
Crowd Surveillance by Video Camera

Master's Thesis
Coen van der Veen

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

June 2006

Graduation committee:

Drs. dr. L.J.M. Rothkrantz
Dr. ir. C.A.P.G. van der Mast
Ir. F. Ververs

Veen, Coen van der
Master's Thesis, June 2006
Crowd Surveillance by Video Camera

Delft University of Technology, The Netherlands
Faculty of Electrical Engineering, Mathematics and Computer Science
Man-Machine Interaction Group

Keywords: people tracking, crowd surveillance, occlusions, DirectShow, image processing,
computer vision

ii

Acknowledgments

In the summer of 2004 I went to the Czech Technical University in Prague, Czech Republic.
There, I started working on a project at the Center for Machine Perception (CMP, part of the
Faculty of Electrical Engineering) headed by professor Václav Hlaváč. My personal
supervisor there was Tomáš Svoboda. My task was to make improvements to the work done
by a former Master student, Aleš Fexa [2].

My work was finished under the supervision of professor Leon Rothkrantz at the Delft
University of Technology, in the Man-Machine Interaction (MMI) group of the Faculty of
Electrical Engineering, Mathematics and Computer Science.

First of all, I want to thank Leon Rothkrantz for giving me the opportunity to go to Prague, for
his advice and ideas for improvements and for his support and patience during the time
writing this thesis.

Many thanks to Václav Hlaváč and Tomáš Svoboda for accepting me at the Czech Technical
University and helping me during my time in Prague.

Finally lots of thanks to my parents for their never-ending efforts to make me finally finish
this thesis. I wouldn't be finished yet without them!

iii

Abstract

At the CMP (Center for Machine Perception), part of the Czech Technical University in
Prague, a project has been running on crowd surveillance. The goal of the project is the
detection and tracking of people. We tried to improve on the earlier results of that project, by
making the existing system better usable for tracking of multiple people in a group
simultaneously.

Tracking multiple people in groups can be done by using multiple single-person trackers at
the same time. However, often these systems are not meant for multimodal applications, so
the results are not satisfactory.

Another problem is, that using multiple single-person trackers simultaneously does not work
in the case of occlusions. We have augmented the single-person tracking methods available
(Condensation and Mean Shift) with capabilities for occlusion detection. The resulting
implementation did not have to work in real-time. For test data material from CMP was used,
together with some self-made animated videos.

We designed and implemented a demonstration and have tested the system. The model,
implementation and test results, will be described in this thesis.

v

Table of Contents

Acknowledgments... iii

Abstract... v

1 Introduction..1
1.1 Problem background...1
1.2 Problem definition..2
1.3 Goals...2
1.4 Structure of this thesis.. 3

2 Related Work... 5
2.1 Background subtraction..5
2.2 Tracking of people..6
2.3 Occlusion detection.. 7

3 Theory.. 9
3.1 Similarity Measures..9

3.1.1 Bhattacharyya Coefficient.. 9
3.1.2 Histogram Intersection..9
3.1.3 Correlation.. 10

3.2 Background Subtraction... 10
3.2.1 The algorithm..10

3.3 Condensation.. 11
3.3.1 Object representation.. 11
3.3.2 The algorithm..11
3.3.3 Connection between background subtraction and Condensation........................... 12

3.4 Mean Shift.. 13
3.4.1 Object representation.. 13
3.4.2 The algorithm..13

3.5 Occlusion Detection... 14
3.5.1 Occlusion relation as hidden Condensation process...14
3.5.2 A more general approach..15

4 Design.. 17
4.1 Global Architecture.. 17
4.2 Background Subtraction Module..18
4.3 Tracking Module.. 18

4.3.1 Condensation.. 19
4.3.2 Modifications to the Condensation tracker...19

vii

Crowd Surveillance by Video Camera

4.3.3 Mean Shift.. 20
4.4 Occlusion Detection Module..21

4.4.1 Compare two tracked objects..21
4.4.2 Compare N tracked objects...22

5 Implementation.. 25
5.1 Tools and API's used.. 25

5.1.1 DirectShow... 25
5.1.2 GraphEdit..26
5.1.3 OpenCV.. 26
5.1.4 Flash..26

5.2 Class diagram and descriptions.. 27
5.2.1 CMPTrackingFilter...27
5.2.2 BackgroundSubtraction.. 28
5.2.3 Tracking..28
5.2.4 TrackedObject...28
5.2.5 CondenTracking... 28
5.2.6 MSTracking.. 28
5.2.7 CondenObject... 28
5.2.8 MSObject..29
5.2.9 Ghost...29
5.2.10 HistModel... 29
5.2.11 OcclusionDetection...29
5.2.12 OcclusionResult..29

6 Testing..31
6.1 Test material used...31
6.2 Condensation improvement with animated sequence.. 32

6.2.1 Goal.. 32
6.2.2 Results.. 33
6.2.3 Conclusions.. 34

6.3 Condensation improvement with camera sequence... 34
6.3.1 Goal.. 34
6.3.2 Results.. 34
6.3.3 Conclusions.. 35

6.4 Occlusion detection by comparing two tracked objects using animated sequence........36
6.4.1 Goal.. 36
6.4.2 Results.. 36
6.4.3 Conclusions.. 37

6.5 Occlusion detection by comparing two tracked objects using camera sequence........... 37
6.5.1 Goal.. 37
6.5.2 Results.. 38
6.5.3 Conclusions.. 38

6.6 Occlusion detection by comparing N tracked objects using animated sequence........... 39
6.6.1 Goal.. 39
6.6.2 Results.. 39
6.6.3 Conclusions.. 40

viii

Table of Contents

6.7 Occlusion detection by comparing N tracked objects using camera sequence.............. 40
6.7.1 Goal.. 40
6.7.2 Results.. 40
6.7.3 Conclusions.. 41

7 Conclusions and Recommendations.. 43
7.1 Conclusions.. 43

7.1.1 Improvement in tracking multiple people...43
7.1.2 Occlusion Detection..43

7.2 Recommendations.. 44

Bibliography..45

ix

1 Introduction

Crowd surveillance by tracking people on camera sequences is the subject of this thesis. In
this chapter, a short overview of the background of crowd surveillance, and its societal
relevance is given. After that, a problem definition is formulated, together with the goals of
our research. Finally the global structure of this thesis is explained.

1.1 Problem background

The problem of 'tracking', or detecting and following objects on a video sequence, is a subject
of much research in the computer science world. Tracking in general can have a lot of
applications, for example in the medical world, where the hands of a surgeon can be tracked
so he can operate remotely. The tracking of people however, and especially the tracking of
groups of people, has mainly one application: surveillance.

Surveillance plays a very important role in the world, whether we want it or not. Security is
such a large issue everywhere that it can't be ignored. There are of course a lot of social issues
about it too, after all, privacy is one the basic democratic rights we have. But still, criminals
have been arrested and terrorist attacks have been avoided by making use of images and
videos, made by surveillance cameras.

That is why surveillance cameras will not disappear soon, and they can now be seen
everywhere where there are a lot of people, or at places where problems could appear easily.

1

Illustration 1.1: How to use surveillance on a crowd
like this?

Crowd Surveillance by Video Camera

And these cameras have seen a lot of innovation too. 'Smart' cameras help a lot to detect
unusual activities in an early stage. But they are nothing more than a tool to warn an operator
when there are intruders, or when something else has been detected that can be identified
easily (fire and smoke detection, for example).

Large crowds of people, for example at events like sports matches or festivals, or at subway
and train stations, are maybe the most important to have under surveillance, because they are
both very vulnerable and unreliable. However, surveillance of this kind of groups is still
something that has to be done mostly by humans, because it is such a hard problem to solve.
Why is this the case?

1.2 Problem definition

To track objects, a lot of algorithms have been developed, based on computer vision methods.
Many of these are implemented and work very well, also in real-time applications. So it
would not seem a very large problem to just modify these algorithms for tracking many
individuals in a group at the same time.

When there is more than one person in the image, multiple trackers can be used in parallel to
track these people separately. Unfortunately, problems arise when people are occluded, by
each other, or by static objects like buildings and trees. Often trackers switch people around
after they have got near to each other, or they lose track of the person at all. So there has to be
found a solution to these problems.

Another problem is when one person is standing partly or completely in front of (occluding)
an other person. The tracking system does not 'know' that one person is behind the other, so
the person at the back can be 'forgotten'. Also the order in which the people stand measured to
the camera is not known. These are things that have to be taken care of too in a system that
must be capable to track multiple people in crowds.

1.3 Goals

The existing tracking system developed at CMP was not very good at the tracking of multiple
people. The system got confused very easily and often, at the end all multiple trackers would
wind up tracking the same person. Some modification needed to be made to made it behave
better, and that was one of the goals of this research. The other goal was to make the existing
tracking system also aware of people occluding each other, and to make it possible to give an
estimation of which person is in front and which behind, also in cases when more than two
people are involved in an occlusion.

To summarize the goals:

• Design and implement a modification to the existing implemented tracking algorithms so
that they are more usable for tracking multiple people simultaneously.

• Design and implement an addition to these algorithms to classify tracked objects that are
occluding each other.

• Test these improvements and document the test results.

2

Introduction

1.4 Structure of this thesis

The rest of this thesis is organized as follows: in the second chapter an overview of the state-
of-the-art in person tracking and especially multiple person tracking is given. The third
chapter contains detailed descriptions of the theoretical algorithm that are relevant to our
work. Chapter 4 shows the design of the global architecture of the system, and gives a
description of the modules of this architecture. Chapter 5 focuses on implementation details,
such as descriptions of tools and programs used, and the decomposition of the architectural
modules in implemented parts of the system. The sixth chapter describes testing methods and
test material; and given a comprehensive overview of every test done including the test
results. The last chapter, chapter 7, gives conclusions and recommendations for further
research.

3

2 Related Work

In this chapter, the current state-of-the-art in background subtraction, people tracking and
occlusion detection is described. The general subject of “looking at people” is very broad,
including not only computer vision aspects, but also cognitive aspects (reasoning on basis of
image data), psychological (how do groups move?) and social (privacy is an important issue
when you are dealing with surveillance). Comprehensive surveys of all of these aspects,
including an overview of applications and descriptions of many implemented systems, are
found in [3] and [11]. The more specific and restricted problems mentioned above are
described here in more detail.

2.1 Background subtraction

Before tracking can begin, the tracking algorithm needs to know which objects to track. Some
kind of motion segmentation needs to be done. One way to do this is by using a technique
called optical flow. With this technique, every pixel has a corresponding motion vector that is
updated every step. However, this is a computationally very expensive method, and so not so
useful for real-time applications.

The other, preferred method of separating the background (static parts) from the foreground
(moving parts), is to use background subtraction. A model of the background is kept in
memory, and when there appears a moving object, that is not consistent with the background
model, so the object is seen as foreground. Because changes in lighting or weather can
influence the background, most often an adaptive background model is used, that is, one that

5

Illustration 2.1: An example of background subtraction

Crowd Surveillance by Video Camera

is updated every step. The method described by Grimson and Stauffer [12] has proven itself to
be a powerful and reliable background subtraction method, using a mixture of Gaussians for
modeling the adaptive background.

2.2 Tracking of people

State-of-the-art tracking methods can be divided in several ways. An important first
distinction is the way in which the tracked persons are represented. When there is no
predefined explicit shape model, some possibilities are a box, an ellipse (generally a more
appropriate shape for tracking of humans), the contours of a blob [7], or the blob itself [14]. If
there is an explicit shape model, a stick figure can be used, or every body part can have its
own box [4].

Then the tracking algorithm itself must be chosen. Condensation [7] is a very well-known
algorithm in the Computer Vision research with a lot of applications based on it that are
already in use. It is actually an example of a particle filter, also known as a Sequential Monte
Carlo method. The idea of a particle filter is that random sampling is used to estimate a
Bayesian model. Large advantages of Condensation is that it is possible to use it in a very
broad range of applications, and that it is usable more or less independent of the object
representation. A problem is that particle filters are not very good for use in multimodal
applications (tracking of more than one object at the same time), so Condensation does suffer
the same problem. Improvements that have been suggested are to mitigate this problem, for
example to use a MCMC (Markov Chain Monte Carlo) based particle filter [8], or to use a
mixture of particle filters to create one multimodal particle filter [13].

A less known alternative for Condensation is tracking based on the Mean Shift algorithm [1].
Mean shift is an older theoretical method, but can be applied to tracking in a very promising
way. The 'mean shift' is the estimated direction and distance in which the target moves, and
this is computed by comparing an already defined model target with the current candidate
target. The targets are defined by their color distribution (histogram). The advantages of this
method is that no dynamic model is needed in advance. It is a fast and reliable procedure that
has started to be used in many tracking systems.

6

Illustration 2.2: An example of a single person
tracking system

Related Work

2.3 Occlusion detection

Given that there is a reliable multiple-person tracking system in place, the occlusion detection
can start to find the depth ordering of occluding objects. Several methods have been proposed
to solve this problem.

One solution, described in [5], adds occlusion handling to Condensation. A virtual object
representing the occlusion relation between two objects is subjected to the same sampling
process as all normal Condensation objects.

Another method is used when objects are represented as blobs [4], [9]. In these systems, when
moving blobs merge into one and then split again, it is seen as the assembling and
disassembling of groups of people. If the group consists of more people, it is segmented into
its constituent people. Also the detection of body parts, like the head, can be used to count the
number of people in the group. This method does not give real depth information, but it still
can quickly find people in a group.

7

Illustration 2.3: An example of occlusion
detection

3 Theory

The algorithms on which this work is based, are explained fairly detailed in this chapter. A
basic understanding of all these algorithms is useful, to have a better understanding later on.
In the first place some information about similarity measures is given. They are used multiple
times in the algorithms so it should be known how they work.
A background subtraction algorithm that separates the foreground from the background is
described. Then, a tracking algorithm does the real tracking of the foreground objects, that
have been detected by the background subtraction. There are two algorithms described:
Condensation and Mean Shift. Finally, the theory of the occlusion detection method is given.

3.1 Similarity Measures

Because color histograms are often used to give an indication of what is in a region of an
image, a similarity measure (or distance measure) has to be defined to compare these
histograms. Two normalized histograms p = {p(u)}u = 1 ... m and q = {q(u)}u = 1 ... m are considered,
each having m bins.

3.1.1 Bhattacharyya Coefficient

The Bhattacharyya coefficient is a very popular method to compare distributions. For p and q,
it is defined as:

[p , q]=∑
u=1

m

 puqu  (3.1)

3.1.2 Histogram Intersection

An alternative is the histogram intersection. It is defined as:

[p , q]=∑
u=1

m

min  pu q u  (3.2)

9

Crowd Surveillance by Video Camera

3.1.3 Correlation

A third possibility is to use the correlation of the histograms:

[p , q]=
∑
u=1

m

p ' uq ' u 

∑u=1

m

p 'u ∑
u=1

m

q 'u 
 (3.3)

where

p ' u= pu−
∑
i=1

m

p i 

m
 (3.4)

and the same for q'(u).

3.2 Background Subtraction

As seen in the last chapter, background subtraction is the first step on the way to the tracking
of objects. The algorithm of Stauffer and Grimson [12], mentioned there, will be explained
here.

The background subtraction is a very important phase in the tracking process, the changing of
parameters here can influence the tracking results heavily, so it is useful to know the basics of
the working of the algorithm. However, because the background subtraction is not directly
influencing the occlusion detection, it is not described in as much detail as the other
algorithms.

3.2.1 The algorithm

The background of every pixel is modeled as a mixture of Gaussians, so for every pixel there
are K normal distributions. Each normal distribution has a mean μ, a standard deviation σ2 and
a weight ω.

Because there is a multiple of distributions, every pixel has more than one background color.
In this way, a slightly moving background will be detected. It also has the another advantage:
when an object is standing still for a long time, it may be detected as being part of the
background. With the approach used in this algorithm, the old background will reappear when
the object moves again, as it still has its own distribution in the mixture of Gaussians. The
weight may have been lower for a time, but now it gets up again.

During every frame, for all pixels that get a new value, all the distributions for the pixel are
tried one for one until a match has been found. There is a match when the new pixel value is
within 2.5 times the standard deviation. When there is no match at all, the least probable
distribution is replaced by a new one with the value of the pixel as mean, a high standard
deviation and a low weight.

10

Theory

The weight of every distribution is updated: the matched distribution gets a higher weight, and
the rest a lower one. A parameter α, the learning rate, controls the amount with which the
weights are updated.

The matched distribution does also get an updated mean and standard deviation. The mean
moves in the direction of the pixel value. Again, the learning rate controls the amount of
change.

After this is done, the decision must be taken: does the pixel belong to background or
foreground? All the distributions are sorted by ω / σ. If the sum of the weights of all
distributions with a higher ω / σ than the matched one (all the probable background
distributions that did not have a match) is larger than a certain threshold T, the pixel will be
classified as foreground. This classification is possible, because when there are a lot of
background distributions that did not match, the odds are that the pixel is not part of the
background at all.

The distribution that is the most probable background model, and that will because of that
have a match often, will bubble to the top of the list, and stay there if nothing changes. When
there is a moving or slightly changing background, there will be a set of most probable
background models of which the top one will change once in a while.

Because there are only two parameters, the learning rate α, and the threshold for the number
of background models T, this algorithm is very easy to use. Despite this simplicity the results
are very reliable.

3.3 Condensation

The first real tracking algorithm used is Condensation [7]. The original paper focused on an
application in tracking curves in visual clutter; for example tracking the contours of a hand
over a complicated background. However, it can also be easily applied to tracking of persons
(or other moving objects), and that is what this description focuses on.

3.3.1 Object representation

Tracked objects can be represented in different ways, but in our case, every tracked object is
represented by an ellipse. These ellipses are compared by their color histogram, with one of
the similarity measures described above. In the implementation used, the ellipse is split in an
upper and a lower part, and the color histograms of these parts are compared separately. In
this way people with different colors of clothing can be tracked more reliably.

3.3.2 The algorithm

Condensation makes use of factored sampling, applied iteratively to successive images (for
example video frames). The basic idea of factored sampling is that a probability distribution
(in this case, of the state of the object) is approximated by a set of weighted samples S = {(s(n),
π(n)) | n = 1...N}. So, every sample of this set represents a hypothetical state s of the object
together with the probability π that this sample will be chosen (the weight).

11

Crowd Surveillance by Video Camera

The state s is defined as:

s=x , y , vx , v y , ax , a y , b , vb (3.5)
where x and y are the position of the ellipse, vx and vy the velocity, ax and ay the acceleration, b
the length of the main axis and vb the the change of the axis length (growth).

The first step in every iteration is that a new set of N samples is chosen from St - 1, the sample
set from last iteration. Each sample has a probability π that it is chosen. Samples can be
chosen more than one time, so those having a higher weight will appear more often in the
resulting set. In the first iteration S consists of random samples with random weights.

All the samples are then subjected to a dynamic model, to give a prediction of the new
position:

st=Ast−1w t−1 (3.6)
where A is the deterministic dynamic model, and wt - 1 a random Gaussian variable.

Then, for all the samples the color histogram for the resulting ellipse is computed. These are
compared with the model histogram. The weights are updated as a result of this comparison:
more similar samples get higher weights.

Now the new sample S, which is used in the next iteration, is derived. The mean state of this
set is chosen as the new position of the target:

E [S t]=∑
n=1

N

t
n st

n (3.7)

3.3.3 Connection between background subtraction and Condensation

How does the Condensation algorithm know which objects to track? The background
subtraction algorithm needs to give it some information as to which parts of the image are
interesting to follow. A way in which to do this, is to run the background subtraction
algorithm, and then to find connected components based on the foreground pixels. The
components that have an area larger than a predefined threshold, will be used as tracked
objects in Condensation. When blobs are used as object representation, nothing will have to
be done, but with ellipses, as described above, the best fitting ellipses for the connected
components will have to be found.

12

Theory

3.4 Mean Shift

The other tracking algorithm that was tested is described in [1] and is based on the idea of
mean shift. The 'mean shift' is an estimated direction and distance in which the target moves,
and this is computed without using a dynamic model, but only by comparing a candidate
target with the model.

3.4.1 Object representation

As with the Condensation algorithm, in the Mean Shift approach every object is represented
by an ellipse. When the algorithm is initialized, for every object that has to be tracked, the
model color histogram of the ellipse is computed.

The histogram is computed in the Region of Interest (ROI), the pixels inside the ellipse (in
fact, it's a box bordering the ellipse on the outside). To increase the robustness, to every
histogram a convex and monotonic kernel mask is added: pixels in the center of the ellipse get
a higher value than the ones on the border. The weight decreases with squared distance from
center. After this, the histogram is normalized.

All the histograms used are in three dimensions (one dimension for each color). To compute
the distances between the histograms, the Bhattacharyya distance is used.

3.4.2 The algorithm

During every frame processed, the target moves toward its most probable position in multiple
iterations. To do this an algorithm is used that maximizes the Bhattacharyya coefficient
(higher coefficient means a higher similarity, and thus a shorter distance).

1. First for candidate location y0, the current candidate histogram p(y0) will be computed,
together with the kernel mask. After that the Bhattacharyya coefficient between this
histogram and the model histogram q is computed.

2. For every pixel, compute a weight as defined by:

w i=∑
u=1

m

[bx i−u] qu

pu y0
 (3.8)

where b(xi) is the bin for the color of pixel xi, u is the current bin and δ is the Kronecker
delta function, which is true only if both its arguments are true. So this means that every
weight is the square root of the value of the model bin of the pixel color, divided by the
value of the candidate bin of the pixel color.

13

Crowd Surveillance by Video Camera

3. Compute the mean shift, that is compute the new estimated location y1:

y1=
∑
i=1

n

x i wi

∑
i=1

n

wi

 (3.9)

Then, again compute the Bhattacharyya coefficient, now between the new candidate
histogram p(y1) and the model histogram q.

4. As long as the coefficient between and p(y0) and q is larger than the one between p(y1) and
q the target has not yet been reached, so the location of y1 must be updated: y1 ← ½ (y0 +
y1). Repeat this step until the target has been reached.

5. If || y1 – y0 || < ε, stop the iterations, and continue on to the next frame. Otherwise, start a
new iteration at step 1 with the new candidate ellipse: y0 ← y1.

3.5 Occlusion Detection

There exist several methods for computing the occlusions between tracked people, a few of
which are discussed here.

3.5.1 Occlusion relation as hidden Condensation process

In the paper by Hu, Hu and Tan [5], a method is described to do detection of occlusions, by
introducing a 'hidden' object to the Condensation algorithm, that models the occlusion
relationship between two objects. The occlusion relation for two objects A and B on time t is
noted by t∈{0, 1,2} where φt = 0 means no occlusion is happening, φt = 1 indicates that A
occludes B and φt = 2 indicates that B occludes A.

The occlusion relation φ is sampled like normal Condensation objects. It is also subjected to a
dynamic model, which can be expressed by a transition matrix, for example:

p t1= j∣t=i =[0.8
0.1
0.1

0.1
0.8
0.1

0.1
0.1
0.8] i , j∈{0,1, 2} (3.10)

So there is a chance of 0.8 that the occlusion relation stays the same, and 0.1 that it will
change.

When the mean sample E[St] in the Condensation process is computed, there will also be a
computation of the new estimated φ value:

E [t]=arg max


∑
t

n =

t
n , ∈{0, 1, 2} (3.11)

The drawbacks of this method are that there are no special considerations for the case when
more than two persons are occluding each other. Also, it is targeted for use with the
Condensation method, so it is not easy to adapt it for other methods like Mean Shift.

14

Theory

3.5.2 A more general approach

McKenna et al. [9] describe a method to view groups as blobs that split and merge. Tracked
objects are all represented as blobs. The color information of the object is represented by a
histogram. This histogram can be used as the basis of a probability function giving the chance
at a certain (color) value x given a person i:

P x∣ i =
H ix 

Ai
 (3.12)

where Hi(x) is the histogram value and Ai is the area of the object. During the tracking, this
histogram is updated adaptively every frame.

If nothing is known about the depth ordering of people in a group, the probability of a pixel
corresponding to the ith person P(i) is estimated as:

P i =
Ai

∑
j∈G

A j
 (3.13)

where G is the group that the ith person is part of. When these things are known, the posterior
density can be computed by combining them:

P i∣x = P x∣i P i 
∑
j∈G

P x∣ j  P  j  (3.14)

From this, also a visibility index (the part of the person that is not occluded) can easily be
computed. So, in fact, this is also a sort of depth ordering algorithm. However it is not
applicable to tracking systems where the objects tracked are discrete units, not changing blobs
that can split and merge. So, unfortunately, it is also not applicable to Condensation or Mean
Shift.

15

4 Design

In this chapter, the design of the system is given. First, a model is given of the system
architecture. Next, for every module of the system architecture, the design of the algorithms is
explained.

4.1 Global Architecture

An overview of the global architecture is given in the diagram below. The blue-colored parts
were added or changed from the original architecture. A detailed description of all the parts of
the diagram follows underneath.

17

Illustration 4.1: Architecture Diagram

Crowd Surveillance by Video Camera

The diagram shows the control and data flow for one frame of an image sequence. The control
flow is given by the large block arrows: so, first the background subtraction algorithm runs,
then the tracking algorithm, and finally the occlusion detection.

These three phases can all have multiple implementations: in the case of the background
subtraction, there is only the Stauffer and Grimson method; for the tracking, there are the
Condensation and Mean Shift methods, and for the occlusion detection, there is the 'naive'
comparing of two objects and the comparing of N objects. The third method reuses the
occlusion detection results of the last frame, but it is not implemented.

On the bottom can be seen where the data is stored. The representation of the background
subtraction results is dependent on the method that is chosen. With the tracking algorithm,
this was also the case; this is changed so now the representation of the tracked objects is
independent of the tracking method that is chosen. The tracking methods had to be changed
rather drastically to accommodate this change, however the benefit is that there is now a more
generic framework, to which, for example, the occlusion detection can be added. For the
occlusion detection itself, the results are stored independently of the method chosen.

The background representation data is now also used for updating the tracked objects when
the Condensation method is used. Before, the data was used only to identify new objects to
track and add them to the tracked objects.

4.2 Background Subtraction Module

In the previous chapter, it was mentioned that the background subtraction plays a very
important role in the tracking process, but that the influence on the real tracking algorithms is
indirect, so there was no need for a very comprehensive description. The same could be said
in this chapter; also because no additions were planned to the background subtraction
algorithms themselves, a complete description of the design is not really necessary.

The thing that should be kept in mind is that the background subtraction module returns as its
result a background representation, that consists of all the pixels that are considered
background. So, the other pixels are considered to be part of the foreground.

4.3 Tracking Module

Both the Condensation and the Mean Shift algorithm are described here in pseudocode. Also
the design for the modifications made to the Condensation algorithm is given. The
pseudocode given is executed every frame when the algorithm is called.

18

Design

4.3.1 Condensation

In pseudocode, the design of the Condensation algorithm can be given as follows:

4.3.2 Modifications to the Condensation tracker

There was an improvement made to the way in which the weights of the Condensation objects
are updated, normally the weights get their value only because of the similarity of the sample
histogram to the model histogram. But because all the background subtraction data is of
course still available, this could also be incorporated in the computation of the weight.

So, in addition to the histogram comparison, now all the foreground pixels existing in the
sample ellipse (as found by the background subtraction algorithm) are counted; and the ratio
of this number of foreground pixels to the total number of pixels in the ellipse, is taken as
another measure of the usefulness of the ellipse.

The ratio in which this new measure is responsible for the Condensation weight of the sample,
is controlled by the parameter r. So in pseudocode the weight is now defined as:

19

foreground_confidence = (# of foreground pixels in ellipse) /
(total # of pixels in ellipse)

weight = r * foreground_confidence
+ (r – 1) * confidence of the color histogram

Illustration 4.3: Pseudocode of Condensation improvement

choose set of n samples from old sample set
apply dynamic model to all the samples
update the weights of the samples based on comparison of

histogram with model histogram
compute the mean sample

Illustration 4.2: Pseudocode of Condensation algorithm

Crowd Surveillance by Video Camera

4.3.3 Mean Shift

The design for the mean shift algorithm is given below in pseudocode. The steps 1-5 are the
same as in the theoretical description in chapter 3.

20

step1: compute current candidate histogram, and
Bhattacharyya distance between model & cand. histogram

step2: create a new weights histogram with each bin containing
sqrt(value of the model / value of the candidate)

step3: compute
m00 = sum of all weights
m01 = sum of (weight * x value of pixel with this color)
m10 = sum of (weight * y value of pixel with this color)
mean shift in direction x = m10 / m00 - width / 2
mean shift in direction y = m01 / m00 - height / 2
shift candidate ellipse in computed direction
compute histogram of shifted ellipse, and Bhattacharyya
distance between model and shifted histogram

step4: while (distance from step 1 > just computed distance)
shift candidate ellipse with half mean shift
compute histogram of shifted ellipse, and
compute Bhattacharyya distance between model
and shifted histogram

step5: if ((mean shift in direction x)^2 +
(mean shift in direction y)^2) < epsilon
stop iterations

else
new candidate = shifted ellipse
continue to next iteration

Illustration 4.4: Pseudocode of Mean Shift algorithm

Design

4.4 Occlusion Detection Module

For the occlusion detection, some new algorithms were implemented. Here their design is
shown in pseudocode and clarifying diagrams.

4.4.1 Compare two tracked objects

This method just does the following: when there is an overlap
between two objects, the most probable object, given this
overlapping region and its histogram, is defined as being on
top. So, all overlapping regions between to objects in an image
are checked one by one, to determine which one of the two
ellipses is on top.

In addition, some mechanism is added that keeps track of
which comparisons have been done already, otherwise some
combinations would be added twice.

In the example picture, three ellipses are overlapping each
other. First the overlap of 1 and 2 (the green rectangle) is
compared with ellipses 1 and 2 themselves. Because ellipse 2
is the one on top, the histogram of the overlap should be more
similar to the histogram of ellipse 2 than that of 1.

Then the overlap of 1 and 3 (the red rectangle) is compared
with 1 and 3 themselves. 3 will be found to lie on top.

After that the combination of 2 and 1 doesn't have to be checked again, but the overlap
between 2 and 3 still has to be computed (the blue rectangle) and has to be compared. Again,
3 will be on top. For ellipse 3, no comparisons are left to be done.

In pseudocode the algorithm can be given as:

21

for all tracked objects {
get overlapping region with every other object
if overlap

compute color histogram of overlap
compare histogram with model histograms of both objects
the best match is the object that lies on top

}

Illustration 4.6: Pseudocode for the compare two objects algorithm

Illustration 4.5: Compare sets of
two objects

Crowd Surveillance by Video Camera

4.4.2 Compare N tracked objects

Now, also multiple overlapping objects will be detected. For this a recursive algorithm is
necessary. We start with the same example: three overlapping ellipses.

Ellipse 1 is taken as a starting point. The 'current overlap' will be set at the initiation to the
complete area of ellipse 1 (the red rectangle). Ellipse number 1 itself will be removed from
the list of objects that still have to be processed. The function will now be called recursively
for all the other objects.

The next one is ellipse number 2. The overlap with the 'current overlap' is computed, and this
can be seen in the middle of the image as the green rectangle. This new overlap will now be
the new current overlap. Ellipse number 2 will be removed from the list and only ellipse 3 is
left.

So, in the next (and last) round, ellipse number 3 is compared with the current overlap, and
this can be seen on the right as the blue rectangle.

Now the results have to be returned: the distance between current histogram (number 3) and
current overlap (the blue area) is computed, and returned to the calling function. Here, ellipse
number 2 was the current ellipse, and the green area was the current overlap. So, this distance
will be computed too, and the result will be multiplied with the earlier result given back.
When we come back to the left of the picture this will be done again, the confidence is of
course 1, because the current overlap was equal to the current ellipse (the red area).

What we now have as end result, is the confidence that the combination 1-2-3 really is the
order in which the objects are 'stacked', with 3 being on top. Because all combinations are
checked one by one recursively, all the confidences for the combinations 1-2-3, 1-3-2, 2-1-3,
2-3-1, 3-1-2 and 3-2-1 will be returned in the end. The combination which returned the
highest confidence, will be chosen.

22

Illustration 4.7: Compare sets of N objects recursively

Design

Because it is of course possible that situations as in illustration 4.8
occur (or much more complicated situations which come down to the
same), multiple results may have to be returned by the recursive
function. This is because ellipse 1 has to compare with 2 and with 3,
but these are two different 'clusters' of overlaps. This complicates the
algorithm, but the principle stays the same.

In pseudocode, the algorithm is expressed as follows:

23

function occl_recursive(objects, current_overlap) {
for all objects {

if there is overlap with current_overlap {
compute new_overlap
prob = probability that object is on top

}
else continue with next object
new_objects = objects – current object
results = occl_recursive(new_objects, new_overlap)
if results for each result {

return (result_probability * prob)
and current object id

}
else

return 1 and current object id
}

}
}

Illustration 4.9: Pseudocode for compare N objects algorithm

Illustration 4.8: Special
situation

5 Implementation

In this chapter, details about the implementation are given: which tools are used, and how the
parts of the system defined in the last chapter were mapped to the classes that are
implemented.

5.1 Tools and API's used

The application was written in C++, making use of Visual Studio 6.0. Besides that a number
of tools and API's (Application Programming Interfaces) were used.

5.1.1 DirectShow

The tracking system needs a way to receive input frames from a video sequence. It also needs
a way to show output frames to a screen, or to save it to a file. For that goal, DirectShow is
used.

DirectShow is an API for developing multimedia applications under Windows. In modern
Windows versions, it is an integral part of the operating system and used in a lot of often-used
applications. It provides a framework to create filters that can do a specific job. Examples of
DirectShow filters are:

• Reading an .avi file from your hard drive

• Decoding an MP3-compressed audio file

• Showing a video sequence on your screen

The filter can be connected to form a graph, which represents the complete control flow from
input source to output. An example of a graph is given below in the description of GraphEdit.

DirectShow used to be a part of DirectX [10], a set of API's for all kinds of multimedia
development (Direct3D, DirectSound, etc.). For development of DirectShow filters, it was
necessary to download the DirectX SDK (Software Development Kit). In 2005, DirectShow
was moved out of DirectX, to the Platform SDK, in which all basic things needed to develop
for the Windows platform can be found.

However, as these newer versions are designed to work with Visual Studio.NET or newer,
and not with Visual Studio 6.0 anymore, they were not used. To switch to a newer Visual
Studio version would not be worth the effort. So, for DirectShow the DirectX SDK from
summer 2004 was used.

25

Crowd Surveillance by Video Camera

5.1.2 GraphEdit

GraphEdit is a free tool (distributed with DirectShow) for editing and testing DirectShow
graphs. In the picture below, a screenshot can be seen of an example graph in which the CMP
Tracking Filter shows up. GraphEdit was used for all testing and for generating the output
movies, from which the frames shown in the next chapter are taken.

5.1.3 OpenCV

Intel Open Source Computer Vision Library (OpenCV) [6] is an multi-platform open source
toolkit from Intel, that provides a lot of algorithms (in the form of C functions) from different
fields of Computer Vision. For example, it provides implementations of both Condensation
and Mean Shift, although support for the latter is very limited and was not used. Among the
functions offered are edge detection, handling of color histograms, and a lot of basic
functions for drawing all kinds of shapes and text to an image.

5.1.4 Flash

Macromedia Flash was used to create the animated test sequences. It is very easy to create
moving vector graphics with this program, so it was chosen to make some tests quickly. The
Flash animations were exported to normal .avi files before using them for testing.

26

Illustration 5.1: Screenshot of GraphEdit

Implementation

5.2 Class diagram and descriptions

In this section a mapping of the architectural modules described in section 4.1 to the classes
that were implemented is given. All these classes are collected in one project
CMPTrackingFilter that works completely independent of the DirectShow framework. The
system was built modularized, so an algorithm can be replaced by the new one as long as the
new one provides the same interface.

Another separate project, CMPDirectShow (renamed from just 'TrackingFilter'), was made as
a wrapper for the CMPTrackingFilter to make it behave like a DirectShow filter. A template
was used to generate the most of this code.

The class diagram below shows all the classes and their relationship. The three blue planes
correspond to the modules defined in the last chapter: on the top, the background subtraction
module; in the middle, the tracking module; and on the bottom right, the occlusion detection
module.

5.2.1 CMPTrackingFilter

This is the main class. It contains the method init() which is called by the DirectShow
wrapper when it is started and processFrame() which is called every frame. In here the
preferred algorithms to be used for background subtraction and the tracking itself can be
selected.

27

Illustration 5.2: Class Diagram

Crowd Surveillance by Video Camera

5.2.2 BackgroundSubtraction

Represents a generic background subtraction method that can be implemented by subclasses.
The only algorithm implemented is in AlgStaufferGrimson. Helper classes are necessary
for the Stauffer and Grimson algorithm: Gaussian and MixtureOfGaussians. Because the
background subtraction algorithm was not modified (it is only used in more places now) it is
not necessary to describe these classes in more detail.

5.2.3 Tracking

Represents a generic tracking method. The virtual method process() is called once every
frame, after the background subtraction is finished. It must be implemented by one of more
subclasses. It also has some method which are used in multiple algorithm implementations,
such as draw(), which is used to draw user feedback like location of the tracked objects to
the output frame.

5.2.4 TrackedObject

Represents a generic tracked object. It has subclasses for every tracking algorithm making use
of it, CondenObject and CondenTracking are now implemented.

5.2.5 CondenTracking

Implements the Condensation algorithm. In the process()-method, the objects that have
already be found are updated; and large blobs that are newly detected by the background
subtraction algorithm are added. The class also takes care of the logging of data to a text file,
and draws the ellipses to the output frame. Uses the CondenObject class as representation of
the tracked objects. It also uses the Ghost and HistModel helper class.

5.2.6 MSTracking

Implements the Mean Shift algorithm in its process()-method. Uses the MSObject class as
representation of the tracked objects. It also uses the Ghost helper class.

5.2.7 CondenObject

Implements an object tracked by the Condensation algorithm as implemented by the
CondenTracking class.

28

Implementation

5.2.8 MSObject

Implements an object tracked by the Mean Shift algorithm as implemented by the
MSTracking class.

5.2.9 Ghost

A helper class that represents the 'hole' that a target leaves after moving away. It protects the
location from a false initialization.

5.2.10 HistModel

A helper class that represents the color histogram of a certain region. It contains methods to
compare these histograms using different algorithms.

5.2.11 OcclusionDetection

Implements the occlusion detection algorithms. It could be split in subclasses for every
algorithm used, but for now, that is not really necessary. Uses OcclusionResult for storing
the results.

5.2.12 OcclusionResult

Contains the results obtained by the occlusion detection. Stores the order of the occluding
objects (referenced by their ID) and the confidence belonging to that order.

29

6 Testing

In this chapter, first the test material used is described. After that all the tests are described
one by one, together with the results of the tests and illustrated with screenshots showing the
behavior.

6.1 Test material used

The test material used can be divided in two groups: material obtained from a camera, that
was available at CMP from previous projects; and animated material, that was self-made
using Macromedia Flash. In the tables underneath titles and descriptions of these sequences
can be found.

31

Camera Title Description
Seq03Small.avi Several people moving in

front of a camera and
sometimes moving out of
view and back in. Length
1650 frames.

vid3.avi A lot of people moving in a
room, with abrupt changes in
the movement and a lot of
occlusions. Length 1800
frames.

Table 6.1: Camera test material used

Crowd Surveillance by Video Camera

6.2 Condensation improvement with animated sequence

This is the first test for improvement in Condensation tracking that has resulted from the
incorporation of the number of foreground pixels in the sample weight computation, as
described in paragraph 4.3.2. The animated sequence 'triple_overlap_noisy.avi' is used.

6.2.1 Goal

The influence of parameter r (see 4.3.2) on tracking in general, and especially on tracking of
multiple objects simultaneously is tested. For different values of r (0, 0.25 and 0.5) the
Condensation tracker will run, and the tracking performance will be seen by looking at the
feedback given (the ellipses drawn on the screen).

When r is 0, the additions to the algorithm are not used at all, so the original tracking
algorithm is tested. In this way, results can be compared.

Because in the test sequence 'triple_overlap_noisy' all objects that have to be tracked move
according to a dynamic model, it is expected that the effect of changing r will be seen here
clearly. Because of the background noise, it is not easy for the tracker, this is better for testing
because without background noise, it is expected that all objects will be tracked flawlessly
anyhow.

32

Animated Title Description
triple_overlap.avi Three ellipses with primary colors

moving and occluding each other.
Length 100 frames.

triple_overlap_noisy.avi Three ellipses with primary colors
moving and occluding each other, over a
noisy background. Length 100 frames.

Table 6.2: Animated test material used

Testing

6.2.2 Results

This are the results with r = 0. Already in frame 40, the tracker for the red ellipse (#1) is
moving towards another red object. In frame 60, another tracker has started for the same red
object! In frame 90, all ellipses are lost.

With r = 0.25, performance is slightly better. In frame 40 and 60 there is no error. Frame 80
and 90 show that the trackers for ellipses #0 and #1 are more or less lost, but the one for #2
works perfectly.

With r = 0.5, we see that all three ellipses are almost perfectly tracked during the whole
sequence. Where things did go wrong before, like in frame 80, now the right object is tracked
(with the same color as part of the background) because it is moving all the time.

33

Illustration 6.1: Frames 40, 60, 80 and 90 with r =0

Illustration 6.2: Frames 40, 60, 80 and 90 with r =0.25

Illustration 6.3: Frames 40, 60, 80 and 90 with r =0.5

Crowd Surveillance by Video Camera

6.2.3 Conclusions

When r is 0, the tracker only gives completely right results for the first 35 frames. Because
there are 100 frames in total, this gives a score of 35%. When r is 0.25, the first 67 frames are
tracked perfectly, a score of 67%. Finally, when r is 0.5, all ellipses are tracked correctly
during the complete sequence, so a score of 100% is reached!

We can conclude that the introduction of parameter r has helped at least in one circumstance.
Most probably, this is because the movements of the ellipses are not random, but constant
speed and in one direction. More experiments have to follow before we can conclude that the
using of background model data in Condensation has helped in every case.

6.3 Condensation improvement with camera sequence

This is the second test for improvement in Condensation tracking that has resulted from the
incorporation of the number of foreground pixels in the sample weight computation. Now, the
camera sequence 'vid3.avi' is used.

6.3.1 Goal

Again, the influence of parameter r on tracking in general, and especially on tracking of
multiple objects simultaneously is tested. For different values of r (0, 0.25 and 0.5) the
Condensation tracker will run, and the tracking performance will be seen by looking at the
feedback given (the ellipses drawn on the screen).

Like before, when r is 0, the additions are not used at all, and the original tracking algorithm
is tested.

6.3.2 Results

With r = 0, so when the tracking solely depends on the Condensation samples and not on the
background detection too, the three persons seen in these screenshots are tracked quite good.
Only in frame 532 there is some confusion, the blue ellipse for person #0 is too far to the left,
and the green ellipse for person #1 is a little bit too much to the right. However, in frame 562
everybody is found again in the right place.

34

Illustration 6.4: Frames 351, 532 and 562 with r = 0

Testing

When r = 0.25, the performance is slightly better in frame 532, but the increase is not really
very noticeable. The only thing is that now, there no triple overlap anymore, only two times
an overlap of two ellipses.

Lastly, when r = 0.5, the performance noticeably drops. In frame 351, everything is still
alright, but after that things go wrong. Especially the green ellipse has difficulty in finding the
right person, and in frame 562, it is tracking a complete different person.

6.3.3 Conclusions

When we take only the first 600 frames into account (after that, a fourth person joins the
others), the following scores are reached: if r is 0, only 40 frames give a completely wrong
result: a score of 93%. When r is 0.25, just 10 frames are wrong, giving a score of 98%. In the
last case, when r is 0.5, the results are a lot worse, 80 frames having a bad result. The score is
just 87%.

We see that in camera sequences, the introduction of parameter r has not helped in every
circumstance. Because the movements of the people were random, there is not much use in
using the background detection information, only the comparing of the color histograms can
give a reliable estimation whether the right person is tracked.

From now on, r will be set at 0.25. Hopefully this will represent the best of both worlds in that
the background detection information is not thrown away completely, but also good
performance in the case of random behavior is preserved.

35

Illustration 6.5: Frames 351, 532 and 562 with r = 0.25

Illustration 6.6: Frames 351, 532 and 562 with r = 0.5

Crowd Surveillance by Video Camera

6.4 Occlusion detection by comparing two tracked objects using
animated sequence

In this test, the first algorithm for occlusion detection, as described in paragraph 4.4.1, will be
tested. So, if there is an overlap between two ellipses the one with the highest confidence (that
is, the one with the highest mean weight according to the Condensation algorithm) is on top.
The animated sequence 'triple_overlap.avi' is used.

6.4.1 Goal

The goal of this test is to see whether the algorithm of 4.4.1 works, by looking at the returned
results of the occlusion detection, and seeing if they are right or wrong. Because of the
uniformly colored ellipses it is very easy to see which one is occluding the other, also in cases
where more than two are overlapping.

6.4.2 Results

The red and green ellipses are identified correctly as objects #0 and #1. The blue ellipse
coming from the right has not been identified yet, because the moving area is still too small.
Overlap has started between 0 and 1, but it has not been detected yet.

The red and green ellipses start overlapping. The green one is correctly seen as being on top
during the complete period they overlap. The blue ellipse is identified as object #2, and is on

36

Illustration 6.7: Frames # 30, 50 and 66

Illustration 6.8: Frames # 68, 75 and 93

Testing

its way to overlap with the other two ellipses. In frame 93, the overlap of object #2 with
object #1 has started, and object #2 is seen as lying on top. Because the two ellipses are still
too far apart, this is not a reliable result: there is no possibility yet that we can see which one
is on top.

Frame 94 shows the same problem as frame 93. We can see now that the red ellipse is on top,
but the system still selects the blue ellipse, because the distance between the two is too large.
In frame 97 the red ellipse is finally seen correctly as lying on top of the blue one. The
overlap between #0 and #2 is not detected yet. In the last frame, number 99, all three ellipses
overlap, and all combinations are identified correctly.

6.4.3 Conclusions

With this algorithm, 33 overlap situations are detected, and in 4 cases the wrong result is
given. This gives a score of 88% (29 out of 33).

Errors in the detection of the top ellipses are only made, when the ellipses in question are too
far apart to give a reliable result. Of course, because all ellipses have one uniform color,
which is substantially different for every ellipse, detection is quite easy. When an overlapping
area completely has the color of one the ellipses, the confidence that that ellipse is on top is 1.

6.5 Occlusion detection by comparing two tracked objects using
camera sequence

In this test, the first algorithm for occlusion detection, as described in paragraph 4.4.1, will be
tested with a camera sequence. The camera sequence 'vid3.avi' is used.

6.5.1 Goal

The goal of this test is to see whether the algorithm of 4.4.1 works, by looking at the returned
results of the occlusion detection, and seeing if they are right or wrong. This time, it is harder
to see whether the result is alright in every case, also because sometimes, there are more
people in the frame than there are tracked objects.

37

Illustration 6.9: Frames # 94, 97 and 99

Crowd Surveillance by Video Camera

6.5.2 Results

In frame 300, no overlap has been detected yet. Frame 390 shows that there is a large overlap
now. Person #1 (with the white shirt) is correctly identified as being on top (in the front).
Frame 455, where there is again a large overlap, but now with the person in blue shirt on the
front, shows again a correct detection.

Frame 520 shows an occlusion of person #0 by person #2, this is correct. No other overlap is
detected. In frame 530, overlap between #0 and #2, and between #1 and #2 is detected, and #2
should be in front. These occlusions do not really exist, but are found because the tracker for
persons #0 and #1 has a deviation in the direction of #2. The last frame tested, 655, shows an
overlap of persons #1 and #2, and #2 is detected as being on the front, again correctly.

6.5.3 Conclusions

In the first 600 frames, before the fourth person arrives, there are around 150 frames in which
an overlap occurs, of which only 15 are really wrong. This gives a score of 90%.

In all real occlusions, the person in front has been detected. Only in the case of frame 530
occlusions are seen that do not exist, and this is a result of deviations of the tracker.
Unfortunately, in this sequence, occlusions of three persons at the same time could be found
only when a lot of people were in the frame. In these occasions, the tracker was completely
lost.

38

Illustration 6.10: Frames # 300, 390 and 455

Illustration 6.11: Frames # 520, 530 and 655

Testing

6.6 Occlusion detection by comparing N tracked objects using
animated sequence

In this test, the second algorithm for occlusion detection, as described in paragraph 4.4.2, will
be tested with an animated sequence. The animated sequence 'triple_overlap.avi' is used.

6.6.1 Goal

Now, the second algorithm for occlusion detection will be tested with the same sequence as in
6.4. Again, the goal of the test is to see whether the algorithm (of 4.4.2) works, by looking at
the returned results of the occlusion detection, and seeing if they are right or wrong. Because
of the uniformly colored ellipses it is very easy to see which one is occluding the other, also in
cases where more than two are overlapping.

6.6.2 Results

As with the first occlusion detection algorithm, in this case too, no occlusion is detected in the
first three frames tested.

In these three frames there is only overlap between ellipses #1 and #2, and in all occasions the
top ellipse (#0) is detected correctly, in frame 75 and 93 with a confidence of 1. This 100%
confidence can be explained, because the overlapping area is completely within one of the
two ellipses, and so also of one uniform color.

39

Illustration 6.12: Frames #30, 50 and 66

Illustration 6.13: Frames # 68, 75 and 93

Crowd Surveillance by Video Camera

Frame 94 shows an overlap of ellipses #0 and #1, and of #1 and #2. Ellipse #0 is again seen
correctly as the top one, with a confidence of 1. #2 is also seen as the top ellipse, which is not
true, but the classification is understandable, given that the overlap is still very small. In frame
97 and 99 all three ellipses overlap and in both occasions the order 0 1 2 (ellipse #0 on top, #1
underneath, and #2 at the bottom) has the highest confidence.

6.6.3 Conclusions

When the second algorithm is tried on an animated sequence, 34 overlap situations are found,
and in 3 cases the wrong result is given. This gives a score of 91% (31 out of 34).

In all cases, the occlusions are detected correctly, only when the overlapping area is very
small, the wrong ellipse is chosen. Also when all three ellipses were overlapping, there were
no problems at all finding the right order in which they are 'stacked'.

6.7 Occlusion detection by comparing N tracked objects using
camera sequence

In the last test, the second algorithm for occlusion detection, as described in paragraph 4.4.2,
will be tested with a camera sequence. The camera sequence 'vid3.avi' is used.

6.7.1 Goal

The goal of this test is to see whether the second algorithm, of paragraph 4.4.2, works, by
looking at the returned results of the occlusion detection, and seeing if they are right or
wrong. The same sequence as in 6.5 is used. Again, it is harder now to see whether the result
is alright in every case, also because sometimes, there are more people in the frame than there
are tracked objects.

40

Illustration 6.14: Frames # 94, 97 and 99

Testing

6.7.2 Results

Frame 390 shows that overlap of person #0 by person #1 is correctly detected. In frame 455,
the occlusion of person #1 by person #0 is also seen perfectly. #2 has no overlap yet, as in the
previous algorithm.

No overlap is detected in frame 520 for person #1. The occlusion of person #0 by #2 is
correctly identified, however with a small difference in confidence. In frame 530, overlap
between #0 and #2, and between #1 and #2, is seen. In both occlusions, person #2 is seen on
the front. This is correct, if the deviation of ellipses #0 and #1 in the direction of #2 is taken
into account. The last frame tested, 655, shows an overlap of persons #1 and #2, and #2 is
detected as being on the front, again correctly.

6.7.3 Conclusions

The second algorithm gives more or less the same results as the first: in the first 600 frames,
before the fourth person arrives, there are around 150 frames in which an overlap occurs, of
which only 15 are really wrong. This gives a score of 90%.

So, almost all occlusions are detected correctly, only because of some tracker mistakes
occlusions are shown that do not really exist. Still, also in those cases, the most probable top
object chosen seems to be the best choice when looking at the color.

41

Illustration 6.15: Frames # 300, 390 and 455

Illustration 6.16: Frames # 520, 530 and 655

7 Conclusions and Recommendations

First, this chapter revisits the problem definition and draw conclusions based on the test
results. After that, suggestions are given for further research.

7.1 Conclusions

In the problem definition stated at the beginning of this document, in the introduction, two
problems were identified. First, how to improve existing trackers so that they are more useful
for tracking multiple people simultaneously? And secondly, how to tell from tracked people
that are occluding each other who is in front and who is in the back?

7.1.1 Improvement in tracking multiple people

The original tracking algorithm on which this work is based, was not very good at tracking
multiple people at the same time. A modification to this original work was designed and
implemented.

As seen in the test results, the changes made to the tracking algorithm, have led to
improvements in some cases. It was hypothesized that these improvements occurred mostly in
the case where movement was happening according to a fixed dynamic model.

Because in real life situations it is not often the case, that persons are moving constantly
according to a simple model, there will not be much instances in which a significant increase
in performance can be seen right now. Unfortunately, this means that algorithms built on top
of the tracking algorithm, like the occlusion detection, cannot benefit from any performance
improvement either.

7.1.2 Occlusion Detection

The second problem was that there was no way to detect if people are occluding each other,
and also, to see who is occluding who. Two different methods to solve this problem were
designed, implemented, and tested.

The results have shown that the difference between these methods is not very large. The
problem was, that the testing of multiple overlapping objects in a camera sequence was not
really possible. The difference between the two algorithms should really show in situations
where more than two objects are overlapping. The tracker performance should be still better
before these situations can be tested reliably.

43

Crowd Surveillance by Video Camera

However, given that the performance of the multiple person tracker was below expectations,
the results of the occlusion detection algorithms are still by all means very promising. In
almost all cases the choices made by the algorithm seem to be the most logical in the
circumstances.

7.2 Recommendations

Of course the two questions defined had to do a lot with each other. One possible other way of
improving the tracking of multiple people, would be using the result of the occlusion
detection result as feedback in the tracking itself. This way, the occlusion information is not
lost, but used for updating the tracker. However, the question how this should happen
precisely still remains. One possibility may seem to track the occlusions themselves, as
described in 3.5.1. But in fact, this should not make any difference, as there is no feedback
defined from the occlusion tracker to the person tracker.

Another promising direction of further research would be the use of auditory information.
When people are talking or making noise, things that could happen very well in groups, the
could be tracked much more precisely when you use this information. Also the detection of
who is in front and who in the back would be easier.

If there would be need for improving just the occlusion detection algorithm, one option that
may give better results, is to split all the histograms that have to be compared horizontally in
two or more parts. The same was done with the Condensation tracker, because of the way
people dress. The only hard thing about this is that the location of overlapping people with
respect to each other has to be taken into account, because the top part of one person can
overlap the bottom part of another.

There is also still room for improvement in the real-time performance. The using of the
algorithms in real-time was not a demand for this research, so a lot may be gained when effort
is spent at optimizing the algorithms.

The problem of tracking multiple people still remains a very hard problem, for which no easy
solutions exist. With more processing power, of course more expensive computations can be
done. But it seems that there always will remain some exceptions, that we humans can detect
easily, but with which computers have severe problems.

44

Bibliography

[1] Comaniciu, D., Ramesh, V. and Meer, P. “Real-Time Tracking of Non-Rigid Objects
using Mean Shift.” IEEE Conf. on Computer Vision and Pattern Rec., vol. 2, pp. 142-
149, 2000

[2] Fexa, A. “Separation of individual persons in a crowd from a videosequence.”, 2004

[3] Gavrila, D.M. “The Visual Analysis of Human Movement: A Survey.” Computer
Vision and Image Understanding, 73(1):82-98, 1999

[4] Haritaoglu, I., Harwood, D. and Davis, L.S. “W4: Real-Time Surveillance of People and
Their Activities.” IEEE Trans. Pattern Analysis and Machine Intell., 22(8):809-830,
2000

[5] Hu, M., Hu, W. and Tan, T. “Tracking People through Occlusions.” IEEE 17th Int.
Conference on Pattern Recognition, vol. 2, pp. 724-727, 2004

[6] Intel Corporation. “Open Source Computer Vision Library.”
http://www.intel.com/technology/computing/opencv/

[7] Isard, M. and Blake, A. “Condensation - Conditional Density Propagation for Visual
Tracking.” International Journal of Computer Vision, 29(1):5-28, 1998

[8] Khan, Z., Balch, T. and Dellaert, F. “An MCMC-Based Particle Filter for Tracking
Multiple Interacting Targets.” 8th European Conference on Computer Vision, vol. 4, pp.
279-290, 2004

[9] McKenna, S.J. et al. “Tracking Groups of People.” Computer Vision and Image
Understanding, 80(1):42-56, 2000

[10] Microsoft Corporation. “DirectX Developer Center.” http://msdn.microsoft.com/directx/

[11] Pentland, A. “Looking at People: Sensing for Ubiquitous and Wearable Computing.”
IEEE Trans. Pattern Analysis and Machine Intell., 22(1):107-119, 2000

[12] Stauffer, C. and Grimson, W.E.L. “Adaptive background mixture models for real-time
tracking.” IEEE Conf. on Computer Vision and Pattern Rec., vol. 2, pp. 246-252, 1999

[13] Vermaak, J., Doucet, A. and Pérez, P. “Maintaining Multi-Modality through Mixture
Tracking.” IEEE 9th Int. Conference on Computer Vision, vol. 2, pp. 1110-1116, 2003

45

Crowd Surveillance by Video Camera

[14] Wren, C., Azarbayejani, A., Darrell, T. and Pentland, A. “Pfinder: Real-Time Tracking
of the Human Body.” IEEE Trans. Pattern Analysis and Machine Intell., 19(7):780-785,
1997

46

	1 Introduction
	1.1 Problem background
	1.2 Problem definition
	1.3 Goals
	1.4 Structure of this thesis

	2 Related Work
	2.1 Background subtraction
	2.2 Tracking of people
	2.3 Occlusion detection

	3 Theory
	3.1 Similarity Measures
	3.1.1 Bhattacharyya Coefficient
	3.1.2 Histogram Intersection
	3.1.3 Correlation

	3.2 Background Subtraction
	3.2.1 The algorithm

	3.3 Condensation
	3.3.1 Object representation
	3.3.2 The algorithm
	3.3.3 Connection between background subtraction and Condensation

	3.4 Mean Shift
	3.4.1 Object representation
	3.4.2 The algorithm

	3.5 Occlusion Detection
	3.5.1 Occlusion relation as hidden Condensation process
	3.5.2 A more general approach

	4 Design
	4.1 Global Architecture
	4.2 Background Subtraction Module
	4.3 Tracking Module
	4.3.1 Condensation
	4.3.2 Modifications to the Condensation tracker
	4.3.3 Mean Shift

	4.4 Occlusion Detection Module
	4.4.1 Compare two tracked objects
	4.4.2 Compare N tracked objects

	5 Implementation
	5.1 Tools and API's used
	5.1.1 DirectShow
	5.1.2 GraphEdit
	5.1.3 OpenCV
	5.1.4 Flash

	5.2 Class diagram and descriptions
	5.2.1 CMPTrackingFilter
	5.2.2 BackgroundSubtraction
	5.2.3 Tracking
	5.2.4 TrackedObject
	5.2.5 CondenTracking
	5.2.6 MSTracking
	5.2.7 CondenObject
	5.2.8 MSObject
	5.2.9 Ghost
	5.2.10 HistModel
	5.2.11 OcclusionDetection
	5.2.12 OcclusionResult

	6 Testing
	6.1 Test material used
	6.2 Condensation improvement with animated sequence
	6.2.1 Goal
	6.2.2 Results
	6.2.3 Conclusions

	6.3 Condensation improvement with camera sequence
	6.3.1 Goal
	6.3.2 Results
	6.3.3 Conclusions

	6.4 Occlusion detection by comparing two tracked objects using animated sequence
	6.4.1 Goal
	6.4.2 Results
	6.4.3 Conclusions

	6.5 Occlusion detection by comparing two tracked objects using camera sequence
	6.5.1 Goal
	6.5.2 Results
	6.5.3 Conclusions

	6.6 Occlusion detection by comparing N tracked objects using animated sequence
	6.6.1 Goal
	6.6.2 Results
	6.6.3 Conclusions

	6.7 Occlusion detection by comparing N tracked objects using camera sequence
	6.7.1 Goal
	6.7.2 Results
	6.7.3 Conclusions

	7 Conclusions and Recommendations
	7.1 Conclusions
	7.1.1 Improvement in tracking multiple people
	7.1.2 Occlusion Detection

	7.2 Recommendations

