
The Design and Implementation of a Multi-Agent

Soccer Simulator as a Tool for AI Research and

Education

Iwein J.J. Borm
September 1, 2006

ii

The Design and Implementation of a Multi-Agent

Soccer Simulator as a Tool for AI Research and

Education

Master’s Thesis in Media & Knowledge Engineering

Man-Machine Interaction Group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Iwein J.J. Borm

September 1, 2006

Man-Machine Interaction Group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

Members of the Supervising Committee
drs. dr. L.J.M. Rothkrantz (chair)
dr. ir. C.A.P.G. van der Mast
ir. H.J.A.M. Geers

Copyright c© 2006
Iwein J. J. Borm
1174398

iii

Abstract

The Design and Implementation of a Multi-Agent Soccer
Simulator as a Tool for AI Research and Education

Copyright c© 2006 by Iwein J.J. Borm (1174398)
Man-Machine Interaction Group

Faculty of EEMCS
Delft University of Technology

Members of the Supervising Committee
drs. dr. L.J.M. Rothkrantz (chair)

dr. ir. C.A.P.G. van der Mast
ir. H.J.A.M. Geers

This thesis describes a multi-agent soccer simulator based on a highly
simplified soccer model, and its application in an introductory AI course.
The soccer model allows agents to start on a high level and removes many
uncertainties that occur in physical soccer robots. Because of these simplifi-
cations, the system is suitable for researching high-level strategic behavior,
such as cooperation and team work. The simulator features a three-layer
model representing the physical environment, robot and behavior. This lay-
ered approach makes the system extensible. Reference teams of increasing
complexity are available, and help to detect flaws in strategies, as well as
pose a serious challenge for users to beat. Coursework was developed, that
guides students through the process of creating a team capable of defeating
the reference team, in order to teach students about basic AI concepts such
as multi-agent systems, ad-hoc networks, rule-based reasoning and coopera-
tive agents. The coursework has been used in a first-year undergraduate AI
course at Delft University of Technology, and was found to be motivating
and very educative.

iv

Preface

This master’s thesis describes the research and development I have done
to graduate at the Man-Machine-Interaction group at Delft University of
Technology. The goal of this thesis project is to develop a soccer simulator
that can be used for AI research and as an educational tool, and to develop
and use an educational assignment based on this simulator.

My first encounter with agents and multi-agent systems was early spring
2004. Whether it was the seemingly endless possibilities, the interesting
assignments or the way agents can make complex problems look so easy,
somehow agents and multi-agent systems have been at the center of my
studies ever since. It was not a big surprise that my Master’s project was
also going to involve multi-agent systems.

In my search for a topic, one of my biggest requirements was that if I
would have finished the work, I should be able to sit down with a random
person and explain to him exactly what I did without losing his attention or
raising countless questions. In case I should ever lose my enthusiasm, or if
I am not physically present to explain the system, hopefully this thesis will
be the next best thing.

v

vi

Acknowledgements

The work you have in front of you is the fruit of my Master’s project at Delft
University of Technology. First and foremost, I would like to thank Maja
Pantic for giving me the opportunity to be a part of the team, to develop
and hone my programming and educational skills, and to motivate me to
push for the limit.

Furthermore, I would like to kindly thank Reinier Zwitserloot and Rob-
bert Jan Grootjans for helping me with Fleeble and Eclipse. I would like to
thank my supervisor Leon Rothkrantz for helping me focus on what is really
important, keeping me on the track, and for giving me a lot of freedom in
working on the thesis project. I would like to thank my father for his help
with writing this thesis. I would like to apologize to all the people I have
neglected during this project. Last but not least I would like to thank all
students that evaluated the soccer assignment in 2005-2006.

vii

viii

Contents

Abstract iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Problem setting . 1

1.1.1 Challenge . 1
1.1.2 Game . 3
1.1.3 Problem . 3

1.2 Introductory AI Course . 4
1.2.1 MKT-2 . 4
1.2.2 Research at TU Delft 5

1.3 Soccer Simulator . 5
1.3.1 Model . 5
1.3.2 Simulator . 7
1.3.3 Education . 8

1.4 Goals . 9
1.5 Thesis Overview . 10

I Preliminaries 13

2 Literature 15
2.1 Agents . 15

2.1.1 Performance Measure 15
2.1.2 Simple Reflex Agent 16
2.1.3 Learning Agent . 16

2.2 Multi-Agent Systems . 17
2.3 Multi Agent Soccer . 18

2.3.1 Aibo Soccer . 18
2.3.2 Humanoid Robots . 19
2.3.3 Soccer Simulator . 20

ix

x CONTENTS

2.3.4 Other Simulators . 22
2.3.5 Multi Agent Soccer in Education 23

2.4 Overview . 24

3 Tools 25
3.1 Overview . 25
3.2 Programming Language . 26

3.2.1 Educational Aspect 26
3.2.2 Conclusion . 26

3.3 Agent Framework . 27
3.3.1 Background Information 27
3.3.2 Role of the Agent Framework 27
3.3.3 Comparison . 27
3.3.4 Java 1.5 . 28
3.3.5 History . 29
3.3.6 GUI . 30

3.4 Fleeble . 30
3.4.1 Programming an Agent 31

3.4.1.1 Compiling the Agent 31
3.4.1.2 Loading the Agent 31

3.4.2 Agent States . 31
3.4.3 Channels . 32

3.4.3.1 Subscribing 33
3.4.3.2 Publishing 34
3.4.3.3 Dynamic Publishing and Subscribing 34

3.4.4 Thread Scheduling-induced Randomness 35
3.4.5 Namespaces . 36
3.4.6 Special Channels . 37

3.4.6.1 (INIT) . 37
3.4.6.2 (CHILD LOADED) 37
3.4.6.3 System . 38

3.4.7 Message Queueing . 38
3.4.8 Child Agents . 40

3.4.8.1 MessageSource 40
3.4.9 Properties . 42
3.4.10 Namespace Mirroring 42
3.4.11 Overview . 43
3.4.12 Summary . 43

3.5 Eclipse . 45
3.5.1 CVS . 46
3.5.2 Ant . 46
3.5.3 SWT . 46

CONTENTS xi

II Game 47

4 Model 49
4.1 Problem Description . 49
4.2 Requirements . 50

4.2.1 Actors . 50
4.2.1.1 Students . 51
4.2.1.2 Hobbyists . 52
4.2.1.3 Researchers 52

4.2.2 Package . 53
4.2.3 Summary . 53

4.3 Laws of the Game . 54
4.3.1 Goal . 54
4.3.2 Players . 54
4.3.3 The Field of Play . 55
4.3.4 Ball in and out of Play 56
4.3.5 Foul Play and Misconduct 56
4.3.6 Offside . 56
4.3.7 Duration of the Match 57
4.3.8 Environment . 57
4.3.9 Overview . 57

4.4 System Model . 59
4.4.1 Player Layer . 59
4.4.2 Robot Layer . 60
4.4.3 Framework Layer . 61

4.5 Player Capabilities Model . 61
4.5.1 Movement . 62

4.5.1.1 Basic Player Movement 62
4.5.1.2 Ball Movement 62
4.5.1.3 Collisions . 62
4.5.1.4 Movement Speed 63
4.5.1.5 Overview . 64

4.5.2 Visual Model . 64
4.5.3 Aural Model . 65
4.5.4 Changing Behavior . 65

4.6 Justification . 67
4.6.1 Speed Penalties . 67

4.6.1.1 Shouting . 68
4.6.1.2 Collisions . 68

4.6.2 Movement . 69
4.6.3 Communication Restrictions 69
4.6.4 Central authority . 71

4.7 Customizing the Model . 71
4.7.1 Changing Framework Parameters 72

xii CONTENTS

4.7.2 Changing Visual Appearance 72
4.7.3 Advanced Customization 72

5 Design 73
5.1 Approach . 73
5.2 Use Case Design . 74
5.3 System Design . 74

5.3.1 Global Design . 75
5.3.2 Framework Channels 76
5.3.3 Robot Channels . 76
5.3.4 Player Channels . 76

5.4 Classes . 83
5.4.1 Overview . 83
5.4.2 Tournament Status . 83
5.4.3 Initializing the Framework 83
5.4.4 Running the Game . 85
5.4.5 Vision . 87
5.4.6 Shouting and Listening 87
5.4.7 Team Creation . 89

5.5 Movement . 89
5.5.1 Coordinates . 91
5.5.2 Movement Model . 92
5.5.3 Collision Model . 97
5.5.4 Ball Model . 98

5.5.4.1 Ball Movement 98
5.5.4.2 Ball Collisions 98

5.6 User Interface Design . 101
5.6.1 Settings . 101

5.6.1.1 Main Screen 101
5.6.1.2 Team Creation Interface 102
5.6.1.3 Tournament Creation Interface 105
5.6.1.4 Error Handling 105

5.6.2 Game . 107

6 Implementation 113
6.1 Approach . 113

6.1.1 Tools . 114
6.2 First Phase: Initializing the Framework 114
6.3 Second Phase: Sensors, Effectors and Movement 114

6.3.1 Position Tracking . 115
6.3.2 Aural Model . 115
6.3.3 Visual Model . 115
6.3.4 Movement Model . 115

6.4 Third Phase: Graphical User Interface 115

CONTENTS xiii

6.5 Final Phase: Added Features 116
6.5.1 Collision Detection . 116
6.5.2 Ball Movement . 116
6.5.3 Change Behavior . 116
6.5.4 Other Features . 116

6.6 Running the Simulator . 117
6.7 Testing . 122
6.8 Future Work . 122

III Research 125

7 Agent Strategies 127
7.1 Introduction . 127
7.2 Player Skills . 127

7.2.1 Low-level Player Skills 128
7.2.1.1 Turn the Robot towards a Point 128
7.2.1.2 Scout the Area 128

7.2.2 Intermediate-level Player Skills 129
7.2.2.1 Turn the Robot towards an Object 129
7.2.2.2 Track the Ball 129
7.2.2.3 Move to a Position 129

7.2.3 High-level Player Skills 130
7.2.3.1 Intercept a Ball 130
7.2.3.2 Passing the Ball 131
7.2.3.3 Give a Leading Pass 132
7.2.3.4 Give a Through Pass 132
7.2.3.5 Clearing the Ball 133
7.2.3.6 Move towards Opponent Goal 133
7.2.3.7 Move Free from Teammate 134
7.2.3.8 Avoid Opponent 134

7.3 Inference . 135
7.3.1 Determine if an Object’s Position is known 135
7.3.2 Determine if an Object is Visible 136
7.3.3 Determine if the Ball is Visible 136
7.3.4 Determine if the Ball is Kickable 136
7.3.5 Determine the Closest Opponent 137
7.3.6 Determine whether an Opponent is up Ahead 137
7.3.7 Determine whether there is a Teammate Standing Free 137
7.3.8 Determine whether a Teammate has the Ball 138
7.3.9 Determine whether the Ball is Free 138
7.3.10 Determine if the Ball Position is known 139
7.3.11 Determine if there is Chaos around the Ball 139
7.3.12 Determine if Player had Collision 139

xiv CONTENTS

7.3.13 Determine Player Speed 140
7.4 Strategy . 140

7.4.1 Social Laws . 141
7.4.1.1 Social Laws versus Communication 141

7.4.2 Communication . 142
7.4.3 Formation . 143

7.4.3.1 Positioning 143
7.4.3.2 Role Allocation 143
7.4.3.3 Changing the Strategy 144

7.4.4 Adaptive Behavior . 145
7.4.4.1 Adaptive Team Behavior 145
7.4.4.2 Individual Adaptive Behavior 146

7.4.5 Rule-based Action Selection 149
7.4.6 A Multi-Agent Approach to Strategy 149

7.5 Summary . 150

8 Development of a Team 153
8.1 Introduction . 153
8.2 Design . 154

8.2.1 Roles in the Team . 154
8.2.2 Formation . 154
8.2.3 Player Skills . 154
8.2.4 Inference . 155
8.2.5 Rule-based Action Selection 156

8.3 Implementation . 157
8.3.1 Template . 157
8.3.2 UpdateKnownInfo . 159
8.3.3 AnalyzeSituation . 160
8.3.4 DoStrategy . 160

8.4 Advanced Team . 160
8.5 Summary . 161

IV Education 163

9 MKT-2 Project 165
9.1 Educational Goals . 165

9.1.1 Approach . 166
9.2 MKT-2 Assignments . 166

9.2.1 Assignment A: Roshambo 167
9.2.2 Assignment B: Rule-based Reasoning 169
9.2.3 Assignment C: Hollywood 170
9.2.4 Assignment D: Multi-Agent Systems 171

9.2.4.1 2003-2004: Peer-to-peer Networks 171

CONTENTS xv

9.2.4.2 2004-2005: SMS Assignment 171
9.2.4.3 Discussion 173

9.3 Setting . 174

10 Soccer Assignment 177
10.1 Educational Goals . 177
10.2 Assignment . 178

10.2.1 Scenarios . 179
10.2.1.1 Player Level 179
10.2.1.2 Team Level 180

10.2.2 Design . 180
10.2.3 Implementation . 181

10.2.3.1 Implementation Questions 181
10.2.4 Extra Questions . 182
10.2.5 Competition . 182

10.2.5.1 Competition Results 182
10.3 Implementations . 183

10.3.1 Team Setup . 183
10.3.2 Reasoning . 185

10.3.2.1 Knowledge Base 185
10.3.2.2 Situation Analysis 186
10.3.2.3 Rule Base . 186
10.3.2.4 Actions . 187

10.4 Evaluation . 188
10.4.1 Classroom Observations 188

10.4.1.1 Educational Goals 188
10.4.1.2 Improvement 191

10.4.2 Survey . 193
10.4.2.1 Survey Results 194
10.4.2.2 Educational Goals 195
10.4.2.3 Improvements 196

10.5 Conclusion . 196
10.5.1 Educational Goals . 196
10.5.2 Improvement . 197

10.6 Discussion . 198

V Results 199

11 Conclusions 201
11.1 Literature . 201
11.2 Game . 201

11.2.1 Model . 201
11.2.2 Design . 202

xvi CONTENTS

11.2.3 Implementation . 202
11.3 Research . 202

11.3.1 Agent Strategies . 202
11.3.2 Developing a Team . 203

11.4 Education . 203
11.4.1 MKT-2 Project . 203
11.4.2 Soccer Assignment . 203

12 Discussion & Future Work 205
12.1 Discussion . 205
12.2 Future Work . 205

12.2.1 Model . 205
12.2.2 Soccer Simulator . 206
12.2.3 Agent Strategies . 206
12.2.4 Soccer Assignment . 207

A Publication for ELCONF’06 209

B Tournament Parameters 217

C Detailed description of MKT-2 Project 221
C.1 History . 221
C.2 Background . 222

C.2.1 Students . 222
C.2.1.1 Java Programming Skills 222
C.2.1.2 Group work 222

C.2.2 Evaluation . 223
C.2.2.1 Studentrate 223
C.2.2.2 Group Formation 224
C.2.2.3 Gannt Charts 226
C.2.2.4 Data Flow Diagram 227
C.2.2.5 Oral Exam 227

D Soccer Assignment: Survey 229

Bibliography 233

List of Figures

2.1 A Simple Reflex Agent . 16
2.2 A Learning Agent . 17
2.3 Aibo Soccer . 19
2.4 Humanoid Soccer Robots at the 2005 Competition 20
2.5 2D Soccer Simulator . 22

3.1 GUI of Fleeble Agent Framework 30
3.2 Loading an Agent in Fleeble 31
3.3 Fleeble Namespaces . 37
3.4 Child Agents in Fleeble . 41
3.5 Virtualhost for Locking Agents in a Certain Namespace . . . 42
3.6 Class Diagram of Fleeble Agent Framework 44
3.7 Eclipse Software Development Kit 45

4.1 System Model: the Layered Approach 59

5.1 Use Case Diagram for User of Simulator 74
5.2 System Overview . 75
5.3 Overview of the Framework Channels 77
5.4 Overview of the Robot Channels 79
5.5 Overview of the Player Channels 81
5.6 Field Coordinate System . 93
5.7 Team Coordinate System . 94
5.8 Relative Coordinate System 95
5.9 The Main Screen . 102
5.10 The Team Creation Screen 103
5.11 The Tournament Creation Screen 106
5.12 Error Message from Incorrect Input 107
5.13 Example of the Tooltip Help 107
5.14 The Soccer Simulator Interface 108
5.15 The Visual and Aural Sensor Areas of a robot 111

6.1 Entering the Field . 118
6.2 Exiting the Field . 118

xvii

xviii LIST OF FIGURES

6.3 Pause / Stop Buttons . 119
6.4 Game Time, Score and Team Name 119
6.5 Robot Visualization . 120
6.6 The See Channel . 121

7.1 Example use of Communication to Outplay Opponents 142

8.1 The SimpleTeam Formation 155

9.1 Assignment A: Rock, Paper, Scissors 168
9.2 Assignment B: Rule-based Reasoning 169
9.3 Assignment C: Hollywood . 170
9.4 Assignment D 2003-2004: Peer-to-peer networks 172
9.5 Assignment D 2004-2005: SMS Assignment 173

10.1 The Setups that were used by the Different Teams 184
10.2 A Typical PlayerAgent . 185
10.3 An Example Scenario . 190

C.1 An Example Gannt Chart . 226

List of Tables

1.1 Comparison of Chess and Soccer 2
1.2 The Three Layers of the Soccer Simulator 6
1.3 Robot Sensors and Effectors 7
1.4 User Groups and Corresponding Goals 7

3.1 Overview of available Java-based agent frameworks 29
3.2 Overview of Possible Agent States and their Icons. 32
3.3 Publishing and Subscribing to Channels 32
3.4 Dynamic Publishing and Subscribing 35
3.5 Fleeble’s System Channels . 38

4.1 Domain Characteristics of the Simulator 50
4.2 Human vs Simulator Players 55
4.3 Human vs Simulator Field of Play 56
4.4 Human vs Simulator Laws . 58
4.5 Description of the Player Layer 60
4.6 Description of the Robot Layer 60
4.7 Description of the Framework Layer 61
4.8 Overview of the Movement Model 64
4.9 Overview of the Visual Model 65
4.10 Overview of the Aural Model 66
4.11 Overview of the Change Behavior Mechanism 67

5.1 Description of the framework channels 78
5.2 Description of the robot channels 80
5.3 Description of the player channels 82
5.4 The Different States of a Tournament 84
5.5 An Overview of VisibleObject, RobotObject and BallObject . 87
5.6 The MessageTuple Object . 88
5.7 The PlayerInfo Object . 90
5.8 The MatchSetup Object . 90
5.9 Overview of MoveTuple . 92
5.10 Three Different Coordinate Systems 93
5.11 Using the Orientation Class for Retrieving different Coordinates 94

xix

xx LIST OF TABLES

5.12 Parameters dealing with Ball Collision 100
5.14 Interface Elements of Team Creation / Modification 103
5.13 Interface Elements of the Main Screen 109
5.15 Interface Elements of Tournament Creation 110

7.1 Adaptive Team Behavior . 146

10.1 Results from the 2006 MKT-2 soccer competition. 183
10.2 Survey Results . 193

B.1 An overview of all Tournament Parameters 217

C.1 Studentrate . 224
C.2 Studentrate (continued) . 225

Listings

3.1 Programming an Agent . 31
3.2 Publishing and Subscribing 33
3.3 Handling the incoming messages 33
3.4 Advanced handling of incoming messages 35
3.5 Send ’look!’ every 100ms . 39
5.1 Running the Game . 86
5.2 The redraw() method . 86
5.3 The Visual Model . 88
5.4 Team XML file . 91
5.5 The Movement Model . 93
5.6 The Collision Model . 97
5.7 The Ball Model . 98
5.8 The Ball Collision Model . 99
7.1 Turn the robot towards a point 128
7.2 Scout the Area . 129
7.3 Move to a Position . 130
7.4 Intercepting the Ball . 131
7.5 Pass the Ball . 132
7.6 Leading Pass . 132
7.7 Through Pass . 132
7.8 Move towards Opponent Goal 133
7.9 Move Free from Teammate 134
7.10 Avoid the Opponent . 134
7.11 Determine if an Object’s Position is Known 135
7.12 Determine if an Object is Visible 136
7.13 Determine if the Ball is Visible 136
7.14 Determine if the Ball is Kickable 136
7.15 Determine the Closest Opponent 137
7.16 Determine if an Object up Ahead 137
7.17 Determine if Teammate is Free 138
7.18 Determine whether a Teammate has the Ball 138
7.19 Determine whether the Ball is Free 138
7.20 Determine whether there is Chaos around the Ball 139
7.21 Determine whether there was a Collision 139

xxi

xxii LISTINGS

7.22 The proposed learning mechanism 148
7.23 A Simple Rule-based Action Selection Mechanism 149
8.1 SimpleTeam’s Rule-base Action Selection Mechanism 156
8.2 Code template for SimplePlayer 157
8.3 Update the known info . 159

Chapter 1

Introduction

Some people believe football is a matter of life and death. I’m
very disappointed with that attitude. I can assure you it is much,
much more important than that. Bill Shankly

This study explores the possibilities of a multi-agent soccer simulator
based on a highly simplified soccer model as a tool for AI research and higher
education. The simulator provides users with insight in various artificial
intelligence techniques such as multi-agent systems, ad-hoc networks, rule-
based reasoning, cooperative agents and team work, and can function as a
testbed for research in these domains.

In the first part of this chapter, the current situation in the domain of
robot soccer is explored. The second part presents the context in which this
research was conducted. The next part provides an overview of the model,
soccer simulator, and an application of these in an educational environment.
The next part presents the goals for this project. Finally an overview of the
structure of this report is given.

1.1 Problem setting

1.1.1 Challenge

Multi Agent Systems (MAS) deal with multiple agents that are collectively
capable of reaching goals that are difficult or impossible to achieve by in-
dividual agents. One increasingly popular example of MAS is robot or em-
bodied agents. The ultimate challenge of this domain is stated as follows
[1]:

”By mid-21st century, a team of fully autonomous humanoid
robot soccer players shall win the soccer game, complying with
the official rules of the FIFA[2], against the winner of the most
recent World Cup.”

1

2 CHAPTER 1. INTRODUCTION

The 2050 goal is the successor of the chess challenge, that was accom-
plished in 1997 [3]. It can make AI interesting and popular once again.
Soccer appeals to many individuals, and the challenge will appeal to a large
number of researchers. The domain characteristics of soccer vary largely
from the domain characteristics of chess. Table 1.1 [4] illustrates this.

Table 1.1: Comparison of Chess and Soccer

Chess Soccer
Environment Static Dynamic
State Change Turn taking Real time

Info. accessibility Complete Incomplete
Sensor Readings Symbolic Non-symbolic

Control Central Distributed

To achieve the 2050 goal, many problems have to be solved. Guidelines
have been suggested [5] as to what must be done to achieve this goal. In
accordance with this, the Robot World Cup (RoboCup) Federation [4] has
introduced several robotic soccer leagues to host competition on a number of
different abstraction levels of the ultimate goal. The RoboCup Federation
strives to raise the bar in their leagues annually. The rules of the game
slowly converge to that of actual human soccer. Examples of such leagues
are the simulation league, humanoid robot league, Aibo robot league or the
small-sized robot league.

State of the art robots are presently no match for the capabilities of human
soccer players. A lot of progress has been made, and is being made towards
achieving this ambitious goal. To have a successful team however, another
key ingredient is required: Artificial Intelligence (AI). The simulation league
of RoboCup is presently a testbed for exploring this, and the area receives
a lot of attention. The goal of the simulator in this simulation league is to
provide a realistic simulation of soccer, in accordance with most FIFA laws
of the soccer game.

The problems that have to be solved for accomplishing the challenge would
be incredibly useful in many other domains. Fully autonomous humanoid
robots that can cooperate to accomplish complex tasks would meet some of
the expectations set out in recent popular A.I. movies.

Artificial Intelligence: the art of making computers that behave
like the ones in movies. Bill Bulko

1.1. PROBLEM SETTING 3

1.1.2 Game

Human soccer is a game played by teams of 11 players. To win a game, a
team has to score more goals than their opponents. A number of laws [2]
exist, to ensure fair play, and punish foul play such as tackling or pushing
the opponent. Free kicks or penalties may be awarded, and players can be
removed from the field after being booked for serious foul play. When a
ball leaves the field, the team that did not touch the ball last receives a
throw-in. To prevent an unfair advantage to offensive players waiting at the
opponent’s side of the field for the ball, an offside rule is implemented. A
player is offside when he is nearer to his opponents goal line than both the
ball and the second last opponent at the moment when a co-player passes
him the ball [2] [6]. Corner kicks and goal kicks are awarded when the ball
crosses the goal line as a result of action by the defensive and offensive team,
respectively. Players may not use their arms or hands to control the ball.
Every team has one goalkeeper that is allowed to use his arms, in order to
keep the ball out of the goal.

1.1.3 Problem

The high level aspects, such as dealing with cooperation and team work are
not dealt with extensively in present literature. These high level aspects are
crucial for a team’s success. Imagine having a robot able to dribble, pass
and catch the ball perfectly. This robot would be useless in the field, as it
will not know where to pass the ball to. It does not know where its team
mates are, or what strategy they are using. Having such a hypothetical
robot does not solve the entire problem, as it leaves the issues of strategy
and cooperation unsolved.

The main reason why most research is being done on the low level details
of playing soccer, is that having a reliable, fast, low level implementation
is a necessary requirement for any high level strategies. It is however not a
sufficient requirement. There is no use in reasoning about complex strategies
to trick the opponent when simple commands are not executed in accordance
with the expectation. For physical robots, issues like unrealistically low shot
accuracy, robots that can not distinguish between audience and team mates,
having too little processing power for thorough analysis of visual data, are
all real problems that require solutions prior to any sophisticated team play
algorithms.

In both the simulation league, and in all physical robot leagues, a low
level implementation of many primitive functions is required before having
a fully functional team. Furthermore, there is a large dependance on the
quality and stability of the low-level implementation on the performance

4 CHAPTER 1. INTRODUCTION

of high-level strategies. As a result, the problem domain that was already
inherently very uncertain is extended with even more uncertainties.

The threshold for starting in the domain is rather high. Researchers have
to commit themselves for a longer period of time, programming many low
level details before being able to work on the higher level implementation
- which is then plagued by the uncertainties introduced by this low level
implementation.

Achieving the 2050 goal requires (1) technological improvement to pro-
duce sophisticated humanoid robots, but also (2) new AI methods to deal
with the domain characteristics of soccer. Current practises attempt to
tackle the latter through simulators that realistically simulate a human soc-
cer environment.

Using this approach, researching high level strategies requires a trans-
parent, stable low-level implementation for basic input / output and basic
player skills. Developing such an implementation requires a long-term com-
mitment from researchers. The rules of the game are predefined, hence
decisions about introducing uncertainties can not be modified to suit (hy-
pothetical) technological progress1. High-level efforts will have to deal with
uncertainty inherent to a soccer environment, uncertainty introduced by the
predefined world model, uncertainty from the imperfect implementation of
the low-level details, and with uncertainty introduced by the freedom of
choice of the player.

1.2 Introductory AI Course

This research was initiated for the purpose of improving a first-year under-
graduate introductory AI course at Delft University of Technology. This
section introduces the course and related research.

1.2.1 MKT-2

MKT-2 is the second project in the first year of computer science under-
graduate students at Delft University of Technology. The educational goals
of the project are [7]:

1. To introduce the basic concepts of knowledge engineering and the rel-
evant AI techniques, including search algorithms, knowledge represen-
tation techniques, rule-based reasoning algorithms, and agent technol-
ogy.

1For example, if a breakthrough in real-time object recognition would occur, the world
model of the simulator would not match that of the physical state of the art.

1.3. SOCCER SIMULATOR 5

2. To explain and instruct on issues related to AI programming in general
and intelligent (multi-) agent applications in particular.

1.2.2 Research at TU Delft

At Delft University of Technology, several people have contributed to the
research on creating, improving and evaluating the MKT-2 project. A sim-
ple agent framework, Fleeble, was developed specifically for the project by
Reinier Zwitserloot and Robbert Jan Grootjans [8] [9] [10]. Several chal-
lenging assignments were developed [11][12] to achieve the aforementioned
educational goals. Research has been conducted to develop an assignment
and corresponding software to teach students about (mobile) ad-hoc net-
works and multi-agent systems [7]. Several conceptual and software prob-
lems have prevented this assignment from reaching its goals. This problem
is addressed in this graduation project, as an alternative assignment based
on the soccer simulator with similar educational goals was developed and
used.

1.3 Soccer Simulator

The system described in this thesis was not designed from the perspective
of being a realistic soccer simulation. Instead it was designed as an educa-
tional model, designed to suit the needs of a broad group of users, including
students and researchers.

1.3.1 Model

The system uses an extensible three layer model to model the world, as
described in Table 1.2. The world model described in this thesis is highly
simplified, compared to that of existing soccer simulators and real human
soccer.

Rules governing fair play, dealing with amongst others free kicks, yellow
and red cards, penalties, throw-ins, corners, goal kicks and offside, are all
necessary elements of human soccer. Including these rules in a simulator
however, necessitates their inclusion in the design and implementation of
any team. Another dimension of soccer is coaching and allocating players
with certain strengths and weaknesses to certain positions. Although at-
tention to these properties and events must be paid in order to compete
with human players, they distract attention from developers towards han-
dling these special cases. For this reason, all aforementioned rules are not
included in the world model of the system. Furthermore, all robots are
physically identical.

6 CHAPTER 1. INTRODUCTION

Table 1.2: The Three Layers of the Soccer Simulator

Entity Metaphor Description
Player Brains Defines the behavior of the robot. Has

access to all sensory inputs and can
use high level commands to address
all the robot’s effectors.

Robot Human body Physically present on the field, will at-
tempt to do as the brain tells it, but
can be limited by physical laws. In
the simulator this layer is relatively
transparent, but the robot layer can
be transformed to introduce low-level
uncertainties to simulate realistic in-
put.

Framework Physical laws The rules of the game are controlled
by the framework. This includes pa-
rameters such as ball speed, player
speed, robot vision angle, but also for
example the way collisions are dealt
with. The framework layer is also re-
sponsible for the graphical representa-
tion of the world.

Robots have a number of basic sensors and effectors, as can be seen in
Table 1.3. To support adaptive team behavior, an option is included that
effectively substitutes the behavior of a certain player for that of another
player. These are the only ways in which robots can interact with the
system.

The world model used in the simulator can be modified and extended
with relative ease at each of the separate layers. Extending the model with
uncertainty about what can be seen or what was heard and by whom is as
simple as adding a filter to the robot layer. The complete, perfect informa-
tion that is available from the framework layer can be filtered2 to simulate
the imperfect sensory capabilities of robots.

2Such a filter can be deterministic, for example a filter that will pass on the content
of a message, but not the sender. It can also be nondeterministic, to simulate noise or
random behavior in the environment.

1.3. SOCCER SIMULATOR 7

Table 1.3: Robot Sensors and Effectors

Name Description
See Robots have a narrow field of vision

that provides perfect information up-
dated at predefined time intervals

Move Robot movement is composed of a
possible turn, a possible special move
such as a kick, and a direction. Move-
ment is processed at predefined time
intervals.

Shout Robots can communicate with each
other through message passing. Any
data can be sent at any time, and
all robots within a predefined distance
will receive the message without any
errors.

Listen Robots will receive all messages sent
by other robots within a predefined
distance.

1.3.2 Simulator

The simulator is designed for three groups of users. As the requirements
differ for each of these groups, the system is designed to be flexible and
extensible. Three different goals can be formulated for each of these groups.
The goals are not mutually exclusive, and considerable overlap will exist.
The three different groups and their corresponding primary goals are illus-
trated in Table 1.4.

Table 1.4: User Groups and Corresponding Goals

User Goal
Student Achieve the educational goals mentioned in Sec-

tion 1.3.3.
Hobbyist Lower the threshold for starting in the domain of AI,

and as such open the domain to a broader audience.
Researcher Serve as a testbed for research on cooperation and

team work.

8 CHAPTER 1. INTRODUCTION

The simulator is also designed to be easy to learn and use, and features
an intuitive customizable interface. Reference teams are included to give
users a kick start in developing their team and in providing insight in the
problems that individual robots encounter.

1.3.3 Education

The simulator based on the simplified soccer model is very suitable for edu-
cational purposes. Depending on the level of the students, the time available
for the project and the specific educational goals, custom assignments based
on the simulator are readily made. The available reference teams pose a
serious challenge to students, and make the performance of their implemen-
tations easily verifiable.

The development of the simulator was initiated by the lack of a good as-
signment for teaching students about multi-agent systems and ad-hoc net-
works in the MKT-2 project. Earlier assignments were not successful, and
a lot of time was spent reflecting on what elements were crucial to the suc-
cess of an assignment, and what elements were devastating. These were
subsequently taken into account for the development of a new assignment.

This new assignment has the following educational goals3:

• Learn students to work in groups.

• Learn students to develop an implementation from a vague, high-level
problem description, including:

– analyzing the problem

– designing a solution

– identifying and distributing tasks between group members

– implementing the individual tasks; learning about the difficulties
of integrating several parts of a system, and learning to cope with
unexpected results from their implementation.

• Learn students about:

– distributed artificial intelligence,

– multi-agent systems,

– mobile ad-hoc networks,

– decentralized control,
3The group work / problem solving goals are similar to the goals of most projects. The

vague, high-level problem description, AI, and programming skill level goals are specific
to this project

1.4. GOALS 9

– cooperative agents,

– rule-based reasoning.

• Increase the programming skill level of the students.

The assignment that was given is the following: Develop a soccer team
that is capable of consistently defeating the reference team. The assignment
was used in 2005-2006 in the MKT-2 Project at Delft University of Technol-
ogy. As a competitive element to increase the motivation of the students, a
tournament between all student teams was held at the end of the project.

1.4 Goals

The main goal for this project is to design and implement a multi-agent
soccer system based on the highly simplified soccer model that allows users
to start immediately on a high level, and use this in an introductory AI
project. The previous sections described the functionality and the goals of
the soccer simulator. Rather than developing a ’realistic’ soccer simulator,
the simulator that is described in this thesis uses a highly simplified soccer
model that allows users to start immediately on a high level, and is very
suitable for on researching cooperation and team work. A summary of the
goals is listed below:

1. Game

• Literature survey on the state of the art of robot and multi-agent
soccer

• Design the simulator

– Research the requirements of the model
– Design the soccer model
– Research available agent frameworks and tools
– Design a model of the simulator, that considers the properties

of the specific tools that are used, for implementation of the
system

– Design the user interface

• Implement the simulator.

2. Research

• Investigate the capabilities of a team in the simulator

– Determine what the individual robots can reason about
– Investigate player skills, reasoning methods, and adaptive

team behavior, and how these can be implemented in the
simulator

10 CHAPTER 1. INTRODUCTION

– Implement a reference team based on rule-based reasoning.

3. Education

• Develop an educational assignment based on the soccer simulator,
that achieves the goals described in Section 1.3.3.

• Use the assignment in an introductory AI project

• Evaluate the assignment

– Verify that the assignment accomplishes its educational goals
– Evaluate the different approaches that were used by the teams

of students to develop their soccer teams

• Research potential alternative educational applications of the soc-
cer simulator.

Talent wins games, but teamwork and intelligence win champi-
onships. Michael Jordan (Famous basketball player)

1.5 Thesis Overview

Chapter 2 provides some background information about (multi-) agent sys-
tems, robot soccer, and its application in education.

In Chapter 3 the development tools that were used are described and
justified. A detailed explanation of the agent framework that was used is
included, as an understanding of its properties and limitations is important
for the understanding of certain properties of this particular implementation.

Chapter 4 describes the soccer model that is incorporated in the simulator.
It justifies the decisions and trade-offs that had to be made, and describes
how the model can be extended or modified.

In Chapter 5 the design of the system is discussed. The global system
design is introduced, followed by a detailed explanation of all relevant classes
that were used. A thorough description of the movement model is given,
and the user interface design is discussed.

Chapter 6 describes the implementation of the soccer simulator. It begins
by describing the approach that was used for implementing the system.
Then is provides an overview of the most important characteristics of the
three main elements of the simulator. It concludes with a presentation of
the final result.

1.5. THESIS OVERVIEW 11

Chapter 7 introduces several aspects to agent strategies. It describes
numerous low-, medium-, and high-level player skills, and a number of infer-
ence steps that map the basic percepts to high-level information about the
environment. Agent and team strategy are discussed, and adaptive behav-
ior is introduced. Furthermore, it explains the rule-based action selection
mechanism.

Chapter 8 discusses the design and implementation of the SimpleTeam
for the simulator. The SimpleTeam was used in the introductory AI course.
It describes the player skills, action selection mechanism and the inference
steps.

In Chapter 9, some background information about the MKT-2 project
is provided. The predecessors of the soccer assignment are analyzed and
discussed. The chapter concludes with a description of the setting of the
MKT-2 project in 2005-2006.

Chapter 10 introduces the soccer assignment that was used in the MKT-2
project in 2005-2006. The educational goals and the outcome are discussed.
Classroom and survey evaluation results are presented and analyzed. The
chapter concludes with a number of improvements for future projects.

Chapter 11 describes the conclusions of the project. The results are eval-
uated and compared to the goals that were formulated in Section 1.4.

Chapter 12 concludes this thesis by a discussion and suggestions for future
work.

Appendix A contains a publication about the educational aspect of this
graduation project, that was accepted for presentation at the E-learning
Conference 2006.

Appendix B contains an overview of the tournament parameters.

Appendix C provides an in-depth description of the educational approach
that was taken in the MKT-2 project.

Appendix D contains the survey that was handed out to all students
participating in the MKT-2 project in 2005-2006.

12 CHAPTER 1. INTRODUCTION

This report, by its very length, defends itself against the risk of
being read4. Winston Churchill

4completely

Part I

Preliminaries

13

Chapter 2

Literature

Literature is the question minus the answer. Roland Barthes

This chapter provides an overview of the state of the art in the domain
of soccer. The first section introduces agents and multi-agent systems, fol-
lowed by an introduction to Multi Agent Soccer. Within multi agent soccer,
Aibo robots, humanoid robots, soccer simulators and multi agent soccer in
education are described. The chapter concludes with a brief overview of the
state of the art. This chapter serves only to introduce the topics and to
provide a general overview. A discussion of specific theories or techniques is
left for later chapters.

2.1 Agents

An Intelligent Agent (IA) is a computer program that uses AI-techniques
to autonomously accomplish specific goals within a predefined problem do-
main1 [13]. An agent is a computer program that can be seen as an entity
that observes its environment through sensors, and reacts on this using
its effectors.

2.1.1 Performance Measure

A rational agent will perceive its environment, reason about this, and choose
the action that it expects to yield the best result. Before such an agent can
be built, a performance measure that evaluates the success of an agent is
required. A common trade-off in determining the performance of an agent
is effectiveness versus efficiency. When the goal is to win a soccer game, and
the agent wins in the last minute of the extended time by an own goal of
the opponent, should this yield the same performance rating as the agent
that defeats his opponent by 12-0?

1There are more definitions of an Intelligent Agent

15

16 CHAPTER 2. LITERATURE

Determining good performance measures is a nontrivial task. For exam-
ple when determining the performance measure of a vacuum cleaning agent,
using the amount of dust that is collected would have the following unde-
sirable effect: An agent that collects one bag of dust, puts this on the floor
again and vacuums it up will get a very high performance rating. The agent
is not effective at performing the task (cleaning the house), however.

2.1.2 Simple Reflex Agent

Figure 2.1 shows a simple reflex agent. First this agent perceives its environ-
ment. Then, it reasons about the appropriate action using (if-then) rules.
The action that is chosen yields the highest expected performance rating.
Finally, the action is performed using the agent’s effectors.

Figure 2.1: A Simple Reflex Agent

2.1.3 Learning Agent

A more advanced agent is the learning agent. This agent has the same
sensors and effectors, but reasons in a different way. The learning agent is
illustrated in Figure 2.2 [13]. The critic provides feedback to the learning
element on how the agent is doing, based on the fixed performance stan-
dard. In a soccer game, this performance standard could be that the agent’s
team should have a higher score than the opponent. The learning element
determines how the agent should perform in the future, based on this feed-
back, and determines how the performance element - that decides how to

2.2. MULTI-AGENT SYSTEMS 17

react on certain inputs - should be adapted to perform better. The problem
generator will suggest new actions to the performance element. Without
the latter, the performance element would only act according to do what
is best, given what it knows. Through exploring the unknown, new ’best
moves’ could be discovered.

Figure 2.2: A Learning Agent

2.2 Multi-Agent Systems

Multi Agent Systems are systems composed of multiple agents that are col-
lectively capable of reaching goals that are difficult to achieve by single
agents. Agents are in principle autonomous, but for many serious activities
a certain amount of human supervision, coordination or control is required.
Human agents can also be a part of a multi-agent system. Conventional
approaches to difficult problems would create highly customized, complex
implementations. Multi-agent systems make it easy to structure the data
flow between important parts of a system. This makes it easier to change
and maintain, and prevent many complexity related bugs from occurring.

The characteristics of MAS’s are that (1) each agent has incomplete
information or capabilities for solving the problem and, thus, has a limited
viewpoint; (2) there is no system global control; (3) data are decentralized;
and (4) computation is asynchronous [14].

18 CHAPTER 2. LITERATURE

2.3 Multi Agent Soccer

As early as in 1994, soccer was introduced as one of the great challenges for
Artificial Intelligence [15]. A lot of research and experimentation has been
going on in the increasingly popular domain since then. In the year 2000,
the 2050 goal [1] was formulated as the new challenge for AI for the coming
50 years, in response to the completion of the chess challenge in 1997.

A number of important issues that would have to be addressed to reach
this goal were identified by [15], and were stated as follows: (1) Real-
time decision making; (2) Planning; (3) Plan recognition; (4) Modeling; (5)
Learning; (6) Multi-agent theory; (7) Robot architectures.

These issues have been researched and a vast body of literature on the
specific topics have been produced. The current practises are still nowhere
near the 2050 goal. Competing with humans and in accordance with the
FIFA rules demands highly sophisticated humanoid robots that have physi-
cal abilities comparable to that of humans. Developing such robots can not
be done overnight. A set of intermediate targets with regards to the robots,
the rules of the game and the environment in which the game takes place
have been set out in [5]. Through gradually adding complexity and making
the competitions ever more humanoid, the goal is to be met. This section
provides an overview of the state of the art in several application domains
of robot soccer.

The RoboCup [4] consists of 5 leagues; (1) small-sized robots; (2) middle-
sized robots [16]; (3) four-legged robots (Aibo’s); (4) humanoid robots; and
(5) simulation. The four-legged league, the humanoid league and the simu-
lation league will be discussed. After this, an overview of multi-agent soccer
in (computer science) education is given.

2.3.1 Aibo Soccer

The Aibo [17] is a small autonomous robotic pet dog, that was introduced
in 1999 and is being used for the four-legged league of the RoboCup [4].
(See Figure 2.3) In this league, 24 teams of four Aibo robots compete on a
6m by 4m playing field. The robots are allowed to communicate with each
other acoustically or through their wireless network cards. As the Aibo
robots are complete off the shelf, and come with a wireless network card,
camera, microphone, speaker, LED display, and a wide array of sensors and
moveable parts, the RoboCup regulations forbid any hardware modifications
to the standard Aibo. This forces participating teams to focus solely on
controlling the robot, and achieving cooperation and team play, rather than
focussing on improving or modifying the hardware.

2.3. MULTI AGENT SOCCER 19

The Aibo’s behavior can be reprogrammed using the Aibo Software De-
velopment Environment [18]. This SDE consists of (1) the Open-R SDK
- a C++ based environment that can be used for programming the Aibo.
These tools can control the movements of the robot’s joints, gather infor-
mation from sensors and the camera, or communicate using the wireless
LAN; (2) R-Code SDK - allows the execution of R-Code, a scripting lan-
guage, on the Aibo; and (3) Aibo Remote Framework, that allows PC-based
applications to monitor and control the Aibo.

Figure 2.3: Aibo Soccer

2.3.2 Humanoid Robots

In the year 2002, the RoboCup Federation added a new league for humanoid
robots to its annual competitions. Humanoid robots are robots with human-
like bodies and human-like senses. The robots are between 30 and 130cm of
height [19] and function autonomously. Despite a lot of effort, basic skills
such as walking and kicking are still far from perfect and even the best
robots will occasionally fail at this.

Every few years, the rules are tightened, for instance through decreasing
the maximum foot size, to make the game gradually more difficult, and
more like human soccer [20]. The first soccer match between humanoid
robots was held at the 2005 competition, where a 2 vs 2 match was held.
(See Figure 2.4)

Many companies and researchers have worked on designing and developing
humanoid robots for this competition [21] [22] [23] [20]. The resulting robots
are still very experimental, and there is no de facto standard like the Aibo
is for the four legged robot league. As this league is still very young, it is
likely to receive a lot of attention in the (near) future.

20 CHAPTER 2. LITERATURE

Figure 2.4: Humanoid Soccer Robots at the 2005 Competition

2.3.3 Soccer Simulator

The RoboCup Federation has another important league; the soccer simula-
tor [24]. This simulator was introduced in 1995 [25] and has seen a lot of
development since. In this league, no actual robots are used, but teams of
11 autonomous software agents compete on a simulator in a match lasting
10 minutes.

Unlike the four legged and humanoid leagues, this league is not faced with
the hardware constraints of current technology, and a vast body of litera-
ture has been written on various techniques used for creating cooperative
teams, such as machine learning, multi-agent collaboration, and opponent
modeling.

The Soccer Simulator is a platform for researching cooperation and team
work. It is not restricted by the current state of technology, however there is
a large threshold for starting working with the simulator for several reasons.

There is several variations within the simulation league; A 2D compe-
tition, a 3D competition, a 3D-development competition and a coaching
competition.

2.3. MULTI AGENT SOCCER 21

Following are some of the rules of the 2006 RoboCup 2D Soccer Simulation
competition [26]:

• Scripts will be executed by a different user in your user group. Your
scripts and your team have to be at least group read- and executable.

• The scripts should use absolute paths or change to the respective di-
rectories.

• Double check that your kill scripts kill all of your programs (goalie,
players, coach) even if your programs terminate automatically.

• Teams can only use Linux operating system.

• The scripts will also be called for penalty kick out. Make sure your
team can handle this.

Furthermore, a large fair play clause is added to the rules:
Violation of the fair play commitment play includes for example:

• using another teams binaries in your team;

• if a team is jamming the simulator by sending more than 3 or 4 com-
mands per client per cycle;

• if a team communicates by other means than via the server using the
say command, for example by using direct inter-process communica-
tion;

• if a team attempts to disturb other teams communication by recording
and sending strings of former communication or by attempting to fake
communication of the opponent team.

Of course the fair play clause is sensible, but it also points out that the
framework itself is not capable of controlling such fair play. The rules pointed
out above lead to a similar conclusion. Double checking whether proper ac-
cess rights are given, that you have a working kill script, that your team will
work when it is called for a kick-out are things that a properly designed sys-
tem should check for you, before even engaging in any competition. Finally,
the demand for the usage of the Linux operating system is very restrictive
towards supporters or different operating systems.

The communication in the 2D league has to be done using TCP/IP, and
the only supported platforms are SuSe Linux, Redhat Linux, Solaris, Mac
OS. Windows is not mentioned in the manual. (See Figure 2.4 for a screen-
shot of the 2D simulator).

22 CHAPTER 2. LITERATURE

Figure 2.5: 2D Soccer Simulator

All communication with the server has to be done over TCP/IP. The only
supported platforms are SuSe Linux, Redhat Linux, Solaris, and Mac OS.
Windows is not mentioned in the manual [27], and as such Windows users
are not able to work with the soccer server. The simulator uses g++, and
as such teams have to be programmed using C++.

Libraries exist for developing software agents in the simulator [28].

The 3D simulator is built on a generic simulator for physical multi-agent
simulations, Spark [29], and is designed a lot better. It can be used on
Windows and is a lot more user-friendly than it’s 2D colleague.

2.3.4 Other Simulators

Apart from the two simulators of the RoboCup Simulation league, more
simulators have been developed. An important question to ask with sim-
ulators is what are they simulating? The obvious goal for the RoboCup
simulation league is to simulate a realistic humanoid soccer environment.
There is however still a large gap between the current state of technology
and such a realistic soccer environment. Due to the expensive hardware
involved in experimental actual robotic soccer, and the facilities required to
host experiments, it is not very practical to field-test everything. A number
of simulators have been developed that use models of the robots, and feed
them with the same data as the actual robots would get. This allows for
cheaper and faster testing, and can develop new technology that anticipates
upcoming hardware advances in the actual robots.

2.3. MULTI AGENT SOCCER 23

The following are a number of such simulators that have been developed
recently.

• Ubersim: A high-fidelity C++ simulator for the small-sized RoboCup
league [30].

• SimRobot: A generic physical robot simulator, that has been used to
model the German Aibo team [31].

• Player/Stage: Player is a network-transparent robot control interface,
Stage is a lightweight simulator [32].

• WeBots: Webots is a mobile robotics simulator that has been used for
simulation (simple) soccer robots [33].

• UCHILSIM: A realistic simulator designed to simulate the four legged
league of RoboCup. [34]

2.3.5 Multi Agent Soccer in Education

The domain of multi-agent soccer is especially suitable for applications in
higher education. The game is well known and very popular, so the problem
is realistic and challenging. It has been used in undergraduate and graduate
computer science since as 1997.

Within these projects / courses on robot soccer, there is a clear distinction
between two variants:

1. focusses on both the hardware, the hardware/software interface and
the software. Actual robots are built or programmed, and usually a
competitive element between student groups conclude the coursework
[35] [36] [37] [38] [39];. . .

2. focusses solely on the software, using the Soccer Server [25] as its main
reference [40] [41] [42] [43] [44].

As programming a full intelligent team in Soccer Server will take tens
of thousands of lines of code, it is undesirable to start from scratch. To
solve this problem, RoboSoc [45] was developed. RoboSoc can be seen as
a layer over the Soccer Server that makes it more user friendly, and allows
easier control over low-level details, allowing students to focus on high level
implementation details faster.

24 CHAPTER 2. LITERATURE

2.4 Overview

This chapter introduced Agents and Multi-Agent Systems. The Four legged,
Humanoid and Simulator leagues of the RoboCup competition were de-
scribed, and an overview of the state of the art was given. A number of
other simulators that have been used for soccer were described, and it was
shown how multi-agent soccer is used in education.

Considerable progress is being made in all areas. Most soccer simulators
apart from the Soccer Server are specifically designed for simulating actual
robots playing soccer, whereas the Soccer Server is designed to simulate
human soccer. Many courses and projects in higher education that deal
with soccer choose to include the hardware aspects as well, resulting in
actual robots that display some intelligence, rather than highly intelligent
virtual robots. Some courses are based on the RoboCup simulation league
and use Soccer Server in conjunction with RoboSoc, a system that makes it
easier to implement teams in Soccer Server.

Chapter 3

Tools

Intelligence is the faculty of making artificial objects, especially
tools to make tools. Henri Bergson.

This chapter describes the tools that were used in this project. This
chapter begins by providing an overview of what is required, following is a
description of Fleeble - the agent framework that was used, in terms of the
requirements. Finally, a brief overview of Eclipse and some of its plugins is
given.

3.1 Overview

Just like the development of any other software application, careful attention
has to be paid to the selection of the tools. The development will have to
be done using a certain programming language, using a certain Software
Development Kit (SDK), and using a certain agent framework to match.
Prior to selecting any of these, some basic questions need to be answered:

• Who will use the system and what is their background knowledge?

• Which characteristics are important? Speed? Performance? Ease of
use? Platform independence? Distributed or centralized? Stand-alone
or cooperative multi-player games?

• What programming language is best for development of the particular
system?

• What programming language is best suited for the intended users to
program their teams in?

25

26 CHAPTER 3. TOOLS

3.2 Programming Language

Prior to selecting an agent framework, it is important to decide on the
programming language to be used. All languages have their strengths and
weaknesses. Considering the application – a 2D simulation of a soccer match,
where players are simulated and controlled by agents; speed and real-time
performance of the simulator are not as much of an issue as in for example
complex traffic simulators. The low-level control that languages like C or
C++ offer might make them more efficient, their low-level capabilities also
distract programmers from the higher level issues. This is especially the
case when design experience is lacking - as is obviously the case with stu-
dents. The ease of use at a high level of abstraction is more important than
speed and performance. When dealing with multi-agent systems, thread
management becomes an important issue for the software developers.

3.2.1 Educational Aspect

For the requirements, it is important to keep in mind that the assignment
produced in the educational part of this thesis will rely heavily on the simu-
lator. As such, choosing an agent framework that has a high learning curve
because of poor design, too many options, or use of a language or syntax
that the students are not familiar with would be problematic. The assign-
ment would then require a lot of extra tutorials and support. The focus of
the assignment would change towards learning the new environment rather
than learning AI techniques. Using Java and a Java-based agent framework
seems like a natural choice, as Java has become the default programming
language for undergraduate computer science students at Delft University
of Technology.

3.2.2 Conclusion

Speed and real-time performance are important features of the system, but
the speed of regular desktop computers is more than high enough to support
such small-scale soccer simulations in any programming language. Also
for potential larger scale simulations distributed over a network, present
networking speeds are more than sufficient. The fact that a large subset
of the potential users will have limited programming experience - and most
of this experience in Java, combined with Java’s object-oriented approach
that is very suitable for modeling agents, make Java the right choice for this
project.

3.3. AGENT FRAMEWORK 27

3.3 Agent Framework

This section describes the criteria for the selection of an agent framework,
justifies the decision to use Fleeble, and provides further background infor-
mation about Fleeble.

3.3.1 Background Information

Although agent technology is a relatively new area in the domain of artificial
intelligence, and the applications relying on agent technology put very spe-
cific demands on their frameworks, a large body of literature and software
has already been produced to support people in working with agents. Agent
frameworks, including software packages and agent-based applications are
now readily available for new research to build on (See [46] for a long list).

3.3.2 Role of the Agent Framework

The role of the Agent Framework in the multi-agent soccer system is dual.
First, it provides a generic interface and tools for the communication between
the framework and the individual soccer agents. The Soccer Server [25]
uses the TCP/IP protocol to host its communication, whereas an agent
framework will often have its own communication model, that might be
easier for novice users. Functionality of certain agent framework tools can
also serve to restrict soccer agents to prevent cheating and to force focus on
important areas. Secondly, the agent framework is a de facto black box that
students doing the coursework will have to work with. They will have to
understand exactly what goes on and what options are at their disposal.

To deal with the latter, [7] proposed some criteria for an agent framework
that is to be used in the introductory AI course in question:

• It should be simple and user friendly, and it should include built-
in Java-implemented agent ”templates” that facilitate example-based
learning and can be edited to include the desired AI algorithms ac-
cording to the goals of a programming assignment.

• It should embody the concepts of concurrency (a kind of multi-threader
set-up), multi-agency (by allowing simple communication from one
agent to the other), mobility (transferring agents from one host to
another) and persistency (saving settings between executions).

3.3.3 Comparison

Based on the aforementioned requirements, a Simple Agent Framework [8]
was developed. After a major rebuild, this was renamed Fleeble [9][11], and

28 CHAPTER 3. TOOLS

was developed by Grootjans & Zwitserloot. An interesting comparison of 26
Java-based agent frameworks was conducted [7], based on issues derived from
the aforementioned criteria. These issues are listed below. The comparison
is illustrated in Table 3.1. Based on these criteria, Fleeble was found to be
the best option.

1. Is the tool available for free?

2. Does the developer provide support for the tool?

3. Is the tool available for free?

4. Are useful examples readily available?

5. Is the related documentation readable?

6. Is synchronous agent-to-agent communication (i.e., waiting for reply)
supported?

7. Is asynchronous agent-to-agent communication (continuing immedi-
ately) supported?

8. What is the communication transmission form?

9. Can the framework control agents resources (e.g., disk or network ca-
pacity used)?

10. Can the framework ask an agent to shut down?

11. Can the framework terminate the execution of a malfunctioning agent?

12. Can the framework store agents states between executions?

13. Can the framework store objects (e.g., a database) between execu-
tions?

14. Does a self-explained GUI per agent exist?

15. Does the GUI support an overview of all running agents?

16. Does the framework support mobility?

3.3.4 Java 1.5

Fleeble is programmed in Java 1.5 [50]. With the introduction of Java 1.5
in late 2004, Java has become a much more powerful language. Java 1.5
introduced new features like generics and annotations. These features are
used a lot throughout Fleeble, but are quite intuitive and easy to learn.

Students that have worked with Fleeble and Java 1.5 had little trouble
adjusting to the new syntax and were enthusiastic about the possibilities
offered by the new features.

3.3. AGENT FRAMEWORK 29

Table 3.1: Overview of available Java-based agent frameworks [7]. • =”yes”,
× =”no”, PP = Peer to Peer, M = Multicast, PS = Publish-Subscribe.

Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Agent Factory [46] • - × × × × PP × × × × × × × •
IBM Aglets [46] • Free × × • • PP • • × × • • × •
AMETAS [46] • - × × × • M × • × × × • × •
Beegent [46] × - • × × • PP × × × × - × × •
Cougaar [46] • Free × × × • M • × × × • × × •
CIAgent [47] • $ • • × • PP × • × × - • × ×
DECAF [46] • - × × × • PP × × × × × • × ×
FIPA-OS [48] • Free × × • • PP × × × × • × × ×

Grasshopper [46] • - • × • • M • - - • × • • •
Hive [46] × Free × × × × None × × × × × • • •

JACK [46] • $ × × × • PP × × × × - × × ×
JADE [46] • Free • × × • M × • × × × • • •

JAFMAS / Jive [46] × - × × • × M × × × × × × × ×
Kaariboga [46] • Free • • × • PP • • × × × × × •

LIME [46] • Free • • × • PS × × × × × × × •
MadKit [46] • Free • × • • M × • × × × × • •

NOMADS [46] × Free × × × × None • • • × × • × •
OpenCybele [46] • Free • • • • PS × • • × × × × ×
Pathwalker [49] • Free × × × • PP × × × × × × × •

SeMoA [46] • Free • • × • None • • • • • × × •
Tryllian [46] • $ • × • × PP × - - • • × × •
Voyager [46] • $ × × • • PS • × × • × × × •
ZEUS [46] × Free • × • × PP × × × × × × × ×

SAF [8] [12] • - • • × • PS • × • × • • • ×
Fleeble [11] • - • • × • PS • × • • • • • •

3.3.5 History

The Fleeble Agent Framework is a simple Java-based agent framework, de-
signed for teaching introductory AI [9] [11] [7]. Work on Fleeble’s prede-
cessor, Simple Agent Framework (SAF) [8] started in 2001-2002 as a first
working prototype for an agent framework for the introductory AI course. It
was used and evaluated that year, and redesigned the year thereafter. Along
with the redesign came its new name; Fleeble. Minor and major bugs have
occurred throughout the first couple of years, often in conjunction with the
addition of new functionality. Since 2004-2005, Fleeble is considered stable
and reliable, and all known bugs have been resolved. Fleeble is open-source

30 CHAPTER 3. TOOLS

and thoroughly documented.

3.3.6 GUI

The user interface of Fleeble was designed to be simple. A typical session of
Fleeble will look something like Figure 3.1. On the left are all the namespaces
and their channels. On the right are all currently active agents. On the
bottom is the output of a channel, in this case the System.out channel. On
the right, the pop-up menu shows the current input channels for the Soccer
Agent.

Figure 3.1: GUI of Fleeble Agent Framework

3.4 Fleeble

This section serves as an overview of Fleeble. A number of key principles, de-
finitions and methods are explained. This serves to illustrate the simplicity
of creating and working with agents in Fleeble, and to create an awareness
of its possibilities. An understanding of the concepts dealt with in this sec-
tion shall be assumed for the chapter regarding the implementation of the
soccer simulator. A more detailed explanation of most of these features can
be found in Fleeble’s extensive documentation [10].

3.4. FLEEBLE 31

3.4.1 Programming an Agent

Programming an agent is illustrated in Listing 3.1.

Listing 3.1: Programming an Agent

1 import f l e e b l e . ∗ ; // requ i r ed .
2

3 public class MyAgent extends Agent
4 // agents must be PUBLIC.
5 {
6 // agents must extend ’Agent ’
7 // noth ing e l s e i s r e qu i r ed !
8 }

3.4.1.1 Compiling the Agent

Compiling the agent can be done in the conventional way, for example using
the default javac compiler, but also in a user-friendly way by Fleeble itself.
When selecting the agent that is to be loaded, the Java file can be selected,
and Fleeble will automatically compile the code.

3.4.1.2 Loading the Agent

Loading an Agent is just as simple as starting Fleeble, going to the File
menu, clicking on the Load Agent button (See Figure 3.2) and selecting the
.java or .class file containing the (compiled) agent.

Figure 3.2: Loading an Agent in Fleeble

3.4.2 Agent States

An agent can be in one of the following states:

32 CHAPTER 3. TOOLS

Table 3.2: Overview of Possible Agent States and their Icons.

Agent State Icon

CREATED

RUNNING

FROZEN

SUSPENDED

STOPPED

KILLED

REMOVED

The state of an agent determines what it can or can not do. The state
that an agent is currently in is displayed using an icon. (See Table 3.2)
A thorough explanation of states is given in [10]. The function of most
states is straightforward and self-explanatory. The most important state is
RUNNING. This is the default state, and while in this state, the agent will
be able to send and receive messages when in this state.

3.4.3 Channels

Communication in Fleeble is done using channels. Channels can be thought
of as chatrooms. Agents can subscribe to a channel and all data on the
channel will be delivered to the agent. Channels can carry any type of data.
Any Java object that is serializable 1 can be sent over a channel. Sending
data to the channel can be done through publishing.

Table 3.3: Publishing and Subscribing to Channels

Subscribing @Subscribes(”soccer.input”, ”soccer.status”)
Publishing @Publishes(”soccer.output”, ”soccer.result”)

Table 3.3 shows the code that has to be added before the class declaration
in order to subscribe or publish to a channel. The syntax uses Java 1.5’s
Annotations [52]. Subscribing and publishing can be done in a static and

1See [51] for an explanation of serialization. A serializable object can be stored and
transmitted over a network. For objects to be serializable they must either extend the
Serializable interface or be a primitive type

3.4. FLEEBLE 33

in a dynamic manner. Dynamic publishing and subscribing is explained in
section 3.4.3.3. Listing 3.2 illustrates static subscribing and publishing.

Listing 3.2: Publishing and Subscribing

1 @Subscribes ({ ” so c c e r . Input ” , ” s o c c e r . Status ” })
2 @Publishes ({ ” so c c e r . Output” , ” s o c c e r . Result ” })
3

4 public class MyAgent extends Agent{

yields in an agent that is subscribed to soccer.Input and soccer.Status,
and allowed to publish on soccer.Output and soccer.Result.

3.4.3.1 Subscribing

The agent will receive all data that passes over this channel. Data can enter
the channel through other agents, or through humans manually entering
data on the channel. For this particular example to work according to
expectation, the agent is required to handle the incoming channels. To do
this, two methods have to be declared, as illustrated in Listing 3.3.

Listing 3.3: Handling the incoming messages

1 public class MyAgent extends Agent {
2 public void handleInput (MyObject pObject) {
3 // any java code
4 }
5

6 public void handleStatus {StatusObject pStatus) {
7 // any java code
8 }
9 }

Using Java 1.5’s powerful generics [53], Fleeble will automatically forward
any data on the specific channels towards these methods.

The MyObject and StatusObject are included to illustrate yet another
powerful feature of Fleeble.

Agents are not ignorant of each other, but deal only with their inputs and
outputs. Each agent has a certain job to perform. To perform this job, it
expects a certain type of input, and is expected to return a certain output.
An easy metaphor would be a car factory. A large assembly line consisting

34 CHAPTER 3. TOOLS

of several hundred employees together build a car, whereas each employee
will perform only one or two tasks on this car. If there are n employees,
then an arbitrary employee staged at point k in the assembly line of state k
will expect a car that is completed until state k-1 as its input, and return a
car that is complete until k as its output.

In a multi-agent environment a system developer will always know what
type of data can be expected. It was previously mentioned that any Java
Object can be sent over channels. Since the type of object that can be
expected is known, Fleeble allows agents to further specify this in the handler
methods. This makes programming agents a lot easier, as it avoids tedious
casting of objects, but it also makes them more intuitive.

If a channel can be used for multiple types of input, another method
expecting the other kind of input can be implemented. Fleeble will auto-
matically look for the method that matches the data. If no match can be
found, Fleeble will try to route the message to handleOther(Message pMes-
sage). If this method does not exist, an error will occur. This is illustrated
in Listing 3.4.

3.4.3.2 Publishing

The agent will now also be able to publish on channels. Sending a message
to a channel that the agent is allowed to publish on is done in the following
way:

1 . . . ambassador . send (” so c c e r . Output” , anyObject) ; . . .

where anyObject is the object that the agent intends to send. Bear in
mind that another agent waiting for input on the soccer.Output channel will
expect this to be in a certain format. As such, the anyObject should conform
to this format. Not acting in accordance with this expectation will channel
the object to the handleOther method.

3.4.3.3 Dynamic Publishing and Subscribing

Apart from the static way of publishing and subscribing to channels, Fleeble
also features dynamic (un-)publishing and (un-)subscribing. This is particu-
larly useful when the environment changes based on for instance user input,
or other events. The methods that can be used for this are shown in Ta-
ble 3.4

3.4. FLEEBLE 35

Listing 3.4: Advanced handling of incoming messages

1 public void handleInput (MyObject pObject) {
2 // t h i s i s c a l l e d when an Object o f the type

MyObject
3 // i s sen t over the channel
4 }
5

6 public void handleInput (MyOtherObject pOtherObject)
{

7 // t h i s i s c a l l e d when an other ob j e c t , o f type My
−

8 // OtherObject i s sen t over the channel
9 }

10

11 public void handleOther (Message pMessage) {
12 // t h i s i s c a l l e d when no o ther matching method

can be found
13 }
14

15 public void handle (Message pMessage) {
16 // the d e f a u l t implementat ion o f t h i s method makes

sure messages
17 // a r r i v e au t oma t i c a l l y a t de s i gna t ed methods .

Overwri t ing i t
18 // ensures a l l incoming messages are routed

through t h i s method .
19 }

Table 3.4: Dynamic Publishing and Subscribing

Function Method
Publish ambassador.publish(”soccer.Somechannel”);

Unpublish ambassador.unpublish(”soccer.Somechannel”);
Subscribe ambassador.subscribe(”soccer.Somechannel”);

Unsubscribe ambassador.subscribe(”soccer.Somechannel”);

3.4.4 Thread Scheduling-induced Randomness

In Fleeble, every agent has its own thread of execution. Data coming over
the channels that an agent is subscribed to is handled by this single thread.
Messages that arrive while the agent is busy processing a previous message

36 CHAPTER 3. TOOLS

will be put on a queue, and processed on a first-in-first-out basis. Java has
an internal thread scheduling algorithm that will handle all threads in a
predefined manner.

As Fleeble is also built using threads, the order in which the channel
handlers are processed by Java’s internal thread scheduling can not be an-
ticipated, but the order of processing of messages is guaranteed on a per
queue basis. As such, a sequence of messages sent by one agent will be guar-
anteed to remain in sequence provided that one and the same channel is
used for each message in the sequence. When two agents send a message at
the same time to the same channel, which of the agents - and thus messages
- will be processed first depends on Java’s thread scheduling. Furthermore,
depending on Java’s thread scheduling, the first message might be handled
by the corresponding channel thread, placed on another agent’s incoming
message queue - and perhaps even processed by the receiving agent, before
the second message is even retrieved. On a long-term average, all threads
will receive equal processing power, and no individual agent has an unfair
advantage. On a short term however, thread scheduling can play a signifi-
cant randomizing role in time-dependant environments.

The understanding of this mechanism is very important, as it determines
nearly all of the randomness in the system. Especially when dealing with
larger multi-agent systems in Fleeble, this property needs to be considered
in the system design.

3.4.5 Namespaces

Working with multi-agent systems can yield a large number of channels.
Working with multiple systems at the same time; for instance a soccer sim-
ulator and a facial action recognition system might cause problems, as both
are likely to use an input channel. Rather than prefixing channel names
using awkward abbreviations, unnecessarily complicating your code, Flee-
ble introduced namespaces. In the above example, all channels appear in
the soccer namespace. Namespaces are quite comparable to Java packages
[54]. Figure 3.3 shows an example with 4 namespaces. The channels are all
prefixed with the namespace for subscribing and publishing, but handling
the channels does not require a namespace. Publishing to the Move channel
would require

1 @Publishes ({ ”mkt2 . Soccer .Move” })

whereas handling it is done regardless of the namespace;

1 public void handleMove (MoveObject pObject) {

3.4. FLEEBLE 37

Figure 3.3: Fleeble Namespaces

3.4.6 Special Channels

Other than the user-defined channels, several special channels exist; (INIT),
(CHILD LOADED), System.out, System.error.

3.4.6.1 (INIT)

First of all, any agent can subscribe to ”(INIT)”.

1 @Subscribes ({ ” (INIT) ” })
2

3 public class MyAgent extends Agent {
4 public void i n i t () {
5 // s u b s c r i b i n g to (INIT) causes t h i s method
6 // to be c a l l e d when t h i s agent i s loaded
7 }

3.4.6.2 (CHILD LOADED)

Second of all, when an agent loads another agent, this agent is now its
child agent. To know whether the operation was successful, the parent can
subscribe to ”(CHILD LOADED)”.

1 @Subscribes ({ ” (CHILD LOADED)” })
2

3 public class MyAgent extends Agent {
4 protected @Override void chi ldLoaded (ChildLoaded

in fo , MessageSource source)
5 // the ChildLoaded o b j e c t con ta ins in format ion

about the cause

38 CHAPTER 3. TOOLS

6 // o f the c h i l d be ing loaded , the MessageSource
can be used f o r

7 // f o r in s tance to change the s t a t u s o f the c h i l d
agent .

8 }

3.4.6.3 System

Using normal Java editors, or running Java from the command line, (de-
bug) information is usually printed to the default outputstream using Sys-
tem.out.println(”my text here”);. As Fleeble is intended to be used as a
standalone tool, it features several System channels, see Table 3.5.

Table 3.5: Fleeble’s System Channels

Channel Name Description
System.Out Everything that is printed to System.out.println is redi-

rected to this channel.
System.Error Exceptions that occur in your code are normally printed

using System.err.println. Anything printed to Sys-
tem.err.println is redirected to this channel.

System.compiler Exceptions related to the compilation of agents appear in
this channel (Remember that Fleeble can compile agents
automatically).

3.4.7 Message Queueing

Agents in Fleeble each take up one Java thread. All incoming messages
are automatically placed in a queue. Once an agent is done processing
one message, the next message on the queue will be processed. This is
an important mechanism that has to be understood by developers prior
to programming complicated agents, as it is a frequent cause of mistake.
Thread scheduling-induced randomness is another property of this approach,
and was explained in Section 3.4.4.

The fragment of code in Listing 3.5 would send ”look!” every 100 mil-
liseconds. Assuming that the particular multi-agent system would result
in a reply on for instance ”soccer.See” with whatever it is that the agent
can see, this might seem like a natural way of ensuring such information is
provided every 100 ms. However, because the agent contains of only one

3.4. FLEEBLE 39

Listing 3.5: Send ’look!’ every 100ms

1 public void i n i t () {
2 Object lWaiter = new Object () ;
3 while (true) {
4 synchronized (lWaiter) {
5 try {
6 ambassador . send (” so c c e r . Look” , ” look ! ”) ;
7 lWaiter . wait (100L) ;
8 } catch (Inter ruptedExcept ion e) {
9 e . pr intStackTrace () ;

10 }
11 }
12 }
13 }

thread, the message queue will fill up with replies on ”soccer.See”, causing
a ”StackOverFlowException” eventually.

Two solutions to get the desired behavior can be thought of:

1 public void i n i t () {
2 ambassador . f o rk () ;
3
4 }

Using ambassador.fork will cause a second thread to start processing the
queue.

1 public void i n i t () {
2 ambassador . send (” so c c e r . Look” , ” look ! ”) ;
3 }
4

5 public void handleSee (In f o pIn fo) {
6 // proces s the See in f o f i r s t
7
8
9 ambassador . send (” so c c e r . Look” , ” look ! ”) ;

10 }

This second approach starts with a single look request, and upon receiving
a see, will send the next.

The (potential) flaw in the latter method is when the agent that reads the
look requests and returns see information is not loaded yet, or has crashed.

40 CHAPTER 3. TOOLS

As the initial look is lost, there shall be no see information incoming. Many
solutions to this can be thought of, and it is often the preferred way of
working with messages, as it prevents overflowing of message queues.

3.4.8 Child Agents

Child agents can be loaded by an agent in a very straightforward manner.
The use of child agents can vary, but it is commonly used for the following
two tasks:

1. Load a number of other agents. This is the convenience usage of child
agents. Only a single LoaderAgent will have to be run in order to start
the entire Multi-agent system, while ensuring that all required agents
are loaded in the desired order (if this is a relevant issue).

2. In dynamic multi-agent systems. This is explained in detail in later
chapters about the Simple Soccer Simulator. As an example, the agent
that is to control a robot is loaded by the RobotAgent.

As can be seen in Figure 3.4, the SoccerAgent resides on the highest layer,
and has 14 child agents; the RobotAgents. Each RobotAgent has loaded his
own specific player agent. The reason these agents have to be loaded as
child agents is discussed in the next section.

3.4.8.1 MessageSource

In section 3.4.6.2 it was described that subscribing to the (CHILD LOADED)
channel gave a ChildLoaded and a MessageSource Object. The Message-
Source object can be extremely useful for several purposes:

1. Replying. Normally in Fleeble, communication is done using channels
and all subscribers to a channel will see all communication. A prob-
lem occurs however when dealing with agents that manage database
requests. A large number of agents can request specific data, and the
resulting data from every request would be delivered to all subscribers
of the channel. Apart from privacy issues, and the fact that all sub-
scribers would need to implement some kind of filter to use only the
requested data, such amounts of communication would flood the sys-
tem. It is possible to reply to any particular MessageSource over a
particular channel. This results in the data only being visible for the
particular recipient, and thus saving a lot of extra work.

2. Changing status. Ambassador has several (restricted) methods that
can be used to change the status of an agent, if the agent has enough
rights to do so. A parent always has the right to change the status of
his child agent, and it uses the MessageSource to do this.

3.4. FLEEBLE 41

Figure 3.4: Child Agents in Fleeble

3. Virtualhost. Another method of the Ambassador is to set a virtu-
alhost on a child agent. What this does is locking the agent to a
certain namespace. Figure 3.5 shows this. A child agent was loaded,
and given virtualhost.1 keeper as its virtualhost. All channels that
the child agent tries to publish or subscribe to will be automatically
prefixed with virtualhost.1 keeper. Agents can not communicate us-
ing channels that are above their root, causing them to be locked in
their virtualhost namespace. Other agents that do not have a virtu-
alhost are naturally free to communicate wherever they like, and they
can communicate with the agent. The agent displayed in Figure 3.5
has published / subscribed to Robot.Move, Robot.Shout,. . . This mech-
anism is particularly useful for simulating multiple computers, as it is a
transparent layer that effectively restricts agents from contacting other
parts of the system, which is a very desirable effect sometimes. Also,

42 CHAPTER 3. TOOLS

it allows any arbiter, or system / framework agents to control the
communication between the different subsystems using the dynamic
publishing that was introduced in Section 3.4.3.3.

Figure 3.5: Virtualhost for Locking Agents in a Certain Namespace

3.4.9 Properties

Apart from communication through channels, Fleeble also features prop-
erties. Properties are basically nothing more than a set of ¡name,Object¿
tuples, that are globally available. Properties are stored to disk when Flee-
ble shuts down, and are restored when it starts up. They can be used to
store data, such as user preferences, but also as an alternate means of com-
munication. Unlike channels, there is no way to subscribe on properties, an
agent can only get or set a property.

Agents that are locked in a namespace through the virtualhost mechanism
(See Section 3) do not have access to the global properties. All properties
that are stored and used by these agents are prefixed by that virtualhost.
The properties can be accessed by agents outside the virtualhost, but the
agent affected by the virtualhost can not access the properties outside his
virtualhost (i.e. one or more levels up).

Using properties in conjunction with virtualhost is not a way out of
the lock. Properties of agents that have a virtualhost are prefixed by that
virtualhost, and can not access properties outside this virtualhost (i.e. one
or more levels up).

3.4.10 Namespace Mirroring

The features that have so far been discussed will only work for a single (local)
instance of Fleeble. Fleeble also supports a transparent networking layer

3.4. FLEEBLE 43

that allows multiple Fleeble hosts on various computers and communicate
over the same channels using a feature called Namespace Mirroring.

This feature can be used to ’mirror’ all channels inside a namespace.
Anything that appears on one side (computer) will also occur on the other
side. Several hosts can be linked together to create a larger network of
Fleeble hosts that operate over the same namespace.

An example of how to use the namespace mirroring feature is shown in
the following piece of code:

1 ambassador . send (System . h2h . mirror . command , open
2 f l e e b l e . t u d e l f t . n l :1234 mkt2 . Soccer) ;

This command would open a connection with the server fleeble.tudelft.nl
at port 1234, and connect to the Fleeble host listening to that port. The
namespace mkt2.Soccer would be mirrored between both Fleeble hosts, and
agents residing on either host would not need to be aware of this. The
feature effectively allows for a transparent network layer.

3.4.11 Overview

To provide a better overview of the specific features and the internal struc-
ture of Fleeble, an overview of the fundamental classes is useful. Figure 3.6
[7] shows the class diagram of these.

3.4.12 Summary

This section has shown a number of key features of the Fleeble agent frame-
work. Although a lot of features are left unmentioned (in particular with
regards to networking), it does provide a good overview of what Fleeble
is capable of. The user interface is very intuitive, and since Fleeble will
automatically compile and provide user-friendly feedback regarding bugs in
your agent’s code, Fleeble can be used effectively in conjunction with simple
editors such as Notepad or ConTEXT 2 [55].

In short, Fleeble:

• has an intuitive interface,

• features Publish / Subscribe communication using channels,

2ConTEXT is frequently used for introductory Java courses at Delft University of
Technology

44 CHAPTER 3. TOOLS

Figure 3.6: Class Diagram of Fleeble Agent Framework

• agents have a single thread for handling their messages, but multiple
threads can be added using Fleeble’s fork method,

• uses namespaces to separate different (multi-) agent systems,

• allows dynamic publishing or subscribing and the dynamic loading of
agents. Parent agents have control over their child agents,

• can lock agents in a namespace using virtualhost,

• store data or user preferences in properties.

3.5. ECLIPSE 45

3.5 Eclipse

Eclipse [56] is an open source platform-independent Java-based development
platform. Because of Eclipse’s plugin architecture, support for many pro-
gramming languages, including but not limited to: C/C++, Fortran, Java,
PHP, Perl, Ruby and Python. The Eclipse user interface is illustrated in
Figure 3.7

Some important features of eclipse are:

• easy development of Java code. Can automatically create methods,
auto-compiles the code, gives good feedback regarding bugs,

• debugging of Java code,

• version control. See section 3.5.1,

• Ant, a Java-based build management tool. See section 3.5.2,

• SWT, a Java graphical toolkit that was developed by Eclipse. See
section 3.5.3.

Figure 3.7: Eclipse Software Development Kit

46 CHAPTER 3. TOOLS

3.5.1 CVS

Eclipse comes with a Concurrent Versions System (CVS) [57] plugin. This
consists of a central repository where all source code is located, and members
of a project group are able to commit their work to this server, or update the
new code from the server to their computer. It keeps back-ups of all previous
versions of a file, including a description of what was changed. CVS sup-
ports versioning in the design cycle, so one can experiment with competing
implementations using the same codebase while maintaining good control.
CVS supports multi-authoring and can merge modifications made by differ-
ent authors in parallel, giving warnings if conflicts arise from modifications
by any two authors.

3.5.2 Ant

Ant [58] is a Java-based build management tool. It functions quite similar
to the Make [59] tool, which is well known in the Unix and/or the C/C++
world. Both tools are used for creating executables and installers (build
management) from source files. Make uses a makefile that tells the program
how the application files are to be generated from the source files and how
to resolve dependencies. Ant uses an XML-based syntax that is parsed and
run by Java classes, making it platform-independent.

3.5.3 SWT

SWT [60] is short for Standard Widgets Toolkit. It is a third-generation 3

graphical user interface toolkit. SWT is a lot faster than Swing, because
it uses native code4. It uses native widgets, which result in programs that
”look-and-feel” a lot like the existing programs for the Operating System in
question. It is also a lot simpler to use SWT than to use Swing [62].

3The first Java graphical toolkit was AWT[61], which features a large amount of native
code and was generally considered as a poor toolkit. The second toolkit was Swing[62],
which was overall a lot better, but due to its high-level implementation was relatively slow

4platform specific code. Is generally faster, but against the Java principle of platform-
independence.

Part II

Game

47

Chapter 4

Model

Simplicity is the ultimate sophistication, Leonardo da Vinci

The problem that was described in Section 1.1.3 serves as a guideline in
the requirements of the soccer simulator. This chapter begins by elaborat-
ing on the problem and the main requirements for the simulator. Then the
laws of the game are explained, and compared to those of the official soccer
game. The next section describes the system model. It describes the three
layers that form the system, the links that exist between the layers and their
function. The player capability model is described next. Then, a justifica-
tion for several important decisions is provided. Alternative solutions will
be described and compared. Finally, the extendability and applicability of
the model is discussed.

4.1 Problem Description

The domain of soccer is inherently very uncertain. Table 1.1 illustrates the
difference between the characteristics of the ”solved” chess challenge, and
the characteristics of soccer.

To adequately deal with these domain characteristics and establish a team
that is capable of defeating the human world champions, research on low,
medium and high level is necessary.

The incomplete information accessibility inherent to the soccer environ-
ment introduces many uncertainties. The current state of the art in parsing
and interpreting sensor readings, and in executing low-level commands using
a robot’s effectors, introduces further uncertainties to the problem domain.

It is however likely that the technology will advance, and some uncer-
tainties that presently add to the complexity of physical implementations

49

50 CHAPTER 4. MODEL

are likely to be removed in the foreseeable future. If it is assumed that the
robotics hardware technology improves sufficiently in the foreseeable future,
the next hurdle will be the implementation of cooperation and team work.
Without these concepts properly addressed there will be no winning team.

4.2 Requirements

The goal of the soccer simulator is to address the problems laid out above,
for the purpose of becoming a tool for AI research and education. Users
should start on a high level of abstraction, rather than focus on low-level
input, output and basic player skills. The uncertainties that are introduced
by sensor readings1 and incomplete control over the robot’s effectors2 should
be removed. The focus should be on dealing with the partly unpredictable
behavior of the (opponent) players, cooperation and team work. Table 4.1
illustrates the domain characteristics that result from the removal of these
uncertainties.

Table 4.1: Domain Characteristics of the Simulator

Soccer
Environment Dynamic
State Change Real time

Info. accessibility Incomplete
Sensor Readings Symbolic

Control Distributed

4.2.1 Actors

Now that the general outline of the simulator has been given, it is important
to identify the actors that will use the system. The specific requirements to
the system depend on the different actors. These actors are:

1. Students computer science or related areas, with basic knowledge of
programming Java and agent technology,

2. People with a personal interest in AI, that have at least basic pro-
gramming skills, and

3. People with affinity to success and interest in MAS, AI, and education.

1Visual sensor readings from cameras, auditory through microphones, and other sensors
may exist

2Effectors include all movable parts, speakers, and often a (noisy) wireless network

4.2. REQUIREMENTS 51

To design a system that will be useful to these three groups of people, it
is crucial that a flexible system is built that can be modified to suit per-
sonal preferences. As these groups are likely to use the system for different
reasons and with different background knowledge, it is important that the
requirements for all groups are incorporated in the system.

4.2.1.1 Students

For (computer science) students, it is important that the system is visually
appealing, that it is easy to identify with the problem, that the coursework
leaves room for creativity and experimenting, but restricts the students in
such a way that they will not spend too much time on (low-level) details.
Most importantly, it should be motivating and fun. It should be challenging,
and very educative. It should also be such that different levels of students,
such as undergraduate and graduate students, should all be able to learn
a lot from working with the simulator3, and be motivated to proceed in
the domain of AI. The interface between the framework and the user’s code
should be transparent. The focus of the coursework has to be on accom-
plishing the educational goals, such as learning about multi-agent systems
and team work, rather than struggling with a new programming language
and environment, or on resolving hardware errors.

It is important that working with the simulator does not require a lot of
studying to make the basic environment work. Students should not be re-
quired to learn a new programming language, nor a very difficult interface.
The interface should be intuitive, and preferably in the programming lan-
guage they are most familiar with, Java. Example soccer agents should be
provided to give students a kick start. Important aspects that contribute to
the success and appreciation of courses by students depends on the educa-
tional approach used in the assignment. A constructivist approach is often
favored over conventional objectivist approaches4. Courses about robot soc-
cer will usually only take a small part in the curriculum, and as such creating
a robot team from scratch is prohibitively difficult. It is next to impossible
if the teams are supposed to display any intelligent cooperative behavior.
The coursework for the Simple Soccer Simulator should give students a large
amount of freedom with regards to the design and implementation, but it
should also give clear objectives and an easy way to verify compliance with
these objectives. The purpose of the simulator is to enable students to cre-
ate a cooperative team in a short amount of time by handling most low-level
details, and by keeping the rules of the game as simple as possible.

3The corresponding coursework should be adjusted to the level of the students; Grad-
uate students could research for instance the performance of new AI techniques, whereas
undergraduates could implement a cooperative team.

4See Section 9.1.1

52 CHAPTER 4. MODEL

Section 1.4 stated that the goal of the simulator would be to focus espe-
cially on the high-level details, such as cooperation and team work, rather
than spending all available student time on low-level issues, as is the case
in most alternative robot soccer projects. Projects working with real ro-
bots will obviously have certain advantages, as students learn about hard-
ware, the hardware-software interface and deal with actual physical prob-
lems. Such projects also face disadvantages; working with actual robots
restrains developers to the current state of robotics technology.

Alternatively, working with the existing Soccer Server and distributing
tasks amongst different student groups might yield at least one team that
works, but the students will not have learned to deal with a real problem
at an academic level, and too little time will be spent on cooperation and
team work. They will not have obtained a complete overview of building a
team and the associated problems and decisions that come with the process
of building a full team.

4.2.1.2 Hobbyists

For people with a personal interest in AI, all above criteria will hold, however
several new criteria have to be included. Rather than relying on teaching
assistants and help from professors in clarifying the assignment and the
software, it is important that both are thoroughly documented and there is
little ambiguity in the manual. All essential functionality should work as
expected and it should be made easy to verify whether a strategy actually
works. The package should come with example agents and teams to provide
a kick start, and as a serious challenge to compete with.

4.2.1.3 Researchers

The most important difference for individuals with a professional interest in
robot soccer is that these persons often have a lot of expertise, and may have
working code from different platforms, that they intend to re-use. Rather
than working with a game that has its parameters optimized for enforcing
team work, experts might want to set the parameters to simulate the current
state of technology, and use it as a simulation environment. As such, the
system should be very flexible. With regards to whether or not messages
can be sent and what information will be presented to the agent, it should
be easy to add some code, change these features - and the rules of the
game, according to the expert’s demands. Whereas hobbyists and students
will probably only be interested in working with the default system - and
perhaps slightly modified parameters, professionals will want to be able to
adjust more fundamental areas of the system, altering the way the system

4.2. REQUIREMENTS 53

works completely. This calls for thorough documentation of all elements of
the game and the simulator.

4.2.2 Package

The soccer simulator will play a large role in accomplishing aforementioned
goals, but other elements also play a key role in this. A decision on whether
or not to start in a complex domain like multi-agent soccer depends not only
on the learning curve of the simulator, but also on the user experience of
the entire package. This package consists of a complete educational envi-
ronment with characteristics matching the needs of a training environment.
Of particular importance are:

• The soccer and functional model. How are the rules defined, what are
the technical possibilities of the players and the simulator?

• Usability aspects of the soccer simulator. How easy is installation
and configuration? Creation and management of teams? Simulating
a basic game?

• The quality of the documentation. Documentation should be given on
how to use the simulator, example code snippets, and instructions on
how to change properties of the simulator.

• The availability and quality of a reference implementation. If these
are available, users can immediately start with a working team. This
is a lot more motivating than having to program a team from scratch
prior to ever using the simulator. Such reference implementations can
also be used as a competition in simulated games, or for playing the
game for entertainment or analysis purposes.

• A suitable range of assignment(s) for the users (students) at various
levels of complexity. Integrating the simulator in projects in higher ed-
ucation, or providing it as a stand-alone tool as a challenge to hobbyists
can serve as an aid towards understanding of important AI concepts
related to team work and cooperation.

4.2.3 Summary

Many decisions that have to be made for designing the soccer model. The key
principles of keeping it simple [63], and avoiding possible distractions from
the main objective play a large part in these decisions. Students in particular
- but also hobbyists - may lack design experience. Providing them with a
wide array of options, such as coaching, different player skills, penalties and
corners, will change the focus from the general game towards dealing with
these specific scenarios. Not giving them the option to be distracted to

54 CHAPTER 4. MODEL

prevent this is the preferred approach. There are several functional, and
several non-functional requirements for the simulator. The latter include
thorough documentation, user-friendliness, and the availability of example
teams. The high-level requirements for the soccer simulator are summarized
as follows:

1. Remove uncertainties regarding inputs / outputs

2. Simplify the rules of the game

3. Start on a high level

4. Make the simulator extensible, and allow users to add certain uncer-
tainties to the model.

He who chooses the beginning of a road chooses the place it leads
to. It is the means that determine the end. Harry Emerson
Fosdick

4.3 Laws of the Game

In this section, the game is described and the laws of the game are compared
to the human laws, as described in [2] [64].

4.3.1 Goal

The goal of soccer is to get the ball in the other team’s goal, thereby scoring
a goal. The team that has scored the most goals is considered the winner.
If the score is equal at the end of the match, the game is a draw.

4.3.2 Players

Human soccer is played by teams of 11 players, of which one is the goal-
keeper. Apart from the goalkeeper, players are not allowed to intentionally
touch the ball with their hands or arms. All other body parts can be used to
move the ball around. Naturally, all players have their individuals strengths
and weaknesses. A coach for each team is present outside the playing field,
and can communicate strategic information to his players. During a game,
players can be substituted by the coach. In most official matches, a max-
imum of three substitutions are allowed per game. A referee is present to
ensure that play is in accordance with the rules of the game.

The soccer model features teams of 7 robots5. A player consists of a robot
and its behavior. All robots are exactly identical, whereas the behavior is

5This parameters can easily be adjusted in the tournament parameters however

4.3. LAWS OF THE GAME 55

defined by the user agents. Robots are circular6 and 2-dimensional, and
as such do not feature legs or arms. Although a robot can act as a goal
keeper, there are no special privileges for this robot. Because all robots are
identical, substitutions would not have any effect. The behavior of robots
can be substituted, but not by a coach. There is no coach or any other
outside interference allowed. Decisions regarding substituting the behavior
have to be made by member(s) of the team. There is no referee, the rules
of the game are controlled through the system.

Each robot can have its own behavior (player agent). As such, the success
of a team depends solely on the performance of these player agents. Sub-
stituting the behavior on a robot effectively means that the player agent is
killed, and the new behavior is installed on the robot. This process can only
be initiated by the player agent originally residing on the robot agent, and
can be executed at any time during the game. This feature allows for the
(autonomous7) dynamic changing of the strategy.

The differences between human soccer and the model are summarized in
Table 4.2. The capabilities of the individual players with regards to sensors
and effectors are explained in Section 4.5.

Table 4.2: Human vs Simulator Players

Official Simulator
players per team 11 7
individual player skills yes no
coach yes no
referee yes no
player size varies circular (1.85m radius)
body parts body, arms, legs, head body
substitutions 3 per game behavior can be ”substi-

tuted” at any time

4.3.3 The Field of Play

The official field width and height of human soccer are compared to those
used in the simulator in Table 4.3. The goal is nearly twice as wide as the
human goal, to compensate for the large size of the robots.

6The radius of the robot is 1,85m
7There is no outside interference, the decision to change the behavior is made by the

individual agents

56 CHAPTER 4. MODEL

Table 4.3: Human vs Simulator Field of Play

Official Simulator
Field Length 90-120m 100m
Field Width 45-90m 75m
Goal width 7.32m 15.23m
Goal height 2.44m N/A

4.3.4 Ball in and out of Play

Human soccer features two basic states of play; ball in play or ball out of
play. The game begins with a kick-off. Until the end of the playing period,
the ball is always in play, unless the ball leaves the playing field, or the
referee stops the play. When either of these occurs and the ball is out of
play, the ball can come back in play through either of the following: kick-off,
throw-in, goal kick, corner kick, indirect free kick, direct free kick, penalty
kick, dropped-ball.

In the soccer model, the ball comes into play when the game begins, at
the center of the field. The ball is always in play after that. The ball can
not leave the playing field, there is no referee to stop the play.

4.3.5 Foul Play and Misconduct

In human soccer, players can commit fouls, such as handling the ball, trip-
ping or pushing an opponent. As a result of fouls, the referee can decide to
put the ball out of play, and the player committing the foul can be punished
by a yellow card (warning) or a red card (player has to immediately leave
the field).

In the soccer model, there is neither a referee, nor yellow or red cards,
nor the option to commit fouls. The ball is always in play.

4.3.6 Offside

One of the rules of human soccer is offside. This effectively restricts attacking
players to remain forward of the ball and the second-last defending player.
Violation of the offside law causes the ball to be placed out of play, and the
defending team will receive a free kick.

The soccer model does not contain an offside law. Players are forced
to be on their own half before kick-off, but are free to move wherever they
desire afterwards.

4.3. LAWS OF THE GAME 57

4.3.7 Duration of the Match

In human soccer, a match lasts two 45 minute periods, separated by a 15
minute half-time interval. To make up for time lost due to injuries or sub-
stitutions, extra time can be added at the end of each period.

In the soccer model, a game lasts 10 minutes by default8. As there are
no physical substitutions or injuries, there is no need for any extra time.

4.3.8 Environment

The environment of human soccer matches consists of an audience, a par-
ticular stadium, type of grass, a certain weather type (i.e. sun, clouds,
rain),. . .

The environment of the soccer model is defined entirely by the frame-
work, and there are no external factors that can influence the game.

4.3.9 Overview

An overview of the characteristics of the model compared to those of human
soccer is provided in Table 4.4.

8This can be extended to suit personal preference. For the final competition in the
educational part of this project, 30 minute matches were held

58 CHAPTER 4. MODEL

Table 4.4: Human vs Simulator Laws

Official Simulator
Field Length 90-120m 100m
Field Width 45-90m 75m
Goal width 7.32m 15.23m
Goal height 2.44m N/A
players per team 11 7
individual player skills yes no
coach yes no
referee yes no
player size varies circular (1.85m radius)
body parts body, arms, legs, head body
substitutions 3 per game behavior can be ”substi-

tuted” at any time
ball in play unless outside playing field

or stopped by referee
always

put ball back in play kick-off, throw-in, goal
kick, corner kick, indirect
free kick, direct free kick,
penalty kick, dropped ball

kick-off

fouls handling ball, tripping or
pushing opponent

no fouls

bookings yellow and red cards no bookings
offside yes no
duration 2 x 45 minutes, 15 minute

half-time, possible extra
time

10 minutes, configurable

environment audience, weather, sta-
dium, type of grass

no environment factors
that influence the game

4.4. SYSTEM MODEL 59

4.4 System Model

The game that will be played is described in the previous section. The
system model that is used in the simulator is composed of three layers,
each with corresponding tasks. Figure 4.1 illustrates these. An abstract
explanation of each of the layers and the links between them is given in
the following sections. The links between the layers are implemented using
channels in Fleeble9. A detailed description of the actual inputs and outputs
making up the player capabilities is given in Section 4.5. A key element of the
model is that communication between different robots (and corresponding
players) can only occur through the framework.

Figure 4.1: System Model: the Layered Approach

4.4.1 Player Layer

The player layer and the corresponding links are displayed in Table 4.5.

9This is still the case in a distributed approach where multiple computers are involved
in the simulation, as namespace mirroring (See Section 3.4.10) ensures a transparent
communication over channels between the various hosts.

60 CHAPTER 4. MODEL

Table 4.5: Description of the Player Layer

Layer Link name Description
Player - Defines the behavior of the robot. All

reasoning is done in this layer.
Player (filtered) sensors The inputs from the robot layer. This

is by default everything that the ro-
bot senses, but a filter can be added
to simulate technical imperfections at
the robot.

Player effectors The desired outputs for the robot.

4.4.2 Robot Layer

Table 4.6 describes the function of the robot layer and its corresponding
links in the system model.

Table 4.6: Description of the Robot Layer

Layer Link name Description
Robot - The robot is physically present on the

field. It will attempt to act in ac-
cordance with the commands given by
the player layer.

Robot sensors Everything that a robot can observe
from its environment. Within the sen-
sor’s range, perfect perception by the
robot is guaranteed. Uncertainties
may be added to simulate imperfect
technology. These sensory inputs are
then sent to the player layer.

Robot (filtered) effectors A player may desire certain actions
to be taken, that are technically not
possible. As a result of a defect, ob-
stacle or some other obstruction, the
requested action can not be executed
and is filtered out. The commands
that can be carried out are transmit-
ted to the framework layer.

4.5. PLAYER CAPABILITIES MODEL 61

4.4.3 Framework Layer

In Table 4.7, the function of the framework layer and its links is illustrated.

Table 4.7: Description of the Framework Layer

Layer Link name Description
Framework - The rules of the game are controlled

by the framework layer. Rules govern-
ing movement, vision, communication
and the rules of the game are defined
and secured by this layer. The cur-
rent state of all robots is kept and up-
dated by this layer. The rules of the
game and the framework parameters
are publicly known by all layers.

Framework (filtered) effectors The desired action to be taken by indi-
vidual robots has to be tested against
the physical possibilities that are de-
fined in this layer. When an action
is possible, the state of the system is
updated.

Framework sensors The state of the system resulting from
processing all individual robot’s (fil-
tered) effectors is returned to the ro-
bots through this link. Within the
physical limitations defined by the
framework layer, perfect information
about the current state is given to the
robot layer.

4.5 Player Capabilities Model

This section describes the player capabilities model. First, the movement
model is described. Basic player movement, ball movement, collision han-
dling and movement speed are explained. Then, the visual and aural models
are explained. Finally, the change behavior mechanism is described.

62 CHAPTER 4. MODEL

4.5.1 Movement

Robot movement is caused by the player layer requesting a certain effector to
be used by the robot layer. The robot layer will check whether it is possible
to perform the desired action. The framework layer is then responsible for
checking the validity of the movement10, updating the state of the game
with the new position, and periodically returning this through the sensory
link to the robot layer. The robot layer will then return the perception to
the player layer. Basic player movement, ball movement, collision handling
and movement speed are discussed in the following sections. An overview
summarizing the movement model concludes this section.

4.5.1.1 Basic Player Movement

A robot is a circular solid object with a radius of 1.85 meters (See Table 4.4).
A robot can move either forward, backward, left, or right. The orientation
of a robot can be changed by turning either left or right. A robot is able to
kick a ball if it is directly in front of him. A robot can not leave the field,
as the framework will prevent it from doing so.

4.5.1.2 Ball Movement

The ball is also a circular object, but unlike robots, it is not ’controlled’ by
any higher layer. A ball acquires movement through collision with robots,
or through being kicked by a robot (a special type of collision). The ball will
move in a straight line, in the direction of the collision or kick. The velocity
of the ball decreases with time, as a result of simulated friction with the field.
The ball comes to a halt naturally. Ball movement is entirely predictable,
except when the ball is kicked. A small random direction element is added
when a ball is being kicked.

4.5.1.3 Collisions

Collision detection in the model is rather simple, due to the circular nature
of all objects. The distance between two objects is determined, if this is
below a certain threshold, a collision occurs.

As there are no bookings, fouls or injuries, there are no individual punish-
ments to either of the two parties of a collision, but rather an equal penalty
for both. The maximum speed of both robots is reduced for a fixed amount
of time.

10It is, for instance, not allowed to walk off the playing field

4.5. PLAYER CAPABILITIES MODEL 63

Every time the state of the game is updated, the ’new’ positions of all
robots is calculated prior to collision detection. For all new collisions, robots
are split up to the minimum distance required not to collide anymore. The
rotations of the robots are unaffected. The distance that the robots have
to split up is divided equally among the robots. That is, when a robot is
moving at 20 pixels / update towards an other robot that he is standing
next to, and is standing still, the following will happen: The first robot
will first be positioned 20 pixels overlapping the second robot. This will be
detected by the collision detection, and both robots will move 10 pixels away
from each other11. The result is that both robots will have moved 10 pixels
across the field. As a natural consequence of this, a robot that is ’pushing’
another robot, will be able to push this other robot out of the way, unless
equal counter force is applied12, or if the other robot uses a ’block’. A block
is a special move that will severely reduce the effects of a collision on the
blocking robot.

Collisions with the ball can have several effects. If the ball comes in at
an angle within the predefined catchable angle, the robot catches the ball,
and the ball will automatically move with the robot. Furthermore, the ball
automatically rotates towards the direction the robot is facing, such that
a robot that is carrying the ball for a while will always have it directly in
front.

If the incoming angle of the ball is outside the catchable area, and the ball
is moving at a high speed, it bounces off the robot. This can be prevented
by using the special move ’block’. This effectively catches any ball close
enough to the robot. If the ball is not moving at high speed, the robot will
catch the ball and it will automatically rotate to the front.

4.5.1.4 Movement Speed

Robots have exactly the same baseline physical capabilities. As a result
the basic movement speed is fixed. There is no acceleration or deceleration
model implemented; robots reach their maximum speed instantly.

Robot speed can be affected by several penalties, however. These penalties
can be related to the movement, recent collisions or recent shouting (See
Section 4.5.3).

11This is done by taking the line between the center points of both robots, and moving
both 10 pixels further on the line

12Remember from Table 4.4 that robots do not have individual skills, and are equally
strong

64 CHAPTER 4. MODEL

Forward movement is the fastest. Walking backwards, and sidestepping
left or right are penalized for the duration of the movement in that direction.
Not turning is the fastest, turning left or right are penalized for the duration
of the turn. While kicking, the robot also receives a speed penalty. The exact
parameters are defined in the parameters, and are globally known.

4.5.1.5 Overview

Table 4.8 provides a brief overview of the movement model described in the
previous sections.

Table 4.8: Overview of the Movement Model

Property Description
Movement direction Forward, backward, left, or right.

Turn Left or right.
Special moves Kick or block.

Speed Instantly maximum speed, possible
penalties.

Speed penalties Awarded for direction, turn, special,
collision or shouting.

Ball speed reduces over time, increased through
interactions with robots.

Ball catching Automatic when incoming angle is
within catchable angle, or when the
ball speed is low or a block is per-
formed. The ball will bounce off when
outside catchable angle at high veloc-
ity. Ball auto-rotates towards front of
robot.

4.5.2 Visual Model

Vision is the primary sensor of the robot. Although not the only one, intel-
ligent teams can be developed reasoning solely about the visual perception.
Robots have a field of vision that is equal in size for each robot, and defined
by a given view angle and view range. All objects13 within this field of
vision will be recognized. For each of the objects that are recognized, the
name of this object, the team it is playing for14, and the exact position and

13Objects refer to either the ball or other robots)
14If the object is a robot

4.5. PLAYER CAPABILITIES MODEL 65

heading are perceived without any errors. Robots will also receive their own
position. A brief overview of the visual model is given in Table 4.9.

Table 4.9: Overview of the Visual Model

Property Description
Field of vision Everything within predefined view

range and view angle.
Errors in perception? None.
What is perceived? For each object (ball or robot) in field

of vision; name, team, exact posi-
tion and heading (and velocity for the
ball).

Is own position known? Yes.

4.5.3 Aural Model

To reach high-level strategic behavior by robots, communication is essential.
The aural model describes how communication between robots is possible.

Robots have a certain shout range. This is a fixed, predefined distance,
and objects within this range in the circular area around the robot will
receive any messages that the robot decides to send. Any type and amount
of data can be sent at any time. The only restriction to communication
is that a (severe) speed penalty lasting several seconds is inflicted on the
sender of a message. Both friendly and opponent robots within the shout
range will receive the message. Apart from the content, the name of the
sender and the time at which the message was sent are also included. An
overview of the aural model is given in Table 4.10.

4.5.4 Changing Behavior

Since the physical capabilities of robots are exactly identical, substituting
them would be a rather useless activity. To allow for adaptive team behavior,
an option to substitute the player on a robot is included. Substituting the
player15 on a robot effectively means replacing the player that is currently
loaded on the robot by another player. This can be done at any time during
the game, and as often as desired. The knowledge base of the existing
player can be stored using properties (See Section 3.4.9), and as such the
newly substituted player will be able to access data collected by the old

15Remember from Section 4.3.2 that each robot has its own player agent that determines
its behavior. Different robots may have different behaviors.

66 CHAPTER 4. MODEL

Table 4.10: Overview of the Aural Model

Property Description
Receive messages All objects within predefined shout range that

are in the circular area around the sender.
This includes friendly robots, but also oppo-
nents.

Errors / noise in reception? No errors.
What can be sent? Any type or amount of data.
What is received? Content of message, name of sender, time at

which message was sent.
When can messages be sent? At any time during game.
Restrictions to communica-
tion

A fixed-time speed penalty.

player. This feature allows for the adaptive team behavior that is described
in Part III.

Each robot can have its own behavior (player agent). As such, the suc-
cess of a team depends solely on the performance of these player agents.
Substituting the behavior on a robot effectively means that the player agent
is killed, and the new behavior is installed on the robot. This process can
only be initiated by the player agent originally residing on the robot agent,
and can be executed at any time during the game. This feature allows for
the (autonomous16) dynamic changing of the strategy.

As the game is dealing with software agents, the change behavior func-
tionality is by no means necessary. Keeping a global state in the player
agent (i.e. OFFENSIVE or DEFENSIVE) that determines what behavior
the player currently exhibits would result in similar results. When the agent
reasons that it is best to change to a different behavior, it will toggle this
status. Such an approach is undesirable however, as it would cause very
long, poorly structured agents. Also, the semantic value of the ’player’ as
representing the ’brains’ is lost, since the new state is likely to reason about
inputs and outputs in a completely different manner.

Changing the behavior can only be initiated by the player presently re-
siding on the robot. As there is no central authority present, the decision to
change behavior has to be made - after (possible) collaboration with fellow

16There is no outside interference, the decision to change the behavior is made by the
individual agents

4.6. JUSTIFICATION 67

team mates - by the player. An overview of the change behavior function-
ality is provided in Table 4.11.

Table 4.11: Overview of the Change Behavior Mechanism

Property Description
What does it do? Change player (behavior) presently residing

on the robot.
When can it be used? At any time.
How often? No restrictions.
Knowledge of existing player Can be transferred to new player through

properties.
Who can change behavior? The player presently residing on the robot.
Restrictions / penalties? None.

4.6 Justification

In this section, various decisions and trade-offs that were made in developing
the model are discussed. Alternative solutions are described and compared.

4.6.1 Speed Penalties

A common problem in simulations is how to penalize certain types of behav-
ior such that intelligent solutions - that succeed at accomplishing the goal
- will prevail. Working with artificial, arbitrary point systems that award
agents for accomplishing some goal, and penalizes them for committing fouls,
or for, for instance, communicating.

For such an approach to work, a good performance measure is required.
The only real performance measure in soccer is the amount of goals that
were scored, compared to the amount of goals the opponent scored. Other
measures could be suggested, such as ball possession, number of shots or the
percentage of time the ball was on the opponent’s half. The problem with
defining such artificial performance measures is that they do not capture the
actual performance of a team. A team with 90% ball possession can still
lose with 99-0. Using the aforementioned performance measures, the latter
team would have ’won’.

The problem with artificial performance measures and point distribu-
tions has caused the two predecessors of the soccer assignment described
in Part IV to fail at accomplishing their goals.

68 CHAPTER 4. MODEL

Rather than using an arbitrary artificial point system, the only perfor-
mance measure for the soccer teams is the final score of a match. Robots
are penalized through speed penalties for conducting behavior that causes
speed penalties in human players. Examples of such behavior are shouting,
collisions, kicking, turning, and blocking.

4.6.1.1 Shouting

Sprinting and shouting at the same time is rather difficult for humans. Run-
ning at top speed and still shouting at the same pace as one would while
standing is impossible. Since robots that are moving will always move at
their top speed, and restricting the amount of messages or the maximum
size of messages is not an option (See Section 4.6.3), robots receive a speed
penalty. Starting at the time of their most recent shout, the robot will
have a lowered maximum speed for a predefined amount of time. As the
speed penalty is reasonably big, this forces the choice between communica-
tion and autonomous reasoning. The time that the penalty lasts represents
the time required to shout any message. The framework is indifferent about
the amount of information that was actually sent, stimulating users not to
worry about the size of the messages, but rather about when to send them.

4.6.1.2 Collisions

Dealing with collisions in a model without a referee, fouls, injuries or book-
ings is difficult. However, the model also features identical physical capabil-
ities for robots. Because of this, it is assumed that not a single party can be
blamed for the collision, and both parties are punished by a speed penalty
- to resemble the time or difficulty real players or robots would require to
resettle themselves.

Alternative models could distinguish between victims and aggressors, and
punish the aggressors. Using such a model would effectively lock the game,
as a strategy with 7 robots in front of the goal would prevent the opponents
from ever scoring. As a trap door mechanism to prevent aggressors from
pushing opponents around, their speed - and as such their impact on the
victim - is severely reduced, and victims have the option of using a block, a
special move that will reduce the impact of collisions.

The approach taken to deal with collision makes collisions, like humans
tackling each other, a possible way of halting or slowing down an attack. It
is a valid approach to stop robots from advancing over the field too quickly.

4.6. JUSTIFICATION 69

4.6.2 Movement

The model features a low-level movement control. Movement could be pre-
implemented by the robot layer, but this would contradict the model that
was described in Figure 4.1. The model defines a number of sensors and
effectors of the robot layer, and passes these on to the player layer, that
functions as the brain. Implementing a high-level movement model that
automatically moves a robot to a position, or to track a player or ball,
should naturally be done in the player layer, as it includes reasoning about
the environment. Such movement methods would deal with issues such as
whether to avoid collisions (at all cost), move in a straight line or over a
certain flank. These are all high-level decisions that determine the behavior
of the player, and should be nested in the player layer.

4.6.3 Communication Restrictions

Unlike the domain of chess, a soccer environment is dynamic. The environ-
ment is also constantly changing and decentralized. Also, the information
accessibility is incomplete. Allowing unrestricted unlimited communication
would face three problems:

1. Unrestricted unlimited communication would be cheating on the prob-
lem domain. Rather than developing AI methods to deal with the
incomplete, dynamic, decentralized, real-time properties of the envi-
ronment, allowing unrestricted unlimited communication would allow
for brute-force approaches using centralized supercomputers to deter-
mine optimal movement.

2. Robots often face limited processing power and network bandwidth.
Although these are increasing rapidly, certain overhead is always present
when processing and sending messages. Communication always has a
certain price.

3. The soccer challenge serves to develop AI methods that deal with in-
complete, dynamic, distributed, real-time problem environments. Due
to the physical nature of certain environments, intense communication
may not be feasible.

A team solely based on communication would be like the system described
in the first problem. A team solely based on autonomous reasoning would
not be able to establish the complex team play that can be acquired through
a combination of both. For these reasons, users should develop a team that
carefully considers this trade-off, and decides when and what it shall commu-
nicate. A measure frequently taken to prevent players from communicating
all the time with large chunks of data is to put a limit on the amount of

70 CHAPTER 4. MODEL

data that can be sent, and to limit the maximum amount of messages that
can be sent. This approach is fundamentally flawed for two reasons:

• Limiting the amount of data that can be sent says nothing about the
amount of information content. Shannon [65] defined the amount of
information of an event to be the expected value of its outcome’s sur-
prisal. To translate this in soccer terms; If there is a fixed number of
messages that could be transferred, then the amount of information in
receiving the message look out behind you equals the expected value
of the surprisal17 of the outcome. As there is a finite amount of pos-
sible messages18, the resulting message size will be very small. The
maximum message size in the Soccer Server simulator, 512 bytes [66],
is more than enough to be able to send everything you could possibly
want, as it allows for 2(8∗512) unique messages. Applying maximum
compression to communication would as such result in a large benefit
for teams doing so, as their efficient bandwidth usage results in prac-
tically unlimited communication possibilities. It would also mean a
large disadvantage for teams not investing time in compressing their
communications. As the focus of the game should not be on optimiz-
ing tiny details such as the compression of the communication, this is
an undesirable disadvantage. It is however not realistic that humans
would ever speak like this, and neither is the artificial bandwidth lim-
itations. Sending a larger amount of data will only slow down the
recipient that attempts to parse it. Perhaps - when sending movies
over the channels - the whole network will slow down. Since the sim-
ulator will be 2D and not deal with any real camera input, and it
will not depend on wireless networking limitations, this is unlikely to
happen.

• Limiting the number of messages that can be sent could bear some
relation to reality; for humans, it is not possible to shout complex in-
structions taking five seconds to shout and, half a second after starting
this, shout instructions to someone else. Applying some transforma-
tion to account for the amount of data and the amount of time a
human would take for shouting this is not feasible. Such a transfor-
mation would not be able to distinguish between the team that made
their communication as efficient as possible, and the team that uses a
quick inefficient communication model, while such a distinction would
be required to adequately estimate the duration of the communication.

17Surprisal represents the surprise of seeing the particular outcome. If an event will
happen once in a million times, the surprisal of this event is about 20 bits - the amount
of bits required for representing this probability

18If not for every message, then at least for all individual parts of a message such as
position information on the field, and there is only a small number of these individual
parts, so the concatenation of these will not be big

4.7. CUSTOMIZING THE MODEL 71

Since this can not be done in a fair way, setting an arbitrary limit on
the number of messages that can be sent is of course an option. It is
however rather arbitrary and finding a real world metaphor to explain
the restriction other than human players can not shout an infinite
number of messages either is difficult. Technically, such a limitation
would also be very arbitrary, as the (wireless) networking capacity is
rapidly increasing. Restrictions to the amount and frequency of mes-
sages would at best resemble the present state of the art in wireless
networking, whereas this is likely to advance in the foreseeable future.

The approach taken by the model stimulates users to consider the trade-
off between communication and autonomous reasoning. It can easily be
explained using human players as a metaphor19. The speed penalty puts
the robot at a disadvantage. This disadvantage will be very big when the
robot is carrying the ball and moving towards the opponent’s goal, but
relatively small if a robot is covered by several opponents and effectively out
of play.

4.6.4 Central authority

Unlike most other simulators and approaches, the simulator does not feature
any central authority. The main reason for not doing so is that adding a
coach would change the focus to effectively controlling the coach rather than
striving for teamwork and cooperation based on the limited information that
is available.

The restriction of working without a central authority introduces an in-
teresting problem to users. For example when changing behavior, if a team
has 3 offensive players, and they would reason autonomously that when they
lose by 15 points, one offensive player has to switch to a defensive player,
the result would be that all offensive players would be defensive players.
This undesired result can be countered through programming a certain or-
der in which players will need to change - at the cost of being predictable,
or by giving a certain player team captain responsibilities and letting him
decide who should switch. Dealing with this is an interesting dimension, as
most realistic artificial intelligence problems do not have a central authority
either.

4.7 Customizing the Model

Flexibility was previously mentioned (See section 4.2.1) as an important
requirement for dealing with the different types of users. The system is cus-

19Human players can not shout and run at top speed simultaneously

72 CHAPTER 4. MODEL

tomizable in both its behavior and in its appearance. This section describes
the customizations that can be made to the model

4.7.1 Changing Framework Parameters

The parameters determining all physical laws that the framework enforces
are defined in an XML file. A description of the meaning and functioning
of the specific parameters is given in Appendix B.

4.7.2 Changing Visual Appearance

The visual appearance of the game is also easily modified. Custom icons for
displaying the robots can easily be defined and integrated in teams. Users
can define their own team name, and name their players as well.

4.7.3 Advanced Customization

The work described in this thesis is customized for the specific purpose of
reaching the goals stated in Section 1.4. An intrinsic element of achiev-
ing these goals is the highly simplified world model that was described in
this chapter. Professionals working with the system, this simplicity require-
ment might be counterproductive. Fortunately for these users, the layered
approach as described in Table 4.1 is perfectly suitable for highly specific
customizations.

If professional users would want to simulate realistic robots - and the
corresponding uncertainties regarding inputs and outputs - this can easily
be added to the system by applying a filter to the Robot layer that will add
a certain type of noise or modification over the data. The Player layer’s
implementation will not be affected by this, as the link between the layers is
not affected. Similarly, if the nature of the aural, visual or movement models
would be edited in the Framework layer, neither the Robot implementation
or the Player implementation would be affected. This feature makes the
framework robust and extensible.

Furthermore, this feature makes the simulator suitable for testing different
technological states and their impact on cooperation and team work. Given
an implementation of the current state of technology, and an implementation
where the uncertainty about position information would be reduced by, for
example, 50%, the results could be compared and reasonable predictions
towards the effect of the technological progress on the team’s performance
could be made.

Chapter 5

Design

Do not squeeze your inspiration and your imagination; do not
become the slave of your model, Vincent van Gogh

This chapter presents the design of the soccer simulator. It begins by
explaining the approach that was used for designing the system. The next
section describes the design of the use cases. Subsequently, the global system
design is discussed, followed by a detailed overview of the design of the main
classes that will be used. Next, a detailed description of the movement model
and corresponding algorithms is given using pseudo-code. Finally, the user
interfaces are discussed.

5.1 Approach

An expert is a man who has made all the mistakes which can be
made in a very narrow field, Niels Bohr

The actual design of the system consumed nearly as much time as its im-
plementation. Although the decisions regarding all aforementioned aspects
of this simulator were made in a relatively small period of time, the step
that converted the conceptual simulator to a working simulator that works
fast and according to specification was rather difficult.

Although the author had a little knowledge on Aibo soccer and the Soccer
Server, these were excluded from the design process on purpose. The goal
of the system is to solve the problem laid out in Section 1.4, not to clone or
adapt an existing soccer simulator for use in some educational environment.

It is noteworthy that the resulting implementation is quite different from
the previous simulator. A number of problems are however still solved in a
similar manner as in the previous design.

73

74 CHAPTER 5. DESIGN

5.2 Use Case Design

Three different groups of users were identified in Section 4.2.1; students,
hobbyists and professionals. The primary requirements for these three types

Figure 5.1: Use Case Diagram for User of Simulator

of users are taken into account in the design, however the way they will use
the system is essentially the same. Figure 5.1 illustrates this. A user can
play a game of soccer, start a tournament, create or modify a team, or edit
the framework parameters. Prior to starting a game or tournament, the
user has to specify the teams that should be included in the match(es). To
create a team, the players and their parameters have to be specified. These
parameters include name, icon, position on the field, and team name.

5.3 System Design

This section begins by describing the global design of the system, then all
individual elements are discussed.

5.3. SYSTEM DESIGN 75

5.3.1 Global Design

Figure 5.2: System Overview

The Simple Soccer Simulator has a single user interface, which is en-
tirely controlled by the SoccerVisualizer. A central role is played by the
SoccerAgent, that implements the entire framework layer (See Table 4.1).
It enforces the game rules, and will act as an arbiter between the different
RobotAgents. The SoccerAgent is also responsible for maintaining all posi-
tion and status information for all the different robots. The SoccerVisualizer

76 CHAPTER 5. DESIGN

will update the information from the SoccerAgent at regular intervals and
display them. The RobotAgents represent the human body according to
Table 4.1, and will pass on requests from their corresponding PlayerAgents
to the SoccerAgent. As the game is played with 7 vs 7 players by default1,
there are 14 RobotAgents. Each RobotAgent is implemented as a ChildA-
gent of the SoccerAgent. Information about the game settings and status is
communicated over a number of Information / Framework channels. Robots
can control or read out their sensors and effectors through a number of other
channels. To prevent communication between different robots from occur-
ring outside the framework, all RobotAgents will load their corresponding
PlayerAgent and give them a virtualhost (See Section 3) to lock them in
their namespace. Communication within this virtualhost occurs through
several channels that will be explained in more detail in the next sections.

5.3.2 Framework Channels

The framework channels facilitate communication between the SoccerAgent
and the RobotAgent. This communication can be categorized in 3 groups:

• Debugging information

• Updating system-wide variables

• Initializing the system

An overview of the channels can be seen in Figure 5.3, a detailed explanation
of the function of each is given in Table 5.1. Section 5.4.3 addresses the 1
and 2 in the figure.

5.3.3 Robot Channels

The robot channels function as input and output channels for the robot.
They are positioned between the SoccerAgent and the RobotAgent. The
RobotAgent will send its desired actions over the corresponding output chan-
nels. These are subsequently processed and validated by the SoccerAgent.
The resulting sensory inputs are then returned to corresponding RobotA-
gents. An overview of the channels is given in Figure 5.4, and a description
of each of the channels is given in Table 5.2

5.3.4 Player Channels

The player channels are very similar to the robot channels because the ro-
bot layer functions mainly as a transparent layer between the framework
and the player. These channels are the only means of interacting with the

1The amount of players is one of the game properties and can be easily changed. 7 is
used as a default, but it can be changed to user preferences at any time.

5.3. SYSTEM DESIGN 77

Figure 5.3: Overview of the Framework Channels

system for PlayerAgents, as all PlayerAgents are locked in their virtual-
hosts (See section 3). Figure 5.5 provides an overview of the channels. The
Information channels mentioned in this figure are Robot.Init, Robot.Status
and Robot.Parameters. Because the virtualhost is prefixed to these channel
names, the actual channel names as they appear in Fleeble will be extended,

78 CHAPTER 5. DESIGN

Table 5.1: Description of the framework channels (I = Initializing, U =
Updating, D = Debugging, S = SoccerAgent, R = RobotAgent)

Channel Cat. From -> To Description
RobotLoaded I R -> S See section 5.4.3.
Nodename I S -> R See section 5.4.3.

Status U S -> R Whenever the Status changes (i.e.
change to paused mode, or if a team
has scored), this is passed on to the
RobotAgents. Section 5.4.2 describes
this in more detail

Parameters I S -> R When all robots have been loaded, the
parameters describing the game rules
are passed on to the RobotAgents.
See Appendix B to learn more about
these parameters.

Info D R Used as a debugging channel for the
RobotAgent, for printing high level er-
ror messages

in the format of: virtualhost.# your robot name.Robot.Channel Name. Ta-
ble 5.3 gives a description of the functions of the channels. As mentioned
in section 4.7.3, the robot layer could easily be extended to simulate ac-
tual robots with realistic uncertainties regarding inputs and outputs and
reasonable physical limitations.

5.3. SYSTEM DESIGN 79

Figure 5.4: Overview of the Robot Channels

80 CHAPTER 5. DESIGN

Table 5.2: Description of the robot channels (S = Soccer Agent, R = Robot
Agent)

Channel From -> To Description
Move R -> S Robots can send their desired move-

ment over this channel. Movement in-
cludes the direction of the movement,
a possible turn, and possibly special
moves such as kicking. See section 5.5
for a detailed description.

See S -> R Main input for the robot. It will re-
ceive perfect information of all objects
within its field of vision on regular in-
tervals. See section 5.4.5 for more de-
tails.

ChangeBehavior R -> S Used to change the PlayerAgent re-
siding on this RobotAgent. Robot-
specific properties can be changed,
such as the robot’s base position, icon,
but the main function is to change the
behavior (PlayerAgent).

Listen S -> R All data that was sent by other play-
ers within hearing range is received on
this channel. The data can be in any
format. Section 5.4.6 further elabo-
rates on this.

Shout R -> S Data that this robot would like to
Shout, share with nearby other play-
ers. Shouts will be received by all
enemy and friendly players within a
predefined shouting range. There is
no limit on the amount of data that
is transmitted, but a speed penalty is
applied for shouting. Section 5.4.6 de-
scribes the details of this.

5.3. SYSTEM DESIGN 81

Figure 5.5: Overview of the Player Channels

82 CHAPTER 5. DESIGN

Table 5.3: Description of the player channels (P = PlayerAgent, R = Rob-
otAgent)

Channel From -> To Description
Move P -> R Same as corresponding channel in ro-

bot agent.
See R -> P Same as corresponding channel in ro-

bot agent.
Listen R -> P Same as corresponding channel in ro-

bot agent.
ChangeBehavior P -> R Same as corresponding channel in ro-

bot agent.
Shout P -> R Same as corresponding channel in ro-

bot agent.
Listen R -> P Same as corresponding channel in ro-

bot agent.
Init R -> P In the team creation process (Sec-

tion 5.4.7), robots are given names, a
player agent, a base position and an
icon. These are distributed by the
SoccerAgent upon initialization and
passed on by the RobotAgent when
the PlayerAgent has loaded. Knowl-
edge of your robot’s name can be use-
ful in several situations.

Status R -> P The status of the match. This in-
cludes details about the status of the
game, but also of the score. Sec-
tion 5.4.2 expands on this.

Parameters R -> P Contains the game parameters that
can be used directly in certain (opti-
mization) algorithms inside the imple-
mentation. Appendix B will provide
an overview of the actual parameters.

5.4. CLASSES 83

5.4 Classes

5.4.1 Overview

The system consist of 4 main elements, and each element consists of one
Java class. Outside these primary classes there is are number of helper and
wrapper classes. The 4 main elements and their corresponding classes are:

1. GUI - SoccerVisualizer

2. Framework - SoccerAgent

3. Robot - RobotAgent

4. Player - PlayerAgent2

The purpose of each of these classes has previously been discussed. The
rules of the game are embedded in the TournamentParameters Object and
distributed among all agents. A detailed overview of the specific parameters
that make up the TournamentParameters object is given in Appendix B.
This section will further specify the functionality of the 4 primary classes.
It will mention and discuss all classes that are used.

5.4.2 Tournament Status

TournamentStatus is an Object that keeps track of the number of goals, the
time at which these were scored and the State of the game. The permissable
states are:

It is updated with each change of state3. Updating it results in the
SoccerAgent sending a message to the RobotAgents, which in term further
propagate the message to their corresponding PlayerAgents.

5.4.3 Initializing the Framework

Prior to simulating any games, the user has to specify the teams. This is
done through the user interface. The user interface4 is discussed in more
detail in section 5.6. For the remainder of this section it can be assumed
that this is a layer that provides the preferences and settings required to
start a game.

2Users will have to implement this, or use the readily available reference implementa-
tions

3note that this automatically implies that it is updated after a goal is made, as this
will cause the game to switch from GAME to SETUP

4The most important part of the user interface is the SoccerVisualizer, although the
TournamentGenerator and MatchSetupGenerator are responsible for displaying and han-
dling the creating of tournaments and teams, respectively.

84 CHAPTER 5. DESIGN

Table 5.4: The Different States of a Tournament

State Description
INIT Start state. The teams have to be defined or created.

Nothing else is displayed on the screen.
SETUP The PlayerAgents can not exert any control over their

robots in this state. The RobotAgents will walk to-
wards their base positions automatically. At the end of a
SETUP state the simulator will change to GAME state.
The simulator comes in SETUP state whenever the game
begins, or when a goal was made.

GAME The state where the PlayerAgent is in full control over
the RobotAgent. During the GAME status, the tourna-
ment clock in the upper-left corner of the screen will be
updated. This is not the case in any of the other states.

PAUSED During this state the game freezes and the time stops.
END This state occurs when the game has ended. The Play-

erAgents have no more control over their robots and the
RobotAgents walk off the field. The simulator will change
to the INIT state when this is complete.

The preferences include the team names, all individual robot names and
their base positions. Since the virtualhost name that is given to a Player-
Agent depends on their name, the preferences must be known in advance.
Once they are known, the following mechanism will start:

1. SoccerAgent: Load 2 x num-players RobotAgents.

2. Each RobotAgent: upon being loaded, send a ”loaded” message over
channel Soccer.Robotloaded”5.

3. SoccerAgent: Store for each received ”loaded” message the Message-
Source object that can be used to uniquely identify the sender of this
object. Link this MessageSource object to a robotname6. When all
”loaded” messages have been received, send the TournamentParame-
ters over the Soccer.Parameters channel to all robots.

4. SoccerAgent: Reply7 to each individual robot over channel Soccer

5This corresponds to the ’1’ in Figure 5.3
6The robot names are prefixed with a number, as described in Appendix B under

player-startnumber
7Replying is explained in Section 3.4.8.1, and is characterized by the message only

being received by one predefined agent rather than by all subscribed agents.

5.4. CLASSES 85

Nodename with their robot name8. After sending the nodename, the
SoccerAgent will send a PlayerInfo (See section 5.4.7) object to each
RobotAgent with the robot-specific information.

5. RobotAgent: Upon receiving their nodename, they will know what vir-
tualhost they will need, and subscribe and publish to the corresponding
channels. After receiving the PlayerInfo object, the RobotAgent will
know what PlayerAgent to load, and load this in the CREATED agent
state. The RobotAgent will receive a notification of the PlayerAgent
being loaded in the (CHILD LOADED) method, and apply the cor-
rect virtualhost. Then the state of the PlayerAgent will be changed
to RUNNING.

6. RobotAgent: Send the PlayerInfo to the PlayerAgent over channel
Robot.Init.

7. RobotAgent: Send the TournamentParameters and TournamentSta-
tus to the PlayerAgent over Robot.Parameters and Robot.Status, re-
spectively.

The system started in SETUP state, and the RobotAgents will start
moving the robots towards their base positions. Once these positions have
been reached, the TournamentStatus will change to GAME and the Player-
Agents will control the robots.

5.4.4 Running the Game

The system design is designed so that the robots will receive updates at the
”Robot.See” channel. The information that is sent is originally provided by
the SoccerAgent. The SoccerVisualizer is responsible for calling the method
in the SoccerAgent that updates the current state, and processes visibility.

The SoccerVisualizer utilizes a private inner class DisplayThread that is
responsible for updating the GUI and the position information at predefined
time intervals. The way this works is described in Listing 5.1:

The tournament time is the time that is displayed on the field, and the
time that is used to determine when the game is over. This mechanism
effectively ensures that when the simulator is run on a slow computer, the
tournament time will update in accordance with the actual amount of up-
dates, rather than with the amount of physical time that has elapsed. This
guarantees that for any match, all players will have had equal chances, re-
gardless of the speed of the computer.

Listing 5.2 is a pseudo-code implementation of the redraw method that is
called by the tournament thread.

8This corresponds to the ’2’ in Figure 5.3

86 CHAPTER 5. DESIGN

Listing 5.1: Running the Game

1 do always {
2 i f in GAME sta tu s {
3 redraw ()
4 i f (time . now − time . be fo re redraw < 1 /

r e f r e s h r a t e)
5 wait u n t i l 1 / r e f r e s h r a t e time has passed

s i n c e
6 time . be fo re redraw
7

8 add 1 / r e f r e s h r a t e to the tournament time
9

10

11 // t h i s thread a l s o hand les the MatchSetupGenerator
f o r the team

12 // c rea t i on in t e r f a c e , and the TournamentGenerator
13 // when the game s t a t u s i s INIT , and a l l o ther

p o s s i b l e
14 // Tournament S t a t e s .
15 }
16 }

Listing 5.2: The redraw() method

1 redraw ()
2 new pos i t i on s = socce ragent . processMoves ()
3 i f in GAME sta tu s and time . now − time .

l a s tV i s i b i l i t yUpda t e
4 > v i s i b i l i t y u p d a t e {
5 socce ragent . p r o c e s s V i s i b i l i t y ()
6 }
7 draw a l l ob j e c t s
8 }

The new robot positions are calculated in the SoccerAgent using the
processMoves function, and are used when displaying all objects on the
field. When the simulator is in GAME status, and at least visibility update
milliseconds have elapsed since the last visibility update, the visibility is
processed and all robots will receive a list of VisibleObjects.

5.4. CLASSES 87

5.4.5 Vision

The robot will automatically detect visual information from the field, and
receive this on channel Robot.See. This information arrives as a list of Visi-
bleObjects, a wrapper class representing VisibleObjects. Table 5.5 describes
this class, and its two subclasses.

Table 5.5: An Overview of VisibleObject, RobotObject and BallObject

Class Parameter Description
VisibleObject Orientation This object’s orientation, composed of rota-

tion and position.
VisibleObject Name The name of this object.
VisibleObject Radius The radius of this object; either player-

radius or ball-radius in current implementa-
tion. Possible extensions with different types
of robots would make this field more interest-
ing.

RobotObject Teamnumber A number, either 1 or 2, that represents
whether this robot’s team is playing on the
left or on the right. Particularly useful for
determining team coordinates using the Ori-
entation class.

RobotObject Teamname The name of this robot’s team.
BallObject Velocity The current speed of this ball. Robot’s don’t

have a velocity as this is always constant and
only adjusted by movement or shout-related
penalties.

The TournamentParameters determine the viewing range and viewing
distance, as explained in Appendix B. The pseudo-code in Listing 5.3 il-
lustrates how the visual information is gathered and communicated to the
RobotAgent:

5.4.6 Shouting and Listening

Communication between the robots is facilitated through the Robot.Shout
and Robot.Listen channels. Any Java object can be transmitted by the
PlayerAgent. To ensure that the recipient will know who sent the message,
and at what time, the RobotAgent will wrap a MessageTuple object (See
Table 5.6) around the transmitted object.

88 CHAPTER 5. DESIGN

Listing 5.3: The Visual Model

1 do every 1/view−update seconds while in GAME sta tu s {
2

3 for every robot i
4 for every ob j e c t j
5 i f d i s t ance mat r i x (i , j) <= view−range
6 add to p o s s i b i l i t i e s (i , j)
7 i f j i s not the b a l l
8 add to p o s s i b i l i t i e s (j , i)
9

10 for a l l p o s s i b i l i t i e s
11 c a l c u l a t e r e l a t i v e o r i e n t a t i o n (i , j)
12 i f r e l a t i v e ang le < view−ang le / 2
13 add to p laye r i v i s i b i l i t y l i s t j o r i e n t a t i o n (

that now a l s o
14 conta in s j r e l a t i v e to i o r i e n t a t i o n)
15

16 for every robot i
17 send l i s t o f v i s i b l e ob j e c t s
18 }

Table 5.6: The MessageTuple Object

Parameter Description
Sender Name of the sender of the message.

Timestamp The time at which the message was sent. This
is also used by the SoccerAgent to ensure that
the shout penalty is given to the sending ro-
bot.

Content A Java Object containing the contents of the
message.

The following illustrates the flow of events when a Robot A decides to
Shout a message, and Robots B and C are within the shout-range.

1. Robot A: send an arbitrary object O to channel Robot.Shout.

2. RobotAgent(A): receive object O on channel Robot.Shout, wrap a
MessageTuple around it, add the current time and the robot’s name,
and send to SoccerAgent on channel Soccer.Shout.

3. SoccerAgent: receive MessageTuple through Soccer.Shout. Verifies the

5.5. MOVEMENT 89

rules. Find all robots that are within the shout-range distance from
Robot A, and send the MessageTuple to these Robots, over channel
Soccer.Listen.

4. RobotAgent(B and C): receive MessageTuple over channel Soccer.Listen,
send this over Robot.Listen.

5. Robot B and C: receive MessageTuple on channel Robot.Listen.

5.4.7 Team Creation

A team is nothing more than a combination of num-players9 agents with a
few extra properties. Teams are stored and loaded from simple XML files.
They are read using Mox [67], an easy, straightforward XML parser for Java.
Parsing the XML files automatically puts the data in MatchSetup objects,
described in Table 5.8. A PlayerInfo object is created to be sent towards
the RobotAgents and the PlayerAgents. The PlayerInfo object is described
in Table 5.7.

Listing 5.4 is an example XML file for two robots.
The following describes the flow of events starting with users entering

the paths to the XML documents of both teams, and ending with the state
that section 5.4.3 started in.

1. Both XML files are read and parsed.

2. Two corresponding MatchSetup objects are created.

3. 2 x 7 RobotAgents are loaded.

4. The MatchSetup objects are sent to the SoccerVisualizer to set the
team name, and to read the icons.

5. If all goes well without errors, the SoccerVisualizer changes the game
state to SETUP.

5.5 Movement

Movement plays a center role in the robot control. To limit the amount
of available movement options, and to standardize movement, a MoveTuple
object is introduced. Movement is composed out of three elements; (1)
direction, (2) turn, (3) special. MoveTuple is a wrapper, combining these
three. The MoveTuple is the only object that is allowed (recognized) over the
Soccer.Move and Robot.Move channels. As forward movement is generally
a lot faster than sideways, or backward movement, penalties are included

9Default is 7, see appendix B

90 CHAPTER 5. DESIGN

Table 5.7: The PlayerInfo Object

Parameter Description
Robot Name Each robot has his own name. It will be

prefixed with a number to guarantee unique
names, but the name is displayed on the
screen.

Icon On the user interface, each robot is displayed
by a certain icon. The system icons have a ra-
dius matching the player-radius, but custom
icons are allowed and easily included.

Agent The desired player, behavior for this particu-
lar robot.

Base Position This robot’s starting position (composed of
an x and a y value). After a goal has been
made, or when the game has just begun, the
RobotAgent takes over control and will move
to this position. As it is unknown what side
the robot will be on, using field coordinates
would not be very helpful. Rather than that,
team coordinates (See section 5.5.1 for an ex-
planation about the coordinate systems) are
used.

Table 5.8: The MatchSetup Object

Parameter Description
Team name The name of the team.

List<Robot Name> (ordered) list of all robot names of this team.
List<Icon> (ordered) list of all icons.

List<Agent> (ordered) list of all the agents.
List<Base Position> (ordered) list of all base positions.

for every type. This penalty is the factor that the robot’s velocity will be
multiplied with, and it applies only for the time that the move is updated.
Table 5.9 provides an overview of the MoveTuple method and the penalties.

The penalties were not included in the TournamentParameters because
they are strictly related to movement. Adding all elements to the parameters
would give a better overview, but would also unnecessarily complicate the

5.5. MOVEMENT 91

Listing 5.4: Team XML file

1 <?xml ve r s i on=” 1 .0 ”?> <team>
2 <name>Holland</name>
3 <robot>
4 <name>Keeper</name>
5 <basepos i t i on >
6 <x>384</x>
7 <y>30</y>
8 </basepos i t i on >
9 <agent>mkt2 . u i twerk ingen . s o c c e r . KeeperPlayer</

agent>
10 <icon>keeper </icon>
11 </robot>
12 <robot>
13 <name>Attacker </name>
14 <basepos i t i on >
15 <x>212</x>
16 <y>140</y>
17 </basepos i t i on >
18 <agent>mkt2 . u i twerk ingen . s o c c e r . SimplePlayer </

agent>
19 <icon>player </icon>
20 </robot>
21 </team>

system by making everything dependent on the specific instance of this
object, or on the global object if it is declared static.

5.5.1 Coordinates

The game features three different sets of coordinates, as described in Ta-
ble 5.10. They are illustrated in Figures 5.6, 5.7 and 5.8, respectively.
Although the framework uses only field coordinates, easy conversion to-
wards the other coordinate systems is provided. For example, to determine
whether an object is within a certain angle from yours10, the following is
already sufficient:

1 boolean wi th in ang l e = | cos (r e l a t i v e r o t a t i o n) | <
th r e sho ld

10This measure could be useful in order to dodge this object to prevent collisions

92 CHAPTER 5. DESIGN

Table 5.9: Overview of MoveTuple

The MoveTuple object
Type Value Penalty Description

MOVE FORWARD 1.0 Basic forward movement.
MOVE BACKWARD 0.7 Back backward movement.
MOVE LEFT 0.4 Sidestepping to the left.
MOVE RIGHT 0.4 Sidestepping to the left.
TURN LEFT 0.8 Turning by predefined number of de-

grees to the left.
TURN RIGHT 0.8 Turning by predefined number of de-

grees to the right.
TURN STRAIGHT 1.0 Movement straight ahead, no turn.

SPECIAL KICK 0.25 The speed penalty for kicking the ball.
The penalty will last only one update,
so it is not considerable, but it does al-
low others chasing you to come closer,
so abusing the kick method is pre-
vented by this penalty.

SPECIAL BLOCK 0.1 Speed penalty for blocking. Blocking
will reduce impact of others bumping
into you, and it allows you to catch
balls at higher speeds.

SPECIAL NONE 1.0 No special moves - default.

An Orientation object is used for storing the rotation and position infor-
mation, and for allowing easy conversion between the different coordinate
systems. Table 5.11 illustrates the methods of the Orientation class that
can be used for retrieving coordinates in either coordinate system.

The team number is either a 1 or a 2, depending on whether your team
is playing on the left or on the right side. The team number is a property
of all RobotObjects. The relative to self coordinates are calculated by the
framework every view-update11 milliseconds by the SoccerAgent.

5.5.2 Movement Model

The SoccerAgent is responsible for handling the Movement, and it will re-
ceive guaranteed frequent updates from all RobotAgents with their Move-
Tuples. A pseudo-code implementation of the algorithm for updating the

11See Appendix B

5.5. MOVEMENT 93

Table 5.10: Three Different Coordinate Systems

Type Description
FIELD Field Coordinates. These correspond to the screen coor-

dinate system, and are used for calculations in the frame-
work. Rotation is, alike the unit circle, counterclockwise.
See Figure 5.6 for an example. Width and Height refer
to the parameters as defined in Appendix B.

TEAM Team Coordinates. During team creation, it is impossible
to know whether your team will play on the left or on
the right. Team coordinates serve as a side-independent
coordinate system, as they reason from the perspective
of your team. See Figure 5.7 for an example.

RELATIVE Relative Coordinates are very useful for many short-term
calculations. They take your robot to be at the origin
(0,0), and the viewing direction to be the X-axis at 0
degrees. Moving 90 degrees counterclockwise gives the Y-
axis. All coordinates are defined in this X,Y coordinate
system. See Figure 5.8 for an example.

Figure 5.6: Field Coordinate System

positions is the following:

94 CHAPTER 5. DESIGN

Figure 5.7: Team Coordinate System

Table 5.11: Using the Orientation Class for Retrieving different Coordinates

Type Methods
FIELD getAbsolutePoint() and getAbsoluteRotation()
TEAM getRelToTeamPoint(int pTeamNumber) and getRel-

ToTeamRotation(int pTeamNumber)
RELATIVE getRelToSelfPoint() and getRelToSelfRotation()

Listing 5.5: The Movement Model

1

2 do every 1/ r e f r e s h r a t e seconds while in GAME sta tu s {
3 upda t e b a l l p o s i t i o n () ;
4 last MoveTuple [i] = Player i most r e c ent MoveTuple ;
5 for a l l p l ay e r s i {
6 c a l c u l a t e r obo t s p e ed (p e n a l t i e s) ;
7 c a l c u l a t e n ew o r i e n t a t i o n (robots [i] , speed ,

last MoveTuple [i]) ;
8 for a l l other ob j e c t s j (so exc lud ing i) {
9 d i s t ance mat r i x [i] [j] = d i s t ance mat r i x [j] [i]

=
10 c a l c u l a t e d i s t a n c e (i , j) ;
11 }
12 }

5.5. MOVEMENT 95

Figure 5.8: Relative Coordinate System

13 c h e c k a n d r e s o l v e c o l l i s i o n s () ;
14 }
15

16 c a l c u l a t e r obo t s p e ed (p e n a l t i e s) {
17 robot−speed = base robot speed ∗ move penalty ∗

tu rn pena l ty ∗
18 spec i a l move pena l ty ∗ shout pena l ty ∗

c o l l i s i o n p e n a l t y
19 }
20

21 c a l c u l a t e n ew o r i e n t a t i o n (robot , speed , last MoveTuple
) {

22

23 i f (t u r n l e f t)
24 d i r e c t i o n = d i r e c t i o n + ro ta t i on inc r ement
25 last MoveTuple−turn = s t r a i g h t
26 else i f (t u rn r i g h t)

96 CHAPTER 5. DESIGN

27 d i r e c t i o n = d i r e c t i o n − r o ta t i on inc r ement
28 last MoveTuple−turn = s t r a i g h t
29

30 robot−d i r e c t i o n = d i r e c t i o n
31

32 i f (move l e f t)
33 d i r e c t i o n = d i r e c t i o n + 90 degree s
34 else i f (move backward)
35 d i r e c t i o n = d i r e c t i o n + 180 degree s
36 else i f (move r ight)
37 d i r e c t i o n = d i r e c t i o n + 270 degree s
38

39 d i s t anc e = ((speed ∗ (1 / r e f r e s h r a t e)) / f i e l d −
metric−l ength) ∗

40 f i e l d −width
41

42 x−change = cos (d i r e c t i o n) ∗ d i s t anc e
43 y−change = s i n (d i r e c t i o n) ∗ d i s t anc e
44

45 robot−x−coord inate = x + x−change
46 robot−y−coord inate = y + y−change
47

48 va l i d a t e (robot−po s i t i o n)
49 }
50

51 va l i d a t e (p o s i t i o n) {
52 i f (ou t s i d e f i e l d −width or out s id e f i e l d −l ength)
53 put back on f i e l d
54 }

Verbally, the algorithm will update all robots according to their latest
MoveTuple. It does this by first calculating the robot’s speed and direction.
Using the tournament parameters the (pixel) distance is calculated, and the
position is changed. It is then validated to check if it’s still on the playing
field. Once this has been done for all robots, the collision detection method
will detect and resolve collisions.

As the positions are calculated at a (much) higher frequency than the
view update frequency, demanding from robots that they specify their de-
sired movement every update would slow the system down, and add difficulty
to implementations. The last MoveTuple received by the SoccerAgent will
be used indefinitely, except for the turn part of a MoveTuple, which is reset
to straight after being used once. Not resetting this would mean that an
arbitrary number of turns would be executed before the next MoveTuple

5.5. MOVEMENT 97

would arrive to set it back to straight again.
The reason why only the last MoveTuple is used is to discourage players

from flooding the system to get better movement (denial of service attack).
In general, reassessing your robot’s course every view-update milliseconds
will be more than enough to get smooth movement.

5.5.3 Collision Model

The collision model is very straightforward. In a nutshell, it checks the
distance between all objects. When two objects are too close, they are both
separated so they do not collide anymore. The pseudo-code in Listing 5.6
illustrates this.

Listing 5.6: The Collision Model

1 for a l l o b j e c t s i = 1 . . n {
2 for a l l o b j e c t s j = (i +1) . . n {
3 i f d i s t anc e (i , j) < 2 ∗ player−rad iu s
4 c o l l i s i o n s . add (i , j)
5 }
6 }
7

8 for a l l c o l l i s i o n s {
9 i f c o l l i s i o n with b a l l

10 i f d i s t anc e (i , j) < player−rad iu s + ba l l−rad iu s)
11 b a l l c o l l i s i o n (player , b a l l)
12 else {
13 d i s t anc e = c a l c u l a t e d i s t anc e both p l aye r s need to

be moved so they
14 do not c o l l i d e anymore
15

16 move p layer1 d i s t anc e / 2 away
17 move p layer2 d i s t anc e / 2 away
18

19 for a l l o b j e c t s i exc lud ing p layer1
20 d i s t ance mat r i x [i] [p layer1] = d i s t ance mat r i x [

p layer1] [i] =
21 c a l c u l a t e d i s t a n c e (i , p layer1) ;
22

23 for a l l o b j e c t s i exc lud ing p layer2
24 d i s t ance mat r i x [i] [p layer2] = d i s t ance mat r i x [

p layer2] [i] =
25 c a l c u l a t e d i s t a n c e (i , p layer2) ;
26

98 CHAPTER 5. DESIGN

27 s e t l a s t−c o l l i s i o n −time for p l aye r s 1 and 2 to
cur rent time

28 }
29 }

5.5.4 Ball Model

5.5.4.1 Ball Movement

The ball plays a central role in the simulator. It’s model is very similar to
that of the robot’s movement model. The main differences are that when the
ball enters certain areas, this is considered as a goal, and catching, kicking
or blocking a ball are special. The pseudo-code in Listing 5.7 describes the
ball model.

Listing 5.7: The Ball Model

1 upda t e b a l l p o s i t i o n () {
2

3 ba l l−speed = ba l l−speed ∗ ba l l− f r i c t i o n
4

5 d i s t anc e = ((ba l l−speed ∗ (1 / r e f r e s h r a t e)) / f i e l d
−metric−l ength) ∗

6 f i e l d −width
7

8 x−change = cos (d i r e c t i o n) ∗ d i s t anc e
9 y−change = s i n (d i r e c t i o n) ∗ d i s t anc e

10

11 ba l l−x−coord ina te = x + x−change
12 ba l l−y−coord ina te = y + y−change
13

14 i f (in e i t h e r goa l area)
15 s c o r e ()
16 r e s e t b a l l to middle o f f i e l d
17 else
18 va l i d a t e (ba l l−po s i t i o n)
19 }

5.5.4.2 Ball Collisions

Following is a pseudo-code implementation of dealing with ball collisions.
The parameters that are not covered by Appendix B are explained in Ta-
ble 5.12. The ball collision model is straightforward. When a player is close
to the ball, it will automatically ’catch’ it, and the ball will auto-rotate

5.5. MOVEMENT 99

towards the player’s direction. Kicking the ball gives it a certain (high) ve-
locity and a weighted random direction error. A ball will bounce when the
player is neither blocking, it is incoming at a relatively high velocity and it
comes from outside the maximum catch angle. The ball collision model is
illustrated in Listing 5.8.

Listing 5.8: The Ball Collision Model

1 b a l l c o l l i s i o n (player , b a l l) {
2 i f d i s t anc e (player , b a l l) < player−rad iu s + ba l l−

rad iu s
3 i f (ba l l−speed > #thre sho ld
4 and ba l l−incoming−ang le > #max−catch−ang le
5 and not spec i a l move b lo ck)
6

7 bounce o f f
8 else
9 c a t c h b a l l

10

11 i f c a t c h b a l l {
12 b a l l d i r e c t i o n = p l a y e r d i r e c t i o n
13 i f block
14 ba l l−po s i t i o n = new point at d i s t anc e player−

rad iu s +
15 ba l l−rad iu s + #catch−width at o r i g i n a l ang le
16 else
17 b a l l p o s i t i o n = new point at d i s t anc e player−

Radius +
18 ba l l−rad iu s − #catch−width , at an
19 ang le #degree−increment c l o s e r towards player

−d i r e c t i o n .
20 (auto−r o t a t e towards player−d i r e c t i o n)
21 }
22 else i f bounce o f f
23 ’ r e f l e c t ’ the b a l l . Ca l cu la t e incoming ang le

and send i t back
24 with reduced speed in r e f l e c t e d d i r e c t i o n
25

26 i f (k i ck)
27 ba l l−speed = #kick−speed
28 ba l l−d i r e c t i o n = player−d i r e c t i o n + (random ∗
29 kick−randomness)
30 else i f (b lock)
31 ba l l−speed = #block−speed
32 else

100 CHAPTER 5. DESIGN

33 ba l l−speed = robot−speed
34 ba l l−d i r e c t i o n = robot−d i r e c t i o n

Table 5.12: Parameters dealing with Ball Collision

Name Value Description
Threshold 25 The number of meters per second

above which catching of the ball is no
longer possible.

Catch-width 10 The amount of pixels that the x and
y change of the ball’s position will
be altered. This effectively puts the
ball ’within’ the player radius, causing
’collisions’ to occur every update, en-
suring the ball will stick to the player.

Max-catch-angle 45 The maximum angle where the ball is
still catchable. If the ball comes in
at an angle higher than this, it might
bounce if it is too fast.

Degree-increment 45 Number of degrees that the ball
will move towards the player-direction
each second. This means that every
update, the ball moves 1/refreshrate *
degree-increment degrees towards the
player-direction.

Kick-speed 45 The velocity in meters per second of
the ball straight after receiving a kick.

Block-speed 0 The speed of the ball after an effective
block.

5.6. USER INTERFACE DESIGN 101

5.6 User Interface Design

Attractive things work better, Donald Norman.

The user interface has only one primary purpose: To visualize simu-
lations between soccer teams. As this is the most important aspect, there
should be little distractions from this primary goal. The interface has to be
intuitive, and visually appealing.

As can be seen in Figure 5.1, there are 4 different use cases for the
simulator:

1. View and modify framework parameters.

2. Play a match.

3. Play a tournament.

4. Create of modify team.

The first will generally only be used by professional users, or prior to
starting a (large) project. The tournament parameters will as such remain
constant for a longer period of time, and they should not be an integral part
of the user interface. Changing them from a pre-specified central location is
sufficient.

Simulating a match is by nature very different from specifying teams
or creating / modifying a team. The simulator requires all corresponding
agents to be loaded and in the proper state, whereas the other uses can run
independently of these. Although both types will be displayed in the same
window, they are discussed separately.

5.6.1 Settings

5.6.1.1 Main Screen

Upon starting the simulator, the dominant task will be to play a match
between the challenge team12 and the (recently improved) team. Prior to
being able to execute this task, the two teams that are to play a match have
to be specified.

To make this as easy and intuitive as possible, there should be one Main
screen, that is optimized for starting a game. The buttons - and their
functionality - that will be present on this main screen are described in
Table 5.13. This is visualized in Figure 5.9.

For user convenience, when the Save MatchSetup button is used - and
the desired paths are automatically entered in their textfields, the process of
starting a game is reduced to starting the framework, and clicking once on

12The reference team that has to be beaten

102 CHAPTER 5. DESIGN

Figure 5.9: The Main Screen

the Start Tournament button. This one-click interface makes debugging a
team through simulating a game after making a small change a satisfactory
approach.

5.6.1.2 Team Creation Interface

The team creation interface performs the following tasks. This approach
makes creating and modifying teams a lot easier than through editing their
XML files:

• display (the base positions of) the robots,

• move robots around the field to give appropriate base positions,

• select a name for each robot,

• select an icon for each robot,

• select an agent for each robot,

• select a team name.

5.6. USER INTERFACE DESIGN 103

For these tasks, the interface will be displayed in two equally sized, ver-
tically split regions. The left hand side visualizes the soccer field with the
currently available robots, their positions, icons and names. The right hand
side allows for the modification of these. The buttons and their correspond-
ing functions that will be available on the right hand side are summarized
in Table 5.14. The interface is provided in Figure 5.10.

Figure 5.10: The Team Creation Screen

Table 5.14: Interface Elements of Team Creation / Modifica-
tion

Name Type Function
Start MatchSetup Button This opens a File Prompt to determine the

desired name and location of the team XML.
Cancel Button Return back to the main screen

Team name TextField This textfield contains the team name that is
displayed in game mode

Continued on next page

104 CHAPTER 5. DESIGN

Table 5.14 – continued from previous page
Name Type Function

Player name TextField Represents the name of the currently se-
lected robot. Changing this will automati-
cally change the corresponding robot’s name
on the field on the left hand side of the inter-
face.

Agent Path List List displaying all agents that can be selected.
Will highlight the agent that is used for the
robot that is currently selected. Selecting an-
other agent from this list will automatically
change the robot’s behavior. When the team
is stored, the agent path list is also written
to a property in Fleeble and loaded whenever
the team creation screen is used. This avoids
laboriously re-adding the agents after every
team.

Add Agent Path Button This button opens a File Prompt that will
allow users to manually add new agents to
the Agent Path list.

Remove Agent Path Button This button will remove the currently selected
agent path from the list. Robots that had this
agent will take the next agent on the list as
their behavior.

Icon Path List List displaying the names of all icons that can
be selected. Will highlight the icon that is
used for the robot that is currently selected.
Selecting a different icon from this list will au-
tomatically change the corresponding robot’s
icon on the field on the left hand side of the in-
terface. The paths to the icons are also stored
using properties.

Add Icon Path Button This button opens a File Prompt that will
allow users to manually add new icons to the
Icon Path list.

Remove Icon Path Button This button will remove the currently selected
icon path from the list. All robots that used
this icon will use the next icon in the list.

Delete Agent Button This button deletes the currently selected ro-
bot from the team, and automatically from
the field.

Continued on next page

5.6. USER INTERFACE DESIGN 105

Table 5.14 – continued from previous page
Name Type Function
Hint Label This label instructs first time users how ro-

bots can be added to the screen, and reads:
”Double-click somewhere on the field to cre-
ate a new robot...”

Dragging a robot around the field is easily done through selecting and
dragging the mouse over the robot. Releasing the mouse will place the robot
at the desired location. The XML files created by this interface are exactly
the same format as the ones described in section 5.4.7.

Adding robots is done by double-clicking on the field. When the permis-
sible number of robots, as allowed by the framework parameters, has been
reached, and the user is trying to add more robots, a note will appear to
the user to inform him that his team is already full. No more robots can be
added at this time.

5.6.1.3 Tournament Creation Interface

A tournament is a series of matches. Testing the performance of a team
against one other team can be done by setting the game time arbitrarily
high. Testing the team against a larger number of teams is a laborious
process if a human operator has to wait for the current game to finish prior
to being able to select another team. To automate this, and allow for a
predefined series of matches to be simulated, the tournament creation in-
terface is included in the system. The elements required to accomplish this
are described in Table 5.15. A tournament can be composed of an arbitrary
number of games, and the results of the games are stored and printed after
each individual game, for convenient retrieval purposes. The interface is
shown in Figure 5.11.

5.6.1.4 Error Handling

All settings deal with human input, and care should be taken to prevent the
program from crashing. As the amount of options is still very limited, it is
straightforward to prevent all possible input-related errors from corrupting
the game.

In dealing with all lists13, adding elements that are already present is ig-
nored. Removal of an element, if there is only one item on the list remaining
is not permitted in the team creation, as this would automatically mean the

13These lists include the icons list, agents list, the match list and the team lists

106 CHAPTER 5. DESIGN

Figure 5.11: The Tournament Creation Screen

removal of all created robots. The tournament creation menu allows for the
removal of all elements.

Input through the file prompts and the input text fields is another prob-
able cause of faulty human input. This is handled by catching the errors
that will occur from not being able to successfully load or process the data,
and providing feedback to the user with regards to why their request is not
carried out successfully. In the case of an incorrect path to the team XML
file, the text of the input fields is changed to INVALID, as can be seen in
Figure 5.12.

To prevent confusion about the interface, and to provide adequate direct
to-the-point help, tooltips are used throughout the interface. These pop
up when a user keeps the cursor over a button with his mouse for over a
second, and explain to the user what the function of the button is. Tooltips
are added to most buttons.

5.6. USER INTERFACE DESIGN 107

Figure 5.12: Error Message from Incorrect Input

Figure 5.13: Example of the Tooltip Help

5.6.2 Game

The interface for displaying the game is naturally centered around the play-
ing field. The only user input that is available is for controlling the states.
A user can either pause the game or end it. To provide visual feedback
regarding the visual and aural input areas of the robots, an extra feature is
included such that clicking on a robot will mark these sensor areas with a
red and yellow line, respectively. The interface is shown in Figure 5.14, the
red and yellow lines marking the visual and aural sensor areas of the robot
are displayed in Figure 5.15.

108 CHAPTER 5. DESIGN

Figure 5.14: The Soccer Simulator Interface

5.6. USER INTERFACE DESIGN 109

Table 5.13: Interface Elements of the Main Screen

Name Type Function
Start Tournament Button This button takes a central location,

and is the most important button on
the main screen. It will start the se-
quences defined in sections 5.4.7 and
5.4.3.

Team 1 Path TextField This textfield contains the full path to
the XML file describing the properties
of team 1. Team 1 will play on the left
side of the field.

Team 2 Path TextField This textfield contains the full path to
the XML file describing the properties
of team 2. Team 2 will play on the
right side of the field.

Load Team 1 Button This button will open a File Prompt,
and allows users to browse through
the hard drive to specify the location
of team 1’s XML.

Load Team 2 Button This button will open a File Prompt,
and allows users to browse through
the hard drive to specify the location
of team 2’s XML.

Edit Team 1 Button This button will start the team cre-
ation interface, and attempt to load
the team at the location specified in
the Team 1 Path.

Edit Team 2 Button This button will start the team cre-
ation interface, and attempt to load
the team at the location specified in
the Team 2 Path.

New Team Button This button will start the team cre-
ation interface.

Tournament Button This button starts the tournament in-
terface, where teams can be added in
a list to start a series of sequential
games.

Save MatchSetup CheckBox This is a checkbox that, when checked,
will store the locations to the team
XML files in Fleeble using Properties
(See section 3.4.9) Even after shutting
down Fleeble and restarting it, the
preferred team paths will be stored
and automatically entered to the cor-
responding textfields.

110 CHAPTER 5. DESIGN

Table 5.15: Interface Elements of Tournament Creation

Name Type Function
Start Tournament Button This will start the (sequence of)

matches as defined in the Match List.
Cancel Button Return back to the main screen.

Match List List List containing all matches that are to
be simulated.

Add Match Button Will add a match consisting of the se-
lected team from both team selection
lists to the match list.

Remove Match Button Removes the match that is currently
selected in the Match List.

Team 1 List List This list shows all teams that can
be selected. This list is stored in a
property so that upon restarting the
simulator the teams are automatically
added to the list.

Team 2 List List Same as Team 1 List.
Add Team Button Adds a team to both the Team 1 and

Team 2 Lists.
Remove Team Button Removes the team that is selected,

provided that either the same team
is selected in both team lists, or that
only one of the two lists has a team
selected. If both team lists have the
same selection, the remove button is
ignored.

5.6. USER INTERFACE DESIGN 111

Figure 5.15: The Visual and Aural Sensor Areas of a robot

112 CHAPTER 5. DESIGN

Chapter 6

Implementation

Ninety-ninety Law: The first 90% of the code accounts for the
first 90% of the development time. The remaining 10% of the
code accounts for the other 90% of the development time. Tom
Cargill.

This chapter describes the implementation of the soccer simulator. The
soccer simulator is based on the model that is described in Chapter 4, and
is implemented in accordance with the design that is specified in Chapter 5.
The chapter begins by discussing the approach that was used for implement-
ing the simulator. Subsequently, the separate phases for the implementation
of the system are described. The next section describes how to run the sim-
ulator, and will illustrate some features. Subsequently the testing of the
framework is described. This chapter concludes with a number of sugges-
tions for future work on the simulator.

6.1 Approach

Work on the graduation project started in early March 2006. The final
deadline was May 15th, when the soccer assignment in the MKT-2 project
would start.

The implementation of the system was done incrementally, in 4 phases.
The first phase consisted of creating a basic framework that would load
all required agents. In the second phase, the basic sensors, effectors and
the movement model were implemented. In the third phase the GUI was
implemented, and the functionality of the second phase was tested. The
fourth phase consisted of adding a number of complex features, such as
collision detection and ball movement. After the fourth phase, the MKT-2
project started to work with the simulator. To prevent students from having
to download new versions and deal with new functionality all the time, the

113

114 CHAPTER 6. IMPLEMENTATION

development was discontinued. After the MKT-2 project, the team creation
and tournament creation interfaces were added to the simulator.

6.1.1 Tools

During the development of the system, Eclipse [56], CVS [57], SWT [60],
and Fleeble [9] were thoroughly used. The MKT-2 project already had
a CVS-repository assigned on a server at Delft University of Technology.
The software for the soccer simulator was added to this repository as a
number of separate packages. To distribute the simulator, an installer was
created using an Ant [58] script that would call an NSIS [68] script. The
NSIS script basically describes what files are necessary, puts these in an
executable container that will distribute the files to predefined (relative)
locations. This executable will also contain the assignment manual and is
distributed to the students.

6.2 First Phase: Initializing the Framework

The first implementation featured a very basic SoccerAgent, SoccerVisual-
izer, RobotAgent, and a SimplePlayer. The SoccerVisualizer displayed the
options screen prompting for the two team XML files, and passed this on to
the SoccerAgent. The SoccerAgent would then load 14 RobotAgents, and
use the mechanism defined in the system design1 to provide these RobotA-
gents with their name, and the PlayerInfo object containing the name of the
PlayerAgent. The RobotAgents would subsequently load the PlayerAgent,
and assign the corresponding virtualhost. The TournamentParameters class
was also included and used from the start.

Once this basic framework, responsible for parsing the team XML files,
and loading all corresponding robot and player agents, was functional, the
remainder of the functionality was gradually added.

6.3 Second Phase: Sensors, Effectors and Move-
ment

Starting with the basic framework, the second phase added basic implemen-
tations of the aural, visual, and movement models that were described in
the design.

1Using the Soccer.Robotloaded and Soccer.Nodename channels

6.4. THIRD PHASE: GRAPHICAL USER INTERFACE 115

6.3.1 Position Tracking

Prior to implementing the movement, aural or visual model correctly, the
framework had to keep track of the current state of all objects on the field.
The VisibleObject class was implemented, and a list of visible objects was
created - one for each robot, and one for the ball. These were then placed
on the base positions that were defined by the team’s XML files.

6.3.2 Aural Model

The aural model was relatively easy to implement. First the MessageTuple
class had to be implemented, and the RobotAgent had to wrap a Message-
Tuple with corresponding time and sender around all messages that were
sent by a certain robot. Since the positions of all robots was known, check-
ing which robots were within the shouting range was a straightforward task.
The next step dealt with replying2 the MessageTuple to all agents within
the shouting range.

6.3.3 Visual Model

The visual model was significantly more difficult than the aural model. The
most difficult aspect of the visual model was working with the angles. Calcu-
lating which objects were visible was relatively easy, but the design specified
that the relative coordinates3 had to be calculated for all objects that were
visible. On hindsight this is mathematically trivial, but during the imple-
mentation this was one of the pitfalls.

6.3.4 Movement Model

The MoveTuple was implemented, and integrated with the player, robot,
and soccer agents. Calculating the correct translations and rotations was a
tedious exercise, and a lot of debugging was done during the later phases
before this was correctly implemented

6.4 Third Phase: Graphical User Interface

The second phase concluded with a framework that would load the cor-
responding robots, player agents, and supported basic movement, vision
and communication. Testing whether this functionality worked according
to specification was rather difficult however, without the GUI. In the third
phase, the GUI (SoccerVisualizer) was extended.

2A reply is a message over a certain channel directed at a specific agent rather than at
all subscribed agents.

3See Section 5.5.1

116 CHAPTER 6. IMPLEMENTATION

The first step was implementing the TournamentStatus class, and estab-
lishing a basic structure for displaying and updating the field and all visible
objects. There was some difficulty in coordinating the threads and synchro-
nizing the data between the SoccerAgent and SoccerVisualizer initially, but
this was resolved after debugging.

Then, the robots had to be visualized. Visualizing the robot’s individual
icon (user-specified!), name, position and the line representing the heading
of the robot was relatively easy.

Now that the GUI was functional, the functionality from the second phase
could be tested and debugged. At the end of the third phase, the simulator
featured robots with fully functional visual and aural sensors, that were able
to move across the field using MoveTuples.

6.5 Final Phase: Added Features

The third phase finished with a system that performed most of the tasks
that were specified in the design, but was far from complete.

6.5.1 Collision Detection

The robots were able to move around the field, but there was no collision
model implemented yet. The list of VisibleObjects that was created in
the first phase was used to create and update a two-dimensional matrix
containing all distances between the different objects. The collision model
was implemented in accordance with the design (See Section 5.5.3).

6.5.2 Ball Movement

After the movement model and collision model were implemented, the ball
movement model was implemented. The ball had to stay within the bounds
of the field. It had to check every update whether it was inside the goal.

6.5.3 Change Behavior

The change behavior functionality was added to the soccer, robot and player
agents, without any problems.

6.5.4 Other Features

A number of other important features were also added to the system:

6.6. RUNNING THE SIMULATOR 117

• Scoring. The framework has to increment the score, stop play, reset
the ball and robot’s location to their base positions, and resume play
again.

• Visualizing the aural and visual range.

• Pause / Play buttons. The (semi-transparent) pause, play and stop
buttons were added to the field as the only buttons that should be
visible throughout the game.

• Entering / Leaving field. To make the game appear more natural, the
robots will enter the field from their corresponding sides, and move
towards their base positions. When the game has ended, the robots
move from their current positions towards the sides.

The framework was released when all these features were implemented
and thoroughly tested. The team and tournament creation functionality
was not included yet, as this was added after the project had ended.

After it had ended, the team creation and tournament creation interfaces
were added. The team creation and modification interface was developed as
a separate GUI layer that received its data from the SoccerVisualizer. The
MatchSetupGenerator class was developed for this purpose. The interface
was intensively tested before being released, to prevent faulty input from
crashing the system. The TournamentGenerator was developed in an alike
manner.

6.6 Running the Simulator

This section describes how to run the simulator, and illustrates some of
the features. Prior to running the simulator, the user must first install the
software. The installer will ask the user to specify a directory, and extract
all required files there. Then, the user has to start Fleeble, and load the
SoccerAgent4

Entering / Exiting the Field Figure 6.1 illustrates how robots will enter
the field5, and Figure 6.2 shows the process of exiting the field6.

4The SoccerAgent is located in $Installation directory/mkt2/soccer/SoccerAgent.java
5This process starts after the team XML files have been submitted by the user, and

the required RobotAgents have been loaded.
6This occurs when the match is over, or when the user ends the game.

118 CHAPTER 6. IMPLEMENTATION

(a) Enter the field (b) Move towards base po-
sitions

(c) Arrive at base positions

Figure 6.1: Entering the Field

(a) End the game (b) Move towards exit lo-
cation

(c) Exit the field

Figure 6.2: Exiting the Field

Play, Pause, and Stop buttons Figure 6.3 illustrates the semitranspar-
ent buttons in the right-hand bottom corner of the user interface that can
control the state of the game. When the game is playing, the left button
displays the pause logo. When the game is paused, it displays the play logo.

Score and Game Time Figure 6.4 illustrates the names of both teams,
the corresponding scores, and the tournament time. The tournament time
may differ from the actual time, as the tournament time is linked to the
amount of movement updates that have been processed. This is explained
in Section 5.4.4.

Robot Visualization Figure 6.5 shows a typical moment in the game.
The red line determines the visual range of the robot. The yellow circle
defines its aural range. The grey line indicates the current heading of the
robot. The name of the robot and the coordinates are displayed beneath
the icon. Channels on Fleeble can also be viewed by humans, and Fleeble
attempts to put the data in a human-readable format. Figure 6.6 illustrates
what the robot in Figure 6.5 will receive on the See channel. This is an Ar-

6.6. RUNNING THE SIMULATOR 119

Figure 6.3: Pause / Stop Buttons

Figure 6.4: Game Time, Score and Team Name

rayList of RobotObjects7, and for each RobotObject, the properties such as
team name, team number, radius and name are displayed. This visualization
makes debugging players a lot easier.

7RobotObject is a subclass of VisibleObject, and ArrayList is a subclass of the List
interface. As such, the input is a List of VisibleObjects, as described in the design

120 CHAPTER 6. IMPLEMENTATION

Figure 6.5: Robot Visualization

6.6. RUNNING THE SIMULATOR 121

Figure 6.6: The See Channel

122 CHAPTER 6. IMPLEMENTATION

6.7 Testing

Testing the framework was done throughout all stages of the development.
There is a distinction between testing the functionality, and testing the
usability. The functionality tests the compliance with the system model,
whereas the usability tests whether the users of the system will interpret
the offered functionality as it was designed by the developer.

The functionality of the system was debugged and tested during the de-
velopment. Following the addition of a new feature, such as the aural model,
visual model, or movement model, all possible uses of the feature were thor-
oughly tested. This testing occurred in one or more of the following manners:

• Use the ”System.out” and ”System.err” channels to print certain (sta-
tus) information.

• Use the debug mode of eclipse to run through the program step by
step to determine the exact location of an error.

• Read the human-readable representation of the data that is sent over
channels.

• Look in Fleeble at the list of agents and their corresponding agent
states.

• Analyze the behavior of the robots on the user interface8.

The usability of the user interface was initially evaluated by the other
teachers of the MKT-2 project. After several small adjustments to the
interface, it was distributed to the students. As the only interaction that
the user has with the system lies in the entering of the path to the team
XML (after the project also with creating the team / tournament), very few
things can go wrong. The tooltip texts were added to prevent any possible
confusion. Since the data that is entered can be stored in properties, the
system has to be set up correctly once, and it will start playing a match with
a single click from then onwards. There were no remarks or bugs submitted
by the students.

6.8 Future Work

The simulator that is developed during this project has no known issues
or bugs and is considered stable. However, a number of possible technical
improvements do exist. These improvements are listed below:

8The user interface also displays the coordinates of the robots, and their heading. When
a robot is supposed to turn left and it does not turn left, something is obviously wrong.

6.8. FUTURE WORK 123

1. Move the ’DisplayThread’, the thread that presently resides in the
SoccerVisualizer and is responsible for calling the methods in the Soc-
cerAgent that process the visibility and movement, towards the Soc-
cerAgent. The SoccerVisualizer should be a thin interface layer that
can be used to display the game, and the game should not be depen-
dant on the game. This would also allow simulations to run without
the GUI.9

2. Implement network option. Users should be able to join or host
matches and tournaments with other users. How this should be imple-
mented depends on the exact required usage. Setting up one central
soccer team database and connecting to this, downloading the desired
team and playing against this team would be a possible implementa-
tion.

3. Extend the model with uncertainty, to model various states of tech-
nological progress, and use this to test the impact of this progress on
the performance of a team.

4. Add more human soccer features, such as specifying the speed and
direction of a kick, modeling the goalkeeper as a robot with special
physical capabilities, or kicking the ball with effect.

5. Add another layer over the player layer that contains pre-implemented
functions for, amongst others, movement. This would effectively re-
duce the process of creating a team to defining a good rulebase.

9The simulation will not be able to run faster however, since the time that is required
by Java and Fleeble to process all input and output by all robots is independent of the
thread that implements it, and the user interface is very basic and does not require a lot
of processing power.

124 CHAPTER 6. IMPLEMENTATION

Part III

Research

125

Chapter 7

Agent Strategies

You may not be interested in strategy, but strategy is interested
in you. Leon Trotsky.

7.1 Introduction

The simulator that has been introduced in the previous part of this thesis
is suitable for educational purposes and for research on high-level strategic
behavior. This chapter illustrates the possibilities of the simulator as a tool
for research on these high-level AI techniques.

The chapter begins by identifying a number of low-, medium-, and high-
level player skills, that map high-level commands to the basic action com-
mands available in the simulator. The next section describes a number of
inference steps that map the basic percepts to high-level information about
the environment. Subsequently, agent and team strategy is discussed, adap-
tive behavior is introduced, and the rule-based action selection mechanism
is explained. The next section describes how a player could be implemented
using a multi-agent system. The chapter concludes with an overview.

7.2 Player Skills

Skill (noun): Ability to produce solutions in some problem domain

The behavior of an agent is determined by its reasoning mechanism, but it
is restricted by the player skills. The reasoning mechanism can use the player
skills as building blocks. Prior to discussing what reasoning mechanisms
exist, it is important to determine the player skills that are possible in the
simulator.

127

128 CHAPTER 7. AGENT STRATEGIES

In his Master’s thesis, Jelle Kok [66] described a number of low-, medium-,
and high-level skills that were used in his team for the soccer server. These
skills can also be implemented using the simulator. Certain skills are pre-
implemented, and some are not relevant in the simulator. The other skills
are described in this section.

7.2.1 Low-level Player Skills

The following low-level player skills are all defined in terms of the basic
action commands that are possible in the simulator. A number of trivial
low-level skills are not described in detail as they are already contained in
the implementation of the basic action commands. Examples are kicking the
ball, catching the ball, moving with the ball, turning with the ball, blocking
an incoming player, moving / turning in a certain direction, communicating
a message.

7.2.1.1 Turn the Robot towards a Point

This skill enables a robot to turn towards a predefined point. Turns in
the model are defined using a fixed angle. As such, it is only sensible to
turn when the angle towards to goal position is larger than this angle. The
relative rotation of any objects are already available, with an angle of 0
corresponding to the heading of the robot.

Listing 7.1: Turn the robot towards a point

1 turnToPoint (Point p) {
2 i f (c o s i n e (r e l a t i v e r o t a t i o n (p)) < ro ta t i on−

increment)
3 i f (s i n e (r e l a t i v e r o t a t i o n (p) > 0)
4 turn l e f t
5 else
6 turn r i g h t
7 else
8 turn s t r a i g h t
9 }

7.2.1.2 Scout the Area

This skill enables a robot to look around a larger area. As robots have a
small field of vision, opponent robots may get by if robots look in the same
direction. This skill will continuously turn the robot, such that the robot
will observe the full 180 degrees in the direction of the opponent side of the
field. It will alternate between turning left and right. This skill can be used
to search for the ball or opponents while remaining in the same position.

7.2. PLAYER SKILLS 129

Listing 7.2: Scout the Area

1 boolean l e f t // t rue means we are turn ing towards l e f t
, f a l s e

2 towards r i g h t
3

4 scoutArea ()
5 i f (l e f t = true & cos i n e (team coord inate s head ing)
6 < co s i n e (PI / 2 − v iew ang le / 2))
7 & s inus (team coord inate s head ing) > 0)
8 l e f t = fa l se
9 else i f (l e f t = fa l se & cos i n e (

team coord inate s head ing)
10 < co s i n e (PI / 2 − v iew ang le / 2) & s inus (

team coord inate s head ing) < 0)
11 l e f t = true
12 i f (l e f t)
13 turn l e f t
14 else
15 turn r i g h t

7.2.2 Intermediate-level Player Skills

7.2.2.1 Turn the Robot towards an Object

This skill enables a robot to turn to a certain object.

1 turnToObject (Object o) {
2 turnToPoint (o . p o s i t i o n)
3 }

7.2.2.2 Track the Ball

This skill enables a robot to track the ball.

1 t r a ckBa l l () {
2 turnToPoint (b a l l . p o s i t i o n)
3 }

7.2.2.3 Move to a Position

This skill enables a robot to move to a certain position. The agent will have
to decide whether to sidestep to the left or right, move forward or backward.
The agent can also decide to turn the robot. This has as its disadvantage

130 CHAPTER 7. AGENT STRATEGIES

however, that the move to a position will override any turning skills1. As
such, this pseudo-code implementation keeps the notions of turning and
movement separated. The implementation of this skill determines for a large
part the performance of the player, and some complexities can be added. An
example would be taking into account all known positions of other robots,
and rule out those moves that will cause imminent collisions. This particular
implementation will use its predicted speed to determine which movement
gets the robot closest to the goal.

Listing 7.3: Move to a Position

1 move(Pos i t i on goa l po s)
2 {
3 moves = { FORWARD, BACKWARD, LEFT, RIGHT, IDLE }
4 for a l l moves {
5 c a l c u l a t e p r ed i c t ed new po s i t i o n // (assuming no

c o l l i s i o n s , and
6 // ta k ing the p e n a l t i e s in t o account)
7 }
8

9 do the move where the r e s u l t i n g pred i c t ed po s i t i o n
has the

10 sma l l e s t d i s t anc e to the goa l p o s i t i o n
11 }

7.2.3 High-level Player Skills

7.2.3.1 Intercept a Ball

This skill enables the robot the intercept a ball. The robot will have seen a
ball that has a certain velocity and a certain heading. The position of the
ball can be predicted exactly throughout time, if there are no other objects
moving the ball. The robot will always catch a ball when it is less than
player-radius pixels away. For implementing this skill, a number of different
approaches exist:

1. Predict the path that the ball will follow, and try to move towards the
point that is the closest to the ball, as to minimize the risk of other
robots taking the ball

2. Predict the path that the ball will follow, and try to move as little as
possible from your own position while still catching the ball

3. Predict the path that the ball will follow, try to ensure that you catch
it, while anticipating the movement of other nearby robots, and hence

1For instance turn towards a position, turn towards an object, track the ball

7.2. PLAYER SKILLS 131

including the probability that you will get a collision and the corre-
sponding penalty

4. Predict the path that the ball will follow, ensure that you will catch
it, while already turning and moving towards the position that is best
for passing the ball to others or moving towards the goal

Using hadCollision(self) the robot can determine whether he had a colli-
sion penalty, and anticipate on this. The ball will always move in a straight
line with a speed that reduces with a constant factor. The following pseudo-
code illustrates an implementation of the first of the aforementioned ap-
proaches. The player will intercept the ball as fast as it can.

Listing 7.4: Intercepting the Ball

1 i n t e r c e p t () {
2 i f (sma l l e s t d i s t anc e to pred i c t ed b a l l t r a j e c t o r y

< player−rad iu s)
3 //we w i l l ca tch the b a l l un l e s s someone e l s e

i n t e r c e p t s the
4 // i n t e r c e p t
5 else
6 // determine opt imal po in t
7 Tmax = the time that i t takes for the b a l l to come

to a ha l t
8 // t h i s i s when b a l l . speed ∗ 0.96ˆTmax) < 0.1
9

10 for i = 1 . . . Tmax {
11 T requi red = c a l c u l a t e the amount o f time i t

would take to move to the
12 po s i t i o n o f the b a l l at time i
13

14 i f (T requ i red <= i)
15 opt ima l po in t = po s i t i o n o f b a l l at time i
16 }
17 move(opt ima l po in t)
18 }

7.2.3.2 Passing the Ball

This skill enables a robot to pass the ball to a teammate. Before a successful
pass can be given, the player has to have the correct heading. The closer
the recipient is, the higher the chance that he will catch the ball, due to
the small randomness that is added to the direction of the kick. When the

132 CHAPTER 7. AGENT STRATEGIES

robot has to turn first, it is assumed the pass method is called again after
the next visibility update.

Listing 7.5: Pass the Ball
1

2 pass (Pos i t i on p) {
3 i f (r e l a t i v e r o t a t i o n (p) < r o ta t i on inc r ement)
4 k ick
5 else
6 turnToPoint (p)
7 }

7.2.3.3 Give a Leading Pass

This skill enables the robot to give a leading pass to a teammate. A leading
pass is a pass aimed in front of the player. The distance ahead of the receiver
can be specified as an argument for this function.

Listing 7.6: Leading Pass
1 l ead ingPass (RobotObject o , d i s t anc e d)
2 {
3 g o a l p o s i t i o n = po s i t i o n at d i s t anc e d d i r e c t l y in

f r on t o f robot o
4 pass (g o a l p o s i t i o n)
5 }

7.2.3.4 Give a Through Pass

This skill enables the robot to give a through pass. This is a type of pass
that is into the open field, ’through’ opponents, such that a team mate
can take it and (hopefully) score. There are many implementations for this
type of pass, as many assumptions have to be made and a lot of risk has
to be taken. For instance when an opponent robot is facing the other way,
it could be assumed that the robot would not be aware of the kick of the
ball, and will not intercept it, and a smaller safety line is required. A more
conservative implementation could calculate whether the opponents will be
able to intercept the ball.

Listing 7.7: Through Pass
1 throughPass (RobotObject o) {
2 range = c a l c u l a t e the ’ s a f e ’ range in between (

through) the opponents
3 // turn ing i s a lways wi th 20 degree increments , so ’

a l l p o s s i b l e ’

7.2. PLAYER SKILLS 133

4 // ang l e s in the range i s u s u a l l y very few
5 for a l l p o s s i b l e ang l e s in range {
6 t r a j e c t o r y = c a l c u l a t e the path o f the b a l l i f

kicked
7 // depending on the amount o f turns r equ i r ed f o r

the shot ,
8 //add v i s i b i l i t y −update m i l l i s e c ond s per turn
9 be s t ang l e = i f the re i s i n t e r s e c t i o n o f robot o ,

assuming i t moves
10 at maximum speed forward , with the t r a j e c t o r y ,

then this i s
11 best ang le
12 }
13 be s t po i n t = the i n t e r s e c t i o n po int us ing the bes t

ang le
14 pass (b e s t po i n t)
15 }

7.2.3.5 Clearing the Ball

This skill enables the robot to kick the ball in a ’safe’ direction of the field,
if he is unable to make a (safe) pass. This can win the defensive side some
time to re-organize and relieve some of the pressure of the opponents. The
goal is to shoot the ball in the direction of the opposing team.

1

2 c l e a rBa l l () {
3 i f (heading opposing s i d e) // prevent making an own

goa l
4 k ick
5 }

7.2.3.6 Move towards Opponent Goal

This skill enables the robot to move towards the opponent’s goal. To prevent
opponents from being able to block the movement easily by moving directly
in between the ball and their own goal, this skill can be implemented to
consider the position on the field.

Listing 7.8: Move towards Opponent Goal

1 moveToGoal () {
2 i f (d i s t anc e from s e l f to opponent goa l i s l a r g e r

than
3 th r e sho ld)

134 CHAPTER 7. AGENT STRATEGIES

4 move along the l i n e de f ined by the x coord inate o f
own base

5 po s i t i o n towards the goa l
6 // t h i s means f l a n k p l a y e r s w i l l a t t a c k over the

f l a n k
7 else
8 move towards goa l
9 }

7.2.3.7 Move Free from Teammate

This skill enables the robot to move free from its teammate. When a team-
mate has the ball, the robot should certainly not obstruct the teammate
with the ball. Depending on the relative location of the teammate, the im-
plementation of this method will attempt to proceed forward along the flank
that is still free.

Listing 7.9: Move Free from Teammate

1 moveFree () {
2 i f (x d i f f e r e n c e between b a l l and s e l f > th r e sho ld)
3 move along the l i n e de f ined by the x coord inate o f

own base
4 po s i t i o n towards the goa l
5 else
6 i f (b a l l to l e f t o f c en t e r)
7 move along l i n e a c e r t a i n d i s t anc e to the r i g h t

towards the
8 goa l
9 else

10 move along l i n e a c e r t a i n d i s t anc e to the l e f t
towards the goa l

11 }

7.2.3.8 Avoid Opponent

This skill enables the robot to avoid a certain opponent. This skill is required
when the robot has a goal position and another robot is in the direct line
between the current and the goal position. The avoid skill takes an argument
indicating which opponent should be avoided. Depending on the heading of
this opponent, the robot will either try to move left or right around it.

Listing 7.10: Avoid the Opponent

1 avoidOpponent (RobotObject c lo se s t enemy) {

7.3. INFERENCE 135

2 i f (s i nu s (c lo s e s t enemy . r e l a t i v e h e ad i n g) > 0) //
opponent i s l e f t

3 i f (s i nu s (c lo s e s t enemy . team heading) < 0) //
l oo k in g towards

4 r i g h t
5 // move r i g h t
6 else // l oo k in g towards l e f t
7 // move r i g h t
8 else // opponent i s on r i g h t s i d e
9 i f (s i nu s (c lo s e s t enemy . team heading < 0) //

l oo k in g towards
10 r i g h t
11 // move l e f t
12 else // l oo k in g towards l e f t
13 // move l e f t
14 }

7.3 Inference

The mapping from percepts to actions is done through reasoning. Skills
describe how the possible actions can be used to accomplish certain goals.
These goals have to be formulated based on the percepts. This section
describes a number of facts that can be inferred from the environment, and
can be used for reasoning.

7.3.1 Determine if an Object’s Position is known

This skill enables the robot to find out whether an Object’s position is
known. The object’s position can be known through direct visual perception,
but also through other robots communicating the position of the object. The
position is considered to be known when it was observed or received less than
a fixed number of time ago.

Listing 7.11: Determine if an Object’s Position is Known
1 t imeout = 7 seconds
2

3 isObjectknown (V i s i b l eOb j e c t ob j e c t) {
4 i f (h i s t o r y . conta in s (ob j e c t) & now − ob j e c t . time <

t imeout)
5 object known = true
6 else
7 object known = fa l se
8 }

136 CHAPTER 7. AGENT STRATEGIES

7.3.2 Determine if an Object is Visible

This skill enables the robot to find out whether a certain object is currently
visible. When the last observation of the object was less than a fixed number
of time ago, it is considered visible.

Listing 7.12: Determine if an Object is Visible

1 t imeout = v i s i b i l i t y −update
2

3 i sOb j e c tV i s i b l e (V i s i b l eOb j e c t o) {
4 i f (objectKnown (o))
5 i f (s e l f . d i s t anc e (o) < view−d i s t anc e &
6 co s i n e (o . r e l a t i v e r o t a t i o n) > co s i n e (view−ang le / 2)

& now −
7 o . time < t imeout)
8 o b j e c t v i s i b l e = true
9 else

10 o b j e c t v i s i b l e = fa l se
11 }

7.3.3 Determine if the Ball is Visible

This skill enables the robot to find out whether the ball is currently visible.
When the last observation of the ball was less than a fixed number of time
ago, it is considered visible.

Listing 7.13: Determine if the Ball is Visible

1 t imeout = v i s i b i l i t y −update
2

3 i s B a l l V i s i b l e () {
4 i f (bal l known)
5 i sOb j e c tV i s i b l e (b a l l)
6 }

7.3.4 Determine if the Ball is Kickable

This skill enables the robot to find out whether the ball is currently kickable.
A ball is kickable when it is directly in front of the robot (visible), and it is
close enough.

Listing 7.14: Determine if the Ball is Kickable

1 i sBa l lK i c kab l e () {
2 i f (b a l l v i s i b l e)

7.3. INFERENCE 137

3 i f (s e l f . d i s t anc e (b a l l) < ba l l . r ad iu s + robot .
r ad iu s)

4 b a l l k i c k a b l e = true
5 else
6 b a l l k i c k a b l e = fa l se
7 }

7.3.5 Determine the Closest Opponent

This skill enables the robot to find the closest opponent.

Listing 7.15: Determine the Closest Opponent

1 f indClosestOpponent () {
2 for a l l opponents
3 i f (i sOb j e c tV i s i b l e (robot))
4 i f (s e l f . d i s t anc e (robot) < c l o s e s t opponen t)
5 c l o s e s t opponen t = robot
6 }

7.3.6 Determine whether an Opponent is up Ahead

This skill enables the robot to find whether there is an opponent coming up
ahead. This is the case when there is an opponent that is less than a certain
distance away from the robot

Listing 7.16: Determine if an Object up Ahead

1 isOpponentUpAhead () {
2 i f (s e l f . d i s t anc e (c l o s e s t opponen t) < th r e sho ld)
3 opponent up ahead = true
4 else
5 opponent up ahead = fa l se
6 }

7.3.7 Determine whether there is a Teammate Standing Free

This skill enables the robot to find whether there is a teammate standing
free. There are a number of approaches to determine this. The most im-
portant restriction to a correct implementation of this is the limited field of
vision. The following pseudo-code implementation will result in accurate re-
sults, but is unfortunately only useful for small distances. This skill is useful
when reasoning about passing the ball to a teammate. To prevent the ball
from bouncing off the teammate, a certain minimum threshold distance is
enforced.

138 CHAPTER 7. AGENT STRATEGIES

Listing 7.17: Determine if Teammate is Free

1 for a l l robots {
2 i f (time . now − robot . time < t imeout & v i s i b l e)
3 i f (teammate & s e l f . d i s t anc e (robot) <

c loses t teammate . d i s t anc e)
4 c loses t teammate = robot
5 else i f (opponent & s e l f . d i s t anc e (robot) <
6 c l o s e s t opponen t . d i s t anc e)
7 c l o s e s t opponen t = robot
8 }
9

10 i f (c loses t teammate . d i s t anc e < c l o s e s t opponen t .
d i s t anc e &

11 c loses t teammate . d i s t anc e > th r e sho ld)
12 teammate free = true
13 else
14 teammate free = fa l se

7.3.8 Determine whether a Teammate has the Ball

This skill enables the robot to find whether a teammate has the ball. If this
is the case, the robot may want to move to a free place on the field.

Listing 7.18: Determine whether a Teammate has the Ball

1 teamMateHasBall () {
2 for a l l teammates
3 i f (team mate . d i s t anc e (b a l l) < ba l l . r ad iu s +

robot . rad iu s)
4 t eam ba l l = true
5 else
6 t eam ba l l = fa l se
7 }

7.3.9 Determine whether the Ball is Free

This skill enables the robot to find whether the ball is on a free location in
the field. When the closest player to the ball is more than a fixed distance
away from the ball, it is considered to be free

Listing 7.19: Determine whether the Ball is Free

1 i sBa l lF r e e () {
2 for a l l robot {
3 i f (robot . d i s t anc e (b a l l) < f r e e−d i s t anc e)

7.3. INFERENCE 139

4 b a l l f r e e = fa l se
5 }
6 b a l l f r e e = true
7 }

7.3.10 Determine if the Ball Position is known

This skill enables the robot to find out whether the ball position is known.
The ball position can be known through direct visual perception, but also
through other robots communicating the position of the ball.

1 isBallKnown () {
2 isObjectKnown (b a l l)
3 }

7.3.11 Determine if there is Chaos around the Ball

This skill enables the robot to find out whether there are at least 3 robots
that are close to the ball.

Listing 7.20: Determine whether there is Chaos around the Ball

1 i sChaos () {
2 for a l l robots {
3 i f (robot . d i s t anc e (b a l l) < th r e sho ld)
4 l i s t . add (robot)
5 }
6 i f l i s t . s i z e > 3
7 chaos = true
8 else
9 chaos = fa l se

10 }

7.3.12 Determine if Player had Collision

This skill enables the robot to find out whether a certain player had a recent
collision, and is still suffering from the speed penalty. This information is
more informative than the player speed, since sidestepping to the left will
also yield a lower speed, but the robot will be able to move faster. Knowing
that a robot had a collision is useful for determining whether he can for
instance intercept a ball.

Listing 7.21: Determine whether there was a Collision

1 hadCo l l i s i on (RobotObject p)

140 CHAPTER 7. AGENT STRATEGIES

2 speed = determinePlayerSpeed (p)
3 // determine from the t−1 po s i t i o n and heading ,
4 //and the new po s i t i o n and heading what movement

p e n a l t i e s
5 //were i s sued
6 speed = speed ∗ 1 / movement penalt ies
7 i f (speed >= shout−slowdown ∗ player−speed)
8 c o l l i s i o n = fa l se
9 else

10 c o l l i s i o n = true

7.3.13 Determine Player Speed

This skill enables a robot to determine the speed at which a player is trav-
eling. All robots have a basic speed, but may be affected by shouting and /
or collision penalties, or by a movement penalty2. The ball speed is always
given as a property of the BallObject. The player speed can be determined
only if the player has been observed in two consecutive visibility updates, in
the following way:

1 determinePlayerSpeed (RobotObject p) {
2 p l a s t upda t e = h i s t o r y (t−1, p)
3

4 speed = d i s t anc e (p la s t update , p) / v i s i b i l i t y −
update

5 }

7.4 Strategy

The previous sections have described how the basic percepts can be trans-
lated to derive high-level information about the environment, and how high-
level commands can be executed in terms of the low-level effectors using
several player skills. The strategy of a team combines these two by taking
the high-level percepts as its input, reasoning about these, and deriving the
high-level output.

This section begins by introducing social laws and describing their impor-
tance in the simulator. Then formations are discussed. First the in-game
change of base positions is discussed, then the change of role allocation,
and how the positioning and role allocation changes can be accomplished
without any central authority are discussed. Then, the rule-based action
selection mechanism is explained.

2All movement that is not straight ahead and forward is penalized in some way

7.4. STRATEGY 141

7.4.1 Social Laws

The soccer simulator presented in the previous chapters penalizes direct
communication through reducing the robot’s maximum speed for a certain
amount of time. Because of this penalty, the decision to communicate be-
comes an integral part of strategic design. Although at certain times com-
munication, such as shouting ”help me out here, I have the ball and there are
2 opponents coming” could prove useful, the speed penalty that is inflicted
on the communicating robot would give opposing robots the opportunity to
come closer and steal the ball.

Social laws are widely adopted conventions, such as driving on the proper
side of the road. The strategies of the agents are preprogrammed, and as
such reasoning about how other3 agents reason can easily be done. Rea-
soning about how other players will reason, and anticipating on this action
removes the necessity for communication.

Throughout the design of a strategy, the inclusion of social laws should
play an important role. Robots can either play an active or a passive role in
the game. A robot with the ball will always play an active role. Robots that
are ’locked’ in the game because they are covered by one or more opponent
robots, and they do not have the ball, can be considered to take a passive
role at that time. The speed penalty for passive robots is less troublesome
than for active robots. Robot strategies should give a complete definition of
when robots are active and when they are passive.

7.4.1.1 Social Laws versus Communication

The decision whether to communicate, or to reason about the environment is
defined inside the player agent. Social laws function as conventions that are
agreed upon by all individual player agents. An example social law would
be the following: If a teammate has the ball, do not attempt to steal the ball
from him. The design and implementation of these social laws throughout
a team is an important task. The different player behaviors are expected to
act differently, but comply with the same social laws.

The main goal for including such social laws in strategies is to reduce
the amount of communication (or: derive as much information4 from the
environment as possible). The communication is restricted by the range

3This only goes for teammates, the opponent’s strategy is a black box
4Through observing the behavior of teammate agents and knowing how these will

respond to certain events, these events themselves can be derived. For instance when a
teammate that has the ball is turning towards you, the information you can derive is that
he is probably going to pass the ball towards you. Depending on the social law, he may
try for a regular pass, a through pass, or a leading pass.

142 CHAPTER 7. AGENT STRATEGIES

and by the speed penalty, and especially for robots taking an active role in
the game, these restrictions are severe.

7.4.2 Communication

The soccer model was specifically designed to encourage users to consider the
autonomous reasoning (social laws) versus communication tradeoff. Com-
munication plays an essential role in any highly cooperative team however.
The very limited field of vision for robots drastically reduces the amount of
information they can reason about. Since any amount and type of data can
be communicated through shouting, visual information from neighboring
robots can be transmitted and used to draw better conclusions.

To illustrate how powerful communication is in strategy, Figure 7.1 shows
you, with the ball, unaware of the presence of two opponents, and the team-
mate. The teammate sends a message with this information, and suggests a
plan5. You will reason about the likelihood of this plan succeeding (based
on the newly gained information), and if the plan is better than the previous
plan, execute this. The teammate will be able to observe by the actions of
you whether or not the suggested plan is being executed. The teammate
will suffer from the communication speed penalty, but the robot with the
ball (you) does not need to communicate.

(a) Start of scenario (b) Get ready to score!

Figure 7.1: Example use of Communication to Outplay Opponents

5This particular plan consists of the teammate moving towards the flank, and you
passing the ball to the teammate.

7.4. STRATEGY 143

In general, deciding on what plan to execute should be decided by the
players taking an active part in the play, as they have the visual informa-
tion of nearby objects that other passive robots might not have. When it
may seem like a good plan to pass the ball to a player by a passive observer,
this plan should be suggested to the active player. As communication by
the active player has a large cost, the passive players should attempt to an-
ticipate based on the active player’s movement. After an active player has
passed the ball, it can safely communicate and inform neighboring team-
mates about the plan it has attempted.

7.4.3 Formation

An important aspect of team performance is the formation. In the soccer
simulator, all aspects dealing with formation are described in the team’s
XML document that specifies the base position, behavior, icon and name
for all robots. How the robots are distributed among the field and how the
roles are divided plays an important role in the strategy.

7.4.3.1 Positioning

The base positions that are defined in the team XML file define the positions
on the field where all individual robots will start. The strategy of the robots
can be such that the robots will return towards this position when they take
a passive role in the play. Because the robots will be distributed among
the field, this prevents the phenomenon known as ’kiddie soccer’, where all
player cluster around the ball, from occurring. The definition of when a
robot is considered to be passive should be an integral part of the strategy,
but a simple definition would be when the player is not close to the ball6. A
team can have multiple strategies, and the base positions for the individual
robots are an important part of strategies. When playing extra defensive,
there will be more robots located around the goal, whereas an offensive
strategy will use extra robots close to the enemy goal.

7.4.3.2 Role Allocation

The other key aspect of the formation is the role allocation. The simulator
allows individual robots to have individual behaviors. The distribution of
these behaviors over the players is inherently a big part of the strategy.
Players that are always close to the enemy goal will exhibit different behavior
than the player that is defending the own goal. A technique that is frequently
used to simulate this, is to define a robot’s behavior based on his current
position on the field. The field is divided in several areas, and the robot

6However, when complex plans involving multiple agents for scoring a goal are used,
all these robots could take an active role without necessarily being close to the ball.

144 CHAPTER 7. AGENT STRATEGIES

acts differently in each area. A problem occurs with this approach when,
for example, there are multiple agents in the goal area. All agents will
exhibit goal tending behavior. To prevent this, the different behaviors for
the players are introduced. When an evaluation mechanism in the agents
recognizes that the strategy that is currently executed is not very effective,
it can be a good idea to change the roles of certain agents. An offensive
player could be transformed to a defensive player, and improve the team’s
performance.

7.4.3.3 Changing the Strategy

An important aspect of the game is the lack of any centralized control.
Changing the positioning or the role allocation throughout a game will have
to be done by the robots themselves. Various approaches for accomplishing
this exist. Changing the strategy is a measure that can be taken when
it is expected that the new strategy will yield a better team performance.
Changing the role allocation7 is generally done over a longer term, whereas
the positioning of individual robots can change rapidly during play. Teams
can employ for instance a start-, defensive-, and an offensive strategy. When
the ball moves forward, all robots will change their base positions more
towards the front. The following list illustrates some possible ways of dealing
with distributed control:

1. Appoint one of the robots as a captain, and have the captain inform
all other teammates with specific instructions. The disadvantage of
this approach is that it is difficult to ensure that the captain will reach
all other robots.

2. Make the decision to change strategies dependant on globally known
variables, such as the score8. All robots will autonomously reason
that they will switch strategies. The preprogrammed strategies can
explicitly state which robots should fulfill which task, and at what
position. This has as its disadvantage that it is predictable, but it
does not require any communication.

3. When a team has a preprogrammed strategy (positioning) change
when a teammate has the ball and is moving towards the opponents
side, a passive robot that observes the teammate moving towards the
front with the ball can ’broadcast’ the strategy change, ordering all
other robots in the vicinity to move towards the front.

7This is the equivalent of a substitution in human soccer
8For example, when your team loses by more than 10 points, switch to a defensive

strategy

7.4. STRATEGY 145

7.4.4 Adaptive Behavior

This section introduces adaptive team behavior and individual adaptive be-
havior.

7.4.4.1 Adaptive Team Behavior

The previous section illustrated that both the roles (behaviors) and the
positions of agents can be changed during a game. There is a distinction be-
tween short-term and long-term adaptive behavior. The first deals with, for
instance, when a teammate with the ball moves forward to start an attack.
When the other robots adapt their strategy (base position) in accordance
with the ’attack’ mode, this is beneficial for the team for the following rea-
sons:

1. There will be more players in the front of the field, increasing the
possibility of success.

2. The robot can anticipate that there will be other robots on / around
certain new base positions. Although this assumption is a big one, it
will know for sure that there will be teammates trying to move towards
certain predefined locations. This can be useful for, for instance, giv-
ing through passes beyond the field of vision.

There are several means to establish a strategy change, and there is a
distinction between long-term and short-term strategy change, where the
most important difference is that the role allocation will only change for
long-term strategy changes. This is illustrated in Table 7.1.

To establish the long-term changes, using a captain or using the global
variables approach that was outlined in the previous section is feasible. For
the short term changes, they are not. This problem can be overcome by
defining a social law where for given observations9 the observer is obliged to
broadcast the strategy change. A problem with this approach is that multi-
ple agents could reason simultaneously that the strategy should change, and
all would shout and receive the speed penalty. An optional solution is that
the defensive players - that are less important in the front of the field - will
broadcast the strategy change upon the observation. The offensive robots
will then be able to move forward rapidly. The optimal strategy change
mechanism will depend on the situation, and only an empirical approach
will determine which is the best.

9For instance, while using the short-term defensive strategy, an observation of a team-
mate with the ball

146 CHAPTER 7. AGENT STRATEGIES

Table 7.1: Adaptive Team Behavior

Long / Short term Role and / or Posi-
tioning

Example

Long term Role When losing by more than 10 goals,
change an attacker to a defender.

Long term Role and position-
ing

When losing by more than 20 goals,
use a defensive formation and change
more robots to defensive mode.

Short term Positioning When a teammate has the ball and is
moving forward, change the strategy
to offensive, and have all robots take
a new (more offensive) base position.

Short term Positioning When the opponent is making an at-
tack, switch to defensive more with
more robots near the goal area.

7.4.4.2 Individual Adaptive Behavior

The team behavior can be altered throughout the game, but also the indi-
vidual behavior of the agents can be made adaptive. The learning agent that
was introduced in Figure 2.2 could serve as a model to establish adaptive
behavior. Individual learning in a team faces several problems however:

1. The performance measure of an agent is the score of the team (com-
pared to the score of the opponent). As such, it is not possible to
measure the influence of a certain modification on the performance.

2. Teammates will not be able to predict each others behavior, social
laws may be broken.

3. Improved10 methods of dealing with certain observations will only be
used by a single member of the team, rather than by all.

The first argument makes it prohibitively difficult to have agents learn
optimal behavior from scratch. What can be learned however is the opti-
mal value of certain parameters - while playing against the same opponent.
There are many parameters in the execution of tasks (skills), and in the in-
ference of knowledge from the environment, that could be modified to have
a significant influence on the team performance.

10Assuming that there is some way of determining the effect of a modification

7.4. STRATEGY 147

In order to learn the ’optimal’ value for certain actions, the agent re-
quires a performance measure. When the action deals with scoring, the
performance measure is trivial. When the action deals with, for instance, a
through pass, the performance measure is nontrivial. A possible approach
for dealing with this is the following:

1. Store all actions, the time at which they were performed, and all per-
cepts, as ’knowledge-base’.

2. Whenever communicating a message, send your knowledge-base.

3. Upon receiving a message, merge your knowledge-base with the knowledge-
base that was received11.

4. When the information between the last kick-off and the last goal12 is
complete13, evaluate the performance in the following way:

(a) Keep a mapping from actions to desired outcomes. For instance a
through pass has as its desired outcome that a teammate catches
the ball.

(b) Look at the point in time that the action (through pass) was
made. Was the desired outcome achieved? (ball received?).

(c) When the desired outcome was achieved, this can still not be
attributed entirely to the modification of the variable. Keep a list
for each action that was performed, and the success percentage
for a given value.

(d) Using this list, determine statistically which value yields a higher
chance of success.

This empirical approach to performance evaluation has not been tested
in the simulator14 but it is expected to yield interesting results. An other
essential ingredient for the learning agent is the problem generator. This
could be triggered when the performance of a particular action falls be-
low a certain threshold, or triggered randomly in any other case15. The
conclusions regarding the performance evaluation of certain variables can
be merged between the agents to steepen the learning curve. The agents
could even negotiate that certain agents would attempt very high values,

11The knowledge base consists of the position of all objects that were visible at any
point in time.

12This is one period; Although a match runs for a certain amount of time, the game
effectively restarts after every goal.

13Complete means that all teammates have merged their information
14The mechanism was implemented, but has not been thoroughly tested yet
15The problem generator has to see if there are better ways of performing the task, even

if the current approach is functional

148 CHAPTER 7. AGENT STRATEGIES

and others very low, and the resulting performance evaluation will conclude
which value works better. In particular for very long simulations, this ap-
proach will adapt the behavior of individual players, and in term improve
the performance of the team.

The pseudo-code of Listing 7.22 illustrates the learning mechanism that
has been described in this section:

Listing 7.22: The proposed learning mechanism

1 //we have a complete knowledge−base p r i o r to running
t h i s method

2 l e a rn ()
3 {
4 for a l l a c t i on s in l a s t per iod {
5 performance = evaluatePer formance (ac t i on)
6 e v a l u a t i o n r e s u l t s . add (act ion , performance ,

cur r ent va lue , time . now)
7 }
8 for a l l eva lua t i on r e s u l t s {
9 i f (e v a l u a t i o n r e s u l t . s i z e >

s t a t i s t i c a l t h r e s h o l d &
10 e v a l u a t i o n r e s u l t < per fo rmance thre sho ld)
11 changeValue (e v a l u a t i o n r e s u l t . a c t i on)
12 else i f random () > 0 .98 // 2% chance
13 changeValue (e v a l u a t i o n r e s u l t . a c t i on)
14 }
15 }

The empirical evidence regarding the optimal values for certain actions is
gathered by playing against the same team. Since the opposing team can be
expected to show adaptive behavior, and tournaments will feature multiple
opponents, the agents should have some way of storing their knowledge.

1 knowledge = l i s t o f { act ion , performance , value , time
} pa i r s

2

3 i f (END)
4 s t o r e (knowledge)
5 i f (BEGIN)
6 load (knowledge)

This list is identical to the list that was created in the previous algorithm.
The time aspect is important, because when the opponent team would adapt
itself, more recent values in the list are more relevant. Also, when the

7.4. STRATEGY 149

actions yield different performance using the same values on different teams,
a weight can be added to the time, to ensure that values that recently caused
good performance are preferred over older values.

7.4.5 Rule-based Action Selection

The reasoning step between the high-level knowledge inferred from the envi-
ronment and the high-level player skills is the most important in determining
the player behavior. Reasoning is implemented using rule-based reasoning,
to include human expertise about the domain. The rule based action se-
lection mechanism decides based on the observations from the environment
what action should be done. Since the environment of soccer is dynamic,
the fitness of the current plan should constantly be reevaluated. The rule
base will reason for every single visibility update what plan is best, given
the current observations. The pseudo-code in Listing 7.23 is a simple rule
base determining what the agent should do. A more detailed example of a
rule base is provided in the next chapter.

Listing 7.23: A Simple Rule-based Action Selection Mechanism

1 i f bal l known
2 i f b a l l k i c k a b l e
3 i f nea r goa l
4 i f turned towards enemy goal
5 k ick
6 else
7 turn towards goa l
8 else
9 move towards goa l

10 else
11 move towards b a l l
12 else
13 scout for ba l l

7.4.6 A Multi-Agent Approach to Strategy

The soccer simulator and the strategies that have been discussed so far
are technically multi-agent systems, as there are multiple agents involved in
solving a problem that is difficult to achieve by an individual agent.

On a smaller level, the players are all modeled by single individual agents,
dealing with solving a difficult problem. This problem could easily be split
up in a number of different modules - and corresponding agents. This multi-
agent system would be involved in handling sensors, reasoning, evaluating,

150 CHAPTER 7. AGENT STRATEGIES

and acting. An example MAS to replace the player agent would consist of
the following agents.

• Sensor Agent, to receive the sensors, and parse some low-level infor-
mation.

• Knowledge Base Agent, to receive the newly updated information and
store all (relevant) information from the past.

• Environment Analysis Agent, that uses the inference rules to derive
all high-level information about the current and past environment.

• Reasoning Agent, to reason about the high-level percepts, and trans-
form these in high-level action commands.

• Strategy Evaluation Agent, to evaluate the current strategy’s perfor-
mance and decide whether to adjust it.

• Action Agent, to transform the high-level action commands in the
low-level actions that are possible.

The implementation of such a proposed MAS is relatively simple. The
agent that is mentioned in the team XML will be loaded by the framework.
If this agent would load the other required agents

7.5 Summary

The agent strategies described in this chapter explore some possibilities of
the soccer simulator as a tool for AI research. It described how an agent
can map its percepts to the basic action commands that are available. This
is done using three steps; (1) a number of inference rules to determine high-
level information about recent observations, (2) a rule-based action selection
mechanism that uses the high-level information and returns high-level ac-
tion commands, and (3) a set of low-, medium-, and high-level player skills
that map the high-level action commands to the basic action commands of
the simulator. A distinction was made between passive and active players,
and the importance of social laws in reducing the amount of communica-
tion at critical moments during the game was described. The importance of
the formation - based on individual robot positioning and role allocation -
was described, and several approaches towards dynamically adapting these
were discussed. A distinction was made between long-term and short-term
strategy changes. The implications of the distributed control in the sim-
ulator with regards to the implementation of strategy change mechanisms
was described and several approaches were suggested. The difficulty of find-
ing a good performance measure for determining the influence of a single

7.5. SUMMARY 151

parameter on the game was described, and a solution was proposed. The
solution uses a mapping from actions to desired outcomes, and analyzes the
joint history of all teammates to determine the actual performance. This
solution allows robots to learn the optimal values for the execution of their
actions.

152 CHAPTER 7. AGENT STRATEGIES

Chapter 8

Development of a Team

”None of us is as smart as all of us.” Japanese proverb.

8.1 Introduction

This chapter describes the development of a team1 in the soccer simulator.
The team was designed for usage in the MKT-2 project. The project requires
groups of students to develop a team that is capable of convincingly defeat-
ing the reference team. As it was the first year that the assignment was
introduced, and there were only 3 weeks available for the assignment, and
the participating students were first-year undergraduates, the complexity of
the team should be carefully considered. Another important requirement
for the reference team is that it should not use any form of communication.
The implementation should be of such complexity that students will be able
to defeat the reference team through cooperation and communication, to
illustrate the importance of these elements in successful teams.

The first section describes the design process of the SimpleTeam. First,
the roles in the team are defined, then the formation is determined. Sub-
sequently, the skills and inference rules that were going to be used were
selected. The next part discusses the design of the rule-based action selec-
tion mechanism. The next section discusses a more advanced team. The
final section of this chapter deals with the implementation details of the
SimpleTeam. The template that was used is described, and certain im-
plementation details are illustrated. The chapter concludes with a brief
summary of the design and implementation of the SimpleTeam.

1The team is called SimpleTeam, despite its reasonably complex behavior. This name
was given to illustrate the possibilities of the simulator.

153

154 CHAPTER 8. DEVELOPMENT OF A TEAM

8.2 Design

The design of the team is in accordance with the general outline for agent
strategies that was described in Chapter 7. The individual agents will sep-
arately reason each visibility update about the action that should be taken
given the current environment. This section begins by describing the roles
in the team, followed by the player skills and inference rules that were used.
The next section describes the rulebase that is used for the action selection
mechanism.

8.2.1 Roles in the Team

The design and performance of the team depends for a large part on the
role allocation to the individual robots. A distinction that can be made
is that of the goalkeeper and the other players. Although all robots are
physically identical, one of the robots will always guard the goal and behave
different from the regular players. Further specifications of the behavior can
be made, such as a division between offensive and defensive players, and
even left- or right- wing players, but these would unnecessarily complicate
the reference team. A KeeperPlayer and a SimplePlayer were included in
the design. When this would not result in sufficient complexity after the
implementation, more players (defensive / offensive) would be included.

8.2.2 Formation

The positions of the players in the team is another important aspect of the
design. In order to keep the complexity low, there is no adaptive behavior
included, and there is only one formation for the SimpleTeam. The forma-
tion is illustrated in Figure 8.1. The formation is 1-2-3-1. It intentionally
keeps a small gap in between the two defenders. If there would be a solid
defense line, most attacks would occur over the flanks. Through providing
an alternative route to the goal, users can be stimulated to consider center
attacks, and make well-performing implementations of the avoid opponent
action.

8.2.3 Player Skills

A number of low-, medium-, and high-level player skills are described in
Chapter 7. The player skills that will be implemented in the SimplePlayer
are the following:

1. Low-level

(a) Turn the robot towards a point.

(b) Scout the area.

8.2. DESIGN 155

Figure 8.1: The SimpleTeam Formation

2. Intermediate-level

(a) Turn the robot towards an object.

(b) Track the ball.

(c) Move to a position.

3. High-level

(a) Clearing the ball.

(b) Avoid opponent.

(c) Move towards opponent goal.

(d) Passing the ball.

8.2.4 Inference

The following functions were used for the SimplePlayer to transform the low-
level percepts towards high-level information about the environment, that
was subsequently used for the rule-based action selection. The last two func-
tions were not described in the previous chapter, as their implementation is
trivial.

156 CHAPTER 8. DEVELOPMENT OF A TEAM

1. Determine if the Ball Position if known.

2. Determine if the Ball is Visible.

3. Determine if the Ball is Kickable.

4. Determine whether the Ball is Free.

5. Determine if there is Chaos around the ball.

6. Determine whether a teammate has the ball.

7. Determine whether an opponent is up ahead.

8. Determine whether there is a teammate standing free.

9. Determine whether the ball is in the enemy goal area.

10. Determine whether the ball is near the base position.

8.2.5 Rule-based Action Selection

The rule-based action selection takes as its input the high-level informa-
tion derived from the percepts, and determines the best action given the
current observation. Listing 8.1 illustrates the reasoning mechanism of the
SimplePlayer. Instead of executing the actions straight away, the resulting
low-level actions are stored in an intermediate MoveTuple. When multiple
actions ’fire’, the last action that fires will actually be executed.

Listing 8.1: SimpleTeam’s Rule-base Action Selection Mechanism

1 MoveTuple move
2

3 i f (ba l l po s i t i on known)
4 /∗∗ always t rack b a l l , e xcep t i f we have i t and want

to k i c k ∗/
5 move . turn = t rackBa l l ()
6 i f (b a l l v i s i b l e)
7 i f (b a l l k i c k a b l e)
8 /∗∗ we have the b a l l : I f enemies are coming ,

dodge or pass to teammate . Otherwise , move
f o r goa l ! ∗/

9 move . p o s i t i o n = moveToGoal ()
10 move . turn = turnToPos it ion (goa l)
11 i f (ba l l i n en emy goa l a r e a)
12 i f (turned towards opposing goa l)
13 move . s p e c i a l = k ick
14 else i f (team mate free)

8.3. IMPLEMENTATION 157

15 move . s p e c i a l = k ick
16 else i f (chaos & turned towards opposing goa l)
17 move . s p e c i a l = k ick
18 else i f (enemy up ahead)
19 move . p o s i t i o n = avoidOpponent ()
20 move . turn = turnToPos it ion (move . p o s i t i o n)
21 else i f (ba l l with teammate)
22 move . p o s i t i o n = moveFree ()
23 move . turn = turnToPos it ion (move . p o s i t i o n)
24 else i f (not chaos)
25 move . p o s i t i o n = ba l l . p o s i t i o n
26 else i f (b a l l n e a r b a s e p o s i t i o n)
27 i f (b a l l f r e e and not chaos)
28 move . p o s i t i o n = ba l l . p o s i t i o n
29 else
30 move . p o s i t i o n = ba l l . p o s i t i o n
31 else
32 move . p o s i t i o n = ba s e po s i t i o n
33 else
34 move . p o s i t i o n = ba s e po s i t i o n
35 move . turn = scoutArea ()
36

37 moveToGoal (move)

8.3 Implementation

The implementation of the SimpleTeam started with a basic skeleton that
was extended to merge the known information in the knowledge base, to
infer the high-level information about the knowledge base, and to reason
about and execute the actions. The implementation of the SimplePlayer
is discussed. The KeeperPlayer is structured in a similar manner, but the
actual action selection mechanism is different, and several goal tending skills
have been included.

8.3.1 Template

The code in Listing 8.2 is the template that was used and extended for the
implementation of the SimpleTeam.

Listing 8.2: Code template for SimplePlayer

1 @Publishes ({ ”Robot .Move” , ”Robot . Shout” , ”Robot .
Changebehavior ” })

158 CHAPTER 8. DEVELOPMENT OF A TEAM

2 @Subscribes ({ ”Robot . I n i t ” , ”Robot . Parameters ” , ”Robot .
Status ” ,

3 ”Robot . See” , ”Robot . L i s t en ” })
4

5 public class SimplePlayer
6 extends Agent
7 {
8 /∗∗
9 ∗ some ’ s t a t i c ’ in format ion about game ru l e s ,

s t a t u s and our own in f o .
10 ∗/
11 private Playe r In fo fP l ay e r I n f o ;
12 private TournamentParameters fParameters ;
13 private TournamentStatus fS ta tu s ;
14

15 /∗∗
16 ∗ This method i s c a l l e d a f t e r we are loaded ,
17 ∗ with a P layer In fo con ta in ing (amongst o t he r s)

our BasePosi t ion .
18 ∗ @param pInfo
19 ∗/
20 public void hand l e In i t (P laye r In fo pIn fo)
21 {
22 fP l a y e r I n f o = pInfo ;
23 fKnownInfo = new HashMap<Str ing , RobotInfo >() ;
24 fRobotNames = new HashSet<Str ing >() ;
25 }
26

27 public void handleParameters (TournamentParameters
pParameters)

28 {
29 fParameters = pParameters ;
30 }
31

32 public void handleStatus (TournamentStatus pStatus)
33 {
34 f S t a tu s = pStatus ;
35 }
36

37 public void hand leL i s ten (MessageTuple pMessage)
38 {
39 // SimplePlayer does not use any communication !
40 }
41

8.3. IMPLEMENTATION 159

42 /∗∗
43 ∗ This method i s c a l l e d every view−update

m i l l i s e c ond s
44 ∗ supp l y ing us wi th the l a t e s t in format ion .
45 ∗ determine s t r a t e g y accord ing to what we see

here
46 ∗/
47 public void handleSee (Lis t<Vis ib l eObjec t> pV i s i b l e

)
48 {
49 updateKnownInfo (pV i s i b l e) ;
50 ana ly z eS i tua t i on () ;
51 doStrategy () ;
52 }
53 }

8.3.2 UpdateKnownInfo

The UpdateKnownInfo method will merge the information that is observed
with the information that was already known.

Listing 8.3: Update the known info
1

2 /∗∗
3 ∗ w i l l update the l i s t o f known in f o
4 ∗/
5 public void updateKnownInfo (Lis t<Vis ib l eObjec t>

pV i s i b l e)
6 {
7

8 /∗∗ The f i r s t o b j e c t in the l i s t i s a lways the own
robo t ∗/

9 f La s tPo s i t i on = (RobotObject) pV i s i b l e . get (0) ;
10 long lTime = System . cur rentT imeMi l l i s () ;
11 /∗∗ s k i p o u r s e l f −> s t a r t a t 1∗/
12 for (int i = 1 ; i < pV i s i b l e . s i z e () ; i++) {
13 Vis ib l eOb j e c t lObj = pVi s i b l e . get (i) ;
14 RobotInfo l I n f o = fKnownInfo . get (lObj) ;
15 i f (l I n f o != null) {
16 l I n f o . ob j e c t = lObj ;
17 l I n f o . time = lTime ;
18 } else {
19 RobotInfo lNewInfo = new RobotInfo () ;
20 lNewInfo . ob j e c t = lObj ;

160 CHAPTER 8. DEVELOPMENT OF A TEAM

21 lNewInfo . time = lTime ;
22 fKnownInfo . put (lObj . getName () , lNewInfo) ;
23 i f (! lObj . getName () . equa l s (fParameters .

g e tBa l lDe s c r i p t i on ()))
24 fRobotNames . add (lObj . getName ()) ;
25 }
26 }
27 }
28

29 /∗∗
30 ∗ wrapper c l a s s f o r in format ion about a p a r t i c u l a r

robo t .
31 ∗ Wil l now only s t o r e the l a t e s t V i s i b l eOb j e c t and

time at
32 ∗ which i t was l a s t seen , but can be extended to keep

t rack o f
33 ∗ e v e r y t h in g we know about t h i s p l aye r !
34 ∗/
35 class RobotInfo
36 {
37 Vis ib l eOb j e c t ob j e c t ; /∗∗ the l a s t known

v i s i b l e o b j e c t o f t h i s robo t ∗/
38 long time ; /∗∗ l a s t seen at $t ime ∗/
39 }

8.3.3 AnalyzeSituation

The AnalyzeSituation method will derive the high-level information from the
environment. The implementation of the individual methods is described in
pseudo-code in Chapter 7. The actual implementation is a compact con-
catenation of all different methods.

8.3.4 DoStrategy

The DoStrategy method is responsible for selecting the actions that will
be executed, and executing these. The implementation of this method is
very much like the pseudo-code action selection mechanism described in
Section 8.2.5.

8.4 Advanced Team

The team that was discussed in previous discussions exhibits reasonably
complex behavior without communication using a simple set of rules. Chap-

8.5. SUMMARY 161

ter 7 has described a number of more advanced techniques. The character-
istics of such an advanced team are discussed below:

• Use multiple agents, each with their own task, to execute the player
tasks. An example of this is given in Section 7.4.6.

• Keep a number of behavior patterns. Have one of the MAS agents ana-
lyze the behaviors of the individual opponent robots, and find the best
matching behavior. Use this approximated behavior in predictions of
opponent robot behavior.

• Implement and integrate the self-learning behavior explained in Sec-
tion 7.4.4.2 in the MAS. An important prerequisite for this is the design
and testing of the functions that determine the performance measure
of the action. An intrinsic element of this self-learning behavior is
the short-, medium-, and long-term storage of (relevant) information
in the knowledge base. The short-term information is of particular
importance for determining how to execute a strategy. Medium-term
can reflect on the performance of a strategy and adapt this if neces-
sary, whereas long-term allows the optimization of the variables that
determine how actions are carried out.

• Design and implement a model that determines when a player is con-
sidered active or passive, and includes as many social laws as possible.
The model should also determine exactly when to communicate, bear-
ing in mind the speed penalty2.

8.5 Summary

This chapter has described the design and implementation of the Sim-
pleTeam. The requirements of the SimpleTeam state that groups of first-
year students should be able to defeat it after a three week assignment, and
that the team does not use any form of communication. In accordance with
these requirements, the team was designed. First the different roles within
the team were decided on, and the formation was defined. The different
skills, inference rules and the rule-based action selection mechanism were
defined. The implementation of the SimplePlayer features three methods
that together start with perceptual input, and end with basic action com-
mands. A number of potential elements of an advanced team have been
described. The design and implementation of such a team is expected to
yield interesting results.

2For instance, shouting position information of robots that you know the targeted
recipient will already have observed is spreading redundant information and not worth it

162 CHAPTER 8. DEVELOPMENT OF A TEAM

Part IV

Education

163

Chapter 9

MKT-2 Project

More important than the curriculum is the question of the meth-
ods of teaching and the spirit in which the teaching is given,
Bertrand Russell.

The work on this graduation project was initiated by the demand for a
new assignment on multi-agent systems for the MKT-2 project. This chapter
introduces the project, and reflects on flaws in previous assignments, to pre-
vent these from occurring in the new assignment. The first section describes
the educational goals of the project. The next section briefly introduces the
other programming assignments that are a part of the project, and provides
a detailed discussion on the two previous ad-hoc network assignments. This
chapter concludes with the setting of the project in 2005-2006, the year that
the multi-agent soccer assignment was introduced.

The educational approach of the MKT-2 project is very different from
conventional practical assignments and projects. An in-depth description of
the history and background of the project is provided in Appendix C. The
next chapter discusses the soccer assignment.

9.1 Educational Goals

The MKT-2 project is a mandatory project for first-year undergraduate
Media & Knowledge Engineering (MKT)1 students at Delft University of
Technology. The project is their first introduction to artificial intelligence,
and has the following two aims [7]:

1. To introduce the basic concepts of knowledge engineering and the rel-
evant AI techniques, including search algorithms, knowledge represen-
tation techniques, rule-based reasoning algorithms, and agent technol-
ogy.

1This is a variant of computer science

165

166 CHAPTER 9. MKT-2 PROJECT

2. To explain and instruct on issues related to AI programming in general
and intelligent (multi-) agent applications in particular.

9.1.1 Approach

In order to achieve the aforementioned goals, several educational approaches
exist. The conventional approach is based on the principles of behavioral
psychology. This approach is frequently employed in today’s higher educa-
tion. The knowledge that is transferred from the teacher to the student is
passively accepted. This approach alienates many students, reducing mo-
tivation and performance. Other approaches use cognitive psychology, or
constructivism.

”Constructivism proposes that knowledge or meaning is not fixed
for an object, but rather is constructed by individuals through
their experience of that object in a particular context.” [69]

An example of a constructivist, vague problem definition would be ”Design
and implement an intelligent system”. An example objectivist assignment
would be ”Implement the A* algorithm, and calculate the route from Amster-
dam to Berlin”. Using a pure constructivist approach for first-year students
would however face several problems, as they lack the design and implemen-
tation experience that is required to adequately deal with vague problem
definitions.

Since neither method is suitable for this project, a synthesis between ob-
jectivist and constructivist approaches is applied. Guidelines towards com-
bining these approaches have been proposed in the literature [70] [71] [72]
[73] [74]. These guidelines have been considered while designing the assign-
ments. Throughout the years, this approach has been thoroughly evaluated
and refined.

9.2 MKT-2 Assignments

There are 4 assignments; A,B,C and D. Together these assignments fulfill
the educational goals described in the previous section. This section begins
by briefly describing assignments A,B and C. Subsequently, it shall describe
the educational goal of D, describe the two previous assignments that were
developed, and discuss their strengths and weaknesses. This section con-
cludes with the setting of the MKT-2 project in the year 2005-2006, the
year that the soccer assignment was introduced.

All group assignments require that an analysis, design and implementation
report are produced. A data flow diagram illustrating the general structure

9.2. MKT-2 ASSIGNMENTS 167

of the system they will develop - to ensure a thorough understanding of the
assignment, and two Gannt[75] charts - to ensure a fair labor division - have
to be produced.

9.2.1 Assignment A: Roshambo

The first assignment is an individual assignment where a Roshambo (Rock-
Paper-Scissors)[76] agent has to be programmed that defeats the reference
agents. The goal of the assignment is to introduce the students to the princi-
ples of agents, verify that the programming level of the students is adequate,
and learn students to design and implement an ”intelligent” algorithm. The
reference agents each have their own strategy for deciding whether to choose
Rock (R), Paper (P) or Scissors (S). These strategies vary in difficulty from
simply repeating R-P-S, to a pattern-recognition mechanism that detects
the longest pattern match, and anticipates the opponent’s move based on
this. The students have to defeat all but the most difficult and the random
player convincingly2 in order to pass the assignment. It is an individual
assignment, and will take some students a couple of hours, whereas the less
experienced programmers may need several days. Students that pass the
assignment have shown to be capable of programming Java at a reasonable
level. All further assignments are in groups of 5-6 students. The game is
illustrated in Figure 9.1.

2After 100 games, the player has to have won at least 30 games more than the opponent.

168 CHAPTER 9. MKT-2 PROJECT

Figure 9.1: Assignment A: Rock, Paper, Scissors

9.2. MKT-2 ASSIGNMENTS 169

9.2.2 Assignment B: Rule-based Reasoning

The second assignment is a group assignment that introduces students to
rule-based reasoning. In the assignments, students create a multi-agent sys-
tem that translates a questionnaire3, filled out by all participating students,
into a ranked list depicting the suitability of each participant for being a
part of your team. Several agents have to be developed; one agent parses
the survey data, another uses this data to generate the new facts using for-
ward chaining [77]. Such facts would be characteristics derived from the
data, such as leader, nerd, arrogant. Then, a score agent that assigns a
score to these characteristics has to be built. Finally, the ’Lister agent’ has
to sort the scores provided by the score agent. An overview of these agents
is provided in Figure 9.2.

Figure 9.2: Assignment B: Rule-based Reasoning

3Some example questions of this questionnaire are Do you often take the initiative in
a project team?, How old are you?, How often do you read books?

170 CHAPTER 9. MKT-2 PROJECT

9.2.3 Assignment C: Hollywood

In the third assignments, the IMDB [78] database is used and transformed
to a semantic network. This semantic network is made up of nodes (actors,
actresses, movies, directors), and connections (played in, directed). This is
illustrated in Figure 9.3. The students have write an agent that builds the
semantic network, and an agent that determines the (minimum) amount of
”degrees” a person X is from person Y. Then, an agent has to be built that
determines the entire ”Hollywood” network, by taking a seed and propa-
gating several degrees. Finally, the group’s ultimate hero is determined by
designing and implementing an intelligent algorithm that assigns points to
certain activities, such as directing or acting, but also through including
the ”rating” of the people this person has worked with. The assignment is
algorithmically very challenging, and works with real data, which provides
a strongly motivates the students.

Figure 9.3: Assignment C: Hollywood

9.2. MKT-2 ASSIGNMENTS 171

9.2.4 Assignment D: Multi-Agent Systems

Assignment D is the largest assignment of the project. It aims to introduce
multi-agent systems, ad-hoc networks, and distributed problem solving to
the students in a useful way. In both assignments, the trade-off between
autonomous reasoning and communication was present, with the intention
of making students aware of this problem and consciously designing an in-
telligent algorithms that combines both.

Development on assignment D started in 2003-2004, but this was not very
successful due to software and conceptual errors, as shall be seen in the first
part. The second part introduces the assignment as it was introduced in
2004-2005, which was an improvement, but still faced conceptual problems.
This section concludes with a description of the problems that were encoun-
tered in both assignments.

9.2.4.1 2003-2004: Peer-to-peer Networks

The 2003-2004 assignment dealt with peer-to-peer networks. Every node in
the network had a certain probability of having a connection with any other
node, with a given (random) latency, bandwidth, for a certain duration. An
example network is given in Figure 9.4. Nodes have audio files hosted on
them, and a search agent would be loaded on a random node with a list of
desired audio files. The goal was to get all desired audio files to this node
in as little time as possible. Agents could be sent over the connections,
with for instance the list of desired tracks. Although the concept of the
assignment was found to be challenging, the mobility that was required for
simulating the nodes, and moving agents between nodes, did not function
yet in Fleeble. Another issue was the concept of the assignment. Random
connections, with random latency and bandwidth bear no relation to reality.
The constraint that connections are often alive for a very short amount of
time made it a surrealistic environment. Although latency and bandwidth
may vary between certain connections, this is often due to the distance to an
access point, the network traffic, or local restrictions. Random connections
that will live only 5-20 seconds are highly improbable as well. With no
relation to the reality, the validity of the problem and plausibility of the
existence of an ”intelligent solution” become questionable.

9.2.4.2 2004-2005: SMS Assignment

Building on the lessons learned from the year before, in 2004-2005, a new
assignment D was introduced in an effort to teach students about MAS using
a metaphor that was more realistic. Random SMS messages were initiated
on random nodes, with random targets. All nodes were moving randomly
across the screen, with a certain broadcasting range around them. They

172 CHAPTER 9. MKT-2 PROJECT

Figure 9.4: Assignment D 2003-2004: Peer-to-peer networks

were able to see who was in this range, and at what position. This is illus-
trated in Figure 9.4. Through sending messages across channels, the agents
on the nodes were able to communicate position information. Communi-
cation costs a certain number of points, whereas point rewards were given
for quick delivery of the SMS. With a relatively large number of SMS op-
erations, sending a message and including all positional information that is
available, will have a high chance of helping other SMS operations succeed
faster. As such, the goal was to get cooperative intelligent solutions where
the cost for an agent to share information was outweighed by the potential
benefit of other agents gaining this new information. The main problem
with the assignment was the artificial nature of the point distribution. Be-
cause of this, very simple strategies like always broadcasting (cooperating),
or never broadcasting unless next to the goal position (defecting), would pre-
vail. Attempts at more intelligent solutions yielded too high broadcasting
penalties to be effective. Changing the point distribution to generate a lower
penalty for broadcasting would allow simple always-broadcast strategies to
become successful. A possible solution to the problem would have been to
create one ’optimal’ strategy, and set the threshold such that this strategy
would get the highest score. As there is only a limited amount of time for
implementation, this strategy would have to be pre-specified, and the as-
signment would not be as challenging or motivating. The perceived freedom
in designing an approach, combined with group brainstorming sessions are

9.2. MKT-2 ASSIGNMENTS 173

important ingredients for the learning experience of the students.

Figure 9.5: Assignment D 2004-2005: SMS Assignment

9.2.4.3 Discussion

The two previous ad-hoc networking assignments have shown that not only
software problems, but also conceptual flaws in assignments have a large
impact on how intelligent solutions will be, and on the skills acquired by the
students. Both assignments faced the problem of being too artificial. The
problems that were handled in both assignments were artificially created
for teaching ad-hoc networks. As a result of this, the performance mea-
sures that were used in the assignments were also artificial. An arbitrary
point distribution for rewarding and punishing certain types of behavior
was used, causing the ’intelligent’ solutions that solved the general problem
to lose to very simple strategies. This is also described in Section 4.6.1.
Another problem that was encountered in the design of many groups, was
that they would attempt to make the network deterministic through intense
communications - allowing agents to reason about complete information,
which essentially simplifies the problem such that it will be solvable using
conventional brute-force methods, rather than finding a synthesis between
autonomous reasoning and communication.

From this experience, the most important lessons that were learned are:
Do not create an artificial problem with an artificial point distribution. Use

174 CHAPTER 9. MKT-2 PROJECT

actual problems, simplify these, and put clear goals with natural rewards
and penalties

9.3 Setting

In the year 2005-2006, the MKT-2 project started with 34 first-year under-
graduate students. 27 of these finished the project with a passing grade.
The 7 that did not were either removed from the project during the individ-
ual (first) assignment, or throughout the project. This resulted in 5 groups
of 5-6 students.

The undergraduate curriculum at Delft University of Technology was
changed significantly in 2005-2006. Because of this, the entry level that was
anticipated by the teachers - based on the level of the students from the old
curriculum - was different. The students had slightly different background
knowledge and programming capabilities4. This explains the relatively high
number of students that did not meet the requirements set out in the first
assignment.

In their introductory Java courses, the students acquired some basic Java
skills, but not on the specific features of Java 1.5 (See Section 3.3.4). The
students had gained some experience with group work during the first MKT
project, but not much.

The MKT-2 project was held in the fourth quarter, from early April until
early June. There were 8 scheduled weeks, and one week May holiday in
between. There were biweekly afternoon sessions scheduled, lasting from
1 PM until 5 PM. In these sessions, the teachers were actively involved in
helping students resolving bugs in their code, answering questions about the
design and implementation of the assignments. The project rooms featured
large tables that could be used for group meetings and brainstorming, and
a number of computers for programming and debugging.

The last assignment of the project - the ad-hoc networking assignment,
was scheduled to last 4 weeks, but because the Hollywood assignment took
a little more time, there were 3,5 weeks available for the soccer assignment.
The soccer simulator was finished when the assignment started, but several
small software bugs were encountered and fixed in the first week. The as-
signment and the parameters of the game did not change, and the students
were told that they had to anticipate the implementation that was described

4Several students blamed the high workload on students in their first year of the new
curriculum for not having had enough time to acquire adequate programming skills.

9.3. SETTING 175

in the manual, and that the final implementation would work according to
those specifications. The bugs that were reported were usually resolved the
same afternoon or the day after.

SimpleTeam, the reference team that had to be defeated, was finished and
given to the students after the first week of the assignment. The source code
of this team was not distributed. The RandomTeam5 was included in the
first release, and the source code was available to serve as an example for
the students.

5Players in the random team will all chase the ball when they see it, and kick it when
they have it. When they don’t see the ball, they move across the field randomly.

176 CHAPTER 9. MKT-2 PROJECT

Chapter 10

Soccer Assignment

”The whole art of teaching is only the art of awakening the nat-
ural curiosity of young minds for the purpose of satisfying it
afterwards”, Anatole France.

This graduation project started in response to the call for a challeng-
ing programming assignment that would replace the existing mobile ad-hoc
networking assignment in the MKT-2 project (See Section 9.2.4). During
the design and implementation of the model, soccer simulator and reference
teams, the educational goal was always considered.

This chapter describes the design, use, and evaluation of the soccer as-
signment that replaced the previous ad-hoc networking assignment. The
first section describes the educational goals that the assignment intends to
accomplish. Then, the actual assignment is described. The next section
describes how the assignment was evaluated and what the evaluation results
were. This chapter concludes with a discussion about potential alternative
educational applications of the soccer simulator and reference teams.

10.1 Educational Goals

The educational goals of the soccer assignment are the following:

• Teach students to work in groups.

• Teach students to develop an implementation from a vague, high-level
problem description, including:

– analyzing the problem
– designing a solution
– identifying and distributing tasks between group members
– implementing the individual tasks; learning about the difficulties

of integrating several parts of a system, and learning to cope with
unexpected results from their implementation.

177

178 CHAPTER 10. SOCCER ASSIGNMENT

• Teach students about:

– distributed artificial intelligence,

– multi-agent systems,

– mobile ad-hoc networks,

– decentralized control,

– cooperative agents,

– rule-based reasoning

• Advance the programming skill level of the students.

After having completed the assignment, students will be aware of the prob-
lems related to multi-agent soccer. They will understand the issues related
to dealing with a dynamic problem environment that demands real-time
performance on incomplete information, without any centralized control.
They will understand the importance of cooperation and communication for
achieving teamwork. They will be able to design and implement a coop-
erative soccer team in the soccer simulator that is capable of convincingly
defeating the moderately intelligent reference implementation.

10.2 Assignment

The assignment was given to the students in Dutch, as the undergraduate
program is also in Dutch. The following is a translation of the assignment
text:

Introduction
Athletic and programming qualities are two completely different concepts.
In this assignment we will attempt to combine these qualities. Strategic rea-
soning is important both for a professional athlete and for programmers.
The goal of this assignment is to combine the best programming and athletic
strategies to score as many goals as possible.

Assignment
In this assignment, every group is required to design a number of PlayerA-
gents that cooperate in order to win a match. A reference implementation
shall be provided that has to be defeated by your team convincingly in order to
receive a passing grade for this assignment. This reference implementation
does not use any form of communication, and will display only a minimal
amount of cooperation.

10.2. ASSIGNMENT 179

A team consists of 7 players. A player on the field is a RobotAgent (the
”hardware”) that can be controlled by a PlayerAgent (the ”brains”). The
PlayerAgent has certain inputs, and can execute certain commands. He
can ”shout”, move, turn, kick, or substitute the PlayerAgent (i.e. a new
behavior) on a robot. There is however no central authority in the game.
The user does not have any influence on a game once it has started. The
focus of this assignment is on cooperation. Controlling the RobotAgent is
very intuitive. During the design phase, the approach, strategies, and the
weaknesses of the chosen approach will have to be considered extensively.

After the assignment text, a detailed explanation of all input and output
channels, and the three coordinate systems was provided.

10.2.1 Scenarios

The following is a translation from the Dutch manual. Prior to designing
and implementing their soccer team, groups had to finish their scenarios and
have these approved by the teacher.

Following are a number of scenarios. Explain for each scenario what
strategy an individual player should follow, in order to accomplish the goal of
winning the match. Give a thorough description of the actions that must be
taken, and use a diagram or illustration when necessary. This assignment
evaluates whether the assignment and the concept of ad-hoc networks has
been thoroughly understood by the group members, and whether they are
ready to proceed to designing their team. The global strategy that your soccer
team will use should be defined in these scenarios. Every scenario has a
short description that can provide clues to possible solutions. Do not let
these hints stop your imagination however. It is strongly recommended
to analyze the behavior of the reference teams, to understand the problems
and scenarios that will occur. This assignment must be checked and approved
by the teacher before your group may proceed to the design phase!

10.2.1.1 Player Level

• Scenario 1: The ball is free
The ball is lying somewhere on the field. This could be somewhere
close to you, or close to a team mate. In the worst case scenario the
ball is not close to any player of your team.

• Scenario 2: You have the ball
Are the opponents coming dangerously close? Can you move around
freely, or are you close to your own or the opponent’s goal?

• Scenario 3: You do not have the ball
You do not have the ball. The ball can be free, a team mate could
have the ball, or an opponent could have it.

180 CHAPTER 10. SOCCER ASSIGNMENT

• Scenario 4: Someone else is on your base position
It is possible that a team mate or opponent is on your base position.

• Scenario 5: You do not know where your team mates, opponents, or
the ball are
Possibly fellow team mates within your shouting range do know the
information you would like to have, or that you have to look around.

10.2.1.2 Team Level

• Scenario 6: Your team has the ball
Should you defend? Should you try to stand clear of opponents?

• Scenario 7: The opponent has the ball
Are you in the area, or are there team mates in the area? Is the
opponent in from of your goal?

• Scenario 8: The game has just started, is half way, or is near the end.
What do you do in each situation? Describe for each situation what
strategy you will use.

• Scenario 9: Your team is losing, winning or the score is a draw
What do you do in each situation? Describe for each situation what
strategy you will use.1

10.2.2 Design

The scenarios that were approved in the first part of the assignment serve as
a guideline for the design of the soccer teams. The following is a translation
from the Dutch manual regarding the design part of the assignment:

Your group will now have to produce a detailed design of their PlayerA-
gents. All possible scenarios have to be thoroughly explained, including the
scenarios described in the first part of the assignment (Have a brainstorming
session with your group about which scenarios are possible.) Make a rough
sketch of the implementation. Describe how your group expects to solve the
most difficult aspects of your implementation?

Gannt [75] charts had to be made prior to implementation and after im-
plementation that visualize the planned work load and task distribution
between individual group members.

1Scenarios 8 and 9 hint at the possibility of making a team adaptive, through evaluating
your team’s performance, and changing the behavior of several robots to deal with the
new situation.

10.2. ASSIGNMENT 181

The design had to be approved by the teachers before teams could begin
working on their implementation. Students were frequently reminded of the
importance of a good design, as the problem they had to solve was big and
little time was available.

10.2.3 Implementation

The most time consuming part of the assignment was the implementation.
The resulting student team implementations are discussed in Section 10.3.
The scenarios and design parts of the assignment did help students in under-
standing the problems that occur in the environment, but the challenge of
the implementation is a lot bigger than any programming assignment they
have previously encountered. As such, a number of questions were posed to
the groups during implementation to keep them on the right track.

10.2.3.1 Implementation Questions

Following are the questions that were posed during the implementation
phase of the assignment. The HINT is the kind of answer that was de-
sired by the teachers.

1. In multi-agent soccer you could decide to determine your strategy again
every visibility update, and execute this accordingly. What is the disad-
vantage of this approach? How could you solve this? HINT: Long-term
strategy, planning.

2. How can you prevent deadlocks? HINT: Look at the long term results
of your actions. If your robot has hardly moved during the last 10
seconds while you did attempt to move, it could be that something is
blocking you.

3. When and how should you change strategy? HINT: There have been
X sequential goals by the opponents, so change? How to change? Who
decides this? If you do not have a captain, how do you make sure that
a particular player will know that he has to change - without changing
the behavior of other players?

4. How can you make sure that a player is ’free’?

5. Most passing algorithms assume that the receiving player is standing
still, and will shoot in that direction. Sometimes, the receiving player
is moving and the pass will miss. How can you prevent this? HINT:
Look at the orientation of the recipient. If he can see you, assume that
he will reason ’intelligently’. Otherwise, reason how he will reason
(He doesn’t see the ball, so he is probably not doing anything highly
sophisticated, so shoot the ball in front of him - if there is room for

182 CHAPTER 10. SOCCER ASSIGNMENT

that. He will either see the ball coming, or receive it if he is indeed
moving.

10.2.4 Extra Questions

As a reflection exercise, a number of extra questions for the final report were
given. The following is the translation of these questions from the Dutch
manual.

1. Explain how your players cooperate. Consider direct communication,
but also indirect communication (i.e. social laws, such as ”you are
closer to the ball, so you get to pursue it”). Explain which scenarios
include cooperation and give a general description of how this works.

2. Sometimes it is a good idea not to shout, whereas sometimes it can
be extremely helpful. Where did your team draw the line? Motivate
your decision!

3. Assume that you would have to develop a team that would defeat your
own team. How would you do this? Explain this in no more than 200
words.

4. When is it useful to change the behavior of a player? If your team uses
this; when do you use it, and to what extent did it help your soccer
team’s performance? Motivate your decisions!

10.2.5 Competition

To conclude the project with a fun event, and to provide an extra incentive
to the students, a competition with a small cash prize was held among the
student teams. Rather than the default 10 minute game time that was used
throughout the project, 30 minute matches were used in the competition.
These longer matches reduce the impact of the randomness on the score.

During the competition, multiple matches were held at the same time.
The random team and simple team were included in the tournament as
well.

10.2.5.1 Competition Results

Table 10.1 shows the exact results from the competition held at the 6th of
June, 2006 at Delft University of Technology.

10.3. IMPLEMENTATIONS 183

Table 10.1: Results from the 2006 MKT-2 soccer competition. The number
indicates the group number, S = SimpleTeam, R = RandomTeam. Win =
3 points, Lose = 0 points, Draw = 1 point

Group # 1 2 3 4 5 S R Total
Group 1 x 6-0 1-4 0-10 1-4 7-5 13-3 9
Group 2 x x 3-15 9-19 4-22 2-20 30-5 3
Group 3 x x x 4-9 6-3 22-9 18-7 15
Group 4 x x x x 8-4 21-9 34-3 18
Group 5 x x x x x 28-5 36-2 12
Simple x x x x x x 32-2 6

Random x x x x x x x 0

10.3 Implementations

This section describes the different approaches that were taken by the stu-
dents in their implementations of the soccer teams. For each part of the
assignment - scenarios, design, and implementation - the classroom obser-
vations and reports produced by the different groups are described. First a
description of the general approach is given, and then the specific differences
are explained.

10.3.1 Team Setup

During the scenarios and design phase, all groups recognized the importance
of having different PlayerAgents (different behaviors) within a team. The
general approach was to distinguish between a keeper, a defensive player and
an offensive player. Teams would then be built up from 1 keeper, 3 defensive
players and 3 offensive players. Some groups started and finished with a
more advanced setup, whereas some others did not manage to successfully
implement the different agents, and ended up with different setups. The
setups that resulted after the implementation were the following:

• one toolkit of functions (skills) and variables that all agents share. 1
keeper, 3 defenders, 1 captain and 2 attackers. The captain plays a
central role in determining the strategy.

• one ’super’ agent that has a number of basic skills, and player-specific
reasoning in the keeper, offensive, and defensive agents.

• 1 keeper, 2 defensive players, 1 mid-fielder, 3 attackers.

184 CHAPTER 10. SOCCER ASSIGNMENT

• 4 defensive players (one in front of the goal)2, and 3 offensive players.

• 1 keeper player, 6 offensive players.

The position of these players on the field is displayed in Figure 10.1.

(a) Team1 (b) Team2 (c) Team3

(d) Team4 (e) Team5

Figure 10.1: The Setups that were used by the Different Teams

2The original design of this group included a keeper, but the group struggled with the
implementation. The keeper was left out, and a defensive agent replaced it.

10.3. IMPLEMENTATIONS 185

10.3.2 Reasoning

The higher level reasoning model of the agents was very similar for all stu-
dent groups. This model is illustrated in Figure 10.2. The model is similar
to the simple reflex agent described in Figure 2.1, but it is more specific.
The following sections will explain the elements of the model.

Figure 10.2: A Typical PlayerAgent

10.3.2.1 Knowledge Base

The knowledge base is the collection of facts that have been acquired from
previous (low-level) observations3. All student groups keep a history of cer-
tain observations. Everything that is observed in the environment is com-
bined with the existing knowledge in the knowledge base. Several student
teams keep the time at which certain observations occurred, and use this
to reason about the reliability of the information. Other groups ignore the
time, and assume that the last known information is the truth for their
reasoning4.

3Both visual and auditory observations. These observations are relatively high-level
compared to those of other simulators, but in the PlayerAgent, they are the lowest level.

4The teams that did not keep the time for the latest observation had adjusted their
reasoning such that the influence of the objects that were not directly visible was either
small or not present at all.

186 CHAPTER 10. SOCCER ASSIGNMENT

10.3.2.2 Situation Analysis

The situation analysis module takes as its input the information from the
knowledge base. This is generally all information about the objects that are
currently visible, objects that were (recently) visible, and sometimes time-
related information, such as the last time that a particular player or the ball
was seen.

The knowledge base can be in an infinite number of different states5. As
such, reasoning about the information contained in the knowledge base using
a set of rules can not be done without establishing some higher-level facts
first. Attempts to do so without these high-level facts would include too
many possible scenarios for a rule base to be effectively manageable.

The situation analysis will analyze the situation (as captured in the knowl-
edge base), and derive a number of high-level facts. These facts are generally
either values or booleans6. An example of a value would be ”the number
of visible enemy robots”, and an example boolean ”do I see the ball”. All
groups defined about 10-20 of these high-level booleans to describe the cur-
rent situation.

10.3.2.3 Rule Base

The rule base is the central behavior-specific part of the PlayerAgent. Two
out of five teams used a superclass or a toolkit to define all behavior-invariant
methods and functions, and determined the behavior (rule base) in the spe-
cific agents (i.e. defensive, offensive, keeper agents).

The rule bases that were used were all integrated in the source code, and
as such the values that were required in the reasoning were simply taken from
the knowledge base. The boolean facts derived in the situation analysis are
the most important for determining the final strategy.

The facts that were derived, and the values that were used were specific to
each team. The strategy that was defined in the rule base was also specific
for each group (and to the different players within the groups), but were in
general the same. A distinction was made between knowing where the ball
is, and not knowing where the ball is:

5There is a predefined number of robots, and a predefined number of possible positions
on the field, but the possible amount of different messages that can be received - and are
also a part of the knowledge base, is not limited. The temporal (time) domain is infinitely
long, and all observations could be added to the knowledge base.

6A boolean value can be either TRUE or FALSE

10.3. IMPLEMENTATIONS 187

• In the first case, the agents reason about whether to interfere, move
to a free location, shout, or to move ignore it. When the ball is visible
but a team mate has the ball, the general strategy is to move towards
a free position, or to advance forward. If an opponent has the ball,
defensive players will attempt to move in between the ball and the
goal, and bump the offensive player to slow him down and allow other
team mates to help in defending the goal area.

• In the second case, the players would generally scout the area around
their base positions. The base positions guarantee that the robots are
spread across the field and will be able to cover the entire field. Rea-
soning that allows players to move away from their base position too
far or too long will result in clustered groups of robots, and causes
large open spaces in the field. This undesirable effect is generally pre-
vented by sticking close to the base position, unless the player is with
the ball, or close to the ball and aiding in an attack.

The rule base will return the action that should be performed. This is the
best action possible given the current knowledge. This action is high-level,
and will have to be translated to the lower level of the effectors. When
multiple actions would be returned, the most specific action is executed7.

10.3.2.4 Actions

The final element of the implementations deals with the execution of the
actions that are decided on in the rule base. An example of such an action
would be dodge opponent. In order to successfully execute this action, the
module requires information from the knowledge base. In order to dodge an
opponent, the opponent that should be dodged has to be located. All other
known opponents and team mates in the area will have to be considered.
The goal position of the robot, and all other variables that are important
for determining the optimal low-level instruction are also required.

The robots have three effectors; (1) movement, (2) shouting, and (3)
changing behavior. The latter is not used by any student soccer team.
Shouting is relatively straightforward. The group has to decide on a certain
format, and ensure all communication is in accordance with this format.
Movement is still rather complex, as finding the ”optimal” movement is
not possible. The environment will react on your movement. As such,
the predicted shortest path at any point in time may be obstructed by
opponents and take more time than an other, longer path would have taken.

7Due to the implementation in code, the ’action’ is overwritten by the most specific
rule.

188 CHAPTER 10. SOCCER ASSIGNMENT

A more detailed justification of the movement model is given in Section 4.6.2.
Dealing with movement is one of the hardest parts of this module.

10.4 Evaluation

The assignment was evaluated in a number of ways, using different crite-
ria. The most important criterium is whether the educational goals for the
assignment were met. Another important aspect of the evaluation is what
things should be improved for future use.

The first part describes the evaluation results regarding both criteria for
the classroom observations that were gathered by the teachers. The sec-
ond part describes the results from the survey that was distributed among
participating students of the MKT-2 project.

10.4.1 Classroom Observations

The classroom observations that are described in this section are a result
from observations by the teachers, remarks from the students, the final docu-
mentation and implementation, and from several students that participated
in the MKT-2 project in 2004-2005 and shared their opinion on the new
assignment.

10.4.1.1 Educational Goals

First and foremost, the motivation of the students was extremely high
throughout the 3,5 weeks that the assignment lasted. Many students worked
on their team during the weekend, day, night, and some students even ad-
mitted to missing lectures in order to work on their team.

Group work Because of the high motivation of the students, and the
realization that the deadline was only 3,5 weeks away, all student groups
recognized the importance of effective task distribution and group commu-
nication. The groups had already collaborated during the previous two as-
signments, and the roles within the group were clearly defined. Throughout
the assignment, all group members were present and working together on
the different agents. Most groups had (bi)weekly team meetings to discuss
the progress.

Developing an implementation from a vague, high-level problem
description The assignment was divided in an analysis, design, and an
implementation phase. An important aspect of the analysis and design is

10.4. EVALUATION 189

to distinguish between must-haves, should-haves, could-haves, and would-
haves. The limited time that was available for the assignment caused stu-
dents to consider what elements of their design could realistically be imple-
mented, and what elements should be left out.

Several groups spent a lot of time on the analysis and design, whereas
other groups started on their implementation before doing so. The student
group that spent the most time on their design won the competition and
had the best soccer team. Their initial task distribution, and the time they
had planned to spend on the individual tasks corresponded more or less to
the actual time that was spent. The groups that started immediately on
their implementation struggled to complete everything on time. Integrating
the different parts of the system was difficult, and their final implementation
was very different from the initial scenarios. These groups also mentioned
after the project that they should have spent more time on their design.

Many groups divided the implementation of their team over the group
members such that one or two members would work together on a single
player. These group members would then be responsible for finishing this
player according to the design. Since the programming skill of the different
students varies a lot, this resulted in several players that did not meet the
specifications of the design, and several students that made their agent over-
sophisticated. Once all elements were working, the challenge of integrating
the separate parts of the system such that the cooperation that was part of
the team design functioned according to specification. The debugging and
optimizing the system took place in the last week of the assignment prior
to the competition.

Learn about distributed AI, MAS, mobile ad-hoc networks. The
student groups learned about all these topics throughout the design and
implementation of the soccer team. During the design phase, students would
frequently reason that, for instance, their offensive agent would walk towards
the ball if he would see it. This approach stems from the mindset where
problems are solved in a centralized manner. The teachers and certain group
members would question the initial simple approach by asking simple what
if questions. One common trivial scenario is illustrated in Figure 10.3.

In this scenario, the player will see nothing but the ball. Most initial
strategies would immediately move towards the ball. In this particular sce-
nario however, there is a team mate that is much closer to the ball, and
is likely to intercept it. This team mate is outside the scope of the player,
but through communication, and pre-programmed knowledge of the base

190 CHAPTER 10. SOCCER ASSIGNMENT

Figure 10.3: An Example Scenario

positions of the team mates, intelligent reasoning could reason about the
likelihood of other team mates being closer, and anticipate on this.

Decentralized control Another example is the question about adaptive
team behavior. Many student groups had initially included the idea to
switch one robot from offensive to defensive when the score would exceed a
certain limit. In their detailed design, they realized the difficulty of making
this decision without centralized control. Several approaches were thought
of. Several included some type of captain, that would reason for the team.
An other frequently seen approach would use a predefined order8 to overcome
the problem of not having any centralized control

Cooperative agents, rule-based reasoning In the design phase, stu-
dents realized that communicating everything was not a feasible strategy.
In order to develop cooperative agents, the students defined a number of
social laws in their agents9. These laws were formulated during the design,
and integrated in the agents in the rule base mechanism. The students also
used explicit communication to establish the cooperation. Students used
rule-based reasoning in their agents, but this was integrated entirely in their
code. As such, the implementations were lengthier and less organized.

8For example, when the opponent have a lead of more than 10 goals on your team, the
left offensive player becomes defensive. When the lead is more than 20, the right offensive
player comes defensive.

9This was subconsciously done in their design. An example of such a social law would
be saying that when you see a ball, and a team mate can see the ball, and you are further
away from the ball, that the team mate will always take the ball.

10.4. EVALUATION 191

The students recognized during their analysis that the SimpleTeam that
had to be defeated was predictive in many ways. They anticipated on this
behavior in their strategies. The extra question that was posed at the end of
the assignment, Assume that you would have to develop a team that would
defeat your own team. How would you do this? Explain this in no more than
200 words. helped students to reflect on the strategy that they have used,
and recognize the weaknesses of this. Most teams are relatively predictable,
and an analysis of when the opponent team manages to score will give feed-
back to the weak points in the strategy. This real-time feedback about the
strong and weak points of the rule base helped the students improve their
implementations. Unfortunately, because of time-related problems, the stu-
dents were not able to play matches between their teams until the tourna-
ment, where many flaws in the rule bases that had gone unnoticed in the
practise matches against the SimpleTeam appeared. This experience pro-
vided students with insight in the strengths and weaknesses of a rule-based
approach.

Increase programming level The soccer assignment is the biggest pro-
gramming assignment that the students have ever done, and also the most
challenging one. The high motivation, and the instant feedback (through
playing a match) helped the students in successfully finishing their imple-
mentations. The most important lesson for the students during the imple-
mentation was that complexity kills. Many groups started on very difficult
algorithms which then failed for mysterious reasons, rather than starting
with a simple framework that works and gradually extending this. Because
of the distribution of the players amongst the group members, they experi-
enced first-hand the necessity to standardize the communication (and related
objects) between their players, and to program in an organized manner for
debugging.

10.4.1.2 Improvement

Based on the previous two assignments, most groups expected that the
analysis and design phase would take a small amount of time. A remark
that was frequently made was that the design of their team was a lot more
challenging than they expected, and that in hindsight, they should have
spend more time on it. The importance of the analysis and design should
be emphasized, and the teachers should be more strict about not starting
on the implementation before the design is approved.

The simulator was released the week before the assignment started. A
number of minor bugs were resolved, and some features were added dur-
ing the first week of the assignment. The reference team that had to be
defeated was completed and distributed at the end of the first week of the

192 CHAPTER 10. SOCCER ASSIGNMENT

assignment. The example team (RandomTeam) used a very complicated
and flawed method to determine the movement, that was initially copied
by the student groups. This caused confusion among the students, and did
not add to their understanding of the environment. All elements of the as-
signment should be finished well ahead of the start, and the reference team
should be thoroughly documented and use well-implemented methods.

The students used rule-based reasoning in their agents, but this was inte-
grated entirely in their code. As such, the implementations were lengthier
and less organized. It is good coding style to separate the reasoning from
the algorithms and code. This provides a better overview of the reasoning,
making it easier to detect flaws. The assignment should force student to
design a separate rule base for their players, and use this.

One of the disadvantages of the rule-based approach in soccer is its pre-
dictability. When training the team against the SimpleTeam, this is not a
problem since the reference team is also highly predictable. As such, the
adaptive team behavior that is possible in the simulator is neither required
nor used. Two possible solutions exist:

• Develop a number of reference teams that all have to be defeated. The
student team will not know beforehand which of the teams it is facing.

• Develop an adaptive team that has to be defeated.

Another interesting dimension of the assignment would be to have an (on-
line) database of reference teams that could be defeated, and a ranking sys-
tem. Student groups could submit their groups and play matches against
implementations from previous years, or against other student groups.

10.4. EVALUATION 193

10.4.2 Survey

A survey was distributed among all participating students. This survey is
given in Appendix D.

Table 10.2: Survey Results

Question Strongly
Dis-
agree

Disagree Neutral Agree Strongly
Agree

Insight in distributed control
& ad-hoc networks

0% 10% 20% 70% 0%

Trade-off communication vs
autonomous

0% 5% 20% 60% 15%

Learned more than conven-
tional assignment

0% 5% 20% 35% 40%

Assignment was at a good
level for first-year students

0% 15% 15% 60% 10%

Increased programming skills 5% 15% 35% 45% 0%
Software is easy to use 15% 30% 35% 20% 0%
I like the high-level interface 5% 20% 35% 35% 5%
I like the focus on cooperation
and team work

0% 5% 35% 50% 10%

Manual was useful 10% 45% 15% 30% 0%
Web tutorial for installation /
configuration

15% 15% 40% 25% 5%

Web tutorial for making sim-
ple player

15% 15% 30% 25% 15%

Web tutorial for explaining as-
signment

20% 25% 20% 25% 10%

I like the tournament 5% 0% 10% 50% 35%
Teaching assistants were nec-
essary

5% 30% 45% 20% 0%

Assignment was challenging 0% 0% 15% 65% 20%
I liked the assignment 0% 0% 25% 60% 15%
I am pleased with result 0% 5% 45% 50% 0%
Assignment stimulated cre-
ativity

0% 10% 15% 65% 10%

Assignment took too much
time

0% 0% 25% 30% 45%

I would like to do more soccer
assignments

0% 15% 40% 30% 15%

194 CHAPTER 10. SOCCER ASSIGNMENT

10.4.2.1 Survey Results

The results from the survey are given in Table 10.2. An important con-
sideration regarding the interpretation of this data that has to be made is
that there are two different classes of students - those that implemented the
team, and those that did the presentation. Since both classes were involved
with the design and analysis, and the educational goals for both classes were
identical, the survey was handed out to all students. These different classes
could be an explanation for some of the results in the survey.

5 things you learned from the assignment The following list contains
an overview of the most common keywords that were mentioned by the
students.

1. Teamwork (6x)

2. Programming (5x)

3. Ad-hoc networks (3x)

4. (High-level) problem solving (3x)

5. Creativity (3x)

6. Cooperation (2x)

7. Designing, planning, organizing code, working systematically, testing,
trial-and-error, how to implement a (high-level) strategy

Manual Remarks

1. Incomplete, could be improved (4x)

2. Coordinate systems needs a better explanation (3x)

3. MessageTuple / VisibleObjects need a better explanation (2x)

4. Clear enough (2x)

Software Remarks The question about software remarks was often mis-
interpreted, and many remarks about Subversion, Eclipse, and Fleeble were
made. There was only one specific remark about the software, which was
easy to use.

10.4. EVALUATION 195

Assignment Remarks

1. More time needed (10x)

2. Fun (5x)

3. Good to learn teamwork

4. Make assignments B and C like this assignment

5. Kick B and enlarge D

6. Include test-opponents, and some unfinished teams that will provoke
certain scenarios.

7. More documentation, but (please) no screencasts10

10.4.2.2 Educational Goals

From these results, the following conclusions can be drawn with regards to
the educational goals:

• Students were pleased with their group’s final soccer team. Consider-
ing the limited amount of time that was available, and the complex-
ity of the assignment, this implies good teamwork within the student
groups.

• The students learned to develop an implementation from the high-level
problem description.

• The assignment learned students about distributed control, ad-hoc
networks, and about cooperation and teamwork.

• The programming skill of the students increased for many students.

Furthermore, with regards to the experience of the students, the follow-
ing can be said:

• The assignment was challenging

• The assignment was fun

• Most students would like to do more soccer assignments

• The assignment stimulated the students to be creative

• The competitive element (tournament) was very much appreciated
10There were several ’screencasts’ that explained CVS and eclipse produced for the

project.

196 CHAPTER 10. SOCCER ASSIGNMENT

• The focus on team work and cooperation was embraced by most stu-
dents

• Students learned more from this assignment than they would have
learned from a conventional programming assignment

• The assignment was at an appropriate level for first-year students

10.4.2.3 Improvements

With regards to the possible improvements of the assignment, the following
conclusions can be drawn:

• More time should be available for finishing the assignment

• The manual should be improved

• Web tutorials for the assignment / software might be helpful, but the
opinions on this differ between the students

• The teachers’ presence was not a necessary requirement for the assign-
ments

• More documentation should be available

• Add some (unfinished) ’teams’ that will provoke certain scenarios.
Rather than visualizing the scenario on paper, having a library of
preprogrammed scenarios and being able to use this to evaluate the
performance would help in improving the implementations.

10.5 Conclusion

include hobbyist observation

10.5.1 Educational Goals

The educational goals that were defined in Section 1.3.3 have been met. Both
the classroom observations and survey results unambiguously lead to this
conclusion. The students have learned a great deal about problem-solving,
group work, various AI techniques, and programming. The assignment was
considered very motivating and challenging, and many students indicated
they were interested in more assignments based on the soccer simulator.

10.5. CONCLUSION 197

An interesting conclusion that can be drawn from the evaluation is that
the role of the teachers throughout the project was considerably smaller
than in the previous assignments. No more than 20% of the students felt
that the assistants were necessary for completing the assignment. Especially
when taking into consideration that it was the first year that the assignment
was given, and there was a lot of room for improvement, this conclusion is
very important.

10.5.2 Improvement

It was the first year that the assignment was given, and a number of things
can be improved. A common complaint was the lack of time for developing a
good team. Next year, assignment B is going to be removed, and the soccer
assignment will have two extra weeks.

A suggestion that was uttered by several students was to add some unfin-
ished teams that serve to provoke a number of scenarios. Creating a library
of these teams for practising particular aspects of the strategy could be a
useful addition.

The reference team that had to be beaten was sufficiently complex for
the three weeks that were available to the students this year. When the
assignment is extended however, a more complex challenge is required.

Rather than challenging students to defeat one reference team, the as-
signment could be altered to resemble assignment A. Supply a number of
reference teams, and develop a team that - without knowing which team it
is facing - is able to convincingly defeat all reference teams.

Improve the documentation and the manual.

A small ”problem” with this year’s implementations was that most teams
would communicate, and cast the object that was received directly to their
own object. The reference team did not communicate at all, so during the
practise sessions this went all right. When playing a tournament against
other student groups however, this caused heaps of ClassCastExceptions.
(One of) the reference team(s) should use some communication to ensure
this undesirable effect is removed during the practise sessions.

Following the above improvements, using the assignment in distance-
learning, or releasing it for hobbyists is expected to yield good results.
Teachers were not a necessity during the assignment, as the simulator pro-
vides instant feedback (in a match) regarding the performance of a certain
algorithm.

198 CHAPTER 10. SOCCER ASSIGNMENT

10.6 Discussion

This chapter described a soccer assignment for first-year undergraduate stu-
dents. The soccer simulator is suitable for a wide body of educational en-
vironments and levels however. Depending on the educational goals of the
project, a custom assignment can easily be tailored. The layered approach
of the system model allows for the inclusion of environment noise, effectively
allowing simulations of realistic robots.

The ease-of-use of the simulator and the accompanying framework, and
the low threshold for developing a team make it an interesting project that is
suitable for students without real programming experience. The possibilities
of creating adaptive self-learning teams provide a sufficient challenge for the
very experienced, however.

Part V

Results

199

Chapter 11

Conclusions

”Great things are not done by impulse, but by a series of small
things brought together.” Vincent Van Gogh.

This chapter presents the conclusions of the project. A number of goals
for this thesis project were formulated in Section 1.4. The structure of the
goals is followed in discussing the realization of all individual goals.

11.1 Literature

The literature survey introduced (multi-) agent technology, the RoboCup
Federation, and provided an overview of existing educational assignments
based on robot soccer. The RoboCup Federation hosts 5 different leagues;
small-sized robots, middle-sized robots, four-legged robots, humanoid ro-
bots, and the simulation league. The soccer server application that is used
in the simulation league has a steep learning curve and requires an extensive
low-level implementation before high-level reasoning can be conducted. The
system provides a realistic simulation of the soccer environment, including
uncertainty about the sensor readings. Existing applications of robot soccer
in education are often involved with both hardware and software aspects.
Several courses focus on the soccer server through distributing individual
tasks among the students to develop one team, or through building on the
work of students from earlier years to develop intelligent teams incremen-
tally. There are no courses where a group of students will develop a team
capable of reasoning at a high level from scratch.

11.2 Game

11.2.1 Model

An important part of the project was the design of the model. Rather than
developing a realistic soccer simulator, the model is intended to be suitable

201

202 CHAPTER 11. CONCLUSIONS

as a tool for AI research and education. The laws of the game were defined
and compared to human soccer. The most important difference is that the
ball is always in play in the model, whereas it can be taken out of play
by the referee or leaving the field in human soccer.There is no centralized
control such as a coach or a referee. Three types of users will use the
system; students, hobbyists, and professionals. Flexibility and extendibility
are important requirements of the model. The soccer model features three
layers. The player layer, robot layer, and framework layer. The features of
the game are defined in their corresponding layers. This layered approach
makes the system extensible. Robots have aural and visual sensors with
perfect information in a narrow field. Robots can change their behavior,
shout, and move. Robot speed is instant and static, speed penalties are
awarded for collisions and shouting.

11.2.2 Design

The design of the soccer simulator was based on the model, and influenced
by the possibilities and limitations of the agent framework that was used.
This agent framework, Fleeble, is a simple Java-based agent framework that
allows dynamic loading of agents, and can be used to simulate multiple
isolated environments through assigning virtualhosts. This feature is used
extensively in the design to restrict player agents to communicating only
with the robot layer. The user interface was designed to be simple, intuitive,
and visually appealing.

11.2.3 Implementation

Based on the design the soccer simulator was developed incrementally in four
phases. First, a basic working framework was implemented. The second
phase implemented all basic sensors, effectors and the movement model.
In the third phase the user interface was developed, and the robots were
displayed. The functionality of the first and second phase was thoroughly
tested. The fourth phase dealt with several complicated features such as the
collision model and ball movement.

11.3 Research

11.3.1 Agent Strategies

Numerous low-, medium-, and high-level player skills, and a number of infer-
ence steps that map the basic percepts to high-level information about the
environment were identified. The rule-based action selection mechanism is
explained and illustrated. Adaptive team behavior can be divided in short-
term and long-term strategic change. Several suggestions on dealing with

11.4. EDUCATION 203

distributed control were given. Depending on whether a robot fulfills an
active or a passive role in the play, the speed penalty issued for communica-
tion is increasingly troublesome. Using social laws to predict and anticipate
behavior can reduce the required amount of communication. Self-learning
soccer agents are not successful because their performance measure is hard
to define. An approach is suggested towards defining accurate performance
measures to achieve a self-learning soccer agent. The soccer simulator is a
promising tool for AI research.

11.3.2 Developing a Team

The SimpleTeam was developed for use in the MKT-2 project. Groups
of first-year undergraduate students would have to be able to convincingly
defeat the team in three weeks time, and the team was not allowed to use
any communication. The different roles within the team were decided on,
and the formation was defined. The different skills, inference rules and the
rule-based action selection mechanism were defined. The implementation of
the SimplePlayer features three methods that together start with perceptual
input, and end with basic action commands. The resulting team meets the
requirements, and all student groups managed to convincingly defeat it. An
approach is suggested towards an advanced soccer team that uses several of
the aforementioned techniques.

11.4 Education

11.4.1 MKT-2 Project

There were two predecessor ad-hoc networking assignments, that faced con-
ceptual and software errors. Based on a thorough analysis of these problems,
several conclusions were drawn. It is hard to find a performance measure
in ad-hoc networks. Using arbitrary performance measures results in agents
that are particularly good at performing on these arbitrary areas, but are
neither effective nor efficient. When students can - through a lot of com-
munication - make the network deterministic, they will. This behavior is
undesirable because it does not teach students about the distributed con-
trol mindset, nor does it teach about the synthesis between autonomous
reasoning, social laws, and communication.

11.4.2 Soccer Assignment

The soccer assignment required groups of first-year undergraduate students
to implement a team capable of convincingly defeating the reference team.
Classroom observations and survey results conclude that the educational
goals that were defined in Section 1.3.3 have been met. The students have

204 CHAPTER 11. CONCLUSIONS

learned about problem-solving, group work, various AI techniques, and in-
creased their programming skill level. The assignment focused only on the
high-level details, dealing with teamwork and cooperation. The assignment
was considered to be very motivating and challenging, and many students
were interested in more assignments based on the soccer simulator. Most
students felt they could have completed the assignment without the help
of the teacher, making the assignment suitable for distance learning. As it
was the first year that the assignment was given, several possible improve-
ments were identified. The most frequent complaint was the lack of time for
developing an intelligent team. At least two extra weeks will be added for
the assignment of next year. The students were very enthusiastic about the
assignment. The soccer simulator is suitable for both regular education and
for distance learning.

Chapter 12

Discussion & Future Work

The more original a discovery, the more obvious it seems after-
wards. Arthur Koestler.

12.1 Discussion

The work for this graduation project focused on three main areas: The
game, AI research, and education. The soccer simulator was designed to
be a suitable tool for AI research and education. The soccer model that is
implemented in the simulator defines the possibilities and limitations of the
simulator. The domain of soccer in AI is very broad, and it is impossible
for a model to suit all potential users in a single model. For this reason,
the model was designed to be extensible. The two chapter dealing with AI
research aspects have provided an in-depth example of the possibilities of
the simulator, and have shown that the soccer simulator is a suitable tool
for AI research on high-level strategic behavior. The classroom observations
and the survey results illustrates how the students embraced the assignment.
The ambitious educational goals were achieved. These results show that the
soccer simulator is a suitable tool for education.

12.2 Future Work

Throughout the individual chapters of this thesis a number of suggestions
for future work have been given. This section summarizes these.

12.2.1 Model

The soccer model that was described in Chapter 4 is suitable for developing
highly intelligent teams. The layered approach of the model allows advanced
customization such as introducing uncertainties regarding the robot sensors
and effectors to simulate a more realistic game. Including such uncertainties

205

206 CHAPTER 12. DISCUSSION & FUTURE WORK

allows for the comparison of the performance of a team in several techno-
logical states, effectively measuring the influence of enhanced technology on
the performance of a team.

12.2.2 Soccer Simulator

The simulator that is developed during this project has no known issues or
bugs and is considered stable. A number of possible technical improvements
do exist. These improvements are listed below:

1. Move the ’DisplayThread’, the thread that presently resides in the
SoccerVisualizer and is responsible for calling the methods in the Soc-
cerAgent that process the visibility and movement, towards the Soc-
cerAgent. The SoccerVisualizer should be a thin interface layer that
can be used to display the game, and the game should not be depen-
dant on the game. This would also allow simulations to run without
the GUI.1

2. Implement network option. Users should be able to join or host
matches and tournaments with other users. How this should be imple-
mented depends on the exact required usage. Setting up one central
soccer team database and connecting to this, downloading the desired
team and playing against this team would be a possible implementa-
tion.

3. Extend the model with uncertainty, to model various states of tech-
nological progress, and use this to test the impact of this progress on
the performance of a team.

4. Add more human soccer features, such as specifying the speed and
direction of a kick, modeling the goalkeeper as a robot with special
physical capabilities, or kicking the ball with effect.

5. Add another layer over the player layer that contains pre-implemented
functions for, amongst others, movement. This would effectively re-
duce the process of creating a team to defining a good rulebase.

12.2.3 Agent Strategies

Chapter 7 suggested a number of approaches towards implementing certain
player skills, inference rules, action-selection mechanisms, and social laws.
Most of these could be made more effective through using other existing

1The simulation will not be able to run faster however, since the time that is required
by Java and Fleeble to process all input and output by all robots is independent of the
thread that implements it, and the user interface is very basic and does not require a lot
of processing power.

12.2. FUTURE WORK 207

AI techniques, and thorough observations of the environment. An approach
was also suggested that has a performance measure for every selected action,
and optimizes the thresholds and values determining the execution of that
action through analyzing the joint knowledge base of all teammates. This
performance measure can then be used in a self-learning agent. The agent
would reason with the same set of rules, but optimize the perceptual reason-
ing and skill variables. It would be interesting to see whether this approach
would work and whether it would indeed enhance the performance over a
longer period of time.

12.2.4 Soccer Assignment

It would be interesting to add a number of unfinished teams that serve to
provoke a number of scenarios. Creating a library of these teams for prac-
tising particular aspects of the strategy could prove to be a useful addition.
The reference team that had to be beaten was sufficiently complex for the
three weeks that were available to the students this year. When the assign-
ment is extended however, a more complex challenge is required. Rather
than challenging the students to defeat one reference team, the assignment
could be altered to resemble assignment A. Supply a number of reference
teams, and develop a team that - without knowing which team it is facing
- is able to convincingly defeat all reference teams. Furthermore, the doc-
umentation and the manual should be improved. Following the conclusion
that the teaching assistants were not required to successfully complete the
assignment, using the soccer assignment in distance learning is expected to
yield good results. The time that will be available for the assignment of
next year will be extended by at least two weeks.

208 CHAPTER 12. DISCUSSION & FUTURE WORK

Appendix A

Publication for Third
E-Learning Conference on
Computer Science Education

The following paper was submitted to and accepted for oral presentation at
ELCONF’06

209

Teaching Artificial Intelligence Techniques
Using Multi-Agent Soccer

I.J.J. Borm
Delft University of Technology
Mekelweg 4, 2628 CD Delft,

The Netherlands

iweinb@gmail.com

L.J.M. Rothkrantz
Delft University of Technology
Mekelweg 4, 2628 CD Delft,

The Netherlands

L.J.M.Rothkrantz@ewi.tudelft.nl

ABSTRACT
This paper describes a method of teaching rule-based reasoning,
ad-hoc networks, multi-agent systems and agent technology
through multi-agent soccer. The coursework is a set of
assignments that require students to implement intelligent agents
that can control the soccer players. The players form an ad-hoc
network that is utilized for communication and cooperation.
Students have to beat the reference team to pass the assignment,
where a competition between student teams provides an extra
incentive for the students. We implemented a running version of
the system. The system was tested in a classroom environment.
The assignment, system and test results will be discussed in the
paper. The coursework presented in this paper bridges the gap
between theory and reality in a fun, motivating way.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer and Information
Science Education – computer science education..

I.2.1 [Artificial Intelligence]: Applications and Expert Systems –
games

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– coherence and coordination, intelligent agents, multi-agent
systems.

General Terms
Algorithms, Documentation, Design, Experimentation

Keywords
Agent Framework, Ad-hoc Networks, Distance Learning, Multi-
Agent Soccer, Multi-Agent Systems, Programming Assignments.

1. INTRODUCTION
Multi Agent Systems (MAS) are an increasingly popular domain
in AI. A special example of MAS are robot or embodied agents.
One of the challenges of this domain is “By the year 2050,
develop a team of fully autonomous humanoid robots that can win
against the human world soccer champion team” [4].

Researchers are looking at the high-level and low-level aspects of
building a team that can reason autonomously and cooperate with
its team mates to achieve this ambitious goal.

The threshold for starting in this domain however, is rather high.
A lot of low-level issues have to be resolved before reasoning on
a strategic level can be done. Robots are primarily concerned with
things they can determine about their environment – is this robot

friend or foe? Is that object a robot or a ball? Where am I? How
fast is the other player moving? Although (probabilistic) answers
to these questions can be given, the processing time, camera
quality and position tracking are some of the problems that harm a
proper strategic approach to a soccer team.

The coursework presented in this paper provides students with a
multi-agent soccer simulator that has all low-level functionality
preprogrammed. A simple interface for controlling players is
provided, allowing students to start immediately on a strategic
level, without being bothered by the low-level image processing
and reasoning bottleneck. There is no central authority – to better
resemble reality, and to keep the focus of the assignment on
controlling the players.

Students have to program a team of intelligent agents that control
the players. The team has to communicate and cooperate in order
to beat the reference implementation. To further stimulate
students, a competition is held. Through designing and
implementing their teams, students learn about Multi-Agent
Systems (MAS), Ad-hoc Networks, Rule-based Reasoning and
Agent Technology.

The coursework uses a Java-implemented Agent Framework
specifically designed for teaching (introductory) artificial
intelligence.

A classical approach of teaching students AI is through
(conventional) programming assignments. We designed a new
method, and expect students to be highly motivated and to learn
more.

In this paper we shall first provide the background information
about the introductory AI course to which the coursework
belongs. Then a brief overview of the simple agent framework on
which the coursework is built is given. Then the soccer simulator
is explained. The assignment forming the coursework will be
explained next. Finally, survey results and classroom experience
will be discussed

2. INTRODUCTORY COURSE ON AI
The coursework presented in this paper was used in an
introductory first-year undergraduate course on AI. Participants
are all from Media and Knowledge Technology, a variant of
Computer Science studies at Delft University of Technology. The
course started in 2001-2002 and aims to achieve the following [1]:

• Introduce basic concepts of knowledge engineering and
relevant AI techniques including search algorithms,
knowledge representation methods, rule-based
reasoning algorithms, and agent technology.

• Explain and instruct in issues related to AI
programming in general and intelligent MAS in
particular.

Rather than pursuing these goals through conventional
programming assignments, the project consists of a number of
challenging (group) assignments.

The course consists of 20 hours of lectures – followed by an oral
exam, and 80 hours of practical work.

The teachers are actively involved in supporting the students
throughout the project. Through a kick-off lecture, the
assignments are introduced. Groups are formed based on
performance in the individual assignment, creating homogeneity
in groups. Good groups are given more freedom and are
stimulated to be more creative, whereas extra guidance is given to
the groups that did not perform as well.

The teachers are always present during the lab hours, for
answering questions and monitoring the groups. Every week, a
brief group conversation with the teacher is held to monitor
progress and recognize problems within groups.

The project consists of 4 assignments; A,B,C and D.

• The first is an individual assignment where a Roshambo
agent has to be programmed that defeats our reference
agents. This assignment filters out students that lack the
programming skills required to succeed in further
assignments. Throughout the rest of the project, it is
assumed all students are capable of programming java
at a reasonable level. All further assignments are in
groups of 5-6 students.

• The second assignment focuses on rule-based reasoning.
Based on questionnaire data, the ideal group member is
found.

• The third assignment introduces students to semantic
networks. A network of the International Movie Data
Base (IMDB) is created and the ‘hero’ of Hollywood
determined.

• The last assignment, D, has always been problematic.
The goal of the assignment is originally to teach
students about MAS and provide insight in the
difficulties that are encountered when dealing with
MAS. Various approaches have been attempted, but
both software and conceptual flaws in the assignments
have so far prevented this assignment from being a
success. A new assignment was created in 2004-2005
[1]. Although perceived as enjoyable and motivating,
the artificial point distribution of the assignment caused
simple strategies to win from intelligent ones.

 Throughout the project, students become more acquainted
with the agent framework (Fleeble), programming agents in
java and working together in groups. Students also learn to
deal with increased amounts of freedom. For the first and
second assignments, the path from goal to implementation is
relatively straightforward. Students know what steps need to
be taken and implement them accordingly. In the third and
fourth assignments, a lot more freedom is given. The goal is

clearly specified, but several paths can be taken, none
necessarily much better than the other.

3. FLEEBLE AGENT FRAMEWORK
The first-year undergraduate students participating in the project
have only little experience in programming Java. To keep the
focus of the project on the assignments rather than on learning a
complex agent framework, a simple agent framework called
Fleeble was developed in previous years of the project.

Fleeble is Java-based and provides all functionality required for
the project. It allows concurrency (multi-threading), multiple
agents (and easy communication between these agents) and
namespaces. A thorough description of these (and all other)
features can be found in [2].

Namespaces simulate different computers. When loading a child
Agent, a certain name space can be given and Fleeble will lock
the Agent’s communication to this namespace. This is particularly
useful for multi-agent soccer, as it enables us to force namespaces
on player agents, such that they can only communicate with the
framework and not directly with each other. Fig. 1 shows the
Fleeble GUI, with the soccer simulator running.

A comprehensive tutorial can be found in [2]. Templates for
agents are included in the assignments, to give students a head

start. Fleeble will automatically compile agent code, so the only
requirements for working with Fleeble are an editor, Fleeble, and
Java 1.5 installed.

Figure 1. The Fleeble GUI

Because of its excellent documentation, tutorials and example
code, only basic Java knowledge is required to start working in
Fleeble.

4. MULTI-AGENT SOCCER SIMULATOR
The goal of the assignment is for students to learn about MAS,
ad-hoc networks and rule-based reasoning. To help students in
achieving these goals, while not distracting them from low-level
problems and concerns, the soccer simulator was designed (See
Fig. 2).

Teams consists of 7 players. A player on the field is a ‘Robot
Agent’ (the hardware), which is controlled by a ‘Player Agent’
(the brains). The Player Agent has a number of inputs (Listen,
See), and a number of outputs (Shout, Move).

4.1 Input / Output
Shouting can be done at any time by any agent. Agents listening
within a predefined distance (See Fig. 3) will receive the message.

A shout can include any Java Object, so it can be very valuable to
exchange information about positions and strategies of other
players. Rather than restricting shouting by allowing only a
certain number of shouts per time unit, or by setting a maximum
message size, shouting is penalized by reducing the speed of the
shouter by a certain percentage for a few seconds. This causes
students to have very diverse strategies. Some will be hesitant to

use shouting often, whereas others will take the speed penalty for
granted.

Players receive a visual update about 3 times per second, through
the See channel. This consists of a list of all Visible Objects. A
Visible Object contains position information, the name and team
of the player. The player self, and all objects within a certain
distance / angle are added to this list (See Fig 3.). This
information, and what is gathered through listening are the only
sources of input that a player has.

The position information contained in the visual updates comes in
three flavors. Absolute (screen) coordinates, relative to team
coordinates, and relative to self coordinates. The relative to team
coordinates are very useful for providing orientation – a team has
to work on both left and right sides of the field. The relative to
self coordinates make life a lot easier for students for determining
how far away objects are, whether they are on your left or right
side, and several other useful facts.

Players can move their Robot Agent by telling it to move
(Forward, Backward, Left or Right). A turn can be specified as
well (Left, Right, Straight) and a player can block or kick.
Although Player Agents are not restricted in the amount of move
requests they send, only the last one that is received before a
frame update is processed. Bumping into other players, or being
bumped into is penalized by a fixed speed reduction lasting
several seconds.

Figure 2. The Multi Agent Soccer Simulator

Since it is not possible to know beforehand the strategy of the
team you are playing against, it would be nice to have some
autonomous adaptive behavior. Therefore, an option to change the
‘brains’, the Player Agent on a Robot Agent is included. When a
team is losing with 5-0, it is probable that proceeding with the
current strategy is not going to yield better results. Changing an
offensive player to a defensive one, or vice versa, is an interesting
dimension that motivated students could explore.

4.2 Randomness
The simulator is mostly deterministic. All parameters are known
to all players, and can be used to calculate for instance where a
ball will come to a stop, how much time it will take to move to a
certain position, etc. There are only two random elements in the
game, causing every run to be different.

First, there is a random factor when kicking the ball. To prevent
lucky shots from a very large distance, and to stimulate strategic
behavior, a certain random distortion is added to every shot.

Secondly, there is “Java-induced randomness”. There are 2x7
Robot Agents, 2x7 Player Agents and a Framework Agent. All
Agents have their own thread, and thread handling in Java is not
completely deterministic. Because of this, sometimes a certain
player will get his See updated just before a frame update, and
another player after. These random variations are equally
distributed amongst both teams, and make every game unique.

Figure 3. Part of the soccer simulator. The yellow circle
defines the shouting distance, red arc is what the player sees

4.3 Team creation
A soccer team consists of 7 players, each with a Player Agent,
name, base position and an icon. The information is stored in an
XML file. The XML file can be hand written, or generated using
a visual editor (See Fig. 4).

5. MULTI AGENT SOCCER ASSIGNMENT
The assignment is formulated as follows:

Design and implement a number of Player Agents that cooperate
in order to win the game. It is only possible to pass the
assignment if the team convincingly beats the reference team. A
team consists of 7 players. A player on the field is a ‘Robot Agent’
(the hardware), which is controlled by a ‘Player Agent’ (the
brains). The Player Agent has a number of inputs (Listen, See),
and a number of outputs (Shout, Move). There is no central
authority. The user has no influence whatsoever once a game has
started. The focus of the assignment should be on cooperation and
communication. A lot of thought has to be spent on what
approach and strategies are best, and what the weak spots of
these would be.

To provide a guideline to the students, the assignment is split up
into three parts. In the first part, students have to think about a
number of predefined scenarios, and form a strategy for each. The
second part requests students to design their Player Agents, to
provide a clear picture of what their team will do. The third part is
the actual implementation of the team.

5.1 Scenarios
In the first part of the assignment, students have to describe how
their players will act in a number of scenario’s. A differentiation
may be made between types of players (i.e. a defense player will
respond different from an offense player).

Scenario’s are divided in micro (player) and macro (team)
scenarios. An example micro scenario is: ‘The ball is free’.
Students have to reason about how their agent reacts. Will it work
towards the ball, get in between the goal and the ball,
communicate to see if other players are closer to the ball? An
example macro scenario is: “Someone from your team has the
ball”. Do you try to stand in a free spot? Do you help him by
communicating position information of enemies?

A lot of decisions have to be made in this part of the assignment.
Letting students think as their player agents would, is a good

exercise for getting them to understand difficulties and tradeoffs
that have to be made.

Before being allowed to proceed to the next part of the
assignment, the teacher has to approve of the scenarios.

5.2 Design
During the design phase, students will have a good idea of what is
possible and what is not. They use the scenarios from the first part
to come up with a full description of their system. This includes
additional scenarios (the scenarios from part one only included
basic, trivial events), different players (i.e. goalkeeper, defense,
captain, offense,…) and a plan for how communication and
cooperation between these shall occur.

5.3 Implementation
The final phase deals with the actual implementation of the
agents. Considering that Fleeble and the soccer simulator are still
(relatively) new to the students, it is impossible for them to
estimate beforehand exactly how much time a certain task will
take, and whether everything will have the expected outcome.
Even for experience programmers, this is a hard task, but for
novice programmers, it is a serious problem. Even when their
design is perfect, and time constraints seem reasonable, the result
will still depend on the individual skills of the group members. It
is important to use their design as a guideline, but students will
need to learn to iteratively refine their design as the
implementation continues.

Figure 4. Interface for creating team setup XML

In this phase, students start working with rule-based reasoning.
Although during the year 2005-2006, it was neither obligatory,
nor stated in the manual, all groups used a rule-based approach to
programming their agents. The rules primarily defined the
behavior of the agents. How a rule-based approach is incorporated
in soccer agents is shown in 5.4

5.4 Reference Team
To get a passing grade, a student team has to convincingly beat
the reference team. Students do not get to see the code for the
reference team, but they can observe how it works by playing at
it.
The reference team consist of one goalkeeper agent and six
Simple Players, spread over the field. The reference team uses a
rule-based approach to reason about its environment. Every time
input arrives through See or through Listen, the list of positions of
all objects is updated. Every time a See comes in (3 times per
second), the known info is updated and a number of Boolean
values are derived. These Booleans deal with: Is the ball position
known? visible? kickable? free? in enemy goal area? near base
position? with a team player? Is there a team mate standing free?
An enemy up ahead? Is it total chaos?
The values of these Booleans are then put into a Rule base, which

reasons about the situation. For example:

IF ball_kickable AND NOT in_enemy_goal_area AND team_mate_free
THEN pass_ball

The pass_ball fact will then cause the player to kick the ball.
The success of any given strategy depends on their analysis (what
Boolean values were derived and how well they were

recognized), the Rule base, and the implementation of the actual
actions.
The reference team does not communicate at all. All players
reason autonomously about what to do.
The keeper will try to stay between the goal and the ball. It will
try to take the ball when it is free, and when it has the ball, shoot
it into the field. When it doesn’t see the ball, it will stay on its
base position and scout for it.
The Simple Player will also scout for the ball when it doesn’t see
it. When the ball is visible and it is no total chaos, it will hunt for
the ball. When a team mate has the ball, it will try to stand in a
free spot. When it has the ball, it will try to avoid enemies and
attack over the flank at which it was positioned (a left back will
attack over left flank), moving directly towards the goal when it is
getting close. When a ball was recently visible, but isn’t anymore,
it will try to find out where it is by turning and moving towards it.
The resulting team was neither very smart nor very stupid. It was
a challenge for students to convincingly beat the reference team.

6. RESULTS
Evaluation of the assignment occurred through classroom
observations and through a survey. After a discussion of the
results coming from these, a comparison is made with previous
assignments.

6.1 Classroom Results
The expected result was that students would find the assignment
enjoyable, motivating and very educative. Based on classroom
observations and several conversations with participating
students, this is also the actual result. A few things were
remarkable, however.
First of all, there were hardly any questions about the assignment
all. With previous assignments, and especially with the
introduction of new assignments, there have always been loads of
questions. The only occasion the teacher was really necessary was
for approving scenarios and designs. This leads to believe that the
assignment is very well suitable for distance learning.
Second of all, it was remarkable that a wide variety of approaches
were attempted. The creativity and skill of individual group
members have been put to good use in designing and
implementing the agents, and gave diverse results.
A third remarkable observation was that several groups gave the
players the group members names. Rather than referring to a
certain player as ‘Right back’, or ‘Defense Player’ – as expected,
they felt affinity for their players. It is also interesting to note that
many groups were so enthusiastic about the assignment that they
worked on the implementation far beyond the lab hours. Even
after knowing their team was good enough to beat the reference
implementation, many groups made a big effort to try and win the
competition between the groups.
Many students were pleased with their implementations, but
regretted to see that a lot of their hard work had turned out useless
as it was not used. Getting a complicated strategy to work may
look trivial on paper, students gained first-hand experience in the
hard reality that it isn’t.
Another remarkable result is the results of the tournament. Since
groups were formed based on homogeneity in performance, the

expected result would be to have group 1 as champions, group 2
as number 2, etc. Rather than this happening, groups 4,3 and 5
(out of 5 groups) finished 1st, 2nd and 3rd. Although group 1 could
have won, their approach was too complicated, causing it not to
work. Most groups encountered similar problems, but the urge to
win the competition caused some groups to invest a lot more time.
Finally, at the competition between the groups, it was remarkable
to see how enthusiastic students were about winning, and how
much they enjoyed seeing their strategies at work.
Regarding the educational goals for the assignment, these were
achieved through all parts of the assignment. Students gained a lot
of insight in the problem of dealing with decentralized control in
ad-hoc networks through the scenarios and design. Through
implementing the players, most groups found that complexity
kills. A clever combination of rather simple methods yields a
better result than a poorly implemented ingenious approach.
Students used a Rule-based approach in their implementations,
but did so without using separate rule base software. Separating
the rules from the code would force students to program in a
better organized manner. Changing the assignment to explicitly
include this element would probably help students a lot during the
implementation.

6.2 Survey Results
After the competition, a survey was distributed among the
students to get their opinion of the assignment, the manual and the
software. It was remarkable to see several questionnaires with a
(very) positive rating, and a lot of useful feedback in the remarks
section on the one hand, and several very negative results without
any remarks.
Because the survey is anonymous, it is not possible to know
which students gave what kind of feedback, but a plausible
explanation for the result is that within groups, there are two
subgroups: Those that did a large share of the programming work,
worked with the simulator and read the manual, and those that
prepared the group’s presentation, wrote reports, helped the
programmers and took part in the design process. The first group
generally has a positive opinion (this is in agreement with
classroom observations), whereas the second group does not.
One of the questions was “Describe in 5 keywords the things that
you learning from the assignment:”
Some common answers were: “Teamwork, planning, ad-hoc
networks, problem solving, cooperation (software), how to
implement a (high level) strategy ”
45% of the students indicated that they would like to do more
assignments with Multi-Agent Soccer.
80% (strongly) agreed that they learned more from this
assignment than a ‘conventional’ practical that asks to implement
a certain algorithm.
75% felt that the assignment gave them insight in the problems
you encounter in environments without any centralized control,
specifically ad-hoc networks.
85% (strongly) agreed that the assignment was challenging.
80% liked the assignment (very much).
85% liked the competitive element (very much)

65% felt that they would have been able to finish the assignment
without the teacher’s help
In the remarks, the most commonly heard complaint was the lack
of time. Students only had 3 weeks to finish the entire assignment.
Some even proposed to remove assignment B and enlarge this
assignment. Another negative remark was the coordinates
(relative to team, relative to self) were not explained properly in
the manual.

6.3 Comparison
In the past two years, other assignments were given to the
students with similar educational goals [1]. It is not possible to
compare survey results, as the questions and the way they were
posed differ too much. It is possible however to compare the
classroom observations.
Two years ago, the assignment was flawed both conceptually and
by software. To combat these problems, the Smurf assignment
came into existence [1]. Although the software was working
reasonably well, the artificial point distribution system caused
trivial solutions to beat highly intelligent ones. Because of this, no
‘good’ implementation could be made.
With the lessons learned from previous assignments, the soccer
assignment tries to stick close to a realistic environment. Speed
penalties are given for communication, rather than an artificial
point distribution. Because the assignment was closer to reality,
students could identify better with their agents and this in term
further increased their motivation.
“It actually works” is a common utterance by students that
participated in the course in previous years, after having seen the
soccer assignment.

7. CONCLUSIONS
In this paper we have described a method of teaching Ad-hoc
Networks, Rule-based Reasoning, Multi Agent Systems and
Agent Technology using a multi agent soccer system. We
implemented a running version of the soccer system and tested
the assignment in a classroom environment.
We gathered results through anonymous questionnaires and
classroom observations. Both methods show that students enjoyed
the assignment and felt motivated by it. The educational goals
were achieved, and many group work related lessons were
learned.
Since the assignment only focuses on high-level strategic
decisions, rather than the low-level issues currently being looked
at in the robotic soccer field, students had more freedom for
creative, original solutions. Students learned while implementing

that complexity kills. A clever combination between simple
methods yields far better results.
Adding the competitive element to the assignment gave students
extra incentive for hard work, and the competitive element was
greatly appreciated by the students.

8. FUTURE WORK
The assignment is a good challenge for first-year undergraduate
computer science students. Due to the level of these students and
the short period of time allocated for the assignment, the resulting
teams were not spectacular.
It would be interesting to extend the system with various other
(more difficult) reference implementations, alter the assignment to
defeat these teams and give it to graduate students.
Adding a self-learning reference implementation would add an
interesting dimension to the analysis phase of the assignment, as
well as provide a real challenge for graduate students.
Most students felt that they could have done the assignment
without the help of the teacher. This leads to believe that a
modified version of the assignment would be particularly useful
for distance learning.

9. ACKNOWLEDGMENTS
The authors would like to thank all MKT undergraduates who
evaluated the course in 2005-2006. Special thanks go to Cristiano
Betta, Ilyaz Nasrullah and Paul van den Haak for their help in
managing the course in 2005-2006.

10. REFERENCES
[1] Pantic, M.; Zwitserloot, R.; Grootjans, R.-J., "Teaching ad-

hoc networks using a simple agent framework," Information
Technology Based Higher Education and Training, 2005.
ITHET 2005. 6th International Conference on , vol., no.pp.
S2A/6- S2A11, 7-9 July 2005

[2] http://www.fleeble.net/ (last visited: June 23, 2006)
[3] Pantic, M., Grootjans, R.J., Zwitserloot, R., “Fleeble Agent

Framework for teaching an introductory course in AI”, Proc
Int’l Conf. Cognition and Exploratory Learning in Digital
Age, pp. 525-530, Lisbon, Portugal, 2004.

[4] http://www.robocup.org/ (last visited: June 23, 2006)

216 APPENDIX A. PUBLICATION FOR ELCONF’06

Appendix B

Tournament Parameters

The TournamentParameters contain a number of variables defining the rules
of the game. These are passed on by the SoccerAgent to the SoccerVisu-
alizer, all RobotAgents and all PlayerAgents. As such, all rules are always
known by all agents. Knowledge of these rules may be beneficial for deter-
mining strategies.

Table B.1: An overview of all Tournament Parameters

Parameters Default Description
player-
startnumber

1 Robots will always get a number prefixed
to their names to make sure the names are
unique - the name is frequently used as an
identifier. This startnumber determines the
first number. The prefix is incremented by
one for every subsequent player that is added.

num-player 7 The amount of players on each team
refreshrate 25 The amount of times per second that the sys-

tem will attempt to redraw the screen. If, due
to heavy computation or some other reason,
this refreshrate can not be met, the highest
possible refreshrate is used.

player-radius 19 The radius of a player in pixels. Custom icons
may be used for players of different propor-
tions, but internally the size of every player
will be kept at this value.

field-width 1024 The width of the field in pixels. On the screen
this is the horizontal part of the field.

field-length 768 The length of the field in pixels. On the screen
this is the vertical part of the field.

Continued on next page

217

218 APPENDIX B. TOURNAMENT PARAMETERS

Table B.1 – continued from previous page
Parameters Default Description
field-metric-length 100 The metric length of the field1. This is used

in conjunction with field-width in calculating
for instance pixel speed from metric speed.

view-angle 120 The viewing angle in degrees of the robots2.
On the GUI, upon clicking on a robot, the
area within the red arc represents what is in
the viewing angle.

view-range 30 The number of meters within which objects
can be observed by robots. This is repre-
sented on the GUI by the red arc.

view-update 300 The amount of milliseconds between sequen-
tial updates on the Robot.See channel.

rotation-increment 20.0 The number of degrees that a turn will rotate
the robot3.

robot-speed 8.0 The velocity of the robot in meters per sec-
ond. 4

shout-penalty 2500 The amount of milliseconds that the speed
penalty inflicted for shouting a message will
last.

shout-slowdown 0.75 The robot-speed5 will be multiplied by this
factor if a robot has shouted during the last
shout-penalty milliseconds.

shout-range 25.0 The amount of meters that a shout can be
heard.

collision-penalty 2000 The amount of milliseconds that the speed
penalty inflicted for taking part in a collision
between two robots will last.

collision-slowdown 0.4 The robot-speed will be multiplied by this fac-
tor if a robot has shouted during the last
shout-penalty milliseconds.

Continued on next page

1Length refers to the longest side of the field, which is described by the parameter
field-width

2As Java uses radians as a default in its implementation of Math functions, the simula-
tor always uses radians. The parameters are in degrees because they are easier to visualize
for students. Conversion to degrees is easily done using Java’s Math.toDegrees() function.

3Movement is described in section 5.5
4The actual speed might differ from this in a number of situations, such as recent

collisions or shouting.
5With robot-speed we mean the current value of this speed. There are several para-

meters possibly affecting the robot’s speed that do not rule each other out, but are all
multiplied with each other

219

Table B.1 – continued from previous page
Parameters Default Description
ball-radius 12 The radius of the ball in pixels.
ball-friction 0.96 Every update (= 1 / refreshrate seconds) the

ball’s velocity will be multiplied by this factor,
to represent the friction of the field.

ball-description ”Ball” The name of the BallObject. This can be used
to check whether a certain VisibleObject is in
fact the Ball.

kick-randomness 22.5 The maximum number of degrees that a kick
will be off center in either direction.

goal-width 156 The width of the goal in pixels. From the
middle, the goal will stretch goal-width / 2 to
the left and goal-width / 2 to the right.

game-time 10 The amount of minutes that a single game will
last.

220 APPENDIX B. TOURNAMENT PARAMETERS

Appendix C

Detailed description of
MKT-2 Project

This chapter describes the background of the MKT-2 project, the setting,
and the educational approach. The first section describes the history of
the project. The next section describes the background. The background
knowledge of the students is described, and the various evaluation tools that
are used by the teachers are introduced.

C.1 History

In the academic year 2001-2002, the Computer Science curriculum at Delft
University of Technology was split up in two variants. The first being Soft-
ware Engineering, the second Media & Knowledge Technology (MKT). The
latter has as its main objective to create engineers who are able to design
and develop intelligent systems for multimedia and multimodal information
and knowledge processing, and who are able to design, realize and deploy
properly working man-machine interfaces. For first-year undergraduate stu-
dents, the main difference between the two variants is that two specialization
courses, together with their corresponding projects, are different. The sec-
ond project in the first year1 for students doing MKT was developed in
2001-2002. This project (MKT-2) was an introductory AI course, with the
following two aims [7]:

1. To introduce the basic concepts of knowledge engineering and the rel-
evant AI techniques, including search algorithms, knowledge represen-
tation techniques, rule-based reasoning algorithms, and agent technol-
ogy.

2. To explain and instruct on issues related to AI programming in general
and intelligent (multi-) agent applications in particular.”

1The project and course are given in the fourth quarter of the year.

221

222 APPENDIX C. DETAILED DESCRIPTION OF MKT-2 PROJECT

The educational approach that was used in the project is described in de-
tail in Section 9.1.1. It is very different from the conventional approach, and
is based on a synthesis between objectivist and constructivist approaches.

The enthusiastic and highly committed teaching assistants have contributed
to the project’s success, and implemented the feedback of previous years.
Fleeble [9][11] was developed, and many assignments were changed and
improved. The educational approach was evaluated and also improved
throughout the years.

C.2 Background

C.2.1 Students

Each year about 30-40 students participate in the course. These first-year
undergraduate students have no previous experience with any AI techniques,
but they have had three courses consisting of lectures and practical assign-
ments teaching them basic Java programming skills. They have little expe-
rience in group work, as they have only had one group work project earlier
in their first year.

C.2.1.1 Java Programming Skills

Although the three first-year undergraduate Java courses that the students
will have passed prior to starting on MKT-2 do learn the basics of Java
programming, the students will not have any experience with transforming
an abstract problem definition to working code. The practical assignments
corresponding to the courses test whether students can implement a highly
specific assignment, but they can not guarantee that students thoroughly
understand what they are doing, that students made everything by them-
selves (the assignments are individual, but group work is inevitable), and
that proper coding style and thorough documentation is used.

C.2.1.2 Group work

The students have had one group work project before, MKT-1, where they
were divided into groups of 5-6, and have as such gained some team work
experience. Classroom observations suggest however that they still have a
lot to learn in this area. In contrast to the first project, MKT-2 has serious
deadlines and challenging assignments. There is a lot more time pressure
and tasks have to be distributed among the group members. Due to the
limited programming experience, estimating whether or not a programming
assignment can be completed by a group member, and in what time, is a dif-
ficult process. To ensure all participants have a certain programming level,

C.2. BACKGROUND 223

and are capable of functioning under time pressure, an introductory assign-
ment was devised that will remove potential freeloaders. This assignment
shall be further discussed in section ¡check!¿.

C.2.2 Evaluation

C.2.2.1 Studentrate

Despite this effort to stop freeloaders, every year, freeloaders have been iden-
tified during the project. These people generally have made some effort, but
are notoriously absent during team meetings, often miss their targets, and
lack responsibility. To tackle the problem of freeloaders, a system called
Studentrate was introduced. The system asks students to rate their peers
anonymously, on job performance, attitude, leadership, management of re-
sources and communication, on a 1 to 5 scale. See Table C.1, and Table C.2
(continued) for details.

Students are asked to fill it in halfway through the project, and at the
end. They will be able to see how their peers rated them on average, but will
not be able to see the individual ratings. The introduction of Studentrate
provides a lot of feedback to the teaching assistants, as it will generally con-
firm suspicions of freeloaders, or signal problems that were unnoticed before.
Some groups prefer to do most of their work at home, and without Studen-
trate, it would be hard to gain insight in what members are contributing
enough. After several years of working with the system, it is also important
to note that several students dislike rating each other, and will give all team
members a score of 4 or 5 on everything. The interpretation of the results
is at least equally important as the gathering. It has occurred several times
that one or two students - in a group of 6 - do about 80% of the work. These
people tend to avoid confronting their group mates with this problem, and
will often refrain from informing the teaching assistants of the unequal work
distribution. Through the anonymity of Studentrate however, they are free
to spill their guts. It is important for teaching assistants to attach a cer-
tain value to the ratings of group members. It is obvious that the most
active members have higher credibility in estimating how much work other
members of the group have actually done.

When freeloaders are identified, the teaching assistants first call for a
meeting with the group without the freeloader, then a meeting with the
freeloader individually, and finally a meeting with the entire group and the
teaching assistants. After these meetings, a decision is made on whether
or not the freeloader gets a second chance, or if he is removed from the
project. Only in extreme cases are people removed from their groups, but
it has occurred several

224 APPENDIX C. DETAILED DESCRIPTION OF MKT-2 PROJECT

Table C.1: Studentrate

Job Performance Attitude Leadership
5 (++) Consistently does

more than required.
Work is of exceptional
quality.

Positive and pro-
fessional attitude,
which favorably influ-
ences other company
members.

Takes initiative to seek
out work, concerned
with getting the job
done. Very involved in
the technical project.

4 (+) Sometimes does more
than required. Work is
of high quality. A pro-
ducer.

Positive attitude to-
ward project and the
team.

Readily accepts tasks,
sometimes seeks more
work. Gets involved in
the project.

3 (+/-) Performs all assigned
tasks. Quality of work
is acceptable.

Neutral attitude. Gets involved enough
to complete tasks.
Does his/her share.

2 (-) Performs all assigned
tasks. Work must be
redone or repaired to
meet standards.

Negative attitude to-
ward project and/or
team.

Tends to watch oth-
ers work. Gets in-
volved only when nec-
essary. Volunteers to
help when it will look
good.

1 (–) Performs some as-
signed tasks. Work
must be redone by
others to meet stan-
dards.

Negative attitude
which adversely af-
fects other company
members or project.

Lets others do the
work; does the mini-
mum he/she thinks is
needed to get by.

NR No rating For exam-
ple, you never worked
with that person, or
you don’t want to rate
yourself.

No rating For exam-
ple, you never worked
with that person, or
you don’t want to rate
yourself.

No rating For exam-
ple, you never worked
with that person, or
you don’t want to rate
yourself.

NFI Not filled in Not filled in Not filled in

C.2.2.2 Group Formation

The group formation for the project uses a new approach. A lot of the
recent literature suggests using heterogeneous groups, as a diversification
in the skills of students would result in more balanced groups, where the
individual’s strengths can be used to their fullest potential. Common group
formation techniques used at Delft University of Technology are either ran-
dom, self-selected or through using the Belbin test. One strong argument
against allowing student to form their own groups is that they will often

C.2. BACKGROUND 225

Table C.2: Studentrate (continued)

Management of Resources Communication
5 (++) Uses time effectively in and out of

group and works to get others to
do the same. All tasks completed
on or ahead of schedule.

Oral and written skills excellent.
Very effective within the group
and to reviewers.

4 (+) Uses time effectively in and out
of group. Completes all tasks on
time.

Usually effective

3 (+/-) Wastes some time in group, but
works hard when a deadline is
near. Most tasks completed on
time.

Generally gets the point across.
Tries to improve in weak areas

2 (-) Wastes most of group time. Sel-
dom seen doing productive work.
Some tasks completed late.

Skills ineffective. Makes an effort
to improve.

1 (–) Does little useful work in group or
out; wastes his/her time and oth-
ers. Work is constantly late.

Skills ineffective. Makes little or
no effort to improve.

NR No rating For example, you never
worked with that person, or you
don’t want to rate yourself.

No rating For example, you never
worked with that person, or you
don’t want to rate yourself.

NFI Not filled in Not filled in

stick together throughout their curriculum, and as such miss the opportu-
nity of learning from other colleagues. In the MKT-2 project, a formation
approach evolved from empirical evidence by the teaching assistants. Based
on the quality of the code of the individual assignment, and the time it was
delivered, homogenous groups are created, based on skill and enthusiasm.
Several arguments support this approach: First of all, in groups with a lot
of variance in the skill level, the most skilled members will do all the pro-
gramming work - they are the best equipped, and will not want to submit
products of the low quality that the less skilled members would produce. As
such, it frequently occurs that the less skilled members end up only writing
the reports. The distinction between these people and freeloaders is very
hard to make. When they do get a programming task, they will need a lot of
help and the most skilled group members will spend a lot of time and effort
helping their peers. This is not a pleasant working environment for either
the skilled or the unskilled group members. Furthermore, the quality of the
final product is likely to be negatively affected by this. The expectations

226 APPENDIX C. DETAILED DESCRIPTION OF MKT-2 PROJECT

that the teaching assistants have of the highly skilled groups will be higher
than that of the lower skilled groups. The lower skilled groups will receive
more assistance and help with programming, and more monitoring from the
assistants, whereas the highly skilled groups will be given more freedom.
They will receive challenging questions regarding their implementation, and
stimulated to make highly intelligent solutions. The skilled groups will learn
more, as they can function on their own level, whereas the less skilled groups
will also learn a lot more, as they have to actually make the implementa-
tions, rather than simply writing the reports. It was found that members
from all groups were quite happy with their group, and there were relatively
few freeloaders. The results produced by the highly skilled groups were
often indeed of higher quality than that of the lower skilled groups. It is
interesting to note that the average groups would often challenge the most
skilled group in the group assignments, by putting in a lot of extra effort.

C.2.2.3 Gannt Charts

The project has a lot of time pressure and tight deadlines. To further help
students in dealing with these, every group assignment has an analysis and
design phase, where students are instructed to study the assignment, identify
the tasks, estimate the duration of these tasks and distribute them among
the group members. A Gannt chart (See Figure C.1) [75]

Figure C.1: An Example Gannt Chart

has to be approved by the students before they can start on the imple-
mentation. Another Gannt chart has to be made after the assignment is

C.2. BACKGROUND 227

done, showing the amount of time actually spent on tasks. This is useful for
students to evaluate their actual performance to their initial estimations.
It is also very useful for the teaching assistants to recognize problems in
the group, and to see which members contributed most. It provides a good
overview of the assignment, all subtasks, and the distribution in the group.
It is quite common to see that the initial Gannt chart has an equal work dis-
tribution among the group members, while the final chart shows two people
that did nothing more than write the report.

C.2.2.4 Data Flow Diagram

Apart from the Gannt Chart, students will also have to create a Data Flow
Diagram (DFD) prior to starting on the implementation phase. The DFD
shows all agents, all channels, and all communication from Agents over
these channels. The DFD has to be approved by a teaching assistant before
students can start working on their implementations. Figure 9.2 illustrates
such a DFD.

The Gannt Chart and DFD together ensure that the students know what
has to be done for the implementation phase. During the implementation,
the teaching assistants remain actively involved in resolving bugs, answering
questions and monitoring the group process and progress. As the available
time for each assignment is around 2 weeks, there are no intermediate dead-
lines. Recognizing the importance of timely feedback, grades and comments
will generally be given to the groups 1-2 weeks after completion of the as-
signment.

At the end of each assignments, groups have to write a product report con-
sisting of the problem definition, the design, the implementation, conclusion
and answers to some extra questions about the theory of the assignment.
This documentation serves several purposes. First, it forces students to
keep an overview and document their work. Second, it deals with the stu-
dents that have not programmed as much. These are often selected to write
the reports, to make up for their smaller contribution to the programming.
Through writing the reports, they will be aware of the work their peers have
done, and understand what decisions had to be made.

C.2.2.5 Oral Exam

After all assignments are done, a group grade is composed as a weighted
average over all group assignments. An oral exam, where the entire group
and all teaching assistants are present is then held. For this oral exam, the
teaching assistants carefully study all classroom observations, Studentrate
ratings, Gannt charts, reports and code for all groups and all individual

228 APPENDIX C. DETAILED DESCRIPTION OF MKT-2 PROJECT

members. Often one or two members are thought to have played a key role
in the group’s success through their effort in programming, and these will
be given the chance to prove themselves during the oral exam. Students
that are on the edge of being freeloaders will have to prove themselves to
be worthy of the group grade. During the oral exam, difficult questions
regarding the theory or the implementation of the assignments will be posed
to these students, and the teaching assistants will come up with individual
grades to reward those that put in a lot more effort, and punish those that
did not.

Appendix D

Soccer Assignment: Survey

The following survey was handed out to all participating students of the
MKT-2 project in 2005-2006.

229

Multi-Agent Soccer Survey
MKT2-Project

May-June, 2006
iweinb@gmail.com

This was the first year the multi-agent soccer assignment was given. The following questions will evaluate
your opinion on the assignment. Please bear in mind that as it was the first year, some variables, features
and (unknown) bugs will see improvement for the next time the assignment is used.

Filling in this survey should take about 5 minutes. Please complete the survey and return it to one of the
project assistants. Thank you!

 Strongly
Disagree Disagree Neutral Agree Strongly

Agree

Multi-Agent Soccer gave me insight in the
problems you encounter in environments without
any centralized control (Mobile Ad-Hoc Networks)

Multi-Agent Soccer made me think about the
trade-off between communicating and reasoning
autonomously

I learned more from this assignment than I would
have in a ‘conventional’ practical where you are
asked to implement a certain algorithm

The assignment was at a good level for first year
computer science students

Multi-Agent Soccer increased my programming
skills

The Multi-Agent Soccer software is easy to use

I liked not having to worry about low-level details
such as ball speed, whether someone is from your
team or who is shouting

I like the fact that the assignment focuses on
teamwork and cooperation

The manual was useful

I would have liked to have a web tutorial (screen
cast) for installation and configuration

I would have liked to have a web tutorial (screen
cast) for making a simple player

I would have liked to have a web tutorial (screen
cast) for explaining the assignment

I like the competitive element (tournament)

 Strongly
Disagree Disagree Neutral Agree Strongly

Agree

I would not have been able to finish the
assignment without the assistants.

Multi-Agent Soccer was challenging

I liked the assignment

I am pleased with the team my group made

The assignment stimulated me to be creative

The assignment took too much time

I would like to do more assignments with Multi-
Agent Soccer

Describe in 5 keywords the things that you learned from the assignment:
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………

Remarks about manual:
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………

Remarks about software
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………

Remarks about assignment
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………

Additional comments
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………
…………………………………………………………..…………………………………………………………..………………………………

Thank you very much for completing the survey!
We will process your feedback and implement it where possible!

If you would be interested in doing more Multi-Agent Soccer assignments,

are interested in the domain or have more feedback you would like to share,
then don’t hesitate to send an e-mail to iweinb@gmail.com!

232 APPENDIX D. SOCCER ASSIGNMENT: SURVEY

Bibliography

[1] H. Kitano and M. Asada. The RoboCup humanoid challenge as the
millennium challenge for advanced robotics, Adv. Robot., vol. 13, no.
8, pp. 723-737, 2000.

[2] FIFA - Federation Internationale de Football Association, Laws of the
Soccer Game, http://www.fifa.com/en/laws/menu.htm, Last visited at
August 25, 2006.

[3] J. Schaeffer, A. Plaat. Kasparov versus Deep Blue: The Re-Match.
Journal of the International Computer Chess Association, Volume 20,
Issue 2, pp. 95-101, 1997.

[4] RoboCup Federation, Official website, http://www.robocup.org/, Last
visited at August 25, 2006.

[5] H. Burkhard, D. Duhaut, M. Fujita, P. Lima, R. Murphey, and R.
Rojas. ”The road to RoboCup 2050.”, IEEE Robotics & Automation
Magazine, 9(2):3138, 2002.

[6] Wikipedia - An explanation of the Offside rule,
http://en.wikipedia.org/wiki/Offside law (football), Last visited
at August 25, 2006.

[7] R.J. Grootjans (advisor: M. Pantic), ”A Simple Agent Framework for
Teaching AI Programming to Novices”, MS thesis, Man-Machine Inter-
action Group, Delft University of Technology, Delft, 2004.

[8] M. Pantic, R. Zwitserloot, R.-J. Grootjans, ”Simple agent framework:
an educational tool introducing the basics of AI programming”, Proceed-
ings International Confererence on Information Technology in Research
and Education, pp. 426-430, August 2003.

[9] http://www.fleeble.net/, Last visited at August 25, 2006.

[10] Fleeble Documentation and Tutorials, available in Fleeble, from
http://www.fleeble.net, Last visited at August 25, 2006

233

234 BIBLIOGRAPHY

[11] M. Pantic, R.-J. Grootjans, R. Zwitserloot, Fleeble Agent Framework
for teaching an introductory course in AI, Proc. Intl Conf. Cognition
and Exploratory Learning in Digital Age, pp. 525-530, Lisbon, Portugal,
2004.

[12] M. Pantic, R. Zwitserloot, R.-J. Grootjans, ”Teaching Introductory
Artificial Intelligence Using a Simple Agent Framework”, Education,
IEEE Transactions on , vol.48, no.3pp. 382- 390, Aug. 2005

[13] S. Russell, P. Norvig, Artificial Intelligence: a Modern Approach., Sec-
ond Edition, Prentice-Hall, 1995.

[14] K. P. Sycara. ”Multiagent Systems”, AI Magazine vol. 19(2), pp. 79-92,
1998.

[15] M.K. Sahota, A.K. Mackworth. Can situated robots play soccer? Pro-
ceedings of Canadian AI-94 (1994), pp. 249-254.

[16] M. Jamzad, M. Asadpour, ”Introducing Simulation Middle Size: A New
Soccer League to RoboCup”,

[17] Sony Aibo, Official website, http://www.sony.net/Products/aibo/,
Last visited at August 25, 2006.

[18] Aibo SDE - Development environment for writing software for the Sony
Aibo, Official website, http://openr.aibo.com/, Last visited at August
25, 2006.

[19] Humanoid Soccer League, Official website,
http://www.humanoidsoccer.org/, Last visited at August 25, 2006

[20] S. Behnke, ”Humanoid Soccer Robots”, Information Technology, vol.
47, pp. 292-298, May 2005.

[21] S. Behnke, T. Langner, J. Muller, H. Neub, and M. Schreiber. ”Nim-
bRo RS: A Low-Cost Autonomous Humanoid Robot for Multi-Agent
Research”, Proc. of Workshop on Methods and Technology for Empiri-
cal Evaluation of MAS and Multi-robot Teams (MTEE), 27th German
Conf on AI (KI2004), Ulm, Germany, 2004.

[22] G. F. Wyeth, D. Kee, M. Wagstaff, N. Brewer, J. Stirzaker, T.
Cartwright, and B. Bebel. ”Design of an autonomous humanoid ro-
bot”, Proc. of the Australian Conf on Robotics and Automation (ACRA
2001), Melbourne, 2001.

[23] S. Behnke, J. Muller, and M. Schreiber. ”Toni: A soccer playing hu-
manoid robot”, Proc. of 2005 RoboCup Intl Symp., July 2005.

BIBLIOGRAPHY 235

[24] Soccer Simulator, Official website, http://sserver.sourceforge.net/, Last
visited at August 25, 2006.

[25] I. Noda, ”Soccer server: a Simulator of RoboCup”, In Proceedings of
AI Symposium ’95, Japanese Society for AI, pp. 29-34, December 1995.

[26] http://www.uni-koblenz.de/t̃omomi/rc06/rules 2d.20060615.pdf, Last
visited at August 25, 2006

[27] http://sserver.sourceforge.net/docs/manual.pdf, RoboCup Soccer
Server Users Manual. Last visited at August 25, 2006.

[28] RoboCup Simulation Library Archive - An overview of
available libraries for developing RoboCup software agents,
http://www.ida.liu.se/ frehe/RoboCup/Libs/, Last visited at Au-
gust 25, 2006.

[29] O. Obst, M. RollMann. ”Spark - A Generic Simulator for physical
Multi-agent Simulations”, Proceedings of the MATES 2004, Lecture
Notes in Artificial Intelligence, pp. 243-257, September 2004.

[30] B. Browning, E. Tryzelaar, ”Ubersim: A multi-robot simulator for robot
soccer”, Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 948-949, 2003

[31] T. Laue, K. Spiess, and T. Rofer, ”SimRobot - a general physical robot
simulator and its application in RoboCup,” in RoboCup 2005: Robot
Soccer World Cup IX, Lecture Notes in Artificial Intelligence, Springer,
2005.

[32] B. Gerkey, R.T. Vaughan, A. Howard, ”The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems.”, Proceedings
of the 11th International Conference on Advanced Robotics, Coimbra,
Portugal, 317 323, 2003

[33] O. Michel, ”Webots: Professional mobile robot simulation”, Interna-
tional Journal of Advanced Robotic Systems, Volume 1, Number 1, pp.
3942, March 2004.

[34] J.C. Zagal, J.R. del Solar, ”UCHILSIM: A Dynamically and Visually
Realistic Simulator for the RoboCup Four Legged League.”, RoboCup
2004: Robot Soccer World Cup VIII, Lecture Notes in Artificial Intel-
ligence, 2004.

[35] H. H. Lund, ”Robot Soccer in Education.”, Advanced Robotics Journal,
Volume 13, Number 8, pp. 737-752, 1999.

236 BIBLIOGRAPHY

[36] J.K. Archibald, R.W. Beard, ”Goal! robot soccer for undergraduate
students”, Robotics & Automation Magazine, IEEE, Volume 11, Issue
1, pp. 70-75, March 2004.

[37] R. Murphy, ”Competing for robotics education”, IEEE Robotics and
Automation Magazine, Volume 8, Issue 2, pp. 4455, June 2001.

[38] E. Sklar, S. Parsons, P. Stone, ”RoboCup in Higher Education: A Pre-
liminary Report”, Lecture Notes in Computer Science, Volume 3020,
pp. 296-307, Jan 2004.

[39] J.K. Archibald, R.W. Beard, ”Competitive robot soccer: a design ex-
perience for undergraduate students”, Frontiers in Education, vol. 2,
pp.14-19, 2002.

[40] F. Heintz, J. Kummeneje, P. Scerri, ”Simulated RoboCup in Univer-
sity Undergraduate Education”, Proceedings of the fourth international
workshop on RoboCup at the 4th RoboCup World Championships,
2000.

[41] T. Huang, F. Swenton, ”Teaching Undergraduate Software Design in a
Liberal Arts Environment Using RoboCup”, Proceedings of 8th annual
conference on Innovation and technology in computer science education,
Volume 35, Issue 3, pp. 114-118, 2003.

[42] J. Kummeneje, ”RoboCup as a Means to Research, Education, and Dis-
semination”, Licentiate of Philosophy Thesis, Dept. of Computer and
Systems Sciences, Stockholm University, 2001.

[43] F. Heintz, J. Kummeneje , P. Scerri, ”Using Simulated RoboCup to
Teach AI in Undergraduate Education”, Proceedings of the 7th Scandi-
navian Conference on Artificial Intelligence, pp.13-21, February 2001.

[44] J. Vidal, P. Buhler, ”Using RoboCup to Teach Multiagent Systems and
the Distributed Mindset”, Proceedings of the 33rd ACM Technical Sym-
posium on Computer Science Education, February 2002.

[45] F.Heintz, ”RoboSoc a System for Developing RoboCup Agents for Edu-
cational Use”, Master’s thesis, Department of Computer and Informa-
tion Science, Linkoping university, March 2000.

[46] Agentlink - An overview of agent software,
http://www.agentlink.org/resources/agent-software.php, Last vis-
ited at August 25, 2006.

[47] J.P. Bigus, J. Bigus, ”Constructing intelligent agents using Java”, New
York: John Wiley & Sons, 2001.

BIBLIOGRAPHY 237

[48] S. Poslad, P. Buckle and R. Hadingham, The FIPA-OS Agent Plat-
form: Open Source for Open Standards, available at http://fipa-
os.sourceforge.net.

[49] Pathwalker Agent framework, Fujitsu Laboratories, 2000. Official web-
site: http://www.labs.fujitsu.com/freesoft/paw/.

[50] Java 1.5 http://java.sun.com/j2se/1.5.0/, Last visited at August 25,
2006.

[51] Serialization - saving an object to bytes,
http://en.wikipedia.org/wiki/Serialization, Last visited at August
25, 2006.

[52] Java Annotations, http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html,
Last visited at August 25, 2006.

[53] G. Bracha, Generics in the Java Programming Language,
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf, July 2004.

[54] P. Boucklee, Java Packages Tutorial,
http://www.jarticles.com/package/package eng.html, Last visited
at August 25, 2006.

[55] Context Programmer’s Editor, http://www.context.cx/, Last visited at
August 25, 2006.

[56] The Eclipse Project, http://www.eclipse.org, Last visited at August 25,
2006

[57] CVS - Concurrent Versions System, http://www.nongnu.org/cvs/, Last
visited at August 25, 2006.

[58] Ant - Java-based build management tool, http://ant.apache.org/, Last
visited at August 25, 2006.

[59] GNU Make - build management tool,
http://www.gnu.org/software/make/, Last visited at August 25,
2006.

[60] SWT - Standard Widgets Toolkit, http://www.eclipse.org/swt/, Last
visited at August 25, 2006.

[61] AWT - Advanced Widgets Toolkit, first-generation graphical toolkit for
Java, http://java.sun.com/products/jdk/awt/, Last visisted at August
25, 2006.

[62] Swing - The Swing Tutorial, second-generation graphical toolkit for
Java, http://java.sun.com/docs/books/tutorial/uiswing/index.html,
Last visited at August 25, 2006.

238 BIBLIOGRAPHY

[63] Wikipedia - KISS - The Keep It Simple, Stupid principle,
http://en.wikipedia.org/wiki/KISS Principle, Last visited at August
25, 2006.

[64] Wikipedia Soccer, Explanation of the laws of the game of soccer,
http://en.wikipedia.org/wiki/Football (soccer), Last visited at August
25, 2006.

[65] C.E. Shannon, ”A Mathematical Theory of Communication”, Bell Sys-
tem Technical Journal, vol. 27, pp. 379-423, 623-656, July, October,
1948.

[66] J. Kok, R. de Boer, The Incremental Development of a Synthetic
Multi-Agent System: The UvA Trilearn 2001 Robotic Soccer Simula-
tion Team, Master’s Thesis, University of Amsterdam, February 2002.

[67] Mox - Mapped Object XML, A simple Java 1.5-based XML parser
developed by Reinier Zwitserloot, http://www.zwitserloot.com/java-
boilerplate/mox/tutorial.html, Last visited at August 25, 2006.

[68] Nullsoft Scriptable Install System, http://sourceforge.net/projects/nsis/,
Last visited at August 25, 2006.

[69] T.M. Duffy, J. Lowyck, D.H. Jonassen, ”Constructivism: New Implica-
tions for Instructional Technology”, Constructivism and the technology
of instruction: a conversation, pp. 1-16, 1992.

[70] J.B. Black, R. McClintock, ”An interpretation construction approach
to constructivist design”, Constructivist Learning Environments: Case
Studies in Instructional Design, B.G. Wilson, Ed. Englewood Cliffs, NJ:
Educational Technology, 1995, pp. 25-31.

[71] R. Lister, J. Leaney, ”Bad theory versus bad teachers: Toward a prag-
matic synthesis of constructivism and objectivism”, Proceedings of the
International Conference of Higher Education Research and Develop-
ment Society of Australasia Inc., 2003.

[72] S. Hadjerrouit, ”A constructivist approach to object-oriented design
and programming”, Proceedings of the 4th annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and technology in computer science
education, pp. 171-174, 1999.

[73] J.R. Savery, T.M. Duffy, Problem based learning: An instructional
model and its constructivist framework”, Educational Technology, Vol-
ume 35, Issue 5, pp. 31-38, 1995.

[74] C.E. Hmelo-Silver, Problem-Based Learning: What and How Do Stu-
dents Learn?, Educational Psychology Review, Volume 16, Issue 3, pp.
235-266, 2004.

BIBLIOGRAPHY 239

[75] Gannt Charts, http://en.wikipedia.org/wiki/Gantt chart, Last visited
at August 25, 2006.

[76] Roshambo - Rock Paper Scissors, http://en.wikipedia.org/wiki/Rock, Paper, Scissors,
Last visited at August 25, 2006.

[77] Forward Chaining, http://en.wikipedia.org/wiki/Forward chaining,
Last visited at August 25, 2006.

[78] The Internet Movie Database, http://www.imdb.com/, Last visited at
August 25, 2006.

