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Abstract

Inference in Bayesian networks is used to calculate the posterior probability
distributions of unobserved variables in a network. These posterior probability
distributions are used to draw conclusions and are the basis for decisions, in the
domain of a particular model. Inference is a complex process and can be dif-
ficult to understand for even the most experienced Bayesian network users. In
this thesis, we propose a technique to visualize important aspects of a Bayesian
network, in order to make the process of inference more insightful. This tech-
nique consists of augmenting the visual representation of a Bayesian network
with extra information. The only function of arcs in a Bayesian network is
to indicate the relationships among the variables. We have used the arcs in a
Bayesian network to show additional information: (1) the thickness of an arc
is automatically adjusted to represent the strength of influence between two
directly connected nodes and (2) the color of an arc is automatically adjusted
to indicate the sign of influence between two directly connected nodes. Our
technique does this in a novel, dynamic way, which is context-specific and takes
into account any indirect influences. We have implemented our technique and
integrated it into a software package called GeNIe, which can be used for devel-
oping Bayesian networks and is developed at the Decision Systems Laboratory
of the University of Pittsburgh. A qualitative empirical evaluation showed that
our technique and implementation are easy to use and understand and give a
user more insight into a particular Bayesian network.
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Chapter 1

Introduction

This thesis is the result of my research at the Decision Systems Laboratory of
the School of Information Sciences at the University of Pittsburgh, USA. During
my stay, I have turned my attention to finding ways to make the workings of a
Bayesian network more clear to a user.

1.1 Context

A Bayesian network can be seen as some form of an expert system. Belonging to
the field of artificial intelligence, an expert system is a computer program that
holds knowledge in some domain and is able to use this knowledge to perform
tasks that a human expert normally would perform. An expert system could,
if it is good enough, replace such a human expert, but in most cases the expert
system is there to assist a human expert, not to replace him or her. There are
many reasons why an expert system does not yet replace a human expert. One
of the reasons is that in many cases the expert system is just not up to the job
yet, the human expert is still the one who can do it best. But there is also the
fact that many people, especially experts in a certain domain, are often very
sceptical about expert systems. Some people look at expert systems as some
kind of “black boxes”, of which the how and why of certain conclusions are
unclear. But also for people who know a lot about Bayesian networks, it can
still be that there is behaviour in a network that cannot be easily explained.
In this thesis, we are going to investigate ways of reducing this unclarity in
Bayesian networks.

A Bayesian network [27] consists of two parts: a qualitative part and a
quantitative part. The qualitative part is a directed, acyclic graph in which the
nodes are random variables and the arcs represent probabilistic dependencies
among the nodes. The arcs can model causal relationships, but this is not
necessary. An example of a Bayesian network is shown in Figure 1.1. It shows
a simple network consisting of two nodes: “Smoking” and “Lung cancer”. The
directed arc from “Smoking” to “Lung cancer” indicates that they are directly
dependent on each other. If there would be no arc between the two nodes, they
would be independent. This arc can be interpreted in a causal way, because it
can be argued that smoking causes, or is a cause of, lung cancer.

The quantitative part consists of conditional probability tables and prior
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2 Chapter 1. Introduction

Figure 1.1: A simple Bayesian network.

(a) The prior probability of
node “Smoking”.

(b) The conditional probability table of
node “Lung cancer”.

Figure 1.2: The quantitative part of the Bayesian network of Figure 1.1

probabilities. A node has a prior probability if that node has no parents. When
a node has one or more parents, it has a conditional probability table. Figure
1.2(a) shows the prior probability of the node “Smoking”, and Figure 1.2(b)
shows the conditional probability table of the node “Lung cancer”. All the
numbers are fictional. In Figure 1.2(a) we can see that, a priori, the chance that
someone is a smoker is 0.4, which equals 40 percent, and that the chance that
someone is not a smoker is 60 percent. In Figure 1.2(b) we see that there are two
probability distributions in the conditional probability table of the node “Lung
cancer”, one for each possible state of its parent, “Smoking”. If it is known that
the person in question is not a smoker, then the chance of that person having
lung cancer is only 0.1 percent. But when the person does smoke, then the
chance of lung cancer is 20 percent.

The structure and parameters of a Bayesian network can be elicited from
an expert in the domain. This means that an expert has to specifiy what the
relations among the various variables are, e.g., which variables depend on each
other and which do not. When that is done, the expert has to specify all the
probabilities that are needed in the model. This can be labour intensive, but it
is also possible to learn these parameters from data. So if a lot of data is present
for the domain that is being modeled, that data can be used to automatically
fill all the conditional probability tables and prior probabilities. Such data files
can also be used to learn the structure of a network. So if all the circumstances
are perfect, a Bayesian network can be learned automatically from a data set.
But in practice there are often problems, for example that of an incomplete data
set.

Using just the six numbers specified in Figure 1.2, the full joint probability
distribution of this particular model can be reconstructed. A Bayesian network
exploits the independencies among the variables in a domain, and uses these to
encode the full joint probability distribution into prior probabilities and condi-
tional probability tables. With a full joint probability distribution, any query
in the domain can be answered. Bayesian networks can be used to calculate the
impact of observing values of a subset of all the variables in a network on the
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Figure 1.3: A more complicated Bayesian network.

remaining variables. For example, one could ask the question what the prob-
ability of a person being a smoker would be, if we know for a fact that that
person does not have lung cancer. Or, more general, observing a set of symp-
toms, captured as variables in a medical diagnostic model, allows for computing
the probabilities of diseases captured in that model. This process is known as
inference [26], but is also called Bayesian updating, belief updating or reasoning.

The result of inference is what is interesting to a user of a Bayesian net-
work. Decisions can be made and conclusions can be drawn by looking at the
probabilities of certain variables of interest after observing one or more other
variables. When the model is very small and simple, like the example of Figure
1.1, it is not that hard to understand the result of inference. But if a more com-
plicated model is used, like that of Figure 1.3, this can be more problematic. In
Figure 1.3, a Bayesian network is shown that models liver disorders [25]. The
eight square nodes represent the eight possible disorders. In this situation, the
variables “Diabetes”, “History of alcohol abuse” and “ALT” are observed, and
for the nodes representing the disorders the current probability distribution is
shown by the graphical bars. We can see that there is a fairly high probability
that “PBC” or “Hepatic steatosis” is present. But why is this? Why do the
three observations make the probabilities of those two disorders being present
higher? The techniques and methods that try to answer such questions are
called explanations.

There are various ways to explain a Bayesian network, many of which will
be discussed in Chapter 2 and Chapter 3. To give an impression, an explanation
of the situation in Figure 1.3 could try to show the user, either graphically or
verbally, if and how the three observations impact a certain node of interest,
e.g., “PBC” or “Hepatic steatosis”. Or something simpler, one could say that
the different colors of the nodes in Figure 1.3 is also an explanation, because
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Figure 1.4: An example Bayesian network showing thickness and colors of arcs.

that shows the user a clear division between the nodes. In this case there are
three classes: disorders (colored yellow), context variables (colored blue) and
symptoms and test results (colored green). Another example of an explanation
is shown in Figure 1.4. The simple example network consists of three nodes:
“Gas”, “Frost” and “Car starts”. Both “Gas” and “Frost” influence the prob-
ability that a car will start. The thickness of the arcs indicates the amount of
influence. Here we can see that having gas (or not) has a larger influence on
the car starting than that frost has. Also, “Gas” has a positive influence (the
arrow is colored green) on “Car starts”, i.e., having gas increases the probability
of the car starting, and “Frost” has a negative influence (the arrow is colored
red) on “Car starts”. Which is what we expect because if it is very cold a car
is somewhat less likely to start. This makes the structure of the model much
easier to understand and requires little effort from the user.

1.2 Objectives

In the past some attention has been given to explanations in Bayesian networks,
as we will see in Chapter 3. Yet there is no common accepted way to “explain”
a Bayesian network. The goal of this thesis is to create an explanation facility
that is intuitive and easy to understand for a user. We can divide the goal of
this thesis into the following subgoals:

• Summarize earlier work on this topic

• Propose a method to make a Bayesian network more insightful

• Implement our method

• Evaluate the performance of our method

Because we are going to try and explain something to somebody, we need
to define our user. In order for our method to be insightful we have to make it
in such a way that it will fit the prior knowledge of our intended users. We are
going to target our method towards people who have a fairly good understanding
of what Bayesian networks are, for example researchers that build Bayesian
networks to aid in their research. The techniques that we are going to develop
must be able to help such a user with building models and exploring them.
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1.3 Outline of this thesis

This thesis is structured as follows. Chapter 2 introduces Bayesian networks in
a more formal way, and outlines the field of explanations in Bayesian networks.
Chapter 3 summarizes earlier work in this field. Chapter 4 contains our ideas
and motivations. In Chapter 5 one of our two ideas, the thickness of arcs, is
treated. Chapter 6 treats the other idea, color of arcs. Chapter 7 treats our
implementation of the designs of Chapter 5 and 6. Chapter 8 contains the
evaluation of the implementation of our methods. Finally, Chapter 9 holds our
conclusions and future work propositions.





Chapter 2

Background

This chapter contains background information. It introduces Bayesian networks
and a few other important concepts.

2.1 Bayes’ Rule

In probability theory, where conditional probabilities are concerned, Bayes’
rule [1] plays a central role. It can be formulated as follows:

P (Y |X) =
P (X|Y )P (Y )

P (X)
.

In words this means that the posterior probability in a hypothesis Y after
observation of some evidence X is equal to the likelihood of observing X given
Y , times the prior probability of Y , divided by the prior probability of X.

If we assign a disease to Y and a symptom of that disease to X, we can see
the importance of this theorem. It is often much easier to specify the probability
of the symptom X given the disease Y , then it is to specify the probability of the
disease Y given the symptom X, although that probability is very interesting
to know. Bayes’ rule makes this possible.

2.2 Bayesian networks

A Bayesian network is a probabilistic graphical network. It represents variables
in a certain domain and visualizes the probabilistic relationships between them.
These relationships can also be thought of as causal relationships. The formal
definition of a Bayesian network is as follows [28]:

1. A set of random variables makes up the nodes of the network. Variables
may be discrete or continuous.

2. A set of directed links or arrows connects pairs of nodes. If there is an
arrow from node X to node Y , X is said to be a parent of Y .

3. Each node Xi has a conditional probability distribution P (Xi|Parents(Xi))
that quantifies the effect of the parents on the node.

7



8 Chapter 2. Background

Figure 2.1: An example Bayesian network.

4. The graph has no directed cycles (and hence is a directed, acyclic graph,
or DAG).

A Bayesian network defines a complete joint probability distribution over X
given by:

P (X1, . . . ,Xi) = Πn
i=1P (Xi|Parents(Xi)).

To further illustrate these concepts we will introduce an example network in
Figure 2.1 [28].

It shows a Bayesian network with four nodes and a conditional probability
table for each node. It models the following situation: Whether it is cloudy or
not influences the chance that it rains and the chance that the sprinkler will be
on. If it is cloudy the sprinkler will most likely not be on. The wetness of the
grass is influenced by both the rain and the sprinkler. If there is rain and the
sprinkler is on, the probability of the grass being wet is the highest, i.e., 0.99.
If there is no rain and the sprinkler is off, it is certain that the grass is not wet,
the probability is 1.0.

An arrow between two nodes indicates that the two nodes are dependent,
meaning that they influence each other. If there is no arc present between two
nodes, then they have no influence on each other, at least not directly. Also, if
we see that, for example, the grass is wet, then we have observed the variable
(or node) WetGrass, in which case it has become evidence, an observation or a
finding. These three terms can be used interchangeably.

This network can be used to infer probabilities like that of the sky being
cloudy when we know that the grass is wet but the sprinkler is off, or the
probability of the sprinkler being on when we know the grass is wet and there
is no rain. We will explain why this is the case.

Every query about the domain, including the ones just posed, are specified by
the full joint probability distribution P (Cloudy,Rain, Sprinkler,WetGrass).
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(a) Diverging (b) Converging (c) Linear

Figure 2.2: Connection types.

It consists, in this case, of 24 = 16 entries, the probability of every possible
combination of variables is specified. The Bayesian network of Figure 2.1 rep-
resents the exact same distribution, but only has nine probabilities specified in
its conditional probability tables. There are eighteen numbers present, but all
variables are binary and therefore the probability of one state is one minus the
probability of the other state. So only nine numbers are needed. This reduc-
tion is an important advantage of Bayesian networks and it is caused by the
(conditional) independence assumptions made by the network. The larger the
network or domain, the bigger the savings.

There are three kinds of connection types in a Bayesian network, expressing
different kinds of independence, as shown in Figure 2.2.

Let X, Y and Z be variables. If X and Y are independent, the following
probabilistic expression is valid: P (X,Y ) = P (X)P (Y ). Now if X is condition-
ally independent of Y given Z, we can write: P (X,Y |Z) = P (X|Z)P (Y |Z).
This is known as a diverging connection, as shown in Figure 2.2(a). We can now
decompose the the joint probability distribution: P (X,Y,Z) = P (X,Y |Z)P (Z) =
P (X|Z)P (Y |Z)P (Z).

A converging node, as shown in Figure 2.2(b), expresses the fact that X
and Y are marginally independent, but conditionally dependent given Z. This
allows us to factorize the joint probability distribution again: P (X,Y,Z) =
P (Z|X,Y )P (X)P (Y ).

A third and last connection type is linear, see Figure 2.2(c). This models the
situation that, for instance, X is the fact that someone left the headlights of his
or her car on overnight. This is known to cause an emtpy battery the following
morning, Z, which in turn causes the symptom of the car not starting, Y . Now,
if through some test it is diagnosed that the battery is empty, then finding out
that the car does not start will have no further influence on the probability that
all this is caused by leaving the headlights on overnight. The joint probability
distribution is factorized as follows: P (X,Y,Z) = P (Y |Z)P (Z|X)P (X).

This allows us to introduce the notion of d-separation in a Bayesian network.
Two nodes are said to be d-separated given specific evidence or observations, if
they are independent given these specific observations. In other words, if two
nodes are d-separated, they do not influence each other. If that is the case,
there is no active path between the two nodes. A path is active if, looking at
figure 2.2:

1. The connection is diverging, and Z has not been observed.

2. The connection is converging, and Z, or one if its descendants, has been
observed.
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3. The connection is linear, and Z has not been observed.

Now, if we return to our example, it can be seen that the joint probability
distribution P (Cloudy,Rain, Sprinkler,WetGrass) can be decomposed into:

P (Cloudy)P (Rain|Cloudy)P (Sprinkler|Cloudy)P (WetGrass|Rain, Sprinkler),

all of which are given in the conditional probability tables. Using this we
can infer any probability in the domain. This process is called inference.

2.3 Inference

The basic task of a Bayesian network is to compute the posterior probability dis-
tributions for a set of query variables, given an observation of a set of evidence
variables. This process is known as inference [26], but is also called Bayesian
updating, belief updating or reasoning. There are two ways to approach this,
either exact or approximate. Both approaches are worst-case NP-hard [5]. An
exact method obviously gives an exact result, while an approximate method
tries to approach the correct outcome as close as possible. Exact inference is
only possible for a restricted class of networks. That is networks that belong
to the class of singly connected networks, also known as polytrees. A network
belongs to this class if the underlying undirected graph has either zero or one
path between any two nodes. The underlying undirected graph is the graph one
gets when ignoring the direction of the edges. When the network is multiply
connected it is possible to use clustering techniques to convert it to a singly con-
nected one, after which exact inference can be performed. In practice, however,
the networks are sometimes of such a size that exact inference and/or cluster-
ing becomes infeasable. That is why approximate methods exist. There are
many different approximate solutions possible, which one is the best depends
on the network at hand. A few approximate algorithms are Probabilistic Logic
Sampling [15], Likelihood Sampling [30, 9], Backward Sampling [10], Adaptive
Importance Sampling [2], and Approximate Posterior Importance Sampling [34].

2.4 Influence diagrams

An influence diagram [16] is a Bayesian network augmented with decision and
value nodes. It models a certain decision problem and the goal is to choose the
decision alternative for which the expected gain (or utility) is the highest. An
example of an influence diagram is shown in Figure 2.3.

Besides the two oval nodes, which are normal chance nodes like in a Bayesian
network, there are three differently shaped nodes: two rectangle shaped and
one diamond shaped. The rectangle shaped nodes are decision nodes and they
represent variables that are under the control of the decision maker and model
the decision alternatives available to the decision maker. Each decision node
usually has multiple decision alternatives. For example, the node “Investment
Decision” of Figure 2.3 has two: invest and donotinvest. If a certain decision
is made, i.e., a decision node becomes observed, it will impact the value of all
its children. Each child has a probability distribution specified for each possible
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Figure 2.3: An influence diagram.

Figure 2.4: Probability distributions for node Success of the venture.

decision, or an expected gain if the node is a value node. For example, Figure
2.4 shows the conditional probability table of node “Success of the venture”,
which is conditioned on the decision node “Sensitivity”.

The diamond shaped node, “Financial Gain”, is a value node. A value node
represents utility, i.e., a measure of desirability of the outcomes of the decision
process. It is quantified by the utility of each of the possible combinations of
outcomes of the parent nodes. These utilities are subjective and they can be
any number. The goal of the whole decision making process is to maximize this
number. The definition of the node “Financial Gain” is shown in Figure 2.5.

In an influence diagram, an arrow between two decision nodes has a special
meaning. Such an arrow indicates the order in which the decisions are made.
The decision at the tail of the arrow is expected to be taken before the decision
at the tip of the arrow will be made. In Figure 2.3 there is such an arrow
between node “Sensitivity” and “Investment Decision”, it is a dashed arrow.

The influence diagram of Figure 2.4 models the following situation: We are
able to invest in a certain venture. If we invest and the venture is a success,
our revenues (or financial gain) will be the highest. If we invest and the venture
fails, we lose all our money. The ultimate investment decision is modeled by
the decision node “Investment Decision”. But before we make our decision,
we have to make a decision for the node “Sensitivity”. This node models our
uncertainty about the probability that the venture will be a success, which is
modeled by the node “Success of the venture”. The decision node “Sensitivity”

Figure 2.5: Expected utilities for value node Financial Gain.
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has three decision alternatives, each of which results in a different probability
distibution in the node “Success of the venture”. Also, before we make our
decision about whether to invest or not, we can consult an expert that predicts
the successfulness of the venture. Finally, the value node “Financial Gain”
models the final outcome of our investment, i.e., how much money we make or
lose. In this case the utility can be interpreted as money, but in general utility
has no units.

2.5 Types of explanations in Bayesian networks

Literature on the topic of explanations in Bayesian networks distinguishes three
kinds of explanations. [23]. The first one is called abduction. Abduction is the
process of determining the most probable values of the unobserved variables
in a Bayesian network. Such a configuration is usually refered to as an MPE
(Most Probable Explanation) and can contain every unobserved variable, in
which case it is called total abduction, or it can contain only a subset of the
unobserved variables, in which case it is called partial abduction. Abduction
involves maximizing the probability of a set of unobserved variables given one
or more findings. It is also possible to generate a set of MPE’s, for example the
five configurations with the five highest probabilities.

The other two kinds of explanations are static and dynamic explanations.
A static explanation only considers the information that is contained in the
Bayesian network model, i.e., without any reasoning being done. Another way
of putting it is that it offers explanations of the assumptions of the model. A
static explanation could, for example, make the indepence statements contained
in a model explicit, or it could describe the prior probability of variables.

A dynamic explanation, on the other hand, is an explanation of the reasoning
process in a Bayesian network. So, given one or more findings and a variable
of interest, a dynamic explanation tries to give the user insight into the process
that caused the variable of interest to be affected in the way that it has. More
specifically, it tries to explain the changes in the posterior probability of the
variable of interest with respect to the findings. This type of explanation can
be viewed as trying to answer the questions: “What were the most influential
findings?” and “Why is a certain finding influential?”. A finding is influential
when it affects the posterior probability of the variable of interest in either a
positive or a negative way.

Within dynamic explanations another distinction can be made. There is a
difference between micro and macro explanations [29]. A micro explanation
tries to justify the variations of the probability distribution of a certain node,
while a macro explanation tries to make the main lines of reasoning from findings
to variable of interest clear to the user and therefore considers a bigger part of
the model.

2.6 Representing explanations

An explanation should be presented in a way that is effective, convenient, as
well as easily accessible. A distinction that can be made in this respect is that
between verbal and graphical explanations.
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A verbal explanation could be, for example: “Variable A is dependent on
variable B, but given variable C they are independent”, or “State zero is some-
what more likely than state one”.

A graphical explanation uses graphical means to communicate an explana-
tion. The most obvious and basic explanation of this type is the visualization
of the network structure. If the user has enough knowledge about Bayesian
networks, he can deduce the dependencies and independencies between the vari-
ables in the modeled domain from this view. Another example is to display the
probabilities of the various states of a variable using graphical bars that range
from zero to one hundred percent. Some of the works reviewed in Chapter 3
use graphical explanations.

2.7 GeNIe and SMILE

At the Decision Systems Laboratory of the University of Pittsburgh, the two
main software packages that are developed are called GeNIe and SMILE. SMILE
is the engine and GeNIe is the graphical user interface on top of SMILE. Most of
the results of the research done at the Decision Systems Laboratory ultimately
find their way into GeNIe and SMILE. Because of their versatility and reliabil-
ity, GeNIe and SMILE have also been embraced by a number of government,
military and commercial users.

2.7.1 SMILE

SMILE (Structural Modeling, Inference, and Learning Engine) is a fully plat-
form independent library of functions implementing graphical probabilistic and
decision-theoretic models, such as Bayesian networks, influence diagrams, and
structural equation models. Its individual functions, defined in the SMILE Ap-
plications Programmer Interface (API), allow to create, edit, save, and load
graphical models, and use them for probabilistic reasoning and decision making
under uncertainty. SMILE is implemented in C++ in a platform independent
fashion. Individual functions of SMILE are accessible from C++ or (as func-
tions) from the C programming language. As most implementations of pro-
gramming languages define a C interface, this makes SMILE accessible from
practically any language on any system. SMILE can be embedded in programs
that use graphical probabilistic models as their reasoning engines.

2.7.2 GeNIe

GeNIe is essentially a graphical front end for SMILE. It is a development en-
vironment for building graphical decision-theoretic models. GeNIe’s name and
its uncommon capitalization originates from the name Graphical Network In-
terface, given to its predecessor, the original simple interface to SMILE. GeNIe
is implemented in Visual C++ and draws heavily on the MFC (Microsoft Foun-
dation Classes). This makes it not easily portable, GeNIe is only available for
the Windows operating system. GeNIe allows for building models of any size
and complexity, limited only by the capacity of the operating memory of the
computer it is running on. GeNIe is a developer environment. Models developed
using GeNIe can be embedded into any application and used on any computing
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Figure 2.6: A screenshot of GeNIe displaying a Bayesian network.

platform, using SMILE, which is available for almost every platform thinkable.
Figure 2.6 shows a screenshot of the GeNIe program.



Chapter 3

Previous work

This chapter reviews previous works in the field of explanations of Bayesian
networks.

3.1 Abduction

As said before, abduction is the process of finding the most probable assignment
of (a subset of) the unobserved variables, given some observed variables. This
most probable explanation (MPE) can be formulated as finding max(P (w|e))
where w is an assignment to (a subset of) the unobserved variables W , e is
the observed evidence of the variables in E and E ∩ W = ∅, i.e., E and W are
disjoint. For example, if we consider the simple network in Figure 3.1 [28], when
we observe that the grass is wet, one possible explanation is: Cloudy = False,
Sprinkler = True, Rain = False and WetGrass = True. The probability of
that explanation is: 0.5×0.5×0.8×0.9 = 0.18. Note that this is an explanation,
it does not have to be the most probable one. There are many algorithms to
find the most probable explanation, for example [35, 12].

3.2 Scenario based explanations

An approach very closely related to abduction is one called scenario based expla-
nations [7]. A scenario is basically a form of partial abduction, with the added
semantics that the variables create a kind of causal story. An example could be:
“Not Cloudy, therefore Sprinkler and no Rain, therefore WetGrass”. In order
to create such a scenario the variables that are to be included into the scenario
have to be identified first [8, 6]. One could ofcourse include all unobserved
variables, but even for a Bayesian network of moderate size this would become
incomprehensible. Therefore only those variables that are in some way related
to the variable of interest should be included. For instance, variables that are
independent of the variable of interest given the observed evidence can be ex-
cluded. Another criterion is that only those variables need to be included that
are computationally relevant to the variable of interest. A variable is computa-
tionally relevant if its conditional probability distribution is needed to compute
the posterior probability distribution of the variable of interest. This type of

15
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Figure 3.1: An example Bayesian network.

explanation is a dynamic macro explanation, because it considers not just one
variable and tries to explain the reasoning process.

3.3 INSITE

In his PhD thesis, H.J. Suermondt proposes his methodology for explanation of
Bayesian networks, which he calls INSITE [31], which stands for Insight about
Network Structure and Inference Through Explanation. INSITE has two main
features:

1. It determines which findings influence the posterior probability of a vari-
able of interest.

2. It determines the paths through which the findings flow, the so called
chains of reasoning.

3.3.1 Influence of findings

To find out which findings influence the variable of interest a cost function is
used. This cost function takes two probability distributions and assigns a score
according to the difference between the two: H(P (D|E);P (D)). In this case
the cost function H calculates the loss, or cost, of using P (D) when our best
knowledge is P (D|E). The cost function H can be any of many existing cost
functions. Suermondt chose to use cross-entropy,

∑

i

[

p(di|e)log
[p(di|e)

p(di)

]]

.

Cross-entropy assigns a very high penalty to incorrect statements of certainty.
So if, for example, a probability of a state in the distribution P (D|E) is, let
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Table 3.1: Implications of the joint cost of omission.

H−(F ) H−(¬F ) Conclusion
insignificant insignificant Both F and ¬F are sufficient to produce the

inference result.
insignificant significant F is not explanatory; we can disregard F .
significant insignificant F is explanatory and sufficient.
significant significant Some evidence in F and some in ¬F is

necessary to explain the inference result.

us say, 0.6 and this same state has probability 0.99 in P (D), then the outcome
of the cross-entropy cost function will be very high. Besides that other advan-
tages of cross-entropy are that it is easy to compute and that it can be used in
combination with a significance threshold in order to support multiple levels of
detail.

To determine whether a single finding influences the posterior probability of
a variable of interest, the cost of omission of a finding Ei is defined as:

H−(Ei) = H(P (D|E);P (D|E\Ei)),

where \ is the set-difference operator. So if H−(Ei) is significant it can be
concluded that Ei has an important role in the inference result. If H−(Ei) is
found the be insignificant a definite conclusion cannot be drawn, Ei can either
be consistent with the rest of the findings or it can be of limited importance.
For multiple findings, the joint cost of omission of a set of findings F ⊆ E is
defined as:

H−(F ) = H(P (D|E);P (D|E\F )).

The same significance criteria hold for this case as for the case with a single
finding. Note that to completely analyse all the evidence all possible subsets of
E have to be instantiated and used to calculate H. This results in a complexity
that is exponential in the number of findings.

Suermondt continues with defining an explanatory set of findings and a suf-
ficient set of findings:

A set of findings F ⊆ E is explanatory if and only if H−(F ) > θ,

where θ is a certain threshold. If a set of findings is explanatory it contains
some findings that are relevant to D.

A set of findings F ⊆ E is sufficient if and only if H−(¬F ) ≤ θ,

where ¬F = E\F and therefore H−(¬F ) = H(P (D|E);P (D|F )). The term
sufficient refers to the property that F by itself is sufficient to obtain the infer-
ence result. Table 3.1 summarizes the implications of H−(F ) and H−(¬F ).

The final aspect of this analysis concerns determining data conflicts. A data
conflict is essentially the situation where a combination of findings point in a
certain direction, but some of those findings point in a different direction. So a
few of all the findings contradict the overall inference result. INSITE can detect
data conflicts using the previously defined cost of omission, and a concept called
the direction of change. The direction of change is defined as follows: For a node
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D with possible values d1 . . . dn, the direction of a change from P (D) to P ′(D)
is a vector Dir(P (D);P ′(D)) = (dir1, . . . , dirn) in which diri is equal to the
sign of p′(di) − p(di). So the possible values of diri are “+”, “-” and “0”.
Combinations for which the direction of change is the same are “+” and “+”,
“+” and “0”, “-” and “-”, “-” and “0”, and finally “0” and “0”.

In case of a no-conflict scenario, the cost of omission of the complete set
of findings, H−(E), is greater than the cost of omission of a single finding,
H−(Ei). This is based on the difference between P (D|E) and P (D|E\Ei). To
give a numerical example of this let us say that p(d|E) equals 0.2. If we leave
out one finding, i.e., p(d|E\Ei), the probability of d increases to 0.4. And if we
finally leave out all findings, i.e., p(d), the probability increases further to 0.6.
In this case no data conflict is present.

When a data conflict is present though, there are two possible situations.
In the first one a certain finding conflicts with and dominates the remaining
findings. To illustrate this with an example, let us again say that p(d|E) equals
0.2. If we omit one finding, i.e., p(d|E\Ei), the probability of d increases to 0.6.
And if we finally leave out all findings again, i.e., p(d), the probability drops to
0.4. So leaving out just Ei causes a greater increase in probability of d than
leaving out all findings. In this case it is expected that H−(Ei) is greater than
H−(E).

In the second situation a finding conflicts with the remaining findings, but
it does not dominate them. Instead it is the other way around, this time the
conflicting finding is dominated by the remainder of the findings. Again an
example, let us say that p(d|E) equals 0.4. If we leave out one finding, i.e.,
p(d|E\Ei), the probability of d drops to 0.2. And if we finally leave out all
findings again, i.e., p(d), the probability increases to 0.6. In this case we see
that the directions of change are different, i.e., Dir(P (D|E);P (D)) is different
from Dir(P (D|E);P (D|E\Ei)).

So, to summarize, if there is no conflict then the following holds:

H−(Ei) ≤ H−(E)

and
Dir(P (D|E);P (D|E\Ei)) = Dir(P (D|E);P (D)).

If the following is true:

Dir(P (D|E);P (D|E\Ei)) 6= Dir(P (D|E);P (D)),

then finding Ei is in conflict with the other findings, but is does not dominate
them.

If, finally, the following is true:

H−(Ei) > H−(E),

then finding Ei is in conflict with the other findings and it dominates them.

3.3.2 Chains of reasoning

A chain of reasoning is a path through the network from a finding Ei to a
variable of interest D. In order to detect the nodes that are part of such a path
Suermondt defines two types of nodes: A nuisance node and a proctored node.
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A nuisance node is a node that is computationally related to D given E,
but that is not part of any direct chain from any Ei to D. A direct chain is a
sequence of nodes where each node is connected to the next one through an arc
and where each node is computationally related to D given E. A nuisance node
does not need to be included in an explanation because it is considered to be a
side effect.

A proctored node is a node that is adjacent to two of its parents within a
direct chain and is an evidence node or has at least one successor that is an
evidence node. A proctored node is special because, when there is just one
direct chain from a finding to the variable of interest, it is the only node that
does not d-separate that chain. Because of this the evidence sort of bypasses
the proctored node, only the two adjecent parents that are part of the direct
chain have to be considered.

In a multiply connected network there can be more than one direct chain
for the same finding and variable of interest, as opposed to singly connected
networks, where there can only be one direct chain. These chains can overlap
as well. To organize multiple chains Suermondt identifies so called knots. He
defines a knot as follows: A knot in a set S of direct chains from finding Ei to
node D given a set of evidence E is a node Kj such that Kj is in every chain in
S, and Kj ∪(E\Ei) d-separates Ei from D. A knot is useful because any change
in its marginal distribution fully explains the effect of finding Ei on D. Knots
are used to avoid discussing some subchains multiple times. Knots are identified
and the explanation is structured so that every subchain is treated separately,
i.e., from the finding to the first knot, between knots, and from the last knot
to the variable of interest. It could be that multiple paths exist between two
knots. In that case, to further organize things, Suermondt uses a heuristic that
treats certain nodes like knots, that are actually not really knots in the sense
that they do not d-separate the part of the network that is being considered.

The INSITE method continues with determining which chains are relevant to
the inference result on a numerical basis. Each node in a chain that d-separates
the finding from the variable of interest (which is every non-proctored node)
is inspected. If there is no significant change between the prior and posterior
probability according to the cost function, then that node is “blocking” the
chain and the chain can be discarded.

To determine whether a chain has a positive or negative influence the proba-
bility distribution of D is studied when a chain is temporarily severed. The arc
to remove is selected in such a way that the least number of chains are severed
at once, ideally only one chain is severed when an arc is removed. Unless the
arc was redundant, removing an arc results in a new independence assumption
in the model. This can lead to changes in the prior probabilities of the nodes in
the network. Any significant changes in the prior probability of the variable of
interest D should be taken into account when drawing conclusions. Table 3.2
summarizes this.

To find out if a certain chain that contains a certain arc contributes or con-
flicts with the overall inference result, an approach like that of finding influential
findings in Section 3.3.1 is used.

The final part of the INSITE method involves determining the effect of an
arc within a chain. This is done to analyse the flow of evidence along the chain.
The arc between every pair of nodes along the chain is temporarily severed
and the implications are studied. This study focuses on both of the nodes that
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Table 3.2: Implications of the removal of an arc.

H(P (D);P ′(D)) H(P (D|E);P ′(D|E)) Conclusion about arc A
insignificant insignificant Arc A is not important to the

inference result.
insignificant significant Arc A is relevant to the

inference result.
significant insignificant Arc A influences the prior

probability of D, but this
effect is overshadowed by the
transmission of evidence from
E to D. Arc A is not
relevant to the inference result.

significant significant Removal of arc A changes the
prior probability of D. Arc A
is important but it cannot be
determined from these results
whether arc A is necessary for
evidence transmission from E to
D.

are connected by the severed arc separately. If we have two nodes, A and B,
and an arc AB from A to B, the cost and direction of change in variable B is
determined to explain the flow of evidence along the chain. From the point of
view of A though, the cost and direction of change is used to determine whether
there is evidence other than Ei, or another chain of reasoning, that is affecting
nodes A and B. If this is the case then the explanation takes this into account
by noting that the change in probability of A is caused by findings other than
Ei.

3.4 BANTER

BANTER [13] is a generic Bayesian network-based tutoring shell designed to be
used in a medical domain. For any network where the variables can be grouped
into hypothesis, observations and diagnostic procedures it can perform various
tasks:

• compute the posterior probability of a hypothesis

• determine the best diagnostic procedure to affirm or exclude a hypothesis

• quiz the user in the selection of optimal diagnostic procedures

• explain the system’s reasoning

The explanation of reasoning is done by a method that is based on Suermondt’s
INSITE. It also has the two aspects: identifying influential evidence as well as
finding the paths through which evidence flows.
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3.4.1 Influence of findings

To determine the influence of a finding on a hypothesis H, BANTER uses the

measure I(ai; bj) = log
P (ai|bj)

P (ai)
, where ai and bj are states of random variables

A and B, respectively. It expresses the information provided by the event
A = ai by the event B = bj . A large value means that bj strongly increases the
probability of ai while a large negative value means that it strongly decreases
the probability. This is used to define one of the two equations that BANTER
uses:

influence(H;E;Ei) =
∑

hj∈H

I(hj ;E) · I(hj ;Ei).

This determines whether the probability shift produced by Ei is in the same
direction as that of all the findings combined, E.

The second equation is used when a certain Ei shifts some states of the
hypothesis H in one direction, and some states in the other. The finding is then
said to have a mixed influence and that can be quanitified, without regard to
direction, using:

impact(H;Ei) =
∑

hj∈H

|I(hj ;Ei)|.

Using these two measures all the findings are analysed and separated into
findings that agree with the overall inference result, findings that disagree and
findings that have a mixed influence. Findings in any one of the categories are
used in the verbal explanation facility of BANTER when they are of strong
influence.

3.4.2 Paths of influence

Using the set of important findings that is identified in Section 3.4.1, BANTER
finds the influential paths from findings to the hypothesis H. This is done by a
depth-first search starting from each important finding, using an algorithm that
identifies nodes that are part of a path using a chart based on d-separation. To
limit the number of paths that are generated a maximum length of a path is set.
If there are more than five paths 1 the number of paths is reduced by computing
the strength of a path and choosing the five strongest ones. A path is only
as strong as its weakest link. For every node N along a path impact(N ;Ei)
is computed and the strength of the path is the minimum value found. The
information obtained this way is used to generate a verbal explanation of the
path. An example of such an explanation could be: “Disease A causes Symptom
B, which is detected by Test C”.

3.5 Weight of evidence

Madigan, et al. [24] propose an explanation method for Bayesian networks that
is also able to find the most influential findings, as well as the paths through
which they flow. Their method is based on Good’s weight of evidence [11]:

W (H : Ei) = log
P (Ei|H)

P (Ei|¬H)
,

1The number five was chosen arbitrarily.
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where Ei is a finding and H is a hypothesis, or variable of interest. The weight
of evidence expresses numerically how much a finding Ei supports H. As can
be seen H has a positive and negative state, which indicates a binary variable.
For non-binary variables Madigan, et al. flag one state as the positive one, and
all the others as negative.

They continue with defining the potential weight of evidence W (H : ei),
where ei is an outcome of a certain evidence variable, or test, E. This can be
calculated for each possible outcome. It expresses the weight of evidence that
would be provided for H if the outcome was known to be ei.

The final definition is the expected weight of evidence. This is provided by a
test E for a hypothesis H and is the average weight of evidence of the possible
test outcomes when H is true:

EW (H : E) =

n
∑

i=i

W (H : ei)P (ei|H).

This measure expresses the information content of a future finding.

Suppose we have a chain of three binary nodes, A, B and C, where A is a
parent of B and B is a parent of C. To visualize the flow of evidence along a
certain path each node in that path is visited and three criteria are considered:

1. sign W (C = 1 : A = 1) = sign W (C = 1 : B = 1)× sign W (B = 1 : A = 1)

So, if A = 1 is of positive influence on B = 1 and B = 1 is of positive
influence on C = 1, then A = 1 is of positive influence on C = 1.

2. |W (C = 1 : A = 1)| ≤ |W (B = 1 : A = 1)|
So, the influence that A can have on C is limited by the influence that A
has on B. In other words, B acts as a gateway for the flow of evidence.

3. |W (C = 1 : A = 1)| ≤ |Wrel:A=1(C = 1 : B)|
Here |Wrel:A=1(C = 1 : B)| is the relevant outgoing weight of evidence
which is defined as:

Wrel:A=1(C = 1 : B) =

{

W (C = 1 : B = 1) if W (B = 1 : A = 1) > 0
W (C = 1 : B = 0) if W (B = 1 : A = 1) ≤ 0

So if A = 1 is of positive influence on B = 1, then W (C = 1 : B = 1) is
the relevant outgoing weight, otherwise it is W (C = 1 : B = 0).

This all means that the total weight of evidence of W (C = 1 : A = 1) is
constrained by both W (B = 1 : A = 1) and by the relevant outgoing weight.

3.5.1 Presentation

Madigan, et al. have implemented this method into a software package called
GRAPHICAL-BELIEF 2. It can be used to create Bayesian networks which
are displayed in a graphical way, i.e., with drawn nodes and arcs. Its most
interesting features are evidence balance sheets and visualizing flows of evidence.

2GRAPHICAL-BELIEF is not available anymore.
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Figure 3.2: An evidence balance sheet.

Figure 3.3: An evidence chain.

3.5.2 Evidence balance sheets

An evidence balance sheet visualizes the contribution of each finding to the
variable of interest by displaying the corresponding weights of evidence. In
order to do so each finding is added to the pool of evidence sequentially, one
after another. Each time the weight of evidence is calculated. Figure 3.2 is an
example of such an evidence balance sheet.

3.5.3 Flows of evidence

If the Bayesian network to be explained is a polytree, there exists exactly one
path between a finding and a variable of interest. For each node along the
path the actual weight of evidence and the potential weights of evidence are
calculated and visualized. An example of this is shown in Figure 3.3. The
width of the connection between two nodes represents the potential weight of
evidence available, if the node’s value was known with certainty. The width of
the interior connection represents the actual weight of evidence. The difference
in width between the two connections is an indication of how much a node could
influence the next one compared to how much it influences it in this particular
situation. The color blue represents a positive influence while the color red
indicates a negative influence.

An alternative display uses circles to dynamically show the flow along a
path. Figure 3.4 is an example. The diameter of the circles corresponds with
the width of the inner connection in the previous figure.

3.5.4 Beyond polytrees

The above method is only applicable to singly connected Bayesian networks.
In multiply connected networks there can be inconsistencies, because there is
not just one unique path from finding a to a variable of interest. A certain



24 Chapter 3. Previous work

Figure 3.4: An evidence chain with circles.

finding can have a certain weight of evidence with respect to a certain variable of
interest, but along each path leading from that finding to the variable of interest
there is a connection between two variables for which all potential weights of
evidence are zero. This would indicate that the influence along that path is
zero, but that is not the case. The weight of evidence criterion cannot be used
in such situations.

To relax the requirement of singly connected networks, Madigan, et al. show
that their method can also be used on Berge networks. A Berge network is an
undirected graph for which two conditions hold: (1) the graph is chordal and
(2) the maximum clique intersection is of size one. A graph is chordal when all
cycles of length greater than three have a connection between two intermediate
nodes in the cycle. For these Berge networks there exists an algorithm that
finds a unique path between two nodes, by collapsing the model onto that path.
It finds the relevant variables for an explanation.

Still, for some non-Berge networks, there is no automated way to create a
unique path between two nodes. In such a situation, Madigan, et al. require the
user to manually combine nodes until it is transformed into a Berge network.

In GRAPHICAL-BELIEF there are five levels of explanations:

1. Node coloring

Nodes are colored according to their probability or weight of evidence.

2. Node marginals

Plots two vertical bars at the side of each node of which the lengths cor-
respond to the prior and posterior probabilities of the node.

3. Evidence balance sheet

This has been discussed earlier in this section. It shows which how much
each finding influences the variable of interest.

4. Relevant potential weights of evidence

This consists of showing graphically the potential weights of evidence by
adjusting the width of the edges, as shown in Figure 3.3.

5. Support for binary variables

To support binary variables the user can mark one state of a non-binary
variable as the “postive” state. Madigan, et al. view this feature as a level
of explanation.

3.6 Elvira

Elvira is a software package that allows for creating Bayesian networks and
performing inference [3, 21, 22, 23]. It is created by the Elvira Consortium,
which is a joint operation between various Spanish universities. The project was
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started in 1997. In Elvira, a lot of attention has been given to explanations. Its
capabilites in this area are presented in the following sections. To demonstrate
certain features we will make use of the Hepar II network [25]. This is a network
modeling liver disorders. The network consists of 9 disorder nodes, 18 risk factor
nodes and 44 symptom, sign and laboratory test result nodes. Figure 3.5 shows
a screenshot of Elvira with the Hepar II network loaded.

3.6.1 Static explanations in Elvira

Elvira offers various static explanations.

Verbal explanation of the complete network

Elvira is capable of generating a verbal explanation of a complete network. This
explanation relies on the user to classify the nodes of the network into various
categories like diseases, symptoms, signs and tests. Part of the explanation of
the Hepar II network is the following:

The disease / anomaly PBC can be produced by the next RISK

FACTORS:

Age, Sex, Pressure in right upper quadrant,

It may have the following DISEASES / ANOMALIES:

Carcinoma,

SYMPTOMS:

Hepatic encephalopathy, Musculo-skeletal pain,

SIGNS:

Itching, Jaundice, Yellowing of the skin, Impaired consciousness,

Increased liver density, Joints swelling, Haemorrhagie diathesis,

The following tests help to discard or confirm its presence:

ESR, Antimytochondrial antibodies, Total bilirubin, Total

cholesterol, Blood urea, GGTP, LE cells, Platelet count

Verbal explanation of a link

Figure 3.6 shows the dialog holding a verbal explanation of a link. The explana-
tion of the link between the risk factor Obesity and the disease Hepatic steatosis
is shown. From top to bottom this dialog first states the source and destination
nodes of the link. After that the kind of relation is shown, which has to be
specified when defining the model. The final piece of information consists of
likelihood ratios. The first textbox3 mentions the ratio between the two states
of the node Obesity when the value of the node Hepatic steatosis is “present”.
In this case it is greater than one, which means that the state “present” of Obe-
sity has a stronger influence on the “present” state of Hepatic steatosis than the
“absent” state has. The second textbox presents the same information, but for
the other state of Hepatic steatosis, which is “absent”.

3Elvira is a Spanish project and some text has not been translated into English.
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Figure 3.5: Elvira displaying the Hepar II network.

Figure 3.6: Verbal explanation of the link connecting Obesity to Hepatic steato-
sis.
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Coloring of links

Elvira can color the links in a network according to the influence of the cor-
responding parent and child nodes. Figure 3.7 shows an example. Links that
are colored red indicate a positive influence, links that are colored blue indicate
a negative influence, links that are colored black have no or null influence and
links that are colored purple have an ambiguous or unknown influence. Further-
more, the width of the link indicates the relative strength of the influence. For
this to work the nodes have to be ordinal. So the various states of all the nodes
must be ordered in the same way, for example from good to bad, from large to
small, from high to low or from desirable to not desirable. This is a necessity
to determine whether an influence is positive or negative. An influence is said
to be positive if, given two variables A and C where A is a parent of C and B
represents the set of other parents of C, higher values of A lead to higher values
of C, for every possible configuration of B. More specifically, an influence is
positive if:

∀ai∀aj∀b, ai > aj ⇒ Dist(C|ai, b) > Dist(C|aj , b),

where

Dist(C|ai, b) > Dist(C|aj , b) ⇐⇒
{[∀c, P (C ≥ c|ai, b) ≥ P (C ≥ c|aj , b)]

∧ [∃c, P (C ≥ c|ai, b) > P (C ≥ c|aj , b)}

and

P (C ≥ c|ai, b) =
∑

k≥i

P (C = ak|b).

What this means it that the probability distribution of C given ai is higher than
given aj if the cumulative probability is greater or equal for every value of C
and that there exists at least one value of C for which it is greater.

In causal networks most of the links are generally positive.

Thickness of links

Elvira can also adjust the thickness of links in a network proportional to the
amount of influence the corresponding parent node has on the child node. i.e.,
the influence in the direction of the link. An example can be seen in Figure 3.7.
The magnitude of the influence transmitted by a link from node A to node B is
defined as:

maxk[maxi[P (B ≥ bk|ai) − P (B ≥ bk|a0)]] .

Importance factors

Each node in a network can be given an importance factor. This is a number
ranging from zero to ten and controls whether a node is expanded or not in
inference mode. When a node is expanded it is drawn as a rectangle showing
information about its probability and when a node is not expanded only its
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name is shown in an oval shape. In Figure 3.5 the node “PBC” is expanded,
while the node “Pressure in right upper quadrant” is not. In inference mode a
global importance threshold can be set. If a node’s importance factor is greater
or equal to that threshold it is expanded.

3.6.2 Dynamic explanations in Elvira

Elvira is able to handle multiple sets of findings. Such a set of findings is
called a case. If a node is expanded there are different colored bars to represent
the probabilities, one for each case. Two cases can be seen in Figure 3.8, the
green one is the prior case in which no findings are present and the red one is the
case containing the findings “Sex=female”, “Yellowing of the skin=present” and
“Musculo-skeletal pain=absent”. These nodes are colored grey to indicate that
they have been observed. The following sections elaborate on Elvira’s dynamic
explanation capabilities.

Explanation of a node

Figure 3.9 shows a verbal explanation of the node “PBC”. The dynamic part
consists of the two textboxes displaying the probability ratios. The topmost
textbox displays the ratio between the prior probabilities while the bottom
textbox displayes the ratio between the posterior probabilities.

Elvira is also capable of coloring all the nodes in the network according to
the change they suffered. An example is shown in Figure 3.10. Nodes that are
colored red have had a positive change, those colored blue have had a negative
change, purple nodes have changed in an undefined way and yellow nodes have
had no change at all. The intensity of the color indicates the magnitude of the
change. The changes can be relative to the prior probabilities of the nodes or
to the probabilities of the nodes according to another case.

Explanation of a case

For explaining a particular case Elvira offers the dialog box as shown in Fig-
ure 3.11. This dialog shows the name of the case, the findings associated with
it and the probability of this set of findings occuring together. After this the
user can select a target variable which is in this case “PBC”. When a variable is
selected, the prior and posterior probabilities of that node are shown, together
with a third measure which is the result of a limited sensitivity analyses:

P (target|findings) = log
P (target|findings)

P (target)
.

Furthermore there are two buttons, one labeled ’Why?’ and the other labeled
’How?’. The following two sections will elaborate on this.

Summary of findings

The ’Why?’ button mentioned in the previous section produces a summary of
the influence of the various findings when they are added to the set of findings
sequentially. A screenshot can be seen in Figure 3.12. The way to interpret this
is as follows: there are only findings listed in the “positive” box, so every finding
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Figure 3.7: Elvira displaying colored links.

Figure 3.8: Elvira displaying a case.
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Figure 3.9: Elvira displaying a verbal explanation of a node.

Figure 3.10: Elvira displaying colored nodes.
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Figure 3.11: Elvira displaying an explanation of two cases.
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has a positive influence on the target variable “PBC”. The value that is men-
tioned after each finding is the difference between (1) the posterior probability
of “PBC” when the set of findings consists of that particular finding and each
finding listed above it and (2) the (posterior) probability of “PBC” when the
set of findings consists of only the findings listed above that particular finding.
So the value indicates how much influence that particular finding has on the
target variable in comparison with the other findings.

Chains of reasoning

Elvira uses the INSITE method of Suermondt [31] as discussed in Section 3.3
to generate chains of reasoning. These can be accessed by pressing the ’How?’
button shown in Figure 3.11. The result can be seen in Figure 3.13. Only the
paths from the findings to the target variable “PBC” are shown, the rest of
the network is made invisible. Nodes are colored according to their change in
probability. Again red for positive changes, blue for negative ones, purple for
undefined changes and yellow if the probability has remained the same. Given a
variable V with values v1, . . . , vs and one or more findings e a change is positive
if:

∀kǫ{1 . . . s}P (C ≥ vk|e) > P (C ≥ vk)

and

∃lǫ{1 . . . s}P (C ≥ vl) < P (C ≥ vl|e)

Links between variables are colored in the same way as described in Section 3.6.1.

3.7 BayesiaLab

BayesiaLab4 is a commercial software package for the creation and evaluation
of Bayesian networks. A trial edition can be downloaded and its explanation
capabilities are reviewed in the next sections. The current version at the time
of writing is verion 4.0. Figure 3.14 shows BayesiaLab displaying the Hepar II
network, with the node “PBC” set as the target variable and containing the
findings “Sex=female”, “Yellowing of the skin=present” and “Musculo-skeletal
pain=absent”.

3.7.1 Arc analysis

BayesiaLab can adjust the thickness of the arcs proportional to the strength
of the probabilistic relations that they represent in the global probability law.
This function can be used to locate the most influential arcs in a model. Fig-
ure 3.15 is an example. The thickness of an arc is based on the Kullback-Leibler
divergence [20] between the joint probability distribution with and without the
arc. This is a measure of dependence of two variables. If we consider the simple
two node network of Figure 3.16, the importance of the arc is determined by
comparing P (LC, S) = P (LC|S) ·P (S) with P ′(LC, S) = P (LC) ·P (S), where

4http://www.bayesia.com/
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Figure 3.12: Elvira displaying influence of findings.

Figure 3.13: Elvira displaying chains of reasoning.
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P ′(LC, S) is the joint probability without the arc and P (LC) =
∑

S P (LC, S).
In this example P (LC, S) becomes

P (LC, S)
s ¬s

lc 0.04 0.0008
¬lc 0.16 0.7992

and P ′(LC, S) becomes

P ′(LC, S)
s ¬s

lc 0.008 0.032
¬lc 0.192 0.768

The Kullback-Leibler divergence between these two distributions is used as
an indication of the importance of the arc. In a network, the arc with the
highest importance is given the thickest arc possible and the thickness of other
arcs is determined relative to the thickest one. This means that the thickness
of the arcs can only be used to draw conclusions within one single network, not
between different networks. The Kullback-Leibler divergence of the thickest arc
in one network can be very different from the arrow with that same thickness
in a different network.

3.7.2 Target node analysis

BayesiaLab can perform a target node analysis, which allows the user to see
how much each node contributes to the current probability distribution of the
target node. Within each related node a rectangle is drawn, of which the bright-
ness indicates the amount of influence. The brighter the higher the influence.
Figure 3.17 is an example.

3.7.3 Target state analysis

BayesiaLab can also perform a target state analysis, which allows the user to
see two things: (1) the type of influence a node has by looking at the symbol
inside the node, which summarizes the evolution of the conditional probability
of the target state of the target node with respect to each state of the node and
(2) the relative contribution of each node on the target state by looking at the
brightness. Figure 3.18 is an example.

3.7.4 Target analysis report

BayesiaLab can generate a target analysis report. An example is shown5 in
Figure 3.19. From top to bottom, it starts with showing the set of findings that
was present when the report was generated. After that it mentions the posterior
probabilities of the target node, in this case “PBC”. Next follows a list showing
all the nodes related to the target variable together with the mutual information
and the relative contribution they have with respect to the target variable. The
report ends with various statistics for every related node for each state of the
target node.

5The report has been shortened to fit the page.
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Figure 3.14: BayesiaLab displaying the Hepar II network.

Figure 3.15: BayesiaLab after arc analysis.
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Smoking

Lung cancer

P (LC|S)
s ¬s

lc 0.2 0.001
¬lc 0.8 0.999

P (S)
s 0.4

¬s 0.6

Figure 3.16: Smoking (S) is said to influence the risk of Lung cancer (LC).

Figure 3.17: BayesiaLab after target node analysis.
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Figure 3.18: BayesiaLab after target state analysis.

Figure 3.19: Target analysis report for node “PBC”.
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3.7.5 Evidence analysis report

For an instantiated target variable BayesiaLab can produce an Evidence analysis
report. An example is shown in Figure 3.20. After listing the current findings a
value is presented that indicated whether or not there is contradicting evidence.

This value is defined as log2
p(e1)...p(ei)
p(e1,...,ei)

, so the logarithm of the product of the

marginal probabilites of each of the findings, divided by the joint probability of
all the findings. When this number is negative the joint probability is greater
than the product of the marginal ones which means that the findings support
the same conclusion and do not contradict.

Finally, there is a listing of all the findings and how they influence the
instantiated target variable. There are three possibilities. A finding either has
a positive influence on it, a negative influence or it has no influence, in which
case it is neutral.

3.7.6 Relationship analysis report

A relationship analysis report computes the Kullback-Leibler divergence for each
link in the network. This measure indicates the difference between the proba-
bility distribution of the network with the arc present and that of the network
with the arc not present, as explained earlier in Section 3.7.1.

3.7.7 Influence paths

According to the d-separation criterion, BayesiaLab is able to display the paths
from a particular node to the target node. It generates a listing of all the paths
together with their lengths and it is able to visualize one path at a time in the
graph by coloring the links belonging to the path purple. An example is shown
in Figure 3.22.

3.8 Discussion

We have reviewed various theories and programs that focus on making the
reasoning process more clear to a user.

The usefulness of abduction, as discussed in Section 3.1, is questionable.
The probability of the most probable configuration of the unobserved variables
is in many cases very low, it merely shows what the most likely states of all the
variables are.

The scenario based explanations of Section 3.2 are more interesting. Such
an explanation, presented in natural language, is easy to read and explains
why a certain variable is in a certain state. But to get the most out of such
an explanation, the user still has to know why a certain conclusion is drawn,
for example by looking at the network and following the various steps in the
explanation.

The INSITE method, discussed in Section 3.3, tries to explain which obser-
vations have influenced a certain target variable and to what extent. It also
determines the paths through which the relevant findings influence the target
variable, the so called “chains of reasoning”. The result is a very clear and
insightful explanation of why a certain target variable has been influenced in
a certain way. A user can see which observations have the largest influence on
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Figure 3.20: Evidence analysis report with respect to node “PBC”.

Figure 3.21: Relationship analysis report.
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the target variable, and the paths through which they reach the target variable.
Only the most relevant observations are included in the explanations. Observa-
tions that have little or no impact on the posterior probability distribution of
the target variable are discarded.

The tutoring shell BANTER of Section 3.4 is based on the INSITE method.
It was made for use in the medical domain, to assist in diagnosis. It can list
the most influential findings and the paths they flow through. The system only
generates verbal explanations, which is somewhat primitive and limiting.

The work of Madigan, discussed in Section 3.5, essentially does the same
as the INSITE method, but uses a different approach. Its two aspects are also
finding the most influential findings, and determining the paths through which
they flow. The generated “flows of evidence” are visualized in such a way that
easily can be seen where a potential “bottleneck” of evidence transmission is
located. A big disadvantage, though, is the fact that it only works on polytrees
or Berge networks. This limitation immediately excludes many practical net-
works, unless such a network is somehow transformed to a Berge network, but
this is not a trivial process and therefore not desirable.

The software package Elvira (Section 3.6) incorporates many forms of ex-
planations, both verbal and graphical. The verbal explanations come down to
descriptions about the various nodes and their type. For this to work all nodes
must be classified. The classification, in conjunction with the network structure,
is used to build up a verbal description of the network, in a a causal way. Other
verbal explanations use likelihood ratios, saying that one state is , for exam-
ple, “3.77” times more likely than some other state. The graphical capabilities
are probably the best part of Elvira. Colors are used throughout the program
to indicate the direction of change of probability distributions of nodes. Also,
Elvira is able to show the “chains of reasoning” by using the INSITE method,
along with coloring of nodes and links to indicate the changes in probability.
Overall, Elvira delivers quite nice explanations, with the graphical part being
more useful than the verbal part. The program has quite a few bugs that result
in strange behaviour, though, but that does not take away anything from the
good explanations.

Finally, BayesiaLab, discussed in Section 3.7, also features quite a few op-
tions that help a user understand what is going on in a model. The most
interesting parts make use of a target node, which the user has to set. Various
statistics can then be generated. BayesiaLab makes good use of the graphical
representation of the network by augmenting it with various symbols to sig-
nify changes and characteristics and by adjusting the thickness of the arcs to
indicate the contribution of that arc to the current situation of the network.
Besides this BayesiaLab can generate various statistical reports. These reports
can be useful, but the user has got to have very good knowledge of the workings
of a Bayesian network in order to interpret all the figures in the correct way.
The graphical explanations of BayesiaLab are more accessible, but still have a
slight learning curve because the symbols used are sometimes not that intuitive,
especially not at first sight.
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Figure 3.22: BayesiaLab showing an influence path from “Yellowing of the skin”
to target “PBC”.





Chapter 4

General design

After reviewing previous works and discussing the characteristics, the first thing
we decided was to focus on graphical explanations and not so much on verbal
ones. This is because we believe that a graphical explanation has a lot more
explanatory power. A good visualization can deliver information much faster
and in a more convenient way than a verbal explanation can. Reading takes
time, while the same knowledge can often be deduced by looking at a visual-
ization for only a few seconds. We want to create something that is easy for a
user to use and interpret. If the techniques demand very little from the user,
but deliver valuable extra information about the network, we believe that the
usefulness will be maximized. In the following sections the ideas we found to be
interesting are introduced.

4.1 Ancestors and descendants

A simple but potentially very useful feature would be to easily see, for a certain
node, what its parents and children are. In a complicated network it is not
always clear which nodes are connected to a certain node, especially not at
a glance. More general, we think it would be useful to graphically point out
the ancestors and/or descendants of a node. The user might be able to say
how many generations of ancestors or descendants he or she wishes to see. For
example, the parents are the ancestors of generation one and the children are
the descendants of also generation one. A rough impression of what this could
look like in GeNIe is shown in Figure 4.1.

4.2 Paths of influence

Inspired by the feature of BayesiaLab discussed in Section 3.7.7, we are inter-
ested in showing the user the paths of influence from a chosen variable to a
certain target variable. The paths along which a certain variable impacts an-
other variable are determined using the d-separation criterion, as introduced in
Section 2.2. Paths can be opened up and blocked by the observed evidence.
The approach of BayesiaLab visualizes one path at a time, but we think that
this is useless most of the time, because the number of paths can easily be very
large. To have thousands of paths is not an exception. Therefore, we propose
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(a) The parents of “Cirrhosis” are shown.

(b) The children of “Cirrhosis” are shown.

Figure 4.1: Rough impression of showing ancestors and descendants.
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to visualize the subgraph that contains all the nodes and arcs that are on some
path from the variable of interest to the target variable. This gives less precise
information about the individual paths, but if there are many paths it becomes
undoable for a user to inspect each path separately. A user can instead look at
the complete subgraph containing all paths.

We can use the INSITE method, see Section 3.3, to find the most influential
paths and display those, possibly individually, to a user. This makes more
sense, because there are usually only a few paths that influence a target variable
significantly.

4.3 Markov blanket

The Markov blanket of a node in a Bayesian network is the set of nodes composed
of the parents of that node, its children and the children of its parents. The
Markov blanket is an interesting concept, because it “shields off” the node from
the rest of the network. Given a node A, its Markov blanket Markov(A), the
node is independent from the rest of the network:

P (A|Markov(A), B) = P (A|Markov(A)) , (4.1)

where B is some set of other nodes in the network. This means that the nodes
that are part of the Markov blanket of a certain node, are the only nodes needed
to predict the behaviour of that node. We can visualize the Markov blanket the
same way as we did the ancestors and descendants of Section 4.1, i.e., greying
out everything but the Markov blanket of the desired node.

4.4 Relevance of findings

Both the INSISTE method (Section 3.3) and the method of Madigan (Section
3.5) are able to show which findings are most significant for a certain target
variable, and are able to indicate if those findings conflict or agree with the
overall inference result. We think this is an interesting statistic to be able to
show to a user. How we can show this in the most effective way has to be
researched.

4.5 Multiple cases

A case is a combination of evidence and inference results. In the GeNIe program,
introduced in Section 2.7, being able to display multiple cases at once allows for
easy comparison. At this time, only one set of observations and inference results
can be shown. If another piece of evidence is observed, the previous inference
results are lost. An intuitive way to display and work with more than one case
has to be developed. We can also generate interesting statistics for the user,
such as the amount of change between the active cases for a certain variable.
Ways to visualize this have to be explored.
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4.6 Thickness of arcs

In many networks it can be of value to know to what extent two directly con-
nected nodes can influence each other. This information can be visualized by
automatically varying the thickness of the arc connecting the nodes. It is quite
intuitive to draw a thicker arc when the influence is strong. Two reviewed ear-
lier works, Elvira (Section 3.6) and BayesiaLab (Section 3.7), use the thickness
of the arcs to visualize influence. Elvira uses the conditional probability tables
in the definition of the model to determine the thicknesses of the arcs. This
gives a good view of how two directly connected nodes interact, but it does
not take into account any observations or indirect influences, the information
is completely local. BayesiaLab uses the thickness of the arcs to visualize the
current role of that arc in the current situation of the network. What we are
going to do is use the thickness of the arcs to visualize the potential influence
that two directly connected nodes have on eachother, i.e., what the effect of
observing one node would have on the other. We refer to this new method as
a dynamic method, as opposed to the previously mentioned static one. This
method does take into account any observations and indirect influences. This
part is discussed in detail in Chapter 5.

4.7 Color of arcs

We are going to visualize the sign of influence between nodes by varying the
color of the arcs. When we consider two directly connected nodes, then, if the
probability distribution of one of the nodes somehow changes, for example by
observing that node, the probability distribution of the other node can also
change because of that. If that change in distribution is always in the same
direction, we can visualize that by giving the arc a certain color. The arc then
indicates that a change in a certain direction of the probability distribution of
one node, will always cause a change in a certain direction of the probability
distribution of the other node. This can also be done in a static way, and in
our new dynamic way, just like the thickness of arcs. This part is discussed in
detail in Chapter 6.

4.8 Discussion

The best possibilities, we think, lie in somehow augmenting the visual repre-
sentation of a Bayesian network with extra information. Ultimately, we have
decided to focus on the arcs in a network and to focus on the ideas of Section
4.6 and 4.7. We think that using the arcs in a Bayesian network to represent ad-
ditional information is intuitive and easy to understand and interpret. Besides
this, we think that we can contribute the most to this field of research with our
dynamic approach. Chapter 5 treats the thickness of arcs, and Chapter 6 treats
the color of arcs.



Chapter 5

Thickness of arcs

This chapter deals with the thickness of arcs. First, we will introduce ordinal
nodes. Second, the design and strategy for a regular Bayesian network will
be detailed. Third, the method will be extended to influence diagrams. After
that we will explore and discuss various ways to measure differences in discrete
probability distributions.

5.1 Ordinal nodes

In order to realize our goals we have to introduce the concept of ordinal nodes.
In a Bayesian network, the various states that a node has are not required to
be ordered in any way. But if we do have nodes with ordered states, which
is often the case in a diagnostic network, we can take this extra information
into account when determining the amount of influence between the two nodes
connected by the arc in question, and to generate an explanation indicating if
the influence is positive or negative. See for example Figure 5.1. It shows a
network consisting of two nodes, Excercise and Body type. They are drawn as
rectangles, but they are regular chance nodes, not decision nodes. Both have
three states and are ordinal. In this case the states of both of the nodes are
in increasing order. In each of the subfigures Exercise is observed. In Figure
5.1(a) the value none is observed, in Figure 5.1(b) some is observed and in
Figure 5.1(c) often is observed. When a higher value of Excercise is observed
the probabilities of the higher values of Body type also increase. In this case we
would say that Excercise positively influences Body type.

5.2 Strategy

The information that we want to provide for a user by varying the thickness of
arcs is the amount of influence one node has on the other. The approach by
BayesiaLab, as described in Section 3.7.1, uses the joint probability distribu-
tion, while Elvira (see Section 3.6.1) determines the influence by looking at the
conditional probability tables and determining the influence a parent node has
on a child node. This approach to determine the influence of a parent node on a
child node is static. This means that the calculations do not take into account
any current observations. But it could be that, with certain observations, the
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(a) Excercise is none. (b) Excercise is some. (c) Excercise is often.

Figure 5.1: Example of ordinal nodes.

influence of a certain parent node on a child node is significantly different from
the observation-free situation, in which case the static information would be
incorrect. The static information can be used to get a global impression of the
interactions between the nodes, but it is not tailored to a certain situation.

Besides that, while it is true that a parent influences its child(ren) if it is
observed, a child, when observed, can also influence the probability distribution
of its parent(s). These two influences can be quite different from eachother. To
give an example, if a laptop is dropped from a high building, we almost know
for certain that it will end up getting smashed into many pieces. But if we find
a laptop that is smashed into many pieces, we cannot be just as sure about what
caused this. It could have been dropped from a high building, but it could just
as well have been run over by a car, or maybe someone got angry and stamped
on it. So while the probability of “dropped from a high building” will increase
when finding a smashed laptop, the probability will not increase as much the
other way around, i.e., that of “laptop will get smashed” when we drop it from
a high building.

Therefore, we are going to do this differently. Many networks contain one
or more target or hypothesis nodes. See for example the Hepar II network [25]
shown in Figure 5.2, modeling various liver disorders. The yellow colored nodes
represent the diseases. What we would be interested in most is the influence that
the other nodes have on these disease nodes. Such nodes are often called target
nodes. When an arrow connects a target node with a non-target node, we will
determine the influence the non-target node has on the target node, regardless
of the direction of the arrow. When two non-target or two target nodes are
connected by an arrow, we will, by default, use the average of the influences
in both directions. In total there are four situations possible, shown in Figure
5.3. In the first situation, shown in Figure 5.3(a), we will visualize the influence
A has on B. In the second situation, that of Figure 5.3(b), we will consider
the influence that B has on A. In the last two situations, depicted in Figures
5.3(c) and 5.3(d), we will consider the influence in both directions, and average
them. The user will have the ability to override any of these default actions
by specifying in which direction the influence for a particular arrow should be
calculated.
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Figure 5.2: The Hepar II network.

(a) B is a
target node.

(b) A is a
target node.

(c) Both
A and B

are target
nodes.

(d) Neither
A nor B is a
target node.

Figure 5.3: Four different situations.
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C

A B

Figure 5.4: A small network.

Table 5.1: A conditional probability table for the network of Figure 5.4. Finding
A additionally to B, or vice versa, will have little effect on C.

a ¬a
b ¬b b ¬b

c 0.99 0.98 0.98 0.01
¬c 0.01 0.02 0.02 0.99

Furthermore, the approach that we are proposing here is a dynamic one. It
considers the network in its current state, including any observations. It essen-
tially indicates how much potential influence a node has on a direct successor
or predecessor, so the influence that a node could have if it was observed next.
This can give a lot more insight in a situation. For example, consider Figure 5.4,
which shows a simple network consisting of two parent nodes, A and B, with a
common child node, C, and C is a target node. With no observations, let us say
the potential influence that A has on C is bigger than the potential influence
that B has on C. If we observe B, this could have such an impact on the pos-
terior probability distribution of C that observing A additionally to B would
mean little or no difference. This means that the potential influence of A on
C has diminished. The conditional probability table of Table 5.1 demonstrates
this situation. All the nodes have two states: true and false. If A is true and B
is false, then additionally finding that B is true does not have a big impact on
the probability that C is true. In our approach, when either A or B is observed,
the thickness of the arc will be recalculated to reflect the new situation.

Another advantage of our approach as opposed to the static one is the fact
that in some situations it does not need to account for the synergy between the
different parents of a node with more than one parent, simply because it is not
there anymore in those situations. The definition of synergy can be given as:

Table 5.2: Another conditional probability table for the network of Figure 5.4.
The combined effect of the parents is much greater than the sum of their indi-
vidual effects.

a ¬a
b ¬b b ¬b

c 0.99 0.1 0.1 0.01
¬c 0.01 0.9 0.9 0.99
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Figure 5.5: Example of a synergy between x and y.

“the interaction of two or more agents or forces so that their combined effect is
greater than the sum of their individual effects”. In case of a Bayesian network,
this applies to the combined effect that the observation of multiple parents of
one node can have on that node. The combined effect can be greater than the
individual effects. Table 5.2 gives an example of this. Looking at the table we
can see that when both A and B are false, the probability of C is 0.01. When
either A or B is true, the probability of C increases to 0.1. But when both A
and B are true, the probability of C increases much more, to 0.99. Another
way to understand this is to look at Figure 5.5, which visually shows a synergy
between two variables x and y, both ranging from 0 to 1, defined as (x + y)2.
When only one of the two variables approaches 1 the value is not as high as
when both x and y approeach 1.

This phenomenon cannot be accurately captured by varying the thickness of
the arcs, which is one dimensional. In our dynamic approach, though, when all
but one of the parents or children of a certain node are observed, i.e., there is no
synergy anymore, we are able to accurately display the actual situation, because
we are considering potential influences in the current state of the network. As
soon as there is a change in the network, for example another observation is
done, the thickness of an arc is recalculated if necessary.

We are going to determine the strength of the influence by looking at the
posterior probability distribution of a node, for each possible state of the par-
ent or child node, depending on the type of connection as discussed earlier in
Figure 5.3. For a node with n states, this will result in n potentially different
posterior probability distributions of the connected node(s). We will compute
the amount of difference between these distributions and base our final determi-
nation of the thickness of the arc on either the average of all the differences, the
maximum of all the differences, or the weighted average. The weighted average
is defined as

n
∑

i=0

ai · D(P (A), P (B|A = ai)) , (5.1)

where A and B are two directly connected nodes, A has n states and D is a
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function measuring the distance between two distributions.
How we will calculate the difference between two distributions will be dis-

cussed in Section 5.5.
This method implies that for each of the states of each node that is a parent

or a child, the probabilities of all of its direct predecessors and successors have
to be updated. If a network has N nodes and each node has n states this
would require, in the worst case, N · n updates of the network. This leads to a
complexity of O(N). Performing inference itself has been proven to be NP-hard
[5], but with the current state and speed of Bayesian updating algorithms this
procedure will, for most practical networks, be completed within seconds.

5.3 Thickness in influence diagrams

Up to now, we have only considered networks consisting of general chance nodes.
We are going to extend our method so that it can also determine the thickness
of the arcs in an influence diagram in a meaningful way. An influence diagram,
as discussed in Section 2.3, is a Bayesian network augmented with decision and
value nodes.

5.3.1 Decision nodes

If there are one or more decision nodes in a network, they have an impact on
our proposed strategy to determine the influence between two directly connected
nodes in two ways: (1) we ofcourse have to define how to calculate and interpret
the thickness of an arc if one or both nodes are decision nodes, but (2) we also
have to update our strategy for determining the influence between other types
of nodes. Let us first elaborate on the latter.

Impact on other nodes

A decision node, in its unobserved state, introduces multiple posterior proba-
bility distributions, or expected utilities if the node is a value node, for all of its
descendants. For each possible decision each descendant has a single posterior
probability distribution or expected utility. Or, in case there are multiple unob-
served decision nodes, there is a posterior probability distribution or expected
utility for each possible combination of decisions. One such a combination of
possible decisions is also known as a policy. See for example the network of
Figure 5.6. This is the same network as used to introduce influence diagrams in
Section 2.4, please refer to that section for an explanation of the model and its
nodes. Figure 5.7 shows the values of the nodes Success of the venture in Figure
5.7(a), Expert forecast in Figure 5.7(b) and value node Financial gain in Figure
5.7(c), after performing inference. We can see that the values of the nodes are
indexed by the possible outcomes of the decision node(s) that preceed them.
The values of all three nodes are indexed by the possible outcomes of decision
node Sensitivity, which has three possible outcomes: low, nominal and high.
Node Financial gain is, besides by node Sensitivity, also indexed by decision
node Investment decision. This clearly impacts our strategy to determine the
influence between two directly connected nodes, because we have to take care
that we compare the right distributions with eachother. Remember that, when
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Figure 5.6: An influence diagram, none of the nodes are observed.

(a) Probability distribu-
tions for node Success of

the venture.

(b) Probability distrib-
utions for node Expert

forecast.

(c) Expected utilities for value node Financial gain.

Figure 5.7: Probability distributions for the network of Figure 5.6.

determining the influence a parent has on a child, we are comparing the value
of the child when the parent is unobserved, with every other value of the child,
one for each observed state of the parent. If we refer to this first value as the
prior value of the child and to all the other values, when the parent is observed,
as the posteriors, we can distinguish three possible situations, listed in Table
5.3. One situation is missing, i.e., the posterior is indexed and the prior is not
indexed. This is because this situation is impossible. A node cannot have a
prior value that is not indexed and have a posterior value that is indexed. If
the prior value is not indexed the posterior value will also not be indexed.

The first situation shown in Table 5.3 requires no special treatment. There
are no decision nodes in the network or all decision nodes have been observed,
i.e., all decisions have been made.

The second situation can occur when, due to the observation of a node,
the node we are considering gets d-separated from the decision node(s). This

Table 5.3: Possible situations when comparing a prior and a posterior value.

Situation Prior Posteriors

1 not indexed not indexed
2 indexed not indexed
3 indexed indexed
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Figure 5.8: Influence diagram with node Success of the venture observed.

(a) Non-indexed posterior
probability distribution for
node Expert forecast.

(b) Expected utilities for
value node Financial gain.

Figure 5.9: Posterior values for the network of Figure 5.8.

happens when we are determining the influence of Success of the venture on Ex-
pert forecast. Figure 5.8 shows the influence diagram with node Success of the
venture observed. The posterior probability distribution of node Expert fore-
cast for that situation is shown in Figure 5.9(a). When compared to that of
Figure 5.7(b), we can see that node Sensitivity no longer indexes the value of
node Expert forecast, as opposed to the case when Success of the venture is not
observed. If this happens we are going to compare the single posterior proba-
bility distribution or the single expected utility to each possible distribution or
expected utility in the prior.

The third and final situation can itself be split up in two possibilities: one
where the posterior value has exactly the same indexing as the prior value, and
one where the indexing is different because one or more, but not all, indexing
parents have become d-separated from the node. If we are determining the
influence that Expert forecast has on Success on the venture, as depicted in
Figure 5.10, we can see that the value of node Success on the venture in this
situation, given in Figure 5.11, has exactly the same policies as the one we
are comparing it with, which is the one shown in Figure 5.7(a). We are going
to compare each posterior probability distribution with the prior probability
distribution of that exact same policy. When both the prior and posterior
values are indexed, but differently, we have to loosen this approach somewhat.
For instance, if we are determining the influence that Success of the venture
has on the value node Financial gain, we are going to observe Success of the
venture, as illustrated in Figure 5.8, and check the effect on Financial gain. The
expected utilites of node Financial gain after observing Success of the venture,
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Figure 5.10: Influence diagram with node Expert forecast observed.

Figure 5.11: Posterior probability distribution for node Success of the venture.

are shown in Figure 5.9(b). These will have to be compared with the expected
utilities shown in Figure 5.7(c). We can see that they are both indexed, but
that the posterior expected utilities are only indexed by the possible outcomes
of Investment decision, while the prior expected utilities are also indexed by the
possible outcomes of node Sensitivity. In this case, when the indexing parents
differ, we are going to compare each posterior expected utility or probability
distribution to those prior expected utilities or probability distributions that,
for each indexing parent of the posterior, have those same indexing parents
in the same state. For example, the expected utility of 1000 in Figure 5.9(b),
belonging to the policy Investment decision=Invest, is compared to the expected
utilities −3500, −2000 and 250 in Figure 5.7(c).

Table 5.4 summarizes the approaches for each of the three situations.

Table 5.4: Possible situations and approaches when comparing a prior and a
posterior value.

Situation Prior Posteriors Approach

1 not indexed not indexed Simply compare both values.
2 indexed not indexed Compare single expected utility or

probability distribution of the posterior
to each one of the prior.

3 indexed indexed Compare each expected utility or
probability distribution of the posterior
to those of the prior for which the
indexing parents of the posterior match
those of the prior.
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Table 5.5: Possible situations and approaches when a decision node is involved.

Parent Child Approach

decision node decision node No influence calculated.
not a decision node decision node No influence calculated.
decision node not a decision node Calculate influence parent has on child,

by comparing all posteriors to each other.

If parent or child node is a decision node

If both parent and child nodes are decision nodes we are not going to calculate
anything for that arc. Such an arc is merely there to indicate the order in which
the decisions are made. It makes no sense to try and determine the influence of
one decision node on the other, because a decision node is always observed, or
decided, by the user, they are not influenced by any other node in the network.
More generally, if the child node is a decision node, regardless of what type of
node the parent is, we are not calculating any influence, simply because it is
not there.

If the parent node is a decision node we are going to impose a restriction
on the direction in which the influence is calculated. The direction will always
be from the decision node to the other node, which can be any other type of
node other than a decision node. The other way around would make no sense,
because, like said before, a decision node is not influenced by anything. What
a decision node actually does in this situation, when it is observed, is ruling
out some possibilities in the current value of the child node, because making
a decision reduces the number of policies in the network. Look, for example,
at Figure 5.7(a), showing the possible probability distributions of node Success
of the venture, one for each possible outcome of the connected decision node
Sensitivity. If Sensitivity is observed, the effect on child node Success of the
venture is simply that the current value changes into the probability distribution
belonging to the observed state of Sensitivity. Therefore, because the posteriors
are just subsets of the prior, the comparisons we need to make in this situation
only involve the posterior values. We are going to compare all the posteriors
against each other, instead of comparing each of them to the prior.

Table 5.5 summarizes the various situations where a decision node is in-
volved.

5.3.2 Value nodes

A value node, as opposed to a chance node, is not defined by a probability
distribution, but by expected utilities, one for each policy, for which holds:

expected utility ǫ ℜ . (5.2)

This poses a problem because our strategy is based on comparing probability
distributions, not a restriction-free combination of real numbers. To solve this
we are going to use the method proposed in [4] to convert a value node to a
chance node, which has a regular probability distribution. Let Πv be the set
of parents of a value node V , and let v(Πv) be the value function mapping the
different expected utilities to the various combinations of states of the parents.
The transformation is then defined as follows:
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Figure 5.12: Definition of node Financial gain.

Table 5.6: Definition of value node Financial gain transformed to a chance node
definition.

Success of the venture Success Failure
Investment decision Invest DonotInvest Invest DonotInvest

true 1 0.37 0 0.37
false 0 0.63 1 0.63

P (V = T |Πv) =
v(Πv) + k2

k1
, (5.3)

where

k1 = max
Πv

[v(Πv)] − min
Πv

[v(Πv)] (5.4)

and

k2 = −min
Πv

[v(Πv)] . (5.5)

This essentially performs a linear transformation of the expected utilites to
the [0,1] range, assigning 0 to the lowest expected utility and 1 to the highest
expected utility. The transformation implies that the result is a binary chance
node with states true and false, so:

P (V = F ) = 1 − P (V = T ) . (5.6)

We can, for example, transform the definition of value node Financial gain,
shown in Figure 5.12. This definition is indexed by the parent nodes Success
of the venture and Investment decision. So these two nodes together form Πv.
Then k2 = −(−5000) = 5000 and k1 = 10000 − (−5000) = 15000. If we then
apply Equation 5.3 we get the probability distributions shown in Table 5.6. This
way we can treat a value node the same way as we treat a regular chance node.

Finally, there is one more situation possible concerning value nodes. When
both parent and child are value nodes, the child node becomes a multi-attribute
utility (MAU) node. A MAU node has one or more utility nodes as its parents,
and its definition is defined by weights. An example is shown in Figure 5.13.
All three value nodes, Income, Growth and Happiness influence the MAU node
Total Satisfaction. The weights are used to calculate the expected utility of the
MAU node, which is the sum of the expected utilities of each of the parents
multiplied by the corresponding weight. An example of the definition is shown
in Figure 5.14. If we want to visualize influence using the thickness of the arcs,
we will always want to do so in the direction of the MAU node, because the
parents each have a certain part in the expected utility of the MAU node. There
is no influence in the other direction. To calculate this we can simply use the
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Figure 5.13: Total Satisfaction is an example of a multi-attribute utility (MAU)
node.

Figure 5.14: Definition of the MAU node Total Satisfaction of Figure 5.13.

weights of the definition of the MAU node. We can transform a weight w to the
[0,1] range in the following way:

wtransformed = abs(w)/max(abs(wmin), abs(wmax)) , (5.7)

where wmin is the minimum weight present in the definition, and wmax the
maximum.

The result of that transformation for the definition of the node Total Sat-
isfaction is given in Table 5.7. This result can be directly interpreted as an
influence measure, so no comparisons are needed.

Table 5.8 summarizes the various situations where a value node is involved.

5.4 Difference between distributions

Given two discrete probability distributions, we want to know how much they
differ so that we can make a good comparison between various differences and
draw valid conclusions about which change is more significant than the other.
In our case, there are two different situations possible, one in which the states of
the distribution are ordered, and one in which they are not. If the states of the
distribution are ordered, we may want to adjust our interpretation of a change
of a distribution. The main thought is that, if the states are ordered from left
to right, from less important to most important, the more the probability shifts
from one side of the distribution to the other, the more important the change is.
If we have three distributions, A = [1, 0, 0, 0], B = [0, 1, 0, 0] and C = [0, 0, 0, 1],
then, in the situation where the four states are not ordered in any way, the
change from A to B would be considered just as big as the change from A to
C. But if we know that the states are in an ascending order, then we would
consider the change from A to B to be less significant than the change from A
to C.

Table 5.7: Definition of MAU node Total Satisfaction transformed to the [0,1]
range.

Parents Income Growth Happiness
influence 0.2 0.44 1
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Table 5.8: Possible situations and approaches when a value node is involved.

Parent Child Approach

value node value node (MAU) Use transformed definition of child.
not a value node value node Transform value to probability

distribution and treat like regular chance
node.

value node not a value node Impossible, a value node can only have
another value node as a child.

We also need to pay attention to the way we are going to treat differences
when one of the probabilities approaches either 0 or 1. Are we, for example,
going to treat a difference in probability from 0.0001 to 0.01 in the same way as
one from 0.71 to 0.72? We might want to consider the former a more significant
increase than the latter, while in both cases the difference is about 0.01. If
we imagine a weather forecaster who predicts a 71% chance of rain, while the
actual chance is 72%, we would say that he did a good job. But if an expert
predicts a chance of 1% of getting some serious disease, when the actual chance
is just 0.01%, we would probably say that he was not very accurate. This leads
us to the distinction between absolute and relative differences. An absolute
difference is expressed in the same units as the two compared values. There
are no units on a relative difference, they are expressed in percentages. In our
example the absolute differences are 0.0099 and 0.01, respectively, while the

relative differences are |0.71−0.72|
0.71 · 100 = 1.41% and |0.01−0.0001|

0.01 · 100 = 99%.
So the absolute differences are almost equal, but the relative differences are not
equal at all.

Also, we need to compare various differences to each other, which requires
that our measure is symmetric. Symmetric means that, for a certain distance
measure D and two probability distributions P and Q, the following holds:

D(P,Q) = D(Q,P ) . (5.8)

If we would only do comparisons from one point of view, meaning that one of
the two distributions is constant during the comparisons, we could just take care
that we use the same order of arguments to the distance function every time.
But this is not the case. Consider, for example, the network in Figure 5.15.
If we want to determine the influence in the direction of the arrows, so from
parent to child, there are two influences: that of A on B and that of B on C.
To determine the amount of influence we would calculate D(P (B), P (B|A)) and
D(P (C), P (C|B)). Now, assuming that all nodes are binary, if P (B) = [0.5, 0.5],
P (B|A) = [0.9, 0.1], P (C) = [0.9, 0.1] and P (C|B) = [0.5, 0.5], we could run into
trouble when using an asymmetric measure, because essentially we are going to
do the following comparison:

D([0.5, 0.5], [0.9, 0.1]) == D([0.9, 0.1], [0.5, 0.5]) . (5.9)

We are required to use a symmetric measure, otherwise we could obtain two
different values while we want to consider these two differences equal.

Finally, we would like to have a measure that gives us values in a certain
bounded range, preferably from 0 to 1. This will provide an easy direct mapping
to the thickness of an arc. We could use an unbounded measure, ofcourse, and
just assign the highest difference the thickest arc, and determine the thickness
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A B C

Figure 5.15: A network consisting of three nodes.

of all the other arcs relative to that thickest one. But that way we cannot,
for example, compare the thickness of the arcs in two different networks with
eachother, because the two highest values of two networks can differ considerably
and therefore a certain thickness of an arc in one network can indicate a very
different amount of influence than that same thickness does in another network.

5.5 Distance measures

In this section we will discuss various distance measures. For this purpose we
now define P and Q as two discrete probability distributions:

P,Q ǫ

{

(p1, p2, ..., pn)
∣

∣

∣
pi > 0,

n
∑

i=0

pi = 1

}

, n > 1 . (5.10)

5.5.1 Euclidean distance

A well known measure is the Euclidean distance. It is defined as:

E(P,Q) =

√

√

√

√

n
∑

i=1

(pi − qi)2 . (5.11)

If P and Q are two points in some N -dimensional space this calculates
the actual spatial distance between the two points. When used with discrete
probability distributions, where the sum of all elements is always equal to one,
the value of this measure ranges from 0, when there is no difference, to

√
2, the

maximum difference. The Euclidean distance is a symmetric measure. Figure
5.16 shows the behaviour of the Euclidean distance in various situations. We
can transform the Euclidean distance to the [0, 1] range easily:

Enorm(P,Q) =
E(P,Q)√

2
. (5.12)

5.5.2 Hellinger distance

Another measure that is often used is the Hellinger distance [14], which is
defined as:

H(P,Q) =

√

√

√

√

n
∑

i=1

(
√

pi −
√

qi)2 . (5.13)
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(a) Euclidean distances for the binary distribution P = (p1, p2) against distribution Q =
(q1, q2) where p2 = 1 − p1 and q2 = 1 − q1.

(b) Euclidean distance for the three state distribution P = (0.33, 0.33, 0.34) against distribu-
tion Q = (q1, q2, q3) where q3 = 1− q1 − q2. When q1 + q2 > 1 the probability distribution is
invalid and its distance is set to 0.

(c) Euclidean distance for the three state distribution P = (0.8, 0.1, 0.1) against distribution
Q = (q1, q2, q3) where q3 = 1 − q1 − q2. When q1 + q2 > 1 the probability distribution is
invalid and its distance is set to 0.

Figure 5.16: Euclidean distances
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The value of this measure ranges from 0 to
√

2. Figure 5.17 shows the
behaviour of the Hellinger distance. It can be seen that the Hellinger distance
is more sensitive when approaching 0 or 1, as opposed to the Euclidean distance.
The Hellinger distance is also symmetric and we can, again, easily define a linear
transformation to get it to the [0, 1] range:

Hnorm(P,Q) =
H(P,Q)√

2
. (5.14)

5.5.3 Kullback-Leibler distance

The Kullback-Leibler distance [20], or Kullback-Leibler divergence, comes from
the field of information theory and is given as:

K(P,Q) =
n

∑

i=1

(pilog2(
pi

qi

)) . (5.15)

It can also be written as:

K(P,Q) = −
n

∑

i=1

pilog2(qi) +

n
∑

i=1

pilog2(pi) = H(P,Q) − H(P ) , (5.16)

where H(P,Q) is the cross-entropy of P and Q, which expresses the overall
difference between two distributions, and H(P ) is the entropy of P , which is a
measure of how much information P carries.

The value of this measure ranges from 0 to ∞. Figure 5.18 shows the be-
haviour of the Kullback-Leibler distance. Like the Hellinger distance, changes
near 0 or 1 are treated differently than changes in other regions.

But, for our purpose, there are three problems with the Kullback-Leibler
distance. First, it is not symmetric, second, its values go to infinity, and third,
if a qi = 0 there is a division by zero. We will deal with these problems with
the help of the next measure, the J-divergence.

5.5.4 J-divergence

To make the Kullback-Leibler distance symmetric, we can instead choose to use
the J-divergence [17, 18], which can be given as the average of the two possible
values of the Kullback-Leibler distance:

J(P,Q) =
K(P,Q) + K(Q,P )

2
. (5.17)

This solves the symmetry issue, but it still has values that go to infinity. To
make the J-divergence range from 0 to 1 we can normalize it as follows [32]:

Jnorm(P,Q) =
J(P,Q)

√

J(P,Q)2 + α
, (5.18)

where α ≥ 0 is a parameter controlling the “smoothness” of the normalization.
Figure 5.19 shows the normalized J-divergence with α = 10. If we compare this
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(a) Hellinger distances for the binary distribution P = (p1, p2) against distribution Q =
(q1, q2) where p2 = 1 − p1 and q2 = 1 − q1.

(b) Hellinger distance for the three state distribution P = (0.33, 0.33, 0.34) against distribution
Q = (q1, q2, q3) where q3 = 1 − q1 − q2. When q1 + q2 > 1 the probability distribution is
invalid and its distance is set to 0.

(c) Hellinger distance for the three state distribution P = (0.8, 0.1, 0.1) against distribution
Q = (q1, q2, q3) where q3 = 1 − q1 − q2. When q1 + q2 > 1 the probability distribution is
invalid and its distance is set to 0.

Figure 5.17: Hellinger distances
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(a) Kullback-Leibler distances for the binary distribution P = (p1, p2) against distribution
Q = (q1, q2) where p2 = 1 − p1 and q2 = 1 − q1.

(b) Kullback-Leibler distance for the three state distribution P = (0.33, 0.33, 0.34) against
distribution Q = (q1, q2, q3) where q3 = 1 − q1 − q2. When q1 + q2 > 1 the probability
distribution is invalid and its distance is set to 0.

(c) Kullback-Leibler distance for the three state distribution P = (0.8, 0.1, 0.1) against distri-
bution Q = (q1, q2, q3) where q3 = 1− q1 − q2. When q1 + q2 > 1 the probability distribution
is invalid and its distance is set to 0.

Figure 5.18: Kullback-Leibler distances
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to Figure 5.18 we can see that we have nicely captured a very similar behaviour,
but now the measure is symmetric, and the values range from 0 to 1.

To also solve the third and final problem, the possible division by zero, we
can change the definition into:

Jnorm(P,Q) =

{

1 ∃i ǫ (1, ..., n), qi = 0
J(P,Q)√

J(P,Q)2+α
else . (5.19)

5.5.5 CDF distance

This measure is based on the method used in [19]. It is targeted towards ordinal
distributions, meaning that if the states are ordered from left to right, from
less important to most important, the more the probability shifts from one
side of the distribution to the other, the more important the change is. It
compares the cumulative distribution functions (CDF) of the two distributions
to be compared. We have generalized this meaure so that it can be used as a
distance measure between two probability distributions. It is defined as:

C(P,Q) =
1

n − 1

n
∑

i=1

|P (P ≤ pi) − P (Q ≤ qi)| . (5.20)

The range of this measure is from 0, when there is no difference, to 1, the
maximum difference. We will illustrate how this measure works by means of an
example. Say we have three discrete probability distributions: P = [0, 0, 1, 0],
Q = [0.1, 0, 0, 0.9] and R = [0, 0.1, 0, 0.9]. Each has four states, labeled, from
lowest to highest, as: none, low, medium, high. The CDF for each of these
distributions is shown in Figure 5.20.

If we want to compare P to Q as well as R we can combine them as shown
in Figure 5.21. Intuitively, the difference between P and Q is greater than
that between P and R, because in Q the probability of the first state increases
when compared to P , while in R the probability of the second state increases.
The probability of P is concentrated in the third state, so an increase in the
first state is more important than an increase in the second state, because the
second state is located directly next to the third state, while the first state is
located one state away to the left. This is reflected in Figure 5.21. We are
considering the size of the non-overlapping parts as the difference between the
two distributions. So for Figure 5.21(a) we get, by applying equation 5.20:

1

4 − 1
(0.1 + 0.1 + 0.9 + 0) =

11

30
≈ 0.37 .

For Figure 5.21(b) it is:

1

4 − 1
(0 + 0.1 + 0.9 + 0) =

10

30
≈ 0.33 .

We see that the difference between P and Q indeed is greater than that
between P and R, because 0.37 > 0.33. It is only a small difference of 0.04, but
that is because the difference between the two actually is pretty small.

Figure 5.22 shows the behaviour of the CDF distance. If we look at the
extremes of Figure 5.22(b), we can see that when [q1, q2, q3] = [0, 1, 0] the differ-
ence with [0.33, 0.33, 0.34] is less than when [q1, q2, q3] = [0, 0, 1] or [q1, q2, q3] =
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(a) J-divergence normalized with α = 10 for the binary distribution P = (p1, p2) against
distribution Q = (q1, q2) where p2 = 1 − p1 and q2 = 1 − q1.

(b) J-divergence normalized with α = 10 for the three state distribution P = (0.33, 0.33, 0.34)
against distribution Q = (q1, q2, q3) where q3 = 1− q1 − q2. When q1 + q2 > 1 the probability
distribution is invalid and its distance is set to 0.

(c) J-divergence normalized with α = 10 for the three state distribution P = (0.8, 0.1, 0.1)
against distribution Q = (q1, q2, q3) where q3 = 1− q1 − q2. When q1 + q2 > 1 the probability
distribution is invalid and its distance is set to 0.

Figure 5.19: Normalized J-divergence
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(a) CDF for distribution P (b) CDF for distribution Q

(c) CDF for distribution R

Figure 5.20: CDF for distributions P, Q and R

(a) P and Q combined (b) P and R combined

Figure 5.21: CDF for combined distributions
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Table 5.9: Summary of distance measures.

Measure Range Symmetric Comments

Euclidean [0,
√

2] yes -

Hellinger [0,
√

2] yes More sensitive near 0 and 1.

Kullback-Leibler [0,∞) no More sensitive near 0 and 1. Division
by zero if qi = 0.

J-divergence [0,∞) yes More sensitive near 0 and 1. Division
by zero if qi = 0.

CDF [0, 1] yes Targeted towards ordinal
distributions.

[1, 0, 0], where the difference is maximum. This is because in the last two situa-
tions the evenly distributed probability distribution [0.33, 0.33, 0.34] gets com-
pletely concentrated in either the left-most or right-most state of Q, causing
a maximum change, while in the other case all the probability has completely
shifted to the center state, which is a less extreme change.

If we look at Figure 5.22(c), we can see that when [q1, q2, q3] = [0, 0, 1] the
difference with [0.8, 0.1, 0.1] is maximum, because the probability shifts from
mostly the left states to the extreme right, you could say. We can also see
that the change to [q1, q2, q3] = [0, 1, 0] is considered greater than the change to
[q1, q2, q3] = [1, 0, 0], which again can be explained by the shift of probability
being greater in the first case.

5.5.6 Conclusions

Table 5.9 summarizes the properties of the discussed distance measures. The
Kullback-Leibler distance, J-divergence and Hellinger distance all are more sen-
sitive near 0 and 1, which is nice because that captures relative differences. But
only the J-divergence and the Hellinger distance are symmetric, a required prop-
erty. The CDF distance is a good choice when there are ordinal nodes, because
it represents the shift of probability according to the cumulative probability
functions of the two distributions. A drawback is that it treats differences near
0 and 1 the same as elsewhere. Which measure will provide the best results
in our situation is hard to determine, even more so because the performance
of each measure can vary for networks with various characteristics. In our im-
plementation we are going to allow for the use of the Euclidean distance, the
Hellinger distance, the CDF distance and the J-divergence. Switching measures
will be very easy which makes our implementation very flexible and prepared for
most situations. We are not going to use the Kullback-Leibler distance, because
it is not symmetric and therefore not suitable to our needs.
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(a) CDF distances for the binary distribution P = (p1, p2) against distribution Q = (q1, q2)
where p2 = 1 − p1 and q2 = 1 − q1.

(b) CDF distances for the three state distribution P = (0.33, 0.33, 0.34) against distribution
Q = (q1, q2, q3) where q3 = 1 − q1 − q2. When q1 + q2 > 1 the probability distribution is
invalid and its distance is set to 0.

(c) CDF distances for the three state distribution P = (0.8, 0.1, 0.1) against distribution
Q = (q1, q2, q3) where q3 = 1 − q1 − q2. When q1 + q2 > 1 the probability distribution is
invalid and its distance is set to 0.

Figure 5.22: CDF distances
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Color of arcs

6.1 Overview

If a network, or a part of a network, consists of ordinal nodes (see Section 5.1),
it is meaningful to determine the sign of infuence. The sign of influence between
a node A and a direct successor or predecessor B can be positive, meaning that
higher values of A always lead to higher values of B, negative, meaning that
higher values of A always lead to lower values of B, null, meaning that higher
values of A always lead to values of B that are neither higher nor lower, or
ambiguous, meaning that the influence is neither positive, negative nor null. In
this context, ’always’ refers to the fact that A can have more parents than just
B, in which case the stated relations must hold for every possible configuration
of the other parents of A, i.e., always. These definitions stem from the field of
qualitative probabilistic networks [33], in which the relations between nodes in
a network are not defined by conditional probability tables, but by the signs of
influences among nodes.

Up to now the approach to determining the sign of influence has been based
on calculations using the conditional probability tables, which results in a static
and local method. We will implement this feature but we will also extend it so
that it is context-specific and non-local, i.e., taking into account any observed
variables and indirect influences. We will discuss both in the following two
sections.

6.2 Static coloring

The static determination of the sign of influence uses the conditional probabil-
ity tables of a Bayesian network. As mentioned earlier, there can be positive,
negative, null or ambigious influences. What type of influence is present for a
certain arc is given by the following equations.
There is a positive influence between a parent A and its child B, where C is the
set of all parents of B except A, when the following two equations hold:

∀ai∀aj . ai ≥ aj ⇒ ∀b∀C(P (B ≤ b|ai, C) − P (B ≤ b|aj , C) ≤ 0) , (6.1)

and
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(a) (b)

Figure 6.1: An example network and conditional probability table.

∃ai∃aj . ai ≥ aj ⇒ ∀b∀C(P (B ≤ b|ai, C) − P (B ≤ b|aj , C) < 0) . (6.2)

There is a negative influence when the following two equations hold:

∀ai∀aj . ai ≥ aj ⇒ ∀b∀C(P (B ≤ b|ai, C) − P (B ≤ b|aj , C) ≥ 0) , (6.3)

and

∃ai∃aj . ai ≥ aj ⇒ ∀b∀C(P (B ≤ b|ai, C) − P (B ≤ b|aj , C) > 0) . (6.4)

There is a null influence when the following equation holds:

∀ai∀aj . ai ≥ aj ⇒ ∀b∀C(P (B ≤ b|ai, C) − P (B ≤ b|aj , C) = 0) . (6.5)

If there is no positive, negative or null influence, the influence is ambiguous.
We will give an example. Figure 6.1(a) shows a simple Bayesian network

with the conditional probability table for node B in Figure 6.1(b).
If we want to determine the sign of influence for the two arcs, we only need the
given conditional probability table of node B.

First, let us consider the arc between A and B. For each state of the other
parents of B, which in this case is node C, we are going to compare the distri-
butions of B. This comes down to comparing [0.5, 0.5] with [0.6, 0.4], which are
the two distributions of B when C is in state “high” and A changes from “low”
to “high”, and [0.55, 0.45] with [0.7, 0.3], which are the two distributions of B
when C is in its other state, “low”, and A again changes from “low” to “high”.
We can see, in this case even without explicitly using the presented formulas,
that in both cases the influence is positive. In the first case, the probability of
the “high” state of node B increases from 0.5 to 0.6. In the second case, the
probability of the “high” state also increases, from 0.55 to 0.7. This indicates
a positive influence, the change of node A from the state “low” to the higher
state “high” also causes the probability distribution of node B to shift in that
same direction. Formally, it can be seen that Equations 6.1 and 6.2 hold.

To determine the sign of influence for the arc between node C and node B
we need to compare the distribution [0.7, 0.3] with [0.6, 0.4] and the distribu-
tion [0.55, 0.45] with [0.5, 0.5]. The first two indicate the change when node C
changes from state “low” to state “high” where node A is in state “high”. The
latter two indicate the change when node C changes from state “low” to state
“high” where node A is in its other state, “low”. This influence is negative,
because, in both cases, when the state of node C changes from state “low” to
state “high”, the probability of the state “high” of node B decreases. So a
change in one direction in node C causes a change in the opposite direction in
node B, i.e., the influence is negative. In this case Equations 6.3 and 6.4 hold.
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6.3 Dynamic coloring

Our dynamic method for determining the sign of influence is, just like the thick-
ness of arcs, context-specific and it takes into account any indirect influences.
We are going to determine the sign of influence by looking at the posterior prob-
ability distribution of a node, for each possible state of the parent or child node.
For a node with n states, this will result in n potentially different posterior
probability distributions of the connected node(s). These posterior probability
distributions will be compared using a slightly simplified version of the equations
in Section 6.2. Between a node A and its child B there is a positive influence
when the following two equations hold:

∀ai∀aj . ai ≥ aj ⇒ ∀b(P (B ≤ b|ai) − P (B ≤ b|aj) ≤ 0) , (6.6)

and

∃ai∃aj . ai ≥ aj ⇒ ∀b(P (B ≤ b|ai) − P (B ≤ b|aj) < 0) . (6.7)

There is a negative influence when the following two equations hold:

∀ai∀aj . ai ≥ aj ⇒ ∀b(P (B ≤ b|ai) − P (B ≤ b|aj) ≥ 0) , (6.8)

and

∃ai∃aj . ai ≥ aj ⇒ ∀b(P (B ≤ b|ai) − P (B ≤ b|aj) > 0) . (6.9)

There is a null influence when the following equation holds:

∀ai∀aj . ai ≥ aj ⇒ ∀b(P (B ≤ b|ai) − P (B ≤ b|aj) = 0) . (6.10)

If there is no positive, negative or null influence, the influence is ambiguous. The
sign of influence can be determined, just like the thickness of an arc, in both
directions, i.e., from the parent to the child and from the child to the parent. If
these two differ then the sign will also be regarded as being ambiguous.

The dynamic method differs from the static method in that it is not local.
The sign of influence in our dynamic method signifies the actual behaviour in the
current situation, including all indirect influences and observations. Figure 6.2
clarifies this. It shows a Bayesian network consisting of three nodes. All nodes
have two states, “low” and “high”. The conditional probability table for node
A is shown in Figure 6.2(b) and for node B in Figure 6.2(c).

Let us consider the two arcs between nodes A and B (arc AB) and nodes
C and B (arc CB). With the static method of Section 6.2 the sign of influence
of arc AB is posive and that of arc CB negative. This is based on the condi-
tional probability table of node B, which is shown in Figure 6.2(c). From that
conditional probability table we can see that node C has a very small negative
influence on node B. If node C changes state from “low” to “high”, the proba-
bility of the “high” state of node B drops only 0.001. The positive influence of
node A on node B, on the other hand, is very strong. If node A changes state
from “low” to “high”, the probability of the “high” state of node B increases
from almost zero to almost one. The signs are visualized in Figure 6.3(a). A
green arrow indicates a positive influence and a red arrow indicates a negative
influence.
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(a) A simple network. (b) CPT for node A.

(c) CPT for node B.

Figure 6.2: An example network and conditional probability tables.

(a) Static signs of influ-
ence.

(b) Dynamic signs of in-
fluence.

Figure 6.3: Signs of influence, green indicates a positive influence and red a
negative influence.

In our dynamic method, the influence that node C has on node B is de-
termined to be positive, which is the opposite compared to the static method,
that shows a negative influence. The reason for this is that the static method
is local. It is true that node C has a small negative influence on node B, but
what happens if we actually observe the two states, “low” and “high” of node
C, and calculate the posterior probabilities of the other two nodes? We will
see that changing node C from state “low” to state “high” actually results in
a very large increase in probability of the “high” state of node B, meaning a
positive influence, and not a negative influence like the static method shows.
This can be explained by the indirect influence that C has on B through A.
When we observe node C in state “low”, then node A is almost certainly also in
state “low”. When node C is observed in state “high”, then node “A” is almost
certainly also in state “high”. This can be seen in the conditional probability
table of node A, shown in Figure 6.2(b). So, if we now look at the conditional
probability table of node B (Figure 6.2(c)), we see that in this case, when node
C is observed in its “low” state, and therefore node A is also much more likely
to be in its “low” state than in its “high” state as explained just now, the pos-
terior probability distribution of node B will be very close to [0.998, 0.002]. If
node C is observed in its “high” state, and therefore node A is also much more
likely to be in its “high” state than in its “low” state, the posterior probability
distribution of node B will be very close to [0.002, 0.998]. This corresponds to
a positive influence, because the “high” state of node B increases in probability
when node C changes state from “low” to “high”. We can conclude that, when
node C is observed, the positive influence that reaches node B through node A
is much larger than the direct negative influence that node C has on node B.

Figure 6.4 shows another example of different behaviour between the static
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(a) A simple network. (b) CPT for node B.

Figure 6.4: An example network and conditional probability table.

(a) Static signs of influ-
ence.

(b) Dynamic signs of in-
fluence, node A is ob-
served in state “high”.

Figure 6.5: Signs of influence, green indicates a positive influence, purple an
ambiguous influence and blue that no sign has been determined.

and the dynamic method. It again shows a network with three nodes. Node A
and B both have two states, “low” and “high”, and node C has three states,
“low”, “medium” and “high”.

In the static method, the influence node A has on node B is determined
to be positive, and the influence that node C has on node B is determined to
be ambiguous, as shown in Figure 6.5(a). If we look closely at the conditional
probability table of node B, shown in Figure 6.4(b), we can see that this is
correct. Everytime that node A changes from state “low” to state “high”, the
probability of the “high” state of node B, while keeping the state of node C
unchanged, increases. The ambiguous influence of node C on node B can also
be explained using the conditional probability table. When node A is in state
“low” and we check what happens when the state of node C changes from “low”
to “medium” to “high”, we see that the probability of the “high” state of node B
first increases, but then decreases again. This indicates an ambiguous influence.
When node A is in state “high” instead of “low”, then the probability of the
“high” state of node B increases from 0.6 to 0.85 to 0.95, which indicates a
positive influence. But the ambiguous influence which is also present for this
connection causes the final sign to be ambiguous.

If we now observe node A to be in its “high” state, the dynamic mode
redetermines the sign of influence and considers the sign between node C and
B to be positive, as shown in Figure 6.5(b). This is because now that we know
for a fact that node A is in state “high” the situation has changed such that
the influence no longer is ambiguous but positive. There is no sign of influence
determined for the arc between node A and node B. This is because node A
has been observed, and therefore there is no potential influence anymore.
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Implementation

The theories presented in Chapter 5 and 6 have been implemented, and in-
tegrated into GeNIe, the software package developed at the Decision Systems
Laboratory of the University of Pittsburgh. GeNIe makes use of the SMILE
library as its reasoning engine, which is also developed at the Decision Systems
Laboratory of the University of Pittsburgh.

7.1 Implementation in SMILE

SMILE, which is introduced in Section 2.7.1, is built up of a collection of classes,
all written in C++. We have done our implementation by creating two new
classes, also written in the C++ programming language. One class represents
an arc and is called DSL arc, the other holds and manages all arcs that exist
in a Bayesian network and is called DSL arcs. The class diagram is shown in
Figure 7.1. For a particular network there exists exactly one DSL arcs class,
which holds multiple DSL arc classes, one for each arc in the network.

The DSL arcs class provides top-level functions. Arcs can be retrieved and
the distance measure to use when determining the thickness of an arc can be
set for all arcs at once. The DSL arcs class holds a reference to the network it
belongs to and stores all arcs in a vector for easy manipulation.

The DSL arc class represents a single arc in a network. It holds a reference
to the network it belongs to and references to its child and parent node. Fur-
thermore it stores probability distributions of the parent and child nodes. For
the dynamic mode posterior probability distributions need to be stored for the
parent/child node for each possible state of the child/parent node. The DSL arc
class has various structures to manage this. It also is able to store the direction
in which the dynamic influence should be calculated, and provides functions to
manage the changing of direction, because not all changes are permitted. For
example, when the parent node is a decision node the direction is always to the
child, as explained in Section 5.3.1. There are also functions in the DSL arc class
to provide access to both the static and the dynamic influence values. These
functions return a value between 0 and 1 of type double, based on the currently
set distance function, where 0 indicates no influence and 1 indicates a maximum
influence. Both for the static and the dynamic influence there are three sepa-
rate functions. One returns the maximum influence value, another returns the
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Figure 7.1: Class diagram of the arcs classes.

average influence value and the third one returns a weighted average. This has
all been discussed in Chapter 5. Finally, there are two functions in the DSL arc
class to retrieve the sign of influence. One returns the static sign of influence
and the other returns the dynamic sign of influence. This is done as a simple
integer, internally constants are defined to make things easy to understand.

All that is needed to get the signs of influence and the strengths of influence
for the arcs in a network is to create a DSL arcs object, and then to use the
functions provided by the DSL arc class to get the needed information. If the
state of the network changes, e.g., a new observation has been done, the dynamic
data needs to be recalculated. This can be triggered by marking the current
values invalid, for which the DSL arc class provides a function. When this has
been done, a subsequent call to any of the functions regarding dynamic values
will return an updated value.
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(a) Dark blue, no sign of
influence.

(b) Green, positive sign
of influence.

(c) Red, negative sign of
influence.

(d) Grey, null sign of in-
fluence.

(e) Purple, ambiguous
sign of influence.

Figure 7.2: The different possible colors.

7.2 Integration into GeNIe

The implementation of Section 7.1 has been integrated into GeNIe. We cre-
ated an extra module within GeNIe that provides all the functionality for the
thickness and the color of the arcs. GeNIe is created and maintained solely
by Tomasz Sowinski, a member of the Decision Systems Laboratory of the
University of Pittsburgh. The integration into GeNIe has been done in close
cooperation with him. The actual programming of the graphical user interface
has been done by Mr. Sowinski, according to our specifications and ideas.

The signs of influence are visualized by adjusting the color of an arc. In
that way a user can easily study the relations and pick out any arc that does
not match with his or her belief. We will color positive arcs green, negative
arcs red, ambiguous arcs purple and null arcs grey. Green is mostly associated
with something positive or good, and red is mostly associated with something
negative or bad. Grey for the null influence has been chosen because something
that is not present or irrelevant is often “greyed out” in computer programs,
therefore we think grey will be easy to associate with a null influence. The
purple color for an ambiguous influence has been chosen because it fits nicely
with the other colors. Figure 7.2 shows all the possible colors.

The sign of influence between two nodes, visualized by the color of the arc,
only has meaning if both nodes have some kind of ordering, i.e., are ordinal.
The ordinality of a node can be set by accessing its property dialog box. This
dialog box is shown in Figure 7.3. If the ordering of the outcomes is said to
be none, then the color of the arcs connected to that node will be left at the
default color of GeNIe, dark blue.

In the dynamic mode, the user can select in which direction the influences
should be calculated by right-clicking on an arc. These directions can be visu-
alized by icons. There are four different icons, shown in Figure 7.4.
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Figure 7.3: Poperties of a node, the ordinality can be set using the option
Outcome order.

(a) Parent to child. (b) Child to parent.

(c) Both, parent to
child and child to
parent.

(d) None.

Figure 7.4: The different possible icons indicating the direction.
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Figure 7.5: Poperties of an arc, shown in a popup balloon.

Figure 7.6: GeNIe showing the HEPAR II network.

When hovering over the tip of an arc, a popup balloon appears that holds
detailed information concerning that arc. An example is shown in Figure 7.5.

7.3 Examples

Figure 7.6 shows GeNIe with the HEPAR II network loaded. Using the toolbar
at the top the new module can be invoked, by pressing the button with the
horizontal red and green arrows. Figure 7.7 shows GeNIe with the module
activated and displaying the thickness of the arcs. A floating toolbar can be
seen in both screenshots. This toolbar holds all the controls concerning the
module. All its features are discussed in detail in Appendix B.

Figure 7.8 shows the coloring of the arcs, visualizing the signs of influence.
It can be seen that a lot of ambiguous influences (purple arcs) in the static
mode displayed in Figure 7.8(a) are replaced by non-ambiguous influences in
the dynamic mode, displayed in Figure 7.8(b). This is due to the fact that the
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(a) Thickness of arcs in static mode.

(b) Thickness of arcs in dynamic mode.

Figure 7.7: Thickness of arcs in the HEPAR II network.
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dynamic mode is context-specific and not purely local, as discussed in Chapters 5
and 6. Finally, Figure 7.9 shows GeNIe when both the thickness and color of
the arcs are displayed simultaneously.
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(a) Color of arcs in static mode.

(b) Color of arcs in dynamic mode.

Figure 7.8: Color of arcs in the HEPAR II network.
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(a) Color and thickness of arcs in static mode.

(b) Color and thickness of arcs in dynamic mode.

Figure 7.9: Color and thickness of arcs in the HEPAR II network.
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Empirical evaluation

We have evaluated our implementation, both quantitatively and qualitatively.
Section 8.1 treats the quantitative evaluation and Section 8.2 the qualitative
evaluation.

8.1 Quantitative evaluation

To get an idea of the time needed to calculate the data needed for our dynamic
mode of both the thickness and color of the arcs, we measured the performance
on various benchmark networks. The properties of the networks are listed in
Figure 8.1. The results of the test are shown in Figure 8.2. The first thing to
notice is that, while the calculations for many of the networks are completed
within seconds, the Diabetes network is particularly slow. Keeping in mind that
the most intensive part of the process is performing inference, this long running
time is caused by the structure of the network. The structure is such that the
inference algorithm takes more time to perform one inference step. Besides this
the Diabetes network has many states per node, an average of more than eleven
per node, and has quite a few arcs. For each node and for each of the states
inference must be done.

Another thing that can be seen is that the running time often increases when
there are observed variables. This is caused by the fact that observed variables
can create extra dependencies among variable, resulting in more complex infer-
ence.

Overall, the time needed to calculate all the needed data for the dynamic
mode is often negligiable, but this depends on the structure of the network. If
the network is very large one can ask the question whether showing thickness
and color of all arcs at once is really useful. In such situations it may be
more insightful to consider a subset of arcs, in which case the running time will
decrease dramatically.

8.2 Qualitative evaluation

We have performed a qualitative evaluation of our newly developed module for
thickness and color of arcs. We wanted to find out if we had succeeded in
meeting our goals, i.e., creating an explanation that is both easy to use and
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Table 8.1: Properties of the various networks.

Network Nodes Max Parents Avg Parents Max States Avg States Arcs
Alarm 37 4 1.24324 4 2.83784 46
CPCS179 179 8 1.3352 4 2.2905 239
Diabetes 413 2 1.45763 21 11.3366 602
Hailfinder 56 4 1.17857 11 3.98214 66
Hepar 70 6 1.75714 4 2.31429 123
Link 724 3 1.55387 4 2.53177 1125
Munin 1041 3 1.34198 21 5.42843 1397
Pathfinder 109 5 1.78899 63 4.11009 195

Table 8.2: Calculation time for determining thickness and color of all arcs, in
seconds.

Network No observations 10 observations
Alarm 0.016 0.001
CPCS179 0.297 0.437
Diabetes 3114.17 6343.77
Hailfinder 0.063 0.031
Hepar 0.063 0.078
Link 4.016 78.625
Munin 15.734 23.188
Pathfinder 2.297 2.657

easy to understand for a user that is familiar with Bayesian network. In order
to evaluate this we designed an evaluation in which the subject is provided
with two particular Bayesian network models and is asked, after a thorough
introduction, to gain insight in these models using our module.

The qualitative evaluation has been peformed by members of the Decision
Systems Laboratory and other people. All were familiar with Bayesian networks
and GeNIe and were therefore suitable candidates for our evaluation. They were
given a short introduction and tutorial to the newly developed module, which
is printed in Appendix A. They were also provided with a manual explaining
all the options of the module. This manual can be seen in Appendix B. They
were asked to explore two provided Bayesian networks, Car and Hepar, using
the features of our module. The Car network is shown in Figure 8.1. It is a
diagnostic network that can be used to diagnose certain problems with a car.
The Hepar network [25], modeling various liver disorders, is shown in Figure 8.2.

Directly afterwards, the subjects were asked to answer the following ques-
tions:

1. How long, approximately, did you experiment with the module?

2. On a scale from one to ten, how would you rate the easiness of interpre-
tation of the thicknesses of the arcs?

3. On a scale from one to ten, how would you rate the easiness of interpre-
tation of the colors of the arcs?
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Figure 8.1: The Car network.

Figure 8.2: The Hepar II network.
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4. On a scale from one to ten, how would you rate the intuitiveness of the
thicknesses of the arcs?

5. On a scale from one to ten, how would you rate the intuitiveness of the
colors of the arcs?

6. Are there any particularly positive or negative things you encountered
during the use of the module?

7. What is your overall impression of the module?

8. Do you think you would use the module again to explore a model?

In the next section we will discuss the outcome of the evaluation.

8.2.1 Results of the evaluation

This section discusses the outcome of the qualitative evaluation. First we will
treat questions 1 to 5, according to the list given in Section 8.2. These questions
are answered numerically and are therefore suitable for summarization in a table.
This is done in Table 8.3. We can see that subjects spent, on average, about
forty minutes using the module. The easiness of interpretation of both the
thickness and color of the arcs is, on average, given a slightly lower rating than
the intuitiveness. But both get a rating that is more than satisfactory.

Table 8.3: Results for questions 1 to 5.

Questions
Subject # 1 2 3 4 5

Subject 1 45 min. 8 5 9 6
Subject 2 15 min. 8 6 9 7
Subject 3 60 min. 10 10 9 10
Subject 4 45 min. 7 7 9 9
Subject 5 60 min. 7 8 6 9
Subject 6 15 min. 7 7 8 8
Subject 7 30 min. 8 7 8 6
Subject 8 20 min. 7 6 9 8

Average 36 min. 7.8 7 8.4 7.9

To the question if there were any particularly positive or negative things
(question 6), the subjects gave a variety of answers. Three subjects explicitly
praise the module for its intuitive visualizations. The chosen colors are said
to be intuitive, especially green for positive and red for negative. The other
colors needed some time to adjust to, according to two subjects. Three subjects
mentioned that it would be helpful if the recalculation in the dynamic mode
is done automatically. In the current implementation a user has to press a
recalculate button manually after a new observation. One user also indicated
that, in the dynamic mode, after setting a new observation and recalculating
it is sometimes hard to see the difference with the previous situation. It would
be insightful, according to that subject, to somehow see the difference between
the current situation and the previous one. Three subjects mention that the
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different distance measures can be confusing. They say that it is not clear when
to use which distance measure. One subject notes that the normalization option
for the thickness of arcs can be dangerous in the dynamic mode, because if a new
observation is done and the maximum influence changes, a direct comparison
with the previous situation is impossible. Finally, one user says that he found
the dynamic mode to be more useful.

To the next question, question number 7, on the overall impression of the
module, every subject gave a positive answer, with, in two cases, one or two
negative side notes. One subject mentions that he found the colors not to be
intuitive enough, apart from red and green. One other subject mentions that
the difference between the different distance measures is unclear. On the other
hand, the module is called a useful extra tool for model analysis and a useful
tool to get a feel for the strength of influences between nodes. It is said to be
helpful in understanding the relations among the variables in a network and
that it can help in model building and decision making. Also, multiple subjects
say the graphical user interface looks good and that the module is easy to use.

To the final question, if the subject would use the module again in the
future, all but one subject gave a positive answer. The subject who did not
give a positive answer was currently not using Bayesian networks, but may do
so again in the future. So the reason for not using it again is not because of the
performance of the module but because the subject has no need to. All other
subjects say they would, sometimes even definitely, use the module again.





Chapter 9

Conclusions and future

work

9.1 Conclusions

This thesis has presented a technique to make inference in Bayesian networks
more insightful. This has been done by automatically adjusting the thickness of
the arcs in a Bayesian network to indicate the strength of influence between two
directly connected nodes. Also, the color of an arc is automatically adjusted to
indicate the sign of influence between the two directly connected nodes. These
two visualizations can be done in a static way, using only the definition of
a Bayesian network, but also in a dynamic way. The dynamic variant is, as
opposed to the static method, context-specific, takes into account any indirect
influences and is non-local.

To come to this result we first did a thorough review of previous research
in this area in Chapter 3. After reviewing and discussing what we found, we
formulated our initial ideas in Chapter 4. Two of these ideas, thickness of
arcs and color of arcs, were eventually chosen as the two most promising ideas.
These two ideas were designed in detail in Chapters 5 and 6. According to
the designs we did our implementation in Chapter 7. Our implementation was
done in two classes in the C++ progamming language. The implementation
has been integrated into GeNIe, creating a fully working explanation facility
using the normally unused arcs to visualize the strength and sign of influence
between two directly connected nodes. Finally, in Chapter 8, we presented our
quantitative and qualitative evaluation. The quantitative evaluation consisted of
evaluating the performance, in terms of calculation time, on various benchmark
networks. It showed that our dynamic method can, in some situations, be quite
slow, but in most Bayesian networks speed is no issue. A qualitative evaluation
was performed by eight people, all familiar with Bayesian networks. They were
asked a variety of questions, after having used the newly developed module of
GeNIe. The reactions were very positive, both in terms of our technique giving
more insight into a Bayesian network and in terms of easiness of use. The most
important criticism, mentioned by quite a few subjects, was the unclarity about
the available distance measures.
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9.2 Future work

During our research, we did not pursue every idea we had. Also, during the
qualitative evaluation, some opportunities arose to improve our implementation.
We propose the following items for future work:

• Find a way to make the difference between the different distance measures
more clear. During the qualitative evaluation multiple subjects mentioned
a need for clarification of the distance measures. Giving a user insight in
this is not a trivial task. A user does not want to read a long document
explaining the, sometimes subtle, differences between the measures. Also,
there is no golden rule as to when to use which measure. It is sometimes
more a matter of feel, which takes time to get. Somehow this needs to
be solved. Maybe by introducing two modes in which the module can
operate. A “simple” and “advanced” mode. In the simple mode many of
the settings are set by the program, and in the advanced mode the user
has more options, like changing the distance function.

• In the dynamic mode, the normalization option can deceive a user. If the
normalization option is selected and a new piece of evidence is observed,
which causes the maximum influence present in the network to go up or
down, all other arrows are scaled up or down as well. This makes a direct
comparison with the previous situation impossible. This problems needs
to be taken care of.

• In the dynamic mode, the user has to explicitly press a “recalculate” but-
ton after setting or removing observations. During the qualitative evalu-
ation more than one user found this to be a burden. The solution is to
make the module recalculate automatically in these situations.

• In Sections 4.1 and 4.3 we proposed the idea of visualizing the ancestors,
descendants and Markov blanket of a node. We think this can be a very
useful tool for a user to help him or her explore a model more efficiently.

• In Section 4.2 we proposed to visualize the subgraph containing all paths
of influence between a pair of nodes. How this can be done efficiently and
in what way this can be presented to a user is open for research.

• In Section 4.4 we identified showing the relevance of findings as an inter-
esting subject. It can show which findings are most significant for a certain
target variable, and could be able to indicate if those findings conflict or
agree with the overall inference result. Maybe there are opportunities in
the way in which these findings can be identified, but most certainly there
are opportunities in finding a good way to present the gathered statistics
to a user.

• In Section 4.5 we mentioned the possible improvement of insight in a
model by being able to display multiple cases at once in GeNIe. In that
way a user can compare various cases without much effort. An intuitive
way to display and work with more than one case has to be developed.
Interesting statistics could also be generated for the user, such as the
amount of change between the active cases for a certain variable. Ways
to visualize this efficiently have to be explored.



Appendix A

Qualitative Evaluation

For my MSc project I have developed an extension for GeNIe. I would like to
ask you to experiment with this module and afterwards evaluate it by answering
a few questions. I will start with a short theoretical introduction, followed by a
tutorial of the module.

A.1 Introduction

The developed module helps a user explore and understand inference in a
Bayesian network. This is done by changing the thicknesses of the arcs and
the colors of the arcs. The thickness of an arc is proportional to the amount
of influence between two directly connected nodes. The color of an arc shows,
simply said, if that influence is positive or negative.

There are two main modes of operation: static and dynamic. In the static
mode only the conditional probability tables of the nodes are used to determine
the thickness and color. This means that the influence in the direction of the
parent to the child is visualized. Also, the thicknesses and colors are local and
not context-specific, meaning that they visualize the interaction between two
directly connected nodes, but they do not take into account any observed nodes
or indirect influences.

In the dynamic mode the actual potential influence is visualized. The thick-
ness of an arc between two nodes indicates the actual amount of change that
would occur in the probability distribution of one of the nodes if the other would
be observed. The color of an arc shows the actual direction of change of the
probability distribution of one of the nodes if the other would be observed. In
the dynamic mode, the direction in which the thickness and color of an arc
is calculated is selectable, i.e., the influence the parent has on the child can
be visualized, but the influence the child has on the parent can also be shown.
These two influences can be very different from eachother. This mode is context-
specific, meaning that when another piece of evidence has been observed and the
influences between nodes might have changed, the dynamic mode can visualize
the new situation by recalculating the thicknesses and colors.
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A.1.1 Tutorial

To introduce you to the module I will give a short tutorial, making use of the
Asia network. For specific questions about the usage of the module you can
refer to the provided manual, which explains every option the module has.

After loading the Asia network and invoking the module, the situation is as
pictured below.

We can see that both coloring and thickness of arcs are activated by default, in
static mode (the “S” icon is pressed). All arcs are colored green, which means
that all influences are positive, which is what we expect for this model because
Asia is a causal network. If there would be an arc with a different color we would
be alerted immediately that something might be wrong with the definition of
the model. From the thicknesses we can, for example, see that the deterministic
node “Tuberculosis or Lung Cancer?” has a bigger influence on “X-Ray Result”
than on “Dyspnea?”.

Next, we switch to the dynamic mode and turn off coloring.

Now that we are in dynamic mode, the thicknesses of the arcs indicate how
much an observation of one of the two nodes of an arc would impact the other.

To bring out the differences in thicknesses some more, we can turn on nor-
malization by pressing the “N” button.
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The arc with the largest influence has now been given the thickest arc, in this
case the arc between “Lung Cancer?” and “Tuberculosis or Lung Cancer?”, the
thicknesses of all other arcs are proportional to that arc.

In the dynamic mode, the direction in which the thickness of an arc is
determined is selectable. To see how the directions are set at this moment,
press the yellow “PC” button.

In the middle of each arc an icon has now appeared, which indicates the direction
in which the influence for that arc is calculated. In the situation pictured here,
all thicknesses are determined in both direction, and averaged.

We can change the direction of any arc. Let us do so for the arc between
“Smoking?” and “Lung Cancer?”, by right-clicking on that arc and changing
the direction to “child → parent”. Also, we are going to change the direction
for the arc between “Smoking?” and “Bronchitis?” to “parent → child”.
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Now the two icons have changed. The thickness of the arc between “Smoking?”
and “Lung Cancer?” is now determined from the child to the parent, i.e., it
shows the influence “Lung Cancer?” will have on “Smoking?” if it would be
observed next. We see that that arc is thicker than in the previous situation.
So if we know that a person has lung cancer, the probability of him/her being
a smoker would increase more than that being a smoker would influence the
probability of having lung cancer.

Finally, in the dynamic mode, we can observe a variable, and then recalculate
the thicknesses of the arcs. Let us set “Dyspnea?” to “present” and recalculate
by pressing the rightmost button, the “recalculate” button.

There are a few things to notice now. First, arcs connected to the observed
variable have no thickness anymore (the icons are greyed out). This is because
there is no potential influence anymore for these arcs, because there is an ob-
served node connected to these arcs. Second, we can see that after observing
“Dyspnea?”, the potential influence of “Smoking?” on “Bronchitis?” has clearly
diminished, compared to the previous situation. So “Dyspnea?” has influenced
“Bronchitis?” in such a way that additionally observing “Smoking?” will not
have much impact on “Bronchitis?”.
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A.2 Evaluation

What I would like you to do is to read the short manual on how to use the new
module, if you have not already done so, and then to run the provided version of
GeNIe and play around with it, using the two provided models Car and Hepar.
Please keep the following few things in mind:

• There are two modes, static and dynamic.

• The dynamic mode is context-specific.

• In dynamic mode, press the “recalculate” button after setting or removing
an observation.

• It is possible to make a selection of nodes before invoking the module,
only arcs between those nodes will then be used.

When you feel you have experimented enough to form your opinion, please go
to http://www.bingopaleis.com/joost/questions/ to answer a few questions.





Appendix B

Manual

This is a short manual explaining the various possibilities of the developed
module for displaying color and thickness of arcs. To start the module, open
a model and then press the button with the red and green arrow, which is
surrounded by a red circle in the screenshot below.

The toolbar that is pictured below will then appear. This toolbar holds all the
controls concerning the module.

In the remainder of this section each option of the toolbar will be explained.
First a screenshot will be shown with a certain option circled, after which that
option will be explained.
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Thickness type

Using this option the way the thickness of the arcs is determined can be
changed. There are three possibilities: average, maximum and weighted. The
first one averages all possible influences two nodes can have on eachother. If
maximum is selected, the thickness of an arc is proportional to the highest
possible influence between the two nodes. The third option, weighted, also
averages the various influences, but also takes into account the prior probabilities
of the various states of the nodes. If a certain state has a low prior probability,
the influence belonging to that state will not have a large part in determining
the thickness of the arc.

Normalize

This button toggles between the normalized and non-normalized mode. If
the button is pressed, the thickest possible arc is given to that arc that has the
highest strength of influence. The thicknesses of all other arcs are calculated
proportionally to the thickest arc. If the button is depressed the non-normalized
mode is activated. This way the thickest possible arc will only be given to an
influence value of 1 (influence values always range from 0 to 1).

Distance measure

The module allows for four different distance measures: Euclidean distance,
Hellinger distance [14], J-Divergence [17, 18] and CDF distance [19]. The se-
lected distance measure is used to determine the amount of difference between
two probability distributions.

Alpha parameter

When the J-Divergence is selected as the distance measure, its alpha para-
meter can be changed using this button. The alpha parameter is used to control
the normalization of the J-Divergence.
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Static mode

When the S button is pressed, the static mode is activated. This mode
only makes use of the conditional probability tables present in the model and is
therefore not context-specific. The thicknesses of the arcs indicate the strength
of influence that a parent has on a child, while the colors of the arcs show the
sign of that local influence.

Dynamic mode

When the D button is pressed, the dynamic mode is activated. This mode is
context-specific and essentially shows the potential influence two directly con-
nected nodes can have on eachother, i.e., the amount of change that would occur
in one node if the other would be observed next is visualized by the thickness
of the arc, while the sign of that change is displayed by the color of the arc.

Coloring of arcs

When this button is pressed coloring of the arcs is activated. The colors
indicate the sign of influence. This sign can be positive (green), negative (red),
null (grey), or ambiguous (purple). The color of an arc indicates what kind
of influence there is between the two nodes connected by that arc. The sign
of influence in the static mode can be different from the sign in the dynamic
mode. In static mode the color indicates the sign of influence the parent has on
the child, but there could be other paths of influence to the childnode that have
a larger influence in a different direction, so that when the parent is observed,
the change in probability is in a different direction than the color of the arrow
indicates. In the dynamic mode the color indicates the actual net direction of
change when the parent would be observed next.

Thickness of arcs

When this button is pressed the thickness of the arcs is activated. The
thickness of an arc indicates the strength of influence between the two nodes
connected by that arc. The thickness in the static mode can be different from
the thickness in the dynamic mode.
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Direction icons

In the dynamic mode, the strength of influence can be calculated in three
different directions: from the parent to the child, from the child to the parent or
in both directions. To visualize which option is used for a particular arc, icons
can be shown on the arcs to indicate the used direction. This button can be
used to toggle these icons on and off. This option is only valid in the dynamic
mode. In the static mode the direction is always from parent to child, because
the static mode relies on conditional probability tables.

Recalculate

In the dynamic mode, the final button can be used to recalculate the thick-
ness and coloring of the arcs. This is needed when you, for example, have
observed a new piece of evidence. This option is only valid in the dynamic
mode.

All the features of the toolbar have now been mentioned. There are two
more ways in which interaction with the module is possible. These will be
explained in the next two sections.

Change direction of influence

In the dynamic mode it is possible to change the direction in which the
influence is determined. This can be done by right-clicking on an arrow. A
popup menu will appear like the one shown above. This popup menu can be
used to set the desired direction.
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Arc information

If the mouse pointer is moved onto the tip of an arrow, a balloon tooltip
will appear like the one shown above. This tooltip holds all the information
concerning the strength of influence and the sign of influence.
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Abstract

We propose a technique to visualize important aspects
of a Bayesian network, in order to make the process
of inference more insightful. We have used the arcs
in a Bayesian network to show additional information:
(1) the thickness of an arc is automatically adjusted to
represent the strength of influence between two directly
connected nodes and (2) the color of an arc is auto-
matically adjusted to indicate the sign of influence be-
tween two directly connected nodes. Our technique does
this in a novel, dynamic way, which is context-specific
and takes into account any indirect influences. We have
implemented our technique and performed a qualitative
empirical evaluation. This evaluation showed that our
technique and implementation are easy to use and un-
derstand and give a user more insight into a Bayesian
network.

C.1 Introduction

A Bayesian network [27] consists of two parts: a qualita-
tive part and a quantitative part. The qualitative part is
a directed, acyclic graph in which the nodes are random
variables and the arcs represent probabilistic dependen-

cies among the nodes. The arcs can model causal re-
lationships, but this is not necessary. The quantitative
part consists of conditional probability tables and prior
probabilities. A node has a prior probability if that node
has no parents. When a node has one or more parents,
it has a conditional probability table, representing the
probabilities of each state given the states of the par-
ent nodes. A Bayesian network encodes the full joint
probability distribution. With the full joint probability
distribution, any query in the domain can be answered.
The most common task performed in a Bayesian net-
work is the computation of the posterior probability
distribution for a set of query variables, given an ob-
servation of a set of evidence variables. This process is
called inference, but is also called Bayesian updating,
belief updating or reasoning. The resulting posterior
probability distributions of the query variables are used
to draw conclusions and are the basis for decisions.

But the results of inference, the posterior probabil-
ity distributions, are not always easy to explain. Why
and how the probability distribution of a certain query
variable has been affected by a set of evidence variables
is often difficult to understand for even the most experi-
enced Bayesian network user. The field of explanations
in Bayesian networks tries to give the user more insight
into the workings of particular network [23].

An explanation should be presented in a way that is
effective, convenient, as well as easily accessible. A dis-
tinction that can be made in this respect is that between
verbal and graphical explanations.

A verbal explanation could be, for example: “Vari-
able A is dependent on variable B, but given variable
C they are independent”, or “State zero is somewhat
more likely than state one”.

A graphical explanation uses graphical means to
communicate an explanation. The most obvious and
basic explanation of this type is the visualization of the
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network structure. If the user has enough knowledge
about Bayesian networks, he can deduce the dependen-
cies and independencies between the variables in the
modeled domain from this view. Another example is to
display the probabilities of the various states of a vari-
able using graphical bars that range from zero to one
hundred percent.

There has been some interesting work in this field of
research. The INSITE method [31], by H.J. Suermondt,
tries to explain which observations have influenced a
certain target variable and to what extent. It also de-
termines the paths through which the relevant findings
influence the target variable, the so called “chains of
reasoning”. The result is a very clear and insightful
explanation of why a certain target variable has been
influenced in a certain way. A user can see which obser-
vations have the largest influence on the target variable,
and the paths through which they reach the target vari-
able. Only the most relevant observations are included
in the explanations. Observations that have little or no
impact on the posterior probability distribution of the
target variable are discarded.

The software package Elvira [3, 21, 22, 23] incor-
porates many forms of explanations, both verbal and
graphical. The verbal explanations come down to de-
scriptions about the various nodes and their type. For
this to work all nodes must be classified. The classifica-
tion, in conjunction with the network structure, is used
to build up a verbal description of the network, in a a
causal way. Other verbal explanations use likelihood ra-
tios, saying that one state is , for example, “3.77” times
more likely than some other state. The graphical capa-
bilities are probably the best part of Elvira. Colors are
used throughout the program to indicate the direction
of change of probability distributions of nodes. Also,
Elvira is able to show the “chains of reasoning” by us-
ing the INSITE method, along with coloring of nodes
and links to indicate the changes in probability.

BayesiaLab, a commercial software package for
modeling Bayesian networks, also features quite a few
options that help a user understand what is going on
in a model. The most interesting parts make use of a
target node, which the user has to set. Various sta-
tistics can then be generated. BayesiaLab makes use
of the graphical representation of the network by aug-
menting it with various symbols to signify changes and
characteristics and by adjusting the thickness of the arcs
to indicate the contribution of that arc to the current
situation of the network. Besides this BayesiaLab can
generate various textual statistical reports.

In this paper, we propose a way to use the arcs in a
Bayesian network to indicate the sign of influence and
strength of influence between two directly connected
nodes, by varying the color and thickness of the arcs.

The approach that we are proposing is a dynamic one.
It considers the network in its current state, including
any observations. It essentially indicates how much po-
tential influence a node has on a direct successor or
predecessor, so the influence that a node could have
if it was observed next. Our method is targeted to-
wards people who have a fairly good understanding of
what Bayesian networks are, for example researchers
that build Bayesian networks to aid in their research.

The remainder of this paper is structured as fol-
lows. Section C.2 gives an introduction to Bayesian
networks. Section C.3 discusses the thickness of arcs
and Section C.4 discusses the color of arcs. Our im-
plementation of the presented techiques is discussed in
Section C.5. Finally, the empirical evaluation we did is
presented in Section C.6.

C.2 Bayesian networks

A Bayesian network is a probabilistic graphical network.
It represents variables in a certain domain and visual-
izes the probabilistic relationships between them. These
relationships can also be thought of as causal relation-
ships. The formal definition of a Bayesian network is as
follows [28]:

1. A set of random variables makes up the nodes of
the network. Variables may be discrete or contin-
uous.

2. A set of directed links or arrows connects pairs of
nodes. If there is an arrow from node X to node
Y , X is said to be a parent of Y .

3. Each node Xi has a conditional probability dis-
tribution P (Xi|Parents(Xi)) that quantifies the
effect of the parents on the node.

4. The graph has no directed cycles (and hence is a
directed, acyclic graph, or DAG).

A Bayesian network defines a complete joint proba-
bility distribution over X given by:

P (X1, . . . , Xi) = Πn
i=1P (Xi|Parents(Xi)). (C.1)

To further illustrate these concepts we will introduce an
example network in Figure C.1 [28].

108



Figure C.1: An example Bayesian network.

It shows a Bayesian network with four nodes and
a conditional probability table for each node. It mod-
els the following situation: Whether it is cloudy or not
influences the chance that it rains and the chance that
the sprinkler will be on. If it is cloudy the sprinkler will
most likely not be on. The wetness of the grass is in-
fluenced by both the rain and the sprinkler. If there is
rain and the sprinkler is on, the probability of the grass
being wet is the highest, i.e., 0.99. If there is no rain
and the sprinkler is off, it is certain that the grass is not
wet, the probability is 1.0.

An arrow between two nodes indicates that the two
nodes are dependent, meaning that they influence each
other. If there is no arc present between two nodes,
then they have no influence on each other, at least not
directly. Also, if we see that, for example, the grass
is wet, then we have observed the variable (or node)
WetGrass, in which case it has become evidence, an ob-
servation or a finding. These three terms can be used
interchangeably.

This network can be used to infer probabilities like
that of the sky being cloudy when we know that the
grass is wet but sprinkler is off, or the probability of the
sprinkler being on when we know the grass is wet and
there is no rain. We will explain why this is the case.

Every query about the domain, including the ones
just posed, are specified by the full joint probability dis-
tribution P (Cloudy, Rain, Sprinkler, WetGrass). It
consists, in this case, of 24 = 16 entries, the probability
of every possible combination of variables is specified.
The Bayesian network of Figure C.1 represents the ex-
act same distribution, but only has nine probabilities
specified in its conditional probability tables. There are
eighteen numbers present, but all variables are binary
and therefore the probability of one state is one minus
the probability of the other state. So only nine numbers

are needed. This reduction is an important advantage of
Bayesian networks and it is caused by the (conditional)
independence assumptions made by the network. The
larger the network or domain, the bigger the savings.
Using Equation C.1 the joint probability distribution
P (Cloudy, Rain, Sprinkler, WetGrass) can be decom-
posed into:

P (Cloudy) · P (Rain|Cloudy) · P (Sprinkler|Cloudy)·

P (WetGrass|Rain, Sprinkler),

all of which are given in the model as conditional prob-
ability tables.

C.3 Thickness of arcs

The information that we want to provide for a user
by varying the thickness of arcs is the amount of in-
fluence one node has on the other. The approach by
BayesiaLab uses the joint probability distribution, while
Elvira determines the influence by looking at the condi-
tional probability tables and determining the influence
a parent node has on a child node. This approach to
determine the influence of a parent node on a child node
is static. This means that the calculations do not take
into account any current observations. But it could be
that, with certain observations, the influence of a cer-
tain parent node on a child node is significantly differ-
ent from the observation-free situation, in which case
the static information would be incorrect. The static
information can be used to get a global impression of
the interactions between the nodes, but it is not tailored
to a certain situation.

Besides that, while it is true that a parent influences
its child(ren) if it is observed, a child, when observed,
can also influence the probability distribution of its par-
ent(s). These two influences can be quite different from
eachother. To give an example, if a laptop is dropped
from a high building, we almost know for certain that it
will end up getting smashed into many pieces. But if we
find a laptop that is smashed into many pieces, we can-
not be just as sure about what caused this. It could have
been dropped from a high building, but it could just as
well have been run over by a car, or maybe someone got
angry and stamped on it. So while the probability of
“dropped from a high building” will increase when find-
ing a smashed laptop, the probability will not increase
as much the other way around, i.e., that of “laptop will
get smashed” when we drop it from a high building.

Therefore, we are going to do this differently. Many
networks contain one or more target or hypothesis
nodes. See for example the Hepar II network [25] shown
in Figure C.2, modeling various liver disorders.
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Figure C.2: The Hepar II network.

The yellow colored nodes represent the diseases. What
we would be interested in most is the influence that
the other nodes have on these disease, or target, nodes.
When an arrow connects a target node with a non-target
node, we will determine the influence the non-target
node has on the target node, regardless of the direc-
tion of the arrow. When two non-target or two target
nodes are connected by an arrow, we will, by default,
use the average of the influences in both directions. In
total there are four situations possible, shown in Fig-
ure C.3. In the first situation, shown in Figure C.3(a),
we will visualize the influence A has on B. In the second
situation, that of Figure C.3(b), we will consider the in-
fluence that B has on A. In the last two situations,
depicted in Figures C.3(c) and C.3(d), we will consider
the influence in both directions, and average them. The
user will have the ability to override any of these default
actions by specifying in which direction the influence for
a particular arrow should be calculated.

(a) B is
a target
node.

(b) A is
a target
node.

(c)
Both
A and
B are
target
nodes.

(d) Nei-
ther A

nor B is
a target
node.

Figure C.3: Four different situations.

Furthermore, the approach that we are proposing
here is a dynamic one. It considers the network in its
current state, including any observations. It essentially

indicates how much potential influence a node has on a
direct successor or predecessor, so the influence that a
node could have if it was observed next.

Another advantage of our approach as opposed to
the static one is the fact that in some situations it does
not need to account for the synergy between the differ-
ent parents of a node with more than one parent, simply
because it is not there anymore in those situations. The
definition of synergy can be given as: “the interaction of
two or more agents or forces so that their combined ef-
fect is greater than the sum of their individual effects”.
In case of a Bayesian network, this applies to the com-
bined effect that the observation of multiple parents of
one node can have on that node. The combined ef-
fect can be greater than the individual effects. This
phenomenon cannot be accurately captured by varying
the thickness of the arcs, which is one dimensional. In
our dynamic approach, though, when all but one of the
parents or children of a certain node are observed, i.e.,
there is no synergy anymore, we are able to accurately
display the actual situation, because we are considering
potential influences in the current state of the network.
As soon as there is a change in the network, for example
another observation is done, the thickness of an arc is
recalculated if necessary.

We are going to determine the strength of the in-
fluence by looking at the posterior probability distribu-
tion of a node, for each possible state of the parent or
child node, depending on the type of connection as dis-
cussed earlier in Figure C.3. For a node with n states,
this will result in n potentially different posterior prob-
ability distributions of the connected node(s). We will
compute the amount of difference between these distrib-
utions and base our final determination of the thickness
of the arc on either the average of all the differences, the
maximum of all the differences, or the weighted average.
The weighted average is defined as

nX
i=0

ai · D(P (A), P (B|A = ai)) , (C.2)

where A and B are two directly connected nodes, A

has n states and D is a function measuring the distance
between two distributions. As distance functions we are
going to use the Euclidean distance, Hellinger distance
[14], a normalized version of the J-Divergence [17, 18]
and the CDF distance [19].

C.4 Color of arcs

If a network, or a part of a network, consists of or-
dinal nodes, it is meaningful to determine the sign of
infuence. A node is ordinal if the states of that node
are ordered in some way, for example from good to bad,
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from large to small, from high to low or from desirable
to not desirable. The sign of influence between a node A

and a direct successor or predecessor B can be positive,
meaning that higher values of A always lead to higher
values of B, negative, meaning that higher values of A

always lead to lower values of B, null, meaning that
higher values of A always lead to values of B that are
neither higher nor lower, or ambiguous, meaning that
the influence is neither positive, negative nor null. In
this context, ’always’ refers to the fact that A can have
more parents than just B, in which case the stated re-
lations must hold for every possible configuration of the
other parents of A, i.e., always. These definitions stem
from the field of qualitative probabilistic networks [33],
in which the relations between nodes in a network are
not defined by conditional probability tables, but by
signs of influence among nodes.

Up to now the approach to determine the sign of
influence has been based on calculations using the con-
ditional probability tables, which results in a static and
local method. We will implement this feature but we
will also extend it so that it is context-specific and non-
local, i.e., taking into account any observed variables
and indirect influences. We will discuss both in the fol-
lowing two sections. Eventually, the signs of influence
will be visualized by adjusting the color of an arc.

C.4.1 Static coloring

The static determination of the sign of influence uses the
conditional probability tables of a Bayesian network.
As mentioned earlier, there can be positive, negative,
null or ambigious influences. What type of influence is
present for a certain arc is given by the following equa-
tions. There is a positive influence between a parent A

and its child B, where C is the set of all parents of B

except A, when the following two equations hold:

∀ai∀aj . ai ≥ aj ⇒

∀b∀C(P (B ≤ b|ai, C) − P (B ≤ b|aj , C) ≤ 0) ,

and

∃ai∃aj . ai ≥ aj ⇒

∀b∀C(P (B ≤ b|ai, C) − P (B ≤ b|aj , C) < 0) .

There is a negative when the following two equations
hold:

∀ai∀aj . ai ≥ aj ⇒

∀b∀C(P (B ≤ b|ai, C) − P (B ≤ b|aj , C) ≥ 0) ,

and

∃ai∃aj . ai ≥ aj ⇒

∀b∀C(P (B ≤ b|ai, C) − P (B ≤ b|aj , C) > 0) .

There is a null influence when the following equation
holds:

∀ai∀aj . ai ≥ aj ⇒

∀b∀C(P (B ≤ b|ai, C) − P (B ≤ b|aj , C) = 0) .

If there is no positive, negative or null influence, the
influence is ambiguous.

C.4.2 Dynamic coloring

Our dynamic method for determining the sign of influ-
ence is, just like the thickness of arcs, context-specific
and it takes into account any indirect influences. We
are going to determine the sign of influence by looking
at the posterior probability distribution of a node, for
each possible state of the parent or child node. For a
node with n states, this will result in n potentially differ-
ent posterior probability distributions of the connected
node(s). These posterior probability distributions will
be compared using a slightly simplified version of the
equations in the previous section. Between a node A

and its child B there is a positive influence when the
following two equations hold:

∀ai∀aj . ai ≥ aj ⇒

∀b(P (B ≤ b|ai) − P (B ≤ b|aj) ≤ 0) ,

and

∃ai∃aj . ai ≥ aj ⇒

∀b(P (B ≤ b|ai) − P (B ≤ b|aj) < 0) .

There is a negative influence when the following two
equations hold:

∀ai∀aj . ai ≥ aj ⇒

∀b(P (B ≤ b|ai) − P (B ≤ b|aj) ≥ 0) ,

and

∃ai∃aj . ai ≥ aj ⇒

∀b(P (B ≤ b|ai) − P (B ≤ b|aj) > 0) .

There is a null influence when the following equation
holds:

∀ai∀aj . ai ≥ aj ⇒

∀b(P (B ≤ b|ai) − P (B ≤ b|aj) = 0) .

If there is no positive, negative or null influence, the
influence is ambiguous. The sign of influence can be
determined, just like the thickness of an arc, in both
directions, i.e., from the parent to the child and from
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the child to the parent. If these two differ then the sign
will also be regarded as being ambiguous.

The dynamic method differs from the static method
in that it is not local. The sign of influence in our
dynamic method signifies the actual behaviour in the
current situation, including all indirect influences and
observations.

C.5 Implementation

We have done an implementation of thickness and color
of arcs in the C++ programming language. This im-
plementation has been integrated into GeNIe, a de-
velopment environment for building graphical decision-
theoretic models developed at the Decision Systems
Laboratory of the University of Pittsburgh. We cre-
ated an extra module within GeNIe that provides all
the functionality for the thickness and the color of the
arcs. The signs of influence are visualized by adjusting
the color of an arc. In that way a user can easily study
the relations and pick out any arc that does not match
with his or her belief. We will color positive arcs green,
negative arcs red, ambiguous arcs purple and null arcs
grey. Green is mostly associated with something posi-
tive or good, and red is mostly associated with some-
thing negative or bad. Grey for the null influence has
been chosen because something that is not present or
irrelevant is often “greyed out” in computer programs,
therefore we think grey will be easy to associate with
a null influence. The purple color for an ambiguous in-
fluence has been chosen because it fits nicely with the
other colors.

The sign of influence between two nodes, visualized
by the color of the arc, only has meaning if both nodes
have some kind of ordering, i.e., are ordinal. The or-
dinality of a node can be set by accessing its property
dialog box. There are three options: “low to high”,
“high to low” and “none”. If the ordering of the out-
comes is said to be “none”, then the color of the arcs
connected to that node will be left at the default color
of GeNIe, dark blue.

Figure C.4 shows GeNIe with the module activated
and displaying the thickness of the arcs. Figure C.5
shows the coloring of the arcs, visualizing the signs of
influences. It can be seen that a lot of ambiguous in-
fluences (purple arcs) in the static mode displayed in
Figure C.5(a) are replaced by non-ambiguous influences
in the dynamic mode, displayed in Figure C.5(b). This
is due to the fact that the dynamic mode is context-
specific and not purely local.

(a) Thickness of arcs in static mode.

(b) Thickness of arcs in dynamic mode.

Figure C.4: Thickness of arcs in the HEPAR II net-
work.

(a) Color of arcs in static mode.
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(b) Color of arcs in dynamic mode.

Figure C.5: Color of arcs in the HEPAR II network.

C.6 Empirical evaluation

We have evaluated our implementation, both quantita-
tively and qualitatively.

C.6.1 Quantitative evaluation

To get an idea of the time needed to calculate the data
needed for our dynamic mode of both the thickness and
color of the arcs, we measured the performance on var-
ious benchmark networks. The properties of the net-
works are listed in Figure C.1. The results of the test
are shown in Figure C.2.

Table C.1: Properties of the various networks.

Network Nodes Max Parents Avg Parents
Alarm 37 4 1.24324
CPCS179 179 8 1.3352
Diabetes 413 2 1.45763
Hailfinder 56 4 1.17857
Hepar 70 6 1.75714
Link 724 3 1.55387
Munin 1041 3 1.34198
Pathfinder 109 5 1.78899
Network Max States Avg States Arcs
Alarm 4 2.83784 46
CPCS179 4 2.2905 239
Diabetes 21 11.3366 602
Hailfinder 11 3.98214 66
Hepar 4 2.31429 123
Link 4 2.53177 1125
Munin 21 5.42843 1397
Pathfinder 63 4.11009 195

Table C.2: Calculation time for determining thick-
ness and color of all arcs, in seconds.

Network No observations 10 observations
Alarm 0.016 0.001
CPCS179 0.297 0.437
Diabetes 3114.17 6343.77
Hailfinder 0.063 0.031
Hepar 0.063 0.078
Link 4.016 78.625
Munin 15.734 23.188
Pathfinder 2.297 2.657

Overall, the time needed to calculate all the needed
data for the thickness of the arcs is often negligiable,
but this depends on the structure of the network. If the
network is very large one can ask the question whether
showing thickness and color of all arcs at once is really
useful. In such situations it may be more insightful to
consider a subset of arcs, in which case the running time
will decrease dramatically.

C.6.2 Qualitative evaluation

We have performed a qualitative evaluation of our newly
developed module for thickness and color of arcs. We
wanted to find out if we had succeeded in meeting our
goals, i.e., creating an explanation that is both easy to
use and easy to understand for a user that is famil-
iar with Bayesian networks. In order to evaluate this
we designed an evaluation in which the subject is pro-
vided with two particular Bayesian network models and
is asked, after a thorough introduction, to gain insight
in these models using our module. There was a total of
eight subject. All were familiar with Bayesian networks
and GeNIe and were therefore suitable candidates for
our evaluation. They were given a short introduction
and tutorial to the newly developed module. They were
also provided with a manual explaining all the options
of the module. They were asked to explore two provided
Bayesian networks, Car and Hepar, using the features
of our module. The Car network is a fairly simple di-
agnostic network that can be used to diagnose certain
problems with a car. The Hepar network [25], mod-
els various liver disorders and is more complex. After-
wards, the subjects were asked various questions about
their experience with the module.

The subjects spent, on average, about forty minutes
using the module. The easiness of interpretation of both
the thickness and color of the arcs is, on average, given
a slightly lower rating than the intuitiveness. But both
get a rating that is more than satisfactory. Three sub-
jects explicitly praise the module for its intuitive visu-
alizations. The chosen colors are said to be intuitive,
especially green for positive and red for negative. The
other colors needed some time to adjust to, according
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to two subjects. Three subjects mentioned that the dif-
ferent distance measures can be confusing. They say
that it is not clear when to use which distance mea-
sure. The module is called a useful extra tool for model
analysis and a useful tool to get a feel for the strength
of influences between nodes. It is said to be helpful in
understanding the relations among the variables in a
network and that it can help in model building and de-
cision making. Also, multiple subjects say the graphical
user interface looks good and that the module is easy
to use.

C.7 Concluding remarks

This paper presented a technique to make inference in
Bayesian networks more insightful. This has been done
by automatically adjusting the thickness of the arcs in
a Bayesian network to indicate the strength of influence
between two directly connected nodes. Also, the color
of an arc is automatically adjusted to indicate the sign
of influence between the two directly connected nodes.
These two visualizations can be done in a static way, us-
ing only the definition of a Bayesian network, but also in
a dynamic way. The dynamic variant is, as opposed to
the static method, context-specific, takes into account
any indirect influences and is non-local.

A qualitative evaluation was performed by eight
people, all familiar with Bayesian networks. They were
asked a variety of questions, after having used the newly
developed module of GeNIe. The reactions were very
positive, both in terms of our technique giving more in-
sight into a Bayesian network and in terms of easiness of
use. The most important criticism, mentioned by quite
a few subjects, was the unclarity about the available
distance measures.
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