y can take either the value +1 or
—1.
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f(x) =sen({x,w) +b) . (2.9)

The optimization problem, including the constraints in Eq. 2.8, can be described using a Lagrange for-
mulation. The advantage is that this enables the constraints to be directly formulated in the optimization
problem. Furthermore, after this reformulation the training data will only appear as inner products between
two vectors. We will explore the major advantage of this fact later in this chapter. The optimization problem
can be reformulated by subtracting the inequality constraints, multiplied by a positive Lagrange multiplier,
from the original optimization problem. These steps yield the following minimization problem*:

4 4
1
Lp= §||w\|2—Zaiyi((xi,w>—|—b)+2ai for a; > 0Vi . (2.10)
=1 i=1

This primal Lagrangian can be rewritten in a so-called dual formulation (i.e. the Wolfe dual [34]). This

gives us the following maximization problem:

¢ ¢ ¢
1
Lp = E o — 5 E 050Gy Y5 (Xiy Xj) for o; > 0 Vi, E oy, =0 . (2.11)
i=1

i,j=1 i,j=1

As we explained before, this formulation contains the input vectors only in the inner product with each
other. Although the primal and dual formulations have different constraints, they result in the same unique
solution. In this solution the input vectors for which the Lagrange multiplier is non-zero, i.e. a;; > 0, will
be the support vectors. The other data points, which will have a; = 0, are not strictly necessary for the
solution. This fact is also represented in the definitions of the weight vector and the prediction function, i.e.

l
w = Z QYiX; (2.12)
1=1
£
Fx) =Y aiyi (xi,x) +b . 2.13)
1=1

We can observe that only the support vectors contribute to the result of these equations, since only for these
vectors «; is non-zero. As a result, the solution is generally sparse, as only a fraction of all training samples
will become support vectors. Therefore, it suffices to take the summation in Eq. 2.13 only over the set of
support vectors.

2.2.1 The Non-Separable Case

For sake of simplicity we have assumed so far that the samples are indeed linearly separable. In many real-
life applications this will not be the case, e.g. due to noise present in measurements. As a result, the above

algorithm will not find any solution in these situations. Therefore, it is necessary to relax the constraints in

4The factor % is solely added for mathematical convenience and is not strictly necessary. However, we have opted to follow the

common formulation found in related literature.
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X2

Z1

Figure 2.3: An example of data that is not linearly separable. The slack variable £ measures the degree of
misclassification, as demonstrated in the figure.

Eq. 2.6 and Eq. 2.7, as to allow for misclassifications. The amount of misclassifications should be regulated,
so that they are only allowed when necessary.

The constraints can be relaxed using a so-called soft-margin. This is done by introducing positive slack
variables &;, ¢« = 1,...,¢ in the constraints. These variables measure the degree of misclassification of
a certain sample, as is shown in Fig. 2.3. The constraints in Eq. 2.8 with the addition of slack variables
becomes

yi ((xi,w) +b)—1+& >0 where &, >0V, . (2.14)

The use of the slack variables should be kept at a minimum, which implies that there should be a function
that penalizes non-zero &;°. This can be done by adding the sum of all slack variables in the objective

function, such that the original minimization problem transforms into

L
minimize ;|w2+c;gi (2.15)
yi((xi, W)y +0) >1—¢& Vi
subject to £ >0Vi
>0

Here we have introduced a new parameter C, which is the regularization — or tradeoff — parameter. This
parameter needs to be chosen by the user. A larger C' corresponds to assigning a higher penalty to the

SNote that a misclassification occurs if and only if & > 1. Therefore, Zle &; is an upper bound on the number of actual training
errors.
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errors, which will result in overfitting to the data for very high values of C. A lower value for C, on the
other hand, corresponds to emphasizing on the minimization of ||w/||?, i.e. maximizing the margin. This will
cause the machine to underfit for very low values of C. The attentive reader may notice the similarity with
the situation in structural risk minimization. Indeed, the regularization parameter C' allows for controlling
the tradeoff between the capacity of the SVM on the one hand and the empirical error on the other hand.
Structural risk minimization in the perspective of SVM thus corresponds to finding an optimal value for
C' [89]. Unfortunately, there is no analytical way to determine what a “high” or a “low” value is for this
parameter, as it depends on the training data. It is therefore necessary to find good values for C' empirically®.

We will come back to this issue in Section 2.5.

Perhaps the most interesting aspect is that the slack variables vanish in the Lagrange dual formulation.
Instead, the tradeoff parameter C' now appears as an upper bound on the Lagrange multipliers. The modified
Wolfe dual problem, with the additional constraints on the multipliers, becomes

¢ ¢
.. 1
maximize Z @i =5 Z ;05 Yy (X, X5) (2.16)
=1 i,j=1
subject to ¢
Z aiy; =0
ij=1

This problem is a so-called quadratic programming optimization problem. It is possible to modify the
primal Lagrange formulation as well, in order to take the slack variables into account. However, that
formulation is considerably more complex, since new Lagrange multipliers need to be introduced for the
slack variables. Therefore, the optimization problem in SVM is usually solved using the Wolfe dual.

2.2.2 Support Vector Machine for Regression Problems

Thus far we have concentrated on the SVM algorithm for classification problems. Since its introduction the
algorithm has been extended for regression problems [29, 106]. This modified algorithm is referred to as
Support Vector Regression (SVR), as opposed to Support Vector Classification (SVC). Henceforth, the set
of both algorithms will be denoted with the global term SVM and the more specific SVC and SVR will be

used when applicable.

Recall from Section 2.1 that in regression problems )V C R. This means that we wish to predict a real-
valued output y with a certain accuracy. In e-SVR the goal is to find a function f (x;) that predicts the
actual output values with an error smaller than or equal to ¢, for all the training samples. This means that
errors that are smaller than or equal to € (i.e. | f (x;) —y;| < €) are ignored. Furthermore, also for regression
it is desirable to obtain the hyperplane with the largest margin. Just as for the classification situation, we
wish to apply the soft-margin loss function, as to allow for some errors larger than e. Combining all these

elements we can formulate the following optimization problem:

6 A good value for C'is one that does not overfit, nor underfit, to the training data and thus optimizes the generalization performance.
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xT

Figure 2.4: The e-insensitive tube in the SVR algorithm with soft-margin loss function.

¢
L 1 2 X
minimize §||W|| —i—C;(@—i—fi) 2.17)
yi — (xi, W) —b<e+& Vi
(xi, W) +b—y; < e+ & Vi

subject to . (2.18)

C>0

Note that for the regression case we cannot anymore combine the inequality constraints into a single con-
straint, thus two separate slack variables &; and £ are needed for each sample. The two slack variables are
used to denote the deviation in either direction (i.e. “upward” or “downward”). The loss function has to be
aware of the insensitivity to errors smaller than €, which can be achieved by using an e-insensitive tube. The
exact definition of the loss function in case of an e-insensitive tube is simply

€]e = 0 iffe] <e . (2.19)

|¢€] — e otherwise

The situation is depicted graphically in Fig. 2.4. Only the samples that lie outside the shaded area (i.e. the
e-insensitive tube) will contribute to the error penalty. For all samples inside the tube the slack variables

|€|e will be zero.

The optimization problem in Eq. 2.17 can be reformulated using Lagrange multipliers. This step is nearly
identical to the reformulation for SVC, which was described previously. A notable difference is that we
need to split up the Lagrange multipliers a;, which becomes o; and «. This is because the soft-margin
constraints could not be combined into a single constraint in the regression case, as we have noted before.

The optimization problem in the dual Lagrange formulation becomes
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maximize

(2.20)

subject to

The weight vector and prediction function can then be defined in terms of the Lagrange multipliers and the
input data, analogous to Eq. 2.12 and Eq. 2.13. For the regression case this yields the following equations:

4
W= (ai—a])yx @21
=1
4
F)=> (i —a})(xi,x)+b . (2.22)
=1

2.3 The Kernel Trick

The SVM algorithm, as explained thus far, is not very useful in practical situations, since it is limited
to linear problems. Classifying data points that lie within a circle, for instance, is not possible with this
algorithm. This problem could be solved by preprocessing the training samples by a function ¢ : X —
H, as to map them into some feature space H [1]. Consider the map ¢ : R? — R? that is defined as
¢ (x1,12) = (x%, x3, ﬂxlxg). A linear SVM trained on the preprocessed features with this map would
yield a quadratic function. In Fig. 2.5 we can see that, after preprocessing the samples with this map,
the example circle problem becomes linearly separable in the feature space. This demonstrates how non-
linear problems can be transformed into linear problems, on which the SVM algorithm can successfully be
learned. A projection of the data samples of the circle example on the z-plane is depicted in Fig. 2.6. Note
that this situation is completely identical to the linear problems that we have seen previously in Section 2.2.
Furthermore, since the SVM algorithm operates after preprocessing the data, it will maximize the margin

of the data in the feature space.

In our simplistic example above it is relatively easy to explicitly map all the samples into the feature space
‘H. Unfortunately, more complex mappings may be computationally infeasible, since they result in feature
space of a very high dimensionality. This problem can be overcome using an observation that we made
previously in Section 2.2. Recall that the SVM algorithm in its Wolfe dual formulation depends only on
the inner products of the training samples. If we would map the data points using ¢, then the Wolfe dual
would simply depend on the inner products of the points in the feature space, i.e. {¢(x),¢(z)). The key
observation is that the algorithm depends only on the inner products of these points and not on the points
themselves. Thus, if we define a function that directly calculates these inner products in the feature space,

i.e.
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Figure 2.5: Demonstration of the mapping of a two dimensional classification set into a three dimensional feature
space. After the mapping the data becomes linearly separable.

k (X’ z) = <¢ (X) N0 (z)> ) (2.23)

then we would not need to explicitly map all the data points. Such a function that represents an inner
product in a hypothetical feature space is named a kernel function. A kernel function that corresponds to
our example mapping ¢ (21, z2) = (2%, 23, V2z122) is given by k (x,2z) = (x, z)?. The SVM algorithm
can make use of these kernels functions by simply substituting the inner product with a kernel function.
Obviously, this works only in the Wolfe dual formulation, as in that formulation the input data only appears
within inner products. The maximization problem in the dual formulation for the regression situation, i.e.

Eq. 2.20, becomes after substitution

maximize =t ’ =t (2.24)
1 *
-3 Z (o — af) (o5 — @) k (x4, %)
i,j=1

subject to

The concept of substituting inner products with kernel functions is known as the kernel trick. This technique
has been applied to a wide variety of learning algorithms and is the “common divisor” of the class of Kernel
Machines. It is important to understand that the mapping into the hypothetical feature space is implicit,
when using the kernel function. Because of this implicit mapping it becomes feasible to use feature spaces

of infinite dimensionality.
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Figure 2.6: Projection on the z-plane of the data after the mapping into feature space.

In Eq. 2.24 we can observe that the kernel function needs to be computed for each possible combination of
samples x; and x;. Therefore, it common practice to construct a so-called kernel matrix containing all these

results. The definition of the kernel matrix is

K = (k (x:,%;))}

i,j=1

(2.25)

The kernel matrix is also referred to as the Gram matrix. In this report, however, we will consistently use
the former term.

2.3.1 Conditions for Kernels

We have defined the kernel function as a function that represents an inner product in a certain hypothetical
feature space H, where H is — arguably — a Hilbert space. For this report, it suffices to mention that a
Hilbert space is a generalization of Euclidean space. A Hilbert space requires that there is a notion of an
inner product in the space. An interesting question that arises is, which kernel functions actually correspond
to an inner product in some feature space H. The answer is given by Mercer’s theorem, which state that the
function must be symmetric, continuous, and positive semi-definite [70, 114]. This can be formalized in the
following condition (i.e. Mercer’s condition):

/ k(x,2z) f (x) f (z) dxdz > 0 forall f € Ly (X) . (2.26)
XXX

Kernel functions that satisfy these conditions are referred to as admissible kernel functions. Following
this condition on the kernel function, we can state the condition that the kernel matrix has to be positive
semi-definite [10]. In a positive semi-definite matrix all the eigenvalues are greater than or equal to zero.
Unfortunately, it may not be easy to check whether a kernel function satisfies Mercer’s conditions, nor

whether the kernel matrix is positive semi-definite. There are, however, certain functions that have analyt-
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ically been proven to be admissible. The most common kernel functions — for classification and regression
purposes — are given below.

Polynomial:  k (x,z) = ({x,2) + ¢)* fordeN, ¢>0 (2.27)
RBF: k(x,z) =exp (—|x —z[*) fory >0 (2.28)
Sigmoid: k (x,z) =tanh (v (x,z) + ¢) for somey > 0,¢ >0 (2.29)

All these function are parameterized, as to allow for adjustments with respect to the training data. This
introduces a problem identical to the one we encountered for the regularization parameter C', namely, which
kernel parameters optimizes the generalization performance. Again, the optimal parameter setting depends
on the actual training data and commonly needs to be determined empirically. The kernel parameters and
the regularization parameter C' together are denoted the hyperparameters.

Furthermore, we have to note that Mercer’s condition is not strictly necessary to obtain good results with
SVM. The Sigmoid kernel, for instance, does not satisfy Mercer’s conditions [86]. Nonetheless, it has been
used successfully in practical settings [98]. Furthermore, for a given training set the kernel matrix can be
positive semi-definite, despite the kernel function not being admissible.

2.3.2 Combinations of Kernels

Verifying whether a kernel function satisfies Mercer’s condition is not trivial, as we have stated before.
However, this condition can be used to infer simple operations for the composition of kernel functions,
which then also will be admissible [106]. For instance, the (weighted) linear combination of two admis-
sible kernel functions is also admissible. Assume that k£; and k> are admissible kernel functions, then the
following combinations will be admissible as well [102]:

k(x,2z) = c1ky (x,2) + coko (x,2) forci,c9 >0 (2.30)
k(x,z) =k (x,2) ka (x,2) (2.31)
k(x,z) = aky (x,2) fora >0 (2.32)

The interesting aspect is that these operations allow for the construction of kernel functions in a modular
way. Let us denote the polynomial, RBF and Sigmoid kernel functions (i.e. Eq. 2.27, Eq. 2.28, and Eq. 2.29,
respectively) as atomic kernel functions. These atomic functions can be used in an initial set of admissible
kernel functions. The combination operators can be applied to the kernel functions in this set, after which
the resulting admissible kernel function can be added to the set. This way the combination operators allow
us to recursively construct increasingly more complex kernel functions. At the end of this chapter we will

see why this modular construction of kernel functions can be interesting.
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2.4 Least Squares Support Vector Machines

The Least Squares Support Vector Machine (LS-SVM) has been introduced — more or less — as a simplifi-
cation of the SVM [112, 111]. The main change is that the first two inequality constraints in Eq. 2.18 have
been substituted with equality constraints. In other words, the notions of the margin and the e-insensitive

tube have been substituted with a normal error term. The error for a data sample x; is defined as

yi — ((xi, W) +b) =€ for V; . (2.33)

The goal is to minimize the squared errors, as could be expected from the name of this algorithm. This

yields the following optimization problem:

i

¢
o 1 2 1 2
minimize §HW|\ + 56’ ;,1 € (2.34)
subjectto  y; = (x;, W) +b+¢; Vi .

Note that there are only equality constraints in this equation and that the equation is identical for both
classification and regression. The advantage of using equality constraints is that the problem is no longer
a quadratic programming problem, but instead a linear optimization problem. As we will see later, this

simplifies the way in which the solution for this optimization problem can be computed.

It is convenient to reformulate the optimization problem from Eq. 2.34 as a Lagrangian, for the same reasons
that applied in case of SVM. We have to note that the Lagrange multipliers are not necessarily positive
anymore, since equality constraints appear in this optimization problem. The unconstrained optimization

problem that follows is

4 4

1 1

5||w||2+§OZe§ =) o ((xi, W) + b+ € — i) where o;; € R Vi . (2.35)
=1 i=1

The optimality conditions for this problem can be found by setting the derivates’ to zero, i.e. the saddle-

point situation. These conditions can be used to derive the following equality:

¢
Zaj (x5, %) +b+ Cloa; =y for Vi . (2.36)

Jj=1

This set of equalities is a system of linear equations, which can be used to find the dual model parameters
«; and b. Obviously, the inner product in this equation can be substituted with any kernel function. Noting
that we described a kernel matrix as well, i.e. Eq. 2.25, we can reformulate the system of linear equations
in matrix form, which yields

TThis gives us four different conditions, as the derivates should be taken with respect to (1) the weight vector w, (2) the bias b, (3)
the errors €;, and (4) the Lagrange multipliers «;.
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SRR - B

In this equation o = (o1, ..., )" andy = (y1,...,y¢)" . Analogous to SVM, the prediction output of
LS-SVM can be described with

-1
K+C'T 1 y
. 2.37
SR e

4
Fx) = ik (xi,x)+b . (2.38)
i=1

In Eq. 2.37 we can observe that the LS-SVM optimization problem can be solved by means of a matrix
inversion. As a result, solving the LS-SVM optimization problem is temporally independent on the reg-
ularization parameter C'. This is contrary to SVM, where the training time increases as the value for C
increases. This advantage comes at a certain cost, as the model in LS-SVM is not sparse by nature of the
algorithm. This is because the Lagrange multipliers are proportional to the error €;, which means that «;
will be zero if and only if the error is zero. One could argue that the name Least Squares Support Vector

Machine is slightly misleading, since practically all input vectors will become support vectors.

2.4.1 Efficient LS-SVM using Cholesky Factorization

Solving the LS-SVM optimization problem consists of the inversion of a matrix. This step can be made
more efficient by making advantage of Cholesky factorization [13]. Unfortunately, the matrix on the left
hand side in Eq. 2.37 is not positive semi-definite and cannot be solved directly using Cholesky factorization.
Nonetheless, the left hand side of the system of linear equations can be made positive semi-definite by means

of a rearrangement of the matrix. Let us define M = K + C' 1, then Eq. 2.37 can be reformulated as

M 0 M~'1b
T 1Tpnf-1 o = |47 y71 ‘ (2.39)
0 1M1 b 1'M™ 'y
The revised system of linear equations can be solved by setting
Mn=1 and Mvr=y . (2.40)

Hereafter, the model parameters a and b of the LS-SVM can be derived using 77 and v

1T
b:ﬁ and a=v—nb. (2.41)
The explanation of these rearrangement steps have been kept concise in this report. The reader is referred
to the work of Cawley for a detailed overview [13].

2.4.2 Reduced LS-SVM

The full LS-SVM algorithm involves the inversion of a £ x ¢ matrix. One can imagine that the algorithm
becomes computationally intractable for relatively large training sets, due to the complexity with respect to
the number of samples of O (63) of the inversion step. Furthermore, it is required that the complete kernel

matrix is present in memory, which means a space complexity of O (62). A logical solution to reduce the
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temporal and spatial requirements is to approximate the full LS-SVM algorithm.

Approximating the algorithm is usually done by sparsifying the training set by means of creating an approx-
imate low-rank kernel matrix K. An intuitive way to do this is to simply take a subset of m samples of the
set S and train the machine on this subset. Nonetheless, it is not hard to imagine that this method discards
useful information from the original learning set. A more elaborate low-rank approximation is to minimize
the empirical risk over all samples, but to allow the Lagrange multiplier «; to be non-zero only at a denoted
subset of the points [95, 105]. More formally, let us define a subset .S,,, C S of the training samples, with
size 0 < m < £. We can then express the following modified problem

(KmEKZm + Cilem) o = Kmfy = o = (Km,EKfm + C’il:[<mm,)_1 Kmly . (242)

By taking a subset of only m data points, the matrix inversion is reduced to a m X m matrix, as opposed
to ¢ x ¢ in the original algorithm. Furthermore, this approximation has the advantage that all ¢ samples are
used for training. The only limitation is that only m samples are used to describe the model. In Eq. 2.42
the bias term has been omitted for illustrative purposes. The variant of the reduced LS-SVM algorithm that
includes the bias term is

(e -5 -1

An interesting question is how to select the data points that will be in the subset S,,,. Several approaches to

(2.43)

this problem have been proposed [95]. These approaches generally aim to iteratively reduce some measure
of the difference between K and K, e.g. the trace of K — K. This can be done by selecting those samples
that are the most poorly represented by the current subset [33]. This procedure, however, is somewhat
flawed for the RBF kernel, as it is prone to select the outliers in the training set. In fact, the RBF kernel
would perform better if those points are added that are centers of clusters of data points. Furthermore, some
of the selection procedures may be computationally so demanding, that the time needed for the selection
procedure exceeds the time gained by using an approximation strategy. If this is the situation, then it should
of course be preferred to simply use the standard “full” LS-SVM algorithm.

It has been shown that selecting the samples at random gives a good balance between the quality of the ap-
proximation and the temporal complexity of the selection procedure [95]. Obviously, the random selection
of data points can be done in constant time. Furthermore, it seems intuitive that selecting the data points at
random from the training set will yield a relatively good approximation of the probability distribution found
of the original data set.

2.4.3 Fast Leave-One-Out Cross Validation

Another interesting aspect of LS-SVM is that with this algorithm it is possible to compute the leave-one-out
cross validation, with only a negligible additional computational expense. In short, the leave-one-out cross
validation error is the error that one obtains if the machine is trained on £ — 1 samples and then tested on the
single remaining sample. This procedure is then repeated for each training sample. The leave-one-out cross
validation measure will be perused in Section 8.2.1. Obviously, calculating the leave-one-out error requires
the machine to be trained ¢ times, which is usually infeasible.

However, with LS-SVM it is possible to analytically compute the leave-one-out cross validation error after
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just a single training phase on the entire data set [13]. The only requirement is that the inverse of the

extended kernel matrix, i.e.

2.44
1T 0 (2.44)

—1
K+ C 1 1] b

is explicitly calculated during training. This is a reasonable requirement, as the inverse matrix can be
obtained at a low expense, even in case the Cholesky factorization method is used. Let us define el(-ﬂ) as
the error that is obtained by training the machine on all samples, except for x;. Normally, this error would
be obtained by training the machine on all samples, except for z;, and then predicting the output value y;.
In the fast leave-one-out procedure this error can be obtained directly after training on the entire data set.
(=) - .

The error ¢, " is then given by

(=) (=)

€ =Y —Y; - (D_l)-- ) (245)

(,

where g, ) is the predicted output for sample x;, y; is the actual output value of the ith sample, and (D_l) g

K22
is the i value on the diagonal of the inverse of matrix D. There is a similar analytical computation for

calculating the leave-one-out cross validation error for the reduced variant of LS-SVM [14].

2.5 Hyperparameter and Kernel Selection

In this chapter we have laid out the theory of Kernel Machines at the hand of SVM and LS-SVM. These
algorithms have shown to perform excellent on a wide variety of pattern recognition problems. However, as
we have noted, the performance of either of these machines depend to a great extent on the hyperparameters
that are used. This means that one needs to optimize these parameters in order to obtain the maximum
generalization performance of Kernel Machines.

The hyperparameters are commonly tuned using a grid search, which can be considered a “brute force”
search in the parameter space. In grid search the machine needs to be trained for every combination of
parameter values, given a range and interval. Needless to say, this method is computationally demanding
and scales exponentially with the number of parameters. In Section 4.1 we will explore different approaches
for the problem of hyperparameter selection.

Selecting optimal hyperparameters is not the only important decision when training a Kernel Machine.
Also the kernel function that is being used has a major influence on the generalization performance that is
obtained. Which kernel function will yield the best results depends on the problem at hand. The fact that
there is no such thing as a universal kernel function that is suited for every domain is occasionally referred
to as the “no free kernel” theorem [22]. This is an analogy of the well-known “no free lunch for search”
theorem, which states that there is no search method that will outperform all others for each type of problem
[120].

The parameterized kernel function implicitly maps the data into a hypothetical feature space H. The linear
separating algorithms SVM and LS-SVM operate in this hypothetical space and depend on the exact way
in which the data points are organized in this space. Therefore, we need to select a kernel function that or-
ganizes the data points in such a way that the linear algorithms can successfully be applied. In other words,

for a given problem we need to find the kernel function that matches the training data best. Unfortunately,
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there exist no structured approach in selecting a kernel function. It is common that the user simply exper-
iments with a small set of kernel functions (e.g. the RBF and polynomial kernel functions) and selects the
one that yields the best results. Perhaps even more frequently, the RBF kernel is chosen by default, leaving
other possibly better kernel functions untried. Obviously, this strategy will not be likely to yield the optimal
generalization performance.



EVOLUTIONARY
COMPUTATION

In 1859 Charles Darwin published his famous work “On the Origin of Species”, laying out a theory in
which nature advances using gradual evolution by means of natural selection. Ever since, this theory has
had a major impact on the fields as biology, religion, sociology, and philosophy. What Darwin could not
have expected, is that over a century later his work on the evolution of species has inspired even mathe-
maticians and computer scientists. Several techniques for search, optimization, and machine learning have
been developed over the years under the collective term Evolutionary Computation (EC) [117, 26]. These
techniques share the common notion that a search process can advance to good solutions by means of the
principle of “survival of the fittest”.

Over the years the Evolutionary Algorithms (EA) have been shown to be a very powerful and generalized
search and optimization technique. It has been applied to domains as diverse as protein folding, image
processing, task scheduling, and quantum algorithm discovery. This marks one of the strengths of EC,
namely, that the algorithms are very generalized. As a result, many different types optimization problems
may be tackled relatively easily using one of the EC paradigms.

In this chapter we will explain EC at the hand of three well-known algorithms. Section 3.2 will be dedicated
to Genetic Algorithms, which is arguably the most used variant of EC. Then we will continue with Evolution
Strategies in Section 3.3, after which the slightly different Genetic Programming will be covered in Section
3.4. However, we will start off with a general overview of EC in Section 3.1, in which we will introduce the
reader to the relevant terminology.

3.1 Overview and Terminology

The key principle in EC — and evolution theory in general — is that potential solutions are generated, eval-
uated, and reproduced in an iterative process. During the course of this process, the individuals are subject
to certain forms of mutation and can reproduce with a probability proportional to their fitness. A selection

procedure removes the individuals with a relatively low fitness from the population, so that the more fit ones
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Figure 3.1: Overview of a basic evolution cycle within EC.

are more likely to “survive”. This way the individuals become increasingly more fit as the process continues

over more iterations.

A high level overview of an iteration cycle in this evolutionary process is shown in Fig. 3.1. The cycle starts
with a current generation, which contains a certain population of individuals. The condition that such a
population exists can be ensured by providing a bootstrap routine, which will generate a random population
from scratch. An individual in the EC sense is simply a possible solution to the problem under consideration.
The routine proceeds by evaluating all individuals using an objective function, which assigns a numeric
value to each individual. Obviously, the objective function is highly domain dependent. The outcome of the
objective function can be used either directly or indirectly as the fitness score of the individual'. The cycle
continues by selecting a new intermediate “parent” population. Each individual is selected with a probability
proportional to its fitness score. This intermediate population is used to create an offspring population, using
various mutation and reproduction operators. The final step in the cycle is that the offspring population
replaces the current generation. This replacement step could involve pruning back the population to a
desired size. At this point the cycle has been completed and algorithm could perform another iteration. This

process continues until a given termination condition has been met.

The interesting aspect in this implementation is the balance between two opposite operations. On the one
hand, the selection operator aims to reduce the diversity of the population. The mutation and reproduction
operators, on the other hand, try to increase the diversity. This is the key to the convergence of good
solutions in evolutionary algorithms, as only those mutations that have improved the quality of the solutions

persist.

So far a possible solution to a problem has been described as an individual. Individuals can be further
specified into a phenotype and a genotype, analogue to the terminology in biology. The phenotype is the
complete physical representation of an individual. In biological sense, this would encompass physical
properties such as shape and size (i.e. morphology), behavior, physiology, and so forth. In the computational
context of EC, the phenotype depends on the problem domain. As an example, for a parameter optimization
problem the phenotype could be a tuple of real-valued parameters. The genotype, on the other hand, is
the “blueprint” of the individual. In the case of a human being the genotype is the DNA that is inherited
from the parents. In EC the genotype is a computational representation of the phenotype. For instance, we
might prefer to encode the parameters in a real-valued optimization problem by means of bitstrings. These
bitstrings are then the genotype. The distinction between genotype and phenotype may or may not be clear,
depending on the problem.

IThere is a slight distinction between an objective function and a fitness function. For instance, consider a minimization problem,
where a lower value of the objective function means a higher fitness. The fitness function in this situation could assign a fitness value
that is the inverse of the score of the objective function.
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Strictly speaking, genotypes and phenotypes are type descriptors, whereas genomes and phenomes are in-
stantiations of genotypes and phenotypes, respectively?. Furthermore, a genome consists of a set of chro-
mosomes, which encode parts of the genetic material. Nonetheless, the terminology on genetics within the
field of EC is commonly not as strict as within the field of biology. We have opted to follow this less strict
use of the terminology. The only important distinction that we will use consistently throughout this report

is between the genotype and the phenotype.

There are three important preparatory steps to be made when applying an EC algorithm to a problem. These
three steps require the user to specify:

1. The phenotype and genotype representations of the problem.

2. An appropriate objective function for the individuals. This objective function determines the measure
that is being optimized by the algorithm.

3. The termination condition for the evolutionary run. Possible termination conditions include a maxi-

mum number of generations or the stalling of the convergence rate.

All different variants of EC share the high level overview as we have just described. More precisely, how-
ever, the cycles may proceed in two different manners. The overview as explained so far iterates on the
level of generations of populations, i.e. one generation is substituted with another generation. This form
is named generational EC. Opposed to this is steady-state EC, in which the cycle iterates on the level of
individuals. This means that every iteration a newly individual replaces an existing one. The generations in
steady-state EC are therefore said to overlap each other. Throughout this chapter we will focus on the more
standard generational EC. The explanations, however, can easily be adapted to the steady-state variant.

As we will see later, the distinction between the different paradigms of EC lies mainly within two aspects.
Firstly, different representations may be used for the individuals. Secondly, the algorithms may empha-
size on different types of operators. For example, some algorithms may emphasize on mutation, whereas
others mainly use recombination of a set of individuals. We wish to emphasize that the “no free lunch”
theorem applies also on different variants of EC. Each of the described paradigms has its own strengths and
weaknesses.

The class of EC algorithms is “generalized” in the sense that it does not use any domain knowledge. This can
be considered both a strength as well as a weakness. On the one hand, this fact means that the algorithms can
easily be applied to a wide variety of problem domains, such as numerical and combinatorial optimization
problems. On the other hand, however, it also implies that the algorithms will not perform in optimal fashion
for many problem domains. Domain specific knowledge and optimizations can help to improve the quality
of the solutions and can increase the convergence rate. Memetic Algorithms try to exploit this domain
specific knowledge by combining Evolutionary Algorithms with other local search methods [76, 61]. This
is commonly done by allowing the individuals to perform a local search before they are being evaluated.
The analogy with biological evolution is that the fitness of an individual is by no means determined entirely
by their genes. Instead, individuals can increase their fitness during a lifetime, for instance by means of
exercises or specific nutrition. Although Memetic Algorithms are relatively new as compared to EC in
general, they have been shown to outperform EC on specific problems.

2This distinction is similar to the distinction between a class and an object in Object-Oriented programming.
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Algorithm 3.1 Pseudocode for the standard Genetic Algorithm (GA).
Require: s > 0 //size s must be larger than 0

1: P < initialize(s) // create initial random population

2: P.evaluate()

3: while isNotTerminated() do
4. O < P.select() // create offspring population
5 O.crossover()  // perform sexual reproduction
6:  O.mutate()
7
8
9:

O.evaluate()
P<=0
end while

3.2 Genetic Algorithms

Probably the most recognized form of EC is the class of Genetic Algorithms (GA), which were popularized
by Holland [47, 48]. Genetic Algorithms mainly operate in the realm of the genotype. The chromosomes
are usually very simple data structures, such as bitstrings. The offspring is generated by means of simple
binary operators on one or more individuals. From these operators, sexual reproduction has traditionally
been the operator that is emphasized in GA. The pseudocode of the GA algorithm is shown in Algorithm
3.1. The pseudocode clearly shows the evolutionary architecture that we have explained above.

It has been stressed that GA is not strictly an optimization method. Instead, it should be considered a
search method that finds competitive solutions for a given problem. This means that there is no guarantee
whatsoever that the process will yield globally optimal solutions. We will describe the GA algorithm at the
hand of its genotype representation, the mutation and reproduction operators, and the selection procedures
that can be used.

3.2.1 Genotype Representation

As noted before, GA often uses very simple data structures for the genotype. The most common genotype
representation is to simply use bitstrings for the chromosomes. This can best be explained at the hand of an
example. Consider a real-valued optimization f (x,y, z) problem that takes three parameters as its input.
An obvious phenotype representation for this specific problem would be a vector with three elements, i.e.
(z,v, z). The corresponding genotype would represent the three parameters as bitstrings of a specific length.
Suppose that we have the specific phenome (16.26, 6.8, 0.55), then this would yield the chromosome

¢ = (01000001, 00011011, 00000010) . 3.
—
x Yy z

In this example the parameters have been represented with three binary fixed-point numbers. The total
resolution of the numbers is 8 bits, of which 2 bits have been reserved for the fraction. As a result, rounding
errors may occur, as is the case in this example. GA has typically been used with representations of relatively
low precision, such as 10 bits per parameter. The resolution, of course, has an influence on the quality of
the solutions and the execution time of the algorithm.

The encoding method of the genotype is another important aspect. The common practice is to use standard
binary encoding or closely related variants, such as the fixed-point encoding used above. These encoding

schemes, however, have certain disadvantages. The most apparent problem is that the two values with a
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Figure 3.2: Demonstration of the crossover operator in GA applied to two chromosomes. The dashed lines mark
the crossover point.

small Hamming distance 3

can represent vastly different values. Due to this fact, a minor mutation in the
genome (e.g. a single bit) can mean a drastic mutation in the phenome of an individual. The so-called Gray
codes solve this problem, as this type of encoding guarantees that adjacent integers in the original space
are also adjacent in Hamming space, i.e. they have a Hamming distance equal to 1. A consequence of this
connectivity of gray codes is that the number of optima in the Gray coded space must be less than or equal
to the number of optima in the original real-valued space of the function. Standard binary encoding, on the
other hand, may in fact introduce many new local optima. It has been shown empirically that Gray codes
outperform binary representation for most — but not all — types of problems [117]. Besides gray codes, also

real-valued presentations have occasionally been used in GA.

3.2.2 Reproduction and Mutation Operators

In Algorithm 3.1 we can observe that two operators are being applied to the population. Recombination
is the more emphasized operator in GA. In recombination two — or more — individuals are combined to
produce offspring that inherits genetic material from the parents. The idea is that partial solutions to the
problem can be exchanged by means of this genetic material. This is to a great extent inspired by the sexual
reproduction of human beings. The common way to implement this form of reproduction in GA is by means
of crossover. In crossover two parents swap a fragment of their chromosome, which results in two offspring.
An example of 1-point crossover is depicted in Fig. 3.2. Note that the crossover point is randomly chosen
and may ignore the parameter boundaries. The probability with which crossover recombination occurs is
usually denoted p.. The parents that engage in recombination can be selected using various schemes, as we
will see shortly. In general, however, individuals with a higher fitness will be more likely to be selected for
reproduction. This way the beneficial genetic material of strong individuals is propagated throughout the
population and the effect of malicious genetic material is dampened (i.e. the genetic repair effect).

After recombination the mutation operator can be applied to the population. This operator mutates every
bit in the population with a low probability p,,. This probability is typically very low, i.e. less than 1%.
Mutation aids the algorithm to create new genetic material within the population. A final remark is that not
every individual will necessarily be subject to either operator. It is perfectly possible that an individual is
copied unchanged into the offspring generation. Some algorithms may even copy the best m individuals
directly into the offspring generation on purpose. This strategy is named m-elitism and it guarantees that
the process cannot diverge into worse solutions.

3In information theory, the Hamming distance between two strings of equal length is the number of positions for which the
corresponding symbols are different.
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3.2.3 Selection Procedure

In addition to the mutation and recombination operators, the other key element in GA is the selection
mechanism. In the canonical GA the selection algorithm is applied to the current population, in order to
create an intermediate population. The selection procedure thus selects the individuals that will be subject

to recombination and mutation. These individuals are selected with a probability that proportional to their
E;

— ? ’
where F;; denotes the objective score of the individual and F' denotes the average score of all individuals in

fitness (i.e. fitness proportional selection). The fitness for individual 7 can, for example, be defined as

the population. Individuals for which % is larger than 1 will thus have an above-average fitness. This fitness
score can be used to determine the probability in which the individuals will be chosen for reproduction. One
common way to do so is to use roulette-wheel selection, in which every individual has a space on the wheel
that is proportional to its fitness. A common problem with this method is that the selection pressure is
not constant over time. In the beginning, selection pressure may be to high, as the population consists of
random generated individuals. In a later stage of the process, there tend to be less variation in the fitness
of the individuals. The selection pressure then can becomes lower, which results in the search process to
stagnate.

Another way to do fitness proportional selection is to uses a rank-based mechanism. The most simple
scheme is to assign a fitness bias of 1 < Z < 2 to the top ranked individual and 2 — Z to the bottom
ranked individual. The other individuals are uniformly distributed between these two individuals, based on
their rank. This means that the median ranked individuals will be designated a fitness bias of exactly 1.
The advantage in this scheme is that the selection pressure is more constant throughout the search process.
Tournament Selection is a fast — but noisy — way to implement ranking. In this selection mechanism the
intermediate population is constructed by keeping tournaments between two individuals. The competitor
with the highest fitness wins the tournament and is reproduced. On average, every individual competes in
two tournaments each generation. The top ranked individual is expected to win both tournaments, whereas
the bottom ranked individual will win none. The median ranked individual will, on average, win one
tournament. In expectation, this produces a linear ranking of the individuals with a bias Z = 2. Tournament
selection can also be used with competitions in which more than 2 individuals compete. The amount of
competitors in tournament selection can be used to control the fitness bias and thus the selection pressure.

3.3 Evolution Strategies

While Holland was working on his GA, Rechenberg and Schwefel developed their Evolution Strategies (ES)
[94, 4]. Interestingly enough, both techniques have emerged rather independently, although they were de-
veloped around the same time and both share their inspiration from biological evolution. ES have originally
been developed for parameter optimization problems and has therefore taken a different direction from GA.
There are two main differences between ES and GA. The first is that ES operates within the phenotype
realm, where in GA the operations are done on a genotype representation. This distinction shows in the
fact that ES are applied to real-valued representations of the problem. The second distinction between the
algorithms is that mutation is the more emphasized operator in ES, in contrast to recombination in GA.
There exist recombination mechanisms for ES, but the canonical ES relies on mutation for diversifying the
genetic material. A practical distinction between GA and ES lies within the population sizes. ES are com-
monly applied on relatively small populations, say 1 to 20 individuals, whereas GA performs best on large

populations of hundreds or even thousands of individuals.
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Algorithm 3.2 Pseudocode for the (;ﬁ )\) Evolution Strategy (ES).

Require: ;1 > 0and A > p
I: P < initialize(u) // create initial random population
2: P.evaluate()
3: while isNotTerminated() do
O <« P.reproduce()\) // create offspring population
O.mutate()
O.evaluate()
if usePlusStrategy() then
O <= OUP //combine parent and offspring populations
end if
10: P <= O.select(u)
11: end while

R P IS L

The pseudocode of the ES algorithm is shown in Algorithm 3.2. From this pseudocode we can observe the
high resemblance of the GA and ES algorithms from a high abstraction level. The two basic types of ES are
denoted with (11 + A)-ES and (1, A)-ES. The symbol (s refers to the size of the parent population, whereas A
denotes the size of the offspring population. The basic idea behind both variants of ES is that x4 individuals
are reproduced and mutated into A offspring individuals. At the end of a generational cycle, the population
is pruned back to the best p individuals. The distinction between both variants lies within the fact that
in (u, A)-ES only the newly generated offspring population is used to replace the parent population. This
means that the lifetime of an individual is limited to a single generation. In contrast to this, in (1 + \)-ES
the next generation is chosen from both the parent population and the offspring population (cf. lines 7-9 in
the pseudocode). This makes it possible that individuals with a high fitness survive multiple generations.
For example, in (1 + 1)-ES the offspring only replaces the parent if it has a higher fitness*. This could
be considered as a form of hill-climbing search, which accepts a random change if and only if it is an
improvement. It may be intuitive to assume that (p + A)-ES should be preferred over (u, A)-ES, since it
will not discard good solutions that have been found so far. Nonetheless, (1, A)-ES has empirically been
shown to outperform (p + \)-ES for certain problems [118]. This can be contributed to the higher selective
pressure in (u, A)-ES.

3.3.1 Genotype Representation and Mutation

Previously, we noted that ES operates in the realm of the phenotype. This means that the operations are
done directly on the real-valued parameters, instead of being encoded into a certain genotype representation.
Alternatively, one could argue that in ES the genotype and phenotype are simply identical to each other.
Recall the example of the real-valued parameter optimization from Section 3.2.1. The specific phenome
(16.26, 6.8, 0.55) for this problem can be represented as the — identical — ES chromosome

¢ = (16.26,6.8,0.55) . (3.2)

This example makes clear that ES is particularly suited for real-valued optimization problems, for which
they were originally developed. Unfortunately, combinatorial optimization problems may be considerably
more hard to represent in ES.

“4Furthermore, the more general (1 + 1)-ES yields the steady-state variant of ES.
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Since the representation is real-valued, the mutation operator can be much more simple than in GA. It is
typically implemented as a distribution around the individual being mutated. The mutation is done by adding
a random value, generated according to the distribution, to the parameter in the chromosome. Obviously,
the distribution should have a mean of 0. The equation for a mutation of parameter z; into a new value

then becomes

332 =x; + N (070'1’) , 3.3)

where N (0, o) denotes a logarithmic normal distribution with mean 0 and standard deviation o. Other
probability distribution functions may be used, if desired. Note that this mutation mechanism requires the
user to specify a standard deviation o; for each parameter in the chromosome. These standard deviations
are the strategy parameters of the algorithm, as are 1 and A. The value of o determines the step size and is
therefore very important for the convergence rate of the ES algorithm. In the initial phase of the evolution a
relatively large step size should be used, which is gradually decreased as the process advances.

3.3.2 Self Adaptation

One interesting approach to adapt the step size during the course of the evolution is to encode the stan-
dard deviations into the chromosome of an individual. This means that these strategy parameters will be
optimized by the evolutionary process itself. This mechanism is named self adaptation and is commonly
applied in ES. An example of a chromosome with three parameters and the additional strategy parameters
is

Cc = ($171'2,$3,0'1,0'2,0'3) . (34)

The standard deviations in this mechanism are usually referred to as the endogenous strategy parameters
[5]. Opposed to this are the exogenous strategy parameters, such as p and \. We will refer to the original
parameters z; as the object parameters. Self adaptation has been shown to be an excellent mechanism of
adapting the strategy parameters. Nonetheless, it leaves us with an important question that needs to be
addressed, namely, how the endogenous strategy parameters themselves are updated. The following two
update functions demonstrate how a chromosome (x, o) is mutated into a new chromosome (x’, o”'):

x, = z; + N; (0,0;) (3.5)
t=o0,exp (TN (0,1) +TN; (0,1)) . (3.6)

g
Note that A (0, 1) denotes a random value that is identical for each object parameter in the chromosome.
On the other hand, A; (0, 1) is a random value that is specific for each distinct object parameter. In Eq. 3.6
7 and 7’ are the so-called learning parameters, which are constants that control the rate and precision of self
adaptation. These learning parameters are not subject to the evolutionary process and are thus exogenous
strategy parameters. Theoretical as well as empirical investigations suggest that these learning parameters

should be chosen according to [100]
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3.7

T X —— 3.8)

where m denotes the number of object parameters.

The canonical ES algorithm, as described so far, uses mutations for the object parameters according to a
spherical distribution parallel to the axes. The more advanced covariance matrix adaptation ES (CMA-
ES) allows to arbitrarily change the orientation of the mutation by means of a correlation matrix [43, 44].
As a result, the mutations can adapt to the local shape of the fitness landscape. Although more powerful,
this drastically increases the size of the chromosomes and the computational load. A full description of
CMA-ES is beyond the scope of this report.

3.4 Genetic Programming

A more recent form of EC is the Genetic Programming (GP) paradigm, developed and popularized by Koza
[59]. GP is very different from both GA and ES, as it should be considered rather a form of automated
programming than a parameter optimization technique. It aims to solve a problem not by optimizing solely
parameters, but by breeding a population of computer programs. These programs, when executed, are
direct solutions to the problem. Obviously, this gives much more freedom in the structure of the solutions
and therefore it can be applied to wider variety of problem domains. Thus far, GP has been successfully used
to duplicate the functionality of various previously patented inventions [60]. These include general purpose
controllers that outperform tuned PID controllers and the synthesis of various electronic components. This
demonstrates the enormous problem solving potential of GP on non-trivial domains.

The base of the GP algorithm is identical to GA and therefore we refer the reader to Algorithm 3.1 for its
pseudocode. The extension of GP lies within the representation of the individuals. Where GA uses fixed
length strings to encode an individual, GP instead evolves runnable programs. This major extension of
the paradigm requires a well-thought representation for the chromosomes. Furthermore, the mutation and
reproduction operators need to be redefined to be used with new type of representation of the individuals.
We will focus mainly on the differences between the GP and the GA paradigms.

3.4.1 Genotype Representation

The most common way to represent programs in GP is by means of syntax trees. These syntax trees are,
regarding the structure, identical to how a compiler parses a high-level programming language. An example
of a syntax tree that represents the mathematical function (3/z) — (y x 5) is shown in Fig. 3.3. A syntax
tree contains nodes and links. The nodes indicate the instructions to execute, whereas a link indicate the
arguments for each node. The leave nodes, i.e. the nodes without any downward links, are named the
terminals. The internal nodes, on the other hand, we will refer to as non-terminals®. These trees can be

executed simply by means of a recursive depth-first traversal.

SKoza refers to the internal nodes as functions. In this report, however, we prefer to use non-terminals in order to prevent confusion
with other types of functions (e.g. kernel functions). The term non-terminal is more common in the field of compiler theory.
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Figure 3.3: An example tree-like program representation as used in Genetic Programming.

(a) Full (b) Grow

Figure 3.4: Constructing GP trees using (a) the full method and (b) the grow method.

Obviously, representing a genotype in this manner requires the user to specify which sets of terminals and
non-terminals are allowed for a given problem. The set of terminals include the independent variables of
the problem, zero argument functions, and constants. Ephemeral constants are a special type of constants,
which are generated at random during the execution of the evolutionary process. The set of non-terminals
(i.e. the primitive functions) includes all functions that take at least one argument. Many different types of
non-terminals may be used, as this is entirely dependent on the problem domain. Examples include binary
operations such as {+, —, X, /, max, min, ... } or unary operations as {sin, exp, log, sgn, . .. }. Again, con-
siderably more complex or specialized non-terminals may be necessary, depending on the problem domain

under consideration.

Recall that in the primary phase of EC algorithms — and possibly also during later stages — individuals
are randomly generated. In case of GA, where chromosomes are simply binary bitstrings, this random
generation is of course trivial. Generating random syntax trees is relatively more complex. The individual
trees in the initial population are typically recursively generated, using random choices of the non-terminals
and terminals. This recursion is continued until a certain limit is reached, such as a maximum depth. In the
full initialization method the nodes are taken from the set of non-terminals until the desired depth is reached.
Beyond that depth only terminals can be chosen. The full initialization method will produce trees that are
balanced, in the sense that the path from the root to a terminal is always of the specified depth (cf. Fig.
3.4(a)). The grow initialization method is a variant on the full initialization method. In grow initialization
nodes are taken at random from both the non-terminals and terminals, until the depth limit is reached.
Thereafter, it will behave as the full initialization method. The path from the root node to a terminal may be
shorter than the actual depth limit, since terminals may be selected already before the depth limit is reached
(cf. Fig. 3.4(b)).

As a final note, we wish to make clear that the GP paradigm is not restricted to tree-like structures, although

this representation method is by far the most common. GP has been used with various other types of
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Parents » Offspring

Figure 3.5: The crossover operator performed on two parents and the resulting offspring. Both parents exchange
a sub-tree at a random crossover point.

representations, such as graph and linear representation schemes. If desired, several different representation

schemes may be used concurrently by means of individuals with multiple chromosomes.

3.4.2 Reproduction and Mutation Operators

The operations in GP include sexual recombination and mutation operators that are much similar to their GA
counterparts. In crossover recombination two parents exchange a part of their genetic material. Since the
chromosomes in GP are trees, this means that they swap a sub-tree rooted at a random crossover point. Note
that a crossover point needs to be selected for both trees separately and that these points do not necessarily
need to coincide. The process of crossover recombination is illustrated in Fig. 3.5. The crossover point is
often not selected with uniform probability. Instead, non-terminals are preferred over terminals as crossover
points (e.g. in a 90%/10% ratio). The reason for this is that exchanging a terminal value is not very likely
to make a large difference. Furthermore, due to the syntax tree structure approximately half of all the nodes

will be terminals®. A bias toward non-terminals thus helps to increase the effect of crossover recombination.

Traditional mutation in GP consists of randomly selecting a mutation point in the syntax tree and replacing
the sub-tree rooted at this point with a randomly generated tree. This process is shown in Fig. 3.6. The
mutation point can be selected either at a terminal or a non-terminal. The randomly generated replacement
tree can be constructed using either the full or grow initialization methods, as described above.

Another form of mutation in GP is to replace a sub-tree with one of its own sub-trees. This form is known
as shrink mutation, as it shrinks the total size of the chromosome. An example of shrink mutation is shown
in Fig. 3.7. First, a mutation point is randomly selected to mark a sub-tree of the chromosome, let us denote
this sub-tree with 77. Then a second mutation point is chosen somewhere in the marked sub-tree. This

This statement holds only if the average number of branches of the non-terminals is at least 2.
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Figure 3.6: Example of sub-tree mutation in GP. The marked sub-tree in the parent is substituted with a ran-
domly generated sub-tree.

second mutation point marks another sub-tree, which we will refer to as 75. We can observe that both 7}
and 75 are sub-trees of the same chromosome and that 75 is a sub-tree of 7;. The mutation is completed by
replacing T} with 75 in the original chromosome. This means that the size of the chromosome is reduced,
hence the name “shrink” mutation. Therefore, shrink mutation can be considered a rudimentary form of
parsimony pressure. Parsimony pressure can be further enhanced by biasing toward smaller — and thus less
complex — chromosomes in the fitness evaluation [39]. The goal of this is to reduce the complexity of the

solutions, as to prevent too much “bloat” and overfitting of the solutions to the exact problem.

3.4.3 Constrained Syntactic Structures

In the canonical GP algorithm there is no way to restrict the structure of the syntax tree. For some problems
it may be desirable to impose restrictions, so that non-terminals operate only on appropriate data types.
Consider, for instance, a binary equality function, which takes two real values as its children and returns a
boolean value. This boolean return value could of course not be used with standard arithmetic operators.
On the other hand, the boolean return value could be useful in an if-then-else construction. An example of
a syntax tree with typed non-terminals is shown in Fig. 3.8. In short, for some problems it is necessary to
impose restrictions on the syntactic structure of the chromosomes.

Strongly Typed Genetic Programming has been proposed as an enhanced version of GP that enforces data

type constraints [75]. This influences both the representation of the individuals and the chromosome altering
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Figure 3.7: Example of shrink mutation in GP. The sub-tree marked with the red dashed line is substituted with
one of its own sub-trees, marked with the blue dashed line.

Figure 3.8: A syntax tree that models a protected division operator. This example shows the need of type con-
straints on the syntax tree. Note that all links are numerically typed, unless stated otherwise.

operators. Firstly, while defining the terminal and non-terminal sets the user also has to specify the types of
the terminals and of the parameters. This typing information needs of course to be derived from the problem
domain. Furthermore, the random generation must be altered to enforce type checking. We must guarantee
that the trees that are randomly generated respect the typing constraints as imposed by the user. Secondly,
the same holds for the mutation and recombination operators. Only those modifications are allowed to be

made that do not break the validity of the syntactic structure.






RELATED WORK

S ince their introduction, Kernel Machines have been applied successfully to a variety of problems. How-
ever, an important aspect of the practical application is the selection of both the hyperparameters and the
kernel function. For certain values of the hyperparameters the machine will not be able to train itself on the
problem and therefore performs poorly. The situation is similar for the kernel function: certain functions
may perform better, or worse, for certain types of problems. Which are the optimal hyperparameters and
kernel depends on the problem and the type of Kernel Machine that is used.

The common procedure of hyperparameter optimization is a grid search in the parameter space, as has been
described in Section 2.5. This means that the machine is optimized by training it on a predefined range of
parameter values. Two major drawbacks in this type search process are that it is extremely time consuming
and that the method does not scale well with the number of parameters. Because of these drawbacks, various

research has been conducted in finding betters methods to optimize hyperparameters.

Selecting a suitable kernel function is perhaps even more difficult than hyperparameter optimization. Here
the common strategy is to just try the kernel machine on various kernels and see how it performs — if kernel
selection is done at all. This is not very likely to change soon, as a relatively limited amount of research has
been dedicated to the optimization of kernel selection.

In this chapter we will present the scientific advances made for the problems of hyperparameter and kernel
selection. In this literature study there will be an emphasis on the application of EC for these problems. We
start of with descriptions of both analytical and empirical studies on hyperparameter selection. A separate
section has been dedicated to those solutions that make use of EC. Consequently, we will focus on the
studies regarding combined kernel functions and lastly we will focus on the approaches that construct kernel
functions using GP.
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4.1 Hyperparameter Selection

Techniques for optimizing hyperparameters can be subdivided in two distinct groups, where one group
comprises the analytical methods, whereas the other is based on empirical foundations. Within the group
of analytical methods the most elaborate technique that has been used is that of gradient descent methods
[21, 15, 56]. Gradient descent is an analytical minimization method, in which a local minimum is found
by taking steps in the negative gradient direction. The approach is demonstrated on a non-spherical RBF
function, which in this context means that features do not all share the same scaling factor, as would be the
case for the standard RBF kernel in Eq. 2.28. A non-spherical variant of the RBF kernel that has as many
scaling factors as there are features in the data set is given by

k(x,z) = exp (— Zf”xt - zt2> , “4.1)
t=1

where ~? defines the weight for the ¢! feature. This demonstrates the excellent scaling properties of their
approach, as there are more hyperparameters than there are features. Performing a grid search on such an
optimization problem would be intractable, due to this large amount of hyperparameters. Furthermore, this
non-spherical kernel can be used to perform feature selection, since the scaling factor of features that do not
contribute to the solution will approach zero. Some error criteria are proposed for usage in their approach,
of which the radius-margin bound is shown to perform well. This bound is given by

1
T = ZRQHW||2 : (4.2)

Here R stands for the radius of the minimum sphere that contains all the samples in feature space'. The
margin between the support vectors and the separating hyperplane, i.e. va—”, we have seen before in Section
2.2. Tt is shown that the radius-margin is effectively an upper bound for the leave-one-out cross validation
error for the classification case [115, 19]. This explains why this bound can be used to approximate the
generalization performance of the classifier. Nonetheless, it has to be noted that more direct error criteria

can be used, such as the leave-one-out cross validation error itself [57].

Although the gradient descent method is an elaborate and systematic technique, it does impose some strict
requirements. The method assumes that the kernel function is continuously differentiable, since the hyper-
parameters are updated based on the gradient direction of a smoothed leave-one-out error bound. For certain
kernel functions it may be impossible to satisfy this requirement, especially so for kernels that operate on
non-vectorial data. Besides the kernel function, also the objective function that measures the performance
of a set of hyperparameters is assumed to be differentiable. Moreover, the whole class of gradient descent
methods has the apparent disadvantage that they can get stuck in local minima. Lastly, their approach
is aimed at with SVM, which excludes the — direct — application of the method to other types of Kernel
Machines.

An approach based on pattern search has been proposed to relax some of these assumptions [74]. In pattern
search the neighborhood of a parameter vector is investigated in order to approximate a gradient [25]. This
method thus removes the need for differentiability for determining a path based on the — approximated —
gradient direction. The size of the neighborhood is gradually reduced at each iteration, which results in a
smaller search steps. On the one hand, this approach solves a main problem in analytical gradient descent

I'There is no need to explicitly map all samples into feature space to calculate the margin.
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methods (i.e. the differentiability assumption). On the other hand, the empirical sampling of the neigh-
borhood makes that the scaling performance, with regards to the number of hyperparameters, is drastically
reduced.

Frohlich and Zell have proposed a variant on the previous method [37]. Their method uses online Gaus-
sian Processes to create a model of the error surface [24, 93]. Gaussian Processes are a machine learning
technique not much different from LS-SVM?. An important difference is that Gaussian Processes not only
give an expected output, but also an expected variance. Frohlich and Zell make use of this property by
sampling systematically at points where the expected improvement is highest. Therefore, the model of the
error surface becomes increasingly reliable and the search is directed at interesting regions. One might ask
what the gain is in using a learning method — Gaussian Processes — to model the error surface of another
learning method — SVM. The answer is that training the Gaussian Process is relatively cheap as compared
with training the SVM, since the dimensionality and sample size of the error surface model are generally
much smaller.

A vastly different analytical approach is driven by heuristics based on information deduced from the data
set. An example of such an approach is based on what is called meta-learning, or in other words, learning
about learning [107]. The idea is to calculate meta-statistics of the problem data set (e.g. size, mean, vari-
ation, correlations among features) and to use this information to predict which hyperparameters would be
optimal. This means that machine learning itself is applied on the problem of optimizing hyperparameters.
Obviously, such a system first needs to be trained on a labeled training set. The main advantage of these
heuristic approaches is that no machine needs to actually be trained. Especially for large data sets this en-
ables significant savings in time when compared with methods that do need to train the Kernel Machine.
However, the empirical evidence does not support the feasibility of this approach to a great extent. Its ap-
plication seems therefore limited in situations where a relatively good set of initial parameters have to be

approximated.

The original grid search method has slightly been adapted by Staelin. He proposes a method in which
initially a sparse grid search is performed on the search space [108]. Then in the next iteration the resolution
of the search is decreased (e.g. halved), after which a new grid search is centered around the currently best
hyperparameters are. This means that the grid search is iteratively focused on the best solutions that are
found so far, while the resolution is decreased. This method is shown to search more efficiently than the
normal grid search. Nonetheless, it may be clear that this method is likely to find suboptimal solutions.

4.2 Evolutionary Hyperparameter Optimization

In Chapter 3 we learned that EC can well be applied to real-valued and combinatorial optimization prob-
lems. It is therefore not surprising that these algorithms have been applied to the hyperparameter optimiza-
tion problem. One of the first mentions can be found in the work of Frohlich et al. [36], in which GA is
primarily used for feature selection. This is done by creating a mask for each feature in a binary genotype.
The optimization of the regularization parameter C' is done in parallel. Several objective functions have
been used in their work, among which 4-fold cross validation and the radius-margin bound. The benchmark
results are, however, difficult to interpret, since feature selection and optimization of C'is done in parallel.
Other similar work have focused on empirical error criteria [52, 73, 82], on solely hyperparameter optimiza-
tion using the radius-margin bound [20] or k-fold cross validation [17, 96]. Furthermore, in some studies

2 A detailed explanation of Gaussian Processes is outside the scope of this report.



46 CHAPTER 4. RELATED WORK

the real-valued variant of GA is applied to the problem [51, 121]. Unfortunately, these studies do not give a
clear idea whether the real-valued representation performs significantly better than a binary one. Practically
all these studies have focused on the RBF kernel, which seem to have become the standard choice for kernel
functions.

The literature in which ES is used for optimization instead of GA is rather sparse. To the best of our
knowledge, only the approach proposed by Friedrichs and Igel make use of this method for hyperparameter
optimization on a single kernel function [35]. They use ES to not only optimize the scaling, but also the
orientation of the RBF kernel. This method is best explained using the appropriate formula. A more general
variant of the standard RBF kernel is given by

k(x,z) = exp (— (x—2z)" A(x— z)) , (4.3)

where A is a symmetric positive definite matrix. In case that A = ~I, then this yields the standard RBF
kernel function (i.e. Eq. 2.28) with one uniform scaling factor for all the features. In case that A can
have independent scalings on the diagonal — and non diagonal values are all zero —, then this yields the
non-spherical RBF kernel function, where each feature ¢ is scaled by a corresponding scaling factor ~¢.
This is the formula that we saw previously in the approach of Chapelle et al. (i.e. Eq. 4.1). Finally, if
we allow arbitrary symmetric positive definite matrices for A, then the input space can both be scaled and
rotated. It is obvious that this approach gives an enormous freedom in the feature mapping of the RBF
kernel. However, the price one has to pay is that the number of kernel parameters is quadratic with respect
to the number of features, as opposed to linear and constant for the scaled and ordinary variants of the RBF
kernel, respectively.

This ES approach achieved an improvement over the kernel parameters that were found using grid search.
This result should be interpreted with care, as the optimal grid search parameter were used to initialize the
evolutionary algorithm. This means that the ES approach was likely to perform at least as good as grid
search?, in terms of generalization capacity. The empirical objective function was based on classification
errors on partial test sets.

In general the benchmark results in these studies confirms that EC can be applied rather well to the problem
of hyperparameter optimization. The generalization performance is generally not much better than the one
obtained using grid-search. However, these optimal solutions are usually found in much less iterations and
the GA approach is thus less time consuming. An advantage of EC optimization when compared with
gradient descent methods is that EC is more able to cope with local minima. Furthermore, it does not
impose restrictions on the kernel and error criterion, such as differentiability.

4.3 Combined Kernel Functions

In Section 2.3.2 we demonstrated how single kernel functions can be combined into more complex ones.
It seems intuitive that these more complex composite kernels could improve on the generalization perfor-
mance, as the implicit feature mapping could be more suited for a specific problem. Several methods have

been proposed for the composition of kernel functions, which is a form of kernel selection.

The first notions of optimizing a combined kernel were by Lanckriet et al. [62, 63]. In this work the linear

3Divergence of the search process could have occurred, since they made use of (i, \)-ES. Therefore, their approach could theoret-
ically still have performed worse than grid search.
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combinations of kernels are considered, i.e. a kernel matrix K is defined as

K = Z K, forc >0 , (4.4)
1=0
where the set £ = {K;,...,K,,} is a predefined set of kernel matrices (e.g. initial random guesses)

and the weight factors ¢; need to be optimized. This optimization is demonstrated by means of Kernel
Alignment or simply based on the margin, where a larger margin is considered better. Kernel Alignment,
in short, is a quantitive measure that computes to which extent two kernel matrices are aligned with each
other. Furthermore, the ideal kernel is assumed to be yy?, i.e. the target matrix. The reasoning behind
this specific ideal kernel is that if we would know a priori the target classification function y (x), then the
optimal kernel matrix would be K;; = (y (x;) == y (x;))*, which yields the rank 1 matrix K = yy”. The
general idea of Kernel Target Alignment is to use the alignment between a kernel matrix K and this target
matrix as a performance measure for a kernel matrix. Kernel Alignment will be dealt with in more detail in
Section 8.3.

The optimization of the weight factors c is done by using techniques from Semidefinite Programming [113].
Semidefinite Programming is an convex optimization that deals with convex functions over the convex cone
of positive semi-definite matrices. This optimization method can be applied to this problem, given that
the kernel matrices need to be semi-definite to satisfy Mercer’s conditions. It is important to note that this
optimization method works directly with kernel matrices, instead of kernel functions.

Similar approaches have been presented that use the same kind of linear combination of kernels and error
criterion (i.e. Kernel Alignment). The methods differ in the way in which the weight factors are optimized.
Ong and Smola use Semidefinite Programming on a different formalized problem, based on so-called hyper-
kernels [84, 83, 85]. Instead of using Semidefinite Programming, Kandola et al. resolve to the optimization
problem by means of the Lagrange multiplier method [55]. This form of optimization is identical to how
the SVM model selection problem is solved. Additionally, overfitting of the composite kernel is prevented
by constraining the weight vector ||c||. Sun et al. optimize the weight factors using a generalized eigenvalue
problem [109]. Although all these approaches make use of advanced mathematical foundations to tackle the
problem, they fail to provide a considerable amount of benchmark results that support their claims. Further-
more, they rely on the assumption that Kernel Alignment indeed is a reliable predictor for the generalization
performance of a Kernel Machine.

It has been argued that during the combination of kernels some potentially useful information is lost. Con-
sider, for example, data sets that contain varying local distributions. Lee et al. proposed a method for
combining kernels that does take this aspect into account [64]. Instead of combining various kernel ma-
trices into one, their method creates a large kernel matrix that contains all original kernel matrices and all
other possible mixtures of these matrices. Such a mixture is defined as

kij(x,2) = (¢i (x), 05 (2)) , 4.5)

where 1 < 7,5 < m are indices in the set of kernel functions /C, m is the size of K and ¢; is the feature
mapping corresponding to the kernel function k;. These mappings cannot explicitly be calculated, since the
RBF kernel implies a mapping into a feature space of infinite dimensionality. Therefore, this inner product

“In this equation @ == b returns +1 if a is equal to b and —1 otherwise.
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cannot be calculated in the normal way. This problem is resolved by analytically deriving a function for
the mixture of two RBF kernels, so that the kernel trick can still be applied. As a result of this strategy of
mixtures, the combined kernel matrix grows m times in both dimensions. The support vector algorithm is
now applied on this combined kernel matrix, by substituting the range of the summations from [1,n] (i.e.
the original SVM) to [1,n x m]. One main advantage of this scheme is that it does not require any weight
factors to be calculated.

Although their method is shown to outperform other combination methods for problems with local distri-
bution, there are several disadvantages. Firstly, it focuses solely on the combination of a set of predefined
kernel functions. This leaves us with the problem of hyperparameter selection for the set of predefined
kernels. Furthermore, the time consumption of the learning algorithm will be increased with O (m3) and
the memory consumption with O (mg). This is because the number of samples, from the perspective of the
SVM, will increase with a factor m. This limits the application of this methods to relatively small prob-
lems. Probably the most apparent limitation in their approach is the dependency on a mixture function for
the kernel functions. They managed to derive such a mixture for combining two RBF kernels, but it might
prove difficult, if not impossible, to replicate this trick for various other kinds of kernel functions.

4.3.1 Evolutionary Combined Kernel Functions

Various EC inspired approaches have been proposed to combine kernel functions. One of these approaches
optimize a linear combination of weighted RBF kernels using ES [88]. This means that for every kernel
¢ in the combination there are two parameters to be optimized, namely the scale v; and the corresponding
weight ¢; within the combination. The used fitness function is based on 5-fold cross validation and is thus
computationally intensive. Nonetheless, the results show that with an increased number of kernels in the
combination higher generalization performance can be achieved.

This work is very similar to that of Diogan et al., who proposed a linear combination of three different types
of kernel functions [28]. She uses the linear, inhomogeneous polynomial, and RBF kernel functions, which
all have predefined parameters. This means that only the weights are optimized using GA, which is claimed
to be for comparison purposes. Therefore, the approach focuses strictly on the problem of combining
kernels functions and not the hyperparameter optimization problem. The test set accuracy on benchmark
problems show significant improvements of the combined kernel, when compared to the performance of its
components.

So far these approaches have all used exclusively the linear combination method. However, in Section 2.3.2
we have given also other methods for combining kernel functions, such as multiplication. Other EA inspired
methods have been proposed that make use of both addition and multiplication in the process of combining
kernel methods. Lessmann et al. have proposed such a model based on GA and a set of five kernel functions
[65, 66]. The algorithm is used to define the structure of the kernel function (i.e. multiplication or addition
between two adjacent components) and the hyperparameters. The formula for the combined function is
defined as

k(x,z) = k1 (x,2) ®1 k2 (X,2) @2 ks (x,2) ®3 k4 (X,2) R4 k5 (x,2) (4.6)

where the set of kernel functions K = {kq, ..., ks } is predefined and ®; € {+, x} Vi. The genotype in the
GA approach contains the parameters for the five kernel functions and four extra bits that specify the type of

the operators (i.e. either + or x). This approach is demonstrated to perform well on classification problems
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when the 10-fold cross validation is used as the error criterion. Several similar publications support this
conclusion [6, 81, 80]. One limitation of these latter approaches, however, is that they are limited in the
kernels that can be used. The set of kernel functions is either fixed to one type with various parameters, or

to a fixed set of kernels with all distinct types.

These latter approaches suggest one important advantage of applying EC to this problem. The analytical
methods, described in the beginning of this section, depended heavily on specially crafted mathematics to
optimize the combination of kernels. In general, this decreases the flexibility of these approaches, as it
would be difficult to extend the model to other combination methods (e.g. multiplication). Some others
rely on specific aspects of the kernel function, which decreases the flexibility in using an array of different
kernel functions. The evolutionary approaches do not know these difficulties, as they are generalized search
methods. As a consequence, they are very flexible, as they can easily be adapted to handle very distinct
approaches. Although we would not want to deny the importance of sound analytical grounds for a model,
we would like to emphasize this flexibility offered by generalized search methods — like EC — for this type

of problems.

4.4 Kernel Generation by means of Genetic Programming

In Section 3.4 we saw that GP can are well suited to search for mathematical functions, such as symbolic
regression. It is therefore not surprisingly that people have tried to incorporate GP techniques to search for
kernel functions. Howley and Madden were among the first to propose such a method, in the form of their
Genetic Kernel Support Vector Machine [49, 50]. In this method a kernel function is evolved for use with
an SVM classifier. The genotype used in their GP algorithm is tree structured, with the operators +, —, and
X as the non-terminals. These operators come in two variants, namely a scalar and a vector version. To
demonstrate the difference, we consider the x operator. The vector variant (i.e. x) of this operator will
return a vector, where each component is the product of two components of the input vectors. The scalar
variant (i.e. x*) guarantees to return a scalar, so it will return the inner product of the two input vectors.
The terminals in their approach are the two vectors x and y. To guarantee that the kernel is symmetric, i.e.
k(x,z) = k(z,x), the kernels are defined as {e(x, z), e(z, X)), where e denotes the evaluation function of
a tree. An example kernel function that they have found is shown in Fig. 4.1.

The attentive reader will notice that the kernel functions generated using this approach will not be guaran-
teed to satisfy Mercer’s conditions. The argument is that it is time consuming to verify whether a generated
kernel function satisfies Mercer’s conditions and that these conditions are not strictly necessary. Experi-
mentally they decided on a reasonable objective function, which is the classification error on the training set
combined with a tiebreaker to limit overfitting. This tiebreaker is a close variant to the radius-margin bound
that we described before. Despite the disadvantage that the constructed kernels only use simple arithmetic,
the technique keeps up with or outperforms traditional kernels for most data sets. The authors emphasize,

however, that a technique as GP requires the availability of a sufficiently large dataset.

Also Gagné et al. have recently used GP for kernel-based learning methods, which resulted in a system
named the Evolutionary Kernel Machine [40]. This approach is similar to the Genetic Kernel SVM, as it
also tries to evolve symmetric kernel functions using arithmetic operators. Nonetheless, the set of operators
is extended with some operators, e.g. the exponential function, minimum, and maximum operators. A more
notable difference is that this approach is applied to kernel k-nearest neighbors classification technique,

instead of SVM. This choice has no influence on the generation of the kernel functions, but it allows for



50 CHAPTER 4. RELATED WORK
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Figure 4.1: A kernel function as evolved by the Genetic Kernel Support Vector Machine approach [49, 50]. Note
that the symmetry is guaranteed by taking the inner product of two identical trees, except that x and z are
substituted.

a different objective function. The approach has been kept tractable by means of co-evolution. In short, a
co-evolutionary framework evolves multiple — either cooperating or competing — species simultaneously.
This technique has been used to determine the subsets that are used for both training and validation. The
species that evolve the validation subset are competitive with the kernel function species. In other words,
the system tries to find difficult validation subsets for the kernel functions, as the validation species aims
to decrease the fitness of the kernels. On the other hand, the training subset species cooperate with the
kernel functions and try to increase their fitness. This approach creates an advantageous balance, in which
the training subsets are chosen in such a way to maximize the fitness of the kernels, whereas the validation
subset is selected with the goal to minimize their fitness. The benchmark results suggest that their approach
is able to compete with conventionally tuned SVM and £-NN systems.

Some enhancements to the approach by Madden and Howley have also been proposed by Diosan et al.
Their method differs from the original approach by a richer operator set (e.g. various norms are included)
and small changes to certain operators [27]. The objective function used is the classification error on a
validation set. In the comparison with the original approach by Madden and Howley the method does not
perform significantly better. Furthermore, their results indicate that — generally — the RBF kernel performs
at the same level. It has to be noted, however, that a kernel function was evolved using their system on
one data set. In the empirical validation the same kernel function was tested on all benchmark problems.
Therefore, it is likely that this kernel function was adapted to the specific problem on which it had been
trained. It would be interesting to see the comparison when a new kernel function would be trained for each
distinct data set.
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Model and Implementation






OPTIMIZATION MODEL

The work presented in Chapter 4 show that Evolutionary Computation techniques can help to improve
the performance of Kernel Machines. The work presented so far has emphasized on the problem of hyper-
parameter selection and creating simple ensembles of kernels. In this chapter we present two models that
can be used to tackle the problems of hyperparameter and kernel selection. The first model uses evolution-
ary parameter optimization techniques in order to find optimal hyperparameters for a kernel machine. This
model is relatively similar to some prior work that was presented in the previous chapter. The second model
uses more advanced EC techniques to search for combinations of kernel functions, driven by the objective
to increase the generalization performance of the Kernel Machine for a specific problem.

We believe that it is important to stress the different goals that these models try to achieve. The hyperpa-
rameter optimization model aims to use EC techniques to improve on the search speed of hyperparameter
selection. As such, this model tries to answer the question whether EC can optimize the phase of parameter
selection in terms of computational cost. Generally, a lower computational cost directly relates to having
the results available in less time. The search space in which this optimization model operates is exactly the
same function space F as would be used for traditional optimization methods (e.g. grid search). Naturally,
this function space is bounded by the parameterized kernel function that is under consideration. Since the
search spaces for hyperparameter optimization are identical, any search method that converges will eventu-
ally result in the optimal solution. Therefore we should not expect a significant increase in generalization

performance.

The second model that we present aims to increase the generalization performance by means of drastically
increasing the search space F. In Section 2.3 we have learned that kernel functions can be constructed in a
modular fashion. This combination is based on simple operations that allow us to create more complicated
kernels from simple building blocks (see Eq. 2.30, Eq. 2.31, and Eq. 2.32). Effectively, this combination
of kernels enlarges the search space F. We expect that this increase of search space will result in finding
better kernel functions, in terms of a higher generalization performance. However, this enlargement of the

search space will come at a higher computational cost and specialization to the training set.
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5.1 Evolutionary Hyperparameter Optimization

Finding optimal hyperparameters for Kernel Machines is not essentially different from other real-valued
optimization problem'. The problem constitutes of finding an object variable vector ¢, that optimizes the
objective function F'(c). Applied to the case of hyperparameter selection, this means that we are searching
for the set of hyperparameters that optimizes the generalization performance. This directs us to the steps
that we have to undertake to shape an evolutionary algorithm for our specific problem. Firstly, the hyper-
parameters must be encoded in an object variable vector. This step ensures that the evolutionary algorithm
can deal with the representation of the problem. Secondly, an objective function needs to be defined for our
specific problem. This objective function needs to evaluate the generalization performance for a given set of
hyperparameters. For now it suffices to note that we have used k-fold cross validation as our performance
measure. In k-fold cross validation the data set is subdivided in k& equal parts. Then the learning machine
is trained k times on k — 1 sets and tested on the single subset that was not included in the training set. It
is important to note that the machine is therefore never tested on a subset that was used for training. The

problem of finding a suitable objective function will be dealt with in more detail in Chapter 8.

5.1.1 Genotype Representation

Thus far an important model decision has been ignored, namely, the exact type of evolutionary algorithm
that we wish to use. In Chapter 3 we have seen that both GA and ES can be used for parameter optimization
problems, albeit there are differences among both approaches. Generally, it is safe to assume that ES
performs better on real-valued problems, whereas GA excels at combinatorial problems [5]. Given the
nature of our problem, which is obviously a real-valued optimization problem, we opt to base our model
on the ES approach. An additional minor advantage is that the encoding of the parameters is trivial, as the
phenotype and genotype are identical in ES. It therefore suffices to create an object vector containing all the
hyperparameters, i.e. the kernel parameters and the regularization parameter C', and the strategy parameters.
An example chromosome for the RBF kernel is given by the vector

Cc= [’73 Ca 01, 02]

The first two elements in this vector are the RBF kernel parameter v and the machine regularization param-
eter C'. These hyperparameters are the object parameters in the chromosome. The last two elements are
the endogenous strategy parameters, which in this case are the standard deviations for the object parame-
ters (cf. Section 3.3.2). Obviously, the chromosome of the polynomial kernel would contain 6 elements;
three hyperparameters (i.e. the degree d, the constant ¢, and C') and three standard deviation parameters,

respectively.

5.1.2 Overview of the Hyperparameter Optimization Model

An overview of the model is depicted in Fig. 5.1. This model closely resembles the standard ES algorithm,
as has been laid out in Algorithm 3.2. The model starts with an initial phase, or bootstrap phase, in which
a parent population is randomly generated. This first generation of u individuals is then evaluated using an
objective function, after which fitness functions can be assigned to all individuals. Note that an individual

' A minor exception is the degree parameter in the polynomial kernel, as it is defined as d € N.
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Yes

No

| Reproduce A individuals|

| Perform KM evaluation function |
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Figure 5.1: Graphical overview of the evolutionary hyperparameter optimization model.

in this context consists of the hyperparameters, which are encapsulated in the genotype. Besides the hyper-
parameters, the genotype also contains endogenous strategy parameters (see Section 3.3.2). These strategy

parameters are the standard deviations that determine the amount of mutation for each hyperparameter.

At this point the continuation of the model depends on one or more termination conditions. In case a
termination condition has been met, the model should return the best individual, i.e. the individual with the
highest fitness. If no termination condition have been met, then the model continues by applying a set of
evolutionary operators on the population. In case of ES these operators are reproduction and mutation. A
detailed explanation of these operators was given previously in Section 3.3. Shortly, these operators produce
a new mutated offspring population of A individuals. In case of (1, A)-ES this offspring is then pruned back
to p individuals based on their fitness values. The resulting population forms the parent population for
the consecutive generation. In case of (1 + \)-ES the offspring is first merged with the original parent
population before being pruned to p individuals. This sequence is repeated until one of the termination

conditions is met.
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5.1.3 (u, \)-ES versus (1 + A\)-ES

It is hard to argue whether the model should be based on (u, A)-ES or (¢ + A)-ES, since we learned from
Section 3.3 that both variants have advantages and disadvantages. To motivate our discussion we recapitu-
late the general heuristic for choosing either of the two variants. The typical application area of (u + A)-ES
are discrete finite size search spaces, such as combinatorial optimization problems [5, 3]. When the prob-
lem is an unbounded search space, typically real-valued search spaces, then (u, A)-ES should be preferred
[101]. Nonetheless, Whitley presents empirical evidence that indicates that (u, A)-ES generally performs
better than (1 + A)-ES [118]. We prefer to follow both the heuristic and the empirical indications and there-
fore we adopted (i, A)-ES for our model. Unfortunately, because of this decision we cannot guarantee that
the search process will converge to a solution, as would have been the case with (x + A)-ES. Nonetheless,
empirical data has shown that for the type of problem under consideration (u, A)-ES would be expected to
perform better. Furthermore, with (1, A)-ES the process is less likely to get stuck in local minima, as it
prevents that a group of strong individuals dominate the population for many generations. In this situation
the selection pressure on the individuals diminishes and this effectively disables an important Darwinian
element of the model.

5.2 Evolving Kernel Functions using Genetic Programming

In order to tackle the second research problem, i.e. increasing the generalization capacity by means of more
complex kernel functions, we propose a model based on GP principles. The idea is to construct complex
kernel functions as combinations of simpler kernel functions. As noted before, this approach is inspired
by the fact that certain operations on admissible kernels (i.e. kernels that satisfy Mercer’s conditions) will
result in a combined kernel function that is admissible as well. The operations for which this rule holds
are the sum of two kernel functions, a weighted scaling of a kernel, and the product of two kernels. These
operations were formally described in Eq. 2.30, Eq. 2.31, and Eq. 2.32, respectively. Constructing kernel
functions using these operations guarantees us that the combined kernel function is itself a admissible. This
means that we can extend the function space F of the search process as compared to simple parameterized
functions, without risking to search for functions that are not a valid inner product in some feature space.

There are several reasons why this approach of combining kernels would make sense. Firstly, without this
restriction on the operations we would search in an enormous function space. Suppose that the normal
arithmetic operators in scalar and vector forms (i.e. addition, subtraction, multiplication and a protected
division) were to be allowed. For full trees of depth 3 there are thus 3 non-terminals, which all can take one
out of these 4 operators. If we ignore for a moment the terminal nodes, then there are 4> = 64 possible
combinations of trees for that scheme. In our model there are only two binary operators, namely addition
and multiplication and the weighted scaling is a unary operator. This results in 2 - 3% + 1 - 3 = 21 possible
combinations for a full tree of size 3%. This calculation shows that our approach is more restrictive on the
search space. However, we restrict ourselves to admissible kernels and thus the more sensible candidate
solutions. This is a problem specific heuristic that should help to keep the model computationally tractable.

2If the root node is one of the two binary operators, then there are 3 possibilities for each its two child nodes (i.e. 2 - 32). If the
root node is the weighted scaling operator, then its single child can take 3 possible combinations (i.e. 1 - 3).



5.2. EVOLVING KERNEL FUNCTIONS USING GENETIC PROGRAMMING 57

(kernel) — (add_kernels) | (multiply_kernels) |
(weighted_kernel) | (polynomial) | (rbf)
(add_kernels) — (kernel) “+> (kernel)
(multiply_kernels) — (kernel) “x’ (kernel)
(weighted_kernel) — a “x’ (kernel) fora e R*
(polynomial ) — ‘((x,z) +¢)® ford e N, c e R"
(rbf) — ‘exp (—v[|x — z]|?)’ fory € RT

Figure 5.2: The context-free grammar — in Backus-Naur form — that constrains the generated expressions for
the GP model.

a = 15.916

X,z v=1356.65 x,z v =37.495

Figure 5.3: An example of a tree generated by the GP model.

5.2.1 Genotype Representation

The most natural way to represent the described functions in a genotype is to model them as parse trees.
An additional grammar constraints the generated functions so that only genotypes can be constructed that
adhere to the model that was described in the previous section. This grammar is described in Fig. 5.2.
The non-terminals are the operators, i.e. addition, multiplication and weighing, and the various atomic
kernel functions. Examples of the latter are the RBF and the polynomial kernels. The set of terminal nodes
consists of the various hyperparameters (e.g. -, d etc.) and the input vectors x,z € X. Clearly, imposing a
constraining grammar on the genotypes implies that we need to use Strongly Typed Genetic Programming,
which was described previously in Section 3.4. An example of a genotype tree based on the grammar is
depicted in Fig. 5.3.

The attentive reader will note a minor deviation in the non-terminals, as compared with the operators in the
original equations. In this grammar the linear addition operator has no weights, which were c; and ¢ in Eq.
2.30. The reason for this is that these weights are superfluous, as there is already a unary weighing operator
present in the grammar. The original weighted addition operator can easily be constructed by having two
weight scaling operators as child nodes for our simple addition operator, as is demonstrated in Fig. 5.4.

So far we have neglected the method specific parameters in our model, such as the regularization parameter
C for SVM and LS-SVM. The most natural way to integrate these in the model is by means of a second

genotype. Every individual will thus have two genotypes; the first represents the kernel function including
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X,z d=3 c=1 x,z v=1

Figure 5.4: Constructing the original addition operator from Eq. 2.30 using the addition and weighing operators
from our grammar.

its parameters, whereas the second genotype contains the parameters for the specific algorithm.

5.2.2 Overview of the Kernel Evolution Model

The architectural overview of the kernel evolution model is very similar to the previous model. This
overview is depicted in Fig. 5.5. It is not hard to notice the similarity with the ES model, which obviously
can be contributed to the fact that both models are different flavors of EC. The model starts by randomly
generating a population of s individuals. These individuals are evaluated according to the objective func-
tion, after which the termination conditions are verified. In case it has been met, then the individual with the
highest fitness (i.e. the lowest error) is returned. Alternatively, the algorithm enters the main loop, in which
various operators are applied to the population, until exactly s new offspring individuals are generated. This
offspring is then evaluated, after which the routine continues at the point where the termination conditions
are checked.

5.2.3 Operators on the GP Trees

In the overview (i.e. Fig. 5.5) the creation of offspring is depicted as a single step. In reality the situation is
more complex, as there are various operators that act on individuals to reproduce offspring. In our model we
want to use the most common reproduction and mutation operators for GP, which were previously described

in Section 3.4.2. These operators are:

1. A reproduction occurs with probability p,, which means that an individual is directly copied into the

offspring population, without any kind of mutation.

2. With probability p. crossover recombination occurs, which means that two parents are chosen that
exchange a subtree at a random crossover point. The two new individuals are both inserted in the
offspring population.

3. A random mutation occurs with probability p,,, in which the selected individual is mutated by sub-
stituting one of its subtrees with a new random subtree.

4. A shrink mutation can happen with probability p,. This operator replaces a subtree with one of the

branches of this subtree and thus reduces the size of the tree.
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Figure 5.5: Graphical overview of the evolutionary kernel generation model.

5. A swap mutation happens with probability p,,. The swap operator replaces a subtree in the individual
with another subtree, effectively swapping two branches of the same tree.

6. A pdf parameter mutation happens with probability p,, in which a real-valued parameter is mutated
according to a probability density function.

The first four operators are standard operators in the field of EC. The fifth operator, however, is defined
specifically for our type of problem. The process of evolving kernel functions can be considered a super-
problem of finding optimal hyperparameters. This can easily be understood by the realization that when a
combined kernel has been constructed, we still have to deal with the problem of finding the optimal hyper-
parameters for this combined kernel. The parameter mutation operator is included to perform this task of
optimizing the hyperparameters for the combined kernels. Generally, mutation of parameters in GP is done
randomly, i.e. an ephemeral constant is substituted for a randomly generated new one. This mutation opera-
tion was described in Section 3.4.2. However, we believe that for our type of problem a mutation according
to a pdf distribution would be more effective. The advantage should come from the fact that knowledge
gained during the search process is used instead of discarded. Its functioning is identical to the mutation
operator that is used in ES; the only difference is that is has been adapted to work within a GP environment
with tree-based genotypes.






IMPLEMENTATION

In this chapter the implementation of both models will be described in detail. It is safe to say that imple-
menting a Kernel Machine should not be considered trivial. The same goes for systems based on evolu-
tionary computation. One can imagine that implementing a combination of both techniques increases the
complexity only further. Firstly, the requirements, functional as well as non-functional, will be laid out.
Hereafter the implementation of a Kernel Machine and the two EC-based models will be described.

6.1 Requirements

An obvious requirement for the implementation of our systems is, of course, that it should be able to —
empirically — answer the research questions that we put forward in Section 1.3. However, we prefer to state
the obvious, as this has been the primary requirement for the implementations.

Furthermore, another non-functional requirement is that it should be desirable to implement in such a way
that it can be applied in real-life situations. The machine learning techniques implemented for this study
should contribute to the RobotCub project. More specifically, the code should — to a certain extent — be
integrated in the YARP robotics framework [71]. This requirement imposes some new desired properties of

our implementations:

* YARP has been written in C++; our implementation should preferably be written in the same lan-

guage.

* YARP is an open source project released publicly under the GNU General Public License. As such,
proprietary software or libraries should be avoided.

¢ Preferably, the implementation should run under both Microsoft Windows and Linux.

The time needed to run the experiments is an important issue, given the research questions under consider-

ation. Training a Kernel Machine can take a considerable amount of time. Consider that we will have to do
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several experimental runs and that each run a machine is trained up to thousands of times. This raises the
requirement that the implementations should be computationally efficient, as to increase the feasibility of
empirical validation. The more efficient the implementation is, the larger the data sets that we can use for
experiments or the more experimental runs we can perform. This will contribute to the overall quality of

our results.

6.2 Least Squares SVM Framework

The two proposed models, as described in Chapter5, can clearly be applied to every type of kernel-based al-
gorithm. Examples of such Kernel Machines are SVM and LS-SVM. Nonetheless, the empirical validation
on various kinds of Kernel Machines would be infeasible, due to the vast amount of algorithms available!.
Therefore we have opted to consider solely one type of Kernel Machine for this study, i.e. the LS-SVM
algorithm. The motivations for choosing LS-SVM instead of other algorithms are:

1. The algorithm is identical for both classification and regression problems. This means that a single
implementation can be used to test on both type of problems. Furthermore, the results of this study
can more easily be applied on real problems, such as those found in the RobotCub project (see Section
1.1).

2. The solution for the optimization problem in LS-SVM can be obtained by solving a system of linear
equations. As we will see later, specialized linear algebra libraries can be used to easily create a

custom implementation of the algorithm.

3. As aresult of the second point, the computation time needed to solve the optimization problem is in-
dependent on any of the hyperparameters. This simplifies the comparison of different hyperparameter
selection algorithms, as we can assume that each training run for a data set will take constant time,
regardless of the chosen hyperparameters.

4. Empirical research has shown that LS-SVM shows similar generalization performance as SVM [95].

One of the few frameworks for LS-SVM has been created by the group of Suykens et al. at the University
of Leuven [87]. This toolbox, named LSSVMLab, is developed in Matlab. Despite the availability of this
toolbox, we have chosen to implement our own LS-SVM framework. Obviously, this is more time con-
suming than using a publicly available framework. However, there are certain advantages to developing our
own customized implementation. Firstly, we have complete control over the architecture and the language
that we use. This will prove to be beneficial in later stages, when we have to integrate the framework with
the Evolutionary Computation framework. Furthermore, we can design the application in such a way that
it can cope well with various kinds of kernel functions, such as the combined kernels described previously.
Lastly, by creating a custom framework we can ensure that it can eventually be integrated in a production
environment, such as the YARP robotics framework as described in Section 1.1. An external implementa-
tion, e.g. LSSVMLab, would most probably conflict with one or more of these objectives. For example,
the required integration with YARP, which is an freely distributed open source project, prohibits the use of
proprietary software like Matlab.

A high level overview of the LS-SVM framework that we developed is shown in Fig. 6.1. Henceforth we
will refer to this framework as LibLSSVM. We refer the reader to Appendix A for a more detailed UML

I'There exist literally dozens of kernel-based algorithms.
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Figure 6.1: Simplified overview of the LibLSSVM architecture.

representation of the architecture. The core of our system revolves around only two classes, namely the
LSSVM and Kernel classes. The former implements the algorithm and thus the routines to solve the linear
optimization problem. As we have explained before, the linear optimization problem in LS-SVM is solved
by means of a system of linear equations. In order to solve this system, it suffices to do a matrix inversion
(see Eq. 2.37). This inversion step can be optimized by exploiting the fact that the Kernel matrix can be
rewritten as a positive definite matrix and then solving the system by means of Cholesky decomposition;
these steps were described in Section 2.4.1. Our application uses Cholesky decomposition, as to increase
the temporal efficiency and numerical stability of the implementation. Furthermore, the LSSVM class is
extended by a ReferenceLSSVM class. The latter implements the reduced LS-SVM algorithm that has been
described in Section 2.4.2. The subset of samples that are used for describing the model is selected randomly
from the total training set. Other sparsification schemes exist, but selecting them randomly gives a nice
trade off between computational complexity and performance. Finally, the fast leave-one-out algorithms
have been implemented for both the standard and the reduced variant of LS-SVM.

The second important class in the system is the Kernel class, which is defined as an abstract base class. It
defines an interface for a kernel functions and is overwritten by concrete classes (e.g. RBFKernel for the
RBF kernel function). We have chosen to use this type of object-oriented design so that we can easily extend
our system with new kernel functions. Any new class that extends Kernel can be used as a kernel function
within the system. The way in which kernels in the system are created is inspired by the factory-pattern
[41]. Thanks to this pattern the system does not have to be aware of each possible kernels that could be
instantiated. It also helps the serialization of the model by storing information about which kernel has been

used to train the system.

The user-interface to the LibLSSVM framework is provided by means of two separate command-line ex-
ecutables. The first, i.e. Issvm-train, is used to train the system, after which the model can be saved to a
file. The second executable, i.e. Issvm-predict, is used to make predictions based on a given model. The

tasks of these applications are to parse the command-line parameters, to convert the data sets into a vector
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notation, and to interact with the LSSVM and Kernel objects. A third small application has been written
to normalize data sets. The implementation details of these executables are considered trivial and therefore
excluded from this report. The application can handle regression as well as binary classification problems.
In the former case the error measure that is returned is the mean-squared-error, whereas in the latter case the
classification error measure is used. The type of problem is determined by a simple form of autosensing,
which classifies a problem as regression if and only if at least one of the output values is not +1 or —1. If
necessary, this autosensing feature can be overridden by means of a command line parameter.

6.2.1 Library for Linear Algebra: Atlas

Performing Cholesky decomposition and inverting a matrix are relatively simple from an analytical math-
ematical point of view. From a computational and numerical point of view these operations are, unfortu-
nately, much less trivial. Problems generally encountered with implementations are that the performance
is far from optimal, or unexpected results due to numerical difficulties. Reference implementations exist to
aid the programmer, such as those found in the excellent Numerical Recipes book [90]. Nonetheless, we
have chosen to use the publicly available Aflas library for the linear algebra routines [116] needed in our
system. The Atlas library has the following advantages:

* The quality of the implementation is higher than any implementation that we could do ourselves.

* The library uses platform specific optimizations to increase the performance. This does mean, how-

ever, that ideally it should be built on the target platform.

* Atlas can easily be used in C++ projects thanks to the Boost Numeric Bindings. These are a set of

wrapper functions and classes around the functions of, among others, Atlas.

Basing LibLSSVM on a Linear Algebra library like Atlas gives us the best of both worlds. On the one hand,
we can use this library to ensure optimal performance and quality on the critical aspects of our system. On
the other hand, we are have full control over the architecture of our system.

6.2.2 Numerical Difficulties due to Singular Matrices

During the implementation and testing phase of the reduced variant of LS-SVM a serious problem became
apparent. Recall from Eq. 2.42 in Section 2.4.2 that the model of the reduced LS-SVM is calculated by
means of the inverse of the matrix

E= (KmEKZm + C_lem) )

where the matrix is temporarily denoted with E for convenience. For certain combinations of data sets
and kernel functions, however, the inverse of the matrix was unfortunately not correct. This has been
validated by analyzing the product E E”, which obviously should yield an identity matrix I. However,
this is not the case, which indicates that the matrix E is singular in these situations2. The result of this
problem are very unstable solutions. One of the main causes of this problem is that computers operate with

a finite representation for real values. In these numerical calculations an invertible matrix that is close to an

ZRecall that a matrix A is invertible, or nonsingular, if and only if the determinant of the matrix is nonzero, i.e. | det (A) | > 0.
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invertible matrix may be problematic. The problem can be resolved by adding a regularization term to the
matrix, i.e.

E= (KmEKém =+ Oilem + qu) ) 6.1

where q is the regularization term. This enforces the matrix to be full rank and thus invertible, since the term
is multiplied with the identity matrix. In the standard variant of LS-SVM C~1 is added to the diagonal of the
kernel matrix and therefore it is less prone to these numerical difficulties. Note that this regularization term
that we add to the formula will have a minor effect on the solution that is found by the algorithm. However,
this does not impair the study presented in this report, since the goal is to compare the search performance

of multiple methods. All these search methods are equally affected by this minor modification.

An important issue is how to choose ¢ in such a way that it effectively stabilizes the algorithm over a
wide range of configurations (i.e. kernel function and hyperparameters). One could opt to set ¢ to a small
constant, however, this only partially resolves the problem. Note that the range for C' that is commonly
used in SVM and LS-SVM can range from up to [272%,2%°] in practical settings. Now, suppose that we
choose C' = 2720, then the inverse C~! will be 220 and the matrix C~'K,,,,, will most likely “dominate”
the matrix E. As we have experienced in practice, the constant regularization term will then not be able to
compensate for the large values in the term C~'K,,,,,,. The result is that E will still be an ill-defined matrix
and the inversion produces unstable solutions. Our solution to this problem is to set the regularization term
proportional to the inverse of C, i.e. ¢ o« C 1. In our preliminary testing of the implementation this has

shown to stabilize the solutions over a wide range of configurations.

6.3 Evolutionary Computation Framework

The second important element in the implementation of the two models is the framework for Evolutionary
Computation. We have focused on existing EC frameworks, since implementing an EC framework ourselves
would take a considerable amount of time®. However, there are several frameworks publicly available that
fit the requirements and scope of this work. From these options we have chosen the OpenBeagle framework
[38], since it seems to fit our purposes very well. An enumeration of the most important motivations to adopt
the OpenBeagle framework is given below. Thereafter we give a very brief introduction to OpenBeagle for

both general understanding and explanation of the terminology.

« Since it is written in C++ we can easily integrate LibLSSVM into our optimization applications.
* It supports various flavors of EC, among which ES and STGP.

* Due to strong Object-Oriented foundations and the use of design patterns it is easy to incorporate
custom genotype representations, objective functions, and operators. This allows us to create highly
customized applications, without having to implement all the basics on our own.

* The evolver model, i.e. the arrangement of operators of the algorithm, can easily be modified by
means of configuration files. Combined with the rich set of operators in OpenBeagle this means that
we can easily experiment with different configurations.

3For instance, version 3.0.1 of OpenBeagle contains more than 30.000 lines of source code. This excludes empty lines and
comments.
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Figure 6.2: Global overview of the OpenBeagle architecture [38].

* OpenBeagle is actively being developed and has been around for many years. In other words, we can
prevent ourselves spending much time on testing and fixing bugs.

An overview of the architecture of the OpenBeagle framework is depicted in Fig. 6.2. The framework
is integrated in a modular way, which makes that all components shown in this figure can be replaced
or specialized independently. This contributes to great extent to the flexibility and extensibility of the

framework and in a practical sense simplifies the implementation of various EC flavors.

The architecture can roughly be decomposed in three modules, namely, the population, the evolution sys-
tem and the evolver. The population comprises four entities that are used to structure the population in a
hierarchy. On the top level, the complete population is contained in a vivarium. This can be considered a
container of all individuals present in the evolutionary system. Demes are environments in which groups
of individuals evolve independently. Nonetheless, at each generation individuals can migrate between the
demes of a vivarium. A vivarium can thus contain one or more demes, whereas a deme contains one or
more individuals. Both vivaria and demes keep track of statistics and a so-called hall-of-fame (i.e. a list of
most fit individuals), respecting the scope imposed by the hierarchy.

Potential solutions to a problem are represented as individuals. Individuals consist of a fitness measure and
one or more genotypes. Only in particular cases it can be more convenient to use individuals with more
than one genotype. A genotype contains the genetic description of the individual, which can range from
various binary encodings to expression trees or graphs. The organization of individuals, genotypes and
fitness measures, which all can be specialized to need, conform to the criteria laid out before.

The evolution system that is included in the system has a supportive task. It contains a context, logger,
register and a randomizer. The logger and randomizer do exactly what their name suggests. The context in
the framework keeps track of the current state of the evolving process. The state is made up by data such
as the current generation, the currently processed individuals, etc. Lastly, the register is used to centralize
information in the evolutionary system. Other entities, such as operators and individuals, can therefore
dynamically access a centralized repository of settings.

Finally, the evolver captures the evolving processing of the algorithm. It contains two sets of operators that

are iteratively applied to the demes of the vivarium. The first set of operators, i.e. the bootstrap operator set,
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is the set of operations that are used to create an initial population for each deme. After the set of bootstrap
operations have been finalized, the evolving process enters the main-loop operator set. This set of operators
is iteratively applied to each deme for each generation, until one of the termination conditions has been met.

Clearly, the operators perform a crucial function within OpenBeagle. Recombination, mutation, evalua-
tion and various other kinds of operators have been included in the framework. As explained, the evolver
determines the order in which these operators will be applied to each deme. This means that the user of
the framework is free to define any preferred order of operations. Furthermore, custom operators can be
created using inherited polymorphism so that the not only the order, but also the operators themselves are
fully configurable.

6.4 Evolutionary Hyperparameter Optimization Application

The abovementioned OpenBeagle framework has been used to implement an application for the hyperpa-
rameter optimization model using ES. We will refer to this application as EvoKMES, which is an abbrevia-
tion for Evolutionary Kernel Machine using Evolution Strategies. This application uses the ES implemen-
tation in OpenBeagle to optimize the hyperparameters for our LS-SVM implementation LibLSSVM.

The system architecture for EvoKMES is shown in Fig. 6.3. Again, the architecture shown here is a simpli-
fied variant of the real architecture. This will help to make the concepts clearer, without having to deal with
an abundance of implementation specific details. The system is organized in two packages, which we will
briefly introduce.

LibEvoKM is the package that contains classes that are not dependent on the flavor of ES. This means
that these classes are generalized and could easily be used for a similar application based on GA,
independent of the chosen representation. Furthermore, this package can be partially reused for the

GP application.

EvoKMPFS contains the classes that are specific to our ES based model. This package handles the transfor-
mation of ES individuals into a generalized format that is more suited to our problem.

It may not be clear how this architecture relates to the hyperparameter optimization model that was proposed
in Section 5.1. This is mainly due to the fact that the majority of the model is provided by the OpenBeagle
framework. The most relevant aspect in developing EC applications is defining an Evaluation Operator.
This operator evaluates each individual, in other words, it assigns a fitness value to each individual that it
processes. It may be clear that an evaluation operator is completely domain specific, therefore this needs to
be defined by the user of the framework. Our evaluation operator is defined as an abstract class, which is

extended by three concrete classes. These concrete classes all implement a different objective function:

1. The k-fold cross validation measure. A detailed explanation of this performance measure will be
given in Chapter 8.

2. The fast leave-one-out cross validation measure, as described in Section 2.4.3.

3. A split training/testing set performance measure.

Communication with the LibLSSVM framework is encapsulated by means of a wrapper class, i.e. Li-
bLSSVMWrapper. Although not strictly necessary, this wrapper provides a single interface with our LS-

SVM framework. This helps to centralize certain functionality, such as the conversion of parameters into
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Figure 6.3: Overview of the EvoKMFS system architecture.

logarithmic scale. Furthermore, this class takes responsibly for the proper construction of the learning
machine and the kernel functions.

Lastly, the Transform and ESTransform classes have been designed to deal with the problem of converting
the genotype representation into a phenotype. As explained before, the OpenBeagle framework — and EC
methods in general — operate on individuals, which on their turn can consist of one or more genotypes. In
LibLSSVM, however, the individual must be represented with its phenotype, i.e. a vector of real-valued
hyperparameters. The task of the interface class Transform is to convert an individual in such a way that it
produces the hyperparameters in the correct format. The idea is that, potentially, the Transform class will be
overridden by concrete classes targeted for a specific representation. The ESTransform class is an example
of one such concrete classes for the standard ES representation. The advantage of this design structure is
that the rest of the architecture is completely independent of the chosen representation scheme. Effectively,
the system can completely be reused for various kinds of representations (e.g. ES, real-valued GA, GA with
gray encoding). It suffices to supply the Evaluation Operator with an implementation of the Transform class
that corresponds to the representation scheme that is used at the moment. Nonetheless, it has to be noted
that only the Transform class for ES representations is implemented. This feature is thus reserved for future
work.

The user will interface with EvoKMES using an executable named evokm_es. Command line parameters
can be used to either load a configuration file or to set configuration settings manually. This functionality
is provided by default by the OpenBeagle framework. Due to the large amount of possible configuration
options it is most convenient to use a configuration file. As we have seen before, this configuration file can —
and should — also be used to define the evolver model. Settings such as the training file, an identifier for used
kernel function and parameter ranges are also read from this configuration file. An example configuration
file for EvoKMF® is shown in Appendix B.
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Figure 6.4: Simplified overview of the EvoKMC®? system architecture.

6.5 Evolutionary Kernel Generation Application

A second application has been implemented by us for the evolvement of kernel functions using GP. We have
named this application EvoKM®?, in tradition with the former one. The architecture of this application,
which is shown in Fig. 6.4, is considerably more complex than the previous one. Nonetheless, we were able
to implement our model without any major problems.

As with EvoKMFS, also in this architecture the Evaluation Operator takes a central place. Evaluating in-
dividuals has become more complicated, due to the fact that complete kernel functions are being evaluated
instead of only the hyperparameters. Consequently, the Evaluation Operator needs to feed the Kernel Ma-
chine (i.e. LibLSSVMWrapper) with the appropriate kernel function that corresponds with an individual.
The class KernelWrapper has been designed to perform the translation from individual into kernel function.
The following detailed explanation of the interactions in the system during the evaluation of an individual

clarifies this:

1. The Kernel of the LibLSSVMWTrapper is set to an instance of KernelWrapper. LibLSSVM can use
KernelWrapper as if it were a normal kernel, since the wrapper is a subclass of the Kernel class found
in LibLSSVM itself.

2. The Evaluation Operator receives an individual and uses this to set the regularization parameter C'

(i.e. the second genotype in the individual). Then it passes the individual to the Kernel Wrapper.

3. The Kernel Machine is trained as normal, only that it uses the KernelWrapper as kernel. Nonetheless,

this is completely transparent from the perspective of the machine; it uses the normal Kernel interface
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and does not notice any difference.

4. Every evaluation for a pair of vectors x and z (i.e. to build the kernel matrix) the KernelWrapper
sets the vectors in the individual. The entry points for these vectors are the non-terminals of the type
VectorPair.

5. The individual can be evaluated now the last variables have been filled (i.e. the vectors). The parse
tree is evaluated and the result is returned by the wrapper.

6. Once the full Kernel Matrix has been built, then the kernel machine is can start its normal training
routine. This results in an error based on the objective function that is being used (e.g. k-fold cross
validation). This error is being returned to the Evaluation Operator.

7. The evaluation is completed as the Evaluation Operator returns the calculated fitness for the individual
under consideration.

As we can see, the abstraction of the Kernel in LibLSSVM has major advantages here. The LSSVM class
can be used with any type of kernel, such as the parse tree that we use here, as long as it implements the
right interface. The KernelWrapper class effectively hides all GP specific details from LibLSSVM.

Another very important aspect of this architecture is the representation of the individuals. In Section 5.2.1
we proposed a genotype representation for our kernel functions, which we have followed in our implemen-
tation. Terminals and non-terminals, in other words the nodes in the parse tree, share a common superclass
Primitive*. The distinction between terminals and non-terminals, or depending on the terminology branches
and leaves, is made by the number of children. Non-terminals have a non-zero amount of children, whereas
terminals have no children at all. This means that there is no other distinction between both from a concep-
tual point of view, other than an attribute that defines the amount of children. In our specific model we can
distinguish four different types of primitives:

1. The three operators on kernel functions, i.e. MultiplyKernels, AddKernels and WeightKernel. These
take either two kernels as children (MultiplyKernels and AddKernels) or a real value and a kernel
(WeightKernel). For all three the type it returns to its parent node is a kernel.

2. Two atomic kernel functions, i.e. RBFKernel and PolyKernel, which share an abstract superclass
KernelGP. The RBFKernel takes two child nodes, namely, a VectorPair and an EphemeralParameter
for the kernel parameter . The PolyKernel takes three child nodes in total, i.e. the two kernel
parameters ¢ and d and a VectorPair. Obviously, both atomic kernels return a kernel to the parent
node.

3. The VectorPair, which captures the two vectors x and z that are passed to a kernel function. A
VectorPair is variable in the parse tree, in the sense that it can dynamically be set to any pair of
vectors. It does not have any child nodes and can only have one a KernelGP primitive as parent.

4. The EphemeralParameters, which are the hyperparameters. In the architecture in Fig. 6.4 these are
left out for clarity. There are ParameterDegree and ParameterConstant that belong to PolyKernel,
ParameterGamma that is used with RBFKernel and ParameterWeight that is a child of the WeightKer-
nel operator. Furthermore, ParameterC stores the value for the trade-off parameter C'. This primitive
is only used in the second, dedicated, genotype. All of the EphemeralParameters are terminals and
can thus not have any child nodes.

4This Primitive interface is defined by the OpenBeagle framework.
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The main advantage of modeling the different parameters separately is that this way we can define distinctive
properties for each of them. These properties are their range and whether they use a logarithmic scale or
not. For instance, for the parameter -y generally it makes sense to use a logarithmic scale and a broad range.
On the other hand, for the degree parameter d a limited range on a linear scale makes more sense. Our setup

gives us full freedom in defining these properties for each parameter separately.

A last important element in the overview is the MutationOperator. This operator implements the ES inspired
mutation strategy, as discussed in Section 5.2.3. The functioning of this operator is relatively straight
forward in OpenBeagle; the framework feeds with a certain probability individuals to the operator. All the
parameters that can be subject to this type of mutation contain a strategy value (i.e. the standard deviation)
besides their original value. The mutation operator takes a random step based on this standard deviation and
then updates both the value and the strategy value accordingly. The formulae for these updates used in our
implementation are the those described in Section 3.3.2.

The interface to the user, i.e. evokm_gp, is similar to that of EvoKMFS. Both of these command line
applications make use of the functionality offered by OpenBeagle and therefore share a common interface.
Also for EvoKM®P the configuration files are used for defining the parameter settings and the evolver model.
An example configuration file for EvoKMOS? has been added in Appendix B.
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In this chapter we will describe the results of the experiments that we have conducted. The goal of our
experiments is to empirically verify our two models, which were proposed in Chapter 5. A set of six bench-
mark data sets have been chosen for our experiments, containing both regression as well as classification
problems. The empirical validation can be subdivided in three phases, which are:

1. Optimal hyperparameters have been determined using the traditional grid search method. These
results will be used as a reference for our two models.

2. The optimal hyperparameters are again optimized, but now using our EvoKMFS model. The results
of our model are compared with the reference, where we emphasize on the temporal requirements of
both techniques. With this experiment we wish to verify our first research question, namely, whether
EC can help to find good hyperparameters more quickly than with the traditional optimization method
(cf. Section 1.3).

3. In the last phase, both the kernel function and the hyperparameters are optimized using our EvoKMOS?
model. The results of this experiment will be compared with the reference, where this time we
consider the quality of the solutions. In other words, we want to investigate whether EvoKMS? can
find kernel functions that will reduce the prediction error of the Kernel Machine. This experiments
validates our second research question.

This chapter will commence with an overview of the experimental setup in Section 7.1. This overview
will list all aspects that hold for all experimental phases. The experimental results using the grid search
optimization method will be described in Section 7.2. As explained, these results will be used as a reference
for our EvoKMES and EvoKM®? optimization methods. The results obtained using these models will be

described in Section 7.3 and Section 7.4, respectively.
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7.1 Experimental Setup

All the distinct experimental phases in this study have their own specific setup. However, there are many
common aspects in the experimental setup that are identical in all phases. The intrinsic properties of the
distinct experiments will be covered in the corresponding sections.

7.1.1 Kernel Machine

In Section 6.2 we explained that we used the LS-SVM algorithm in our implementation of the model.
Obviously, our experiments are based on this type of Kernel Machine. More specifically, the experiments
have all been conducted with the reduced variant of LS-SVM. The reason for using this approximate variant
is to reduce the computational requirements in both temporal and spatial sense. Recall that EC is essentially
a stochastic approach, so experiments will have to be repeated multiple times to get statistically significant
results. The size of the subset that is used to describe the model is 10% of the total subset, rounded to the
nearest integer. We can describe this alternatively as 7 ~ 0.1 (cf. Section 2.4.2). The subset is selected
by taking the first m samples of the data set. This is acceptable, since the data sets are randomly reordered
during the preprocessing phase.

In all the experiments we have considered the two most commonly used kernel functions. These kernel
functions are the RBF kernel function and the polynomial kernel function, see Eq. 2.28 and Eq. 2.27,
respectively. The reason for limiting ourselves to these kernels is to keep the experiments feasible in terms
of computational demands.

7.1.2 Objective Function and Error Measure

The performance measure for the data sets is k-fold cross validation, where & = 5. The arguments for
choosing this performance measure will be given in Chapter 8. Furthermore, we have decided to treat
both classification as well as regression problems identically in our experimental framework. The only
distinction between both is the error measure. For classification problems, the error measure is simply the
classification error, i.e. the percentage of misclassified testing samples. In case of regression problems, the
error measure is the Mean Squared Error (MSE) of all testing samples. This is a common error measure
for regression problems in the field of machine learning. Both these error measures are averaged over the 5
folds.

7.1.3 Data Sets

We have selected six different benchmark data sets for our experiments. Four of these data sets are regres-
sion problems, whereas the remaining two are binary classification problems. Three of the data sets are
well-known benchmark data sets within the machine learning community. The results on these data sets can
be used to compare our model with results from other literature. The three Reaching data sets are internal to
the “LiraLab” and have been generated using the humanoid robot James. These data sets have been included
to see how well our method perform in the context of a humanoid robot. Unfortunately, there is no data

available to compare our method with. The exact data sets that we have used are:

Diabetes The Pima Indians Diabetes data set investigates whether a patient shows signs of diabetes. All
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Table 7.1: Basic statistics of the six data sets that have been used in the experiments.

Name Type # Samples # Features Balance Source
Diabetes classification 768 8 65.1%/34.9% UCI Repository [2]
Housing regression 506 13 n/a UCI Repository [2]
Reaching 1 regression 1126 4 n/a Internal
Reaching 2 regression 2534 4 n/a Internal
Reaching 3 regression 2737 4 n/a Internal
Wisconsin classification 449 9 52.6%/47.4% UCI Repository [2]

subjects in the data set were females of Pima Indian heritage. The data set includes features such as

physiological properties (e.g. diastolic blood pressure), body mass index, and age.

Housing The Boston Housing data set concerns housing values in the suburbs of Boston. The features
include properties such as crime rate, accessibility to infrastructure, and pollution rates.

Reaching 1,2,3 The Reaching data sets concern orienting the head of a humanoid robot in the direction of
its reaching arm. The features are the values of 4 arm encoders, whereas the outputs are 3 head joints.
This means that there are three separate regression problems. This data set is obtained internally
within the “LiraLab”.

Wisconsin The Breast Cancer Wisconsin data set concerns whether a tumor is benign or malignant. The

features include features concerning the tumor, such as uniformity of its shape, size, and so forth.

Basic information and statistics on these data sets is shown in Table 7.1. One can observe that all of the data
sets are moderately sized, with respect to machine learning standards. This means that they contain between
several hundreds to a few thousands samples each. For our problem this size range is particularly interesting.
Smaller data sets are often not very stable, since they do not contain enough information for the machine
to recognize patterns in a reliable manner!. On the other hand, very large data sets are computationally
infeasible. This can be contributed to both the complexity of LS-SVM as well as Evolutionary Computation.

7.1.4 Preprocessing

An important step in applying a machine learning technique to a problem is preprocessing the data sets. In
preprocessing the data is reformatted in such a way that the learning algorithm will work better on it. For

our specific experiments, we have performed the following preprocessing steps:

1. All the features are (independently) standardized, i.e. rescaling them to have a zero mean and a
unit standard deviation. In many machine learning techniques normalization or standardization is
essential for obtaining good results. The positive effect of rescaling the features is that all values
will fall within a limited range, on which functions (e.g. the Sigmoid activation function in Artificial
Neural Networks or the RBF kernel function in Kernel Machines) can operate well. Furthermore, a
feature with a relatively large range cannot dominate the other features anymore. The advantage of

standardization over normalization is that it is less sensitive to outliers.

IRecall from Section 2.1 that the empirical risk functional approaches the actual risk functional as the size of the data set increases.
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2. The output values have been standardized in the same manner as the features. However, this has
no influence on the quality of the solution whatsoever. The only reason for standardizing the output
values is for the purpose of comparing. Since the errors will be measured relatively to the range of
the output values, standardizing them will allow us to compare the results of all data set. Obviously,
the output values of the classification problems have not been standardized. Instead, when necessary,
they have been set to +1 for positive labels and —1 for negative labels.

3. Duplicate entries have been removed from the data sets. This reduces the size of the data set by
removing redundant information. Furthermore, the samples with missing values have been removed
from the data sets as well.

4. The order of the samples in the data set has been randomized. Because of this, each of the &k folds
will approximate the distribution of the complete data set.

7.2 Ordinary Grid Search Optimization

The first phase of our experiments consists of optimizing the hyperparameters with the traditional grid
search method. The results of this phase will later form a baseline for our two models. Grid search is
nothing more than a search on a specified set of possible parameter settings. Usually, this set is defined
by means of a lower boundary, an upper boundary, and an interval. The parameter settings that lie on the
intersections of this grid are tested. An obvious drawback of this method is that it scales exponentially with
the number of parameters.

We have defined the lower and upper boundaries and the interval manually for each of the data sets. This
was done by first performing a sparse search on a large range. These results were used to identify an
interesting region in the parameter space, on which we consecutively performed a dense grid search. The
results of this dense grid search will be presented in this section. For SVM and LS-SVM it is common to
use a logarithmic scale for most of the hyperparameters [15]. The sizes of the interval have been chosen
manually as well, where our main concern was the computational load. In other words, for smaller datasets
and fewer number of features we preferred a smaller interval and thus more evaluations. The ranges and
intervals for each combination of data set and kernel function is shown in Table 7.2. Note that we have kept
the degree of the polynomial kernel fixed at d = 3.

7.2.1 Results of Grid Search

The results of the grid search optimization are shown in Table 7.3. We can observe that the results on the
Diabetes and Housing data sets are rather poor, although this is in line with the results published in related
work [104, 32, 12, 46]. Therefore, it is safe to assume that the data sets are very difficult to learn, which
could be caused by noise in the samples or a very complex underlying model. The results on the other data
sets are, on the other hand, very good. The MSE on the three Reaching data sets is very low, which confirms
our belief that Kernel Machines can be a valuable tool in robotics.

Furthermore, note that both kernel functions have vastly different optimal values for C'. This clearly shows
that for every change in the machine (e.g. changing kernel function), all the hyperparameters will need
to be optimized again. We can confirm this statement by considering the error surface of both the kernel

functions. As can be seen in Fig. 7.1, these error surfaces are considerably different. The surface of the
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Table 7.2: The configuration of our experiments using the grid search method. Note that the ranges are in
logarithmic scale. For example, [—6, 20, 1] should be read as a range of [2’6, 220}, where every step the value is
increased by a factor of 2'. The specified kernel parameter is - in case of the RBF kernel and the constant ¢ in
case of the polynomial kernel.

Name Kernel Range C' Range v/c Evaluations
Diabetes RBF [-6, 20, 1] [-16, 6, 1] 621
Polynomial 3 [-20, 16, 1] [-10, 10, 1] 777
Housing RBF [-10, 14, 0.5] [-16, 12, 0.5] 2793
Polynomial 3 [-21,2,0.5] [-4, 14, 0.5] 1628
Reaching 1 RBF [-12, 20, 0.5] [-10, 14, 0.5] 3185
Polynomial 3 [-10, 10, 0.5] [-12, 6, 0.5] 1517
Reaching 2 RBF [-12, 20, 1] [-10, 6, 1] 561
Polynomial 3 [-10, 10, 1] [-12, 6, 1] 399
Reaching 3 RBF [-12, 20, 1] [-10, 6, 1] 561
Polynomial 3 [-10, 10, 1] [-12, 6, 1] 399
Wisconsin RBF [-12, 20, 0.5] [-10, 14, 0.5] 3185
Polynomial 3 [-14, 14, 0.5] [-14, 6, 0.5] 2337
Table 7.3: The optimal solutions and errors as found by the grid search method.
Name Kemel €min szn ’}/min/cmin
Diabetes RBF 0.2200 214 279
Polynomial 3 0.2213 220 28
Housing RBF 0.1676 214 26
Polynomial 3 0.1673 2721 2115
Reaching 1 RBF 0.0683 220 273
Polynomial 3 0.0720 21 26
Reaching 2 RBF 0.0042 220 272
Polynomial 3 0.0063 26 25
Reaching 3 RBF 0.0019 220 272
Polynomial 3 0.0032 23 25
Wisconsin RBF 0.0423 23 276
Polynomial 3 0.0401 2-11 275
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Figure 7.1: The surfaces of the 5-fold cross validation error on the Reaching 2 data set with (a) the polynomial
kernel and (b) the RBF kernel function. The extreme values with the polynomial kernel are caused by numerical
difficulties.

polynomial kernel seems considerably more smooth, as compared to the RBF kernel. The RBF kernel is
commonly preferred over the polynomial kernel, since it performs slightly better in general (cf. Table 7.3).
However, the surface of the polynomial kernel is more flat, which means that a short optimization run is
more likely to yield reasonable results. For some situations one could argue that the polynomial kernel is

therefore the better option. These observations are shared among all the data sets in our study.

7.3 Hyperparameter Optimization using Evolution Strategies

After having determined the reference figures using grid search, we have performed experimental phase
with EvoKMFES. As mentioned before, in this phase we investigate whether ES can find good solutions in
less time than the traditional grid search. The setup of the experiments is largely similar to the grid search.

Mind, however, the following specific settings:

* We have used (y, A)-ES instead of (1 + A\)-ES, based on empirical observations made in related

literature. We have given arguments for this decision in Section 5.1.3.

* The parent and offspring population sizes have been kept relatively low, as is common with ES [118].
The size of the parent population is chosen as p = 3, whereas the offspring population is chosen
A =12

* The strategy parameters o; are initiated to a value of 1. During the course of the search process they
are subject to mutation, although a minimum value of 0.1 will be enforced. This lower bound ensures
that the search will not stall because the strategy parameters are near zero.

* The termination condition is set to the number of evaluations that were used in the grid search. Con-
sult the last column of Table 7.2 for the exact number of evaluations for each combination of data set
and kernel function.

¢ The parameters are restricted to the same ranges as for the grid search (cf. Table 7.2). The only
exception is that for this experiment we have not kept the degree of the polynomial kernel function

fixed at d = 3. Instead, for EvoKMPFS this degree is a parameter with a range of [1, 8] for all data sets.
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The reason for this deviation with grid search is that we can obtain information about the scalability
of EvoKMPS with respect to the number of object parameters.

» EvoKMFS is a stochastic search process, which is why we have performed the experiments 25 times.
This is to ensure that we obtain statistically significant results.

The performance of EvoKMES will be analyzed at the hand of two measures. Firstly, we will have a look
at the minimum error that is found by EvoKMFS, as compared with the grid search. Major improvements
should not be expected here, since the search space for both methods is identical — with exception of the
polynomial kernel. Instead, the minimum error needs to be considered to verify whether EvoKMFS actually
finds good solutions.

The second — more important — aspect of this experiment is to see how many evaluations EvoKMFS needs to
come up with a good solution. This will be analyzed by measuring how many evaluations will be needed to
reach the “target” solution. Obviously, this target is the best solution as found by the grid search method (cf.
Table 7.3). Furthermore, we will consider a second variant, which will measure the number of evaluations
that are needed to achieve a solution that is at most 5% worse than the target. This less strict variant gives
us more insight in how fast a “reasonable” solution can be reached. One can imagine that there are various
settings in which it is useful to quickly approximate an optimal solution.

An important note with this experiment is that we compare the temporal aspect solely in terms of number
of evaluations. This simplification is valid, since the model selection in LS-SVM is independent of the
parameters. As a result, the experiments could be executed on computers with varying configurations (e.g.
CPU, memory, OS, and compiler).

7.3.1 Results of EvoKMF®

The comparison between grid search and our EvoKMFS is shown in Table 7.4. Note that ETT stands for
Evaluations to Target, which is the quantitative measure described above. From this table we can observe
that our EvoKMFS method performs very well on the three Reaching data sets. Only a fraction of the
evaluations were needed to find solutions that were at least equally as good as the target. In Fig. 7.2 we can
see clearly that EvoKMP® converges rapidly to the target on the Reaching 1 data set. Furthermore, we also
see that the polynomial kernel converges faster than the RBF kernel. We contribute this to the fact that the
error surface of the polynomial kernel was more smooth. Hence, the search is more likely to find a low-error

region in less evaluations.

However, the results on the Diabetes, Housing, and Wisconsin data sets is less positive. EvoKMES performs
poorly on the Housing data set with the polynomial kernel due to an outlier in the results (cf. the correspond-
ing variance in Table 7.4). This is one of the problems when stochastic methods such as ES are applied,
namely, the unpredictability of the results. Possibly, the likeliness that this happens could be reduced by
experimenting with different exogenous strategy parameters. In particular, increasing the population sizes p
and A can reduce this probability of outliers. This will, however, have a negative impact on the convergence
rate with respect to the number of evaluations.

The poor results on the Diabetes and Wisconsin data sets have a completely different cause. The conver-
gence of EvoKMFS with the Diabetes data set is depicted in Fig. 7.3. In particular the combination of
EvoKMFS with the RBF kernel function hints us at the problem. We can observe in Fig. 7.3(a) that the
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Table 7.4: Comparison between the grid search method and EvoKMP®S,

Grid Search EvoKMFES
Name Kernel Emin Eval. €min ETTgy ETT;5q,
Diabetes RBF 0.2200 621 0.2238 + 0.0026 >621 183
Polynomial 3 0.2213 777 0.2228 + 0.0005 >T77 3
Housing RBF 0.1676 2793 0.1674 £ 0.0000 495 291
Polynomial 3 0.1673 1739 0.1714 £ 0.0237 >1739 963
Reaching 1 RBF 0.0683 3185 0.0683 + 0.0000 327 63
Polynomial 3 0.0720 1517 0.0671 £+ 0.0001 39 27
Reaching 2 RBF 0.0042 561 0.0042 + 0.0000 159 111
Polynomial 3 0.0063 399 0.0044 + 0.0000 27 27
Reaching 3 RBF 0.0019 561 0.0019 + 0.0000 135 87
Polynomial 3 0.0032 399 0.0022 + 0.0001 39 39
Wisconsin RBF 0.0423 3185 0.0454 + 0.0022 >3185 >3185
Polynomial 3 0.0401 2337 0.0424 + 0.0024 >2337 >2337
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Figure 7.2: The convergence of the minimum error during the EvoKMPS search for the Reaching 1 data set with
(a) the RBF kernel function and (b) the polynomial kernel function.
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Figure 7.3: The convergence of the minimum error during the EvoKMPS search for the Diabetes data set with
(a) the RBF Kkernel function and (b) the polynomial kernel function. Note that the target error is not reached.

convergence is not completely smooth, but rather stepwise?. This is caused by the fact that we consider
a classification problem, for which the error surface is not continuous. Instead, the error surface for clas-
sification problems is made up out of multiple plateaus®. This discontinuity of the error surface makes it
very hard for EvoKMPFSto find a direction in which the error decreases. In ES the offspring individuals are
used to sample the error surface in a certain neighborhood. However, many offspring individuals will have
an identical fitness score as the parent, which means that the search process does not receive any “clues”
about the shape of the error surface. Smoothness of the fitness landscape may be regarded a prerequisite of

efficient optimization using ES [5].

The problem is probably best explained by illustrating the sampling of the individuals. In Fig. 7.4 we have
depicted the first 10, 50, and 100 individuals that are evolved by EvoKMES on the Wisconsin data set with
the RBF kernel function. These individuals — more precisely, the object parameters in their chromosome
— are superimposed on the corresponding error surface. In this particular example the search process finds
a slope and follows the direction toward a low-error region. However, Fig. 7.5 shows a particular run of
EvoKMFS on the Wisconsin data set where the individuals all remain on the same plateau. This figure
clearly demonstrates how EvoKMFES samples the neighborhood, but does not find any improvements in the
offspring. Hence, the search process stalls until an offspring individual will find a region where the error is

lower.

A second reason that explains the poor results on these two data sets is the distribution of the regions with
a near-optimal error. We have juxtaposed the error surface of the Reaching 3 and the Wisconsin data sets
in Fig. 7.6. These two figures show that the region that yields very low errors is relatively large for the
Reaching 3 data set, as compared with the Wisconsin data set. From this we can conclude that finding a
good set of hyperparameters for the Reaching 3 data set is considerably more easy than for the Wisconsin
data set. The error surface of the Diabetes data set is similar to the error surface of the Wisconsin data set.

2Mind that this convergence is the average over 25 runs and therefore already more smooth than a single run.
3This can very easily be verified by considering a simplified problem. Consider the classification error on a test set of only 4
samples. In this situation the error can only be one of the values {0, 0.25,0.5,0.75,1}.
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Figure 7.4: Example of a run by EvoKMPS on the Wisconsin data set with the RBF kernel function. The figures
show the first (a) 10, (b) 50, and (c¢) 100 individuals marked in red.
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Figure 7.5: The first (a) 10, (b) 50, and (c) 100 individuals generated by EvoKM®S for a particular run on the
Diabetes data set with the RBF kernel function. The search gets stuck on a plateau, where all individuals have
an equal fitness.
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Figure 7.6: The distribution of the regions with a near-optimal error for the (a) Reaching 3 and (b) Wisconsin
data sets. The regions that have a near-optimal error are marked in green.
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7.3.2 Conclusions

In this section we presented the results of our empirical study on the EvoKMFS optimization method. In
general, our method was able to find good solutions in only a fraction of the evaluations that were dedicated
to the grid search. There are some remarks that need to be considered. Firstly, EvoKMES performed rather
poorly on the two classification data sets. This can be explained by the fact that ES has difficulties with
dealing with plateaus in the fitness landscape. Classification problems, by nature, have a discontinuous
error surface that is full of these plateaus. Secondly, the results depend as well on the distribution of the
near-optimal error regions. The two classification data sets that were used in this study have only a very
small region that yields near-optimal results. Obviously, for any empirical search method it is difficult to

find small optimal regions.

Moreover, we must be very careful with our interpretation of these results. ES basically is a stochastic search
method, which means that every run will be different. We have seen that this can cause outliers to occur,
which in a practical application of the technique is not desirable. More research will have to be dedicated on
finding parameters for EvoKMES that minimize the probability that this will happen. Furthermore, we must
realize that the comparison is not completely fair. EvoKMFS is an optimization method that — most probably
— converges to optimal solutions. This means that the solution will continue to improve as the process runs
for more generations. Grid search, on the other hand, does not converge to a solution, it simply finds it by
“luck”. This means that when 1000 evaluations are dedicated to grid search, the optimal solutions could
well be found just after 10 evaluations. It is therefore very hard to make scientifically correct statements on
which method is guaranteed to be better. However, in the practical application the important aspect is on
which method to spend your “CPU cycles”. We believe that the results presented in this section indicate
that EvoKMES is without a doubt the better choice for regression problems. For classification problems
the situation is less obvious. An approximate solution can still be found quickly with EvoKMES but we

recommend using grid search if the quality of the solution is of great importance.

7.4 Evolved Kernel Functions using Genetic Programming

The last experimental phase in this study constitutes of verifying our EvoKMS? model. The errors obtained
with our GP method will be compared with the minimum error as found using grid search. The number
of evaluations are irrelevant in this experiment; the only aspect that we will consider is the quality of the

solutions.

One of the difficulties with any GP approach is the wide variety of possible configurations. The configu-
ration includes the exact order of the operators (i.e. the evolver model) and the parameters. Unfortunately,
there is not much guidance on optimal parameter settings, other than certain heuristics and empirical evi-
dence. Therefore, the configuration that we have used for EvoKMOS? is mostly done on base of intuition.
The evolver model that we used for these experiments is shown in Fig. 7.74. Note that there are in total
9 possible operators that can be applied to an individual — or two individuals in case of crossover. The
probabilities are chosen in such a way that we emphasize on the crossover and pdf operators (cf. Section
5.2.3). Our reasoning for this decision is that crossover may be useful for the individuals to exchange a
kernel function. The crossover operator will exchange a non-terminal with a probability of 0.99, which

means that a terminal will be subject to crossover with a probability of only 0.01. In our specific model this

4 An example of a configuration file that has been used during the experiments is shown in Fig. B.2.
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Figure 7.7: The evolver model used for the experiments with EvoKM®P,

means that crossover will most likely exchange a kernel function®. We strongly emphasize on exchanging
non-terminals, as exchanging a terminal, i.e. parameter, will not be likely to improve the kernel function as
a whole.

Defining the structure of a kernel is only the first phase in evolving kernel functions. The second phase is
the subproblem of optimizing the hyperparameters. As we could observe from the error surfaces above, the
generalization performance — and therefore the fitness — of a kernel function depends strongly on the chosen
hyperparameters. We have emphasized on the pdf operator as to deal with this problem. Our approach
is to not mutate all the hyperparamers in one operator, as this could lead to too strong mutations on the
individuals. Instead, we have created four separate operator sequences, each of which mutate one of the
hyperparameters {7, d, ¢, a} and the hyperparameter C. This operator does not verify whether one of the
former hyperparameters actually occurs in the chromosome. If this is the case, then only the hyperparameter
C is mutated.

Furthermore, we have chosen the following settings for our experiments:

* The population size for our experiments was 2000. We have chosen this relatively large, as is common
with both GA and GP for non-trivial problems [118].

* The steady-state variant of GP has been used, in accordance with suggestions based on empirical

5 A kernel function in this context is the non-terminal kernel, as specified in the context-free grammar from Fig. 5.2. Note that this
definition is more broad than just kernel functions from Section 2.3.1.
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evidence [118].

The selection method is fournament selection, where the tournament size is 2 [118]. The selection
method makes use of parsimony pressure, so that in case of equal fitness the smallest tree wins the
tournament.

The search process is terminated when 12 generations have been reached, excluding the initial boot-
strap generation. This maximum number of generations is relatively low, which is common in both
GA and GP with large population sizes.

L]

All the terminals and non-terminals are chosen with the same probability. In other words, there is no
bias toward certain primitives.

The trees for the individuals are initially generated using the grow method with a minimum depth of
2 and a maximum depth of 6. The maximum depth of the trees during the course of the GP process is
9.

The parameters have been limited within a certain range. For the regularization parameter C' this
range is [272%, 2], The range for the parameter 7 for the RBF kernel is set to [2712,2!2]. The pa-
rameters of the polynomial kernel are restricted within the range [1, 7] for the degree d and [2712, 212
for the constant c. Furthermore, the weight parameter a has a range of [0, 20]. Note that all parameters
have a logarithmic scale, except for the degree d and the weight a. These ranges have been defined

based on results with preliminary runs.

Every experiment has been conducted 10 times, as to compensate for the stochastic behavior of the
algorithm. More runs would be desirable to increase the reliability of our results. Unfortunately, this
was computationally not tractable in this study.

7.4.1 Results of EvoKM®¢?

In Table 7.5 we can observe the results of EvoKM®® on the six data sets. The table shows the average
minimum error &,,;, of the 10 runs and the absolute minimum e,,;,. The data shows that the EvoKM®P
approach outperforms grid search in terms of quality of the solutions for each data set. The difference
between both methods, however, is only marginal. This means that the method is not improving much as
compared with grid search, although at a much higher computational expense.

Another problem that we can observe, is the high heterogeneity of the best solutions found in every run.
Some runs result in very complex kernels, such as the kernel function shown in Fig. 7.8. Other runs on
the same data set have one of the atomic kernel functions as the optimal result. Nonetheless, the variance
of the minimum error is still reasonable. We must not rule out that there may simply exist multiple kernel
functions that perform similarly on a data set.

Furthermore, as we noted before, optimizing a kernel function — including its hyperparameters — is far from
a trivial problem. It could well be that a different configuration (e.g. the population size and the evolver
model) could improve on these results. Another observation that we wish to notify is that for some data sets
the error is indeed significantly lower. Consider for instance the Wisconsin data, where the classification
error decreased from approximately 4% for grid search to on average 3.6% for EvoKMOS?. For instance, in

medical settings such a decrease in the classification error could be very desirable.
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Table 7.5: The minimum errors as obtained with EvoKMCY. Note that there is only a minor improvement
compared with errors obtained using grid search.

Grid Search EvoKM®?
Name €min €Emin €min
Diabetes 0.2200 0.2176 £+ 0.0032 0.2096
Housing 0.1673 0.1633 £ 0.0006 0.1620
Reaching 1 0.0683 0.0592 + 0.0004 0.0587
Reaching 2 0.0042 0.0038 + 0.0000 0.0037
Reaching 3 0.0019 0.0018 £ 0.0000 0.0018
Wisconsin 0.0401 0.0358 £ 0.0012 0.0333

7.4.2 Conclusions

The results for EvoKMS® show that more complex kernel functions can improve on the generalization
performance of a Kernel Machine. However, the improvement is for all data sets only marginal and one
seriously has to doubt whether this difference is statistically significant. Only in very specific situations, e.g.
medical diagnosis, the improvement may outweigh the high computational expense of evolving the kernel
function using GP.

One main problem with the method is that if finds heterogeneous optimal solutions. In other words, a partic-
ular run of EvoKMSP on a particular data set may yield a drastically different kernel function compared to a
previous run. Similar observations were reported with regard to evolutionary hyperparameter optimization
[96]. We have to realize, however, that in a sense this is the nature of evolutionary optimization methods
such as GA and GP. Instead of finding optimal solutions, they tend to find “good” solutions. Obviously, for

any problem there may exist only one optimal solution, but there will surely exist many good solutions.

Another difficulty that we experienced in this study is finding a good configuration for our GP method.
There are many parameters that need to be set and one has to find a suitable evolver model. Unfortunately,
there is not a structured approach of finding a good configuration. Therefore, it remains mostly a task
that has to be solved using loose heuristics or even simply guessing. This problem is especially evident in
our context, as the computational demand does not allow for an empirical verification of multiple possible

configurations®.

To give an impression, the experiments of EvoKMOP, as presented in this section, need more than half a year of CPU time on a
Pentium 4 class computer running at 3 GHz.
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Figure 7.8: An example of a good kernel function for the Reaching 1 data set.






OBJECTIVE FUNCTIONS
FOR KERNEL MACHINES

One of the main difficulties in hyperparameter selection is finding an appropriate objective function. As
we argued before, the performance of a Kernel Machine is heavily dependent on a careful selection of
an appropriate kernel function and good values for the hyperparameters. Obviously, this careful selection
requires an objective function that is capable of estimating the true generalization capacity of our machine.
An error criterion, or objective function, that does exactly this is hard to find. One of the main issues is
the problem of overfitting. This occurs when the machine is starting to learn the specifics of the data on
which it is trained, while reducing the generalization performance. An example of this problem would
be a machine that starts to learn the noise that is present in the actual training data. In particular in our
GP kernel evolvement method overfitting could be a serious problem, because we are not only tuning the
hyperparameters, but the kernel function as well. One could argue that this gives a double risk on overfitting.
Furthermore, we generally impose certain requirements on the objective function. These requirements may
include:

* The most exact approximation of the true generalization error.
* Good scalability, i.e. computational tractable also on large data sets.
* Good performance in situations where a limited amount of data is available for training and validation.

* Applicability for different types of machine learning techniques.

It may be clear that these requirements are potentially conflicting. Therefore, one has to prioritize certain
requirements over others. In this chapter we will describe the specific details regarding our decision on an
appropriate objective function for our study. We will start with a theoretical base on generalization errors
and the estimation thereof, after which some commonly used error criteria will be presented. Then we will
cover an interesting potential candidate, which is Kernel Alignment, with an argumentation of its qualities.
Lastly, an experimental validation is presented to verify whether this objective function indeed met our

expectations.
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8.1 Theory on Generalization Errors

In Section 2.1 we explained the difference between the actual model and the model that our machine cre-
ates based on empirical observations. As a short recapitulation, the actual model is defined as P(x,y) =
P(x)P(y|x) and the empirical model of our machine as f(x, «) = 4. When considering the generalization
error, it is important to note the difference between these two models. The more identical the models are,
the lower our generalization error will be. The main problem is that we need an estimator that reliably

measures this generalization error.

Let us assume that the machine has learned a model based on a finite amount of samples, i.e. S =
(X1,9:),- .-, (Xe,y¢). Then we could describe the estimated error for a sample x as [42]:

E(x,08) = E [(y— f(x,:9))" x, 9] o
= E[(y - Blylx)’ x. 8| + (f(x, 8) - Ely}x))* | |

where we included the S to emphasize that these terms depend on the training data. Furthermore, E [-] is

taken with respect to the unknown probability distribution P(y|x)!.

The term E {(y — Elylx])? x, S} can be explained as the residual between the actual output value y and
the most likely output value according to the probability distribution returned by the supervisor. This error
is the variance of P(y|x) and therefore does not depend on the training set S. The only relevant term,
from the perspective of our machine, is the second term, i.e. (f(x, a; S) — E[y|x])°. This squared distance
measures the residual between the output of our machine and the estimated output of the supervisor. This
term measures the effectiveness of our machine, so we would like to have this term as small as possible.
Obviously, the expected error given a data set .S is given by

E(x.@) = s [(f(x,a:9) - Blylx))?] . (32)

One can notice that this equation is highly related to the empirical error that we described in Eq. 2.4. The
difference is that here we consider the expected output of the supervisor, instead of the actual output y. In
other words, we measure the expected error, instead of the empirical error. The empirical error is a noisy
variant of the expected error, since the expected output E[y|x] not always equals the empirical output y
[69].

It is useful to decompose Eq. 8.2 into separate bias and variance terms [42], which yields

E(x,@) = Es |((x, . 8) - Blylx))*]

= (Bs [f(x.0: 8)] = Elylx)* + Bs [(f(x. 2 $) - Bs[f(x,as9))°] . @3

bias

variance

The squared bias term represents the degree to which the empirical error systematically differs from the ex-
pected error, i.e. f(x, a; S) is different from E[y|x], respectively. The variance term captures the sensitivity

Mind that it is necessary to use the expected output value, as the supervisor gives an probability distribution for y, not directly a
value.
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of the machine to the data S on which it is being evaluated. When the size ¢ of the data set is increased, then
the variance can be expected to decrease. Obviously, both the bias and the variance terms can contribute
to poor performance. Often there is even a tradeoff between both terms. For instance, consider that we
smoothen the data, as to reduce the variance. This will introduce a bias, since details of the original model

will get lost (e.g. sharp peaks). This tradeoff is referred to as the bias-variance dilemma.

An important aspect for the objective function for our kernel machine is that it tries to minimize the true
test error, not just the empirical test error. Minimizing the latter, i.e. the empirical test error, is very likely to
lead to overfitting to the training data. Given the theory that we described in this section, we can reformulate
this requirement. The objective function should be based on a method that guarantees an unbiased machine,

combined with a low variance.

8.2 Feasible Objective Functions

In the related work described in Chapter 4 we saw many different kinds of objective functions, such as
different types of cross validation and Kernel Alignment. All these methods might satisfy different require-
ments, from those we described in the beginning of this chapter. Therefore, it is important for us to consider
these different aspects when deciding upon an objective function to use for our study. The requirements that
we impose on the objective functions are — in order of priority — as follows:

1. A good approximation of the true generalization error, i.e. the expected error as described in Section
8.1.

2. Applicable to different types of Kernel Machines.

3. Good scalability with respect to the size of the data set.

Duan et al. have presented an extensive juxtaposition of various objective functions for SVM [30]. However,
most of these objective functions are specifically targeted at SVM and thus not applicable for our study.
Furthermore, the measure of Kernel Alignment has, unfortunately, been proposed after that the study was
published. In this section we will describe the two measures that fit our requirements, i.e. k-fold and
leave-one-out cross validation. Additionally, we present the Kernel Alignment measure and its interesting
aspects.

8.2.1 Cross Validation

Probably the most used evaluation method for various types of machine learning techniques is cross val-
idation [31]. In cross validation the data set is partitioned into two parts. The first of these two parts is
used to train the machine, whereas the second is used to validate the performance. It is essential that the
validation subset does not include any of the samples that were in the training subset. This method, i.e.
holdout validation, reduces the risk of overfitting, as the machine is validated on different samples than it
has been trained on. Nonetheless, a deficiency in this method is that it is highly depended on the partitioning
of the data set.



96 CHAPTER 8. OBJECTIVE FUNCTIONS FOR KERNEL MACHINES

k-Fold Cross Validation

A related form of cross validation is the so-called k-fold cross validation [31]. In this variant the training
set .S is subdivided in k disjoint subsets of equal size %, ie. S ={S1,...,Sk}. Then the machine is trained
on k — 1 subsets and validated on the single remaining subset. This procedure is repeated k times, where
every time a different set is held out as the validation set. The estimated error using this method is defined
as the mean of the k errors obtained during the iterations. This reduces the dependency on the partitioning
of the data set, as the final error is the average error on k different partitions.

One of the main advantages of k-Fold cross validation is that it can be applied to virtually any kind of
machine learning technique. For example, in the field of Artificial Neural Networks this validation method
has successfully been used for several years. Also for training SVMs it has been shown to be one of the
most reliable objective functions [30]. The method has been shown to practically be unbiased and to have
a low variance [58]. The latter is a very desirable aspect, as it provides certainty that we have a good
approximation for the expected error, based on the average of empirical errors.

Nonetheless, the method does have a disadvantage that may prevent it from being used in some settings. The
machine has to be trained to measure the performance for a specific set of hyperparameters 8. Moreover,
this has to be done £ times, i.e. once for each fold. This can be computationally intractable in case of very
large data sets. However, for data sets that are not that large the number of folds k gives a very basic form
of regularization of the computational load. Typical values for k£ range from as low as 4 till around 20, of
which k£ = 10 is commonly advised as a good tradeoff [58].

Leave-One-Out Cross Validation

Leave-one-out cross validation is an exception to this heuristic. In this specialized method k is chosen
equal to the to the size of the data set £. This is named leave-one-out cross validation, since every iteration
only one validation sample is left out of the training set. It has been shown that also leave-one-out cross
validation is approximately unbiased [68]%. However, the variance is generally higher than is the case with
k-fold cross validations [58].

Explicitly calculating the leave-one-out cross validation error is usually computationally infeasible for data
sets of reasonable size. For certain algorithms, however, there exist some “shortcuts” to calculate the error
more efficiently. An example is the fast leave-one-out calculation for LS-SVM that was described in Section
2.4.3. For the case of SVM, one would only need to conduct the leave-one-out procedure for the support
vectors, since removing non support vectors would not affect the decision function. Furthermore, for some
algorithms there exists algorithms to calculate a bound on the leave-one-out error (e.g. the radius-margin
bound for certain types of SVM, see Section 4.1).

8.3 Kernel Alignment

Kernel Alignment uses a drastically different approach for approximating the generalization performance of
the kernel function. In this method the generalization performance is estimated by measuring the similarity
between the kernel matrix and a so-called target [22]. The target matrix, which is based on information

from the data set, should be interpreted as an “ideal” kernel matrix. This approach makes the method very

2 Approximately in the sense that the proof holds for £ — 1 samples instead of £.
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different from cross validation, which predicts the generalization performance based solely on empirical
eITors.

The principal idea behind Kernel Alignment is to calculate the degree of agreement between two kernel
matrices. Intuitively this makes sense, since the kernel matrix K captures information about both the kernel
function and the training data. Moreover, the crucial element in Kernel Machines is the mapping of the
data into a hypothetical feature space. If this mapping coincides with the problem at hand (e.g. makes
classification data linearly separable), then we would expect the corresponding kernel function to match the
data set quite well.

The similarity between two — normalized — kernel matrices in Kernel Alignment with respect to a training

set S is defined as
<K17 K2>F

\/<K15 K1>F <K27 K2>F .

A(S. K1, Kq) = (8:4)

In Eq. 8.4 (K, Ko) - denotes the Frobenius inner product of matrices Ky and K3, which is defined as

<K1,K2>F = Z kl(:vi,:vj)kg(:ci,:cj) . (85)

4,j=1

This quantity is 1 for identical matrices and 0 for orthogonal ones. We can thus state that a higher Frobenius
inner product between two matrices means that both are more aligned (i.e. similar) to each other.

However, in practical situations we wish to quantify the alignment between a kernel matrix — or kernel
function — and the training data. This can be done if there is a way to transform the data set into a suitable
kernel matrix. A kernel matrix can then be compared to this reference (i.e. an ideal kernel matrix). The
proposed definition to create such a target matrix is Ko = yy” [22]. The intuition behind this definition is
that for samples with similar output y we would expect that their inner products are large. If we insert this
ideal matrix in Eq. 8.4 we obtain the Kernel Target Alignment, i.e.

(K,yy"),. _ y'Ky
VEK) L yyT,yyD) .  mlKlFr

A(S,K,yy") = (8.6)

So far these definitions have assumed that we are dealing with a classification problem, i.e. y; € {—1,+1}.
It can however easily be modified for the regression case [54, 53]. The only modification that is required to
do this is

where 7 represents the mean over the output values of the data set.

Kernel Target Alignment has several advantages as a performance estimator. Firstly, it can be applied to
virtually any type of Kernel Machine, due to its nature to estimate the performance based on the kernel
matrix. It is desirable that a method gives us information about how well suited a kernel function is for a
given data set, without making any assumption about the exact algorithm that is using this kernel function.
Furthermore, the computational complexity of Kernel Target Alignment is O (n2) , which is relatively low as
compared to actually training most forms of Kernel Machines. For example, the computational complexity
of both LS-SVM and SVM is (approximately) O (n3) This means that for relatively large data sets there
is a considerable gain to be made.
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An apparent disadvantage of this method is that there are no guarantees whatsoever about the relation with
the generalization performance. There is some empirical evidence that optimizing the alignment increases
the generalization performance [22], but this information is rather sparse. Furthermore, other studies have
shown opposite results, i.e. that Kernel Target Alignment is not really practically useful [107, 79]. It is
therefore difficult to estimate the usability of this method in practical situations.

8.4 Experimental Validation

The properties of the Kernel Target Alignment seem very interesting with regards to our evolutionary opti-
mization method. Especially the fact that it has a low complexity could make it very suitable in an evolu-
tionary context, in which many potential solutions are probed for their fitness. Furthermore, it does satisfy
our requirement of applicability for multiple variants of Kernel Machines, since it only considers the kernel
matrix. The kernel matrix is obviously a common aspect among all algorithms that make use of a kernel

function.

Unfortunately, the empirical results presented in the literature did not convince us regarding a reliable
estimation of the generalization error. This reliability is a crucial factor for our two models, of which
the GP model in particular. This can be explained by two main arguments. Firstly, there is an increased
risk of overfitting in this model, since both the hyperparameters and the kernel function will be adapted
to the problem at hand. An objective function that is shown to be unbiased and has a low variance is
therefore needed to prevent this. Secondly, the goal of the GP approach is to improve on the generalization
performance, as compared to traditional methods. This generalization performance depends to a great
degree on the objective function that is used, as that is the actual measure that is being optimized. Also
from this perspective it is crucial that our objective function gives a reliable estimation of the true generation

€ITor.

For these reasons we have opted to conduct our own — empirical — validation to see how well Kernel Target
Alignment performs in this important aspect. Besides Kernel Target Alignment, we have also included the
leave-one-out cross validation method. This latter could be interesting, as there exist routines to calculate
this measure efficiently. Performing this experiment in a completely statistically sound way is, unfortu-
nately, a very tedious and difficult task. Because the decision on an objective function is only a subquestion
in our study, we have decided to use a more “common sense” comparison methodology. This means that
we will analyze the results of our study in three different ways, which are:

1. An analysis of the correlation coefficients of the different methods, with regard to the generalization

error.
2. A human interpretation of the visualization of the error surfaces.

3. The generalization error that would have been obtained if one of the methods would have been used

for optimization.

It may be clear that it is impossible to perform these experiments exactly as we have described them, as
the true generalization error is unknown in real-life data sets. Therefore, we have made the assumption that
the k-fold cross validation error is a good approximation of this error, which can be justified by findings in
related literature [15, 58]. This means that Kernel Target Alignment and the leave-one-out cross validation

methods will be compared, where the k-fold cross validation error is the reference.
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8.4.1 Experimental Setup

The setup for these experiments is identical to the experimental setup described in Section 7.23. A grid
search has been performed using LibLSSVM for the six data sets on a predefined range of the parame-
ters. This search has been performed using k-fold cross validation, fast leave-one-out cross validation, and
Kernel Target Alignment. A discrepancy from the previous experiments is that here we have used the full
LS-SVM variant and not the reduced variant. We have chosen k = 5, as to have a trade-off between compu-
tational load and the reliability of the error. Furthermore, the kernel matrix that we have applied in Kernel
Target Alignment is the matrix that is obtained after adding C~! on the diagonal. This is done so that the
hyperparameter C' is included in the optimization using Kernel Target Alignment. For large values of C,

however, the function approximates the original definition of Kernel Target Alignment.

The grid search has been performed on the two most used kernel functions, i.e. the RBF kernel and the
inhomogeneous polynomial kernel. These kernels have been chosen because they are shown to perform
well and they are common in the related literature. The polynomial kernel has been restricted to the degree
d = 3, as to reduce the search to only two parameters (i.e. C' and the constant c). This limitation is done
for two reasons. Firstly, grid search scales exponentially, which makes it impracticable for more than two
parameters. Secondly, it would be very hard to visually represent a problem with three parameters, as we
would need four dimensions (i.e. three parameters and the error).

Furthermore, the leave-one-out and 5-fold cross validation measures give an estimate by calculating an
empirical error. This empirical error is the Mean Squared Error (MSE) in case of regression problems and
the normal classification error for classification errors. Kernel Target Alignment, on the other hand, does
not give a direct error estimate. Instead it returns a measure of agreement between the kernel function and
the target problem. This alignment we want to maximize, whereas the empirical error need to be minimized.
Because of this we have taken the inverse of the Kernel Target Alignment, so that it is transformed into a
minimization problem. Furthermore, the value have been decreased by a factor of 100, so that its range
will be similar to that of the errors. This simplifies the interpretation of the graphical representation of
the surfaces. Values higher than 100 have been filtered from the results of all methods, as to remove any
extreme outliers from the comparison.

8.4.2 Correlations between the Various Methods

The first step in comparing the accuracy of Kernel Target Alignment and leave-one-out is done by measuring
the correlation with 5-fold cross validation. If the two measures are reliable estimators for the generalization
error, then we expect there to be a high correlation with the reference (i.e. 5-fold cross validation) measure.
Two different types of correlation have been calculated, namely Pearson product-moment correlation co-
efficient and Kendall’s 7 rank correlation coefficient. The former, which we will refer to as pp, indicates
the degree of linear dependence between two variables. It is obtained by dividing the covariance of the
two variables by the product of their standard deviations. A value of +1 denotes a perfect positive linear
relationship between the variables, whereas —1 indicates a perfect negative relationship. If the coefficient
is 0, then there is no linear relationship at all.

The Pearson correlation coefficient may not be entirely suited for our situation. Firstly, it assumes normality
of both random variables, which we cannot ensure. More importantly, the coefficient measures linear de-

pendence, which intuitively does not need to hold for Kernel Target Alignment. Therefore we have chosen

3We would like to refer the reader to that section for the details that we have omitted here.
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Table 8.1: Correlation coefficients between Kernel Target Alignment (K7A) and leave-one-out cross validation
(LOO) and the reference 5-fold cross validation. In the table pp denotes the Pearson product-moment correlation
coefficient and 7x stands for the Kendall’s 7 rank correlation coefficient.

Name Kernel pp KTA 7k KTA pp LOO 7 LOO
Diabetes RBF 0.0115 0.3072 0.9838 0.8337
Polynomial 3 -0.0451 0.0483 0.8981 0.6077
Housing RBF 0.1351 0.3806 0.9996 0.9635
Polynomial 3 0.0155 0.0945 0.6339 0.6535
Reaching 1 RBF 0.2161 0.6205 0.9894 0.9413
Polynomial 3 0.5545 0.2413 0.9991 0.9443
Reaching 2 RBF 0.4413 0.7819 0.9961 0.7588
Polynomial 3 0.3654 0.0262 0.9996 0.9719
Reaching 3 RBF 0.4599 0.8352 0.9991 0.7951
Polynomial 3 0.3918 0.4437 0.9994 0.9818
Wisconsin RBF -0.0242 -0.0349 0.9956 0.9401
Polynomial 3 -0.1054 -0.2438 0.9693 0.8403

to include a second correlation measure, i.e. Kendall’s rank correlation coefficient. Henceforth we will refer
to this coefficient as 7. The intuition behind including this correlation measure is that the actual relation
between the two variables is not necessarily important. Consider for instance that there would be a quadratic
dependence between the 5-fold cross validation error and Kernel Target Alignment. Although the value for
pp would be very low, indicating no linear correlation, the method would still be perfectly applicable for our
problem. In other words, our main interest is that the ranking of the hyperparameters is similar. Kendall’s
T measures the similarity in the ranking of the variables by dividing the number of concordant pairs in the
ranking by the total number of pairs. A value of 41 thus indicates that all pairs are concordant, —1 indi-
cates that all pairs are discordant, and a value of 0 means that half of the pairs are concordant — the other
half is discordant. Both coefficients have been calculated using the R software environment for statistical
computing [92].

In short, an interpretation of both correlation coefficients should give us insight into the reliability of the
estimators. The shortcomings of either correlation coefficient are covered by the other method. The results
that we have obtained for the various data sets are shown in Table 8.1. These figures show that Kernel Target
Alignment performs rather disappointing. For practically all combinations of data sets and kernel functions
there is a very low correlation. This situation is roughly identical for both types of correlation coefficients.

These results suggest that Kernel Target Alignment is not a suitable estimator for the generalization error.

On the other hand, the leave-one-out cross validation performs as we would expect. In nearly all cases
both types of correlation coefficients are very near the optimal value of 1. The only exception is when
the Housing data set is used in combination with the polynomial kernel. Later we will investigate this
discrepancy in the visualization of the error surfaces.

8.4.3 Graphical Interpretation

The correlations between the two measures and the reference gives us an idea about how well suited both

methods are. However, all information that we obtained is captured in a two scalar values. However
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Figure 8.1: The Kernel Target Alignment and 5-fold cross validation error surfaces for the Reaching 2 data set
in combination with the RBF kernel.

statistically correct this may be, it does not give that much insight in the actual problem and important
information is lost in the process. For this reason we have visualized the error surfaces for all methods, as
to increase the — human — understanding in this matter. Nonetheless, we acknowledge to the fullest extent
that no decisions should be based solely on this human interpretation. The aim of this visualization is only
to increase our understanding and possibly to put the analytical results, i.e. the correlation values, into
perspective.

In Fig. 8.1 we see the surface of the Kernel Target Alignment score on the Reaching 2 data set and with
the RBF kernel function. The figure features the reference 5-fold cross validation error surface as well. It
is hard to notice a clear similarity between these two surfaces, even though the correlation coefficient for
this combination of data set and kernel function was relatively high. Nonetheless, we prefer to note that
minimizing the Kernel Target Alignment would — in this case — result give a relatively low error for the
5-fold cross validation error as well. In the next section we will investigate this aspect in more detail. An
observation that needs to be mentioned is that the surface of Kernel Target Alignment is monotonically
decreasing as the value for C' increases. This confirms that the measure is not suited for the optimization of
this tradeoff parameter. The situation for the other data sets and kernel functions is similar or slightly worse
in all aspects that have been mentioned.

The surface for the leave-one-out error is expected to resemble the reference surface closely, given the high
correlation values that we saw in the previous section. The figures of both surfaces support this expectation
completely, see for example Fig. 8.2. In nearly all cases there was only a minimal discrepancy between
the error surfaces. However, previously we noted that for the Housing data set, in combination with the
polynomial kernel, the correlation was significantly lower. Both error surfaces have been depicted in Fig.
8.3. This figure clearly shows that there is indeed a local discrepancy between both surfaces. The measures
give a different error estimation for situations where c is small and C'is large. An interesting observation is

that the surface of the leave-one-out measure seems — to the human observer — more consistent.
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Figure 8.2: The leave-one-out and 5-fold cross validation error surfaces for the Reaching 3 data set in combina-
tion with the RBF kernel.
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Figure 8.3: The leave-one-out and 5-fold cross validation error surfaces for the Housing data set in combination
with the polynomial kernel with degree 3.
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Table 8.2: The minimum 5-fold cross validation errors that correspond to the optimal hyperparameters found
using the various objective functions.

Name Kernel escv SCVuin escv KTA in escy LOO,,in
Diabetes RBF 0.2187 0.2356 0.2356
Polynomial 3 0.2213 0.2435 0.2265
Housing RBF 0.1172 0.3233 0.1187
Polynomial 3 0.1419 8.4269 0.1570
Reaching 1 RBF 0.0473 0.2019 0.0484
Polynomial 3 0.0721 0.0723 0.0721
Reaching 2 RBF 0.0013 0.0013 0.0102
Polynomial 3 0.0063 0.0063 0.0063
Reaching 3 RBF 0.0008 0.0008 0.0033
Polynomial 3 0.0032 0.0032 0.0032
Wisconsin RBF 0.0400 0.1315 0.0867
Polynomial 3 0.0445 0.1959 0.0467

8.4.4 ‘“What if...” Interpretation

The last section of the juxtaposition of the two error estimators we have named — rather cryptically — the
“what if...” interpretation. Herewith we try to answer the simple question: What if we would optimize the
hyperparameters using either of these methods? In other words, which 5-fold cross validation error would
be obtained if the optimization was done using the leave-one-out or Kernel Target Alignment measures.
Despite the obvious simplicity of this question, we believe that answering this question can give us useful
information. It captures the essence of our goal, which is optimizing an efficient measure that so that the
generalization performance is maximized. Naturally, this statement relies on the assumption that 5-fold
cross validation is a reliable estimator for the true generalization performance.

In Table 8.2 the results are shown which errors would have been obtained using the various measures.
Obviously, the third column (i.e. escy SCV,,4,) is the lower bound, as it simply lists the minimal 5-fold
cross validation error. It is interesting to notice that for some data sets and kernels Kernel Target Alignment
performs in line with the other two methods. In some situations it even performs better than the leave-
one-out measure. We would not have expected this, given the results from the previous two interpretations.
Nonetheless, the leave-one-out measure performs overall still better than Kernel Target Alignment. One
exceptional outlier in the case of Kernel Target Alignment is for the Housing data set, in combination with
the polynomial kernel. In this case the optimal hyperparameters according to Kernel Target Alignment
produce an extremely high error when used with the 5-fold cross validation measure. The explanation
is that the Kernel Target Alignment decreases monotonically as the value for C' increases. Therefore the
optimal value is found at the maximum value for C' in our range. The 5-fold cross validation surface for this
data set and kernel, on the other hand, at a certain point increases drastically as the value for C' increases
(see Fig. 8.3).

The impressions regarding leave-one-out cross validation are mixed. Overall the optimal errors found are
close to those as found with 5-fold cross validation. Unfortunately, there are some occasions where the
discrepancy is significant. For instance, for the Wisconsin data set with the RBF kernel the obtained error is

more than twice as large as the optimal error. This puts the capacity of leave-one-out as a reliable estimator
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slightly in a different perspective.

8.5 Conclusion

An important element in the evolutionary models, as presented in this report, is the objective function. In
the case of machine learning, this objective function ideally should quantify the true generalization capacity
of the machine and its hyperparameters. The problem lies within the fact that the true generalization error,
i.e. the expected error, can not be calculated, as the real underlying probability distribution of the problem is
unknown. Instead, the error must be approximated by means of empirical validation on a data set with finite
size. Finding a measure that does this reliably in an efficient manner is not trivial, as the different measures
have very different characteristics. In this chapter we tried to answer this subquestion for our study, i.e.
which measure we could best use in our models. We considered three different measures, namely 5-fold
cross validation, leave-one-out cross validation and Kernel Target Alignment.

The first, i.e. 5-fold cross validation is shown to be an unbiased estimator of the generalization error,
with a low variance. Therefore, this measure is considered to be a relatively reliable estimator of the true
generalization error. We have chosen to use this measure as the reference in our comparison, because of
this low variance. The disadvantage of this method, however, is that it is computationally expensive. Kernel
Target Alignment, on the other hand, can be calculated much more efficiently. Also the leave-one-out cross
validation routine is, due to certain “shortcuts”, more efficient than 5-fold cross validation.

The aim of this chapter was to investigate whether either of these two measures could give reliability, similar
to that of 5-fold cross validation, combined with a reduced computational load. Regarding Kernel Target
Alignment we can be short; the results show that this measure should not be considered a very reliable
estimator of the true generalization error. This statement is supported in practically all our interpretations
of the problem and for all data sets and kernels. Potentially Kernel Target Alignment could have other
applications (e.g. optimizing solely the kernel parameter), but it did not fit the requirements presented in

our study.

The situation for leave-one-out cross validation is somewhat more complex. In general, this measure ex-
hibits a very high correlation with the 5-fold cross validation. This is not surprisingly, as both methods are
very closely related to each other. Also the error surfaces of both measures seem to match nearly perfectly.
Despite this fact, we have opted to not use the leave-one-out measure in our study. Our reasons for this de-
cision are two-fold. Most importantly, we have shown that in some situations optimizing the leave-one-out
measure results in a relatively high error. The overall generalization performance of our model, obviously,
depends to a great extent on the objective function that is being used. Therefore, we prefer to use the best
possible approximation for the true generalization error, which is k-fold cross validation. We believe that

using k = 5 gives us a reasonable tradeoff between computational performance and reliability.

The intuition regarding computational efficiency may erroneously be biased toward leave-one-out cross
validation. One would expect this measure, given that it is calculated using the efficient method, to be &
times as fast as k-fold cross validation. However, the fact is overseen that the leave-one-out measure trains
on the complete data set, whereas the k-fold cross validation uses only a fraction of % For k = 5 this
means that the learning set is 1.25 times as large for the leave-one-out measure. Given that the complexity
of LS-SVM is O (n3 ) with respect to the size of the dataset, this means that the learning process will
take approximately (1.25)3 times as long. Conclusively, the 5-fold cross validation measure will take only
approximately ﬁ = 2.56 times as long.
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A —less important — second reason is that the efficiency of the leave-one-out is given by specialized routines.
These routines are dependent on the actual type of Kernel Machine that we are using, i.e. LS-SVM in our
case. Making use of these specialized routines would, in our opinion, decrease the general applicability of
our model. We prefer to keep the model as general as possible, also if this comes as a computational cost.
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CONCLUSIONS AND
FUTURE WORK

In the introduction of this report we have stated two main research questions and a third related subques-

tion. Let us briefly recapitulate our research questions:

1. Can we use Evolutionary Computation techniques in order to rapidly optimize the hyperparameters
of a Kernel Machine?

2. Can we use Evolutionary Computation techniques to evolve an optimal kernel function for a Kernel

Machine given a certain problem?

3. What measure of quality can be used for kernel functions and hyperparameters, in the context of the

previous two research questions?

Based on these questions, we have defined and implemented two models. The implementations have been
used to verify empirically whether our goals and objectives could be met. Furthermore, an experimental
study has been conducted to investigate our third research question. In this concluding section, a summary
will be given of our observations with regard to our experimental validations. Furthermore, we will briefly

discuss the practical contributions of our study and give suggestions for future work.

9.1 Evaluation of the Models

In response to the first research question, we have presented a model based on Evolution Strategies that opti-
mizes the hyperparameters. Our experiments suggest that Evolutionary Computation is a good, generalized
optimization method for the hyperparameters, as long as the problem at hand is a regression problem. Our
ES model converges to good solutions by sampling the fitness landscape and moving into regions where
the fitness is high. This approach works well on the continuous error surfaces of regression problems,
which results in a high convergence rate. Classification problems intrinsically have a discontinuous fitness

landscape. This imposes difficulties for the surface sampling approach of our model.
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Nonetheless, the results of our model are still promising, despite this deficiency on classification problems.
The main issue is that ES may not find competitive solutions — as compared to the traditional grid search —in
a timely fashion. Nonetheless, it was still able to rapidly come up with solutions that were reasonable. This
suggests that ES is a method capable of obtaining an approximation of the minimum error for any type of
problem. For regression problems in specific, the results suggest that ES can find equally good solutions as
the traditional grid search using only a fraction of the computational requirements. An interesting advantage
is that ES scales much better with the number of parameters than grid search.

The results of our Genetic Programming based model are less positive. This model was proposed in response
to our second research question. Our experiments suggest that there is only a modest improvement in
generalization performance to be made by evolving complex kernel functions. In most circumstances this
slight improvement will not justify the high computational demands of our model.

It is difficult to determine the exact cause of these results. The fact that we have not found kernel functions
that considerably improve on the generalization performance does not necessarily mean that such kernel
functions will not exist at all. One thing that is clear is that evolving kernel functions for a Kernel Machine
is far from trivial. The configuration of GP, in terms of the evolver model and the parameters, can determine
to a great extent the results. However, the vast amount of options make it very difficult to find a configuration
that works the best.

The last results that we have presented in this report were a minor empirical study we have conducted in
response to the third research question. Presumably, Kernel Target Alignment is a quantitative measure for
the agreement between a kernel function and a data set. It would make a very interesting objective function
in the context of our main study, given the temporal and spatial efficiency of the algorithm. However, we
have empirically shown that Kernel Target Alignment is not a very reliable estimator of the generalization
performance. Therefore, we have opted to use 5-fold cross validation for our experiments instead of Kernel
Target Alignment. We recommend that Kernel Target Alignment is avoided as a performance measure in

situations where the quality of the solutions is relevant.

9.2 Practical Contributions

During the course of this study certain practical contributions have been made, besides the scientific contri-
butions described above. The most relevant of these is the implementation of a complete LS-SVM frame-
work, i.e. LIbLSSVM. This framework implements the normal as well as a reduced variant of the LS-SVM
algorithm. It has been developed with two primary objectives, namely, efficiency and extensibility. The
former objective has been met by using highly optimized libraries for the linear algebra routines, whereas
the latter has been dealt with by using the Object-Oriented programming paradigm. We have exploited the
extensibility in our studies for using automatically generated kernel functions. In our experience, this exten-
sibility make that the framework is well suited for studies on non-standard kernel functions. Furthermore,
an integration of LibLSSVM in the YARP robotics platform has been planned for the future. This would
allow for the usage of a sophisticated machine learning technique in the field of robotics by less experienced
users.

We believe that our implementation of EvoKMFS can be useful for the optimization of the hyperparameters
of Kernel Machines. The implementation can be used with any kind of kernel function and is not restricted
to any number of hyperparameters. One disadvantage in its current form is that it is based on the OpenBea-

gle framework, which is relatively large. A minimal ES implementation, specially crafted for the task of
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hyperparameter optimization, could be developed and integrated into LibLSSVM.

9.3 Future Work

One particular phenomenon in scientific research is that the process of solving questions in itself raises
many new questions. Our personal experience during the course of this study has been no different. The
results from our study have given us certain directions for future research. Regarding the ES model that we
proposed, we believe that it would be interesting to investigate how the results on classification problems
can be improved. Possibly, the problem could be solved by using GA instead of ES, which is known to
perform better on discontinuous fitness functions. Another possible solution could lie in smoothening the
surface, as is done with certain gradient descent methods. Moreover, it would be interesting to juxtapose our
EvoKMPFS method with some of the hyperparameter optimization methods described in related work (see

Section 4.1). In particular, a comparison with the gradient descent methods would be highly interesting.

Although EvoKMFS performed very well for the regression data sets, there are still improvements that can
be made. Firstly, the exogenous strategy parameters could empirically be optimized for the problem of
hyperparameter optimization. The objective is to find the parameters that guarantee a high convergence rate
on the one hand and a stable and robust search process on the other hand. The probability that an outlier
occurs should be minimized, as to ensure that a single search will yield globally optimal results. Another

possible improvement is to make use of the more advanced covariance matrix adaptation variant of ES.

Further experiments and analysis of EvoKM®? could give more insight on whether complex kernel functions
can or cannot improve the generalization performance. As we have stated before, the fact that EvoKMS?
was not able to make substantial improvements does not necessarily mean that we can state that combining
kernel functions will never make improvements. Given the vast complexity of the problem, much more
experiments with different configurations will be needed to support such a statement. One potential model
could extricate the kernel evolution and hyperparameter optimization problems by means of a hybrid ap-
proach. The kernel function could be evolved using GP, after which its parameters are optimized using
a different technique (e.g. ES or grid search). This would prevent the fact that potentially good kernel

functions will be lost due to the selection pressure, only because their parameterization is far from optimal.

There are many open questions regarding Kernel Target Alignment. The main questions are what Kernel
Target Alignment exactly measures and how useful this is as an estimator of the generalization error. Fur-
thermore, recall that the efficiency of Kernel Target Alignment is caused by the fact that it only considers
the kernel matrix. It seems very likely that the kernel matrix can indeed give valuable information on its
suitability for a given data set. Potentially, more sophisticated methods could be devised that measure this

agreement based on the kernel matrix and the data set that measure this agreement.
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UML DIAGRAMS

LSSVM

-alphas : vector<double> ReducedLSSVM

-bias : double qi

-classification : bool
-x : vector<lssvm_vector>

+train(in x : vector<Issvm_vector>, in y : vector<double>) : void

-kernel : Kernel

+train(in x : vector<lssvm_vector>, in y : vector<double>) : void

+predict(in x_pred : Issvm_vector) : double

+predict(in x_pred : vector<lssvm_vector>) : vector<double>

+getKFoldCV(in x : vector<Issvm_vector>, in y : vector<double>, in k : double) : double
+saveToFile(in filename : string) : void PolynomialKernel

+loadFromPFile(in filename : string) : LSSVM

+eval(in v1 : Issvm_vector, in v2 : Issvm_vector) : double
#sanitizeParams() : void

Kernel
-parameters : vector<double>
- - RBFKernel
+eval(in v1 : Issvm_vector, in v2 : Issvm_vector) : double
+fromString(in kernel_str : string) : Kernel
+toString() : string +eval(in v1 : Issvm_vector, in v2 : Issvm_vector) : double
+loadConfig(in param_config : string) : void #sanitizeParams() : void

+saveConfig() : string
#sanitizeParams() : void

BooleanKernel

Problem +eval(in v1 : Issvm_vector, in v2 : Issvm_vector) : double
-x : vector<Issvm_vector> ##sanitizeParamsy() : void
-y : vector<double>
-classification : bool
+readSparseFile(in filename : string) : void SigmoidKernel
+writeSparseFile(in filename : string) : void
+normalizeFeatures() : void
+normalizeLabels() : void +eval(in v1 : Issvm_vector, in v2 : Issvm_vector) : double
+scaleLabels(in lower : double, in upper : double) : void #sanitizeParams() : void

Figure A.1: UML class diagram of the LibLSSVM framework.
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Transform

+transform(in ind : Individual) : vector<double>

EvoKMEvalOp

Beagle::Operator

-kernel_id : int

-machine_type : int
-reduced_prob : double
-train_file : string

-wrapper : LibLSSVMWrapper

qi

ESTransform

+transform(in ind : Individual) : vector<double>

LibLSSVMWrapper

-machine : LSSVM
-reduced_prob : double
-train_problem : Problem
-test_problem : Problem

+evaluate(in ind : Individual) : Fitness

AN

+initMachine(in type : int) : void

+initkernel(in type : int) : void

+setKernel(in Kernel : Kernel) : void

+setC(in ¢ : double) : void

+loadTrainFile(in file : string) : void

+loadTestFile(in file : string) : void

+evaluateKFold(in fold : int) : double
+evaluateLOO() : double

+evaluateSplit() : double

+setHyperParams(in params : vector<double>) : void

EvoKMSplitEvalOp

EvoKMKFoldEvalOp

EvoKMLOOEvalOp

LibLSSVM::LSSVM

-test_file : string

-fold : int

Figure A.2: UML class diagram of the EvoKM®S framework.
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LibLSSVM::Kernel LibLSSVM::LSSVM LibEVoKM::LibLSSVMWrapper Beagle::Operator
KernelWrapper EvoKMGPEvalOp ParameterMutationOp
-ind : Individual -kernel_id : int
-evalop : EVOKMGPEvalOp -machine_type : int [+mutate(inout ind : Individual) : bool
+eval(in v1 : Issvm_vector, in v2 : Issvm_vector) : double -reduced_prob : double

-train_file : string

-wrapper : LibLSSVMWrapper

-fold : int

+evaluate(in ind : Individual) : Fitness

EphemeralParameter

-value : double
-log_scale : bool

KernelGP Beagle::Primitive -min_value : double
— = r = -max_value : double
-kernel : LibLSSVM::Kernel noArguments : int _ [Sietemy - e
+execute(out datum : Datum) : void |>+execute(out datum : Datum) : void execute(out datum ; Datum) : void
+getReturnType() : data_type +getReturnTy_pe_() : datq_type +getReturnType() : data_type
+getArgType(in index : int) : data_type +getArgType(in index : int) : data_type +getArgType(in index : iﬁt) - data_type
+clone() : EphemeralParameter
+getNativeValue() : double
+setNativeValue(in val : double) : void
| PolynomialKernelGP AN

+execute(out datum : Datum) : void
+getArgType(in index : int) : data_type ParameterC

+clone() : ParameterC

RBFKernelGP

+execute(out datum : Datum) : void ParameterDegree

+getArgType(in index : int) : data_type

+clone() : ParameterDegree

AddKernels

ParameterConstant

+execute(out datum : Datum) : void
+getReturnType() : data_type +clone() : ParameterConstant
+getArgType(in index : int) : data_type

. ParameterGamma
MultiplyKernels

+clone() : ParameterGamma

+execute(out datum : Datum) : void
+getReturnType() : data_type
+getArgType(in index : int) : data_type

ParameterWeight

WeightKernel =
+clone() : ParameterWeight

+execute(out datum : Datum) : void
+getReturnType() : data_type

+getArgType(in index : int) : data_type Token VectorPair
-vectorpair : VectorPair -x : vector<Issvm_vector>
+T(out datum : Datum) : void -y : vector<double>
+getReturnType() : data_type +getVectorX() : vector<lssvm_vector>
+getArgType(in index : int) : data_type +getVectorY() : vector<double>

Figure A.3: UML class diagram of the EvoKMC? framework.






CONFIGURATION FILES

<?xml version="1.0"?>
<Beagle>
<Evolver>
<BootStrapSet>
<IfThenElseOp parameter="ms.restart.file" value="">
<PositiveOpSet>
<GA-InitESVecOp/>
<EvoKMKFoldEvalOp/>
<LogIndividualOp/>
<StatsCalcFitnessSimpleOp/>
</PositiveOpSet>
<NegativeOpSet>
<MilestoneReadOp/>
</NegativeOpSet>
</IfThenElseOp>
<TermMinFitnessOp/>
<TermMaxEvalsOp/>
<TermMaxGenOp/>
<MilestoneWriteOp/>
</BootStrapSet>
<MainLoopSet>
<MuCommaLambdaOp>
<LogIndividualOp>
<EvoKMKFoldEvalOp>
<GA-MutationESVecOp>
<SelectRandomOp/>
</GA-MutationESVecOp>
</EvoKMKFoldEvalOp>
</LogIndividualOp>
</MuCommaLambdaOp>
<StatsCalcFitnessSimpleOp/>
<TermMinFitnessOp/>
<TermMaxEvalsOp/>
<TermMaxGenOp/>
<MilestoneWriteOp/>
</MainLoopSet>
</Evolver>
<Register>
<Entry key="ec.term.maxgen">1000</Entry>
<Entry key="ec.mulambda.ratio">4</Entry>
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<Entry key="ec

<Entry key="es.
<Entry key="es.
<Entry key="ec.
<Entry key="lg.
<Entry key="lg.
<!-- Custom Termination Conditions
<Entry key="ec.
<!-- Minimum and Maximum values,
<Entry key="es.
<Entry key="es.

.pop.size">3</Entry>

init.strategy">1</Entry>

mut .minstrategy">0.1</Entry>
repro.prob">1.0</Entry>
console.level">3</Entry>
file.level">3</Entry>

——>
term.maxevals">3185</Entry>
order: kernel parameter(s), C —-—>
value.min">-10;-12</Entry>

value.max">14;20</Entry>

<!-- Machine Settings -->

<Entry key="evokm.kernel">1</Entry>

<Entry key="evokm.machine.prob">0.1</Entry>

<Entry key="evokm.machine.type">2</Entry>
<Entry key="evokm.fold">5</Entry>

<!-- Datasets

-=>

<Entry key="evokm.train.file">../dataset/reaching_l.dat.scaled</Entry>

<!-- Output Options —-->

<Entry key="lg.
<Entry key="lg.
<Entry key="ms.

<!-- Temporary

<Entry key="ms.
<Entry key="ms.
<Entry key="ms.

</Register>
<Experiment>

file.name">results/raw/log/reaching_1_rbf.log</Entry>
individual.file.name">results/raw/ind/reaching_1_rbf_ind.log</Entry>
write.prefix">results/raw/ms/reaching_1_rbf</Entry>

-—>

write.over">1</Entry>

write.perdeme">0</Entry>

write.interval">1</Entry>

<Tries>25</Tries>

</Experiment>

</Beagle>

Listing B.1: Example configuration file for the EvoKM™ application.
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<?xml version="1.0" encoding="IS0-8859-1"72>
<Beagle>
<Evolver>
<BootStrapSet>
<IfThenElseOp parameter="ms.restart.file" value="">
<PositiveOpSet>
<GP-InitGrowConstrainedOp/>
<EVOKMGPEvalOp/>
<LogIndividualOp/>
<GP-StatsCalcFitnessSimpleMinOp/>
<GP-PrimitiveUsageStatsOp/>
</PositiveOpSet>
<NegativeOpSet>
<MilestoneReadOp/>
</NegativeOpSet>
</IfThenElseOp>
<TermMaxGenOp/>
<MilestoneWriteOp/>
</BootStrapSet>
<MainLoopSet>
<SteadyStateOp>
<LogIndividualOp>
<EvoKMGPEvalOp>
<GP-CrossoverConstrainedOp>
<SelectParsimonyTournOp/>
<SelectParsimonyTournOp/>
</GP-CrossoverConstrainedOp>
</EvoKMGPEvalOp>
</LogIndividualOp>

<LogIndividualOp>
<EVvOKMGPEvalOp>
<GP-MutationStandardConstrainedOp>
<SelectParsimonyTournOp/>
</GP-MutationStandardConstrainedOp>
</EvoKMGPEvalOp>
</LogIndividualOp>

<LogIndividualOp>
<EvVOKMGPEvalOp>
<GP-MutationShrinkConstrainedOp>
<SelectParsimonyTournOp/>
</GP-MutationShrinkConstrainedOp>
</EvoKMGPEvalOp>
</LogIndividualOp>

<LogIndividualOp>
<EvoKMGPEvalOp>
<GP-MutationSwapConstrainedOp>
<SelectParsimonyTournOp/>
</GP-MutationSwapConstrainedOp>
</EvoKMGPEvalOp>
</LogIndividualOp>

<LogIndividualOp>

<EvoKMGPEvalOp>
<MutationGammaOp>
<MutationCOp>

<SelectParsimonyTournOp/>

</MutationCOp>
</MutationGammaOp>

</EvoKMGPEvalOp>

</LogIndividualOp>

<LogIndividualOp>
<EVvOKMGPEvalOp>
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<MutationWeightOp>
<MutationCOp>
<SelectParsimonyTournOp/>
</MutationCOp>
</MutationWeightOp>
</EvoKMGPEvalOp>
</LogIndividualOp>

<LogIndividualOp>
<EVoKMGPEvalOp>
<MutationConstantOp>
<MutationCOp>
<SelectParsimonyTournOp/>
</MutationCOp>
</MutationConstantOp>
</EVoKMGPEvalOp>
</LogIndividualOp>

<LogIndividualOp>
<EvoKMGPEvalOp>
<MutationDegreeOp>
<MutationCOp>
<SelectParsimonyTournOp/>
</MutationCOp>
</MutationDegreeOp>
</EvoKMGPEvalOp>
</LogIndividualOp>

<SelectParsimonyTournOp/>

</SteadyStateOp>

<GP-StatsCalcFitnessSimpleMinOp/>

<GP-PrimitiveUsageStatsOp/>

<TermMaxGenOp/>

<MilestoneWriteOp/>

</MainLoopSet>
</Evolver>
<System>
<PrimitiveSuperSet>

<PrimitiveSet>
name="ADD_KERNELS" bias="1"/>
name="MULTIPLY_KERNELS" bias="1"/>
name="WEIGHT_KERNEL" bias="1"/>
name="RBF_KERNEL_GP" bias="1"/>
name="POLYNOMIAL_KERNEL_GP" bias="1"/>
name="WEIGHT" bias="1"/>
name="GAMMA" bias="1"/>
name="CONSTANT" bias="1"/>
name="DEGREE" bias="1"/>
bias="1"/>

<Primitive
<Primitive
<Primitive
<Primitive
<Primitive
<Primitive
<Primitive
<Primitive
<Primitive
<Primitive name="XY"
</PrimitiveSet>

<PrimitiveSet>

bias="1"/>

<Primitive name="C" bias="1"/>

<Primitive name="DUMMY_C"

</PrimitiveSet>
</PrimitiveSuperSet>

<Register>

<Entry key="ec.term.maxgen">12</Entry>
<Entry key="ec.pop.size">2000</Entry>
<Entry key="ec.repro.prob">0.05</Entry>
<Entry key="ec.sel.tournsize">2</Entry>
<Entry key="ec.elite.keepsize">3</Entry>
<Entry key="ec.hof.vivasize">5</Entry>
<Entry key="lg.console.level">3</Entry>
<Entry key="lg.file.level">3</Entry>

<Entry key="gp.init.mindepth">2</Entry>
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<Entry key="gp.init.maxdepth">6</Entry>

<Entry key="gp.tree.maxdepth">9</Entry>
<Entry key="gp.mutshrink.indpb">0.05</Entry>
<Entry key="gp.mutstd.indpb">0.15</Entry>
<Entry key="gp.mutswap.indpb">0.05</Entry>

<Entry key="gp.mutswap.distrpb">1.00</Entry>
<Entry key="gp.cx.indpb">0.20</Entry>

<Entry key="gp.cx.distrpb">0.99</Entry>
<Entry key="gp.init.mintree">2</Entry>

<Entry key="gp.init.maxtree">2</Entry>

<!-- Machine Settings -->

<Entry key="evokm.machine.prob">0.1</Entry>

<Entry key="evokm.machine.type">2</Entry>

<!-- C Parameter Settings -—>
<Entry key="evokm.machine.c.min">-20.0</Entry> <!-- log scale —-->
<Entry key="evokm.machine.c.max">20.0</Entry> <!-- log scale -->

<Entry key="evokm.machine.c.mutpb">1.0</Entry>

<Entry key="evokm.machine.c.primitname">C</Entry>

<!-- K-fold CV Settings —-->

<Entry key="evokm.fold">5</Entry>

<!-- Kernel Parameter Settings -->

<Entry key="evokm.kernel.gamma.min">-12.0</Entry> <!-- log scale -->
<Entry key="evokm.kernel.gamma.max">12.0</Entry> <!-- log scale -->

<Entry key="evokm.kernel.gamma.mutpb">0.125</Entry>

<Entry key="evokm.kernel.gamma.primitname">GAMMA</Entry>

<Entry key="evokm.kernel.degree.min">1</Entry>

<Entry key="evokm.kernel.degree.max">7</Entry>

<Entry key="evokm.kernel.degree.mutpb">0.125</Entry>

<Entry key="evokm.kernel.degree.primitname">DEGREE</Entry>

<Entry key="evokm.kernel.constant.min">-12.0</Entry> <!-- log scale —-—>

<Entry key="evokm.kernel.constant.max">12.0</Entry> <!-- log scale ——>

<Entry key="evokm.kernel.constant.mutpb">0.125</Entry>

<Entry key="evokm.kernel.constant.primitname">CONSTANT</Entry>

<Entry key="evokm.kernel.weight.min">0.0</Entry>

<Entry key="evokm.kernel.weight.max">20.0</Entry>
<Entry key="evokm.kernel.weight.mutpb">0.125</Entry>
<Entry key="evokm.kernel.weight.primitname">WEIGHT</Entry>

<!-- Datasets -—>

<Entry key="evokm.train.file">../dataset/reaching_1l.dat.scaled</Entry>

<!-- Logfile information -->

<Entry key="lg.file.name">results/raw/log/reaching_1.log</Entry>

<Entry key="lg.individual.file.name">results/raw/ind/reaching_1_ind.log</Entry>

<Entry key="ms.write.
<Entry key="ms.write.
<Entry key="ms.write.
<Entry key="ms.write.
</Register>
</System>
<Experiment>
<Tries>10</Tries>
</Experiment>
</Beagle>

prefix">results/raw/ms/reaching_l</Entry>
over">1</Entry>

perdeme">0</Entry>

interval">1</Entry>

Listing B.2: Example configuration file for the EvoKMC®P application.
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Abstract—Kernel Machines are a class of machine learning
algorithms that have been shown to outperform many other
techniques in various classification and regression problems.
This class relies on the fact that non-linear problems can be
transformed into linear problems by means of the so-called kernel
trick, which maps the input space onto a hypothetical, high
dimensional feature space. The performance of these algorithms,
however, depends to a large extent on the kernel function and hy-
perparameters that are being used. The selection is traditionally
done by an expert using a ‘trial-and-error” approach. In this
paper two automated approaches are presented for the selection
of a suitable kernel function and optimal hyperparameters. The
first of these two models uses Evolution Strategies to rapidly find
optimal hyperparameters. The second model aims to improve
the generalization capacity of the machine by evolving complex
kernel functions using Genetic Programming. Empirical studies
show that our Evolution Strategies approach is able to find com-
petitive hyperparameters, as compared with traditional methods,
in less time for regression problems. Classification problems are
problematic, due to the discontinuity of the error surface. The
Genetic Programming approach, however, is shown to improve
the generalization capacity of the machine only marginally. In
most practical applications this minor improvement will not
justify the high computational requirements of the model.

I. INTRODUCTION

The class of Kernel Machines has received a large amount
of attention from academics over the last decade. These
machine learning techniques are interesting, as they allow the
construction of powerful, non-linear classifiers using relatively
simple mathematical and computational techniques [1]. It has
successfully been applied in fields as diverse as economics,
biology, medicine, and robotics. One of the main aspects that
contribute to the success of the Kernel Machines is the so-
called kernel trick. The kernel trick can best be described as
an implicit mapping of the input data onto a high dimensional
feature space. It allows the machine to operate in a high
dimensional space, without the need to explicitly map the data
points onto this space. This implicit mapping is done by means
of a kernel function, which represents the inner product for the
specific hypothetical feature space.

However, the performance of Kernel Machines is highly
dependent on a good choice for both the kernel function and its
parameters. Unfortunately, there are no analytical methods that
can guide the user in selecting an appropriate kernel function
and good parameter values. In this paper we propose two mod-
els for the automated selection of the parameters and the kernel
function itself. These two models are based on techniques

that fall in the class of Evolutionary Computation. This class
of optimization and learning techniques is inspired by neo-
Darwinian evolution [2]. The idea is that the mutation and
reproduction of solutions, combined with fitness proportionate
selection, will converge toward optimal solutions.

Our first model uses Evolution Strategies to optimize the
hyperparameters of a Kernel Machine in a time-efficient
manner. The second model tries to increase the generalization
performance of a Kernel Machine by constructing complex,
problem specific kernel functions using Genetic Programming.
Both models will be validated on six benchmark data sets, on
which the traditional grid search will be used as a reference.

This paper is organized as follows. In Section II we give
an introduction into Kernel Machines and the kernel trick.
We will emphasize on one particular type of Kernel Ma-
chine, namely the Least Squares Support Vector Machine. In
Section III an introduction will be given into Evolutionary
Computation in general, and Evolution Strategies and Genetic
Programming in particular. A review of related work on
hyperparameter optimization and kernel construction is given
in Section IV. The two models will be presented in Section V,
after which we will present the experimental results in Section
VI. The paper is finalized with the conclusions in Section VII.

II. KERNEL MACHINES

The common aspect of all Kernel Machines is the so-
called kernel function, which has as goal to improve the
performance on non-linear problems. The idea is that a non-
linear problem can be made linear by mapping the input
data onto a hypothetical, high dimensional feature space. This
mapping is not done explicitly, as only the inner product for
corresponding feature space is necessary. The kernel functions
represent an inner product in a certain feature space. We will
demonstrate this so-called kernel-trick at the hand of Least-
Squares Support Vector Machines, which is one particular type
of Kernel Machine.

A. Least-Squares Support Vector Machines

Assume that we have a set of ¢ labeled training samples,
ie. S = {(x, yi)}le, where x € X C R™ is an input vector
of n features and y € ) is the corresponding label. In case Y
denotes a set of discrete classes, e.g. J C {—1,1}, then the
problem is considered a classification problem. On the other
hand, if Y C R, then we are dealing with a regression problem.



The Least Squares Support Vector Machine (LS-SVM) aims to
construct a linear model [3]
f(x)=&xw)+0b, 6]

which is able to predict the output values y. Note that for
binary classification purposes it is necessary to additionally
apply the sign function. The error in the prediction for each
sample is defined as

yi — ((xi,w) +b) = ¢ for V; . 2)

The optimization problem in LS-SVM is nearly identical to
SVM [4]. The goal is to minimize both the norm of the weight
vector w (i.e. maximizing the margin for a smoother solution)
and the sum of the squared errors. In contrast with SVM,
LS-SVM uses equality constraints for the errors instead of
inequality constraints. Combining the optimization problem
with the equality constraints for the errors in (2), we obtain

¢
c e . 1 2 1 2
minimize §||w|| + 50 zé_l €; 3)
subject to  y; = (x;, W) +b+¢; Vi,

where C' is a regularization parameter. This parameter is used
to control the emphasis on minimizing either the norm or the
errors. A large value C' corresponds to assigning a high penalty
to the errors, which may result in overfitting. A low value for
C may have the opposite effect, i.e. underfitting.

Reformulating this optimization problem as a Lagrangian
gives the unconstrained minimization problem

¢ ¢

1 1

§||W||2 + 50263 - Zai (x5, W) +b+e—y) , 4
=1 =1

where a; € R Vi. Note that the Lagrange multipliers «; can
be either positive or negative, due to the equality constraints
in the LS-SVM algorithm. The optimality conditions for this
problem can be obtained by setting all derivates equal to zero.
This yields the following set of linear equations:

4
D o (x,xi) +b+C ey =y

j=1

for Vi . (5)

B. Kernel Functions

We can observe that the training samples are only present
within the inner products in (5). The so-called kernel trick is
that we substitute the inner product with a kernel function,
which is defined as

k(x,2) = (6 (x),0(2) . (6)

In this definition ¢ (x) is the mapping of the input samples
into a feature space. However, this mapping does not need
to be calculated explicitly, as only the inner product in this
feature space is relevant. For example, the inner product that
belongs to the mapping ¢ (z1,22) = (27,23, V2z122) is
given by k (x,z) = (x,z)°. Kernel functions thus enable us to
perform the LS-SVM algorithm — and many other algorithms
— in a high dimensional space, without the need to explicitly
calculate the position of the training samples in that space.

If we substitute the standard inner product with a kernel
function in (5), we obtain the “kernelized” variant

0
ZO&jk(Xj,Xi) +b+C71a¢ =Y

j=1

for Vi . (7)

Usually it is convenient to define a kernel matrix as K =
(k (x4, xj))f j=1- S0 that the system of linear equations can be

rewritten as
K+C'T 1] [a]l [y )
17 o [b] — (O ~

The advantageous aspect of LS-SVM is that the optimization
problem can be solved using a matrix inversion. Furthermore,
the algorithm is nearly identical (except for the sign function)
for both regression and classification problems. After the
optimal Lagrange multipliers and bias have been obtained
using (8), unseen samples can be predicted using the function

14
Fx) =ik (xi,%) +b . 9)
=1

1) Conditions for Kernels: An important question is which
functions actually correspond to an inner product in some
feature space, i.e. which are valid kernel functions. The answer
is given by Mercer’s theorem, which state that the function
must be symmetric, continuous, and positive semi-definite
[4]. This can be formalized in the following condition (i.e.
Mercer’s condition):

/ k(x,2) f (%) f (z)dxdz > 0 forall f € Ly (X)
XXX
(10)

Kernel functions that satisfy these conditions are referred to
as admissible kernel functions. Following this condition on the
kernel function, we can state that the kernel matrix has to be
positive semi-definite [5]. Unfortunately, it may not be easy to
verify whether a kernel function satisfies Mercer’s conditions,
nor whether the kernel matrix is positive semi-definite. There
are, however, certain functions that have analytically been
proven to be admissible. Common kernel functions — for
classification and regression purposes — include the polynomial
function (11), the RBF function (12), and the Sigmoid function
(13). It has to be noted that the Sigmoid kernel function is only
admissible for certain parameter values.

k(x,z) = ((x,2) + ¢) fordeN, ¢>0 (11)
k(x,z) =exp (—’ny—zH2) for v > 0 (12)
k(x,z) =tanh (y (x,2z) +¢) for some v > 0,c >0 (13)

All these function are parameterized, as to allow for adjust-
ments with respect to the training data. The kernel parame-
ter(s), together with the regularization parameter C, are the
hyperparameters. We will denote the hyperparameters with 6.
The performance of an LS-SVM (or an SVM, for that matter)
is critically dependent on the choice of good values for the
hyperparameters.

Mercer’s condition can be used to infer simple operations
for the combination of kernel functions, which then also will



be admissible. For instance, the (weighted) linear combination
of two admissible kernel functions is also admissible. Assume
that k1 and ko are admissible kernel functions, then the
following combinations will be admissible as well [1]:

k(x,2z) = c1ky (x,2) + coka (x,2) for c1,c0 >0  (14)
k (X, Z) = kl (X7 Z) k2 (Xa Z) (15)
k(x,z) = aks (x,2) fora >0 (16)

The interesting aspect is that these operations allow for the
modular construction of kernel functions. In other words, we
can construct increasingly more complex kernel functions by
recursively applying these operations.

C. Reduced LS-SVM

The full LS-SVM algorithm involves the inversion of a
¢ x ¢ matrix. One can imagine that the algorithm becomes
computationally intractable for relatively large training, due to
the cubic complexity of the inversion step with respect to £. A
logical solution is to approximate the full LS-SVM algorithm.

Approximating the algorithm is usually done by sparsifying
the training set by means of creating an approximate low-rank
kernel matrix K. An elaborate low-rank approximation is to
minimize the empirical risk over all samples, but to allow
the Lagrange multiplier a; to be non-zero only at a denoted
subset of the training samples [6]. More formally, let us define
a subset S;;, C S of the training samples, with size 0 < m < /.
We can then express the following modified problem:

(G R

By taking a subset of only m data points, the matrix for the
costly inversion step is reduced to m x m. Furthermore, this
specific approximation has the advantage that all ¢ samples
are used for training. The only limitation is that only m
samples are used to describe the model. It has been shown
that selecting the samples at random gives a good balance
between the quality of the approximation and the temporal
complexity of the subset selection procedure [6]. Furthermore,
it seems intuitive that selecting the data points at random from
the training set will yield a relatively good approximation of
the probability distribution from the original data set.

III. EVOLUTIONARY COMPUTATION

Several biological inspired techniques have been developed
over the years for search, optimization, and machine learning
under the collective term Evolutionary Computation (EC) [2].
The key principle in EC — and evolution theory in general
— is that potential solutions are generated, evaluated, and
reproduced in an iterative process. During the course of
this process, the individuals are subject to certain forms of
mutation and can reproduce with a probability proportional
to their firness. A selection procedure removes the individuals
with a relatively low fitness from the population, so that the
more fit ones are more likely to “survive”. This way the
process converges to good solutions. Three main branches
within EC are Genetic Algorithms (GA), Evolution Strategies

(ES), and Genetic Programming (GP). In this paper we will
consider the latter two.

EC techniques work with a population of individuals, where
an individual is a potential solution to a problem. This solution
is represented in the genotype of the individual, which contains
one or more chromosomes. The physical representation of the
genotype in the context of the problem domain is the pheno-
type. Compare this with the distinction between the appearance
of a human (i.e. phenotype) and its DNA (i.e. genotype).
Over the course of multiple generations the individuals are
subject to several operations, which are traditionally mutation,
reproduction, and selection. In every generation the selection
operation is performed on the parent population, in order to
create an intermediate population. The selection of individuals
is usually proportional to their fitness, so that strong individu-
als are more likely to survive. The mutation and reproduction
operations are then performed on this intermediate population,
in order to create an offspring population. The individuals in
the offspring population are then evaluated, i.e. assigned a
fitness score according to problem specific fitness function.
The last phase in the evolutionary cycle is that the offspring
population replaces the current parent population. This routine
is continued until a termination condition has been reached.

When applying an EC technique to a problem, it is neces-
sary to decide on a suitable genotype representation, fitness
function, and termination condition. Typically, all these are
highly dependent on the problem domain.

A. Evolution Strategies

Evolution Strategies (ES) are one of the main branches
of Evolutionary Computation [7]. ES operates in the realm
of the phenotype and uses real-valued representations for
the individuals. A possible chromosome for an optimization
problem with three parameters could thus be ¢ = (21, x2, z3),
where the parameters z; € R are the object parameters. In
contrast, the canonical GA operates in realm of the genotype
and usually represents all parameters in a binary bitstring.

There are two main types of ES, namely (u + A\)-ES and
(11, A)-ES. In these notations p is the size of the parent
population and X is the size of the offspring population. In
(v + A)-ES the new parent population is chosen from both
the current parent population and the offspring. In contrast, in
(14, A)-ES the new parent population is chosen only from the
offspring population, which requires that A > p.

The canonical ES relies on the mutation operation for
diversifying the genetic material. The mutation operation is
typically implemented as a distribution around the individual
being mutated. The mutation is done by adding a random
value, generated according to the distribution, to the parameter
in the chromosome. More formally,

where A denotes a logarithmic normal distribution. Note
that this mutation mechanism requires the user to specify a
standard deviation o; for each parameter in the chromosome.
These standard deviations are the strategy parameters of



Fig. 1. An example tree representation of a function in GP.

the algorithm. The common approach is to not define these
standard deviations explicitly, but to integrate them in the
chromosome. This is known as self adaptation, as certain
parameters of the algorithm are subject to the algorithm itself.
An example of a chromosome with three parameters and the
additional strategy parameters is ¢ = (x1,x2, 3,01, 02,03).
The standard deviations in this mechanism are usually referred
to as the endogenous strategy parameters [8]. These endoge-
nous strategy parameters are updated according to

o; =oiexp (T'N(0,1) + 7N; (0,1)) , (19)

1 ﬁ [9]. Note that m is the

where T o and 7 o

3

number of object parameters.

B. Genetic Programming

A vastly different paradigm within EC is that of Genetic
Programming (GP) [10]. GP should be considered rather a
form of automated programming than a parameter optimiza-
tion technique. It aims to solve a problem by breeding a
population of computer programs, which — when executed
— are direct solutions to the problem. Obviously, this gives
much more freedom in the structure of the solutions and it can
therefore be applied to wide variety of problems. The common
way to represent programs in GP is by means of syntax trees.
An example of a syntax tree that represents the mathematical
function (3/2z) — (y % 5) is shown in Fig. 1. Other types of
genotype representations, e.g. graphs or linear structures, may
be preferred for certain problem domains.

The operations in GP include recombination and mutation
operators that are much similar to their GA counterparts. In
crossover recombination two parents exchange a part of their
genetic material. If the chromosomes are trees, then this means
that they swap a sub-tree rooted at a random crossover point.
Traditional mutation in GP consists of randomly selecting a
mutation point in the tree and replacing the sub-tree rooted at
this point with a randomly generated tree.

In the canonical GP algorithm it is not possible to restrict
the structure of the syntax tree. For some problems it may be
desirable to impose restrictions, so that non-terminals operate
only on appropriate data types. Consider, for instance, a binary
equality function, which takes two real values as its children
and returns a boolean value. Strongly Typed Genetic Program-
ming has been proposed as an enhanced version of GP that
enforces data type constraints [11]. This influences both the
representation of the individuals and the chromosome altering
operators. Firstly, while defining the terminal and non-terminal
sets the user also has to specify the types of the terminals

and of the parameters. Furthermore, the recombination and
mutation operators must be altered in such a way that it
respects the typing specification, i.e. the syntax structure.

IV. RELATED WORK
A. Hyperparameter Optimization

The common procedure of hyperparameter optimization is
a grid search in the parameter space. This means that the
machine is optimized by training it on a predefined range of
parameter values. The two major drawbacks in this type search
process are that it is extremely time consuming and that the
method scales exponentially with the number of parameters.
Because of these drawbacks, various research has been con-
ducted on efficient optimization of the hyperparameters.

An elaborated analytical technique that has been proposed
for hyperparameter optimization is that of gradient descent
methods [12], [13]. Gradient descent is an analytical min-
imization method, in which a local minimum is found by
taking steps in the negative gradient direction. The approach is
demonstrated on a non-spherical RBF function, which means
that each features has a distinct scaling factor. Because of this,
there will be more hyperparameters than there are features,
which allows for demonstrating the scalability of the approach.
The gradient descent method is shown to be able to find
reasonable hyperparameters more efficiently than grid search.
However, the method does require a continuous differentiable
kernel function and objective function, which may not be
satisfiable for specific types of problems (e.g. non-vectorial
kernel functions). Approaches based on pattern search have
been proposed to overcome this problem [14]. In pattern
search the neighborhood of a parameter vector is investigated
in order to approximate the gradient empirically. Moreover,
the whole class of gradient descent methods has the apparent
disadvantage that they can get stuck in local minima.

One of the first mentions of using Evolutionary Com-
putation for hyperparameter optimization can be found in
the work of Frohlich et al. [15], in which GA is primarily
used for feature selection. However, the optimization of the
regularization parameter C' is done in parallel. Other GA-
based approaches focus mainly on the optimization of the
hyperparameters. These approaches use as objective function
either the error on a validation set [16]-[18], the radius-margin
bound [19], or k-fold cross validation [20], [21]. Some studies
make use of a real-valued variant of GA [22], [23], although it
does not become clear whether the real-valued representation
performs significantly better than a binary representation. All
these studies suggest that GA can easily be applied for hy-
perparameter optimization. However, there are some caveats,
such as heterogeneity of the solutions and the selection of a
reliable and efficient objective function.

Evolution Strategies have only scarcely been used for hyper-
parameter optimization [24]. In this approach ES optimizes not
only the scaling, but also the orientation of the RBF kernel. An
improvement on the generalization performance is achieved
over the kernel parameters that were found using grid search.
This result should be interpreted with care, as the optimal



grid search parameters were used as the initial solutions for
the evolutionary algorithm. The classification error on separate
test sets was used as the empirical objective function.

The main advantages of the Evolutionary Algorithms is
that it usually finds the optimal parameters time efficiently
(as compared with grid search) and that the technique scales
well with the number of hyperparameters. An advantage of EC
optimization when compared with gradient descent methods is
that it is more able to cope with local minima. Furthermore,
it does not impose restrictions on the kernel and objective
functions, such as differentiability.

B. Combined Kernel Functions

It seems intuitive that combined kernel functions could
improve on the generalization performance, as the implicit
feature mapping could be more suited for a specific problem.
Several methods have been proposed for the composition of
kernel functions. One of the first notions of optimizing a
combined kernel were by Lanckriet et al. [25]. This work
considers linear combinations of kernels, i.e. K = E;io a; K;
for @ > 0 and K, chosen from a predefined set of kernel
functions. The optimization of the weight factors a is done
using semidefinite programming, which is an optimization
method that deals with convex functions over the convex cone
of positive semi-definite matrices. This method can be applied
to the combination of kernel matrices, since these need to be
semi-definite to satisfy Mercer’s conditions. However, other
methods may be used for the optimization of the weights,
such as so-called hyperkernels [26], the Lagrange multiplier
method [27], or using a generalized eigenvalue problem [28].

It has been argued that during the combination of kernels
some potentially useful information is lost. Lee et al. propose a
method for combining kernels that aims to prevent this loss of
information [29]. Instead of combining various kernel matrices
into one, their method creates a large kernel matrix that
contains all original kernel matrices and all other possible mix-
tures of kernel functions, e.g. k; ; (x,2) = (¢; (x),¢; (z)),
where ¢; is the mapping that belongs to kernel function
k;. This removes the requirement to optimize the weight
factors, as this is done implicitly by the SVM algorithm.
However, special mixture functions need to be provided for
the combination of two kernel functions. Furthermore, the
spatial and temporal requirements of the algorithm increases
drastically, as the kernel matrix is enlarged in both dimensions
with the number of kernels in the combination.

Other EC inspired approaches have been proposed to com-
bine kernel functions. Most of these approaches optimize a
linear combination of weighted kernels using either GA or
ES. The distinction between the methods is in the set of kernel
functions that is used and the type of operators between these
functions. Some only consider linear combinations (i.e. the
addition operator) [30], [31], whilst others may allow both
addition and multiplication [32]. The results from these studies
suggest that combining kernel functions can improve on the
generalization performance of the machine. A limitation of

these approaches, however, is that the search is restricted in
structure and to a certain number of kernels in the composition.

Howley and Madden propose a method that constructs
complete kernel functions using Genetic Programming [33].
In this method a kernel function is evolved for use with an
SVM classifier. They use a tree structured genotype, with the
operators 4+, —, and X in both scalar and vector variants as
the non-terminals. The terminals in their approach are the
two vectors x and y. Since the kernels are constructed using
simple arithmetic, they are not guaranteed to satisfy Mercer’s
condition. Nonetheless, the technique still keeps up with or
outperforms traditional kernels for most data sets. The authors
emphasize, however, that a technique as GP requires the
availability of a sufficiently large dataset. Some enhancements
have been proposed by Diogan et al. Their method differs from
the original approach by a richer operator set (e.g. various
norms are included) and small changes to certain operators
[34]. Similar modifications are presented by Gagné et al., who
also use co-evolution to keep the approach computationally
tractable [35]. Besides the kernel functions, there are two
other species for the training and validation sets. The training
set species aims to cooperate with the kernel function on
minimizing the error and thus maximizing the fitness, whereas
the species for the validation set is competitive and tries to
maximize the error of the kernel functions.

V. EVOLUTIONARY OPTIMIZATION OF KERNEL MACHINES

We propose two different models for the evolutionary opti-
mization of the hyperparameters and the kernel function. The
first, i.e. EvoKMFS, uses ES to optimize only the hyperparam-
eters for a certain kernel function. The aim is to find optimal
hyperparameters more efficiently than using the traditional
grid search. Our second model, i.e. EvoKMS, uses GP to
evolve complete kernel functions, with the aim to increase the
generalization performance.

A. EvoKMES

In the EvoKMP® model ES is used to optimize a vector
of hyperparameters. Both GA and ES could be used for
this problem, but the real-valued genotype representation and
operators of ES seem more suited for our type of problem
[8]. The chromosomes contain the hyperparameters 6 and
the corresponding endogenous strategy parameters o, which
yields for the RBF kernel the chromosome ¢ = [y, C, 01, 02).
ES — and EC techniques in general — are highly generalized
algorithms and we can nearly literally employ the technique
for our specific problem. This can be confirmed by the
overview of the EvoKM®S model in Fig. 2.

An interesting issue is whether to use (u + A)-ES or (p, A)-
ES in the model. Both types have their own specific advantages
and disadvantages. Typical application areas of (u + \)-ES
are discrete finite size search spaces, such as combinatorial
optimization problems [8]. When the problem is an unbounded
search space, typically real-valued search spaces, then (u, \)-
ES should be preferred [36]. Furthermore, Whitley presents
empirical evidence that indicates that (i, \)-ES generally
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Fig. 2. Graphical overview of the evolutionary hyperparameter optimization
model.
(kernel) —  (add_kernels) | (multiply_kernels) |
(weighted_kernel) | (polynomial) | {rbf)
(add_kernels) ~—  (kernel) ‘4’ (kernel)
(multiply_kernels) — — kernel) ‘x’ (kernel)

(weighted_kernel) —  a “x’ (kernel) for a € RT
((x,2) + )

‘exp (—v|lx — 2[|?)’

ford €N, c € RT
for y € RT

(polynomial)  —
(rbf)  —

Fig. 3. The context-free grammar — in Backus-Naur form — that constrains
the generated expressions for the GP model.

performs better than (u + A)-ES [37]. We prefer to follow both
the heuristic and the empirical indications and adopted (u, A)-
ES for our model. Unfortunately, because of this decision we
cannot guarantee that the search process will converge to a
solution, as would have been the case with (u + A)-ES.

B. EvoKM®?

Our second optimization method constructs complete kernel
functions using GP. In this model the functions are represented
using syntax trees. The syntactic structure of the trees is based
on the combination operations that guarantee admissible kernel
functions, c.f. (14), (15), and (16) as the non-terminals and the
polynomial and RBF kernels as terminals. This is formalized
in the context-free grammar that is shown in Fig. 3. The
model makes use of Strongly Typed GP, as it needs to ensure
that the syntactic structure is enforced on all the individuals.
An example chromosome of a kernel function using the tree
representation is shown in Fig. 4. Note that the regularization
parameter C' is omitted in this figure; it is included in an
additional real-valued chromosome.

The global overview of EvoKMOS® is shown in Fig. 5. One
may notice the similarity — from a high level of abstraction
— with the EvoKMES model. The first main distinction is the
genotype representation, whereas the second lies within the
operators that are being used. The following operators are used
within the EvoKM®? model:

1) Reproduction occurs with probability p, = 0.05, which
means that an individual is directly copied into the

x,z v=0.001 x,z v=0.315 X,z d=2 c¢=4096

Fig. 4. An example of a tree generated by the GP model.

‘Deﬁne genotype as syntax tree‘

‘Randomly initiate s individuals‘

‘ Perform KM evaluation function ‘

‘ Termination criterium met? ‘

[

‘ Create s offspring individuals‘

1 ‘Perf()rm KM evaluation function
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Fig. 5. Schematic overview of the evolutionary kernel generation model.

offspring population, without any kind of mutation.

2) With probability p. = 0.20 crossover recombination
occurs, which means that two parents are chosen that
exchange a subtree at a random crossover point. The
two new individuals are both inserted in the offspring
population.

3) A random mutation occurs with probability p,, = 0.15,
in which the selected individual is mutated by substitut-
ing one of its subtrees with a new random subtree.

4) A shrink mutation can happen with probability p, =
0.05. This operator replaces a subtree with one of the
branches of this subtree and thus reduces the size of the
tree.

5) A swap mutation happens with probability p,,. The swap
operator replaces a subtree in the individual with another
subtree, effectively swapping two branches of the same
tree.

6) A pdf parameter mutation happens with probability
pp = 0.5, in which a real-valued parameter is mutated
according to a probability density function.

The latter operator, i.e. the pdf mutation, is specially crafted
for our specific model. Besides evolving the structure of
the kernel functions, it is also important to find appropriate
hyperparameters. The common GP operators are only able
to mutate these parameters by substituting them for another
randomly selected parameter. This strategy may not yield sen-
sible mutations. Mutating these parameters using a probability
density function is inspired by ES and guarantees that the
parameters are mutated with gradual changes.

C. Fitness Function

An important decision when applying EC techniques is
which fitness function is being used, as this is the actual
measure that is being optimized. It should, therefore, measure



the actual concept of “quality” of a solution as close as
possible for the given domain. In the context of this study
the quality is best described as the generalization perfor-
mance of the machine. A very important aspect is that the
fitness function must prevent overfitting of the machine to
the training data. This holds especially for EvoKM®?, as
this models adapts not only the hyperparameters, but also
the kernel function itself to the data set. There are several
methods to estimate this generalization performance, of which
cross validation is known to be very generalized. This has
as advantage that the same fitness function can be used for
various types of Kernel Machines. Furthermore, it can also
be used for both classification and regression problems. In k-
fold cross validation the data set is subdivided in k£ equal parts.
Then the learning machine is trained & times on k—1 sets and
tested on the single subset that was not included in the training
set. The final error is the mean of the errors obtained in the
k steps. Leave-one-out cross validation is a special case of k-
fold cross validation, where k is chosen equal to the size of the
data set ¢. Leave-one-out cross validation is computationally
demanding in its standard form, as the machine has to be
trained ¢ times on ¢— 1 samples. However, specialized routines
exist for LS-SVM to obtain the leave-one-out error after only
a single training on the entire data set [38]. Both methods, i.e.
k-fold and leave-one-out cross validation, have been shown to
be approximately unbiased [39]. However, the k-fold cross
validation error usually exhibits a lower variance than the
leave-one-out measure. For this reason we have used the k-
fold cross validation measure as our fitness function for both
the models. Furthermore, the k-fold cross validation measure
does not depend on specialized routines for its computational
feasibility.

VI. RESULTS

The two models that were described above have been
validated experimentally on a set of benchmark problems.
The LS-SVM part of the models has been implemented in
C++ using the efficient Atlas library for Linear Algebra [40].
The evolutionary aspects of the models, i.e. ES and GP,
have been implemented using the OpenBeagle framework for
Evolutionary Computation [41].

A. Experimental Setup

All the experiments have been performed with the reduced
variant of the LS-SVM kernel machine, which was described
in Section II-C. Although this is only one specific type
of kernel machine, all the relevant aspects have been kept
generalized, as to allow for extension to other types of kernel
machines (e.g. SVM). The size of the subset that is used to
describe the model is kept at 10% of the total data set. The
fitness function is, as explained previously, k-fold cross vali-
dation with k£ = 5. This value gives a decent tradeoff between
reliability and the computational expenses. For classification
problems the error measured is the classification error, which
obviously will lie between 0 and 1. The error measure in case
of regression problems is the mean-squared-error (MSE). Two

TABLE 1
BASIC CHARACTERISTICS OF THE DATA SETS.

Name Type # Samples # Feat. Balance
Diabetes classification 768 8  65.1%/34.9%
Housing regression 506 13 n/a
Reaching 1 regression 1126 4 n/a
Reaching 2 regression 2534 4 n/a
Reaching 3 regression 2737 4 n/a
Wisconsin classification 449 9 52.6%/47.4%

kernel functions have been considered in these experiments.
The first is the RBF kernel function (12), which is commonly
regarded the “default” choice for kernel machines. The second
kernel function is the polynomial function (11).

B. Data Sets

Six different benchmark data sets have been selected for our
experiments. Four of these data sets are regression problems,
whereas the remaining two are binary classification problems.
Three of the data sets, i.e. Diabetes, Housing, and Wisconsin,
are well-known benchmark data sets obtained from the UCI
Machine Learning repository [42]. The remaining three data
sets, i.e. Reaching 1,2,3, are obtained internally from the
Liralab of the University of Genoa. These data sets concern
orienting the head of a humanoid robot in the direction of its
reaching arm. The features are the values of 4 arm encoders,
whereas the outputs are actuator values for 3 head joints. Table
I shows certain standard characteristics of the data sets after
preprocessing. The exact preprocessing steps that have been
performed on the data sets are the following:

1) All the features have been (independently) standardized,
i.e. rescaling them to have a zero mean and a unit
standard deviation.

2) For regression problems the output values have been
standardized in the same manner as the features. For
classification problems the labels have been set to +1
for positive labels and —1 for negative labels.

3) Duplicate entries have been removed from the data sets.

4) The order of the samples in the data set has been
randomized.

C. Results for EvoKM®S

The EvoKME® model has been verified using the following
scenario. First, a very coarse grid search has been performed
to identify an interesting region for the parameter ranges for
each data set and kernel function. Consecutively, a very dense
grid search is performed on this region to establish a reference
for our model. For the polynomial kernel function, which has
2 parameters, we have kept the degree fixed at d = 3 in order
to keep the search tractable. This reference contains a number
of evaluations that have been dedicated to grid search' and
the corresponding minimum error. This minimum error is the

Note that the number of evaluations directly translates into time, as solving
the LS-SVM problem is independent of the chosen parameters.



TABLE 11
COMPARISON BETWEEN THE GRID SEARCH METHOD AND EVOKMES |
NOTE THAT THE RESULTS OF EVOKMES ARE AVERAGED OVER 25 RUNS.
THE COLUMN ETT (Evaluations To Target) DENOTES THE NUMBER OF
EVALUATIONS THE AVERAGE RUN NEEDS TO REACH THE TARGET ERROR.

Grid Search EvoKMES
Name Kernel €min Eval. €min ETT
Diabetes RBF 0.2200 621 0.2238 + 0.0026 >621
Poly 0.2213 777  0.2228 £ 0.0005 >T777
Housing RBF 0.1676 2793  0.1674 £ 0.0000 495
Poly 0.1673 1739  0.1714 £+ 0.0237  >1739
Reaching 1  RBF 0.0683 3185  0.0683 £ 0.0000 327
Poly 0.0720 1517 0.0671 £ 0.0001 39
Reaching 2 RBF 0.0042 561 0.0042 4+ 0.0000 159
Poly 0.0063 399  0.0044 + 0.0000 27
Reaching 3  RBF 0.0019 561 0.0019 4+ 0.0000 135
Poly 0.0032 399  0.0022 + 0.0001 39
Wisconsin RBF 0.0423 3185  0.0454 £ 0.0022  >3185
Poly 0.0401 2337  0.0424 £ 0.0024  >2337

target for our EvoKMFS model. The aim of these experiments
is to investigate how efficient EvoKMES converges toward the
target error.

The EvoKMPS model has been used on the same parameter
ranges as the grid search. The only exception to this rule is
that for the polynomial kernel we have not kept the degree
fixed at d = 3; instead we have used the range d = [1, 8]. This
exception is allowed to investigate the scaling properties of the
ES-based approach. The size of the parent population has been
set to 1 = 3, whereas the size of the offspring population is
A = 12. It has been shown that ES performs best with small
population sizes [37]. The evolutionary search is terminated
after the same number of evaluations have as used for the
grid search.

A juxtaposition of the results of the grid search and
EvoKMPFS is shown in Table II. These results show that for the
three Reaching data sets only a fraction of the evaluations were
needed to reach the target error. Furthermore, the polynomial
kernel function converges very quickly. This suggests that
EvoKMPFS scales well with the number of parameters and that
it probably “uses” the extra degree of freedom to decrease
the error. However, the results on the Diabetes, Housing,
and Wisconsin data sets are less positive. EvoKMFES performs
poorly on the Housing data set with the polynomial kernel due
to an outlier in the results (cf. the variance). Unpredictability
of the results is one of the problems when using stochastic
optimization methods, such as ES.

The poor results on the Diabetes and Wisconsin data
sets have a completely different cause. The convergence of
EvoKMFS with the Diabetes data set and the RBF kernel is
depicted in Fig. 6. It can be observed that the convergence is
not completely smooth, but rather stepwise?. This is caused
by the fact that this is a classification problem, for which the
error surface is not continuous, but instead contains plateaus.

>Mind that this convergence is the average over 25 runs and therefore
already smoother than a single run.

0.3
0.29
0.28
0.27
0.26
0.25
0.24
0.23
0.22

0.21 I I I I
0 100 200 300 400 500

Error

Evaluation

Fig. 6. The convergence of the minimum error during the EvoKMES search
for the Diabetes data set with the RBF kernel function.

Discontinuous error surface are known to be hard for ES-based
methods, as it tries to find higher fitness regions (i.e. a lower
error) by sampling the error surface in a certain neighborhood.
However, many samples (i.e. the offspring individuals) will
have a fitness score identical to that of the parent, which
means that the search process does not receive any “clues”
about the shape of the error surface and starts a random walk
on the plateau. Smoothness of the fitness landscape may be
regarded a prerequisite of efficient optimization using ES [8].
Nonetheless, we wish to point out that the process still rapidly
converges to reasonable solutions, although the target is not
reached. Another reason that the target is not reached is that
the region with near-optimal solutions is very small for the
Diabetes and Wisconsin data sets. This makes it very hard in
general to find these regions.

D. Results for EvoKMCT

The results from grid search have been used as a reference
for EvoKM®® as well. However, for this model we consider
solely the quality of the solution and ignore the temporal
aspect (i.e. number of evaluations). EvoKM®? has been con-
figured with a population size of 2000 and a maximum of 12
generations. In Table III we can consult the results for both
grid search and EvoKMSY?. We can observe that the errors
obtained using EvoKM%Pare only slightly lower than those
obtained with grid search. This indicates that the combined
kernel functions perform only slightly better than single kernel
functions. It is difficult to give any strict interpretations, since
the fact that we have not found any combined kernel functions
that drastically improve the generalization performance does
not necessarily mean that they will not exist at all. We can
state, however, that evolving kernel functions is far from a
trivial.

One main problem that we encountered during these exper-
iments is the heterogeneity of the optimal solutions. In other
words, a particular run of EvoKMS? may yield a drastically
different optimal kernel function as compared to a previous
run. This seems to be the nature of evolutionary optimization
methods such as GA and GP. Instead of finding optimal
solutions, they tend to find “good” solutions. Obviously, for



TABLE III
THE MINIMUM ERRORS AS OBTAINED WITH EVOKMOSP . NOTE THAT €Emin
INDICATES THE AVERAGE MINIMUM ERROR OVER 10 RUNS, WHEREAS
€min INDICATES THE ABSOLUTE MINIMUM ERROR.

Grid Search EvoKMSP
Name €min €min €min
Diabetes 0.2200 0.2176 £ 0.0032 0.2096
Housing 0.1673 0.1633 % 0.0006 0.1620
Reaching 1 0.0683 0.0592 + 0.0004 0.0587
Reaching 2 0.0042 0.0038 £ 0.0000 0.0037
Reaching 3 0.0019 0.0018 £ 0.0000 0.0018
Wisconsin 0.0401 0.0358 + 0.0012 0.0333

any problem there may exist only one optimal solution, but
there can exist many good solutions.

Another difficulty that we experienced in this study is find-
ing a good configuration for our GP method. There are many
parameters that need to be set and one has to find a suitable
evolver model. Unfortunately, there is no structured approach
for optimizing the configuration. Therefore, it remains mostly
a task that has to be solved using loose heuristics or even
guessing. This problem is especially evident in our context,
as the computational demand does not allow for an empirical
verification of multiple possible configurations?.

VII. CONCLUSIONS

In this paper we have presented two models for the evo-
lutionary optimization of Kernel Machines. The distinction
between both models was that the first aimed to find optimal
hyperparameters more efficiently than traditional methods (i.e.
grid search) and the second aimed to increase the generaliza-
tion performance by means of combined kernel functions. The
first model, based on Evolution Strategies, has shown to be
an efficient and generalized method of performing hyperpa-
rameter optimization for regression problems. Our ES-based
model was able to find solutions comparable with optimal
grid search solutions in only a fraction of the computational
demands. Furthermore, the method scales very well with the
number of parameters. Classification problems, on the other
hand, are more challenging for our model, because the error
surface is discontinuous for this type of problems. ES uses
the offspring individuals to sample the neighborhood in order
to find a direction that minimizes the error. The plateaus
found in the error surface of classification problem interfere
with this strategy, as the offspring is likely to have a fitness
that is identical to that of the parent. Nonetheless, also for
classification problems the model shows a decent convergence
rate, which unfortunately halts at a certain non-optimal level.

The Genetic Programming approach for the generation
and selection of kernel functions increases the generalization
performance of the Kernel Machine only marginally. This
suggests that combined kernel functions may not improve

3The experiments that we presented for EvoKMCP need more than half a
year of CPU time on a Pentium 4 class computer running at 3 GHz.

the performance as much as one may expect. In most cir-
cumstances this slight improvement will not justify the high
computational demands of this model. It is difficult to de-
termine the exact cause of these results. The fact that we
have not found kernel functions that considerably improve
on the generalization performance does not necessarily mean
that such kernel functions will not exist at all. It is clear that
evolving kernel functions for a Kernel Machine is far from
trivial. The configuration of GP, in terms of the evolver model
and the parameters, can determine to a great extent the results.
However, the vast amount of options make it very difficult to
find a configuration that works the best.
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