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Abstract

At the CMP (Center  for  Machine Perception),  part  of  the  Czech Technical  University  in 
Prague,  a  project  has been running on crowd surveillance.  The goal of the project  is  the 
detection and tracking of people. We tried to improve on the earlier results of that project, by 
making  the  existing  system  better  usable  for  tracking  of  multiple  people  in  a  group 
simultaneously.

Tracking multiple people in groups can be done by using multiple single-person trackers at 
the same time. However, often these systems are not meant for multimodal applications, so 
the results are not satisfactory.

Another problem is, that using multiple single-person trackers simultaneously does not work 
in the case of occlusions. We have augmented the  single-person tracking methods available 
(Condensation  and  Mean  Shift)  with  capabilities  for  occlusion  detection.  The  resulting 
implementation did not have to work in real-time. For test data material from CMP was used, 
together with some self-made animated videos.

We designed and implemented a demonstration and have tested the system. The model, 
implementation and test results, will be described in this thesis.
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1 Introduction

Crowd surveillance by tracking people on camera sequences is the subject of this thesis. In  
this chapter, a short overview of the background of crowd surveillance, and its societal  
relevance is given. After that, a problem definition is formulated, together with the goals of  
our research. Finally the global structure of this thesis is explained.

1.1 Problem background

The problem of 'tracking', or detecting and following objects on a video sequence, is a subject 
of  much  research  in  the  computer  science  world.  Tracking  in  general  can  have  a  lot  of 
applications, for example in the medical world, where the hands of a surgeon can be tracked 
so he can operate remotely. The tracking of people however, and especially the tracking of 
groups of people, has mainly one application: surveillance.

Surveillance plays a very important role in the world, whether we want it or not. Security is 
such a large issue everywhere that it can't be ignored. There are of course a lot of social issues 
about it too, after all, privacy is one the basic democratic rights we have. But still, criminals 
have been arrested and terrorist  attacks have been avoided by making use of images and 
videos, made by surveillance cameras.

That  is  why  surveillance  cameras  will  not  disappear  soon,  and  they  can  now  be  seen 
everywhere where there are a lot of people, or at places where problems could appear easily. 
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And these cameras have seen a lot of innovation too.  'Smart'  cameras help a lot to detect 
unusual activities in an early stage. But they are nothing more than a tool to warn an operator 
when there are intruders, or when something else has been detected that can be identified 
easily (fire and smoke detection, for example).

Large crowds of people, for example at events like sports matches or festivals, or at subway 
and train stations, are maybe the most important to have under surveillance, because they are 
both very vulnerable and unreliable.  However,  surveillance of this  kind of groups  is  still 
something that has to be done mostly by humans, because it is such a hard problem to solve. 
Why is this the case?

1.2 Problem definition

To track objects, a lot of algorithms have been developed, based on computer vision methods. 
Many of these are  implemented and work very well,  also in  real-time applications.  So it 
would not  seem a very large problem to just  modify these  algorithms for  tracking many 
individuals in a group at the same time.

When there is more than one person in the image, multiple trackers can be used in parallel to 
track these people separately. Unfortunately, problems arise when people are occluded, by 
each other, or by static objects like buildings and trees. Often trackers switch people around 
after they have got near to each other, or they lose track of the person at all. So there has to be 
found a solution to these problems.

Another problem is when one person is standing partly or completely in front of (occluding) 
an other person. The tracking system does not 'know' that one person is behind the other, so 
the person at the back can be 'forgotten'. Also the order in which the people stand measured to 
the camera is not known. These are things that have to be taken care of too in a system that 
must be capable to track multiple people in crowds.

1.3 Goals

The existing tracking system developed at CMP was not very good at the tracking of multiple 
people. The system got confused very easily and often, at the end all multiple trackers would 
wind up tracking the same person. Some modification needed to be made to made it behave 
better, and that was one of the goals of this research. The other goal was to make the existing 
tracking system also aware of people occluding each other, and to make it possible to give an 
estimation of which person is in front and which behind, also in cases when more than two 
people are involved in an occlusion.

To summarize the goals:

• Design and implement a modification to the existing implemented tracking algorithms so 
that they are more usable for tracking multiple people simultaneously.

• Design and implement an addition to these algorithms to classify tracked objects that are 
occluding each other.

• Test these improvements and document the test results.
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1.4 Structure of this thesis

The rest of this thesis is organized as follows: in the second chapter an overview of the state- 
of-the-art  in  person  tracking  and  especially  multiple  person  tracking  is  given.  The  third 
chapter contains detailed descriptions of  the theoretical  algorithm that  are  relevant  to our 
work.  Chapter  4  shows the  design  of  the  global  architecture  of  the  system,  and  gives  a 
description of the modules of this architecture. Chapter 5 focuses on implementation details, 
such as descriptions of tools and programs used, and the decomposition of the architectural 
modules in implemented parts of the system. The sixth chapter describes testing methods and 
test  material;  and  given  a  comprehensive  overview of  every  test  done  including  the  test 
results.  The  last  chapter,  chapter  7,  gives  conclusions  and  recommendations  for  further 
research.
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2 Related Work

In this chapter, the current state-of-the-art in background subtraction, people tracking and 
occlusion  detection is described. The general subject of “looking at people” is very broad,  
including not only computer vision aspects, but also cognitive aspects (reasoning on basis of  
image data), psychological (how do groups move?) and social (privacy is an important issue 
when you are  dealing with surveillance).  Comprehensive  surveys  of  all  of  these  aspects,  
including an overview of applications and descriptions of many implemented systems, are  
found in  [3] and  [11].  The  more  specific  and  restricted  problems  mentioned  above  are 
described here in more detail.

2.1 Background subtraction

Before tracking can begin, the tracking algorithm needs to know which objects to track. Some 
kind of motion segmentation needs to be done. One way to do this is by using a technique 
called optical flow. With this technique, every pixel has a corresponding motion vector that is 
updated every step. However, this is a computationally very expensive method, and so not so 
useful for real-time applications.

The other, preferred method of separating the background (static parts) from the foreground 
(moving parts),  is  to  use  background subtraction.  A model  of  the  background is  kept  in 
memory, and when there appears a moving object, that is not consistent with the background 
model,  so  the  object  is  seen  as  foreground.  Because  changes  in  lighting  or  weather  can 
influence the background, most often an adaptive background model is used, that is, one that 
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is updated every step. The method described by Grimson and Stauffer [12] has proven itself to 
be a powerful and reliable background subtraction method, using a mixture of Gaussians for 
modeling the adaptive background.

2.2 Tracking of people

State-of-the-art  tracking  methods  can  be  divided  in  several  ways.  An  important  first 
distinction  is  the  way  in  which  the  tracked  persons  are  represented.  When  there  is  no 
predefined explicit shape model, some possibilities are a box, an ellipse (generally a more 
appropriate shape for tracking of humans), the contours of a blob [7], or the blob itself [14]. If 
there is an explicit shape model, a stick figure can be used, or every body part can have its 
own box [4].

Then the tracking algorithm itself must be chosen. Condensation  [7] is a very well-known 
algorithm in the Computer Vision research with a lot  of applications based on it  that  are 
already in use. It is actually an example of a particle filter, also known as a Sequential Monte 
Carlo method. The idea of a particle filter  is that  random sampling is used to estimate a 
Bayesian model.  Large advantages of Condensation is that it is possible to use it in a very 
broad range  of  applications,  and that  it  is  usable  more  or  less  independent  of  the  object 
representation.  A problem is  that particle filters are  not  very good for use in multimodal 
applications (tracking of more than one object at the same time), so Condensation does suffer 
the same problem. Improvements that have been suggested are to mitigate this problem, for 
example to use a MCMC (Markov Chain Monte Carlo) based particle filter  [8], or to use a 
mixture of particle filters to create one multimodal particle filter [13].

A less known alternative for Condensation is tracking based on the Mean Shift algorithm [1]. 
Mean shift is an older theoretical method, but can be applied to tracking in a very promising 
way. The 'mean shift' is the estimated direction and distance in which the target moves, and 
this is computed by comparing an already defined model target with the current candidate 
target. The targets are defined by their color distribution (histogram). The advantages of this 
method is that no dynamic model is needed in advance. It is a fast and reliable procedure that 
has started to be used in many tracking systems.

6
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2.3 Occlusion detection

Given that there is a reliable multiple-person tracking system in place, the occlusion detection 
can start to find the depth ordering of occluding objects. Several methods have been proposed 
to solve this problem.

One solution, described in  [5],  adds occlusion handling to Condensation. A virtual object 
representing the occlusion relation between two objects is subjected to the same sampling 
process as all normal Condensation objects.

Another method is used when objects are represented as blobs [4], [9]. In these systems, when 
moving  blobs  merge  into  one  and  then  split  again,  it  is  seen  as  the  assembling  and 
disassembling of groups of people. If the group consists of more people, it is segmented into 
its constituent people. Also the detection of body parts, like the head, can be used to count the 
number of people in the group. This method does not give real depth information, but it still 
can quickly find people in a group.

7
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3 Theory

The algorithms on which this work is based, are explained fairly detailed in this chapter. A  
basic understanding of all these algorithms is useful, to have a better understanding later on.
In the first place some information about similarity measures is given. They are used multiple  
times in the algorithms so it should be known how they work.
A background subtraction algorithm that separates the foreground from the background is  
described. Then, a tracking algorithm does the real tracking of the foreground objects, that  
have been  detected  by  the  background subtraction.  There  are  two algorithms described:  
Condensation and Mean Shift. Finally, the theory of the occlusion detection method is given.

3.1 Similarity Measures

Because color histograms are often used to give an indication of what is in a region of an 
image,  a  similarity  measure (or  distance  measure)   has  to  be  defined  to  compare  these 
histograms. Two normalized histograms p = {p(u)}u = 1 ... m and  q = {q(u)}u = 1 ... m are considered, 
each having m bins.

3.1.1 Bhattacharyya Coefficient

The Bhattacharyya coefficient is a very popular method to compare distributions. For p and q, 
it is defined as:

[ p , q ]=∑
u=1

m

 puqu   (3.1)

3.1.2 Histogram Intersection

An alternative is the histogram intersection. It is defined as:

[ p , q]=∑
u=1

m

min  pu q u   (3.2)

9
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3.1.3 Correlation

A third possibility is to use the correlation of the histograms:

[ p , q ]=
∑
u=1

m

p ' uq ' u 

∑u=1

m

p 'u ∑
u=1

m

q 'u 
 (3.3)

where 

p ' u= pu−
∑
i=1

m

p i 

m
 (3.4)

and the same for  q'(u).

3.2 Background Subtraction

As seen in the last chapter, background subtraction is the first step on the way to the tracking 
of objects. The algorithm of Stauffer and Grimson [12], mentioned there, will be explained 
here.

The background subtraction is a very important phase in the tracking process, the changing of 
parameters here can influence the tracking results heavily, so it is useful to know the basics of 
the working of the algorithm. However, because the background subtraction is not directly 
influencing  the  occlusion  detection,  it  is  not  described  in  as  much  detail  as  the  other 
algorithms.

3.2.1 The algorithm

The background of every pixel is modeled as a mixture of Gaussians, so for every pixel there 
are K normal distributions. Each normal distribution has a mean μ, a standard deviation σ2 and 
a weight ω.

Because there is a multiple of distributions, every pixel has more than one background color. 
In this way, a slightly moving background will be detected. It also has the another advantage: 
when an object  is  standing still  for a  long time,  it  may be detected as being part  of  the 
background. With the approach used in this algorithm, the old background will reappear when 
the object moves again, as it still has its own distribution in the mixture of Gaussians. The 
weight may have been lower for a time, but now it gets up again.

During every frame, for all pixels that get a new value, all the distributions for the pixel are 
tried one for one until a match has been found. There is a match when the new pixel value is 
within 2.5 times  the standard deviation. When there is no match at all,  the least probable 
distribution is replaced by a new one with the value of the pixel as mean, a high standard 
deviation and a low weight.

10
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The weight of every distribution is updated: the matched distribution gets a higher weight, and 
the rest a lower one. A parameter  α, the learning rate, controls the amount with which the 
weights are updated.

The matched distribution does also get an updated mean and standard deviation. The mean 
moves in the direction of the pixel value. Again, the learning rate controls the amount of 
change.

After  this  is  done,  the  decision  must  be  taken:  does  the  pixel  belong  to  background  or 
foreground?  All  the  distributions  are  sorted  by  ω  /  σ.  If  the  sum of  the  weights  of  all 
distributions  with  a  higher  ω  /  σ than  the  matched  one  (all  the  probable  background 
distributions that did not have a match) is larger than a certain threshold T, the pixel will be 
classified  as  foreground.  This  classification  is  possible,  because  when  there  are  a  lot  of 
background distributions that did not match, the odds are that the pixel is not part of the 
background at all.

The distribution that is the most probable background model, and that will because of that 
have a match often, will bubble to the top of the list, and stay there if nothing changes. When 
there  is  a  moving or  slightly  changing background,  there  will  be  a  set  of  most  probable 
background models of which the top one will change once in a while.

Because there are only two parameters, the learning rate α, and the threshold for the number 
of background models T, this algorithm is very easy to use. Despite this simplicity the results 
are very reliable.

3.3 Condensation

The first real tracking algorithm used is Condensation [7]. The original paper focused on an 
application in tracking curves in visual clutter; for example tracking the contours of a hand 
over a complicated background. However, it can also be easily applied to tracking of persons 
(or other moving objects), and that is what this description focuses on.

3.3.1 Object representation

Tracked objects can be represented in different ways, but in our case, every tracked object is 
represented by an ellipse. These ellipses are compared by their color histogram, with one of 
the similarity measures described above. In the implementation used, the ellipse is split in an 
upper and a lower part, and the color histograms of these parts are compared separately. In 
this way people with different colors of clothing can be tracked more reliably.

3.3.2 The algorithm

Condensation makes use of factored sampling, applied iteratively to successive images (for 
example video frames). The basic idea of factored sampling is that a probability distribution 
(in this case, of the state of the object) is approximated by a set of weighted samples S = {(s(n),  
π(n)) | n = 1...N}. So, every sample of this set represents a hypothetical state  s of the object 
together with the probability π that this sample will be chosen (the weight).

11
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The state s is defined as: 

s=x , y , vx , v y , ax , a y , b , vb  (3.5)
where x and y are the position of the ellipse, vx and vy the velocity, ax and ay the acceleration, b 
the length of the main axis and vb the the change of the axis length (growth).

The first step in every iteration is that a new set of N samples is chosen from St - 1, the sample 
set  from last iteration. Each sample has a probability  π that  it  is chosen.  Samples can be 
chosen more than one time, so those having a higher weight will appear more often in the 
resulting set. In the first iteration S consists of random samples with random weights.

All  the  samples are  then subjected to  a  dynamic model,  to  give a  prediction of  the new 
position:

st=Ast−1w t−1  (3.6)
where A is the deterministic dynamic model, and wt - 1 a random Gaussian variable.

Then, for all the samples the color histogram for the resulting ellipse is computed. These are 
compared with the model histogram. The weights are updated as a result of this comparison: 
more similar samples get higher weights.

Now the new sample S, which is used in the next iteration, is derived. The mean state of this 
set is chosen as the new position of the target:

E [S t ]=∑
n=1

N

t
n st

n  (3.7)

3.3.3 Connection between background subtraction and Condensation

How  does  the  Condensation  algorithm  know  which  objects  to  track?  The  background 
subtraction algorithm needs to give it some information as to which parts of the image are 
interesting  to  follow.  A  way  in  which  to  do  this,  is  to  run  the  background  subtraction 
algorithm,  and  then  to  find  connected  components  based  on  the  foreground  pixels.  The 
components that have an area larger than a predefined threshold,  will  be used as tracked 
objects in Condensation. When blobs are used as object representation, nothing will have to 
be  done,  but  with ellipses,  as  described above,  the  best  fitting ellipses  for  the  connected 
components will have to be found.

12
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3.4 Mean Shift

The other tracking algorithm that was tested is described in  [1] and is based on the idea of 
mean shift. The 'mean shift' is an estimated direction and distance in which the target moves, 
and this is computed without using a dynamic model, but only by comparing a candidate 
target with the model.

3.4.1 Object representation

As with the Condensation algorithm, in the Mean Shift approach every object is represented 
by an ellipse. When the algorithm is initialized, for every object that has to be tracked, the 
model color histogram of the ellipse is computed.

The histogram is computed in the Region of Interest (ROI), the pixels inside the ellipse (in 
fact,  it's  a box bordering the ellipse on the outside). To increase the robustness,  to every 
histogram a convex and monotonic kernel mask is added: pixels in the center of the ellipse get 
a higher value than the ones on the border. The weight decreases with squared distance from 
center. After this, the histogram is normalized.

All the histograms used are in three dimensions (one dimension for each color). To compute 
the distances between the histograms, the Bhattacharyya distance is used.

3.4.2 The algorithm

During every frame processed, the target moves toward its most probable position in multiple 
iterations.  To  do  this  an  algorithm is  used  that  maximizes  the  Bhattacharyya  coefficient 
(higher coefficient means a higher similarity, and thus a shorter distance).

1. First for candidate location  y0, the current candidate histogram  p(y0) will be computed, 
together  with  the  kernel  mask.  After  that  the  Bhattacharyya  coefficient  between  this 
histogram and the model histogram q is computed.

2. For every pixel, compute a weight as defined by: 

w i=∑
u=1

m

[bx i−u ] qu

pu y0
 (3.8)

where b(xi) is the bin for the color of pixel xi, u is the current bin and  δ is the Kronecker 
delta function, which is true only if both its arguments are true. So this means that every 
weight is the square root of the value of the model bin of the pixel color, divided by the 
value of the candidate bin of the pixel color.

13
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3. Compute the mean shift, that is compute the new estimated location y1: 

y1=
∑
i=1

n

x i wi

∑
i=1

n

wi

 (3.9)

Then,  again  compute  the  Bhattacharyya  coefficient,  now  between  the  new  candidate 
histogram p(y1) and the model histogram q.

4. As long as the coefficient between and p(y0) and q is larger than the one between p(y1) and 
q the target has not yet been reached, so the location of y1 must be updated:  y1 ← ½ ( y0  + 
y1). Repeat this step until the target has been reached.

5. If || y1 – y0 || < ε, stop the iterations, and continue on to the next frame. Otherwise, start a 
new iteration at step 1 with the new candidate ellipse: y0 ← y1.

3.5 Occlusion Detection

There exist several methods for computing the occlusions between tracked people, a few of 
which are discussed here.

3.5.1 Occlusion relation as hidden Condensation process

In the paper by Hu, Hu and Tan [5], a method is described to do detection of occlusions, by 
introducing  a  'hidden'  object   to  the  Condensation  algorithm,  that  models  the  occlusion 
relationship between two objects. The occlusion relation for two objects A and B on time t is 
noted by t∈{0, 1,2}  where φt = 0 means no occlusion is happening, φt = 1 indicates that A 
occludes B and  φt = 2 indicates that B occludes A.

The occlusion relation φ is sampled like normal Condensation objects. It is also subjected to a 
dynamic model, which can be expressed by a transition matrix, for example:

p t1= j∣t=i =[0.8
0.1
0.1

0.1
0.8
0.1

0.1
0.1
0.8] i , j∈{0,1, 2}  (3.10)

So there is a chance of 0.8 that the occlusion relation stays the same, and 0.1 that it  will 
change.

When the mean sample  E[St] in the Condensation process is computed, there will also be a 
computation of the new estimated φ value:

E [t ]=arg max


∑
t

n =

t
n , ∈{0, 1, 2}  (3.11)

The drawbacks of this method are that there are no special considerations for the case when 
more  than  two  persons  are  occluding  each  other.  Also,  it  is  targeted  for  use  with  the 
Condensation method, so it is not easy to adapt it for other methods like Mean Shift.
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3.5.2 A more general approach

McKenna et al. [9] describe a method to view groups as blobs that split and merge. Tracked 
objects are all represented as blobs. The color information of the object is represented by a 
histogram. This histogram can be used as the basis of a probability function giving the chance 
at a certain (color) value x given a person i:

P x∣ i =
H ix 

Ai
 (3.12)

where Hi(x) is the histogram value and Ai is the area of the object. During the tracking, this 
histogram is updated adaptively every frame.

If nothing is known about the depth ordering of people in a group, the probability of a pixel 
corresponding to the ith person P(i) is estimated as:

P i =
Ai

∑
j∈G

A j
 (3.13)

where G is the group that the ith person is part of. When these things are known, the posterior 
density can be computed by combining them:

P i∣x = P x∣i P i 
∑
j∈G

P x∣ j  P  j   (3.14)

From this, also a visibility index (the part of the person that is not occluded) can easily be 
computed.  So,  in  fact,  this  is  also  a  sort  of  depth  ordering algorithm.  However  it  is  not 
applicable to tracking systems where the objects tracked are discrete units, not changing blobs 
that can split and merge. So, unfortunately, it is also not applicable to Condensation or Mean 
Shift.
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4 Design

In  this  chapter,  the  design  of  the  system is  given.  First,  a  model  is  given  of  the  system  
architecture. Next, for every module of the system architecture, the design of the algorithms is  
explained.

4.1 Global Architecture

An overview of the global architecture is given in the diagram below. The blue-colored parts 
were added or changed from the original architecture. A detailed description of all the parts of 
the diagram follows underneath.
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The diagram shows the control and data flow for one frame of an image sequence. The control 
flow is given by the large block arrows: so, first the background subtraction algorithm runs, 
then the tracking algorithm, and finally the occlusion detection.

These three phases can all  have multiple implementations: in the case of the background 
subtraction, there is only the Stauffer and Grimson method; for the tracking, there are the 
Condensation and Mean Shift methods, and for the occlusion detection, there is the 'naive' 
comparing  of  two objects  and  the  comparing  of  N objects.  The  third  method  reuses  the 
occlusion detection results of the last frame, but it is not implemented.

On the bottom can be seen where the data is stored. The representation of the background 
subtraction results is dependent on the method that is chosen. With the tracking algorithm, 
this was also the case; this is changed so now the representation of the tracked objects is 
independent of the tracking method that is chosen. The tracking methods had to be changed 
rather drastically to accommodate this change, however the benefit is that there is now a more 
generic framework,  to which,  for example,  the occlusion detection can be added. For the 
occlusion detection itself, the results are stored independently of the method chosen.

The background representation data is now also used for updating the tracked objects when 
the Condensation method is used. Before, the data was used only to identify new objects to 
track and add them to the tracked objects.

4.2 Background Subtraction Module

In  the  previous  chapter,  it  was  mentioned  that  the  background  subtraction  plays  a  very 
important role in the tracking process, but that the influence on the real tracking algorithms is 
indirect, so there was no need for a very comprehensive description. The same could be said 
in  this  chapter;  also  because  no  additions  were  planned  to  the  background  subtraction 
algorithms themselves, a complete description of the design is not really necessary.

The thing that should be kept in mind is that the background subtraction module returns as its 
result  a  background  representation,  that  consists  of  all  the  pixels  that  are  considered 
background. So, the other pixels are  considered to be part of the foreground.

4.3 Tracking Module

Both the Condensation and the Mean Shift algorithm are described here in pseudocode. Also 
the  design  for  the  modifications  made  to  the  Condensation  algorithm  is  given.  The 
pseudocode given is executed every frame when the algorithm is called.
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4.3.1 Condensation

In pseudocode, the design of the Condensation algorithm can be given as follows:

4.3.2 Modifications to the Condensation tracker

There was an improvement made to the way in which the weights of the Condensation objects 
are updated, normally the weights get their value only because of the similarity of the sample 
histogram to the  model  histogram. But  because all  the background subtraction data  is  of 
course still available, this could also be incorporated in the computation of the weight.

So, in addition to the histogram comparison, now all the foreground pixels existing in the 
sample ellipse (as found by the background subtraction algorithm) are counted; and the ratio 
of this number of foreground pixels to the total number of pixels in the ellipse, is taken as 
another measure of the usefulness of the ellipse.

The ratio in which this new measure is responsible for the Condensation weight of the sample, 
is controlled by the parameter r. So in pseudocode the weight is now defined as:

19

foreground_confidence = (# of foreground pixels in ellipse) / 
(total # of pixels in ellipse)

weight = r * foreground_confidence
+ (r – 1) * confidence of the color histogram

Illustration 4.3: Pseudocode of Condensation improvement

choose set of n samples from old sample set
apply dynamic model to all the samples
update  the  weights  of  the  samples  based  on  comparison  of  

histogram with model histogram
compute the mean sample

Illustration 4.2: Pseudocode of Condensation algorithm
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4.3.3 Mean Shift

The design for the mean shift algorithm is given below in pseudocode. The steps 1-5 are the 
same as in the theoretical description in chapter 3.
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step1:  compute  current  candidate  histogram,  and   
Bhattacharyya distance between model & cand. histogram

step2: create a new weights histogram with each bin containing 
sqrt(value of the model / value of the candidate)

step3: compute
m00 = sum of all weights
m01 = sum of (weight * x value of pixel with this color)
m10 = sum of (weight * y value of pixel with this color)
mean shift in direction x = m10 / m00 - width / 2
mean shift in direction y = m01 / m00 - height / 2
shift candidate ellipse in computed direction
compute histogram of shifted ellipse, and Bhattacharyya  
distance between model and shifted histogram

step4: while (distance from step 1 > just computed distance)
shift candidate ellipse with half mean shift
compute histogram of shifted ellipse, and
compute Bhattacharyya distance between model 
and shifted histogram

step5: if ((mean shift in direction x)^2 +
(mean shift in direction y)^2) < epsilon
stop iterations

else
new candidate = shifted ellipse
continue to next iteration

Illustration 4.4: Pseudocode of Mean Shift algorithm
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4.4 Occlusion Detection Module

For the occlusion detection, some new algorithms were implemented. Here their design is 
shown in pseudocode and clarifying diagrams.

4.4.1 Compare two tracked objects

This method just does the following: when there is an overlap 
between  two  objects,  the  most  probable  object,  given  this 
overlapping region and its histogram, is defined as being on 
top. So, all overlapping regions between to objects in an image 
are checked one by one, to determine which one of the two 
ellipses is on top.

In  addition,  some  mechanism  is  added  that  keeps  track  of 
which comparisons have been done already, otherwise some 
combinations would be added twice.

In  the  example  picture,  three  ellipses  are  overlapping  each 
other.  First  the  overlap  of  1  and  2  (the  green  rectangle)  is 
compared with ellipses 1 and 2 themselves. Because ellipse 2 
is the one on top, the histogram of the overlap should be more 
similar to the histogram of ellipse 2 than that of 1.

Then the overlap of 1 and 3 (the red rectangle) is compared 
with 1 and 3 themselves. 3 will be found to lie on top.

After  that the combination of  2  and 1 doesn't  have to  be checked again,  but  the overlap 
between 2 and 3 still has to be computed (the blue rectangle) and has to be compared. Again, 
3 will be on top. For ellipse 3, no comparisons are left to be done.

In pseudocode the algorithm can be given as:
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for all tracked objects {
get overlapping region with every other object
if overlap

compute color histogram of overlap
compare histogram with model histograms of both objects
the best match is the object that lies on top

}

Illustration 4.6: Pseudocode for the compare two objects algorithm

Illustration 4.5: Compare sets of  
two objects
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4.4.2 Compare N tracked objects

Now, also multiple overlapping objects will be detected. For this a recursive algorithm is 
necessary. We start with the same example: three overlapping ellipses.

Ellipse 1 is taken as a starting point. The 'current overlap' will be set at the initiation to the 
complete area of ellipse 1 (the red rectangle). Ellipse number 1 itself will be removed from 
the list of objects that still have to be processed. The function will now be called recursively 
for all the other objects.

The next one is ellipse number 2. The overlap with the 'current overlap' is computed, and this 
can be seen in the middle of the image as the green rectangle. This new overlap will now be 
the new current overlap. Ellipse number 2 will be removed from the list and only ellipse 3 is 
left.

So, in the next (and last) round, ellipse number 3 is compared with the current overlap, and 
this can be seen on the right as the blue rectangle.

Now the results have to be returned: the distance between current histogram (number 3) and 
current overlap (the blue area) is computed, and returned to the calling function. Here, ellipse 
number 2 was the current ellipse, and the green area was the current overlap. So, this distance 
will be computed too, and the result will be multiplied with the earlier result given back. 
When we come back to the left of the picture this will be done again, the confidence is of 
course 1, because the current overlap was equal to the current ellipse (the red area).

What we now have as end result, is the confidence that the combination 1-2-3 really is the 
order in which the objects are 'stacked', with 3 being on top. Because all combinations are 
checked one by one recursively, all the confidences for the combinations 1-2-3, 1-3-2, 2-1-3, 
2-3-1,  3-1-2  and 3-2-1  will  be  returned  in  the  end.  The  combination  which  returned  the 
highest confidence, will be chosen.
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Illustration 4.7: Compare sets of N objects recursively
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Because it  is of course possible that situations as in illustration 4.8 
occur (or much more complicated situations which come down to the 
same),  multiple  results  may  have  to  be  returned  by  the  recursive 
function. This is because ellipse 1 has to compare with 2 and with 3, 
but these are two different 'clusters' of overlaps. This complicates the 
algorithm, but the principle stays the same.

In pseudocode, the algorithm is expressed as follows:
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function occl_recursive(objects, current_overlap) {
for all objects {

if there is overlap with current_overlap {
compute new_overlap
prob = probability that object is on top

}
else continue with next object
new_objects = objects – current object
results = occl_recursive(new_objects, new_overlap)
if results for each result {

return (result_probability * prob)
and current object id

}
else

return 1 and current object id
}

}
}

Illustration 4.9: Pseudocode for compare N objects algorithm

Illustration 4.8: Special  
situation





5 Implementation

In this chapter, details about the implementation are given: which tools are used, and how the  
parts  of  the  system  defined  in  the  last  chapter  were  mapped  to  the  classes  that  are  
implemented.

5.1 Tools and API's used

The application was written in C++, making use of Visual Studio 6.0. Besides that a number 
of tools and API's (Application Programming Interfaces) were used.

5.1.1 DirectShow

The tracking system needs a way to receive input frames from a video sequence. It also needs 
a way to show output frames to a screen, or to save it to a file. For that goal, DirectShow is 
used.

DirectShow is an API for developing multimedia applications under Windows. In modern 
Windows versions, it is an integral part of the operating system and used in a lot of often-used 
applications. It provides a framework to create filters that can do a specific job. Examples of 
DirectShow filters are:

• Reading an .avi file from your hard drive

• Decoding an MP3-compressed audio file

• Showing a video sequence on your screen

The filter can be connected to form a graph, which represents the complete control flow from 
input source to output. An example of a graph is given below in the description of GraphEdit.

DirectShow used to be a part of DirectX  [10], a set  of API's for all kinds of multimedia 
development (Direct3D, DirectSound, etc.).  For development of DirectShow filters, it  was 
necessary to download the DirectX SDK (Software Development Kit). In 2005, DirectShow 
was moved out of DirectX, to the Platform SDK, in which all basic things needed to develop 
for the Windows platform can be found.

However, as these newer versions are designed to work with Visual Studio.NET or newer, 
and not with Visual Studio 6.0 anymore, they were not used. To switch to a newer Visual 
Studio version would not be worth the effort.  So, for DirectShow the DirectX SDK from 
summer 2004 was used.
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5.1.2 GraphEdit

GraphEdit  is a free tool (distributed with DirectShow) for editing and testing DirectShow 
graphs. In the picture below, a screenshot can be seen of an example graph in which the CMP 
Tracking Filter shows up. GraphEdit was used for all testing and for generating the output 
movies, from which the frames shown in the next chapter are taken.

5.1.3 OpenCV

Intel Open Source Computer Vision Library (OpenCV) [6] is an multi-platform open source 
toolkit from Intel, that provides a lot of algorithms (in the form of C functions) from different 
fields of Computer Vision. For example, it provides implementations of both Condensation 
and Mean Shift, although support for the latter is very limited and was not used. Among the 
functions  offered  are  edge  detection,   handling  of  color  histograms,  and  a  lot  of  basic 
functions for drawing all kinds of shapes and text to an image.

5.1.4 Flash

Macromedia Flash was used to create the animated test sequences. It is very easy to create 
moving vector graphics with this program, so it was chosen to make some tests quickly. The 
Flash animations were exported to normal .avi files before using them for testing.
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5.2 Class diagram and descriptions

In this section a mapping of the architectural modules described in section 4.1 to the classes 
that  were  implemented  is  given.  All  these  classes  are  collected  in  one  project 
CMPTrackingFilter that works completely independent of the DirectShow framework. The 
system was built modularized, so an algorithm can be replaced by the new one as long as the 
new one provides the same interface.

Another separate project, CMPDirectShow (renamed from just 'TrackingFilter'), was made as 
a wrapper for the CMPTrackingFilter to make it behave like a DirectShow filter. A template 
was used to generate the most of this code.

The class diagram below shows all the classes and their relationship. The three blue planes 
correspond to the modules defined in the last chapter: on the top, the background subtraction 
module; in the middle, the tracking module; and on the bottom right, the occlusion detection 
module.

5.2.1 CMPTrackingFilter

This is the main class. It contains the method  init() which is called by the DirectShow 
wrapper when it is started and  processFrame() which is called every frame. In here the 
preferred algorithms to be used for background subtraction and the tracking itself  can be 
selected.
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5.2.2 BackgroundSubtraction

Represents a generic background subtraction method that can be implemented by subclasses. 
The only algorithm implemented is in AlgStaufferGrimson. Helper classes are necessary 
for the Stauffer and Grimson algorithm: Gaussian and MixtureOfGaussians. Because the 
background subtraction algorithm was not modified (it is only used in more places now) it is 
not necessary to describe these classes in more detail.

5.2.3 Tracking

Represents a generic tracking method. The virtual method process() is called once every 
frame, after the background subtraction is finished. It must be implemented by one of more 
subclasses. It also has some method which are used in multiple algorithm implementations, 
such as draw(), which is used to draw user feedback like location of the tracked objects to 
the output frame.

5.2.4 TrackedObject

Represents a generic tracked object. It has subclasses for every tracking algorithm making use 
of it, CondenObject and CondenTracking are now implemented.

5.2.5 CondenTracking

Implements the Condensation algorithm. In the  process()-method, the objects that have 
already be found are updated; and large blobs that are newly detected by the background 
subtraction algorithm are added. The class also takes care of the logging of data to a text file, 
and draws the ellipses to the output frame. Uses the CondenObject class as representation of 
the tracked objects. It also uses the Ghost and HistModel helper class.

5.2.6 MSTracking

Implements the Mean Shift algorithm in its process()-method. Uses the MSObject class as 
representation of the tracked objects. It also uses the Ghost helper class.

5.2.7 CondenObject

Implements  an  object  tracked  by  the  Condensation  algorithm  as  implemented  by  the 
CondenTracking class.
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5.2.8 MSObject

Implements  an  object  tracked  by  the  Mean  Shift  algorithm  as  implemented  by  the 
MSTracking class.

5.2.9 Ghost

A helper class that represents the 'hole' that a target leaves after moving away. It protects the 
location from a false initialization.

5.2.10 HistModel

A helper class that represents the color histogram of a certain region. It contains methods to 
compare these histograms using different algorithms.

5.2.11 OcclusionDetection

Implements  the  occlusion  detection  algorithms.  It  could  be  split  in  subclasses  for  every 
algorithm used, but for now, that is not really necessary. Uses OcclusionResult for storing 
the results.

5.2.12 OcclusionResult

Contains the results obtained by the occlusion detection. Stores the order of the occluding 
objects (referenced by their ID) and the confidence belonging to that order.
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6 Testing

In this chapter, first the test material used is described. After that all the tests are described  
one by one, together with the results of the tests and illustrated with screenshots showing the  
behavior.

6.1 Test material used

The test material used can be divided in two groups: material obtained from a camera, that 
was available  at  CMP from previous projects;  and animated material,  that  was self-made 
using Macromedia Flash. In the tables underneath titles and descriptions of these sequences 
can be found.
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Camera Title Description
Seq03Small.avi Several  people  moving  in 

front  of  a  camera  and 
sometimes  moving  out  of 
view  and  back  in.  Length 
1650 frames.

vid3.avi A lot  of people moving in a 
room, with abrupt changes in 
the  movement  and  a  lot  of 
occlusions.  Length  1800 
frames.

Table 6.1: Camera test material used
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6.2 Condensation improvement with animated sequence

This is the first  test  for improvement in Condensation tracking that has resulted from the 
incorporation  of  the  number  of  foreground  pixels  in  the  sample  weight  computation,  as 
described in paragraph 4.3.2. The animated sequence 'triple_overlap_noisy.avi' is used.

6.2.1 Goal

The influence of parameter r (see 4.3.2) on tracking in general, and especially on tracking of 
multiple  objects  simultaneously  is  tested.  For  different  values  of  r (0,  0.25  and 0.5)  the 
Condensation tracker will run, and the tracking performance will be seen by looking at the 
feedback given (the ellipses drawn on the screen).

When  r is 0,  the  additions  to  the  algorithm are  not  used  at  all,  so  the  original  tracking 
algorithm is tested. In this way, results can be compared.

Because in the test sequence 'triple_overlap_noisy' all objects that have to be tracked move 
according to a dynamic model, it is expected that the effect of changing r will be seen here 
clearly. Because of the background noise, it is not easy for the tracker, this is better for testing 
because without background noise, it is expected that all objects will be tracked flawlessly 
anyhow.
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Animated Title Description
triple_overlap.avi Three  ellipses  with  primary  colors 

moving  and  occluding  each  other. 
Length 100 frames.

triple_overlap_noisy.avi Three  ellipses  with  primary  colors 
moving and occluding each other, over a 
noisy background. Length 100 frames.

Table 6.2: Animated test material used
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6.2.2 Results

This are the results with  r = 0. Already in frame 40, the tracker for the red ellipse (#1) is 
moving towards another red object. In frame 60, another tracker has started for the same red 
object! In frame 90, all ellipses are lost.

With r = 0.25, performance is slightly better. In frame 40 and 60 there is no error. Frame 80 
and 90 show that the trackers for ellipses #0 and #1 are more or less lost, but the one for #2 
works perfectly.

With r = 0.5,  we see that all  three ellipses are almost perfectly tracked during the whole 
sequence. Where things did go wrong before, like in frame 80, now the right object is tracked 
(with the same color as part of the background) because it is moving all the time.
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Illustration 6.1: Frames 40, 60, 80 and 90 with r =0

Illustration 6.2: Frames 40, 60, 80 and 90 with r =0.25

Illustration 6.3: Frames 40, 60, 80 and 90 with r =0.5
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6.2.3 Conclusions

When r is 0, the tracker only gives completely right results for the first 35 frames. Because 
there are 100 frames in total, this gives a score of 35%. When r is 0.25, the first 67 frames are 
tracked perfectly, a score of 67%. Finally, when  r is 0.5, all ellipses are tracked correctly 
during the complete sequence, so a score of 100% is reached!

We can conclude that the introduction of parameter r has helped at least in one circumstance. 
Most probably, this is because the movements of the ellipses are not random, but constant 
speed and in one direction. More experiments have to follow before we can conclude that the 
using of background model data in Condensation has helped in every case.

6.3 Condensation improvement with camera sequence

This is the second test for improvement in Condensation tracking that has resulted from the 
incorporation of the number of foreground pixels in the sample weight computation. Now, the 
camera sequence 'vid3.avi' is used.

6.3.1 Goal

Again,  the influence of parameter  r on tracking in general,  and especially on tracking of 
multiple  objects  simultaneously  is  tested.  For  different  values  of  r (0,  0.25  and 0.5)  the 
Condensation tracker will run, and the tracking performance will be seen by looking at the 
feedback given (the ellipses drawn on the screen).

Like before, when r is 0, the additions are not used at all, and the original tracking algorithm 
is tested.

6.3.2 Results

With r = 0, so when the tracking solely depends on the Condensation samples and not on the 
background detection too, the three persons seen in these screenshots are tracked quite good. 
Only in frame 532 there is some confusion, the blue ellipse for person #0 is too far to the left, 
and the green ellipse for person #1 is a little bit too much to the right. However, in frame 562 
everybody is found again in the right place.
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Illustration 6.4: Frames 351, 532 and 562 with r = 0
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When r  = 0.25, the performance is slightly better in frame 532, but the increase is not really 
very noticeable. The only thing is that now, there no triple overlap anymore, only two times 
an overlap of two ellipses.

Lastly,  when r  = 0.5,  the performance noticeably drops.  In frame 351,  everything is  still 
alright, but after that things go wrong. Especially the green ellipse has difficulty in finding the 
right person, and in frame 562, it is tracking a complete different person.

6.3.3 Conclusions

When we take only the first 600 frames into account (after that, a fourth person joins the 
others), the following scores are reached: if  r is 0, only 40 frames give a completely wrong 
result: a score of 93%. When r is 0.25, just 10 frames are wrong, giving a score of 98%. In the 
last case, when r is 0.5, the results are a lot worse, 80 frames having a bad result. The score is 
just 87%.

We see  that in camera sequences, the introduction of parameter r has not helped in every 
circumstance. Because the movements of the people were random, there is not much use in 
using the background detection information, only the comparing of the color histograms can 
give a reliable estimation whether the right person is tracked.

From now on, r will be set at 0.25. Hopefully this will represent the best of both worlds in that 
the  background  detection  information  is  not  thrown  away  completely,  but  also  good 
performance in the case of random behavior is preserved.
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Illustration 6.5: Frames 351, 532 and 562 with r = 0.25

Illustration 6.6: Frames 351, 532 and 562 with r = 0.5
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6.4 Occlusion detection by comparing two tracked objects using 
animated sequence

In this test, the first algorithm for occlusion detection, as described in paragraph 4.4.1, will be 
tested. So, if there is an overlap between two ellipses the one with the highest confidence (that 
is, the one with the highest mean weight according to the Condensation algorithm) is on top. 
The animated sequence 'triple_overlap.avi' is used.

6.4.1 Goal

The goal of this test is to see whether the algorithm of 4.4.1 works, by looking at the returned 
results  of  the  occlusion  detection,  and  seeing if  they are  right  or  wrong.  Because  of  the 
uniformly colored ellipses it is very easy to see which one is occluding the other, also in cases 
where more than two are overlapping.

6.4.2 Results

The red and green ellipses are identified correctly as objects #0 and #1. The blue ellipse 
coming from the right has not been identified yet, because the moving area is still too small. 
Overlap has started between 0 and 1, but it has not been detected yet.

The red and green ellipses start overlapping. The green one is correctly seen as being on top 
during the complete period they overlap. The blue ellipse is identified as object #2, and is on 
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Illustration 6.7: Frames # 30, 50 and 66

Illustration 6.8: Frames # 68, 75 and 93
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its way to overlap with the other two ellipses. In frame 93, the overlap of object #2 with 
object #1 has started, and object #2 is seen as lying on top. Because the two ellipses are still 
too far apart, this is not a reliable result: there is no possibility yet that we can see which one 
is on top.

Frame 94 shows the same problem as frame 93. We can see now that the red ellipse is on top, 
but the system still selects the blue ellipse, because the distance between the two is too large. 
In frame 97 the red ellipse is finally seen correctly as lying on top of the blue one.  The 
overlap between #0 and #2 is not detected yet. In the last frame, number 99, all three ellipses 
overlap, and all combinations are identified correctly.

6.4.3 Conclusions

With this algorithm, 33 overlap situations are detected, and in 4 cases the wrong result is 
given. This gives a score of 88% (29 out of 33).

Errors in the detection of the top ellipses are only made, when the ellipses in question are too 
far apart to give a reliable result.  Of course, because all  ellipses have one uniform color, 
which is substantially different for every ellipse, detection is quite easy. When an overlapping 
area completely has the color of one the ellipses, the confidence that that ellipse is on top is 1.

6.5 Occlusion detection by comparing two tracked objects using 
camera sequence

In this test, the first algorithm for occlusion detection, as described in paragraph 4.4.1, will be 
tested with a camera sequence. The camera sequence 'vid3.avi' is used.

6.5.1 Goal

The goal of this test is to see whether the algorithm of 4.4.1 works, by looking at the returned 
results of the occlusion detection, and seeing if they are right or wrong. This time, it is harder 
to see whether the result is alright in every case, also because sometimes, there are more 
people in the frame than there are tracked objects.
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6.5.2 Results

In frame 300, no overlap has been detected yet. Frame 390 shows that there is a large overlap 
now. Person #1 (with the white shirt) is correctly identified as being on top (in the front). 
Frame 455, where there is again a large overlap, but now with the person in blue shirt on the 
front, shows again a correct detection.

Frame 520 shows an occlusion of person #0 by person #2, this is correct. No other overlap is 
detected. In frame 530, overlap between #0 and #2, and between #1 and #2 is detected, and #2 
should be in front. These occlusions do not really exist, but are found because the tracker for 
persons #0 and #1 has a deviation in the direction of #2. The last frame tested, 655, shows an 
overlap of persons #1 and #2, and #2 is detected as being on the front, again correctly.

6.5.3 Conclusions

In the first 600 frames, before the fourth person arrives, there are around 150 frames in which 
an overlap occurs, of which only 15 are really wrong. This gives a score of 90%.

In all real occlusions, the person in front has been detected. Only in the case of frame 530 
occlusions  are  seen  that  do  not  exist,  and  this  is  a  result  of  deviations  of  the  tracker. 
Unfortunately, in this sequence, occlusions of three persons at the same time could be found 
only when a lot of people were in the frame. In these occasions, the tracker was completely 
lost.
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6.6 Occlusion detection by comparing N tracked objects using 
animated sequence

In this test, the second algorithm for occlusion detection, as described in paragraph 4.4.2, will 
be tested with an animated sequence. The animated sequence 'triple_overlap.avi' is used.

6.6.1 Goal

Now, the second algorithm for occlusion detection will be tested with the same sequence as in 
6.4. Again, the goal of the test is to see whether the algorithm (of 4.4.2) works, by looking at 
the returned results of the occlusion detection, and seeing if they are right or wrong. Because 
of the uniformly colored ellipses it is very easy to see which one is occluding the other, also in 
cases where more than two are overlapping.

6.6.2 Results

As with the first occlusion detection algorithm, in this case too, no occlusion is detected in the 
first three frames tested.

In these three frames there is only overlap between ellipses #1 and #2, and in all occasions the 
top ellipse (#0) is detected correctly, in frame 75 and 93 with a confidence of 1. This 100% 
confidence can be explained, because the overlapping area is completely within one of the 
two ellipses, and so also of one uniform color.
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Frame 94 shows an overlap of ellipses #0 and #1, and of #1 and #2. Ellipse #0 is again seen 
correctly as the top one, with a confidence of 1. #2 is also seen as the top ellipse, which is not 
true, but the classification is understandable, given that the overlap is still very small. In frame 
97 and 99 all three ellipses overlap and in both occasions the order 0 1 2 (ellipse #0 on top, #1 
underneath, and #2 at the bottom) has the highest confidence.

6.6.3 Conclusions

When the second algorithm is tried on an animated sequence, 34 overlap situations are found, 
and in 3 cases the wrong result is given. This gives a score of 91% (31 out of 34).

In all cases, the occlusions are detected correctly, only when the overlapping area is very 
small, the wrong ellipse is chosen. Also when all three ellipses were overlapping, there were 
no problems at all finding the right order in which they are 'stacked'.

6.7 Occlusion detection by comparing N tracked objects using 
camera sequence

In the last test, the second algorithm for occlusion detection, as described in paragraph 4.4.2, 
will be tested with a camera sequence. The camera sequence 'vid3.avi' is used.

6.7.1 Goal

The goal of this test is to see whether the second algorithm, of paragraph 4.4.2, works, by 
looking at  the  returned results  of  the occlusion detection,  and seeing if  they are  right  or 
wrong. The same sequence as in 6.5 is used. Again, it is harder now to see whether the result 
is alright in every case, also because sometimes, there are more people in the frame than there 
are tracked objects.
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6.7.2 Results

Frame 390 shows that overlap of person #0 by person #1 is correctly detected. In frame 455, 
the occlusion of person #1 by person #0 is also seen perfectly. #2 has no overlap yet, as in the 
previous algorithm.

No overlap is detected in frame 520 for person #1. The occlusion of person #0 by #2 is 
correctly identified, however with a small difference in confidence. In frame 530, overlap 
between #0 and #2, and between #1 and #2, is seen. In both occlusions, person #2 is seen on 
the front. This is correct, if the deviation of ellipses #0 and #1 in the direction of #2 is taken 
into account. The last frame tested, 655, shows an overlap of persons #1 and #2, and #2 is 
detected as being on the front, again correctly.

6.7.3 Conclusions

The second algorithm gives more or less the same results as the first: in the first 600 frames, 
before the fourth person arrives, there are around 150 frames in which an overlap occurs, of 
which only 15 are really wrong. This gives a score of 90%.

So,  almost  all  occlusions  are  detected  correctly,  only  because  of  some  tracker  mistakes 
occlusions are shown that do not really exist. Still, also in those cases, the most probable top 
object chosen seems to be the best choice when looking at the color.
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Illustration 6.16: Frames # 520, 530 and 655





7 Conclusions and Recommendations

First,  this chapter revisits the problem definition and draw conclusions based on the test  
results. After that, suggestions are given for further research.

7.1 Conclusions

In the problem definition stated at the beginning of this document, in the introduction, two 
problems were identified. First, how to improve existing trackers so that they are more useful 
for tracking multiple people simultaneously? And secondly, how to tell from tracked people 
that are occluding each other who is in front and who is in the back?

7.1.1 Improvement in tracking multiple people

The original tracking algorithm on which this work is based, was not very good at tracking 
multiple people at  the same time. A modification to this original work was designed and 
implemented.

As  seen  in  the  test  results,  the  changes  made  to  the  tracking  algorithm,  have  led  to 
improvements in some cases. It was hypothesized that these improvements occurred mostly in 
the case where movement was happening according to a fixed dynamic model.

Because in real  life situations it  is not often the case, that persons are moving constantly 
according to a simple model, there will not be much instances in which a significant increase 
in performance can be seen right now. Unfortunately, this means that algorithms built on top 
of the tracking algorithm, like the occlusion detection, cannot benefit from any performance 
improvement either.

7.1.2 Occlusion Detection

The second problem was that there was no way to detect if people are occluding each other, 
and also, to see who is occluding who. Two different methods to solve this problem were 
designed, implemented, and tested.

The results  have shown that the difference between these methods is  not very large.  The 
problem was, that the testing of multiple overlapping objects in a camera sequence was not 
really possible. The difference between the two algorithms should really show in situations 
where more than two objects are overlapping. The tracker performance should be still better 
before these situations can be tested reliably.
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However, given that the performance of the multiple person tracker was below expectations, 
the results of the occlusion detection algorithms are still  by all  means very promising. In 
almost  all  cases  the  choices  made  by  the  algorithm seem to  be  the  most  logical  in  the 
circumstances.

7.2 Recommendations

Of course the two questions defined had to do a lot with each other. One possible other way of 
improving  the  tracking  of  multiple  people,  would  be  using  the  result  of  the  occlusion 
detection result as feedback in the tracking itself. This way, the occlusion information is not 
lost,  but  used  for  updating  the  tracker.  However,  the  question  how  this  should  happen 
precisely  still  remains.  One  possibility  may  seem to  track  the  occlusions  themselves,  as 
described in 3.5.1. But in fact, this should not make any difference, as there is no feedback 
defined from the occlusion tracker to the person tracker.

Another promising direction of further research would be the use of auditory information. 
When people are talking or making noise, things that could happen very well in groups, the 
could be tracked much more precisely when you use this information. Also the detection of 
who is in front and who in the back would be easier.

If there would be need for improving just the occlusion detection algorithm, one option that 
may give better results, is to split all the histograms that have to be compared horizontally in 
two or more parts. The same was done with the Condensation tracker, because of the way 
people dress. The only hard thing about this is that the location of overlapping people with 
respect to each other has to be taken into account, because the top part of one person can 
overlap the bottom part of another.

There  is  also still  room for  improvement  in  the real-time performance.  The using of  the 
algorithms in real-time was not a demand for this research, so a lot may be gained when effort 
is spent at optimizing the algorithms.

The problem of tracking multiple people still remains a very hard problem, for which no easy 
solutions exist. With more processing power, of course more expensive computations can be 
done. But it seems that there always will remain some exceptions, that we humans can detect 
easily, but with which computers have severe problems.
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