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Preface
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sis supervisor, Leon Rothkrantz. I thought I wanted to do something with designing intelligent dialogs and had
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gent dialog design practical was frankly being hindered by the speech recognizer’s performance. Thus the focus
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the goals set by myself and my supervisors, while in the same adjusting to a new environment and being around
interesting people from whom I was able to learn a lot.

For letting me do my project amongst them and for giving me this great learning experience, I’d like to thank the
completeDUTCHEAR team, Victor Huisman, Bram Vromans, Sander de Graaf, Hanna Schösler, Els Nachtegaal,
Corien Brinkmeyer, my fellow interns with whom I shared a room and had lots of fun, Marko Simsic and Thomas
de Bondt, and last but not least my supervisor atDUTCHEAR, Hans Jongebloed, for giving me the freedom to choose
my own path and giving me lots of helpful advice in the process. My gratitude again goes to Leon Rothkrantz, for
putting up with all the changes and giving me advice in writing this thesis whenever I hit a roadblock. Finally I’d
like to thank my friends and family for giving me the opportunity to study and their support through all the years.
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Abstract

Automated Speech Recognition has many open problems. In this thesis two well-known problems are researched.
The first topic deals with the ever growing phenomenon of English words being used in Dutch colloquial speech.
This makes it increasingly expectable that speech recognizers in the Netherlands should be able to recognize these
English words as well as Dutch. Dutch people speaking English introduces a number of problems, including
non-native speech and lack of training data. Thus a multilingual acoustic modeling approach was attempted using
training data from widely available Dutch and English corpora. The second topic deals with the realization of
a call classifier which is trained using machine learning techniques. Machine learning techniques algorithms in
call classification literature such as BoosTexter generally require a large amount of data before satisfying results
are obtained, thus making them unsuitable for use in the beginning stages of a project where human expertise is
more suitable. By using the RIPPER rule generating algorithm hopefully a system can be made which accepts
human knowledge in the early phases of a project, as well as machine generated rules which can be inspected by
the expert in later stages of a project as more data becomes available.
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Chapter 1

Introduction

In Arthur C. Clarke’s 1968 popular science fiction movie “2001: A Space Odyssey” the notion of humans and
computers communicating back and forth perfectly through speech was introduced to the general public. HAL,
the space ship’s computer, is able to chat interactively and intelligently with crewman Dave Bowman and has
no trouble understanding him. Real life systems today are still a long way from this level of interactivity and
recognition performance.

The first milestone in speech research was reached in 1936 when Bell Labs researchers were able to demonstrate
a machine capable of synthesizing speech. This voice was rather robotic, and this type of voice has been popular
in many science fiction movies. In the 1940s the U.S. Department of Defense began funding work in this field.
Researchers quickly realized that unrestricted, large vocabulary, speaker independent systems were unfeasible for
their time, so they concentrated on speaker dependent, small vocabulary, discrete speech systems. It took until
the early 1970s when Lenny Baum invented the Hidden Markov Model approach to speech recognition. Shortly
thereafter the first commercial speech recognizers appeared. The Hidden Markov Model approach was and still is
the most successful approach to date.

With the realization of Moore’s Law and the availability of more and more computational power research has
shifted over the years from speaker dependent, small vocabulary and discrete to large vocabulary, speaker inde-
pendent and unrestricted and is still ongoing.

In December 2004 I started my internship at TNO-ICT andDUTCHEAR, a small innovative company which is a
leader on the telephone speech recognition market in the Netherlands, where I was able to gather information to
write this thesis, as well as perform research to deepen their knowledge in this field. A lot of insight and experience
was gained during the internship which lasted until June 2005.

The thesis is built up as follows. In this chapter the current state and problem areas of speech recognition are
discussed, which in turn lead to two specific problems or topics which will be worked out in the rest of this work,
namely multilingual recognition of English spoken by Dutch, and machine learning for call classification. In
Chapter 2 background theory is discussed into the workings of a speech recognizer, multilingual recognition and
machine learning. In Chapter 3 the corpora, or huge collections of speech recordings used in this thesis will be
covered, and in Chapter 4 the used tools. The two main topics are covered in Chapter 5 and 6 respectively, and
finally the conclusion in Chapter 7.

1.1 Problem areas in speech recognition

Automatic Speech Recognition has been around for a long time. Most speech recognizers today are based on
HMM (Hidden Markov Model) techniques, and this technique is generic enough to be used on many languages.
The first speech recognizers were developed in the United States, but since then speech recognizers have been

1



2 CHAPTER 1. INTRODUCTION

made for many other languages: Dutch, Japanese, German, French, Italian etc. Speech recognizers are tradition-
ally trained on a large general corpus for that language, consisting of a lot of utterances from native speakers,
usually phonetically rich sentences, so that most of the transitions between sounds are covered, and that a lot of
different variations of the same sound made by many people is learned by the recognizer. Utterances are usually
transcribed orthographically and sometimes phonetically. An alignment is then needed to determine in what part
of the recording a certain phoneme is present. Alignments can be done manually or automatically. The final
alignments are used for training the HMM models of the recognizer.

In the Netherlands some examples of successful applications of speech recognition over the years are:

• OVR Time travel:
Callers can ask the system for the schedule of trains leaving from station to station on a certain day.

• Stocks and shares information line:
Callers are kept informed about the shares and stocks on the exchange market.

• Postal code line:
Callers say the place, street name and house number to get the corresponding postal code.

Despite speech recognition’s success, there are still areas of research left within speech recognition, for example:

• Large vocabulary recognition and free speech:
Many applications up until now are limited to short utterances by the users, or system initiated dialogs
where the system takes control and asks the questions. This makes the expected answers predictable, short
and there is less probability that the user has to correct himself in an utterance. In order to give users more
freedom, the application should accept longer sentences and free speech so that he can take more control
over the dialog, but this also makes his sentences unpredictable, especially with hesitations, corrections and
sentence restarts. Task specific language models have to be made in order to optimally predict possible
utterances. This is also important for dictation applications. After the sentence is recognized, there is the
problem of interpreting it and taking the next course of action, but speech understanding is another subject
which will not be discussed here.

• Prosody and Tonal languages:
Words can be said with different tones. Saying something in a different tone can for example mean the exact
opposite, for example in the case of sarcasm. Even though the sound is the same, the tone is different. Speech
recognizers are good at recognizing sounds, but still have a hard time distinguishing the tone. Therefore
there is much research being done in order to detect the tone of an utterance and the emotion behind it, being
anger, happiness, sadness etc.

Tones are also important for certain languages, particularly Asian ones, such as Chinese and Japanese. For
example, in Japanese, a word with two syllables can have different meanings, depending on whether the
emphasis is on the first or second syllable, or no emphasis.

• Noisy environments:
Speech recognizers are generally trained purely on the speech and most of the time in limited environments.
Speech over telephone line, or in a quiet room through a microphone are the most common. With the
rise of mobile phones, there is the need to use speech recognition in much more noisier environments than
the recognizer is trained on, for example in the car in traffic or in the middle of a shopping center. A lot
of research is being done to improve recognition in these environments, but as it is hard for humans to
understand people with a lot of background noise, it is even harder at the moment for computers.

• Speaker recognition and verification:
With the recent terrorists attacks, there is a lot of focus on security, and to verify that people are really who
they say they are. One major focus is on biometrics. The idea is that based on a speech sample from a
person the system should be able to identify him (speaker recognition), or verify that he really is who he
claims to be (speaker verification). Obviously speaker identification is the harder problem.
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• Multilinguality and Non-nativeness:
With globalization and immigration, a lot of people travel over the world, and a lot of people communicate
with each other using a common language, which is not necessarily their own. In some countries such
as Belgium, Switzerland and Canada there is more than one official language. Many people also use a
lot of loan words from other languages, particularly English. Companies want to make speech recognition
services available for as many people as possible, so speech recognizers should be able to detect or recognize
multiple languages, and recognize the speech of people not speaking in their native language.

In telephone speech there are additional problems and doing recognition over a telephone line is even harder.
Comparisons are drawn with dictation systems, because these are the most successful applications, where vendors
claim accuracy of 95% or higher, and as such some people (wrongly) come to expect this kind of performance for
automated speech solutions over the telephone.

• Speaker independency:
Telephone services are open to anyone with a phone and who is willing to dial the number. Therefore a
whole variety of speakers can be expected to make use of these services. In contrast to dictation systems
where the speaker is known beforehand and performance can be optimized for one speaker, the recognition
must be as optimal for an as large group as possible. Because of this factors which affect the voice such
as race, dialect, non-nativeness, gender, age, health etc. are all variables for which an as wide range as
possible should be covered by the recognition system. This makes the problem much harder and the relative
performance is therefore lower than for a system for which the speaker is known beforehand. The amount
of necessary training data needed is also larger, because a lot of speaker variability should be covered by the
training set.

• Noise and low-bandwidthness:
Humans can perceive sounds of up to around 20 kHz. As this is the limit for humans it makes sense that for
speech recognition also up to this frequency should be captured in the speech recordings. This can be done
by recording at 44 kHz with a good microphone. However telephony is narrowband and only sounds of up to
around 4 kHz can be transmitted over an analog telephone line (and recorded at 8 kHz), meaning that there
is a lot of information loss in the higher frequencies. Because of this loss of information the performance
of telephony speech recognition systems is less than speech recognition systems which do not have to cope
with this limitation and can record under ideal recording circumstances. Analog, humans are also affected
since they often need to put more effort into understanding people over a telephone line. Also the quality
of the telephone microphones can vary. Training data should therefore consist of recordings made over the
telephone line, to prevent the recognizer from relying on frequency information above 4 kHz.

The second issue is noise. A dictation application is often used in a relatively quiet office and broadcast
audio is recorded in a controlled studio environment. The environment that people use their telephones is
much more variable. In fixed telephony the noise can be from screaming children, passing cars, sounds from
the television or radio etc. With the rise in use of mobile phones extra noise sources are introduced, since
phones are used in even more environments. For example, in cars the acoustics are completely different
than from the living room environment and the phone is often used in combination with a hands-free set.
The hands-free microphone can record sounds from farther away than a traditional telephone microphone
and more noises are potentially captured. As noise hinders the human ability to recognize speech, it also
hinders the performance of speech recognizers. Speech recognizers should therefore be additionally trained
on or adapted to noisy data to improve robustness.

• Language model training:
It has been shown that language models improve recognition performance of sentences. Dictation applica-
tions can use language models from large amounts of text which are widely available, usually newspapers,
because the speaking style used is mostly the same. Also in dictation and broadcast transcription systems
speakers formulate a complete sentence beforehand or read from a cue sheet, making little or no mistakes.

For telephony systems language models are much harder to obtain. Telephony systems are often interactive
and require that users formulate their answers or questions on the fly. This causes them to make mistakes,
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hesitations, make restarts etc. These can occur at any time within the utterance. Furthermore, the auto-
mated understanding of such utterances becomes much harder, since the system has to be able to detect and
disregard any mistakes the user made in the sentence.

For good language models in telephony, transcriptions of real dialogs should be used. Speech data must
therefore be collected and transcribed for each task. This data is often not reusable for a new task unless
there is a certain amount of similarity in the domain and type of language used.

• Amount of training data for Dutch:
As described earlier, the most useful solution to issues in telephone speech (and speech recognition in gen-
eral) is simply more data. All would be well if this were available. For Dutch there are only a few general
purpose use corpora which are recorded over telephone lines. These are Polyphone and Speechdat II. For
acoustic models, this amount of data can be regarded as sufficient, but certainly not abundant. Polyphone
can be used to train generic acoustic models. Speechdat II can be used for the mobile environment. Large
corpora for Dutch such as the Spoken Dutch Corpus do exist, but they are more suited for dictation applica-
tions and have limited usefulness for telephony applications because of reasons mentioned earlier.

Task specific free spontaneous speech corpora also exist, for example OVR Train table Information, but
are harder to obtain, and don’t have much use beyond the public transport domain. For domains such
as stocks, banking, support helpdesks etc. there are no known corpora which can be obtained (freely or
commercially). Thus new data must be collected from scratch when creating a telephony application for a
new domain which involves free spontaneous speech.

1.2 Specific problem definitions

In the foregoing section several challenges in speech recognition in general and Dutch telephony speech recogni-
tion were discussed. Two topics were selected in accordance with the product innovation team atDUTCHEAR for
which experiments were carried out in this thesis, as they were considered interesting with the eye on improving
products and services or developing new ones in the future.

1.2.1 English foreign name recognition

English words are a common phenomenon in Dutch colloquial speech. Examples of such words are: first and last
names, company names, titles of books, movies, CDs, product names etc.

For certain spoken telephone dialog systems it is desirable that these English names are properly recognized.
Many telephony services which require adequate recognition of such words, for example: a movie ticket ordering
service, a name dialing service where a large number of people are from foreign origin.

Also the handling of requests in multiple languages is of some interest, for example an international help desk
where there are callers from many countries and they want to be helped in their own language. This however is
not investigated here.

Recognition of English words by a Dutch speech recognizer is not straightforward because English has phonemes
which are untypical for Dutch. In addition there is the difficulty that many Dutch people do not have a perfect
English pronunciation and have tendencies to borrow the closest Dutch phoneme.

Problem definition and goals

The problem is the following: if a Dutch speech recognizer is used to recognize English foreign words, is the
performance sufficient and is there an improvement if training data from other languages, in particular English,
is used? What approach can be used to incorporate training data from other languages? Also, would such an
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approach cause a degradation in its performance with regard to regular Dutch words? Of course if new models
trained additionally with other languages are used they must also be speaker independent, noise robust etc. to be
suitable for telephony speech.

The goal for this topic is to find out whether multilingual recognition techniques can be used to improve recogni-
tion of non-native English spoken by Dutch people. The focus is specifically on name dialing applications which
in the future are hopefully able to handle foreign names and non-native Dutch speakers. The main performance
meter of the evaluation is the speech recognizer’s performance on single word recognition. The goal is not to build
such a system completely, but to find out whether multilingual techniques are a feasible option for recognition,
which is the case if there is an improvement in the recognition of English words spoken by Dutch people using
multilingual models at little or no cost for the recognition of normal Dutch utterances.

Approach

Because there is barely any training data of Dutch people speaking English to make a speech recognizer in the
traditional manner, a multilingual acoustic modeling approach will be tested. Training data will come from various
languages and sources so an approach is needed to minimize differences between training corpora. The goal is
to recognize English words and phonemes, but reduction in the performance of recognition of Dutch must also
remain minimal. A lot of testing will be done to ensure that.

In order to do this, several stages were planned and carried out in this order:

1. A survey was done in literature in order to find the best methods to train and use multilingual acoustic
models optimally in this situation.

2. Corpora were selected and prepared for training acoustic models for the speech recognizer using these
methods. Not all corpora are equally suited, because of reasons mentioned in the previous section.

3. Several multilingual acoustic models are trained using techniques found to be suitable in the first phase, as
well as a baseline Dutch speech recognizer which is needed for measuring the relative performance of the
multilingual models. Throughout this part of the work the SONIC speech recognizer is used.

4. Various tests are done which are representative of the kind of utterances that a name dialing application will
face. Testing will show whether these techniques are promising or not.

To know if the multilingual models are suitable for the desired use, the following subquestions must be answered
with testing:

1. How is the performance of multilingual models on Dutch?
Tests with a Dutch corpus are done to check whether the performance for Dutch does not degrade, or at least
not too much compared to a Dutch only recognizer.

2. How is the performance of multilingual models on native English?
This is useful to see if recognition of English phonemes is actually working, so a test with an English corpus
is done.

3. How is the performance of multilingual models on English utterances spoken by Dutch?
This is the most interesting. Does performance in fact improve compared to a Dutch only recognizer, and
if so how much, under what circumstances and why? To answer this question tests with utterances from
Dutch people speaking English are done.

1.2.2 Call classification

The idea of a call classifier is the following:
Traditional IVR (interactive voice response) systems which require callers to press on telephone buttons (DTMF
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tones) to navigate through menus to connect to an appropriate agent are commonplace. For small menus these
systems perform satisfactory, but when the menus are large, they can become difficult and time-consuming to
navigate, often frustrating users. People forget the menu options and have to listen to the options again, and most
importantly, the menu does not always correspond to the user’s mental model. When users might expect an option
in the menu, such option might not exist or might have a different or obscure name. This causes people to select
the wrong option only to be turned away or redirected by the agent they are wrongly connected to.

In more recent years machine learning techniques have become popular. Machine learning classifiers learn patterns
from the training data. When enough data and a good algorithm is used, the machine learning classifier is capable
of successfully classifying unseen data.

The main problem for implementing a call routing system using machine learning methods successfully in the
Netherlands is data, or to be more specific, the lack of it. Data is necessary to train good language models and to
train the machine learning classifiers. Speech data must also closely reflect the situation where such a system is to
be used.

Problem definition and goals

The problem definition for this topic is to find out how to make a good call classifier using machine learning
techniques which also performs well in the initial phase of the system’s life. Additionally the machine learner
should be easy to understand and modifiable by a human expert so he can supervise the system and compensate
for shortcomings in the classification early in the system’s life. Obviously performance will increase as more data
becomes available and the human expert, but it is the initial performance which is of most interest.

The classification system should be able to:

1. Recognize long free speech utterances:
For this part of the work the SpeechPearl 2000 speech recognizer was used, which is able to recognize
sentences.

2. Work using Machine Learning Techniques:
Since a lot of machine learning classifiers in literature can be somewhat of a “black box” it is desired that
the resulting classifiers should be easily understandable and modifiable for a human.

3. Perform comparably to known machine learners:
Of course any machine learning classifier used must not perform worse than known techniques in the field,
and preferably better.

4. Deal with uncertainty:
Most speech recognizers generate the result with a certain confidence for each recognized word. This
is different from the text classification domain where words usually don’t have a confidence. When the
confidence is low there are probably some misrecognized parts which should be ignored or at least given
lesser weight in the decision. It is desirable that the classifiers generated by the machine learners make use
of this extra information.

It’s not the idea to build a complete system. Contrary to the first topic in this thesis, the focus is not on the speech
recognizer or improving recognition performance, but on the machine learner and the classifiers they generate
which make decisions based on the output of the speech recognizer.

Approach

Several stages were necessary to find a suitable classifier:
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1. A survey was done in literature in order to existing methods in the speech and sometimes text classification
domains. The domains are related because the output of speech recognition is a string of text, but not the
same, because text classification usually deals with large texts.

2. Machine learners with attractive properties were selected. This would be a known in literature called Boos-
Texter and another one not previously used for call classification called RIPPER, but with the attractive
property of being easily understandable by a human.

3. A corpus of actual calls was collected using a dummy system. The idea was to model the beginning stages
of a call classification system, so the amount of calls recorded remained to a minimum, which was around
1500.

4. Experiments were carried with the corpus with the selected machine learning algorithms. These experiments
would compare the algorithms, but also different methods of training them.

1.3 Dutchear BV

DUTCHEAR is a new name in the Dutch speech technology market. Over the years it has undergone numerous
changes and metamorphoses. Starting as an academic research group in speech technology,DUTCHEAR is now a
commercial company.

In the 1970’s and 1980’s the PTT research and development laboratory, the Dr. Neher Laboratory, started the
exploration of speech processing by a computer. In the future computers would be able to listen and talk to
humans.

In the 1990’s PTT Research was one of the first in the Netherlands to successfully build a software based speech
recognizer that could understand the Dutch language over telephone lines and was awarded a patent for the search
algorithm. PTT Research also collected large amounts of Dutch spoken texts recorded over telephone lines and
these are still used today as training material by all major speech recognition technology suppliers (Scansoft,
Nuance etc.).

PTT research changed its name to KPN Research. KPN Research collaborated with major speech technology
players of the day, such as Philips Research, Philips Dialogue Systems, Lernhout & Hauspie (latter two are now
part of Scansoft) and the University of Nijmegen (now Radboud University Nijmegen). KPN Research was also
involved in numerous European research projects which covered speech recognition, speaker verification, multi-
modal systems (recognition of speech in combination with keyboard or pen input).

The most important projects were the automization of 008 (later 118) telephone number enquiry, train travellers
information (OVR 9292), secure services with speaker verification, such as ScopeCardTMand the use of speech
recognition in the mobile network, VoiceDiallingTM .

In 2000 KPN Research started doing research for parties outside KPN, such as Fortis and ABN AMRO, and as
a result more and more speech technology related products and services were developed. On January 1, 2002
the KPN R&D laboratory was transferred to TNO and was renamed to TNO Information and Communication
Technology.

TNO Information and Communication Technology created the sectionDUTCHEAR with the mission to indepen-
dently explore and exploit the commercial market for speech technology and related services. On January 1,
2005DUTCHEAR became an independent company with TNO Information and Communication Technology as its
majority shareholder.

DUTCHEAR is a speech technology company whose people have expertise in many areas:

• Speech technology and linguistics: to know how speech and speaker recognition works.
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• Software and electrical engineering: to know how to build software and integrate them in existing software
and telephony systems.

• Psychology and cognitive ergonomics: to know how to make user friendly speech interfaces.

DUTCHEAR is continually developing new products and services to meet market demands and expand its portfolio:

• Customer Call Gateway: Automatically route incoming calls to the correct agent using speech recognition.

• Collega Connect: Call any coworker using your voice and save time and effort by never having to look up
phone and extension numbers again.

• Personal Connect: A product which ensures that you never again have to remember a telephone number.
Call friends, family and coworkers with your voice. The list of contacts is personalized and can be updated
via the web, telephone or Microsoft Outlook.

• Speaker Verification: A product that can ensure that a person is who he claims to be over a telephone line.
It works by comparing the person’s voice with a known profile in the database.

• Call Scan: A new product that logs and scans incoming call center calls. Call center managers can then
search the database using criteria they specify to gain insight in caller behavior.



Chapter 2

Theory

2.1 Introduction

The purpose of speech dialog systems is the exchange of information in a more interactive manner using speech
to communicate. The user wants to accomplish something with the system, but in order for the system to do so,
it must acquire bits of information from the user. For example, it needs to know the departing and arrival train
stations for a trip, and desired arrival time. These bits of information are sometimes referred to as slots. When the
information is known by the system the slot is filled, and when it is still unknown it is empty.

Speech dialog systems can be user-initiated or system-initiated, meaning the user and system respectively have
control over the dialog and determine in which direction the dialog will go. System-initiated dialogs have the
advantage of being very predictable, meaning that the dialog designers can limit the number of expected utterances
by users by carefully formulating a direct question. Users new to the system will generally have little confusion
as to what to do, because the system explicitly instructs them when and what to say. Information slots are usually
filled one by one.

On the other hand user-initiated dialogs are less predictable less structured and more dynamic. They give the user
more freedom. The dialog usually starts with an open question to invite the user to use his own words as much as
possible. Instead of asking for information one slot at a time, the user might give the information to fill more slots
or even all slots in one utterance. It is up to the system to determine which slots can be filled, and based on the
slots which are still empty it will continue the dialog. User initiated systems allow for more natural dialogs and
are usually better for more experienced users who already know what the system needs to know. The downside
is that the user utterances are far less predictable, thus making successful recognition and understanding of the
utterance many times harder.

A typical speech dialog system consists of several components. Figure 2.1 shows a general schematic of the
information flow in a dialog system. A dialog is usually opened by the system, for example a greeting followed
by a request by the system. This can be an open question such as “How may I help you?”, a direct question or
command like “Name the train station from where you wish to begin your trip”. The user responds by speaking into
the microphone (telephone). The speech recording is processed by the speech recognizer. The speech recognizer
consists of an acoustic model, a lexicon and a language model or grammar. The acoustic model has information
about which sounds belong to which phonemes, the lexicon information about how sequences of phonemes form
words, and the grammar or language model information about the sequences of words which are allowed. With
the information in these 3 components, the speech recognizer will return a hypothesis of the most likely utterance
by the user.

The dialog manager has two tasks. First, based on the speech recognizer output it must be “understood”. Second,
it must determine how the system will respond. Understanding a user utterance can be very easy if questions are

9
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Figure 2.1: A schematic of an automated speech dialog system

asked very direct. For example in the case of “Name the train station from where you wish to begin your trip?”,
the expected answers are very short, like “Delft” or “Amsterdam”. In this case responses can be simply understood
by matching the response with a list of train stations. If the question was very open like “How many I help you?”
the response could be “I want to go from Delft to Rotterdam and I want to arrive there at 2 o’clock”, or “I need to
be in Rotterdam at 2 o’clock and I am leaving from Delft” and many other variations. Traditionally grammars are
used to to cover most of the sentence patterns used, for example “from<departure-station> to <arrival-station>”,
“arrive at<arrival time>”, “leaving from <departure-station>”. Grammars can work for a great deal, but they
generally do not cover all possible sentences and there are other phenomena which need to be solved, such as
references.

The system’s response is returned spoken by using a text to speech (TTS) system, or sometimes using prerecorded
utterances. There can be actions associated with the response, such as routing a call or placing an order. The
response by the dialog manager is usually determined by the information which is still unknown. If nothing is
recognized, the dialog manager might choose to repeat the question. If something is recognized the results are
parsed and interpreted by the system. If the dialog manager thinks it can fill a slot, it might ask the user for
confirmation. If all slots are filled and confirmed, the dialog manager has all the information it needs and can
perform a query on the database and return the result to the user. If there are still missing slots the dialog manager
will proceed to ask questions to fill them.

Dialog design and formulating the right questions is an art and there are many theories and strategies to get for
example the best user experience, the best recognition results, or the best dialog completion rates. Strategies can
be from highly structured, to very dynamic, switching from user to system-initiated on the fly, but this falls out of
the scope of this thesis.

In this chapter some background theory is given in the area of speech recognition. First a general introduction to
the nature of speech and how speech recognition works. Then some literature will be discussed about each of the
two main topics which will be described later in Chapters 5 and 6. The first topic of English words spoken by
Dutch is a problem which is for the most part located in the acoustic model, because additional sounds which are
not typical for Dutch must be recognized. The second problem of call classification is a problem located in the
dialog manager, because, on the basis of what the user says, the speech recognition result must be interpreted and
a decision must be made where to send the caller to.
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2.2 Speech recognition basics

In this section several aspects of the workings of speech recognition will be discussed. First some information
about what speech actually is and how it is stored and processed on the computer. Then some theory about the
technology making it all possible, Hidden Markov Models, and the procedures which need to be done in order to
train a speech recognizer.

2.2.1 What is speech?

Speech recognition systems focus on sounds that distinguish one word from another within a language. Those
sounds are called phonemes. The words “seat”, “meat”, “beat”, “cheat” are different words, because in each case
the initial sound (“s”, “m”, “b”, “ch”) is recognized as a separate phoneme in English.

For speech recognition to work, there must be a representation for it. There are several approaches to represent
speech [Markowitz96]:

• Articulation: The analysis of how speech sounds are produced.

• Acoustics: The analysis of the speech signal as a stream of sounds.

• Perception: The analysis of how speech is perceived by a human listener.

Articulation

The focus of articulation is on the vocal apparatus consisting of the throat, mouth and nose where the sounds of
speech are produced. The throat contains the vocal cords whose vibration produces voiced phonemes, like the
sound of “ee” in the word “speech”. The mouth and nose are called resonating cavities because they reinforce
certain sound wave frequencies. The resonating cavity of the nose is used for speech when the soft palate is
lowered and air is allowed to flow into the nasal cavity. This is the way in which nasal phonemes such as/m/ and
/n/ are produced.1

Phonemes are categorized by the way they are produced. Two main phoneme categories exist: vowels and conso-
nants. Consonants are characterized by a total or partial blockage of the vocal tract. The effect of the obstruction
is to produce noise. Noise can be an explosion of stop consonants like/p/ in “pat” or the hiss of of fricatives such
as the/s/ in “see”. The noise is present even when the consonants are voiced such as the/b/ in “bat” or the /z/
“zee”.

As Figure 2.2 illustrates, consonant classification uses the

• Place of articulation (top edge of the consonant chart)

• Manner of articulation (left edge of the consonant chart)

• Presence or absence of voicing (within a cell unvoiced is the one on the left, voiced is the one on the right)

Vowels are characterized by strong harmonic patterns and relatively free passage of air through the vocal tract.
Semi-vowels such as the/y/ in “you” fall between consonants and vowels. They are often classified as a type of
consonant because they contain partial blockage of the vocal tract, but they also have strong harmonic patterns
like vowels.

1Throughout this work, X-SAMPA notation is used for phonemes instead of IPA notation, mainly because of the ease of use, and more
importantly because X-SAMPA like notations was used in the speech recognition software. A mapping table can be found later on in Table
B.1.
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Figure 2.2: IPA chart



2.2. SPEECH RECOGNITION BASICS 13

This can also be seen in the vowel triangle in Figure 2.2. The triangle represents the position of the tongue,
horizontally from front to back, and vertically from close to the roof of the mouth to open where the tongue is
as far away as possible from the roof. There are two vowels per tongue position. The one on the left is with lips
neutral, while the one on the right is with lips rounded.

Most modern speech recognizers can recognize a lot of words, as long as they are transcribed in phonemes. This
means that a word is described as the sequence of mouth positions that produces the word as spoken. A list of
words with such corresponding transcriptions is called a lexicon.

Acoustics

Articulation is useful to know how speech is produced, but a speech recognition system does not receive informa-
tion of the movements of the mouth. Speech recognition systems use the stream of speech itself as data.

Speech is an analog signal: a continuous flow of sound waves and silence. Four important features of acoustic
analysis of speech are:

• Frequency

• Amplitude

• Harmonic structure (tone vs. noise)

• Resonance

Sound is produced by movements of air molecules. These moving air molecules come into contact with the
eardrums which in turn vibrate. The vibrations of the eardrums are then interpreted by the brain which are
interpreted as sound.

The simplest of “pure” sounds are produced for example by a tuning fork. A tuning fork vibrates back and forth
at a single steady rate in a sinusoidal manner. This causes the air molecules around the fork to move and vibrate.
The vibration spreads throughout the air and eventually reaches the eardrums.

The rate at which the fork moves back and forth is called the frequency. The maximum deviation of the fork from
its “neutral” position (when it’s not vibrating) is called the amplitude. High pitch sounds are produced by high
frequency. Loud sounds are produced by high amplitude.

Pure tones in speech are rare. Often there is a fundamental frequency that corresponds to our perception of the
pitch of the sound, overlaid with secondary frequencies. For speech, the fundamental frequency is the rate at which
the vocal cords flap against each other when producing a voiced phoneme. Added to the fundamental frequency
are other frequencies that contribute to the quality or timbre of the sound. Those additional frequencies make it
possible to distinguish voices of specific individuals.

Some bands of secondary frequencies play a central role in distinguishing one phoneme from another. They are
called formants and are produced by resonance. Resonance it the ability of a vibrating source of sound to cause
another object to vibrate. Sound boxes of a musical instrument make use of resonance and are designed to respond
to and amplify sound vibrations of specific frequencies. Such a sound box is called a resonating chamber. The
throat, the mouth and nose are also resonating chambers and amplify bands of formant frequencies contained in
the sound wave generated by the vocal cords. Because humans have control over the size and shape of the mouth
and the flow of air to the nose (by moving the soft palate), the amplified formant is different for every change of
size, shape etc. Formant patterns are strongest for vowels and weakest for voiceless consonants.

Vowels can be distinguished by their characteristic formant patterns. When viewed as a waveform vowels are
cyclic in nature. Sound waveforms which are acyclic are called noise. Examples of noise are hisses, crashes, and
voiceless phonemes such as/s/ and/p/. All consonants and semi-vowels have noise components. For example, a
prolonged pattern of noise is indicative of a fricative consonant. Silence followed by a burst is characteristic of a
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stop consonant. Consonants are also revealed by a shift in formants when the articulators move from the vowel to
a consonant and from the consonant to the next phoneme.

The frequencies and shifts in formants can be easily seen in a spectrogram. The horizontal axis represents time,
the vertical axis represents the frequency. The darker areas represent the intense presence of a frequency at that
moment. Bands of dark areas represent formants. Noise areas often lack clear formants and it is hard to identify
which consonant it is. But the transition from the previous or to the next clear formant is indicative of what the
consonant was. Other information which can be used are the duration, the onset and amplitude of the sound.

Examples of how formants, amplitude and other features can be visualized can be found in in Chapter 4 when the
sound analysis program Praat is described in detail.

Perception

Humans can quite easily understand speech under difficult circumstances. Understanding the human auditory
system will lead to improvements in speech recognition, but a lot of research is yet to be done. Research until now
suggests that the auditory system is strongly adapted to speech. Humans perceive sounds from 20 Hz to 20,000
Hz, but are most sensitive to sounds from 1,000 Hz to 6,000 Hz. The human ear is also more sensitive to small
changes in certain frequency ranges than others. Studying human perception has already led to improvements
such as the mel scale, which represents the pitch perception patterns of the human ear.

Speech preprocessing

Speech data is analog, and when recorded digitally over a microphone produces a lot of bits and bytes. Speech
recognition is not applied to this stream of data directly, instead it is preprocessed. The main reason is computa-
tional efficiency - reducing the amount of data which needs to be analyzed because it is simply redundant or not
relevant - and is necessary in order to real time speech recognition. Another reason is that some information will
interfere in the recognition process, such as distortion and non speech noises.

Preprocessing the speech signal should:

• Include all critical data. All data which is necessary to discern one word from another must be preserved.

• Remove redundancies. All data which is not necessary to discern one word from another must be discarded.
This can be silences at beginning and end, or frequencies which the human ear cannot hear.

• Remove noise and distortion. Most recordings will have at least some minor noise. Using advanced signal
processing techniques these noises can be reduced to improve recognition.

• Avoid introducing new distortions. Any transformation of the speech signal (e.g. to remove noise) should
not make it more difficult to recognize what is said.

The most critical formants and much of the characteristic noise of fricatives are in the range of 100 Hz to 3,100
Hz. Any filtering done should keep at least this frequency range intact. Usually one should record at a rate of at
least two times the frequency of interest. To capture sounds of 3,100 Hz, one would record it digitally at a rate of
at least 6,200 samples per second.

After this is done, the audio is split into frames or analysis windows of 10 to 50 milliseconds each. The preproces-
sor extracts frequency information of that frame using a spectral analysis and also records changes that occur
from one frame to the next. The most commonly used spectral analysis approaches are based on linear predictive
coding (LPC), which estimates acoustic features or parameters from the current sample using parameter values
from the previous. LPC is accurate and is faster than most other approaches. Each frame can then be represented
as a feature vector consisting of a series of numbers.
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2.2.2 Hidden Markov Models

The most successful approach to date for speech recognition is based on Hidden Markov Models. Hidden Markov
Models were around for some time, but it wasn’t until people like Lawrence Rabiner [Rabiner89] published some
articles about its uses in speech recognition before its use became widespread. Hidden Markov Models and the
associated algorithms are not explained in detail here. This section merely serves to give a general idea how
Hidden Markov Models are used in speech recognition.

To understand what a Markov Model is, consider a system that at any time as being in a set of N distinct states,S1,
S2, ..., SN, as illustrated in Figure 2.3 (N = 5). At regularly spaced discrete times the state undergoes a change,
possibly back to the same state. The times associated with state changes are denoted byt = 1,2, ..., and the actual
state at time t is denoted byqt.

Figure 2.3: An example of a Markov chain

For a discrete first order Markov chain the current state is only dependent on the predecessor state, and the state
transitions each have certain probabilities. Letai j be the probability that the state changes from statei to statej
and the probability distributionA = {ai j }:

ai j = P[qt = S j |qt−1 = Si ], 1 ≤ i, j ≤ N

ai j ≥ 0
N∑

j=1

ai j = 1

(2.1)

In the simplest case, the state is observable. If the system for example produces an observation sequenceO =
{S3,S3,S3,S1,S3,S2,S3} then the probability that the model generated this observation sequence is:

P[O|Model] = P[S3,S3,S3,S1,S3,S2,S3|Model]

= P[S3] · P[S3|S3] · P[S3|S3] · P[S1|S3] · P[S3|S1] · P[S2|S3] · P[S3|S2]

= π3 · a33 · a33 · a31 · a13 · a32 · a23

(2.2)

Whereπ is the initial state distribution.π = {πi}

πi = P[q1 = Si ], 1 ≥ i ≥ N (2.3)
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Things are more difficult when the states are not seen directly. States can produce different observations and the
same observation can be produced by different states. A simple example is a coin toss. Different types of coins
(fair, biased to heads, biased to tails) are each represented by a state. An unknown coin is tossed, and this produces
an observation sequence of heads and tails. Based on this sequence we can hopefully determine in what state the
model is, and thus what type of coin was thrown up.

The earlier Markov model is now extended with some extra parameters to get a Hidden Markov Modelλ =
(A, B, π). The symbol probability distributionB = b j(k) is the distribution of observations given that the system
is in a certain state.M denotes the total number of distinct observations the state can produce, and the types of
observations are marked byV = {V1,V2, ...,VM}.

b j(k) = P[Vk at timet|qt = S j ], 1 ≥ j ≥ N

1 ≥ k ≥ M.
(2.4)

To apply this model to speech recognition, in its simplest form, imagine that a state is the intended phoneme being
produced by a speaker, determined by the position and shape of the vocal apparatus, and an observation is the
realization of that phoneme (as sound). There is usually no one to one correspondence between observation and
states. This is because different speakers pronounce a phoneme differently, co-articulation in transitions between
phonemes etc. So one state can have more than one realizations or observations. The Hidden Markov Model
records among others, things like how often does a phoneme follow another given past phonemes, and how often a
certain realization can be heard given a phoneme. In theory all observations can be produced by every state, even
if a lot of times this probability is near zero. A speech recognizer can only hear the realization of the sound and
from that it must compute sequence of states (or phonemes) which most likely produced it.

There are three algorithms which can solve the following problems when using Hidden Markov Models:

• The Forward-Backward Procedure:
Given the observation sequenceO = O1O2...OT and modelλ = (A, B, π) how do we efficiently compute
P(O|λ), the probability of the observation sequence, given the model? This is an evaluation problem. Given
a model and observation sequence, how do we compute the probability that the sequence was produced by
the model. In speech terms this could be translated as, given what we know about which phonemes tend to
follow another, and what the different realizations of phonemes are, how likely is it that a sound is produced
such as it is heard?

• The Viterbi algorithm:
Given the observation sequenceO = O1O2...OT and modelλ = (A, B, π) how do we choose a corresponding
state sequenceQ = q1q2...qT which best explains the observation? In speech terms this could be translated
as, given a series of phoneme realizations, what is the most likely sequence of phonemes the speaker was
trying to pronounce?

• The Baum Welch algorithm:
How do we adjust model parametersλ = (A, B, π) to maximizeP(O|λ)? How do we maximize the probabil-
ity of the observation sequence given the model? In other words, how do we train a speech recognizer such
that it recognizes as many observation sequences as possible?

Because observations in speech recognizer (represented as a feature vector) are not discrete but continuous over
time, the picture painted in this section is slightly skewed. In order to use Hidden Markov Models in speech
recognition more sophisticated versions are used such as Continuous Density Hidden Markov Models. Also
phonemes are often represented by more than one state. One common configuration is to split a phoneme in
3-states, namely the on-set, sustainment and off-set of the phoneme, because the length of a phoneme can be
variable, for example when a vowel is elongated.



2.3. MULTILINGUAL RECOGNITION AND TECHNIQUES 17

2.2.3 Training a speech recognizer

The training of a speech recognizer based on Hidden Markov Model generally happens in several stages. A
common procedure is as follows.

• Data collection:
In this stage speech data is gathered. To train a good speech recognizer it is desirable that recordings are
made from a lot of speakers, male and female, of all ages, and from all dialect areas of the country. This way
the speech recognizer will become more robust and able to cope with speaker variability. Furthermore it is
important that speech data gathered in a consistent manner using the same recording conditions. Different
things can be recorded depending on the goal of the speech recognizer. For general speech recognizers it
is important to record sentences and words which cover all the sounds (phones, phonemes) of the language
within a variety of words, to cover as many transitions between sounds as possible.

• Labeling:
After speech data is collected, the data must be transcribed. This is time consuming, and requires that
people listen to each recording, and write down exactly what is heard, so basically everything which is said,
including mouth noises and other sounds. At this stage recordings which are unsuitable for training, due
to for example having too much noise, can also be filtered out. When only words are written down this is
called an orthographic transcriptions. Sometimes recordings are manually transcribed phonetically as well,
where each sound is identified by expert listener as the right phone, thus making it theoretically possible
to transcribe recordings in languages which are unknown to even the listener. Usually however a crude
phonetic transcription is made by using the orthographic transcription and a lexicon, so an expert listener is
not always needed.

• Alignment:
The transcriptions made in the labeling phase must now also get the times when a sound starts and ends
within a recording. The phonetic alignment will make it possible to split the recording into phoneme seg-
ments, which will in turn be used for training. Alignments can be made by the person doing the transcription,
but it is now common practice to use automatic alignments, for example using forced Viterbi alignment.
Viterbi alignments are less accurate and require a lot of iterations for the alignment quality to improve when
starting from scratch. However since speech recognition has been around for a while, alignments can be
made faster by bootstrapping from existing models, even if they were initially meant for another purpose.

• Training:
Each segment is represented as a sequence of features which are obtained by analyzing the speech signal
using special techniques such as PMVDR. All the segments belonging to the the same phoneme are used to
train the HMM model for that phoneme. It might require several alignment and training rounds before the
recognition performance is acceptable for use.

2.3 Multilingual recognition and techniques

There is a lot of transcribed speech data available for languages whose speakers are of significant number or whose
speakers have sufficient economical interest, for example English, French, German, Japanese, Chinese. Successful
state of the art speech recognition applications have been built for these languages, but for many languages such
data is not available, and for some research areas is near impossible, such as non-native speech. State of the art
speech recognition applications have been built for these “in-demand” languages, but it can happen that at some
point, for example due to political or economic reasons, there can be immediate demand for the same application
but in a language which has almost no data available.

Recording and transcribing speech for a new language is expensive and takes a long time, thus therefore methods
are sought to reduce the amount of data needed from the new language using existing recorded data from languages
which do have large amounts. There is a huge amount of overlap in sounds from different languages, and ways are
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being sought to exploit that. Some researchers believe that it is possible to make a “universal recognizer” which
can recognize all the sounds of all spoken languages of the world using only training data from a limited number
of languages which together have a broad coverage of phones.

2.3.1 Multilingual recognition

When making speech applications suitable for new languages, there are 3 methods according to [Uebler01]: port-
ing, cross-lingual recognition and simultaneous speech recognition. These approaches differ according to the
available training data for the development of the recognizer and the application the recognition system is de-
signed for.

Porting

A speech recognition system designed for a language is ported to another language in order to be used in that
language. The dialog system is the same for the new language, but the training data are from the new language.
This is often done for dictation of systems which will be used also for recognition of another language. Difficulties
to cope with are the characteristics of the new language. For example, if a system is ported to German, it must
deal with the compound words, or, for French, with homophones.

A system that has been developed for one language must be optimized to be used in another language, and some
of the algorithms have to be adapted to work well in that new language. There should be enough training data
in the new language to completely establish a system in the new language. The acoustic models, grammars and
language models of the new language are trained with data of the new language, and these replace the ones of the
original dialog system.

(Multilingual) Cross-lingual recognition

This approach for the most part follows the porting approach. The difference is that insufficient training material
is available to train the recognizer in the new language. Thus, in cross-lingual recognition, methods must be found
to use training material of one or more (using multilingual acoustic models) source languages for modeling the
acoustic parameters of the target language. Thus a recognizer for one language is bootstrapped from training data
from other languages. Optionally, an adaptation with a small amount of data from the target language takes place.

First the languages used for training of the recognizer must be determined. The language(s) leading to the best
recognition performance on the new language must be found. A relation between the languages used for training
and the language to be recognized has to be selected. As in the porting scenario, the algorithms of the recognizer
are adapted to the new language. Furthermore, training material of the source language(s) is used for the parameter
estimation of the recognition system for the target language.

For this approach, a relation between the languages and the language to be recognized must be found in order to
model the parameters of the language to be recognized using the parameters of the training language. One focus
will be put on the acoustic units if the training and recognition languages.

One main problem is to determine identical acoustic units or to model existing acoustic units in a way that good
recognition can be provided. One can think of a couple of different measures to determine the similarity of phones
across languages. If some adaptation material of the new language is available, the best adaptation algorithm, that
is able to optimally use such data, must be found.
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Simultaneous multilingual recognition

Applications with this approach allow for recognition of utterances of different languages at the same time. The
system does not know in which language an utterance is spoken. Training data are available for each language.
The result is a single recognizer for all involved languages together.

There are two main strategies for simultaneous multilingual speech recognition, with explicit language identifica-
tion and with an implicit identification of the spoken language. The first strategy performs language identification
on the speech signal. After identification of the language, the speech recognition system of the identified language
is activated and the utterance is recognized. The advantage of this strategy is a performance that is identical to
monolingual recognition as long as the language identification step is performed without errors.

The other strategy performs an implicit language identification. The words of all involved languages can be
recognized equally or by language model distribution. A language model which allows a transition between several
monolingual language models is also possible. The spoken language is determined according to the recognized
words. For this strategy the same acoustic model is used for several languages, instead of a cluster of different
monolingual models.

The strategy performing best within this approach may vary depending on the given languages and data. For
example, if there is only a little data for one language, acoustic units may be shared across languages. If the
languages are similar or if there are non-natives among the speakers, multilingual units may lead to a better
performance. On the other hand, if the languages are similar, it may be more useful to separate the languages as
much as possible in order to avoid confusions among the languages.

2.3.2 Phone substitutions

Each language has its own characteristic set of phonetic units. In order to perform cross-language or simultaneous
multilingual speech recognition, a relation among the acoustic inventory of the involved languages must be found.

In cross-language recognition there are trained phones of one languages, and untrained (or not well trained) phones
of the language to be recognized. The sounds of each of the languages to be recognized must be replaced by the
most similar trained sound of the other language. In simultaneous multilingual speech recognition, monolingual
phones are trained for each of the languages to be recognized. Some of the sounds of different languages may be
similar enough to be represented as the same sound in order to reduce the number of parameters of the recognition
system.

In speech recognition usually phonemes are used for representation of the pronunciation of the words. Phonemes
are defined as the smallest unit in speech leading to a difference in the meaning of a word, whereas phones are
characterized according to their acoustic properties. Thus a phoneme may be realized by different phones. The
relation between phones and the phones of a language differs across languages. In one language 2 phones might
be the same phoneme, but in another they might be 2 different phonemes.

In order to establish relations between the sounds of different languages, for each sound of the recognition lan-
guage the most similar sound of the training language must be determined. This can be a 1:1 mapping, but also
an n:1 mapping where a 2 or more sounds in the training language are used to estimate the values of phone. There
are 3 approaches to find these relations phonemes and will be explained in the following sections.

Na(t)ive approach

This approach of phone substitution follows the principle a non-native follows when speaking a second language.
A non-native might do his best to use the phonetic inventory of the spoken foreign language. The accent of a
non-native speaker is, among others, determined by the phonetic inventory of his mother tongue he uses when
speaking the foreign language. A non-native tries to use the phonetic inventory of the new language. Still, he may
fall back to his native phone inventory in stress conditions or with difficult words.
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For some sounds there is a similar one in the native language of the speaker, and the speaker may not learn the
small difference for the new sound and will only use the sound of his native language. This may happen for
vowels with a small difference in the mean values in their formant frequencies between languages. Thus a non-
native might pronounce the foreign language using the correct phonemes, using the closest phoneme in his own
phonetic inventory, or a combination of both.

Phonetic approach

This strategy follows principles in the production of sounds in the human vocal tract. When describing the produc-
tion of sounds, usually the place and manner of the production are determined. The place of production describes
where obstacles are put in the air flow and which organs are involved in the production of the sound. The manner
of production describes how the obstacles act, for example, if a complete or partial closure of the air flow is caused.

Consonants can be distinguished with regard to manner (stop, fricative, approximant, lateral, rhotics, etc.) and
place (labial, dental, alveolar, palatal, velar, alveolar etc.). Another criterion is the voicing of consonants which
can be either voiced or unvoiced. For vowels, different tongue positions are distinguished such as front, central,
back, and for the opening of the mouth (close, close-mid, open-mid, open) as well as between rounded and
unrounded to describe the shape of the lips.

Finding differences between consonants in different languages is easier than finding differences in vowels in
different languages, because for example the position of the tongue can gradually change. To find a good mapping,
the trained sound that matches the largest number of phonetic features is substituted for the untrained sound.

Data driven approach

This approach determines the similarity among phones with the data given by a trained speech recognizer. This
approach is only possible if there is at least some data available for the new language to be recognized in cross-
language recognition. For simultaneous recognition it can be used to determine the similarity of sounds and to set
a threshold such that any degree of joining sounds into a multilingual acoustic set can be realized.

Measures for the similarity can be estimated from the Gaussian densities or the codebook parameters of a trained
recognizer. Therefore a recognizer must be trained with all languages, and for all observations of a language-
dependent sound the similarity of the parameters must be estimated. According to a distance measure the most
similar units may be joined. This merging of units can happen in one ore more steps and it may also be allowed
to split units. The advantage of this approach is that there is no human knowledge or manual work necessary to
estimate similarities.

2.3.3 Multilingual acoustic models

Methods to find similarities between phones from different languages were discussed in the previous section. By
finding similarities in sounds in languages a global phoneme set can be created. By relabeling training data from
various languages to this global set, compact acoustic models can be made which can simultaneously recognize
languages it is trained on, or which can be used to do cross-lingual recognition because of its broader phoneme
set. This compactness is also beneficial to performance, because less resources are needed to hold the models for
the global set in memory than phoneme models for all languages separately.

Training

The porting scenario is of limited interest because the amount of data is limited. The cross-lingual and simulta-
neous recognition scenarios are interesting since they make use of existing Dutch and English data. Cross-lingual
recognition can be done with mono or multilingual acoustic models. Making monolingual acoustic models is a
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known practice. Therefore the process of creating multilingual acoustic models is looked at here in more detail in
this section.

[Schultz98a] introduce 3 acoustic model combination methods to share data.2

• In the ML-sep combination method each language specific phoneme is trained solely with data from its own
language. No data are shared across languages to train the acoustic models. Thus the number of phonemes
in the resulting model is the sum of phonemes of the source languages.

• In the ML-mix combination method data across different languages is shared to train acoustic models of
polyphonemes. Phonemes of different languages but with the same IPA-symbol share the same Gaussian
mixtures and weights. Context dependent models are made using linguistic questions. No information about
the language the training data is from is preserved.

• The ML-tag combination is almost the same as ML-mix, in the sense that they both share all the training
data and use the same clustering procedure. But for ML-mix the training data are only labeled by phoneme
identity, whereas for ML-tag the training data is labeled by both phoneme and language identity. The
clustering procedure is extended by introducing questions about the language and language groups to which
a phoneme belongs. The Gaussian components are shared across languages as in the ML-mix method but
the mixture weights are kept separately. Therefore, the relative importance of phonetic context and language
membership is resolved during the clustering procedure by a data-driven method.

[Köhler01] also compares three methods to share data:

• The most simple way, IPA-MAP, where all language dependent phones are mapped to IPA phones, and
those with the same IPA symbol share data. Downsides mentioned are that IPA symbols do not model
language dependent properties of the sound, such as speaking rate, different phonetic context dependency
and prosodic features. A Viterbi training is done on all data using the mapped phones. This method is very
similar to Schultz and Waibel’s ML-mix.

• MUL-CLUS, or multilingual phone clustering, use a bottom-up cluster algorithm to map the language-
dependent phone models to the multilingual set. First language-dependent phone models must be trained,
then a similarity between two phone models has to be defined, for example the log-likelihood LL-based
distance measure. Initially each phone is a cluster. Clustering is done in a number of steps and at each
cluster step the most similar pair of clusters is merged to a new cluster. Because joined clusters are not
real phones it is hard to compute the distance between them, thus clusters are compared by comparing the
distance of the the phones they are composed and the maximum distance between them is taken. Clustering
is done while the distance is below a threshold setting. The clustering results in a phone mapping, and this
mapping determines which phones will share data when the Viterbi training is run.

• The previous two approaches try to create complete multilingual phone models. This means that all para-
meters of one model are shared across different languages. On the other hand there are several language-
specific properties of the sounds which exist due to speaking style and rate, prosodic features, allophonic
variations, but these are not modeled in the previous methods. In IPA-OVL, or IPA-based density clustering,
the assumptions is that there are some language-independent phone realizations. First language-dependent
models are trained, where each language-dependent phone consists of three segments, each modeled by a
mixture density. In the second step the mixtures of the language-dependent segments which belong to the
same IPA-based phone are collected in one common pool of densities. Then a hierarchical agglomerative
clustering algorithm is applied to find and merge similar densities. After each clustering step the overall
number of densities is reduced by 1, and stops after a predefined number of clusters is reached. After
clustering for each IPA-based phone there is a multilingual mixture density. Whereas the mixture density
has multilingual regions, the mixture weights are still language dependent. Finally the parameters of the
multilingual mixture densities are re-estimated by running a Viterbi training over it. This method achieves

2In this paper called Lang-sep, Lang-mix, Lang-tag, but in later papers ML-sep, ML-mix, ML-tag respectively.
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a huge reduction of parameters in the multilingual system, while still retaining language-specific properties
and automatic detection of multilingual realizations exploit the acoustic-phonetic similarities in an optimal
way.

[Walker03] emphasize consistent labeling across all corpora used so that phonemes can be shared optimally. They
introduce a procedure they call “bottom-up, two-level forced alignment”, which consists of choosing a reference
corpus and repeatedly adding new languages and corpora while making the labeling of the new corpus consistent
with the previously added corpora. To make a new corpus consistent with the reference set, they used the hand
marked labels or first pass forced alignment, followed by a second alignment. In the second alignment, phone
models trained on the reference corpus are used, while some phones are allowed to be renamed based on allophonic
variation that exists in the language.

Performance

Various papers have been written on multilingual acoustic models, and for each purpose the best method to use
differs. As for phoneme mapping, the most common method used are the phonetic and native approaches, since
these are simple and require no speech data to perform. Data-driven methods to find phoneme mappings are only
possible when sufficient data is available, but are not really proved to be better than the other approaches. The best
performing acoustic modeling technique differs from task to task and will be discussed next.

For simultaneous recognition of languages the multilingual acoustic model is trained on, it is best that information
about the language is preserved. [Schultz98a]’s ML-tag and [Köhler01]’s IPA-OVL are good examples, but also
in [Cohen97] the language information preserving approach is slightly better than not preserving the information.
However these techniques are not up to par with the performance of traditional monolingual recognizers.

For multilingual cross-lingual recognition and bootstrapping new languages [Schultz98a] shows that simply shar-
ing training data without preserving language information works best, and this works better than performing
cross-lingual recognition from only one language. [Uebler01] found similar results regarding cross-language
recognition from a mono or multilingual model. [Kunzmann04] shows that by adding more and more training
data from other languages step by step gradually improved recognition of Spanish, which was not included in the
training.

For non-native recognition the performance is as follows. In [Kunzmann04] a name dialing application was built
with prospective users from 6 languages which pronounce names both from their native language and from the
other languages. They show that adding more and more training data from other languages step by step gradually
improved recognition of both native and non-native speech. [Fischer03] show that performing pronunciation
modeling for phonemes not in the native set in combination with multilingual acoustic outperforms adaptation
techniques on an English digit recognition task with speakers from various countries. [Stemmer01] implemented
a movie name recognition service for a German audience with many of the titles having English names, thus
non-native pronunciations. They compared several methods: knowledge based mapping of English phonemes
to German with a German recognizer (baseline), language dependent models which are only trained on either
German or English sounds spoken by Germans, knowledge based merging using IPA correspondences to share
training data, and data driven merging of phoneme sets. The baseline performed the worst, and they got the
most improvement using knowledge-based merging of phonemes, followed by data-driven merging of phonemes.
[Uebler99] found that it is useful to add speech data of the language which the speaker is native from to the training
in order to recognize non-native speakers of that origin better.

2.4 Machine Learning and Call classification

Machine learning is an area of artificial intelligence concerned with the development of techniques which allow
computers to “learn” by analyzing huge data sets. Machine learning has a wide spectrum of applications including
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search engines, medical diagnosis, detecting credit card fraud, stock market analysis, classifying DNA sequences,
speech and handwriting recognition, object recognition in computer vision etc.

Some machine learning systems attempt to eliminate the need for human intuition in the analysis of the data, while
others adopt a collaborative approach between human and machine. Human intuition cannot be entirely eliminated
since the designer of the system must specify how the data are to be represented and what mechanisms will be
used to search for a characterization of the data. Machine learning can be viewed as an attempt to automate parts
of the scientific method.

There are different types of Machine learning algorithms depending on the desired outcome of the algorithm.
Common algorithm types include:

• supervised learning, where the algorithm generates a function that maps inputs to desired outputs. One
standard formulation of the supervised learning task is the classification problem: the learner is required to
learn (to approximate the behavior of) a function which maps a vector into one of several classes by looking
at several input-output examples of the function.

• unsupervised learning, which models a set of inputs: labeled examples are not available.

• semi-supervised learning, which combines both labeled and unlabeled examples to generate an appropriate
function or classifier.

• reinforcement learning, where the algorithm learns a policy of how to act given an observation of the world.
Every action has some impact in the environment, and the environment provides feedback that guides the
learning algorithm.

• transduction, similar to supervised learning, but does not explicitly construct a function: instead, tries to
predict new outputs based on training inputs, training outputs, and new inputs.

• learning to learn , where the algorithm learns its own inductive bias based on previous experience.

The performance and computational analysis of machine learning algorithms is a branch of statistics known as
computational learning theory.

In a call classification context, the machine learner must find a function which maps the spoken utterance to an
appropriate class so that a call-center agent specialized in the class can take care of the caller’s needs. The classifier
does not deal with the audio data directly, but uses the output of speech recognizer. In literature there are several
machine learning algorithms used for call classification. Here are just some:

• Vector based call routing ([ChuCarroll99, Carpenter98]): Words are converted to more basic forms using
morphological analysis (verbs to stem forms, plurals to singular etc), and stopwords (words to make the
sentence grammatically correct but with no or little meaning, such as “the”) are filtered out. The remaining
words are called terms and are used for classification. For training, a matrixA is constructed with size
m ∗ n with m being the number of terms andn being the number of destinations andAt,d represents the
frequency of termt in calls to destinationd. The rows are then normalized to unit length, and IDF (inverse
document frequency) scaling is applied. For classifying, a sentence is transformed into a vector similarly
and a distance measure is calculated for example using the cosine distance (dot product). The result is a
score (confidence) of each destination, which can be compared to a threshold for making a decision, or
which can be sent to the disambiguation module if more categories have high scores.

• AT&T’s “How may I help you”, “Help Desk” and BoosTexter. The BoosTexter algorithm developed by
Schapire and Singer ([Schapire00]) was originally written to classify text, but has been tested successfully
for classifying speech as well ([Schapire00, DiFabbrizio02, Rochery02]). A general outline of the algorithm
follows.

Boosting makes a strong classifier out of several weak ones by “boosting” it with weights. A weak classifier
is a classifier which perform slightly better than random. In the case of text, BoostTexter checks for the
presence or absence of a word (or n-gram). The algorithm starts out with a weighing for each class.
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At each training round a decision stub (e.g. is the word present or not?) is added. Each stub gives a
different weighting for each class depending on the result of the question. For all classes, all the weights of
all the decision stubs are added to the base class weights, and the the class with the highest score ’wins’.
The boosting training algorithm recalculates the weights by focusing on the examples which are hardest to
classify, giving certain questions an extra “boost”.

In this thesis classification will be attempted with BoosTexter, as well as with RIPPER. RIPPER (Repeated In-
cremental Pruning to Produce Error Reduction) was developed by W. Cohen [Cohen95] and is a rule learning
algorithm. The resulting classifier is a series of if-then-else rules and is easy to understand by humans. RIPPER
is a modification of IREP (Incremental Reduced Error Pruning). In general lines RIPPER works by randomly
splitting the data set in a grow set (2/3) and prune set (1/3). Rules are grown, greedily, adding conditions with the
largest information gain in the grow set compared to the rule without that condition, making the rule more spe-
cialized. After the rule is grown, it is pruned (simplified) using the prune set, making the rule more general. The
resulting ruleset is then optimized, this time using a different growing and pruning process with the existing rules
as base. A rule learning system is attractive because the resulting classification algorithm is a series of if-then-else
rules which test for the presence or absence of a word and are easy to understand and modify by humans. JRIP is
WEKA’s implementation of the RIPPER algorithm. The exact algorithms for BoosTexter and RIPPER are given
in Chapter 6.

It is hard to determine which is the best classifier in any situation based on the literature alone since there are no
direct comparisons, and often they are tested on different kinds of tasks, different amounts of training material.
Thus it is not straightforward which algorithm will perform best and new testing must be done.



Chapter 3

Corpora

3.1 Introduction

The various speech corpora used in this thesis are described in this chapter. The process of creating a speech corpus
is laborious, expensive and time-consuming. Corpora can be made for various purposes. There are corpora to
cover different recording conditions, microphone and telephone, different languages and dialects, general language
corpora and task specific, for use in speaker verification, adult or children’s speech, speaker recognition or speech
recognition etc. Furthermore there are some corpora collected to study anomalies, such as non-native speech or
noisy speech.

For telephony speech recognition generally the goal is to recognize as many people as possible. Therefore gener-
ally great care is taken in selecting speakers so that it is representative of the population. One would for example
choose speakers in proportion to all major geographic or dialect areas. In each area there must be roughly the same
amount of male and female speakers of people in different age groups, although usually there is more interest in
adults than in children. Finding the right people in sufficient amounts willing to donate their time and voice to
science (or commercial corpus collectors) is another problem. Usually they must be approached with mailings or
by calling them up. If recordings of several thousands of people must be made it is an enormous task of orga-
nizing recording sessions, and registering their age, dialect, gender etc. Luckily for telephony speech corpora the
recordings can be made over the telephone. Respondents can be instructed to dial a telephone number so that their
properties can be registered and recordings can be made.

After recordings are made, they must be transcribed and verified to see if the speakers followed their instruc-
tions properly. Also some recordings will not be suitable, for example due to having too much noise and being
unrecognizable, so these must be eliminated. Sentence transcribers might need a little training first so that their
transcriptions and labels are consistent. Phonetic transcriptions on the other hand require expert listeners that can
classify each sound as a series of phonemes, even if they don’t know the words being said, for example due to it
being in an unknown language.

The material that is recorded must also be selected carefully. For general speech corpora they usually consist of
phonetically rich sentences taken from newspapers or articles. This in the hope that all phonemes and phoneme
sequences will be covered sufficiently. For task specific corpora only recordings are made for that task. It can be
very narrow for example only digits for digit recognition, only zip-codes for zip-code recognition etc., but also
broader where people answer open questions in different ways.

Corpora of 3 languages are used in this thesis, some for training, some for testing. In some cases the full corpus
was not available, or only certain parts were interesting enough. This is why information is given only about the
parts of the corpora which were actually used in Chapter 5. This is summarized in tables 3.1 and 3.2.

The following sections provide more detailed information about each corpus such as information about the people
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Table 3.1: Overview of training corpora

Corpus Language Utterances Hours Type
Dutch Polyphone Dutch 42101 48.92 Short utterances
TIMIT American English 3696 3.27 Sentences
Swiss French PolyphoneSwiss French 7961 10.60 Sentences

Table 3.2: Overview of testing corpora

Corpus Language Utterances Type
VoiceConnect97 Dutch 5300 Short utterances
TIMIT American English 2604 Sentences
DDAC2000 Dutch mixed with English words 1018 Short utterances

who recorded, what types of utterances it contains etc.

3.2 Dutch Polyphone

The Dutch Polyphone corpus [denOs95] contains the recordings of 5,050 Dutch speakers recorded over the fixed
telephone network (ISDN line). The corpus comprises 222,075 speech files (44 or 43 items per speaker), which
all have been orthographically transcribed. The data was collected in 8-bit A-law digital form.

The corpus contains both read and extemporaneous items.

The recorded items consist of isolated digits, numbers (one telephone number, two bank accounts or credit card
numbers, and the participation number), a postal code, guilder amounts, time, date, amounts, application words,
sentences with application words, phonetically rich sentences, spelled words, city names.

Several questions were asked to get some spontaneous speech (e.g. Is Dutch your native language?, Did you ever
live in another country than the Netherlands? In which cities did you grow up? Are you a man or a woman?
Are you calling from your home phone?, etc.). Tables 3.3 and 3.4 show example phonetically rich sentences and
application words respectively.

Table 3.3: Example Dutch Polyphone sentences

Natuurliefhebbers willen Lelystad omzetten in een oerbos.
Grindwinner Machiels lijkt aan zijn saneringsplicht te ontkomen.
Wij willen invloed uitoefenen bij toekomstige verkiezingen.
Tussen de auteur en zijn personages ontstaat een gevoelsmatige band.
Zij heeft de hulp van haar ouders nodig om zich te identificeren.

3.3 TIMIT

The TIMIT speech corpus [Garofolo93] was collected by Texas Instruments (TI) and the Massachusetts Institute
of Technology (MIT). It contains a total of 6300 phonetically rich utterances, 10 spoken by each of 630 speakers
from 8 major dialect regions of the United States. A speaker’s dialect region is the geographical area of the U.S.
where they lived during their childhood years. There is a separate “dialect region” for people who moved a lot
during childhood. The average male to female ratio is around 7 to 3. TIMIT is divided into a test and train
set. The test set consists of the recordings of 168 speakers. Except for two sentences which were recorded for
every person, there is no overlap in sentences between test and train set, nor is there an overlap in speakers. Some
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Table 3.4: Example Dutch Polyphone application words

Nieuwjaar Ontvangstbevestiging
Afstemmen Negen
Keuze Schiphol
Overzicht ’s Gravenhage

example sentences spoken in the TIMIT corpus are given in Table 3.5. The recordings were made over microphone
and the utterances are read, not spontaneous.

Table 3.5: Example TIMIT sentences

Grandmother outgrew her upbringing in petticoats.
At twilight on the twelfth day we’ll have Chablis.
Catastrophic economic cutbacks neglect the poor.
Ambidextrous pickpockets accomplish more.
Her classical performance gained critical acclaim.
Even a simple vocabulary contains symbols.

3.4 Swiss French Polyphone

Like the Dutch and German polyphone corpora, Swiss French Polyphone [Chollet96] is a Polyphone-like database
recorded in Switzerland to cover the French language as spoken in the Roman area.

Recording has been carried out by IDIAP in co-operation with Swiss TELECOMM-PTT. They collected 5,000
speakers who answered several questions (around 10) over the telephone, leading to spontaneous speech, and
reading about 28 items from a form supplied by IDIAP.

This form contains several speech sequences, including sentences from different sources (local newspapers, ex-
isting corpora, law articles, etc.) to ensure a good phonetic coverage, application words from a defined list of
command words, currency amounts, quantities, credit card numbers, spelled words (mainly names), etc. The
database is divided into two subsets: the first one comprises 1,000 speakers and the second one 4,000 speakers
(1,000 speakers are not available). Each subset is divided into two subsets: the phonetically rich sentences and the
application-oriented data.

Some time after Swiss French Polyphone was recorded, some speakers were asked to call back to make new
recordings. This is the PolyVar database whose aim it is to capture intra speaker variability.

Tables 3.6 and 3.7 show example phonetically rich sentences and application words respectively.

Table 3.6: Example Swiss French Polyphone sentences

Des bandits de grand chemin ne se gênent plus pour barrer les routes en plein jour.
Le devoir d’inǵerence s’impose aussi pour ce pays qu’on veut hermétique.
Cela nous stimulera sûrement̀a faire le meilleur boulot possible, mais pas dans un esprit de revanche.
Certes, depuis la crise conomique de la fin des années septante, l’émigration s’est ralentie.
La pŕesence de monsieur Gorbatchev est l’élément central du d́ecor.
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Table 3.7: Example Swiss French Polyphone application words

Message Quitter
Muse Non
Cinma Concert
Abonnement Quatre

3.5 Voiceconnect97

The Voiceconnect97 database was recorded internally at KPN research in 1997. It consists of 5300 telephone
recordings made of first and last names during the test trials of the Voiceconnect name-dialing service. The
service makes it possible to connect to a coworker by simply stating his name (first and last). Everyone in the
company was asked to volunteer and use the service during the test trials and fill in questionnaires about its use
afterward.1

The lexicon size of this database is 535, but with pronunciation variants added the lexicon size is 1335. Each name
has at least 2 pronunciation variant: one with silence between first and last name, and one without. Of the 535
names, the major part of the names are from Dutch origin; the number of names of foreign origin is negligible.
As the speech in this corpus is spontaneous many utterances have hesitations and mouth noises. Some example
names in the database are shown in Table 3.8.

Table 3.8: Example VoiceConnect97 utterances

Aad de Ronde Victor Tijssen
Jan Koster Petra Held
Agaath Sluijter Tineke boogaart
Marcel Vos Kees van den Bergh

3.6 DDAC2000

The DDAC2000 corpus was recorded in 2000 in the Netherlands during experiments with an automated Directory
Assistance task. People all over the country who called were greeted by a welcome message and asked the city of
the person or company they would like to reach. Next they were asked the name of the person or company. The
conversation is finalized by a confirmation prompt. The complete corpus consists of about 50,000 dialogs. The
corpus was transcribed by the Speech Processing Expertise Centre (SPEX). Transcribers were instructed to tag
words with an English pronunciation with an “<e>”. Some examples of English utterances pronounced by Dutch
people are given in Table 3.9.

Table 3.9: Example DDAC utterances

British Airways Honeywell
Delta Airlines Hewlett Packard
Free record shop World Online
XS4ALL (access for all) Toys “R“ Us (toys are us)

1The current version of Voiceconnect can be reached by telephone by dialing (+31)152857575



Chapter 4

Tools

The various software tools that were used during the course of this work are described here. The features that
were used will be dealt with in more detail.

In Table 4 a short summary of the tools used is given.

Tool Type Stability Docs License Functions GUI Ease
Praat Speech Analysis +++ +++ OS +++ Y +++

SONIC Speech Recognizer ++ ++ Research ++ N +

SpeechPearl 2000 Speech Recognizer +++ +++ Commercial +++ Y ++

WEKA Classifier Toolkit + + OS +++ Y +++

BoosTexter Classifier + + Research +++ N +

In chapter 5 Praat and SONIC are used. Praat because it is a good free all around tool which provides all analysis
functionalities needed. SONIC because it provides the functionality to train our own acoustic models.

In chapter 6 SpeechPearl 2000, WEKA and BoosTexter are used for various reasons. SpeechPearl 2000 is used
over SONIC because it has well tested commercial grade acoustic models, is very stable, and in-house software
provides good integration with telephony systems for real life data gathering and testing. BoosTexter is used be-
cause it is a very well known algorithm based on AdaBoost, reasonably easy to use, and needed for a comparison.

Some other tools were also considered. For example the BOW classification toolkit [McCallum96], and the now
open source and actively developed CMU Sphinx speech recognizer [Lee89], but were not selected, because
BOW was surpassed in features by the WEKA toolkit and had a very unfriendly format for data files and due to
the presence of in house knowledge for Sonic and SpeechPearl 2000.

4.1 The SONIC Large Vocabulary Speech Recognizer

SONIC is a toolkit for enabling research and development of new algorithms for continuous speech recognition.
Since March of 2001, SONIC has been used as a test bed for integrating new ideas and for supporting research
activities that include speech recognition as core components at the Center for Spoken Language Research. While
not a general HMM modeling toolkit, SONIC is specifically designed for speech recognition research with careful
attention applied for speed and efficiency needed for real-time use in live applications.

SONIC utilizes state-of-the-art statistical acoustic and language modeling methods. The system acoustic mod-
els are decision-tree state-clustered Hidden Markov Models (HMMs) with associated gamma probability density
functions to model state-durations. The recognizer implements a two-pass search strategy. The first pass con-
sists of a time-synchronous, beam-pruned Viterbi token-passing search through a lexical prefix tree. Cross-word
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acoustic models and trigram or four-gram language models are applied in the first pass of search. During the sec-
ond pass, the resulting word-lattice is converted into a word-graph. One can dump lattices in Finite State Machine
(FSM) format compatible with AT&T tools. Also one can generate n-best lists using the A* algorithm. Finally,
word-posterior probabilities can be calculated to provide a measure of word confidence.

The recognizer also incorporates both model-based and feature-based speaker adaptation methods. Model-based
adaptation methods include: Maximum Likelihood Linear Regression (MLLR), Structured MAP Linear Regres-
sions (SMAPLR). In addition, SONIC also includes implementation of feature-based adaptation methods such
as Vocal Tract Length Normalization (VTLN), cepstral mean & variance normalization, and Constrained MLLR
(CMLLR). Finally, advanced language-modeling strategies such as concept language models can be used to im-
prove performance for dialog system recognition tasks.

The SONIC Large Vocabulary Speech Recognizer [Pellom01, Pellom03] is used to perform the experiments in
the multilingual acoustic model part of this work. SONIC was initially written Bryan Pellom of the University of
Colorado. It is a research recognizer and thus constantly in development. SONIC is a collection of tools which
are run from the command line, thus requiring the documentation to be read extensively in order to master it.
The documentation is somewhat outdated and more of a survival guide, thus requiring a large amount of “hands-
on” experience to master. Another downside is that it has many bugs, and sometimes the programs can crash
rather inexplicably. Source code and support can be purchased separately. Elements of the source were modified
and binaries recompiled to alleviate bugs and certain limitations in the program (e.g. limitation of 66 phonemes
maximum, Windows file name issues, Windows socket code).

The following sections discusses the elements of SONIC that were actually used.

4.1.1 Acoustic model training

Figure 4.1: Sonic training process

Data Preparation

The acoustic modelling process for SONIC is outlined in Figure 4.1. A lot of audio data is needed to do acoustic
model training. The audio files need to be in 16 bit linear PCM audio format in the machine’s native byte format.
To convert from various formats to the format SONIC requires the “sox” program is used. Acoustic models for the
recognition of telephone speech are desired, so for some corpora the audio is bandpass filtered and downsampled
to 8 kHz to match the acoustic conditions of a telephone line more closely.
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Word-level text transcriptions for each audio file are required. It is also possible to force alignment of phonemes
by inserting a ‘!’ in front of it:!SIL. Each word in the transcription (separated by white space) needs an entry in
the pronunciation lexicon, so it’s necessary to remove all punctuation marks from the transcriptions. In the lexicon
each word has a phonetic transcription, which tells the speech recognizer how the word is pronounced and what
pattern it should look out for during recognition.

If no lexicon is available, letter-to-sound rules can be trained. Using an existing lexicon as training material, it will
automatically generate letter-to-sound rules using the ID3 decision tree algorithm. When confronted with words
not in the lexicon, a phonetic transcription will be generated using these rules. The textttt2pfea and textttt2ptrain
programs can be used for this.

For each audio file the PVMDR feature vectors are extracted with thefea command. For every frame of audio,
the 39 PMVDR features are extracted.

Alignment

For each audio file and its corresponding text transcription a forced Viterbi alignment is performed. The alignment
process attempts to match sequences of PMVDR features to phonemes. Later on during training these aligned
phonemes will serve as training input. SONIC is distributed with English monophone, context independent mod-
els, which can be used to bootstrap an English recognizer, as well as other languages when a phoneme mapping
file is given. The phoneme mapping file specifies for each phoneme of the target language which phoneme of the
source language phoneme it is most similar to. This mapping does not need to be a 100% accurate as it only serves
to guide the initial alignments. More training iterations can be run to make the final alignment more accurate, al-
though the more accurate the mapping, the less iterations there are necessary. Alignment is done with thealign

tool.

HMM Training

The alignments of all the audio files are combined into a single file. Binary files are then made based on these
alignment and extracted audio file features for each phoneme. The binary files are the input for the training
process. 3 files are created per phoneme representing each state (0, 1, 2). To create the binary file out of the master
label file, themlf2bin program is used.

Training is done with thehmm train program. The training process uses the binary files as input. For training
usually full context is selected which will create 12 acoustic models for each phoneme, consisting of 4 sets with
each having 3 states. The 4 sets are no-context, left-context, right-context and left-and-right context. All the
files for all phonemes are combined to create the final acoustic model using the unixcat command. To create
context dependent acoustic models, all files are combined into one. To create context independent models, only
the no-context files are combined.

Model Refinement

The resulting acoustic model can be refined in several ways. The first method is to adapt the model, for example
to new speakers or noise, but this is not discussed here, nor applied in this work. The second method is to redo
the alignment process, this time using the new acoustic model as bootstrap, which will hopefully lead to more
accurate alignments. The rest of the training steps are the same. The refinement iterations can be repeated many
times.
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4.1.2 Recognizer configuration

As Figure 4.2 shows, there are two programs in the SONIC package which can perform speech recognition:
sonic batch andsonic server. As the name says,sonic batch does recognition in batches, and is capa-
ble of recognizing thousands of audio files one by one, and is most useful when one wants to perform tests.
sonic server is used to perform realtime recognition or dictation. It communicates withsonicclient over a
TCP/IP port which in turn takes microphone input.

Figure 4.2: Sonic recognition process

Both recognition programs require a language model or a grammar specification in order to do recognition. The
CMU Statistical Language Modeling Toolkit can be used to create a language model from training transcriptions.
For evaluating recognition result the NISTsclite package can be used to calculate recognition rate statistics
such as sentence error rate and word error rate.

4.2 Praat

Praat is a multifunctional tool for doing phonetics written by Paul Boersma and David Weenink of the Institute of
Phonetic Science of the University of Amsterdam [Boersma01, Boersma05]. It provides features for the speech
analysis, synthesis and manipulation, listening experiments, labeling and segmentation, as well as the ability to
collect statistics and output in high quality graphics. Furthermore it is open source, compatible with many file
formats and has good documentation and tutorials for using most functions. The most used feature during the
course of this work was the spectrogram analysis function. The software appears stable and bug free as far as the
limited amount of features that were used.

A screenshot of the interface used when doing analysis of wave files is shown in Figure 4.3, giving two graphical
representations of a sound sample. The top representation shows the amplitude (Y-Axis) of the sound over time
(X-Axis). The bottom representation shows a spectrogram of the sound. Again, the X-axis represents time, and
the Y-axis represents increasing frequencies. Darker areas represent areas where a frequency is more prevalent.
These dark areas can form lines, which are called formants. These dark lines are numbered from bottom to topF0,
F1 etc. starting from the lowest frequency to highest. Most vowels can be characterized by the first 2 formants.

Praat has a feature to automatically detect formants, and these are graphically depicted in the spectrogram view
with red dots. It can also determine the pitch and intensity at a certain time. Furthermore it can be used to annotate
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Figure 4.3: Screenshot of Praat’s sound editor

and label portions of the file with the corresponding word or phoneme using mouse selection and listen to to each
sub-selection over and over.

4.3 Philips SpeechPearl 2000

Philips Speechpearl 2000 is a commercial package which makes it possible to program speech recognition in cus-
tom applications. It is certainly not a new product having its roots in an older product called SpeechMania, which
was also developed by Philips Research, but even though the product is not actively marketed anymore, recent up-
dates have still been released by Scansoft, the current intellectual property rights owner of the SpeechPearl product
line. Speechpearl 2000 provides access to functions in the C programing language, to provide high performance
low level integration into applications such as telephony. Several acoustic models are provided with the pack-
age, offering some trade-off between recognition performance and speed, but a training tool is not commercially
available.

It features several applications to aid in the development of “speechblocks”. Each speechblock consists of a
lexicon, grammar, acoustic model and language model. A speechblock generally only recognizes one part of a
dialog and can be made by constructing a grammar. Speechpearl2000 supports both open and closed grammars.
Closed grammars allow developers to specify which utterances should be recognized in a notation similar to BNF.
This is most suited for short utterances or instances where the utterances are very predictable. In all other cases
open grammars are more suitable to detect key phrases. After the grammar is specified, the word list or lexicon
can be extracted from it, and a basic language model is also compiled automatically.

This basic language model can be improved by training it on real spoken utterances. This is done as follows.
Whenever SpeechPearl is instructed to recognize an utterance, it can log what it has recognized to disk, as well
as the actual audio. When a number of these utterances is recorded, they form a corpus. By using the included
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annotation tool, these automatic annotations can be corrected manually. A large number of utterances will provide
enough statistics to improve the language model, and will lead to extra entries in the lexicon, as there are usually
words which people use which the developers did not think of at first. The retraining of the speechblock is done
with the included language model training tool. This process can be repeated until the performance is satisfying.

Although somewhat old, it has proven to be a reliable and stable platform to build applications which are not too
demanding. However due to it being commercial it provides limited insight in the inner workings of the recognizer
and provides limited options for tweaking.

4.4 WEKA - JRIP

An exciting and potentially far-reaching development in computer science is the invention and application of
methods of machine learning. These enable a computer program to automatically analyze a large body of data and
decide what information is most relevant. This crystallized information can then be used to automatically make
predictions or to help people make decisions faster and more accurately.

WEKA [Witten05] is a collection of machine learning algorithms for data mining tasks. The overall goal of
the WEKA project is to build a state-of-the-art facility for developing machine learning (ML) techniques and to
apply them to real-world data mining problems. The development team has incorporated several standard ML
techniques into a software ”workbench” called WEKA, for Waikato Environment for Knowledge Analysis. With
it, a specialist in a particular field is able to use ML to derive useful knowledge from databases that are far too
large to be analyzed by hand. WEKA’s users are ML researchers and industrial scientists, but it is also widely
used for teaching.

The algorithms can either be applied directly to a dataset or called from your own Java code. WEKA contains
tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also
well-suited for developing new machine learning schemes. WEKA is open source software issued under the GNU
General Public License.

In general using WEKA to train a classifier is as follows. In the “preprocess” tab (Fig 4.4), open the file containing
the training data. WEKA uses its own format, and has a few import filters, but generally its best to convert the
data to the WEKA format. After it is loaded, it is possible to perform some preprocessing operations. One of
the most useful is to convert a string to a word vector, so one field containing a string will turn into many fields
representing a word and the value of 1 or 0 depending on whether the word was present in the string or not. After
preprocessing the field containing the class must be selected. After this is done some statistics are made, like the
number of items per class.

In the “classify” tab (Fig 4.5 and 4.6) the desired algorithm must be chosen to train a classifier. There are many
to choose from, and each has its own set of options and parameters. Classifiers are roughly sorted by type, such
as numerical (neural), Bayesian, decision-tree based etc. After an algorithm is chosen one can train a classifier.
This can take a while, and sometimes WEKA will stop saying not enough memory. After the classifier finishes
training, it can be tested on a separate test set, on the training set, or cross validation can be done. After each test
a detailed report is shown with statistics. The classifier can be saved and reloaded for future use.

WEKA is a very useful tool for testing a large amount of classifiers on the same data, and custom classifiers can
be plugged in easily. The standard package comes with a lot of classifiers already, as well as references to the
papers in which their workings are described. Because WEKA is written in JAVA there are problems handling
large datasets (or huge amounts of attributes), and it will often fail in the middle of training of classifier, even
when increasing the maximum amount of memory it is allowed to use. Nevertheless it remains a useful tool for
rapidly testing many classifiers using the same data set. The WEKA classifier used most in this thesis, JRIP, is an
implementation of the RIPPER algorithm which is described in Section 6.3.1.
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Figure 4.4: Weka Preprocess Panel screenshot (Mac)

4.5 BoosTexter

AT&T has done extensive research developing and using BoosTexter for call classification tasks, and BoosTexter
can still be regarded as state of the art. BoosTexter [Schapire00] is a general purpose machine-learning program
based on boosting for building a classifier from text and/or attribute-value data. BoosTexter can handle:

• multiple attributes which may be textual, discrete or continuous;

• data with missing attributes;

• multiclass problems, including problems in which some instances belong to more than one class;

• fairly large datasets (up to around 100,000 examples or more, depending on the computer and the form of
the data).

BoosTexter uses boosting on top of very simple decision rules (sometimes called “decision stumps”). Although
this allows BoosTexter to run very fast while often giving highly accurate results, this approach may not be
appropriate for all learning tasks. For instance, boosting on top of decision trees (such as C4.5 or CART) may be
more effective for some applications. BoosTexter is based on the AdaBoost [Freund97] algorithm and is described
in more detail in Sectino 6.3.2

BoosTexter is a command line utility and has a very short text file explaining the usage. Not all options are
explained thoroughly. The source code is not available. BoosTexter uses its own file format, and has a few
(limited) options, which make it possible to create decision stubs on single words, bigrams or trigrams. Training
is done by giving the data file as input. Testing is done in a similar fashion. Not many statistics are output by the
program.
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Figure 4.5: Weka Classify Panel screenshot (Mac)

Figure 4.6: Weka Classify Panel screenshot (Windows)



Chapter 5

English foreign word recognition

5.1 Introduction

When people of a foreign country try to speak the local language at least some will have problems with the
pronunciation. The reverse is also true. When people try to speak a foreign language, some will have the correct
pronunciation but some will have trouble with the pronunciation. For humans, even though pronunciation errors
are made, these kinds of utterances can still be understandable, sometimes with the help of the context of the
situation where such an utterance is made.

Of particular interest is the pronunciation of English by Dutch in the Netherlands. This is because over the years
a lot of popular English words have made it into the vocabulary of the average inhabitant of the Netherlands and
are sometimes preferred over Dutch equivalents (if they exist at all), driven by the globalization of organizations,
and media such as internet, television and radio.

The typical pronunciation of a Dutch person speaking English will not necessarily be bad. Foreign phonemes
originally not belonging to Dutch are sometimes taken over flawlessly. For example the “g” in “goal”. But take
for example the sentence “I will put the cup on the table”. It is not uncommon to hear the English word “put”
pronounced as the Dutch word “poet” and “cup” be pronounced as “kop” or “kup” (using Dutch pronunciation
rules). This phenomenon occurs because they are unable to pronounce the phoneme correctly and instead they
will use the closest phoneme that sounds like it or use their own pronunciation rules.

The typical speech recognizer is heavily trained on phonemes typical for one language, and is only lightly trained
on foreign ones, if at all. For example “goal” with the hard “g” is now a common word in the Dutch language, but
the “g” is of such low frequency in the language that is hard to justify creating a separate model for it, and instead
the phoneme will be merged with another one. For recognition tasks in Dutch only sentences they perform well
because they are trained on it. The occasional foreign word can be recognized by mapping the foreign phoneme
to the closest native one.

However in some speech recognition applications the use of foreign words (and thus foreign phonemes) can
be expected with very high probability and in those applications the recognition of such a foreign word can be
essential in addition to the recognition of Dutch.

Examples of such applications:

• Applications which accepts unrestricted speech: a telephone ordering service: “Ik wil graag de nieuwste
single van Britney Spears bestellen die ik gisteren op MTV gezien heb”, or an internet helpdesk: “Ik heb
problemen met Outlook Express en kan geen e-mail ontvangen. Ik kreeg deze error message ...”.

• A name dialing application in an international office or directory service which accepts both Dutch and

37
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English names: “Bill Gates”, “Free record shop”.

For such applications a monolingually trained Dutch or English speech recognizer (even though common practice)
may not be adequate enough. A Dutch speech recognizer will have a hard time detecting some English words,
because it is not trained on some English phonemes. An English speech recognizer can also not be used because
it will fail to recognize some Dutch phonemes.

In summary recognition of English foreign words spoken by Dutch has a few problems:

• The generally accepted English pronunciation requires the use of phonemes which do not occur in generally
accepted Dutch.

• As a result Dutch might speak English with an accent and will use pronunciations different from the gener-
ally accepted ones: they might try to reproduce English phonemes by using the closest Dutch phoneme, or
they might be attempting to pronounce English using Dutch pronunciation rules, and many more possibili-
ties.

• Dutch language corpora are not collected often and over the years the importance and presence of foreign
words has increased significantly. The corpora remain a good source of training material for the typical
Dutch phonemes but are inadequate to train a speech recognizer which can detect English foreign words.

A solution would be to have a Dutch recognizer additionally trained on English data, so that it hopefully will
recognize Dutch and Dutch speaking English. One technique to do this is multilingual acoustic modeling which
takes training data from multiple languages and combines the phoneme inventory of each language into one
multilingual set. Rather than mapping foreign phonemes to the closest one and use a monolingual recognizer, the
foreign phonemes are added to the native creating an expanded multilingual model.

Multilingual acoustic modeling was chosen for the following reasons:

• Instead of mapping English phonemes to Dutch, the Dutch phoneme set is expanded with the missing
English phonemes. The word lexicons can therefore be more accurate [Gustafson95], hopefully resulting in
better recognition.

• They are known to be able to recognize multiple languages with one recognizer instance and recognition
of Dutch and the occasional English is desired. The use of one recognizer instance is also desirable for
reduction of costs.

• Multilingual models are known to achieve better cross-lingual recognition performance compared to using
a monolingual recognizer when there is little data available to bootstrap the recognizer. There is no suitable
training data available of Dutch people speaking English, so building a recognizer with that as basis is out
of the question and neither is adaptation of a Dutch recognizer. However there is a lot of Dutch speech data
available, and also some English and French data. This can analogous to a bootstrapping a new language if
“English spoken by Dutch” is regarded as a new language.

This chapter investigates the possibility of using multilingual modeling for recognition and the problem definition
is as follows: Does using multilingual models improve recognition performance of English utterances spoken by
Dutch, and why or why doesn’t recognition improve?

This will be answered by answering the following subquestions:

1. How is the performance of multilingual models on Dutch?
The performance for Dutch must not degrade too much compared to a Dutch only recognizer. The Voice-
Connect97 corpus will be used for testing this.

2. How is the performance of multilingual models on native English?
Not strictly required, but is useful to know if native English can also be recognized. The TIMIT corpus will
be used for this.
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3. How is the performance of multilingual models on English utterances spoken by Dutch?
The most interesting test. Does performance in fact improve compared to a Dutch only recognizer, and if so
how much, under what circumstances and why? The DDAC2000 corpus will be used for this.

5.2 Training multilingual acoustic models

This section describes how the acoustic models were trained. Recognition of both Dutch and English phonemes
is required, so it is reasonable to use Dutch and English training data. Swiss French data is also added to the
mix, because [Kunzmann04] shows that adding data even not belonging to the languages to be tested might
improve performance, as it simply provides more training samples and allophonic variations for the phonemes the
languages have in common. So in fact 3 languages were used for training.

As the corpora came from different sources different transcription guidelines were used. To unify them phoneme
sets were converted to IPA, sometimes simplified to make the granularity the same, and converted back into a
machine readable form, X-SAMPA [Wells97b]. Statistics regarding the used training corpora can be found in
Table 3.1 and Table B.1. In this text phonemes are generally described using X-SAMPA symbols, not IPA ones,
and are surrounded by slashes, for example/p/. This section gives an overview of all acoustic models trained
(Table 5.1) and describes how they were trained.

Table 5.1: Acoustic model overview

Code Trained on Phonemes Alignments Comments
AMO NL1 Dutch 45 1
AMO NL2 Dutch 45 2 baseline acoustic model
AMO NLEN1a Dutch, English 66 1 Using Eng. word trans.
AMO NLEN1b Dutch, English 66 1 Using Eng. phoneme trans.
AMO NLEN2 Dutch, English 66 2
AMO NLEN2q Dutch, English 66 2 language question
AMO NLENFR1 Dutch, English, French 78 1
AMO NLENFR2 Dutch, English, French 78 2
AMO NLFR2 Dutch, French 78 2 Eng. phonemes not trained

5.2.1 Iterative training procedure

Acoustic models were trained initially according to the Lang-mix acoustic modeling strategy, meaning data is
shared for phonemes with the same IPA symbol. Lang-sep was not considered because the desire is to expand the
phoneme set, not recognize two languages separately. Some tests with the Lang-tag strategy were also done in a
later stage.

Since much of the training data did not come from the same sources, did not have time aligned phonetic tran-
scriptions but only word-level transcriptions, and a relatively large amount of data was available for Dutch and
relatively little for the other training languages, an iterative approach to aligning the training data was chosen,
similar to [Walker03].

The iterative procedure ensures that alignments are as consistent as possible across corpora and is as follows (also
see Figure 5.1:

1. Initialize the multilingual set with a reference corpusC0 and train a recognizerR0. Initialize x = 0.

2. Cnew is the new corpus not yet in the reference corpus.

3. Use recognizerRx to align the dataCnew. If Cnew has phonemes which are not in the reference corpus, the
aligner is configured to initialize this phoneme with the closest phoneme inCx.
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4. Expand the reference corpusCx with Cnew, creatingCx+1.

5. Train a new recognizerRx+1 on the new reference corpusCx+1. If phonemes from the existing set and new
corpus have the same phonetic symbol, they will share the same acoustic model.

6. Increasex by 1.

7. If there are still corpora not in the reference set go to step 2.

8. Else the procedure is finished.

Figure 5.1: The reference corpus increases size with 1 language each time

5.2.2 Training Dutch

The Dutch training data was chosen as the reference corpus, since the performance of the model trained with this
data would be used for baseline testing.1

The Dutch training data is taken from Dutch Polyphone [denOs95], but is different from the standard training set.
The used training set consists of short utterances only and this training set has been shown to perform better on
short utterances, but worse on longer utterances [Sturm00]. The Dutch lexicon was transcribed with the PHICOS
phoneme set, an extension of SAMPA [Wells97a] with postvocalic/L/ and/R/. PHICOS to IPA mappings were
taken from [SpeechPearlManual] and [Wester02]. The complete Dutch phoneme set can be found in Table 5.2.

The Dutch training data was aligned with text transcriptions by bootstrapping from the very basic English mono-
phone models provided with SONIC. Training from this data results in the first context dependent Dutch acoustic
model, AMO NL1. The data was then realigned and retrained using this model, resulting in AMONL2. The
alignments for Dutch were not changed anymore after this point. The phonetic set at this point consisted of 45
symbols, including 3 non-speech (silence, background noise, mouth noises).

5.2.3 Training and adding English

The English training data consists of the TIMIT [Garofolo93] training set. The TIMIT data consists of phonetically
rich sentences. The audio was filtered with a low-pass of 3.4 kHz and a high-pass of 0.3 kHz and down-sampled

1Also for the practical reason that it was the only corpus available at the time. The other corpora became available in the weeks following
the decision and were still unknown at the time.
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Table 5.2: Phonemes in the Dutch Polyphone corpus

IPA X-SAMPA Example
p p pak
b b bak
t t tak
d d dak
k k kap
g g goal
f f fel
v v vel
s s sein
z z zijn
x x toch
h h hand
S S show
G G goed

IPA X-SAMPA Example
Z Z bagage
m m met
n n net
N N bang
l l land
ì 5 hal
r r rand
ô r\ tor
w w wit
j j ja
I I pit
E E pet
A A pat
O O pot

IPA X-SAMPA Example
Y Y put
@ @ gemak
i i vier
y y vuur
u u voer
a: a: naam
e: e: veer
ø: 2: deur
o: o: voor
Ei Ei fij n

œy 9y huis
Au Au goud
E: E: créme
O: O: roze

to 8 kHz to simulate telephone speech as much as possible, as TIMIT was originally recorded with high quality
microphones in a quiet environment. The lexicon provided with TIMIT was converted to IPA using the table found
in [Keating98]; some symbols additionally had lengthening marks added.

After adding English phonemes to the Dutch set, the multilingual phoneme set was expanded 66 phonemes in-
cluding 3 non speech symbols. The new phonemes were mainly vowels and diphthongs, but some affricates and
fricatives as well. A full listing of the English phonemes merged in the multilingual set can be found in Table 5.3.

Table 5.3: Phonemes in the English TIMIT corpus

IPA X-SAMPA Example
p p pin
b b bin
t t tin
d d din
k k kin
g g give
tS tS chin
dZ dZ gin
f f fin
v v vim
T T thin
D D this
s s sin
z z zing
S S shin

IPA X-SAMPA Example
Z Z measure
h h hit
m m mock
n n knock
N N thing
ô r\ wrong
l l long
w w wasp
j j yacht
m
"

m= bottle
n
"

l= button
l
"

l= bottom
I I pit
E E pet
æ { pat

IPA X-SAMPA Example
A: A: pot
2 V cut
U U put
1 1 debit
i: i: ease
eI eI raise
u: u: luse
oU oU nose
O O cause
aI aI rise
OI OI noise
aU aU rouse
3~ 3` furs
@ @ allow
@~ @` corner

The TIMIT corpus was the only corpus with detailed phonetic transcriptions, which gave time precise phonetic re-
alization of the whole sentence, in addition to the word-level transcriptions (converted to phoneme level transcrip-
tions using a lexicon). The two transcriptions did not always correspond, therefore two context dependent models
were trained to see which one was better: AMONLEN1a using word level text transcriptions and AMONLEN1b
using exact timed phonetic transcriptions. The Dutch model (AMONL2) was used to align the English data in
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both cases.

Initial testing showed that AMONLEN1a performed better (see Section 5.3) than AMONLEN1b, probably be-
cause the phoneme models were not trained on for example allophonic variation. Because of this AMONLEN1a
was used to realign and retrain the data, resulting in the context dependent model AMONLEN2. English align-
ments were then fixed.

Finally, a language question was added to the decision tree question list to train a different model for Dutch and
English according to the Lang-tag strategy, resulting in AMONLEN2q. Also a model with the TIMIT data only
was trained, AMOEN, using the alignments from AMONLEN2.

5.2.4 Training and adding Swiss French

The Swiss French data consists of a subset of the phonetically rich sentences from Swiss French Polyphone
[Chollet96]. No lexicon was readily available for this corpus, so letter to sound rules were trained using the
SONIC text to phone tool. The BRULEX lexicon [Content90] was used as training material for the tool and has
over 35000 lexicon entries. It was not determined how accurate the generated transcriptions are, but viewing
the transcriptions empirically did not reveal any errors of significance. All the French phonemes added to the
multilingual set are listed in Table 5.4.

A same approach was was taken for adding French to the reference corpus as for adding English. The Dutch-
English model, AMONLEN2, was used to initially align the French data. The resulting model after training was
used to realign the data again and train a new acoustic model. This resulted in the models AMONLENFR1 and
AMO NLENFR2.

An acoustic model with only Dutch and French speech data was trained as well (AMONLFR2). No realignments
were done with the Dutch only model, instead the alignments used to train AMONLENFR2 were taken.

Table 5.4: Phonemes in the Swiss French Polyphone corpus

IPA X-SAMPA Example
p p pont
b b bon
t t temps
d d dans
k k quand
g g gant
f f femme
v v vent
s s sans
z z zone
S S champ
Z Z gens
j j pierre

IPA X-SAMPA Example
m m mont
n n nom
N N camping
ñ J oignon
l l long
K R rond
w w coin
4 H juin
i i si
e e ses
E E seize
a a patte
A A pâte

IPA X-SAMPA Example
O O comme
o o gros
u u doux
y y du
ø 2 deux
œ 9 neuf
@ @ justement
Ẽ E∼ vin
Ã A∼ vent
Õ O∼ bon
œ̃ 9∼ brun
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5.3 Tests

5.3.1 VoiceConnec97 test

Purpose

This test measures the performance of the various models on Dutch only. As it is known in literature, the mono-
lingual recognition performance tends to drop compared to the multilingual model. Since the recognizer must
recognize Dutch in addition to the English words, it is essential to measure the model’s performance on Dutch.

Setup

The VoiceConnect97 test set consists of 5300 short utterances of Dutch first and last names and a lexicon of
535 names, each with at least one pronunciation variant (silence between words and not). In each utterance the
speaker says the name of the person he or she wants to reach by telephone. In some utterances it is normal to have
instances of people hesitating (“uh”), making mouth noises etc. These are handled by adding entries in the “filler”
lexicon which will prevent these from cluttering the recognition results. Allowed utterances were sets of first and
last name. Basically single word recognition was done, as first and last name were entered as a single word in the
lexicon. All names have an equal chance of occurring in the unigram language model.

Results

The results of the performance of the acoustic models are in Table 5.5. The performance is measured by the ratio
of correctly recognized utterances when processing all the 5300 test utterances. Because single word recognition
was done, the sentence error and word error rate are the same. The percentage of correctly recognized utterances
can be found in the table under “Correct”.

Table 5.5: Voiceconnect97 results

Model Correct
AMO NL1 93.26%
AMO NL2 93.36%
AMO NLEN1a 92.98%
AMO NLEN1b 92.70%
AMO NLEN2 92.66%
AMO NLEN2q 92.72%
AMO NLENFR1 91.19%
AMO NLENFR2 91.34%
AMO NLFR2 91.02%

Discussion

• As expected the second models, resulting after realignment (with a “2” in the acoustic model name), usually
score better, but not significantly, than the corresponding first models. This is because realignment usually
results in more accurate alignments which in turn will yield more accurate acoustic models giving better
scores. The second models also scored better in the TIMIT test (section 5.3.2).

• The performance degrades when more languages are added to the mix, thus making the best model for this
test AMO NL2 which is only trained on Dutch data, followed by the combination of English and Dutch
(AMO NLEN2). This is also not strange as this is similar to the results in literature.



44 CHAPTER 5. ENGLISH FOREIGN WORD RECOGNITION

• Although adding more languages degrades performance, the performance of the best model with English
phonemes (AMONL2) remains acceptable compared to the baseline, as the degradation is fairly small. The
3 language combination (AMONLENFR2) performs worse but not unacceptable.

• Adding French seems to drop performance the most. This is indicated by the fact that the Dutch-French
(AMO NLFR2) model performs worse than all other models, including the Dutch- English-French combi-
nation. This is strange because the first has only 2 languages in the mix, and the latter 3.

• Adding the language question (AMONLEN2q) improved the recognition performance of the combined
Dutch English acoustic model (AMONLEN2) only marginally. Lang-tag in literature improves perfor-
mance of monolingual recognition so this is also expected.

5.3.2 TIMIT test

Purpose

The TIMIT test set was used to evaluate the native English performance of the acoustic model. If every Dutchman
happened to have a perfect (American) English pronunciation, this test would be suitable, but there are some flaws.
Because the pronunciation of a non-native speaker can be very off or very good, the results of this experiment are
not directly relevant to foreign English word recognition, but it might provide some useful information, since the
extra English phonemes are heavily tested. Also a comparison is made to the baseline English recognizer, trained
on English data only, to see how much performance drops with Dutch data added.

Setup

The TIMIT test set, like the TIMIT training set, consists of phonetically rich sentences instead of short utterances.
There is no overlap of training and test set with regard to utterances and speakers. Because whole sentences had
to be recognized, a trigram language model was trained using the list of all the utterances in both the test and
train set. For testing, the original TIMIT test set is used, which has no overlap in speakers or utterances with the
original TIMIT training set. The original TIMIT training set was also used for training the multilingual models.

Results

The results for the different acoustic models are in Table 5.6. Because long sentences are recognized, there are
also additional measures to determine the performance. “Word Correct” is the word accuracy ratio, meaning the
amount of words recognized correctly, independent of the sentence. “Sub”, “Del” and “Ins” are more specific and
represent respectively how many times a word was recognized wrongly, not at all, or an extra word was inserted
in the recognition results. Finally “SER” or Sentence error ratio determines how many sentences were recognized
wrong, thus having at least one word error.

Table 5.6: TIMIT test results

Model Word Correct Sub Del Ins Err SER
AMO EN 91.8% 6.3% 1.9% 2.4% 10.6%41.0%
AMO NLEN1a 91.0% 6.9% 2.1% 3.4% 12.4%46.4%
AMO NLEN1b 88.9% 8.7% 2.4% 3.9% 15.0%51.7%
AMO NLEN2 91.1% 7.0% 2.0% 3.2% 12.1%45.8%
AMO NLEN2q 90.8% 7.2% 2.0% 3.4% 12.6%47.3%
AMO NLENFR1 90.8% 6.9% 2.2% 3.0% 12.1%44.8%
AMO NLENFR2 91.2% 7.0% 1.8% 3.5% 12.3%46.6%
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Discussion

• The best model in this test is the model trained on English data only, the monolingually trained AMOEN.
This is expected because adding additional languages decreases performance.

• Again the mixed English-Dutch models, but especially AMONLEN2, does not perform significantly less
than the English only recognizer. This indicates that the English phonemes are recognized well.

• The Dutch-English model trained with the phonetic transcriptions performed worse than the model trained
with word level transcriptions (AMONLEN1b versus AMONLEN1a). AMO NLEN1b was trained us-
ing the phonetic transcriptions transcribed from the audio, while AMONLEN1a was trained using word
transcriptions which were transformed into phonetic transcriptions using the lexicon. It is a known fact that
words do not always sound the same, for example if spoken fast, a vowel might be omitted or co-articulation
might occur. In the case of AMONLEN1b a phoneme was trained if and only if it was observed by the
transcriber. In the case of AMONLEN1a a phoneme is always trained if the lexicon suggests a word is
pronounced in a certain way, therefore making AMONLEN1a more robust to variations in pronunciations.
AMO NLEN1a was used to realign the training data for AMONLEN2 and this model performs better than
both.

• The Lang-tag strategy appears not to increase performance of the monolingual English recognition, and
performance is in fact less. This might be explained by the fact that there was a lot more Dutch training
data used compared to the amount of English data, therefore resulting in a higher bias toward recognition of
Dutch phonemes.

• Adding French to the multilingual model did not seem to have a conclusive effect, compared to the best
English Dutch model. The word error rate slightly decreases, but the sentence error slightly increases.

5.3.3 DDAC2000 test

Purpose

This test set is the most important one, since it most closely resembles the goals of the experiment: to see if
recognition of English foreign words improves with a multilingual model.

Setup

A subset of the DDAC2000 [Sturm00] corpus was used for this test. The transcription protocol of this corpus
specifies that words pronounced as English are tagged with an “<e>”. Only these tagged words were considered
for inclusion in the test set, resulting in a test set of around 3600 utterances. This set was further reduced to
utterances which occurred two or more times, in order to limit the time to write and verify the lexicon. The result
was a final test set of 1018 audio files, and a vocabulary of 272 items of which a complete utterance is regarded as
an item.

The items in this lexicon were often a combination of Dutch and English words, but always at least one English
word, therefore the phonetic transcriptions were allowed to have a mix of both Dutch and English phonemes, with
English phonemes used whenever a word was English. The initial lexicon was generated using letter to sound
rules trained on the American English TIMIT lexicon. This obviously produced a lot of junk when generating
transcriptions for Dutch words, so all entries were double checked and fixed manually.

When initially testing this lexicon on AMONLEN the result was a correct ratio of only around 77%. By listening
to what was actually said when errors occurred, pronunciation variants were added to the lexicon. Corrections
were only made when what was actually said was significantly different from what was expected. Several types
of errors and fixes are listed here:
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• Left-over transcription errors: mostly in the manual phonetic transcriptions. Additional scans for errors
were made to correct it.

• Words having both a native English and Dutch pronunciation such as “Holland” in “World Travel Holland”
or prefixes such as “Euro-” and Dutch words from English origin: Although the words tagged with were
“<e>” reserved for words pronounced as English, they were often also mistakenly used for Dutch words of
English origin. In all these cases, the Dutch pronunciation variant was added.

• Different British and American pronunciations, for example “master”: The British pronunciation was added
to the lexicon, in addition to the American.

• Common phoneme substitutions, for example/Y/ instead of/U/ in “jungle”: This error occurs because the
/U/ is not a Dutch phoneme, but people pronounce it as a Dutch/Y/ based on how the word is written.

• Long silences between words: an additional entry in the lexicon was made with the “SIL” phoneme between
words.

After applying fixes, the resulting lexicon is called LEXEN. This lexicon represents the phoneme expansion
approach. The LEXEN lexicon was then converted to one with Dutch phonemes only using the mapping in Table
5.7, resulting in LEXNL and represents the phoneme mapping approach. The mapping table was constructed
such that each English phoneme not present in the Dutch set should have a representation using the Dutch set
which matches as close as possible. One way to come up with such a mapping, and which was applied here was
by asking the following question: What combination of Dutch phonemes is necessary to produce an acceptable
pronunciation for an English word using Dutch text to speech?

Table 5.7: English to Dutch Phoneme mapping table

English Dutch English Dutch English Dutch English Dutch
1 I 3` Y r @` @ r\ A: A
D d OI O j T t U u
V O aI A j aU Au dZ d Z
eI e: i: i l= @ l m= @ m
n= @ n oU o: tS t S u: u
{ E

More preliminary tests on AMONLEN showed that LEXNL outperformed LEXEN. This means that the recog-
nition of Dutch phonemes only (LEXNL) works better than a Dutch phoneme set expanded with English ones
(LEX NL). However, an error analysis showed that different errors were made in both cases. This suggests that
people often use a Dutch-like pronunciation which is recognized well by the LEXNL lexicon, and some an
English-like pronunciation which is recognized well by LEXEN. To get the best of both worlds, the two lexi-
cons were merged together resulting in LEXNLEN, which indeed resulted in another performance improvement.
This was repeated for all acoustic models which also show this behavior. An overview of all the variations of the
lexicon is shown in Table 5.8

Table 5.8: Lexicon names

Lexicon Name Description
LEX EN Lexicon using English phonemes where applicable
LEX NL Lexicon using Dutch phonemes only by converting LEXEN with mapping table
LEX NLEN LEX EN and LEXNL merged

Results

The complete results are shown in Table 5.9 and 5.10 which show the same results, but in a different ordering to
make the results easier to interpret. One has the results ordered by acoustic model with lexicon constant, the other
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has the acoustic model constant with different lexicons.

Table 5.9: DDAC2000 results ordered by acoustic model

Acoustic model Lexicon Correct
AMO NL2 LEX NL 91.45%
AMO NLEN2 LEX EN 90.96%
AMO NLEN2 LEX NL 92.24%
AMO NLEN2 LEX NLEN 93.81%
AMO NLEN2q LEX EN 84.87%
AMO NLEN2q LEX NL 92.24%
AMO NLEN2q LEX NLEN 93.71%
AMO NLENFR2 LEX EN 87.52%
AMO NLENFR2 LEX NL 92.17%
AMO NLENFR2 LEX NLEN 93.03%
AMO NLFR2 LEX NL 89.88%

Table 5.10: DDAC2000 results ordered by lexicon

Acoustic model Lexicon Correct
AMO NLEN2 LEX EN 90.96%
AMO NLEN2q LEX EN 84.87%
AMO NLENFR2 LEX EN 87.52%
AMO NL2 LEX NL 91.45%
AMO NLEN2 LEX NL 92.24%
AMO NLEN2q LEX NL 92.24%
AMO NLENFR2 LEX NL 92.17%
AMO NLFR2 LEX NL 89.88%
AMO NLEN2 LEX NLEN 93.81%
AMO NLEN2q LEX NLEN 93.71%
AMO NLENFR2 LEX NLEN 93.03%

Discussion

• As noted earlier, because LEXNL outperforms LEXEN on all acoustic models it is reasonable to assume
that Dutch people mainly use a “Dutch” way of pronouncing English rather than a more English like way.
It also so means that the training of English phonemes is of relatively less importance than the training of
Dutch phonemes.

• However some utterances recognized well using LEXNL are recognized poorly when using LEXEN and
vice versa, meaning that extra pronunciation variants with English phonemes might increase recognition
rate.

• When comparing the performance of LEXNL on different acoustic models AMONLEN2, AMO NLEN2q
and AMO NLENFR2 outperform AMONL2, suggesting that training Dutch phonemes with native English
data is beneficiary when recognizing English spoken by Dutch, since only Dutch phonemes were used for
recognition. This might be explained by the fact that although some IPA symbols are the same in English
and Dutch, the exact realizations and allophones within a language are still different. Training with English
data causes the phoneme to be “broadened” with these allophones and also causes increases in the number
of triphones. This can be seen more clearly in Table 5.10, which is just a reordering of 5.9.

• Adding French to the training set however decreases performance. This can be seen by comparing the
performance of the AMONLENFR to the other acoustic models. This can be explained by the fact that
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Dutch phonemes are important for recognition for in test, and that this acoustic model is not so good at it
(see VoiceConnect97 test results).

• The Lang-tag strategy with language question has minimal impact and sometimes decreases recognition
performance. This can be explained by the fact that the Lang-tag question is generally used for recognizing
a single language the multilingual model is trained on, but in this case it is a mix of phonemes from different
languages which need to be recognized. The Lang-mix strategy is better.

• Finally, the best performing combination, LEXNLEN on AMO NLEN performs 2.54% better than the
baseline performance of LEXNL on AMO NL. There are 2 explanations for this increase:

– The acoustic model: Even if using only Dutch phonemes for recognition (LEXNL), the performance
is better with AMONLEN2, which is trained additionally on English data than, with AMONL2.

– Pronunciation variants made possible by extra phonemes: When using a lexicon with additional entries
using English phonemes (LEXNLEN) the recognition rate improves over using a lexicon with only
Dutch phonemes (LEXNL)

5.4 Differences between English and Dutch phonemes

Because of the results in the previous section it is interesting to see which phonemes the speech recognizer recog-
nizes better using Dutch phonemes alone, and for which English phonemes are required. When phonemes are
recognized better using the mapped LEXNL it can mean that Dutch people tend to use a more Dutch pronuncia-
tion to produce these sounds, while when phonemes are recognized better using LEXEN it can mean that a Dutch
recognizer would have some trouble with these phonemes, thus making use of additional English training data the
better choice for these phonemes.

Also because a lot of phonemes are recognized well when using either the mapped LEXNL or LEX EN, it means
that in the acoustic model they must be very similar, so it would mean that for these phonemes additional English
training material is less useful. It would be possible to merge these phonemes during training in future versions
of the acoustic model, resulting in a acoustic model which in theory would be have less phonemes, and faster.
Such an acoustic model was however not trained, because it is unwise to generalize the phoneme similarities and
differences based on this small test case alone.

5.4.1 What the speech recognizer could distinguish

Comparing the results of LEXNL and LEX EN on AMO NLEN, 89 differences were found. This means that
for 91,26% in both tests the same recognition or misrecognition occurs. It also means that for 91,26% it does not
matter which lexicon is used, since the result is the same.

The 89 differences are split as follows: 27 occurrences where using LEXEN recognized an utterances correctly
when using LEXNL did not, 38 occurrences where using LEXNL recognized an utterances correctly while using
LEX EN did not, and 24 occurrences where using both lexicons resulted in a misrecognition.

For several words a phonemes which perform better can be identified, because they are the only phoneme within
the word transcription which are changed by the mapping. They are described here.

For words the words “team”, “i office”, “fiat dealer” and “easyjet” the only difference in phonemes using the
mapping is/i/ versus/i:/. /E/ performs better than/{/ in the words “palet com” and “Swiss air”,/A j / performing
better than/aI/ in the word “primeline”./A j / performs better than/aI/ in the word “pioneer”. In the word “pearl
opticien” /Y r\/ is recognized better than/3 /̀.

For the the other words, more than one phoneme was changed, and it is not certain which of these contributes
most in the improvement of recognition.
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Table 5.11: Words for which instances are being recognized correctly when using LEXNL but not when using
LEX EN:

Word LEX EN transcription LEX NL transcription
I office i:Of@s iOf@s
KPN research ka:pe:Enr\i:s3‘tS ka:pe:Enr\isYrtS

ka:pe:Enr\1s3‘tS ka:pe:Enr\IsYrtS
UPS universal parcel serviceju:pi:Esju:n1v3‘s@lpA:r\s@ls3‘v@s jupiEsjunIvYrs@lpAr\s@lsYrv@s
British airways br\It1S{r\weIs br\ItISEr\we:s

br\It1Se:r\weIs br\ItISe:r\we:s
easyjet i:zi:dZEt izidZEt

i:zi:jEt izijEt
eurolines jUr\oUlaInz jur\o:lAjnz

Yro:laInz Yro:lAjnz
fiat dealers fiAtdi:l@r fiAtdil@r
free record shop fr\i:r\Ek@‘dSA:p fr\ir\Ek@rdSAp

fr\i:r\Ek@‘dSOp fr\ir\Ek@rdSOp
hotel golden tulip hoUtElgoUld@ntu:lIp ho:tElgo:ld@ntulIp
intertoys Int@‘tOIz Int@rtOjz
kids factory kIdsf{kt@‘i: kIdsfEkt@ri
lady line leIdi:laIn le:dilAjn
lucky leder lVki:le:d@r lOkile:d@r
nijenrode university nEi@nro:d@ju:n1v3‘s@ti: nEi@nro:d@junIvYrs@ti
palet com p{l@tkOm pEl@tkOm
pearle opticien p3‘lOptiSEns pYrlOptiSEns
pioneer paI@nIr\ pAj@nIr\
playskool pleIsku:l ple:skul
price waterhouse coopers pr\aIswA:t@‘haUsku:p@‘s pr\AjswAt@rhAuskup@rs
primeline pr\aImlaIn pr\AjmlAjn
readers digest r\i:d@‘zdaIdZEst r\id@rzdAjdZEst
scoop sku:p skup
scoot vindservice sku:tvInds@‘v@s skutvInds@rv@s
summertime sVm@‘taIm sOm@rtAjm

sYm@‘taIm sYm@rtAjm
swiss air swIs{r\ swIsEr\
team ti:m tim
world access w3‘ld{ksEs wYrldEksEs
world online w3‘ldOnlaIn wYrldOnlAjn

Phonemes which can be singled out are: the English/aI/ performing better than/A j / in the word “ticketline” and
“design”. No other single phoneme can be extracted from this list.

5.4.2 Spectrograms

For some of the phoneme mappings the differences will be looked into in more detail using spectrograms. Gen-
erally phonemes pronounced as an English native are compared to the closes sounding phonemes in the Dutch
language. For some phonemes it is pretty straightforward as to what the difference is. For example/i/ and/i:/ are
basically the same sound with/i:/ having the tone sustained longer, while/i/ is shorter, so only the less straightfor-
ward instances will be looked at. The formants can be recognized by the horizontal dark patterns forming a line.
Formants are counted from bottom (low frequency) to top (high frequency), with the first two (F0 andF1) being
the most important.
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Table 5.12: Words for which instances are being recognized correctly using LEXEN but not when using LEXNL

Word LEX EN transcription LEX NL transcription
airmiles {r\maIlz Er\mAjlz

e:r\maIlz e:r\mAjlz
British airways br\It1S{r\weIs br\ItISEr\we:s

br\It1Se:r\weIs br\ItISe:r\we:s
design d@zaIn d@zAjn
eurolines jUr\oUlaInz jur\o:lAjnz

Yro:laInz Yro:lAjnz
free record shop fr\i:r\Ek@‘dSA:p fr\ir\Ek@rdSAp

fr\i:r\Ek@‘dSOp fr\ir\Ek@rdSOp
honda dealer hOndAdi:l@‘ hOndAdil@r\
hotel new york hoUtElnu:jOr\k ho:tElnujOr\k
lucky leder lVki:le:d@r lOkile:d@r
powerline paU@‘laIn pAu@rlAjn
road air r\oUd{r\ r\o:dEr\
russia travel r\VS@tr\{v@l r\OS@tr\Ev@l

r\YS@tr\{v@l r\YS@tr\Ev@l
showbizz city SoUbIzsIti: So:bIzsIti
ticketline tIk@tlaIn tIk@tlajn
world access w3‘ld{ksEs wYrldEksEs
world online w3‘ldOnlaIn wYrldOnlAjn

/e:/, /E/ and /{/

In Figure 5.2 the spectrograms of the phones/e:/, /E/ and/{/ are shown. The three phones in the figure can all be
realized in for example the word “airport”. When/e:/ is used the pronunciation is like a Dutch adaptation of the
word, when/E/ is used it is a close approximant to how a native English speaker would pronounce it, and/{/ is
how a native English speaker would pronounce it.

Figure 5.2: Spectrograms of, from left to right,/e:/, /E/ and/{/

The formants from/e:/ are clearly different form those of the other two phones./E/ and/{/ are more alike. Speech
production wise the difference between the three is that from/e:/ to /E/ and/{/ the mouth becomes progressively
wider and the tongue is positioned lower and lower in the mouth. In the spectrogram one can see that the first and
second formants (the two lowest dark lines) are pretty much apart in/e:/, and come closer in/E/ and are closest
to each other in//. The first formant shifts up to a higher frequency while the second shifts down to a lower
frequency.
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/aI/ and /A j /

In Figure 5.3 the difference is shown between/aI/ and /A j / which occur in the word “pioneer”. The major
difference is in the right half part, the part where the mouth moves from/a/ into /I/ in the left picture, and into/j/
in the right picture. The first formant is sustained in the left picture, while it becomes lower and less intense in the
right picture. The second formant is also sustained longer in the left picture.

Figure 5.3: Spectrogram of the phonemes/aI/ and/A j /

/3 /̀ and /Y r \/

In Figure 5.4 the phoneme/3 /̀ and it’s mapping/Y r\/ are shown. The phoneme/3 /̀ occurs in words like “world”
and “Pearle”. The picture on the left shows the first two formants more or less parallel and the third one rising
near the retroflexed ending. The picture one the right shows the second formant rising and falling with its peak at
a moment where all the other formants are silent. This silent part is the transition point between/Y/ and/r\/. In
the case of/3 /̀, there is little emphasis on the retroflex part, and the transition sounds smooth. In the other case
the transition is much more abrupt with heavier emphasis at the/r\/.

Figure 5.4: Spectrogram of the phonemes/3 /̀ and/Y r\/

5.5 Conclusion

To answer the questions asked in the beginning of the chapter:
Does using multilingual models improve recognition performance of English utterances spoken by Dutch, and
why or why doesn’t recognition improve?

1. How is the performance of multilingual models for Dutch? The VoiceConnect97 tests showed that the
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multilingual model could be used to recognize Dutch, at the cost of a small performance degradation, but it
could not be described as major, as it is only 0.60% when comparing AMONLEN2 to AMO NL2.

2. How is the performance of multilingual models for native English? When testing on TIMIT the recognition
of native English decreased when compared to an English data only trained model, but this test proved that
English phonemes could be recognized well by the multilingual model.

3. How is the performance of multilingual models for English spoken by Dutch? Compared to the mapping
approach using a pure Dutch acoustic model and a Dutch phoneme only lexicon, performance for English
foreign word recognition improved by 0.79% by simply using a multilingual model in stead of the monolin-
gual model. The increase can mount up to 2.54% when also using a more extensive lexicon, made possible
by the extra phonemes of the multilingual set.

So in summary from these tests we can derive that a lot of English spoken by Dutch can be recognized using
Dutch phonemes and a Dutch recognizer only by using the mapping approach. However some typical English
phonemes are still difficult to recognize and are better recognized by using phoneme models trained on English
data. An overall benefit is therefore only possible when a sizable amount of utterances consists of English words,
and therefore it is still viable to use a Dutch only recognizer to recognize English foreign words, instead of a
multilingual model, since the performance increase is not very much. The analysis of the differences in recognition
results when using Dutch and English phonemes to recognize the same words prove that using English data in the
training of the recognizer is indeed useful for some specific English phonemes in the test case. More extensive
tests were not possible due to the lack of availability of suitable material on short notice.



Chapter 6

Call classification

6.1 Introduction

People often call the customer service department of a company of which they bought a product or service from,
and often these calls are handled in call centers. Call centers employ many people to answer phone calls (agents),
and they are usually specialized in handling only certain types of calls. When someone calls the help line, it is not
known beforehand what kind of inquiry he has. Someone has to answer the phone call, listen to his inquiry, and
redirect the phone call to the agent specialized in that department. This could easily be remedied by providing a
separate phone number for each kind of inquiry, but this is costly and phone numbers are hard to remember, so
this approach is less interesting.

For some time now, the above scenario been been automated by IVR (Interactive Voice Response) systems, which
greet the callers with a welcome message and a list of menu of options (e.g.: “For billing information press 4”).
The problem with IVR systems is that:

1. Some companies have huge menus, or a lot of sub-menus, so callers often get lost. Also there might be a
lot of ambiguity in the menu items.

2. Callers have a different mental model of things, so they might be confused because the menu options are
not what they expect.

3. Callers become frustrated because they have to listen to a lot of menu options which are irrelevant to them.

4. Such systems require the callers to know clearly where his problem can be handled best. Sometimes callers
don’t know themselves what exactly their problem is and can only describe it in a lot of words.

5. Many people just choose the “other” category, or simply a wrong one, hoping that the person that answers
can redirect them to the right agent, negating the advantages of an IVR system, because callers simply want
to explain in their own language what their problem is instead of having to find out in which menu option
their inquiry fits best.

The best solution would be an automated system which can understand callers in their own natural language, and
based on the first sentence spoken can redirect the call the person who can help him best. This principle is called
an automated call classifier.

There are different types of classification thinkable in call center dialogs. For example based on the tone of the
speaker the system should be able to detect whether he is anxious, angry, neutral, happy, sad etc. In the case of
angriness it would for example be better to route the call to a more experienced agent. Important factors to classify
speech in this way can be rate of speaking, loudness, tremors in the voice etc. Another way to classify speech is

53
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to distinguish between a request or statement. This is especially important for systems which can employ user-
initiated dialogs. In the case of a statement, the user is most likely following the system’s instructions, but when
the user makes a request, the system should halt the current dialog and start a new sub-dialog to try and answer the
request. Requests can be detected by certain sentence patterns (“How much...”, “Can you...”, “I need to know...”)
etc., but also in the case of a question the utterance usually does not end with a lowering of the voice.

Finally, there is topic classification, where the system should try to discover what topic the user was speaking
about. For example if a caller mentions the word “insurance” it is most likely he wants to know something about
that topic. In this case “insurance” is a keyword, and keywords typically imply a high correlation between that
keyword and a certain topic.

To understand the caller, one needs to recognize what has been spoken first, so a speech recognizer is a must-
have. In this section the focus however is not on the recognition but on the understanding and classification of
the recognized sentence. Such system have been investigated and deployed in real systems in the United States
for some time, most notably the systems used by AT&T. They allow the users to express their request vocally in
spontaneous free natural language, and are (ideally) directly routed to the appropriate agent, without callers going
through the hassle of listening to the long IVR prompts etc.

Traditionally these speech recognition systems have been based on keyword spotting techniques in combination
with a garbage detector. Only keywords are detected and the rest (garbage) is ignored. Certain combinations of
keywords can be associated to categories. The list of keywords and their corresponding categories are extracted
from domain experts, who are usually experienced agents. Table 6.1 shows some example utterances and key-
words. If a human for example hears the word “hypotheek” (en=mortgage) it would be reasonable to classify the
call as being from category “hypotheken”. Using this kind of domain knowledge, a system can be built using the
information from the expert.

Table 6.1: Example of utterances with associated category and possible keywords (chosen by a human)

Sentence Category Keywords
Ik heb een vraag over mijn hypotheek Hypotheken hypotheek
Ik wil 100 aandelen Heineken Aandelen order aandelen, Heineken
Ik wil graag [eeeeh] 1500 euro lenen op korte termijn
is dat mogelijk

Nieuwe Lening lenen

Via internet had ik een reisje geboekt met de creditcard
en die deed het niet

Creditcard internet, reisje, creditcard

More recently large vocabulary recognition has been applied in combination with machine learning techniques
originating from the text classification and information retrieval domain. The advantage of such an approach is
that less domain specific knowledge is required, as keywords and phrases will be automatically extracted by the
training algorithms. Also it can happen that an algorithm will recognize a recurring pattern which a human expert
would never have thought of. This idea is attractive, especially when such systems become larger and harder to
maintain with manual rules. In this chapter this idea will be further explored. The process is illustrated in Figure
6.1.

The test case which is used is for a financial institution with 45 destinations to route calls to. Since this is a domain
for which there is no pre-existing data, recordings were collected from scratch. The 45 classes make this a non-
trivial problem, especially since there is quite a lot of overlap in the terminology. The 45 classes or destinations
are listed in Table 6.2. Some example utterances were shown before in Table 6.1.

There are classes where the general subject is the same. For example 9 classes are related to different kinds of
insurance, 5 are related to stock exchange, 5 related to payments and money transfers, 6 related to remote banking
etc. Some classes are not disjunct enough, making classification confusing even for humans. For example there is
a general insurance class, but also specific classes for car insurance, life insurance etc.

There are also classes with the same subject but with a difference in the action to be performed. This difference
can be quite small (textually), sometimes even one word can make the difference. For example the “overboeking”
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Figure 6.1: Machine learning and call classification process

Table 6.2: 45 Classes

saldo
anderecategorie
rekeningnummer
aanvrageninternetbankieren
contractinternetbankieren
internetbankieren
inloggen
wijzigen toegangscode
hypotheken
woonhuis
betalinggeweigerd
incassostorneren
bij afschrijvingen
overboeken
spoedoverboeking

wijzigen adres
opheffen rekening
aandelenopinies
beurstrends
opgeveneffectenorder
opgevenoptieorder
aandelenorder
pasaanvragen
pasblokkeren
rekeningnummer
automatischsparen
pensioenvraag
pensioenverzekering
openingstijden
afspraak

aansprakelijkheid
levensverzekering
autoverzekering
inboedelverzekering
schade
reisverzekering
verzekeringen
rechtsbijstand
suggesties
klachten
goudenhanddruk
krediet limiet
creditcard
nieuwelening
maximaalleenbedrag

(=money transfer) class versus the “spoedoverboeking” (=speed money transfer) class. If a distinguishing word
such as “spoed” happens to be recognized poorly then the classification is already doomed to fail.

As can be noted from the text before, a call classifier that works with machine learning as a basis is desired.
However it is expected that initial classification in the situation described will not be very high, and not at all close
to documented text classification problems, for the following reasons:

1. When using proven text classifiers in the call classification domain one must be aware that text classifiers
often operate on large bodies of text, whereas a call classifier would have to do with at most 1 or 2 sentences
of recognition results.

2. High sentence and word error rates for spontaneous free speech will be expected, because of the lack of
training data is is also difficult to get reliable and accurate language models.

3. In literature training and tests are performed with several thousands of examples for training and test set. In
our situation there are less than a thousand recordings available for training and testing each.
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Thus a list of requirements for the desired classification system:

1. The system must be able to recognize long free speech utterances:
For recognition the Philips SpeechPearl 2000 recognition engine will be used. It is capable of doing keyword
spotting, open grammar recognition, as well as full sentences. SpeachPearl 2000 is of commercial grade,
and it’s relatively easy to collect speech data from telephone lines using existing software and systems. Also
this recognizer has sensible confidence scores per word in the recognition results. As the focus is on the
classification, only limited time is spent tuning the recognizer, even though good recognition results are a
prerequisite for good classification.

2. The system must work using Machine Learning Techniques:
One algorithm which hopefully has all the characteristics mentioned above is RIPPER [Cohen95], which is
machine learning algorithm well known for its ease of understandability, because it produces a list if-then-
else rules to classify items (e.g. Table 6.3). Specifically the WEKA toolkit’s RIPPER implementation called
JRIP will be used. This chapter describes the set up and results of this experiment.

Table 6.3: Example of rules produced by JRIP

(inboedel>= 1) => categorie=inboedelverzekering
(idee>= 1) => categorie=suggesties
(geblokkeerd>= 1) and (nieuwe<= 0) => categorie=inloggen

3. The system must perform comparably with standard techniques, such as used by AT&T (BoosTexter):
The BoosTexter [Schapire00, DiFabbrizio02, Rochery02]) classification algorithm, can be considered state
of the art for call classification. It is based on the well known Adaboost [Freund97] algorithm. Because of
this some comparative experiments with this algorithm will be done.

4. It is desirable that the system be easy to understand, and modifiable by an expert so that early shortcomings
in the system early can perhaps be overcome:
JRIP’s output is easy to understand by humans and can be edited manually.

5. When using speech recognition there is uncertainty in the recognition results:
Some recognizers give a “score” to each recognized word representing the confidence at which this word
was recognized. It is desirable that the machine learning algorithm also uses these confidence scores in a
way, so that it will become more robust against noisy data. Experiments will be done with and without
taking the confidence scores into account.

6.2 Data collection

A dummy system built with the Philips Speechpearl 2000 package was used to make recordings. In the first two
days of data collection 558 calls were made over all categories and transcribed. The next few days an additional
916 calls were made and transcribed, also over all categories. These two sets are the train and test sets respectively.
The distribution of calls in the test and train set are not representative of the real-world situation, but are meant to
provide each category with at least some training data.

A lexicon and language model were extracted from the training set, and all the data was passed through the speech
recognizer. Some time was spent trying to get optimal performance from the speech recognizer, by changing
parameters like language model penalty, word insertion penalty etc., but the effort did not lead to results which
would be considered “human readable”. On the training set the speech recognizer had a word-error-rate of 25.60%
and a sentence-error-rate of 64.34%. On the test set these values were 51.49% and 81.55% respectively. For speech
recognition these scores are considered bad, but for classification it may not matter, as long as certain key words
are recognized.
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To prepare this data as input for JRIP, for each word which occurred in the training a real valued attribute was
made. For most of the experiments this attribute gets the value of 1 when the word is present in the sentence, and 0
when it is not. In some experiments the attribute’s value is the confidence given by the speech recognizer that the
word was detected in the recording. The final input of a the machine learner is a vector of ordered values where
each value represents the confidence that the word was recognized in the sentence. In the case of BoosTexter, a
similar input is used, but the algorithm allows bigrams or trigrams as well as single words.

The recognition results are passed to the classification algorithm as-is. No stop word filtering or stemming is
applied, partly because the machine learning algorithm should be able to decide itself what to consider important,
and partly because an earlier research with a Dutch stemmer did not seem to produce better classification results
[Gaustad02]. Furthermore the training and test sets are relatively small so the vector lengths are still acceptably
small.

6.3 Machine learning algorithms

The two machine learning algorithms which can generate classifiers are discussed in detail in this section. JRIP
is based on RIPPER (RIPPER)[Cohen95] and generates rules in if-then-else form by growing and pruning, where
each rule has an associated class. Items are classified by the first rule that matches.

BoosTexter is based on Adaboost [Freund97] and works by boosting a number of weak classifiers. In this case
the weak classifier is a decision stub which determines if a word is present or not in a sentence. Each weak
classifier generates a hypothesis. This hypothesis is a number of weights for each class to indicate how important
the presence or absence of the word is to belong to that class. The hypotheses scores of the weak classifiers are
added together, and the class with the highest score is the class the sentence belongs to.

How RIPPER generates the if-then-else rules and how BoosTexter chooses the weak learners and calculates their
weights is described next.

6.3.1 RIPPER

Repeated Incremental Pruning to Produce Error Reduction (RIPPER)[Cohen95], was proposed by William W.
Cohen as an optimized version of IREP (incremental reduced error pruning). A two-class version of the IREP is
algorithm is given in Figure 6.2. Multi-class problems are handled by sorting the classes in increasing order of
prevalence,C1, ...,Ck, from smallest class to biggest. IREP is used to find rules to separateC1 from C2, ...,Ck. All
instances covered by the learned rules so far are removed from the training set. Then IREP is used to separateC2

from C3, ...,Ck. This is repeated until only the largest classCk remains, which will be the default class.

RIPPER first obtains a rule set using IREP. IREP starts with an empty rule-set and rules are generated one by one
until there are no more positive examples. For each round the training examples are randomly split into a grow
and prune-set. The grow-set contains roughly two-thirds of the positive and two-thirds of the negative examples.
The rest goes into the prune-set.

The grow-set is used to construct rules. A rule is a conjunction of conditions. Starting with an empty conjunction
of conditions, any condition of the formAn = v,Ac ≤ θ,Ac ≥ θ is considered for the rule, whereAn is a nominal
attribute,v is a legal value ofAn, or Ac is a continuous value whereθ occurs in the training data. When there
are only a few conditions in the rule, the rule is in most cases fairly general, covering some positive and negative
examples. As conditions are added the rule becomes more and more specific covering less and less positive and
negative examples. Each time the condition which maximizes the information gain is added until the rule is perfect
and covers no negative examples from the grow set.

After a rule is created it is immediately pruned. Pruning simplifies the rule generated in the grow phase to prevent
overtraining. The rule is evaluated using the prune set and a metricv = (p− n)/(p+ n), wherep is the number of
positive examples covered by the rule, andn the number of negative examples covered by the rule. Each time the
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procedure IREP(Pos,Neg)
begin

Ruleset := ∅
while Pos, ∅ do

split (Pos, Neg) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg)
Rule := GrowRule(GrowPos,GrowNeg)
Rule := PruneRule(Rule,PrunePos,PruneNeg)
if the error rate of Rule on (PrunePos,PruneNeg) exceeds 50%then

return Ruleset
else

add Rule to Ruleset
remove examples covered by Rule from (Pos,Neg)

endif
endwhile
return Ruleset

end

Figure 6.2: The IREP algorithm

pruning algorithm considers deleting a condition of the rule which increases the value ofv until it is maximized.

After growing and pruning the rule is evaluated. In the original IREP if the error rate exceeds 50% on the prune
set, the generated rule is thrown away and the algorithm stops. In the RIPPER implementation of IREP, rules are
generated until the description length (DL) of the ruleset and examples is 64 bits greater than the smallest DL met
so far. After a rule is added all examples covered by the rule, both positive and negative, are removed from the
training set.

After an initial rule set is obtained with IREP, RIPPER does a couple of optimization rounds on this rule set. For
each ruleRi in the rule set two variants are constructed, a “replacement” and a “revision”. The “replacement” is
formed by growing and pruning where pruning is guided to minimize the error of the entire rule set on the pruning
data. The “revision” is formed analogously, except the revision is grown by greedily adding conditions toRi rather
an empty rule. Finally the decision is made which of the three rules, the original, replacement or revision is the
best using the MDL heuristic.

When RIPPER is applied to classifying calls, first the IREP algorithm is called which tries to make a conjunction
of (key)words which should be present or not present in the recognition result in order for it to be classified. To
find a new rule (conjunction), the algorithm tries all possible combinations of words which should be present or
not present. The condition which leads to to biggest information gain is selected. This is in the grow phase. After
the grow phase comes the prune phase, and in this phase the rule found in the grow phase is simplified to make
it more general. After the initial rule set is made by IREP, RIPPER will post process this set and will construct
alternate rules, again using growing and pruning. The best rules are selected from all the alternatives and this is
the final RIPPER rule set with which classification will be done.

6.3.2 BoosTexter

BoosTexter is a software program which implements 4 variants of the original Adaboost algorithm, but which
can handle multi-class and multi-label problems. In particular “real Adaboost.MH” is used. An overview of the
algorithm is shown in Figure 6.3.

Boosting makes a “strong” classification rule out of several “weak” hypotheses. Each “weak” hypothesis will have
a different weight, and the weights are computed by concentrating on examples which are hardest to classify. The
final “strong” classification is made by computing the sum of all “weak” classifiers. Training the classifier thus
involves computing the ideal weights for each “weak” classifier.
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Given: (x1,Y1), ..., (xm,Ym) wherexi ∈ χ, Yi ⊆ γ
Initialize D1(i, l) = 1/(mk)
For t = 1, ...,T:

Pass distributionDt to weak learner.
Get weak hypothesisht : χ × γ→ R
Chooseαt ∈ R
Update:

Dt+1(i, l) = Dt(i,l)exp(−αtYi [l]ht(xi ,l))
Zt

whereZt is a normalization factor chosen so thatD(t + 1) will be a distribution
Output the final hypothesis:

f (x, l) =
∑T

t=1αtht(x, l).

Figure 6.3: The Adaboost.MH algorithm

In a multi-label problem withk labels, letS be a sequence of training examples (x1,Y1), ..., (xm,Ym). Each example
xi ∈ χ has an associated labelYi ⊆ γ which is+1 if the example belongs to the class or -1 if not. Adaboost.MH
maintains a distributionDt over all examples and labels which is initially uniform.

On each training roundt the distributionDt and training sequenceS are passed to a weak learner which computes
a weak hypothesesht : χ × γ → R. The sign ofh(x, l) determines whether the labell is assigned tox or not.
The magnitude of the prediction is interpreted as the confidence the algorithm has in assigning the label. The
parameterαt is then chosen and the distributionDt updated in such a way so that example-label pairs which are
misclassified get bigger weights.

In BoosTexter the presence or absence of a term or wordw is chosen as the “weak” hypothesis. Different weights
are assigned depending on whether the word is present or not inx. h(x, l) = c0l if w < x andh(x, l) = c1l if w ∈ x.
For each termc jl , values are chosen, and a score is defined for the resulting weak hypothesis. Once all terms have
been searched, the weak hypothesis with the lowest score is selected and returned by the weak learner.

Let X0 = {x : w < x} andX1 = {x : w ∈ x}.
Given the current distributionDt calculate for each possible labell, for j ∈ {0,1}, andb ∈ {−1,+1}:

W jl
b =

m∑
i=1

Dt(i, l)[xi ∈ X j ∧ Yi [l] = b] (6.1)

Now the weights of the decision stub can be computed:

c jl =
1
2

ln(
W jl
+1 + ε

W jl
−1 + ε

) (6.2)

whereε = 1/mk.
Finally with αt = 1 the normalization factor can be computed with

Zt = 2
∑

j∈{0,1}

∑
l∈γ

√
W jl
+1W jl

−1 (6.3)

When BoosTexter is applied to classifying calls, it will invoke the weak learner a number of times. The weak
learner will go through all the words in the training set and for each word will try to make a weak hypothesis.
When a weak hypothesis is selected, the weights are computed as described above, giving each class a score
based on whether the word is present or not, and the next call to the weak learner is made. In each round another
(key)word is chosen as the weak hypothesis, and the weights recomputed. When an utterance is to be classified,
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the algorithm will check the presence or absence of the word, and add for each class the weights put by the weak
hypothesis. This is done for all (key)words and the class with the highest score is the “winning” one.

6.4 Tests

Performance of the two machine learning algorithms are compared to each other and the majority baseline (the
class with the largest number of samples). The algorithms generate classifiers in 3 ways:

• one on the transcribed data (“perfect recognition”),

• one on recognizer output,

• one on scored recognizer output where the score is generated by the word level confidence of the speech
recognizer. The reasoning behind this is that some words or patterns deemed important by a classifier might
not be recognized correctly by the speech recognizer.

Classifiers are tested on the training and test sets with both transcriptions and recognizer output. The transcriptions
are also used for testing as an indication of what the performance is when there is perfect recognition. This can
generally be regarded as an upper bound for performance, and the majority baseline as a lower bound.

JRIP was configured with the default settings, and BoosTexter was configured to use n-grams of up to width 3 and
boosting rounds of up to 200, as performance did not improve beyond that point. The rest of BoosTexter’s settings
were also set to default.

6.4.1 Majority baseline

Purpose

The majority baseline is the most basic classifier and simply classifies all utterances as the largest class in the
training set, in this case “saldo”. If any “intelligent” classifiers score higher than the results of this test, that means
the classifiers are actually working, and not just doing something random. Any score higher than this is a measure
of how “intelligent” the classifier is.

Setup

One of the most simple classifiers is used. All utterances are classified as the largest class in the training set,
namely “saldo”.

Results

Table 6.4 shows the results of the majority baseline. The results are not particularly high, and are equal to the ratio
of utterances of category “saldo” in the tested sets.

Table 6.4: Baseline performance

Training set Test set
Majority baseline 8.42 12.12
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Discussion

• At this point no real conclusions can be drawn. The baseline performance is pretty low, which is logical
given the nature of the majority classifier. Future results will be compared to the results in this test. If results
are a lot higher, than we can be sure that something intelligent is happening.

6.4.2 Classifiers trained on transcriptions

Purpose

The purpose of this test is to determine the performance when the classifiers are trained on the transcriptions of
the training data. Another test will be done later to measure to performance when trained on what is recognized
by the speech recognizer instead.

Setup

The classifiers are trained on transcriptions of the training data. Both JRIP and BoosTexter are tested on “perfect”
recognition results which are obtained by using transcriptions of the training data as well on real recognizer output.

Results

Table 6.5 and 6.6 show the performance of JRIP and BoosTexter when trained on the training set transcriptions.

Table 6.5: JRIP trained on training-set transcriptions

Tested on Training set Test set
Transcriptions 87.28 44.65
Recognizer output 74.37 41.26

Table 6.6: BoosTexter trained on training-set transcriptions

Tested on Training set Test set
Transcriptions 98.03 42.47
Recognizer output 79.74 35.37

The results when tested on transcriptions are higher than those when tested on real recognizer output. On the
training set BoosTexter performs better than JRIP, but on the test set JRIP performs better.

Discussion

• The results are far better than the baseline (Table 6.4), so it can be said with certainty that the algorithms
don’t do anything random, but are intelligent indeed.

• The tests performed on the transcriptions score better than those performed on the recognizer output. This
is expected, since the recognition is not optimal. However the relative decrease in performance is higher for
BoosTexter than for JRIP, so BoosTexter is probably more sensitive to noise.

• JRIP performs better than BoosTexter on the test set, while BoosTexter performs very well when tested
again on the train set. This might indicate overtraining, but it could also simply be lack of sufficient training
data.
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6.4.3 Classifiers trained on recognized output

Purpose

The purpose of this test is to determine the performance when the classifiers are trained on the recognized text
after the training data is processed by the speech recognizer. The logic behind this is that the classifier will already
be adapted to certain quirks in the speech recognizer, and in doing so will be more robust to some recognition
errors. The results here will be compared to the classifier which was trained earlier on on the transcriptions of the
data.

Setup

The classifiers are trained on the recognition results of the speech recognizer on the training data. Both JRIP and
BoosTexter are tested on “perfect” recognition results or transcriptions of the training data and real recognizer
output of the test set.

Results

Table 6.7 and 6.8 show the performance of JRIP and BoosTexter when trained on the training set transcriptions.

Table 6.7: JRIP trained on training-set recognizer output

Tested on Training set Test set
Recognizer output 83.87 42.47

Table 6.8: BoosTexter trained on training-set recognizer output

Tested on Training set Test set
Recognizer output 99.28 36.03

Discussion

• Again JRIP scores better on the test set than BoosTexter, and again BoosTexter gets a near perfect score
when tested on the training set.

• The scores compared to the classifiers trained on transcriptions are higher (Table 6.6 and 6.5), meaning it is
probably useful to train on recognizer output instead of transcriptions.

6.4.4 Classifiers trained on scored recognizer output

Purpose

This test determines the performance of the classifiers when they are allowed to make use of the word confidence
information in the recognition result. The idea is that words with low confidence might have been wrongly
recognized, thus they should be excluded in the evaluation to determine the correct class.
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Setup

BoosTexter is now configured to use scored texts, and the training data for JRIP now includes the confidence
scored data (real values from 0 to 1), instead of just 1 for word present and 0 for not.

Results

Table 6.9 and 6.10 show the performance of JRIP and BoosTexter when trained on the scored training set tran-
scriptions.

Table 6.9: JRIP trained on scored training-set recognizer output

Tested on Training set Test set
Transcriptions N/A N/A
Recognizer output 85.30 37.77

Table 6.10: BoosTexter trained on scored training-set recognizer output

Tested on Training set Test set
Transcriptions N/A N/A
Recognizer output 99.82 29.15

Discussion

• The results from this test are significantly worse than the ones in Sections 6.4.2 and 6.4.3, meaning that at
this point it is not a good idea to train on scored output. This is most likely due to the fact that suitable
thresholds need to be calculated as well, and there is already not a lot of data.

• JRIP again does better on the test set, while BoosTexter is better on the training set.

6.5 Preliminary conclusions

Taking the results from all tests done so far into account the following can be concluded:

• In the situation which looks most like real-world, testing on recognizer output of the unseen test-set, RIPPER
outperforms BoosTexter with 42.27% compared to 39.52%. A full listing of this model (and explanation) is
given in the next section in Table 6.11. A lot of keywords seem obvious, but there are also many which make
no sense at all, indicating that there is perhaps not enough data to distinguish keywords from a coincidental
occurences of that word. So in short, more data is needed.

• When testing on the training data itself, which is in any case not a good idea for a representative indication
of performance, BoosTexter performs near perfect with scores of higher than 98%, while JRIP performs
much worse. This indicates that the BoosTexter model is well adapted to training data while JRIP is less
adapted. Tests were done with BoosTexter with less rounds to see if it helps against overtraining, but the
performance did not increase, rather it decreased.

• On the test data, JRIP outperforms BoosTexter in all tests, so JRIP was able to generalize better. For our
categorization problem it seems JRIP is the better choice, as BoosTexter might be overly adapted to the
training data.
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• When testing the classifiers trained on transcriptions, the performance is less with noisy recognizer output
than with a classifier trained on recognized output. This is expected, as analogous to a human, it’s easier to
understand something heard clearly than to understand something with a lot of noise.

• Training on the recognizer output seems to helps improve performance a bit by 1.27% for JRIP and 0,11%
for BoosTexter.

• Training on scored recognized data did not have the expected result, as shown by the decrease in perfor-
mance. A possible reason for this is that the machine learner now not only needs to learn text rules, but needs
to learn thresholds for each word as well, creating demand for even more data of which there is already a
lack of.

6.6 Improvements

So far the results are far from good, and in practice this would mean that many calls would be directed to the
wrong agent. All calls are classified regardless if the classification is of low confidence or not. It would be more
meaningful to classify only on the calls which have a fairly high accuracy, and reject the others. The people whose
calls are rejected can try again, possibly after being asked by the system to reformulate their request in another
way. Also performance might improve when the number of classes is reduced. The JRIP output of the “best”
classifier so far is shown in Table 6.11 and a detailed report of its classification ability in Table 6.12.

Table 6.11: The JRIP classifier model trained on the recognized output
without confidences

(inboedel>= 1) => categorie=inboedelverzekering (2.0/0.0)
(idee>= 1) => categorie=suggesties (3.0/1.0)
(geblokkeerd>= 1) and (nieuwe<= 0) => categorie=inloggen (3.0/1.0)
(kosten>= 1) => categorie=pensioenverzekering (5.0/1.0)
(verzekeren>= 1) and (het<= 0) => categorie=woonhuis (8.0/2.0)
(vraag>= 1) => categorie=levensverzekering (7.0/3.0)
(creditcard>= 1) => categorie=creditcard (7.0/1.0)
(aandelen>= 1) and (effectenorder>= 1) => categorie=opgeveneffectenorder (4.0/0.0)
(reisverzekering>= 1) => categorie=reisverzekering (7.0/0.0)
(aankoop>= 1) => categorie=nieuwelening (3.0/0.0)
(afsluiten>= 1) and (rechtsbijstandverzekering<= 0) => categorie=nieuwelening (7.0/3.0)
(afsluiten>= 1) => categorie=aansprakelijkheid (3.0/0.0)
(aansprakelijk>= 1) => categorie=aansprakelijkheid (4.0/0.0)
(gebruiker>= 1) => categorie=contractinternetbankieren (5.0/1.0)
(internetbankieren>= 1) and (wil>= 1) => categorie=contractinternetbankieren (4.0/1.0)
(sparen>= 1) => categorie=automatischsparen (6.0/1.0)
(pensioengat>= 1) => categorie=pensioenvraag (4.0/0.0)
(pensioentekort>= 1) => categorie=pensioenvraag (2.0/0.0)
(anders>= 1) => categorie=spoedoverboeking (8.0/3.0)
(spoedoverboeking>= 1) => categorie=spoedoverboeking (2.0/0.0)
(afkoop>= 1) => categorie=goudenhanddruk (2.0/0.0)
(gouden>= 1) => categorie=goudenhanddruk (3.0/0.0)
(ontslagvergoeding>= 1) => categorie=goudenhanddruk (3.0/0.0)
(zie>= 1) => categorie=internetbankieren (5.0/1.0)
(internetbankieren>= 1) => categorie=internetbankieren (3.0/1.0)
(graag>= 1) and (opvragen>= 1) => categorie=beurstrends (6.0/0.0)
(koers>= 1) => categorie=beurstrends (3.0/1.0)
(maximaal>= 1) and (wat<= 0) => categorie=maximaalleenbedrag (10.0/3.0)
Continued on Next Page. . .
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(laten>= 1) => categorie=maximaalleenbedrag (3.0/0.0)
(boos>= 1) => categorie=klachten (3.0/0.0)
(klacht>= 1) => categorie=klachten (5.0/0.0)
(nogal>= 1) => categorie=klachten (2.0/0.0)
(schade>= 1) => categorie=schade (8.0/0.0)
(jullie >= 1) => categorie=schade (3.0/0.0)
(autoverzekering>= 1) => categorie=autoverzekering (5.0/0.0)
(verzekeren>= 1) => categorie=autoverzekering (4.0/0.0)
(rood>= 1) => categorie=krediet limiet (6.0/0.0)
(limiet >= 1) => categorie=krediet limiet (5.0/0.0)
(opheffen>= 1) => categorie=opheffen rekening (6.0/0.0)
(opzeggen>= 1) => categorie=opheffen rekening (4.0/1.0)
(ga>= 1) => categorie=opheffen rekening (2.0/0.0)
(maar>= 1) and (via>= 1) => categorie=betalinggeweigerd (11.0/0.0)
(bankzaken>= 1) => categorie=aanvrageninternetbankieren (10.0/0.0)
(advies>= 1) => categorie=rechtsbijstand (5.0/0.0)
(mij >= 1) => categorie=rechtsbijstand (2.0/0.0)
(advocaat>= 1) => categorie=rechtsbijstand (3.0/0.0)
(bijstand>= 1) => categorie=rechtsbijstand (2.0/0.0)
(bedrag>= 1) and (overboeken<= 0) => categorie=incassostorneren (6.0/1.0)
(storneren>= 1) => categorie=incassostorneren (4.0/1.0)
(terugboeking>= 1) => categorie=incassostorneren (7.0/1.0)
(hypotheekadvies>= 1) => categorie=hypotheken (4.0/1.0)
(huis>= 1) => categorie=hypotheken (3.0/1.0)
(hypotheek>= 1) => categorie=hypotheken (2.0/0.0)
(adresgegevens>= 1) => categorie=wijzigen adres (7.0/0.0)
(adres>= 1) => categorie=wijzigen adres (7.0/0.0)
(verwachtingen>= 1) => categorie=aandelenopinies (11.0/1.0)
(ontwikkeld>= 1) => categorie=aandelenopinies (3.0/0.0)
(kantoor>= 1) => categorie=openingstijden (11.0/0.0)
(open>= 1) => categorie=openingstijden (6.0/0.0)
(tin >= 1) => categorie=wijzigen toegangscode (11.0/0.0)
(toegangscode>= 1) => categorie=wijzigen toegangscode (7.0/0.0)
(spreken>= 1) => categorie=afspraak (15.0/1.0)
(opgeven>= 1) => categorie=opgevenoptieorder (6.0/0.0)
(een>= 1) and (order>= 1) => categorie=opgevenoptieorder (6.0/2.0)
(call >= 1) => categorie=opgevenoptieorder (2.0/0.0)
(kopen>= 1) and (aandelen<= 0) => categorie=opgevenoptieorder (7.0/2.0)
(wat>= 1) and (is>= 1) => categorie=bij afschrijvingen (11.0/1.0)
(er>= 1) and (rekening>= 1) => categorie=bij afschrijvingen (4.0/0.0)
(afschrijving>= 1) => categorie=bij afschrijvingen (4.0/1.0)
(bijgeboekt>= 1) => categorie=bij afschrijvingen (2.0/0.0)
(niet>= 1) and (dat<= 0) => categorie=pasaanvragen (10.0/0.0)
(pas>= 1) => categorie=pasaanvragen (11.0/5.0)
(kapot>= 1) => categorie=pasaanvragen (4.0/0.0)
(gestolen>= 1) => categorie=pasblokkeren (9.0/0.0)
(bankpas>= 1) => categorie=pasblokkeren (10.0/2.0)
(pasje>= 1) => categorie=pasblokkeren (5.0/0.0)
(uitgevoerd>= 1) => categorie=aandelenorder (10.0/0.0)
(aandelen>= 1) => categorie=aandelenorder (14.0/4.0)
(betalen>= 1) => categorie=overboeken (9.0/0.0)
(naar>= 1) => categorie=overboeken (10.0/0.0)
Continued on Next Page. . .
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(overboeking>= 1) => categorie=overboeken (9.0/2.0)
(overboeken>= 1) => categorie=overboeken (4.0/1.0)
=> categorie=saldo (80.0/39.0)

Table 6.12: Detailed report of best classifier

Precision Recall F-Measure Class
88.89% 27.59% 42.11% pensioenvraag
55.56% 55.56% 55.56% incassostorneren
70.00% 26.92% 38.89% internetbankieren
50.00% 12.50% 20.00% suggesties
92.31% 66.67% 77.42% autoverzekering
25.00% 31.25% 27.78% aandelenorder
27.78% 21.74% 24.39% bij afschrijvingen
86.21% 65.79% 74.63% schade
29.73% 79.28% 43.24% saldo
34.09% 62.50% 44.12% nieuwelening
80.77% 84.00% 82.35% goudenhanddruk
100.00% 43.59% 60.71% wijzigen adres
7.69% 25.00% 11.76% maximaalleenbedrag
26.92% 63.64% 37.84% opheffen rekening
17.95% 46.67% 25.93% pasaanvragen
14.29% 23.08% 17.65% woonhuis
75.00% 27.27% 40.00% inboedelverzekering
100.00% 66.67% 80.00% wijzigen toegangscode
82.14% 76.67% 79.31% klachten
42.86% 25.00% 31.58% beurstrends
50.00% 52.63% 51.28% overboeken
75.00% 66.67% 70.59% automatischsparen
12.82% 41.67% 19.61% opgevenoptieorder
40.00% 33.33% 36.36% rechtsbijstand
64.52% 37.74% 47.62% pasblokkeren
81.82% 42.86% 56.25% openingstijden
60.00% 16.67% 26.09% krediet limiet
40.00% 57.14% 47.06% creditcard
5.56% 10.00% 7.14% levensverzekering
33.33% 14.29% 20.00% afspraak
74.07% 57.14% 64.52% reisverzekering
75.00% 64.71% 69.47% hypotheken
Rejected utterances= 0
Totaal: 916, correct= 389, wrong=527, Accuracy= 42.46%

Table 6.11 shows all the generated rules this model consists of, and how keywords are linked to classes. The
output should be interpreted as a series of if-then-else rules where “>=1” means that the word should have been
recognized in the sentence with a confidence equal or higher than 1 and<=0 means it should not have been
recognized or with confidence lower or equal to 0 (Note: the values in the listing are all 1 and 0, because it
was not trained with real recognizer confidences). The last line in the rules is the default rule, namely “=>
categorie=saldo”, meaning any utterance which did not match any of the other rules will be classified as “saldo”.
The words which occur in the output could be regarded as what the algorithm considered as “keywords”.

Analyzing the rules in the classifier, the default JRIP output is a classifier which consists of a series of if-then-else
rules with majority class taken as the default rule. This means that any utterance which does not match any of the
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rules will automatically be classified as the majority class, in this case “saldo”. But logically if it were an unclear
sentence it should have been rejected. The JRIP output of the “best” classifier so far is shown in Table 6.11.

Some rules are very logical, for example “(inboedel>= 1) => categorie=inboedelverzekering” seems pretty
straightforward, but some seem to make no sense at all, for example “(mij>= 1) => categorie=rechtsbijstand”.
The latter indicates overtraining or lack of enough data to make good general rules.

6.6.1 Refining the model

Some modifications to the JRIP classifier were made in order to add rejection capabilities. To implement a rejec-
tion facility a classifier is trained for the majority class only, namely “saldo”. The training data is relabeled so that
all except the majority class belong to one class, in essence creating a binary classification problem. The default
rule for “saldo” is then replaced by the rules of this second classifier. The end result is that the classifier will now
reject any utterance which does not trigger any of the rules, instead of assuming a “saldo” when there is no match.

Next modifications were needed with regard to how to deal with recognizer confidences. Using them to in the
training stage did not have the desired effect, but there might be other ways to make use of this information.
First an approach was tried where recognition results were filtered before being passed to the classifier based on
a threshold. This way only words with sufficient confidence are passed to the classifier. This is illustrated in
Table 6.4. This was also considered for the the original model without rejection, but because of the default rule

Recognized ja(0.258) ik(0.560) heb(0.417) deze(0.270) er(0.964) een(0.576) klacht(1.000)
Filtered ik heb er een klacht

Figure 6.4: Example: Filter out words with confidence lower than 0.400

this can not work, and items that failed to be classified by the rules were classified as the majority class. Other
attempts were made to do fuzzy math with the word confidences, giving each rule a score (each rule leads to a
classification), with the best score selected in the end, but this did not lead to an improvement.

6.6.2 Reducing the number of classes

As the classification task is fairly complex and the performance reached up till now has not been spectacular, the
problem was simplified. Classes with similar subjects were grouped together reducing the amount of classes by a
factor of 3. For example the many classes for insurance were merged into one class etc. So the number of classes
decreases and generally the amount of training data per class increases. The classes were reduced according to
Table 6.13.

6.7 Tests (2)

The improvements mentioned in the foregoing section are tested now. First the JRIP with rejection facility and
configurable threshold is tested, and after that the same problem with reduced classes.

6.7.1 Improved JRIP rules with rejection facility

Purpose

Since words are now filtered before they are passed to the classifier, and the default output from JRIP was changed
so that it doesn’t classify what it does not recognize as the majority class, the classifier must be tested again.
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Table 6.13: Mapping of old and new classes

New class Old classes
saldo saldo

overig
anderecategorie
rekeningnummer

telefoon & internet bank.

aanvrageninternetbankieren
contractinternetbankieren
internetbankieren
inloggen
wijzigen toegangscode

betalingen

betalinggeweigerd
incassostorneren
bij afschrijvingen
overboeken
spoedoverboeking

administratie
wijzigen adres
opheffen rekening

beurs, effecten en aandelen

aandelenopinies
beurstrends
opgeveneffectenorder
opgevenoptieorder
aandelenorder

passen
pasaanvragen
pasblokkeren

New class Old classes

hypotheken
hypotheken
woonhuis

sparen
rekeningnummer
automatischsparen

pensioen
pensioenvraag
pensioenverzekering

informatie
openingstijden
afspraak

verzekeringen

aansprakelijkheid
levensverzekering
autoverzekering
inboedelverzekering
schade
reisverzekering
verzekeringen
rechtsbijstand

feedback
suggesties
klachten

goudenhanddruk goudenhanddruk

creditcard
krediet limiet
creditcard

lenen
nieuwelening
maximaalleenbedrag

Setup

Two JRIP models were trained. One using the same method as in the first series of tests. The other was trained
by first renaming the data so that it becomes a binary classification problem by renaming all tags which are not
“saldo” to “not saldo”. The resulting rules from both classifiers were merged into one classifier.

Results

Tables 6.14 and 6.15 show the corresponding results after the modifications for various values of the threshold.
The relative accuracy is the ratio of correctly classified calls from those which were not rejected, and absolute
accuracy is the ratio of correctly classified calls from all calls, rejected and non-rejected.

Discussion

Again the classifier trained on recognized output does slightly better than the one trained on transcriptions at com-
parable rejection levels. The rejection facility works, and it adds another parameter for configuring the classifier.
Higher classification accuracy can be gained by setting the recognition threshold higher at the cost of more rejected
calls.

Comparing the most similar tests in the previous test series (Table 6.5 and 6.7) which showed the best achievable
accuracy result was around 42% (with no rejection allowed), the results are now ranging from 53% to 69% (rel-
ative) when the classifier is allowed to reject calls for varying values of the threshold. This improvement has a
downside and will be explained further.
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Table 6.14: JRIP trained on training-set transcriptions with rejection

Threshold Rel. Accuracy % Rejection% Abs. Accuracy%
0.000 53.32 26.09 39.41
0.100 54.11 26.97 39.52
0.200 55.57 28.49 39.74
0.300 57.05 30.35 39.74
0.400 58.09 32.53 39.19
0.500 59.69 35.81 38.32
0.600 60.78 38.76 37.22
0.700 62.19 42.25 35.91
0.800 63.60 46.62 33.94
0.900 65.13 50.22 32.42
1.000 68.06 55.57 30.24

Table 6.15: JRIP trained on training-set recognizer output with rejection

Threshold Rel. Accuracy % Rejection% Abs. Accuracy%
0.000 52.93 23.69 40.39
0.100 53.31 24.24 40.39
0.200 54.86 25.98 40.61
0.300 56.21 27.95 40.50
0.400 57.75 30.24 40.29
0.500 58.51 32.64 39.41
0.600 60.45 36.24 38.54
0.700 62.13 40.61 36.90
0.800 63.94 45.20 35.04
0.900 65.96 48.69 33.84
1.000 69.45 54.26 31.77

When counting rejections as misclassified, and thus computing the absolute accuracy, the scores in this test are
ranging from 30% (highest threshold) to 40% (lowest threshold). The setting with the lowest threshold is the most
comparable to the previous test series, and with 40% versus 42% in the previous test series this is a small decrease.
The decrease can be explained by the fact there is now an additional classifier which distinguishes between “saldo”
and “notsaldo” and the classifier can fail to recognize some calls as “saldo”, whereas in the previous test series
calls were given the label “saldo” by default if they did not match any other rule. However most of the calls which
are now rejected would be false positives and wrongly classified as “saldo” in the previous test series.

Generally, for the sake of improving the dialog success rate, it is better to have a higher accuracy ratio when the
classifier makes a classification, instead of having a lot of false positives where the caller is directed to the wrong
agent, as would be the case in the previous test series. In the case of a rejection the caller can be asked to restate
his request differently, and if it fails again the caller can ultimately be directed to a human agent. So overall the
modifications are successful and a definite improvement, even if the absolute number of correctly classified calls
is a bit lower.

6.7.2 Reduced classes

Purpose

Because of overtraining and lack of enough data for each class, the data was relabeled to have fewer, but broader
classes, and with more data for each broad class. This test serves to see how the performance of the classifier
changes when it has to deal with the simplified problem.
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Setup

The data was relabeled according to Table 6.13. The classifier was constructed much the same way as the other
with rejection facility and consisting of rules from 2 classifiers.

Results

The corresponding results are shown here in Table 6.16 for varying values of the threshold. The relative accuracy
is the ratio of correctly classified calls from those which were not rejected, and absolute accuracy is the ratio of
correctly classified calls from all calls, rejected and non-rejected.

Table 6.16: JRIP trained on reduced classes training-set recognizer output with rejection

Threshold Rel. Accuracy % Rejection% Abs. Accuracy%
0.000 72.17 26.53 53.02
0.100 72.86 27.07 53.14
0.200 75.23 28.93 53.47
0.300 76.90 30.90 53.14
0.400 79.01 33.30 52.70
0.500 79.18 35.92 50.74
0.600 80.69 39.41 48.89
0.700 81.34 43.12 46.27
0.800 82.87 48.25 42.89
0.900 84.39 51.64 40.81
1.000 86.18 57.21 36.88

Discussion

As this is now a simplified problem with less confusion between categories and more training data for each cate-
gory, the accuracy is improved from 72% to 86% for varying values of the threshold. As expected, at comparable
rejection levels in Table 6.15, both the relative and absolute accuracy scores gotten in this test are higher.

6.8 Conclusion

With the list of requirements defined in the beginning of this chapter, they were achieved in the following manner:

1. The system must be able to recognize long free speech utterances:
For recognition the Philips SpeechPearl 2000 recognition engine was used. However the word and sentence
error rates were reasonably high, and definitely some improvement is needed here. By using more recent
speech recognition technology and by gathering better language models improvements will be gained in
this department. Correct recognition is preferred in order to properly classify the utterances. Even though
sentence and word error rates were high there was no huge difference in performance when comparing the
performance when testing on perfect recognition (transcriptions) and actual recognition output, meaning
that the classifiers are somewhat robust against recognition errors.

2. The system must work using Machine Learning Techniques:
All rules are automatically generated by JRIP, and no human intervention is required. The classification
scores of JRIP are satisfying given the circumstances and it’s relative performance compared to BoosTexter,
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but a long way from perfect.1 More data is required and how the algorithm scales remains to be seen once
data becomes available.

3. The system must perform comparably with standard techniques, such as used by AT&T (BoosTexter):
In the performed experiments BoosTexter was consistently outperformed by JRIP when testing on new
unseen data. BoosTexter seemed sensitive to noise and had a tendency to overtrain.

4. It is desirable that the system be easy to understand, and modifiable by an expert so that early shortcomings
in the system early can perhaps be overcome:
JRIP’s output is easy to understand by humans and can in theory be edited manually. However this was not
attempted in these experiments.

5. When using speech recognition there is uncertainty in the recognition results:
By filtering the data sent and modifying the classifier to have a rejection facility it was possible to make
useful use of speech recognizer confidences, by only allowing words which had confidences above the
specified threshold.

Overall the machine learning classifiers do not perform at an acceptable operational level yet, therefore these
must be improved first. The apparent lack of data is a serious hindering factor in the training procedure. Using
JRIP does not seem inferior to BoosTexter at this stage, but the performance of both leaves much to be desired.
Unfortunately it is only possible to know once more data becomes available.

Yet, still some ways to improve performance can be thought of. Adding rejection and reducing the number of
classes improved the performance, but the future several other improvements can also be done. With JRIP there
is the possibility of easily modifying the auto-generated rules with some human knowledge, especially in the
beginning stages of a project, since it works pretty much like an expert system. Even though overall performance
is still low, one can make use of the fact classification performance is not the same for all classes. By only allowing
high scoring classes to be classified, thus further reducing the number of classes, the overall performance can go
up even further, again at the cost of higher rejection.

1Although details of a system consisting of human rules only were not given here, JRIP seems comparable in performance on the same
training and test set.
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Chapter 7

Summary, Conclusions and Future Work

The results of the research in the two topics discussed in this thesis were limited, but yet insightful and will
hopefully contribute to better products and services to be developed in the future. The two topics shared one
common problem, namely limited training data, and in both topics there were promising methods to solve this
shortcoming. A short summary of the topics English Foreign Word Recognition and Call Classification which
were discussed in detail in Chapter 5 and 6 respectively, will be given with the final conclusions and future work,
each in their own section.

7.1 English foreign word recognition

Summary and Conclusions

English words are an increasing phenomenon in Dutch speech. It is common that one or several English words or
names are used within a Dutch sentence. This is a potential problem because English has phonemes which are not
typical for Dutch, and existing Dutch speech recognizers are designed with Dutch phonemes in mind. Non native
speakers, such as the Dutch, might adopt the English phonemes successfully, but often they will (unknowingly)
to some extent use the phonemes which are closest in their native inventory instead of an English one. Because
of this variety in how Dutch can pronounce English words it is important to recognize both Dutch and English
phonemes.

The problem definition posed in Section 1.2.1 is whether using a Dutch recognizer is enough to handle this
increasing phenomenon, or if adding training data from other languages, particularly English, using multilingual
techniques are a better option.

Getting a Dutch speech recognizer to recognize the English words spoken by Dutch people traditionally required
gathering recordings of English utterances from the Dutch speaker group. Collecting a new corpus is expensive,
time-consuming and laborious. Thus the attention was put on multilingual techniques using existing corpora.
During the course of this work, an existing Dutch corpus was used in conjunction with existing English and
French corpora.

Using corpora from various languages and sources posed a number of problems (Section 5.2). For the English cor-
pus it was necessary to down-sample the audio to telephone-like speech. The main problem however is choosing
an appropriate phoneme set for all languages involved. Different organizations and languages tend to have differ-
ent definitions of the phoneme set or choose a very fine granularity, so the first problem was to define a unified
phoneme set which covers all training languages. The phoneme sets chosen were based for the most part on the
sets defined by SAMPA, and unified using IPA correspondences with an X-SAMPA notation. For training, using
alignments from pre-trained monolingual recognizers might not be optimal, thus an iterative approach was chosen
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to train the multilingual recognizer. A reference corpus was chosen and this was used to align a new language.
After alignment the new language was added to the reference corpus, which was in turn used to align the next
corpus. Several acoustic models combinations were trained with Dutch, English and French data.

Different tests were done to test the various models. First of all a test with the VoiceConnect97 corpus to verify that
the recognition performance on native Dutch does not decrease (too much) with the multilingual model (Section
5.3.1). Second, a test on native English using the TIMIT corpus (Section 5.3.2) which heavily tests the English
phonemes, and third a test on English words spoken by Dutch people using the DDAC2000 corpus (Section 5.3.3).
A summary of the results of these three tests can be found in Table 7.1, Table 7.2 and Table 7.3 respectively.

The native Dutch test using Voiceconnect97 showed that the expected performance decrease was within accept-
able limits, dropping from 93.36% to 92.66% when comparing the monolingually trained Dutch acoustic model
(AMO NL2) to the Dutch-English model (AMONLEN2).

Table 7.1: Summary of test results from VoiceConnect97

Model Correct
AMO NL2 93.36%
AMO NLEN2 92.66%
AMO NLEN2q 92.72%
AMO NLENFR2 91.34%
AMO NLFR2 91.02%

In the TIMIT test the monolingually trained English acoustic model performed best, with the other acoustic models
performing less and the Dutch-English model trained with language questions (AMONLEN2q) the worst.

Table 7.2: Summary of test results from TIMIT

TIMIT
Model W. Correct
AMO EN 91.8%
AMO NLEN2 91.1%
AMO NLENFR2 91.2%
AMO NLEN2q 90.8%

The DDAC2000 test was the most interesting, as it resembled the actual problem the most, with Dutch speakers
pronouncing English words, thus a mix of Dutch and English phonemes. The various acoustic models were tested
using different lexicons. Initially using the lexicon with Dutch phonemes only (LEXNL), with English phonemes
mapped to Dutch ones, performed better than the lexicon with primarily English and some Dutch phonemes
(LEX EN), but different errors were made in each case. This lead to the conclusion that in general the use of
Dutch phonemes is more prevalent, but there are instances where the specific detection of English phonemes lead
to better results.

Table 7.3: Summary of test results from DDAC2000

DDAC2000
Acoustic model Lexicon Correct
AMO NLEN2 LEX EN 90.96%
AMO NL2 LEX NL 91.45%
AMO NLEN2 LEX NL 92.24%
AMO NLEN2 LEX NLEN 93.81%

Motivated by that, the two lexicons were combined to LEXNLEN and tested with the Dutch-English acoustic
model (AMO NLEN2). The results were higher than previously achieved in both cases. Comparing this result
to the baseline case of a recognizer trained with Dutch data only (AMONL2) and English phonemes mapped
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(LEX NL) the performance went from 90.96% to 93.81%. Furthermore testing with the Dutch lexicon on the
different acoustic models showed that the Dutch-English trained acoustic model performed better than the Dutch
acoustic model, leading to the conclusion that even if English phonemes are not explicitly detected, training Dutch
phonemes with English data is beneficial and provides additional robustness. The differences between English and
mapped Dutch phonemes were investigated further in Section 5.4.

In the VoiceConnect97 and DDAC2000 test, the acoustic models with French in the training data performed
relatively worse than the other ones. Several possible reasons can be thought of: French might be significantly
different from Dutch and English, there were problems with the automatic generation of the French lexicon, or not
enough French training data was used.

In conclusion, better recognition results for English foreign words spoken by Dutch people are obtainable using
the multilingual techniques, but at a slight cost of recognition performance on pure Dutch material. This can be
derived from the fact that the performance of the best Dutch-English model dropped slightly when testing on the
Dutch only material in VoiceConnect97, and there was a small performance gain when testing on the English-
spoken-by-Dutch material in DDAC2000. So to get an overall benefit from multilingual models, there must be a
significant amount of expected English utterances, compared to the amount of Dutch utterances.

Future Work

The results achieved so far are promising, but some more experiments can be thought of in order to deepen the
understanding of the topic.

• A Bigger and more extensive test set:
The DDAC2000 test set was relatively small and consisted of short utterances. A bigger test set, as well as
experiments with longer utterances would give more accurate and more representative results.

• Different English to Dutch phoneme mappings:
In the performed experiments the mappings were chosen somewhat intuitively with the simple heuristic that
a Dutch text to speech synthesizer should be able to pronounce decent English using those mappings, and it
should be the phoneme which a Dutch person would most likely use when pronouncing an English phoneme.
Of course opinions on whether the produced English is close enough to real English are subjective, and not
all people will borrow the same phoneme, so other mappings are thinkable, perhaps based on other methods,
such as data-driven methods.

• Reducing the phoneme set:
In these experiments the phonemes of the different languages were merged based on IPA correspondences.
This results in a huge phoneme set, which is not always practical, for example transcription, and amount of
training data for each phoneme. It would be thinkable to further reduce the phoneme set further in cases
where the English phoneme does not at all perform better than the mapped Dutch phoneme, thus only
keeping English phonemes in the set which contribute to better recognition.

• Adding other languages:
In these experiments adding French to the training data did not lead to performance improvements. French
was considered because non-native recognition is often boosted by more training material of foreign origin.
French is perhaps not close enough to either Dutch or English, or simply problems with the French transcrip-
tions, causing a performance decrease. In any case, other languages, for example German, might perform
satisfactory, as this language seems closer to both English and Dutch, and in the case of multilingual models
and speech recognition there is no better data than more data.
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7.2 Call classification

Summary and Conclusions

Call classification is the automated decision making of to which agent a call should go after the caller expresses
his wishes and this is recognized by the speech recognizer. The caller is invited to express his desire with a simple
opening prompt like “How may I help you?”. Such an approach would hopefully be cheaper and faster to work
with, as agents are freed up to handle actual problems instead of routing callers and callers are directly send to the
right person.

Algorithms which can automatically construct classifiers are attractive, since they are more flexible, work faster
and cheaper than human experts, and can be invoked at any given time. However such algorithms require training
data. This data takes time to acquire, and this is opposite to the desire of the call center who would like to have
the system working yesterday. Also the output of some algorithms is not always understandable by humans and
thus not easy to tweak if anything is not going as hoped for.

In the beginning phases of a new classification system there is no or insufficient training data available. It is
likely that a human expert will perform better when there is not enough training data to go around, and this will
progressively change as more data comes available, and progressively harder for the human expert to keep up with
the amount of data.

In Section 1.2.2 a problem definition was posed of how create a call classifying system based on machine learning
techniques which performs well in the beginning stages with limited data available. The classifiers generated by
the machine learner should be easily understandable so that a human expert can supervise and modify them as
needed. Once more data is available the need for supervision will decrease as the classifiers will become more
accurate.

The first problem was to collect data for a 45 class problem. Two days were spent recording the data for a little
over 1500 calls. This was not a lot, but realistic given the goal of creating an algorithm which does decently in the
beginning phases and hopefully extensible for the future when there is more data.

The second problem to deal with was getting the speech recognizer to recognize utterances reliably. Recognition
need not be perfect, as long as specific keywords which are unique for a class are recognized. As recognition was
not the main focus of this research topic, only one recognition pass was done and the output of this pass used as
input for training and testing the algorithms. The recognition performance was sadly far from perfect and there is
room for improvement here.

Two algorithms were tested. These were JRIP, based on RIPPER and known for generating human-readable rules,
and BoosTexter which is based on the Adaboost algorithm but adapted for text. BoosTexter was already used in
literature for similar tasks of classifying calls. JRIP is particularly attractive because the output is very easy to
understand, and in the future could serve as a basis for a human expert to continue with.

The algorithms were tested by training on transcriptions, training on recognition output and training on scored
recognition output (Section 6.4). A short summary of the results is shown in Table 7.4. For both algorithms, train-
ing on recognition output yielded the best results, with JRIP getting the highest score of 42.27% and BoosTexter
36.03%, followed by training on transcriptions. Training on scored output (with recognizer confidences) gave
scores significantly lower. Overally the scores are much higher than the majority baseline of 12.12% and a bit
lower than the maximum scores of 44.65% (JRIP) and 42.47% (Boostexter) which can be achieved with “perfect”
recognition (using transcriptions).

Table 7.4: Accuracy of classifiers when tested on speech recognition output

Trained on JRIP BoosTexter
Transcriptions 41.26 35.37
Recognized output 42.47 36.03
Scored output 37.77 29.15
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In general the impression is that JRIP can generalize better than BoosTexter, is more robust to noise, and has the
better scores on the tests set. BoosTexter performed a lot better than JRIP when testing on the training set again,
which is perhaps a sign of overfitting. Training on scored (with recognizer confidences) texts disappointedly gave
scores significantly lower than when training on just the output without scores. This is probably attributed to the
fact that the algorithm not only needs to learn the keywords but also needs to find suitable thresholds, meaning
that more training data is needed.

Analyzing the errors made by JRIP showed that many of the errors resulted from a default association with the
majority class when no rule matched the utterance. JRIP was then modified with a rejection facility, where
utterances which did not match any rule were rejected instead of being classified as the majority class. In doing so
a word confidence threshold was put in place. This lead to a better relative classification score with accuracies from
around 52% to 69%, for different values of the threshold with rejections, but a slightly worse absolute accuracy of
about 40% when counting rejections as misclassifications (Section 6.7.1).

Because of the huge number of classes, and relatively few training samples some classes were underrepresented.
Also the system could easily get confused by a number of related classes. The 45 classes were reduced in number,
and related classes joined together. As expected the classification performance went up to around 72% to 68%
relative accuracy for varying values of the threshold (Section 6.7.2).

Overall the scores in all tests were not what one would expect from a system in operational use, but this can be
attributed largely to a lack of training data. The results are still promising, because an easy to understand algorithm
such as JRIP outperformed a well known.

Future Work

• Bigger training and tests sets which are representative of actual situations:
The training and test data were collected in a relatively short time, partly to simulate the beginning stages
of creating a call classifier or perhaps a brand new call center (which was the idea). That being said, it
was possible to make something which performed well given the circumstances, but more data is needed
to determine whether performance of the classification algorithms will indeed improve once it becomes
available, and whether the performance of the algorithms relative to each other remains the same. More
training data will make it possible to extract better language models and a more extensive lexicon, which
will in turn lead to better speech recognition, and better classification performance.

• Extending the system with rules from a human expert:
Only the base performance of classifiers generated by the machine learners was tested. Not all rules always
make sense, and perhaps a human expert has some additional rules which can further improve performance.

• Only concentrate on categories with a lot of true positives:
Because the performance per individual class varies, it’s maybe wise to only classify utterances for classes
for which it is known that the system has a high probability of getting it right, if the system were to go
operational. If the system classifies a call to a class for which it is known that it is often incorrect it should
be directed to a human operator. Although this system is now not fully automatic it is probably more friendly
to the user.

• Stop word filtering and stemming:
Although they were not applied in these experiments, in the future it might be necessary from a practical
point of view. Currently the test and training sets are small, so memory consumption at the moment is not
a problem. However as the data grows the word vector lengths should be reduced by filtering out words
which are not expected to contribute to the classification, the so called stop words.

• Experiments with n-grams:
In the case of JRIP, only single words were represented as a value. There are no real bigrams or trigrams.
JRIP might be able to construct a conjunction of several words which must be present in the sentence, but
it does not generate rules to specify in what order they must be in or how big the distance (in words) is
between them.
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• Other machine learning algorithms:
BoosTexter and JRIP are only some examples of the many machine learning algorithms out there. It was
difficult to assess beforehand which algorithm will perform well, so these two were selected because of their
attractive properties, namely being widely published, and relatively easy to understand. They might be not
the best, as there are more algorithms out there with similar properties, but which were not tested.
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Appendix A

Glossary

Acoustic model A model which has information about how phonemes are realized by in an audio signal
Agent A person who will handle an incoming call in a call center
ASR Automated speech recognition
Corpus A collection of speech recordings designed for a training or testing a speech recognition

system
HMM Hidden Markov Model
IPA International Phonetic Association
IVR system Interactive Voice Response system, used to describe a telephone system which allows users

to browse spoken menus by using touchtones.
SAMPA Speech Assessment Methods Phonetic Alphabet
Language model A model which has information about allowed transitions between words
Lexicon A dictionary containing phonemic transcriptions of words
Machine Learning Methods and algorithms whereby a system can automatically learn characteristics from

training data which can in turn be used to predict, recognize or classify new data
Phone A small acoustic unit independent of the language
Phoneme The smallest unit in speech leading to difference in a word within a language. A phoneme

can be realized by different phones
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Appendix B

Phoneme counts

Table B.1: Phonemes per corpus

IPA X-SAMPA Dutch TIMIT Swiss French Total Example
Symbol Symbol Polyphone Polyphone
1 1 3118 3118 debit(EN)
ø 2 1559 1559 deux(FR)
ø: 2: 512 512 deur(NL)
3~ 3` 1069 1069 furs(EN)
ì 5 6590 6590 hal(NL)
œ 9 1787 1787 neuf(FR)
œ̃ 9∼ 1100 1100 brun(FR)
œy 9y 1854 1854 huis(NL)
@ @ 31631 6286 15408 53325gemakkelijk(NL)
@~ @` 2111 2111 corner(EN)
A A 12912 2498 15410 pat(NL)
Ã A∼ 11949 11949 vent(FR)
A: A: 2160 2160 pot(EN)
Au Au 1392 1392 goud(NL)
D D 2738 2738 this(EN)
E E 11145 2738 18650 32533pet(NL)
Ẽ E∼ 3220 3220 vin(FR)
E: E: 61 61 créme(NL)
Ei Ei 4775 4775 fij n(NL)
G G 3284 3284 goed(NL)
4 H 1514 1514 juin(FR)
I I 8089 6176 14265 pit(NL)
ñ J 387 387 oignon(FR)
N N 4421 1250 11 5682 bang(NL)
O O 7337 2295 7578 17210 pot(NL)
Õ O∼ 7102 7102 bon(FR)
O: O: 14 14 roze(NL)
OI OI 301 301 noise(EN)
K R 25642 25642 rond(FR)
S S 633 1242 1520 3395 show(NL)
T T 599 599 thin(EN)
U U 781 781 put(EN)
2 V 1905 1905 cut(EN)
Continued on Next Page. . .
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IPA X-SAMPA Dutch TIMIT Swiss French Total Example
Symbol Symbol Polyphone Polyphone
Y Y 3584 3584 put(NL)
Z Z 209 83 3618 3910 bagage(NL)
a a 20108 20108 patte(FR)
a: a: 12407 12407 naam(NL)
aI aI 2044 2044 rise(EN)
aU aU 799 799 rouse(EN)
b b 7252 2489 3224 12965 bak(NL)
d d 12484 5052 15301 32837dak(NL)
dZ dZ 1048 1048 gin(EN)
e e 14193 14193 ses(FR)
e: e: 8172 8172 veer(NL)
eI eI 2180 2180 raise(EN)
f f 3432 2213 4631 10276 fel(NL)
g g 191 1471 2069 3731 goal(NL)
h h 5215 1989 7204 hand(NL)
i i 6276 17017 23293 vier(NL)
i: i: 4415 4415 cease(EN)
j j 2534 1133 6181 9848 ja(NL)
k k 12405 4535 12203 29143kap(NL)
l l 10404 4614 20410 35428 land(NL)
l
"

l= 911 911 bottle(EN)
m m 11269 3552 9116 23937 met(NL)
m
"

m= 52 52 bottom(EN)
n n 24036 7416 8867 40319 net(NL)
n
"

n= 248 248 button(EN)
o o 3503 3503 gros(FR)
o: o: 8087 8087 voor(NL)
oU oU 1736 1736 nose(EN)
p p 6603 2970 11516 21089 pak(NL)
r r 13719 13719 rand(NL)
ô r\ 16301 5874 22175 tor(NL)
s s 20587 6144 21590 48321sein(NL)
t t 26210 7983 18641 52834 ttak(NL)
tS tS 798 798 chin(EN)
u u 2604 5070 7674 voer(NL)
u: u: 2503 2503 lose(EN)
v v 7656 2074 6160 15890 vel(NL)
w w 5893 2186 2403 10482 wit(NL)
x x 8692 8692 toch(NL)
y y 1447 6884 8331 vuur(NL)
z z 3485 4210 3142 10837 zijn(NL)
æ { 3703 3703 pat(EN)

SIL 90470 7725 18156 116351silence
#n# 3822 3822 background noises
#s# 3015 3015 mouth noises



Appendix C

Source code listing

C.1 English foreign words

C.1.1 mux-transcription-hypothesis.pl

Multiplexes a transcription file and SONIC batch recognition file together.

#!/usr/local/bin/perl5

(@ARGV == 3) ||

die "usage: (perl) mux_transcription_hypothesis.pl transcription hypothesis outfile\n";

open(TRANSFILE,"<@ARGV[0]") ||

die "error: could not open @ARGV[0]\n";

open(HYPFILE,"<@ARGV[1]") ||

die "error: could not open @ARGV[1]\n";

open(OUTFILE,">@ARGV[2]") ||

die "error: could not open @ARGV[2]\n";

$line = 0;

$file_count = 0;

while ($trline = <TRANSFILE> and $hypline = <HYPFILE>) {

$line++;

$trline =˜ s/\n//;

$hypline =˜ s/\n//;

$trline =˜ /ˆ(.*)\s*\((\d+)\)$/;

$transcription = $1;

$transnum = int($2);

$hypline =˜ /ˆ(.*)\s*\((\d+)\s*(\S*)\)$/;

$hypothesis = $1;

$hypnum = int($2);

print "$hypnum $transnum\n";
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if (hypnum == transnum) {

print OUTFILE "$hypnum;; $transcription;; $hypothesis ;; $3\n";

}

else {

die("mismatch");

}

}

close(INFILE);

C.1.2 analyze-output.pl

Analyzes the multiplexed file and gives statistics

#!/usr/local/bin/perl5

(@ARGV == 1) || die "usage: (perl) analyze_output.pl \n";

open(INFILE,"<@ARGV[0]") ||

die "error: could not open @ARGV[0]\n";

$line = 0;

$correct = 0;

$wrong = 0;

$rejected = 0;

$correctfirst = 0;

$path_threshold = -99999;

$false_rejected = 0;

while ($inline = <INFILE>) {

$inline =˜ s/\n//;

if ($inline =˜ /(.*);;(.*);;(.*);;(.*)/) {

$number = $1;

$transcription = $2;

$hypothesis = $3;

$pathscore = $4;

#clear whitespace left and right

$hypothesis =˜ s/ˆ\s*//;

$transcription =˜ s/ˆ\s*//;

$hypothesis =˜ s/\s*$//;

$transcription =˜ s/\s*$//;

if ($pathscore < $path_threshold){

$rejected++;

if ($transcription eq $hypothesis){

$false_rejected++;

}

}

elsif ($transcription eq $hypothesis){

$correct++;

}

elsif ($hypothesis eq ""){
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$rejected++;

}

else {

$wrong++;

@words = split(/\s+/,$hypothesis);

if (@words[0] eq $transcription) {

$correctfirst++;

}

}

}

$line ++;

}

printf "Total $line, correct $correct, wrong $wrong, rejected $rejected

(threshold=$path_threshold), wrong but first word correct $correctfirst.\n";

$accepted = $line - $rejected;

$acceptedcorrect = 100*($correct/$accepted);

$acceptedcorrectfirst = 100*($correctfirst/$accepted);

$correct *= 100/$line;

$wrong *= 100/$line;

$rejected *= 100/$line;

$correctfirst *= 100/$line;

$postcorrect = $correctfirst + $correct;

printf "Correct %.2f%%, wrong %.2f%%, rejected %.2f%%, false rejected %.2f%,

wrong but correct with filter %.2f%%.\n", $correct, $wrong, $rejected,

100*$false_rejected/$line, $correctfirst;

print "\n";

print "Total correct with postprocess (absolute) = $postcorrect%\n";

print "\n";

print "Correct from accepted $accepted = $acceptedcorrect%\n";

$acceptedcorrectfirst += $acceptedcorrect;

print "Correct from accepted with filter $accepted = $acceptedcorrectfirst%\n";

close(INFILE);

C.1.3 filter-wrong.pl

Filters the multiplexed file so that instances which were recognized wrongly remain.

#!/usr/local/bin/perl5

(@ARGV == 3) || die "usage: (perl) filter_wrong.pl <testoutput> <output file>\n";

open(INFILE,"<@ARGV[0]") ||
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die "error: could not open @ARGV[0]\n";

open(INFILE2,"<@ARGV[1]") ||

die "error: could not open @ARGV[1]\n";

open(OUTFILE,">@ARGV[2]") ||

die "error: could not open @ARGV[2]\n";

$line = 0;

$correct = 0;

$wrong = 0;

$rejected = 0;

$correctfirst = 0;

$file;

while ($inline = <INFILE> and $file = <INFILE2>) {

$inline =˜ s/\n//;

$file =˜ s/\d+\s*$//;

$file =˜ s/\.lin/\.wav/;

if ($inline =˜ /(.*);;(.*);;(.*);;(.*)/) {

$number = $1;

$transcription = $2;

$hypothesis = $3;

#clear whitespace left and right

$hypothesis =˜ s/ˆ\s*//;

$transcription =˜ s/ˆ\s*//;

$hypothesis =˜ s/\s*$//;

$transcription =˜ s/\s*$//;

if ($transcription eq $hypothesis){

$correct++;

}

else {

print OUTFILE "$inline ;; $file\n" ;

}

}

$line ++;

}

close(INFILE);

C.2 Call classification

C.2.1 dialogs-to-boosttexter.pl

Extracts the transcriptions from a list of SpeechPearl 2000 dialog files and converts them to BoosTexter format.

#!/usr/local/bin/perl5

use strict;
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my $inline;

(@ARGV == 2) || die "usage: <list of dialog files> <output file base name>\n";

open(INFILE,"<@ARGV[0]") ||

die "error: could not open @ARGV[0]\n";

open(OUTFILE,">@ARGV[1]") ||

die "error: could not open @ARGV[1]\n";

while ($inline = <INFILE>) {

#strip newline

$inline =˜ s/\n//;

if ($inline =˜ /(.*)info\.dlg/) {

my $category;

my $transcribed;

my $file;

my $language;

my $path = $1;

my $dlgline;

my $exclusion;

#print "$1\n";

open(DLGFILE,"<$inline");

while($dlgline = <DLGFILE> ) {

$dlgline =˜ s/\n//;

if ($dlgline =˜ /\$Attribute\$ Exclusion=(.*)/){

$exclusion = $1;

#print "$1\n";

}

if ($dlgline =˜ /language=(.*)/){

$language = $1;

#print "$1\n";

}

if ($dlgline =˜ /\$Attribute\$ Category=(.*)/){

$category = $1;

#print "$1\n";

}

if ($dlgline =˜ /\$Utterance\$ \(transcribed\) (.*)/){

$file = $1;

#print "$1\n";

}

if ($dlgline =˜ /transcribed=(.*)/){

$transcribed = $1;

$transcribed =˜ s/,/ /g;

$transcribed =˜ s/\s+/ /g;

#print "$1\n";
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}

}

if ($language eq "xxx_xxxx" and $category and $transcribed and $file

and not $category eq "janee")

{

$transcribed =˜ tr/A-Z/a-z/;

$transcribed =˜ s/\\//g;

$transcribed =˜ s/\[/ \[/g;

$transcribed =˜ s/\]/\] /g;

$transcribed =˜ s/\’/ /g;

$transcribed =˜ s/\./ /g;

$transcribed =˜ s/,/ /g;

$transcribed =˜ s/\?/ /g;

$transcribed =˜ s/\s+/ /g;

print OUTFILE "$transcribed, $category.\n";

}

close(DLGFILE);

}

else{

die "fout in invoer file";

}

}

close(INFILE);

C.2.2 dialogs-to-weka.pl

Extracts the transcriptions from a list of SpeechPearl 2000 dialog files and converts them to WEKA .arff format.

#!/usr/local/bin/perl5

use strict;

my $inline;

(@ARGV == 2) || die "usage: <list of dialog files> <output file>\n";

open(INFILE,"<@ARGV[0]") ||

die "error: could not open @ARGV[0]\n";

open(OUTFILE,">@ARGV[1]") ||

die "error: could not open @ARGV[1]\n";

print OUTFILE "\@relation ’bank’\n";

print OUTFILE "\@attribute transcriptie string\n";

print OUTFILE "\@attribute categorie {’rekeningnummer’,’verzekeringen’,

’saldo’,’bij_afschrijvingen’,’overboeken’,’wijzigen_toegangscode’,

’beurstrends’,’aandelenopinies’,’aandelen_order’,’pas_blokkeren’,

’pas_aanvragen’,’wijzigen_adres’,’opheffen_rekening’,’incasso_storneren’,

’automatisch_sparen’,’krediet_limiet’,’nieuwe_lening’,’spoedoverboeking’,

’creditcard’,’openingstijden’,’afspraak’,’internetbankieren’,

’x_xxxxxxxxx’,’inloggen’,’klachten’,’suggesties’,’opgeven_effectenorder’,
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’opgeven_optieorder’,’levensverzekering’,’pensioenverzekering’,

’pensioenvraag’,’gouden_handdruk’,’hypotheken’,’schade’,’autoverzekering’,

’inboedelverzekering’,’woonhuis’,’rechtsbijstand’,’aansprakelijkheid’,

’reisverzekering’,’andere_categorie’,’maximaal_leenbedrag’,

’aanvragen_internetbankieren’,’betaling_geweigerd’,’contract_internetbankieren’}\n";

print OUTFILE "\@data\n";

while ($inline = <INFILE>) {

#strip newline

$inline =˜ s/\n//;

if ($inline =˜ /(.*)info\.dlg/) {

my $category;

my $transcribed;

my $file;

my $language;

my $path = $1;

my $dlgline;

my $exclusion;

#print "$1\n";

open(DLGFILE,"<$inline");

while($dlgline = <DLGFILE> ) {

$dlgline =˜ s/\n//;

if ($dlgline =˜ /\$Attribute\$ Exclusion=(.*)/){

$exclusion = $1;

#print "$1\n";

}

if ($dlgline =˜ /language=(.*)/){

$language = $1;

#print "$1\n";

}

if ($dlgline =˜ /\$Attribute\$ Category=(.*)/){

$category = $1;

#print "$1\n";

}

if ($dlgline =˜ /\$Utterance\$ \(transcribed\) (.*)/){

$file = $1;

#print "$1\n";

}

if ($dlgline =˜ /transcribed=(.*)/){

$transcribed = $1;

$transcribed =˜ s/,/ /g;

$transcribed =˜ s/\s+/ /g;

#print "$1\n";

}

}

if ($language eq "xxx_xxxx" and $category and $transcribed and $file

and not $category eq "janee")
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{

$transcribed =˜ tr/A-Z/a-z/;

$transcribed =˜ s/\\//g;

$transcribed =˜ s/\[/ \[/g;

$transcribed =˜ s/\]/\] /g;

$transcribed =˜ s/\’/ /g;

$transcribed =˜ s/\./ /g;

$transcribed =˜ s/,/ /g;

$transcribed =˜ s/\?/ /g;

$transcribed =˜ s/\s+/ /g;

print OUTFILE "’$transcribed’, ’$category’\n";

}

close(DLGFILE);

}

else{

die "fout in invoer file";

}

}

close(INFILE);

C.2.3 SP2000-recognized-to-scored-boostexter.pl

Converts SpeechPearl 2000 recognized text to scored BoosTexter text.

#!/usr/local/bin/perl5

## author: Hans Jongebloed, modified by Derek Liauw

## TNO Telecom - DUTCHEAR

## Datum: 23 maart 2005

## parses the result output file and generates an item.dat file with the

## 1-best recognition result (incl. confidence per word).

use strict;

(@ARGV == 2) || die "usage: (perl) SP2000-recognized-to-scored-boostexter.pl input output\n";

open(INFILE,"@ARGV[0].txt") ||

die "error: could not open @ARGV[0].txt\n";

open(OUTFILE,">@ARGV[1]") ||

die "error: could not open @ARGV[1]\n";

#print OUTFILE "file;soundfile;spoken;reco;\n";
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my $line = 0;

my $file = 0;

my $soundfile;

my $spoken;

my $reco;

my $inline;

my $conf;

my $keyword;

while ($inline = <INFILE>) {

$line++;

# if ($file > 50) {last;}

$inline =˜ s/\n//;

if ($inline =˜ /Sentence: (\d+)/) {

## verwerken resultaat vorige wav file:

if ($file > 0) {

$reco =˜ s/\s*$//;

$reco =˜ s/\<.+\>//g;

#print OUTFILE "$file;$soundfile;$spoken;$reco;\n";

print OUTFILE "$reco,$spoken.\n";

}

## init variabelen voor volgende wav file:

$file = $1;

$spoken = "";

$reco = "";

$soundfile = "";

}

elsif ($inline =˜ /Spoken: (.*)$/) {

$spoken = $1;

}

elsif ($inline =˜ /SoundFile: (.*)$/) {

$soundfile = $1;

}

#elsif ($inline =˜ /Recognized: (.*)$/) {

# $reco = $1;

# $reco =˜ s/\#PAUSE\#//g;

# $reco =˜ s/\<.*?\>//g;

# $reco =˜ s/\s+$//;

# $reco =˜ s/ˆ\s+//;

#}

elsif ($inline =˜ /Detailed errors:/) {next;}

#elsif ($inline =˜ /Ins filler.*\s*(\d\.\d\d\d)/) {

# $conf = $1;

# $conf =˜ s/0\.//;

# $conf =˜ s/\.//;

#}

elsif ($inline =˜ /Ins (\S*)\s*(\d\.\d\d\d)/) {

$keyword = $1;

$conf = $2;

$conf =˜ s/0\.//;

$conf =˜ s/\.//;
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$reco .= "$keyword $conf ";

}

elsif ($inline =˜ /Sub (\S*)\s*(\d\.\d\d\d)/) {

$keyword = $1;

$conf = $2;

$conf =˜ s/0\.//;

$conf =˜ s/\.//;

$reco .= "$keyword $conf ";

}

elsif ($inline =˜ /Del .*/) {

# $keyword = $1;

# $conf = $2;

# $conf =˜ s/0\.//;

# $conf =˜ s/\.//;

# $reco .= "$keyword($conf) ";

#print "$inline\n";

}

elsif ($inline =˜ /Cor (\S*)\s*(\d\.\d\d\d)/) {

$keyword = $1;

$conf = $2;

$conf =˜ s/0\.//;

$conf =˜ s/\.//;

$reco .= "$keyword $conf ";

}

}

if ($file > 0) {

$reco =˜ s/\s*$//;

$reco =˜ s/\<.+\>//g;

print OUTFILE "$reco,$spoken.\n";

}

close(INFILE);

close(OUTFILE);

C.2.4 SP2000-recognized-to-scored-weka.pl

Converts SpeechPearl 2000 recognized texst to a word vectors suitable for use with WEKA.

#!/usr/local/bin/perl5

## author: Hans Jongebloed, modified by Derek Liauw

## TNO Telecom - DUTCHEAR

## Datum: 23 maart 2005

## parses the result output file and generates an item.dat file with the

## 1-best recognition result (incl. confidence per word).

use strict;
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(@ARGV == 2) || die "usage: (perl) SP2000-recognized-to-scored-boostexter.pl input output\n";

open(INFILE,"@ARGV[0].txt") ||

die "error: could not open @ARGV[0].txt\n";

open(OUTFILE,">@ARGV[1]") ||

die "error: could not open @ARGV[1]\n";

#print OUTFILE "file;soundfile;spoken;reco;\n";

my $line = 0;

my $file = 0;

my $soundfile;

my $spoken;

my $reco;

my $inline;

my $conf;

my $keyword;

while ($inline = <INFILE>) {

$line++;

# if ($file > 50) {last;}

$inline =˜ s/\n//;

if ($inline =˜ /Sentence: (\d+)/) {

## verwerken resultaat vorige wav file:

if ($file > 0) {

$reco =˜ s/\s*$//;

$reco =˜ s/\<.+\>//g;

#print OUTFILE "$file;$soundfile;$spoken;$reco;\n";

print OUTFILE "$reco,$spoken.\n";

}

## init variabelen voor volgende wav file:

$file = $1;

$spoken = "";

$reco = "";

$soundfile = "";

}

elsif ($inline =˜ /Spoken: (.*)$/) {

$spoken = $1;

}

elsif ($inline =˜ /SoundFile: (.*)$/) {

$soundfile = $1;

}

#elsif ($inline =˜ /Recognized: (.*)$/) {
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# $reco = $1;

# $reco =˜ s/\#PAUSE\#//g;

# $reco =˜ s/\<.*?\>//g;

# $reco =˜ s/\s+$//;

# $reco =˜ s/ˆ\s+//;

#}

elsif ($inline =˜ /Detailed errors:/) {next;}

#elsif ($inline =˜ /Ins filler.*\s*(\d\.\d\d\d)/) {

# $conf = $1;

# $conf =˜ s/0\.//;

# $conf =˜ s/\.//;

#}

elsif ($inline =˜ /Ins (\S*)\s*(\d\.\d\d\d)/) {

$keyword = $1;

$conf = $2;

$conf =˜ s/0\.//;

$conf =˜ s/\.//;

$reco .= "$keyword $conf ";

}

elsif ($inline =˜ /Sub (\S*)\s*(\d\.\d\d\d)/) {

$keyword = $1;

$conf = $2;

$conf =˜ s/0\.//;

$conf =˜ s/\.//;

$reco .= "$keyword $conf ";

}

elsif ($inline =˜ /Del .*/) {

# $keyword = $1;

# $conf = $2;

# $conf =˜ s/0\.//;

# $conf =˜ s/\.//;

# $reco .= "$keyword($conf) ";

#print "$inline\n";

}

elsif ($inline =˜ /Cor (\S*)\s*(\d\.\d\d\d)/) {

$keyword = $1;

$conf = $2;

$conf =˜ s/0\.//;

$conf =˜ s/\.//;

$reco .= "$keyword $conf ";

}

}

if ($file > 0) {

$reco =˜ s/\s*$//;

$reco =˜ s/\<.+\>//g;

print OUTFILE "$reco,$spoken.\n";

}

close(INFILE);

close(OUTFILE);
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C.2.5 jrip-rules-to-perl-coverter.pl

Converts WEKA JRIP output to a standalone perl classifier.

#!/usr/local/bin/perl5

use strict;

my $inline;

my $firstrule = 1;

my %keywords;

(@ARGV == 3) || die "Generates a standalone perl script from JRIP rules.

\n usage: <list of rules> <output classifier> <output list of keywords>\n";

open(INFILE,"<@ARGV[0]") ||

die "error: could not open @ARGV[0]\n";

open(OUTFILE,">@ARGV[1]") ||

die "error: could not open @ARGV[1]\n";

open(OUTFILE2,">@ARGV[2]") ||

die "error: could not open @ARGV[2]\n";

print OUTFILE "#!/usr/local/bin/perl5\n";

print OUTFILE "#Autogegenereerde file\n";

print OUTFILE "use strict;\n";

print OUTFILE "\n";

print OUTFILE "my \$class;\n";

print OUTFILE "my \$inputstring;\n";

print OUTFILE "my %wordvector;\n";

print OUTFILE "\$inputstring = join(\" \", \@ARGV);\n";

print OUTFILE "print \"\$inputstring\\n\";\n";

print OUTFILE "\n";

print OUTFILE "foreach my \$word (\@ARGV){\n\t\$wordvector{\$word} = 1;\n};\n";

print OUTFILE "\n";

while ($inline = <INFILE>) {

#strip newline

$inline =˜ s/\n//;

if ($inline =˜ /(.*)=> .*=\s*(\S+)\s*\(.*\)/){

my $preconditions = $1;

my $class = $2;

my @pres = split(" and ", $preconditions);

my $newpreconditions;

$preconditions =˜ s/ˆ\s*//;

$preconditions =˜ s/\s*$//;

if ($preconditions){

foreach my $p (@pres) {

$p =˜ /\((\S*).*\)/;

my $word = $1;
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$word =˜ s/\[/\\\[/;

$word =˜ s/\]/\\\]/;

print "$p\n";

$keywords{$word}++;

$p =˜ s/$word/\$wordvector{\"$word\"}/;

if (not $newpreconditions){

$newpreconditions = $p;

}

else{

$newpreconditions = $newpreconditions." and ".$p;

}

}

}

if ($firstrule) {

print OUTFILE "if ($newpreconditions) { \$class = \"$class\" }\n";

$firstrule = 0;

}

elsif(not $preconditions)

{

print OUTFILE "else { \$class = \"$class\" }\n";

$firstrule = 0;

}

else

{

print OUTFILE "elsif ($newpreconditions) { \$class = \"$class\" }\n";

$firstrule = 0;

}

}

else{

die "Unknown format for line\n";

}

}

print OUTFILE "\n";

print OUTFILE "print \"\$class\\n\";\n";

for my $keyword (keys %keywords) {

print OUTFILE2 "$keyword\n";

}

C.2.6 evaluate-classifier-arff.pl

Evaluates a file in WEKA .arff format using a perl classifier.

#!/usr/local/bin/perl5

use strict;

my $inline;

my $perlpath=’c:\perl\bin\perl’;

(@ARGV == 2) || die "Evaluates a classifer.\n usage: <classifier> <arff to evaluate>\n";
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open(INFILE2,"<@ARGV[1]") ||

die "error: could not open @ARGV[1]\n";

my %tp; #geclassificeerd als $key en goed

my %fp; #geclassificeerd als $key maar fout

#my %tn; #de juiste klasse is niet $key en is ook zo geclassificeerd

// tn kan afgeleid worden uit andere waarden

my %fn; #juiste klasse is $key maar fout geclassificeerd

my %distribution; #aantal items van elke categorie in de database

my $tests = 0;

my $reject = 0;

#lees tot de @data tag

while($inline = <INFILE2>){

$inline =˜ s/\n$//;

if ($inline =˜ /\@data/)

{

last;

}

}

while($inline = <INFILE2>){

$inline =˜ s/\n$//;

if ($inline =˜ /\s*\’(.*)\’\s*,\s*\’(.*)\’\s*/){

my $text = $1;

my $class = $2;

print "$text\n";

my @classoutput = ‘$perlpath @ARGV[0] $text‘;

print "@classoutput[1]\n";

my $classified_as = @classoutput[1];

$class =˜ s/ˆ\s*//;

$class =˜ s/\s*$//;

$classified_as =˜ s/ˆ\s*//;

$classified_as =˜ s/\s*$//;

if ($classified_as eq ""){

$reject++;

next;

}

$distribution{$class}++;

if ($classified_as eq $class){

$tp{’_ALL_’}++;

$tp{$class}++;

}

else

{

$fn{’_ALL_’}++;

$fn{$class}++;

$fp{$classified_as}++;



102 APPENDIX C. SOURCE CODE LISTING

}

$tests++;

}

else {

die("File format error");

}

}

printf "Precision \t Recall \t F-Measure \t Category\n";

printf "--------- \t ------ \t --------- \t --------\n";

for my $key (keys %tp){

if ($key eq ’_ALL_’){

next;

}

#my $truepositive = 100*$tp{$key}/($tp{$key}+$fp{$key});

#my $falsepositive = 100*$fp{$key}/($tests-$distribution{$key});

#my $truenegative = 100*$tp{$key}/($tp{$key}+$fp{$key});

#my $falsenegative = 100*$fn{$key}/($tests-$distribution{$key});

my $precision = $tp{$key}/($tp{$key}+$fp{$key});

my $recall = $tp{$key}/($tp{$key}+$fn{$key});

my $fmeasure = 2*$precision*$recall / ($recall+$precision);

printf "%6.2f%% \t %6.2f%% \t %6.2f%% \t $key\n",

$precision*100, $recall*100, $fmeasure*100;

}

my $score = 100*$tp{’_ALL_’}/$tests;

print "Rejected $reject\n";

print "Totaal: $tests, correct = $tp{’_ALL_’}, wrong=$fn{’_ALL_’}, Accuracy = $score%\n";

C.2.7 evaluate-classifier-SP2000-recognized.pl

Evaluates recognition output using a perl classifier.

#!/usr/local/bin/perl5

use strict;

my $inline;

my $perlpath=’c:\perl\bin\perl’;

(@ARGV == 3) || die "Evaluates a classifer.\n usage: <classifier>

<reco file to process> <threshold>\n";

open(INFILE2,"<@ARGV[1]") ||

die "error: could not open @ARGV[1]\n";

my $threshold = @ARGV[2];

my %tp; #geclassificeerd als $key en goed

my %fp; #geclassificeerd als $key maar fout

#my %tn; #de juiste klasse is niet $key en is ook zo geclassificeerd

// tn kan afgeleid worden uit andere waarden
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my %fn; #juiste klasse is $key maar fout geclassificeerd

my $rejected = 0;

my %distribution; #aantal items van elke categorie in de database

my $tests = 0;

$inline = <INFILE2>; #skip eerste regel

while($inline = <INFILE2>){

$inline =˜ s/\n$//;

if ($inline =˜ /(.*);(.*);(.*);(.*);/){

my $reco = $4;

my $class = $3;

my $text;

$text = "";

my @keywords = split(/ /, $reco);

for my $keyword (@keywords)

{

$keyword =˜ /(\S+)\((\d+)\)/;

my $conf = $2;

$keyword = $1;

if ($conf >= $threshold){

$keyword =˜ s/\(\d+\)//g;

$text .= "$keyword ";

}

}

print "$reco\n$text\n";

$text =˜ s/filler//g;

$text =˜ s/#OOV#//g;

$text =˜ s/ˆ\s+//g;

$text =˜ s/\s+$//g;

if ($text eq "") { print "$class, reject(nietsherkend)\n\n";

$rejected++; next;}

$text =˜ s/<.+?>//g;

my @classoutput = ‘$perlpath @ARGV[0] $text‘;

print "$class, @classoutput[1]\n";

my $classified_as = @classoutput[1];

$class =˜ s/ˆ\s*//;

$class =˜ s/\s*$//;

$classified_as =˜ s/ˆ\s*//;

$classified_as =˜ s/\s*$//;

if ($classified_as eq "") { print "$class, reject\n\n"; $rejected++; next;}

$distribution{$class}++;

if ($classified_as eq $class){

$tp{’_ALL_’}++;

$tp{$class}++;

}
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else

{

$fn{’_ALL_’}++;

$fn{$class}++;

$fp{$classified_as}++;

}

$tests++;

}

else {

die("File format error");

}

}

printf "Precision \t Recall \t F-Measure \t Category\n";

printf "--------- \t ------ \t --------- \t --------\n";

for my $key (keys %tp){

if ($key eq ’_ALL_’){

next;

}

#my $truepositive = 100*$tp{$key}/($tp{$key}+$fp{$key});

#my $falsepositive = 100*$fp{$key}/($tests-$distribution{$key});

#my $truenegative = 100*$tp{$key}/($tp{$key}+$fp{$key});

#my $falsenegative = 100*$fn{$key}/($tests-$distribution{$key});

my $precision = $tp{$key}/($tp{$key}+$fp{$key});

my $recall = $tp{$key}/($tp{$key}+$fn{$key});

my $fmeasure = 2*$precision*$recall / ($recall+$precision);

printf "%6.2f%% \t %6.2f%% \t %6.2f%% \t $key\n",

$precision*100, $recall*100, $fmeasure*100;

}

my $score = 100*$tp{’_ALL_’}/$tests;

print "Rejected utterances = $rejected\n";

print "Totaal: $tests, correct = $tp{’_ALL_’}, wrong=$fn{’_ALL_’}, Accuracy = $score%\n";
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Abstract

ASR has many open problems. In this work two well-known
problems are researched. The first topic deals with the ever
growing phenomenon of English words being used in Dutch
colloquial speech. This makes it increasingly expectable that
speech recognizers in the Netherlands should be able to recog-
nize these English words as well as Dutch. Dutch people speak-
ing English introduces a number of problems, including non-
native speech and lack of training data. Thus a multilingual
acoustic modeling approach was attempted using training data
from widely available Dutch and English corpora. The sec-
ond topic deals with the realization of a call classifier which
is trained using machine learning techniques. Machine learn-
ing techniques algorithms in call classification literature such
as BoosTexter generally require a large amount of data before
satisfying results are obtained, thus making them unsuitable
for use in the beginning stages of a project where human ex-
pertise is more suitable. By using the RIPPER rule generating
algorithm hopefully a system can be made which accepts hu-
man knowledge in the early phases of a project, as well as
machine generated rules which can be inspected by the expert
in later stages of a project as more data becomes available.

1 English Foreign Word Recognition

1.1 Introduction

English words are a common phenomenon in Dutch colloquial
speech. Examples of such words are: first and last names,
company names, titles of books, movies, CDs, product names
etc.

Recognition of English words by a Dutch speech recognizer
is not straightforward because English has phonemes which
are untypical for Dutch. In addition there is the difficulty that
many Dutch people do not have a perfect English pronuncia-
tion and have tendencies to borrow the closest Dutch phoneme.

The problem definition for this topic is to find out whether
multilingual recognition techniques can be used to improve
recognition of non-native English spoken by Dutch people. The
focus is specifically on name dialing applications with the goal
of being able to handle foreign names and non-native Dutch
speakers. The main performance meter of the evaluation is the
speech recognizer’s performance on single word recognition.

The goal is not to build such a system completely, but to
find out whether multilingual techniques are a feasible option
for recognition, which is the case if there is an improvement in
the recognition of English words spoken by Dutch people using

multilingual models at little or no cost for the recognition of
normal Dutch utterances.

1.2 Related Work
Various papers have been written on multilingual acoustic
models, and for each purpose the best method to use differs.
As for phoneme mapping, the most common method used are
the phonetic and native approaches, since these are simple and
require no speech data to perform. The phonetic approach
finds similar phonemes by looking at common phonetic fea-
tures. The native approach looks at the phonemes non-natives
are likely to use when trying to pronounce phonemes not in
their native inventory. Data-driven methods to find phoneme
mappings are only possible when sufficient data is available.

For simultaneous recognition of languages the multilin-
gual acoustic model is trained on, it is best that informa-
tion about the language is preserved. [Schultz98a]’s Lang-
tag and [Köhler01]’s IPA-OVL are good examples, but also
in [Cohen97] the language information preserving approach is
slightly better than not preserving the information. However
these techniques are not up to par with the performance of
traditional monolingual recognizers.

For multilingual cross-lingual recognition and bootstrapping
new languages [Schultz98a] shows that simply sharing train-
ing data (Lang-mix) without preserving language information
works best, and this works better than performing cross-lingual
recognition from only one language. [Uebler01] found similar
results regarding cross-language recognition from a mono or
multilingual model. [Kunzmann04] shows that by adding more
and more training data from other languages step by step grad-
ually improved recognition of Spanish, which was not included
in the training.

For non-native recognition the performance is as follows.
[Kunzmann04] shows that adding more and more training data
from other languages step by step gradually improved recog-
nition of both native and non-native speech. [Fischer03] show
that performing pronunciation modeling for phonemes not in
the native set in combination with multilingual acoustic out-
performs adaptation techniques on an English digit recogni-
tion task with speakers from various countries. [Stemmer01]
implemented a movie name recognition service for a German
audience with many of the titles having English names, thus
non-native pronunciations. The mapping of English phonemes
to German with a German recognizer performed the worst, and
they got the most improvement using knowledge-based merg-
ing of phonemes in combination with a multilingual model, fol-
lowed by data-driven merging of phonemes. [Uebler99] found
that it is useful to add speech data of the language which the

1
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speaker is native from to the training in order to recognize
non-native speakers of that origin better.

1.3 Methodology

Throughout this part of this work the SONIC speech recog-
nizer [Pellom01] is used. Recognition of both Dutch and Eng-
lish phonemes is required, so it is reasonable to use Dutch
and English training data. Swiss French data is also added to
the mix, because [Kunzmann04] shows that adding data even
not belonging to the languages to be tested might improve
performance, as it simply provides more training samples and
allophonic variations for the phonemes the languages have in
common. So in fact 3 languages were used for training.

As the corpora came from different sources different tran-
scription guidelines were used. To unify them phoneme sets
were converted to IPA, sometimes simplified to make the gran-
ularity the same, and converted back into a machine read-
able form, X-SAMPA [Wells97b]. Statistics regarding the used
training corpora can be found in Table 1. In this text phonemes
are generally described using X-SAMPA symbols, not IPA
ones, and are surrounded by slashes, for example /p/. This
section gives an overview of all acoustic models trained (Table
2) and describes how they were trained.

Acoustic models were trained initially according to the Lang-
mix acoustic modeling strategy, meaning data is shared for
phonemes with the same IPA symbol.

Since much of the training data did not come from the same
sources, did not have time aligned phonetic transcriptions but
only word-level transcriptions, and a relatively large amount
of data was available for Dutch and relatively little for the
other training languages, an iterative approach to aligning the
training data was chosen, similar to [Walker03].

The iterative procedure ensures that alignments are as con-
sistent as possible across corpora and is as follows:

1. Initialize the multilingual set with a reference corpus C0

and train a recognizer R0. Initialize x = 0.

2. Cnew is the new corpus not yet in the reference corpus.

3. Use recognizer Rx to align the data Cnew. If Cnew

has phonemes which are not in the reference corpus, the
aligner is configured to initialize this phoneme with the
closest phoneme in Cx.

4. Expand the reference corpus Cx with Cnew, creating
Cx+1.

5. Train a new recognizer Rx+1 on the new reference corpus
Cx+1. If phonemes from the existing set and new corpus
have the same phonetic symbol, they will share the same
acoustic model.

6. Increase x by 1.

7. If there are still corpora not in the reference set go to step
2.

8. Else the procedure is finished.

The Dutch training data was chosen as the reference cor-
pus, since the performance of the model trained with this data
would be used for baseline testing.

The Dutch training data is taken from Dutch Polyphone
[denOs95], but is different from the standard training set. The
used training set is a modified one which performs particularly
well on short utterances [Sturm00]. The Dutch lexicon was
transcribed with the PHICOS phoneme set, an extension of
SAMPA [Wells97a] with postvocalic /L/ and /R/. PHICOS
to IPA mappings were taken from [SpeechPearlManual] and
[Wester02].

The English training data consisted of the default TIMIT
[Garofolo93] training set. The audio was filtered with a low-
pass of 3.4 kHz and a high-pass of 0.3 kHz and down-sampled
to 8 kHz to simulate telephone speech as much as possible.
The lexicon provided with TIMIT was converted to IPA using
the table found in [Keating98]; some symbols additionally had
lengthening marks added.

The Swiss French data consists of a subset of the phoneti-
cally rich sentences from Swiss French Polyphone [Chollet96].
No lexicon was readily available for this corpus, so letter to
sound rules were trained using the SONIC text to phone tool.
The BRULEX lexicon [Content90] was used as training ma-
terial for the tool. It was not determined how accurate the
generated transcriptions are, but viewing the transcriptions
empirically did not reveal any errors of significance.

1.4 Tests

Several corpora were used for testing and they are shown in
Table 3. The VoiceConnect97 database is a native Dutch lan-
guage corpus and is used to test the performance on Dutch.
The TIMIT database is an American English database and is
used to test the English phonemes which were trained with
the multilingual acoustic models. The DDAC2000 database
is a database consisting of utterances which are similar to our
problem description, namely Dutch people attempting to speak
English.

The main goal of these tests are to determine whether perfor-
mance increases on this corpus using multilingual techniques
and that any performance decrease on native Dutch is mini-
mal. Additional details about the tests using the corpora are
given in the corresponding sections.

1.4.1 VoiceConnec97 test

This test measures the performance of the various models on
Dutch only. As it is known in literature, the monolingual recog-
nition performance tends to drop compared to the multilingual
model. Since the recognizer must recognize Dutch in addition
to the English words, it is essential to measure the model’s
performance on Dutch.

The results of the performance of the acoustic models are in
Table 4.

The performance degrades when more languages are added
to the mix, thus making the best model for this test AMO NL2
which is only trained on Dutch data, followed by the combina-
tion of English and Dutch (AMO NLEN2).

Although adding more languages degrades performance,
the performance of the best model with English phonemes
(AMO NL2) remains acceptable compared to the baseline, as
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Table 1: Overview of training corpora
Corpus Language Utterances Hours Type
Dutch Polyphone Dutch 42101 48.92 Short utterances
TIMIT American English 3696 3.27 Sentences
Swiss French Polyphone Swiss French 7961 10.60 Sentences

Table 2: Acoustic model overview
Code Trained on Phonemes Alignments Comments
AMO NL2 Dutch 45 2 baseline acoustic model
AMO NLEN2 Dutch, English 66 2
AMO NLEN2q Dutch, English 66 2 language question
AMO NLENFR2 Dutch, English, French 78 2
AMO NLFR2 Dutch, French 78 2 Eng. phonemes not trained

Table 4: Voiceconnect97 results
Model Correct
AMO NL2 93.36%
AMO NLEN2 92.66%
AMO NLEN2q 92.72%
AMO NLENFR2 91.34%
AMO NLFR2 91.02%

the degradation is fairly small. The 3 language combination
(AMO NLENFR2) performs worse but not unacceptable.

Adding French seems to drop performance the most. This is
indicated by the fact that the Dutch-French (AMO NLFR2)
model performs worse than all other models, including the
Dutch- English-French combination. This is strange because
the first has only 2 languages in the mix, and the latter 3.

Adding the language question (AMO NLEN2q) improved
the recognition performance of the combined Dutch English
acoustic model (AMO NLEN2) only marginally. Lang-tag in
literature improves performance of monolingual recognition so
this is also expected.

1.4.2 TIMIT test

The TIMIT test set was used to evaluate the native English
performance of the acoustic model. If every Dutchman hap-
pened to have a perfect (American) English pronunciation, this
test would be suitable, but there are some flaws. Because the
pronunciation of a non-native speaker can be very off or very
good, the results of this experiment are not directly relevant
to foreign English word recognition, but it might provide some
useful information, since the extra English phonemes are heav-
ily tested. Also a comparison is made to the baseline English
recognizer, trained on English data only, to see how much per-
formance drops with Dutch data added. The results for the
different acoustic models are in Table 5.

Table 5: TIMIT test results
Model Correct
AMO EN 91.8%
AMO NLEN2 91.1%
AMO NLEN2q 90.8%
AMO NLENFR2 91.2%

The best model in this test is the model trained on Eng-
lish data only, the monolingually trained AMO EN. This is
expected because as seen before, adding additional languages
decreases performance.

Again the mixed English-Dutch models, but especially
AMO NLEN2, does not perform significantly less than the
English only recognizer. This indicates that the English
phonemes are recognized well.

The Lang-tag strategy appears not to increase performance
of the monolingual English recognition, and performance is in
fact less. This might be explained by the fact that there was
a lot more Dutch training data used compared to the amount
of English data, therefore resulting in a higher bias toward
recognition of Dutch phonemes.

Adding French to the multilingual model did not seem to
have a conclusive effect, compared to the best English Dutch
model.

1.4.3 DDAC2000 test

This test set is the most important one, since it most closely
resembles the goals of the experiment: to see if recognition of
English foreign words improves with a multilingual model.

A subset of the DDAC2000 [Sturm00] corpus was used for
this test. The test set consisted of 1018 audio files, and a vo-
cabulary of 272 items of which a complete utterance is regarded
as an item.

The items in this lexicon were often a combination of Dutch
and English words, but always at least one English word, there-
fore the phonetic transcriptions were allowed to have a mix of
both Dutch and English phonemes, with English phonemes
used whenever a word was English. The initial lexicon was
generated using letter to sound rules trained on the American
English TIMIT lexicon. This obviously produced a lot of junk
when generating transcriptions for Dutch words, so all entries
were double checked and fixed manually.

After applying fixes, the resulting lexicon is called LEX EN.
This lexicon represents the phoneme expansion approach.
The LEX EN lexicon was then converted to one with Dutch
phonemes only using the mapping in Table 6, resulting in
LEX NL and represents the phoneme mapping approach.
The mapping table was constructed such that each English
phoneme not present in the Dutch set should have a repre-
sentation using the Dutch set which matches as close as pos-
sible. One way to come up with such a mapping, and which
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Table 3: Overview of testing corpora
Corpus Language Utterances Type
VoiceConnect97 Dutch 5300 Short utterances
TIMIT American English 2604 Sentences
DDAC2000 Dutch mixed with English words 1018 Short utterances

was applied here was by asking the following question: What
combination of Dutch phonemes is necessary to produce an ac-
ceptable pronunciation for an English word using Dutch text
to speech?

Table 6: English to Dutch Phoneme mapping table
Eng. Dut. Eng. Dut. Eng. Dut. Eng. Dut.
1 I 3` Y r @` @ r\ A: A
D d OI O j T t U u
V O aI A j aU Au dZ d Z
eI e: i: i l= @ l m= @ m
n= @ n oU o: tS t S u: u
{ E

More preliminary tests on AMO NLEN showed that
LEX NL outperformed LEX EN. This means that the recog-
nition of Dutch phonemes only (LEX NL) works better than
a Dutch phoneme set expanded with English ones (LEX NL).
However, an error analysis showed that different errors were
made in both cases. This suggests that people often use
a Dutch-like pronunciation which is recognized well by the
LEX NL lexicon, and some an English-like pronunciation
which is recognized well by LEX EN. To get the best of both
worlds, the two lexicons were merged together resulting in
LEX NLEN, which indeed resulted in another performance im-
provement. This was repeated for all acoustic models which
also show this behavior.

The complete results are shown in Table 7.

Table 7: DDAC2000 results ordered by acoustic model
Acoustic model Lexicon Correct
AMO NL2 LEX NL 91.45%
AMO NLEN2 LEX EN 90.96%
AMO NLEN2 LEX NL 92.24%
AMO NLEN2 LEX NLEN 93.81%
AMO NLEN2q LEX EN 84.87%
AMO NLEN2q LEX NL 92.24%
AMO NLEN2q LEX NLEN 93.71%
AMO NLENFR2 LEX EN 87.52%
AMO NLENFR2 LEX NL 92.17%
AMO NLENFR2 LEX NLEN 93.03%
AMO NLFR2 LEX NL 89.88%

As noted earlier, because LEX NL outperforms LEX EN on
all acoustic models it is reasonable to assume that Dutch peo-
ple mainly use a “Dutch” way of pronouncing English rather
than a more English like way. It also so means that the train-
ing of English phonemes is of relatively less importance than
the training of Dutch phonemes.

However some utterances recognized well using LEX NL are
recognized poorly when using LEX EN and vice versa, mean-

ing that extra pronunciation variants with English phonemes
might increase recognition rate.

When comparing the performance of LEX NL on dif-
ferent acoustic models AMO NLEN2, AMO NLEN2q and
AMO NLENFR2 outperform AMO NL2, suggesting that
training Dutch phonemes with native English data is bene-
ficiary when recognizing English spoken by Dutch, since only
Dutch phonemes were used for recognition. This might be ex-
plained by the fact that although some IPA symbols are the
same in English and Dutch, the exact realizations and allo-
phones within a language are still different. Training with Eng-
lish data causes the phoneme to be “broadened” with these al-
lophones and also causes increases in the number of triphones.

Adding French to the training set however decreases perfor-
mance. This can be seen by comparing the performance of
the AMO NLENFR to the other acoustic models. This can be
explained by the fact that Dutch phonemes are important for
recognition for in test, and that this acoustic model is not so
good at it (see VoiceConnect97 test results).

The Lang-tag strategy with language question has mini-
mal impact and sometimes decreases recognition performance.
This can be explained by the fact that the Lang-tag question
is generally used for recognizing a single language the mul-
tilingual model is trained on, but in this case it is a mix of
phonemes from different languages which need to be recog-
nized. The Lang-mix strategy is better.

Finally, the best performing combination, LEX NLEN on
AMO NLEN performs 2.54% better than the baseline perfor-
mance of LEX NL on AMO NL. There are 2 explanations for
this increase:

• The acoustic model: Even if using only Dutch phonemes
for recognition (LEX NL), the performance is better with
AMO NLEN2, which is trained additionally on English
data than, with AMO NL2.

• Pronunciation variants made possible by extra phonemes:
When using a lexicon with additional entries using Eng-
lish phonemes (LEX NLEN) the recognition rate im-
proves over using a lexicon with only Dutch phonemes
(LEX NL)

1.5 Conclusion
The VoiceConnect97 tests showed that the multilingual model
could be used to recognize Dutch, at the cost of a small perfor-
mance degradation, but it could not be described as major, as
it is only 0.60% when comparing AMO NLEN2 to AMO NL2.

When testing on TIMIT the recognition of native English de-
creased when compared to an English data only trained model,
but this test proved that English phonemes could be recognized
well by the multilingual model.

Compared to the mapping approach using a pure Dutch
acoustic model and a Dutch phoneme only lexicon, perfor-
mance for English foreign word recognition improved by 0.79%
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by simply using a multilingual model in stead of the monolin-
gual model. The increase can mount up to 2.54% when also
using a more extensive lexicon, made possible by the extra
phonemes of the multilingual set.

So in summary from these tests we can derive that a lot
of English spoken by Dutch can be recognized using Dutch
phonemes and a Dutch recognizer only by using the mapping
approach. However some typical English phonemes are still dif-
ficult to recognize and are better recognized by using phoneme
models trained on English data. An overall benefit is therefore
only possible when a sizable amount of utterances consists of
English words, and therefore it is still viable to use a Dutch
only recognizer to recognize English foreign words, instead of
a multilingual model, since the performance increase is not
very much. The analysis of the differences in recognition re-
sults when using Dutch and English phonemes to recognize the
same words prove that using English data in the training of the
recognizer is indeed useful for some specific English phonemes
in the test case.

2 Call classification

2.1 Introduction
The idea of a call classifier is an automated system which can
understand callers in their own natural language, and based on
the first sentence spoken can redirect the call the person who
can help him best.

The problem definition for this topic is to find out how to
make a good call router using machine learning techniques
which also performs well in the initial phase of the system’s
life. Obviously performance will increase as more data be-
comes available, but it is the initial performance which is of
most interest.

A system must be built that:

1. Is be able to recognize long free speech utterances:
For this the SpeechPearl 2000 speech recognizer is used
which is able to recognize sentences.

2. Works using Machine Learning Techniques:
A machine learning algorithm called RIPPER, which is
known for it’s human understandable rules will be tested.

3. Performs comparably with known techniques:
The BoosTexter algorithm which is based on AdaBoost
is used by AT&T in their call classification systems. The
performance of RIPPER and BoosTexter will be com-
pared.

4. Is easy to understand, and modifiable by an expert:
This is required for the maintainability of the system.
Also because in the beginning stages with little data avail-
able it is likely that rules generated by an expert will
perform better than automatically generated rules.

5. Is able to deal with uncertainty:
Most speech recognizers generate the result with a cer-
tain confidence for each recognized word. When the confi-
dence is low there are probably some misrecognized parts
which should be ignored or at least given lesser weight in
the decision. It is desirable that the classifiers generated

by the machine learners make use of this extra informa-
tion.

Various experiments were done with the before mentioned
machine learning algorithms, as well as several methods of
training them.

2.2 Related Work

In a call classification context, a machine learner must find a
function which maps the spoken utterance to an appropriate
class so that a call-center agent specialized in the class can take
care of the caller’s needs. The classifier does not deal with the
audio data directly, but uses the output of speech recognizer.
In literature there are several machine learning algorithms used
for call classification. Here are just some:

• Vector based call routing ([ChuCarroll99, Carpenter98]):
Words are converted to more basic forms using morpho-
logical analysis and stopwords are filtered out. For clas-
sifying, a sentence is transformed into a vector similarly
and a distance measure is calculated. The result is a
score (confidence) of each destination, which can be com-
pared to a threshold for making a decision, or which can
be sent to the disambiguation module if more categories
have high scores.

• AT&T’s “How may I help you”, “Help Desk” and BoosT-
exter. The BoosTexter algorithm developed by Schapire
and Singer ([Schapire00]) is based on AdaBoost and
originally written to classify text, but has been tested
successfully for classifying speech as well ([Schapire00,
DiFabbrizio02, Rochery02]). Boosting makes a strong
classifier out of several weak ones by “boosting” it with
weights. The weak classifiers are decision stubs asking
whether a word is present or not. The boosting training
algorithm recalculates the weights by focusing on the ex-
amples which are hardest to classify, giving certain ques-
tions an extra “boost”. In the end the class with the
largest total of weights “wins”.

In this work classification will be attempted with BoosTex-
ter, as well as with RIPPER. RIPPER (Repeated Incremental
Pruning to Produce Error Reduction) was developed by W.
Cohen [Cohen95] and is a rule learning algorithm. The re-
sulting classifier is a series of if-then-else rules and is easy to
understand by humans. RIPPER is a modification of IREP
(Incremental Reduced Error Pruning) which uses a growing
and pruning process to generate rules. A rule learning system
is attractive because the resulting classification algorithm is a
series of if-then-else rules which test for the presence or absence
of a word and are easy to understand and modify by humans.
JRIP is WEKA’s [Witten05] implementation of the RIPPER
algorithm.

2.3 Methodology

A dummy system built with the Philips Speechpearl 2000 pack-
age was used to make recordings. In the first two days of data
collection 558 calls were made over all categories and tran-
scribed. The next few days an additional 916 calls were made
and transcribed, also over all categories. These two sets are
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the train and test sets respectively. The distribution of calls in
the test and train set are not representative of the real-world
situation, but are meant to provide each category with at least
some training data.

A lexicon and language model were extracted from the train-
ing set, and all the data was passed through the speech recog-
nizer. Some time was spent trying to get optimal performance
from the speech recognizer, but the effort did not lead to results
which would be considered “human readable”. On the training
set the speech recognizer had a word-error-rate of 25.60% and
a sentence-error-rate of 64.34%. On the test set these values
were 51.49% and 81.55% respectively. For speech recognition
these scores are considered bad, but for classification it may
not matter, as long as certain key words are recognized.

The recognition results are passed to the classification al-
gorithm as-is. No stop word filtering or stemming is applied,
partly because the machine learning algorithm should be able
to decide itself what to consider important, and partly because
an earlier research with a Dutch stemmer did not seem to pro-
duce better classification results [Gaustad02]. Furthermore the
training and test sets are relatively small so the vector lengths
are still acceptably small.

2.4 Tests (1)

Two algorithms were tested. These were JRIP, based on RIP-
PER and known for generating human-readable rules, and
BoosTexter which is based on the Adaboost algorithm but
adapted for text. BoosTexter was already used in literature
for similar tasks of classifying calls. JRIP is particularly at-
tractive because the output is very easy to understand, and in
the future could serve as a basis for a human expert to continue
with. The algorithms were tested by training on transcriptions,
training on recognition output and training on scored recogni-
tion output.

The algorithms were tested by training on transcriptions,
training on recognition output and training on scored recog-
nition output. A summary of the results is shown in Table
8. For both algorithms, training on recognition output yielded
the best results, with JRIP getting the highest score of 42.27%
and BoosTexter 36.03%, followed by training on transcriptions.
Training on scored output (with recognizer confidences) gave
scores significantly lower. Overally the scores are much higher
than the majority baseline of 12.12% and a bit lower than the
maximum scores of 44.65% (JRIP) and 42.47% (Boostexter)
which can be achieved with “perfect” recognition (using hu-
man made transcriptions).

Table 8: Accuracy of classifiers when tested on speech recog-
nition output

Trained on JRIP BoosTexter
Transcriptions 41.26 35.37
Recognized output 42.47 36.03
Scored output 37.77 29.15

In general the impression is that JRIP can generalize better
than BoosTexter, is more robust to noise, and has the better
scores on the tests set. BoosTexter performed a lot better than
JRIP when testing on the training set again, which is perhaps
a sign of overfitting. Training on scored (with recognizer con-

fidences) texts disappointedly gave scores significantly lower
than when training on just the output without scores. This
is probably attributed to the fact that the algorithm not only
needs to learn the keywords but also needs to find suitable
thresholds, meaning that more training data is needed.

2.5 Improvements

So far the results are far from good, and in practice this would
mean that many calls would be directed to the wrong agent.
All calls are classified regardless if the classification is of low
confidence or not. It would be more meaningful to classify
only on the calls which have a fairly high accuracy, and reject
the others. The people whose calls are rejected can try again,
possibly after being asked by the system to reformulate their
request in another way. Also performance might improve when
the number of classes is reduced.

Analyzing the rules in the classifier, the default JRIP output
is a classifier which consists of a series of if-then-else rules with
majority class taken as the default rule. This means that any
utterance which does not match any of the rules will automat-
ically be classified as the majority class, in this case “saldo”.
But logically if it were an unclear sentence it should have been
rejected.

Some rules are very logical, for example “(inboedel >= 1)
=> categorie=inboedelverzekering” seems pretty straightfor-
ward, but some seem to make no sense at all, for example
“(mij >= 1) => categorie=rechtsbijstand”. The latter indi-
cates overtraining or lack of enough data to make good general
rules.

Some modifications to the JRIP classifier were made in order
to add rejection capabilities. To implement a rejection facil-
ity a classifier is trained for the majority class only, namely
“saldo”. The training data is relabeled so that all except the
majority class belong to one class, in essence creating a binary
classification problem. The default rule for “saldo” is then re-
placed by the rules of this second classifier. The end result is
that the classifier will now reject any utterance which does not
trigger any of the rules, instead of assuming a “saldo” when
there is no match.

Next modifications were needed with regard to how to deal
with recognizer confidences. Using them to in the training
stage did not have the desired effect, but there might be other
ways. First an approach was tried where recognition results
were filtered before being passed to the classifier based on a
threshold. This way only words with sufficient confidence are
passed to the classifier.

As the classification task is fairly complex and the perfor-
mance reached up till now has not been spectacular, the prob-
lem was simplified. Classes with similar subjects were grouped
together reducing the amount of classes by a factor of 3. For
example the many classes for insurance were merged into one
class etc. So the number of classes decreases and generally the
amount of training data per class increases.

2.6 Tests (2)

The improvements mentioned in the foregoing section are
tested now. First the JRIP with rejection facility and con-
figurable threshold is tested, and after that the same problem
with reduced classes.
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2.6.1 Improved JRIP rules with rejection facility

Since words are now filtered before they are passed to the clas-
sifier, and the default output from JRIP was changed so that
it doesn’t classify what it does not recognize as the majority
class, the classifier must be tested again.

Two JRIP models were trained. One using the same method
as in the first series of tests. The other was trained by first re-
naming the data so that it becomes a binary classification prob-
lem by renaming all tags which are not “saldo” to “not saldo”.
The resulting rules from both classifiers were merged into one
classifier.

Tables 9 show the corresponding results after the modifica-
tions for various values of the threshold. The relative accuracy
is the ratio of correctly classified calls from those which were
not rejected, and absolute accuracy is the ratio of correctly
classified calls from all calls, rejected and non-rejected.

Table 9: JRIP trained on training-set recognizer output with
rejection

Threshold Rel. Acc.% Rej.% Abs. Acc.%
0.000 52.93 23.69 40.39
0.100 53.31 24.24 40.39
0.200 54.86 25.98 40.61
0.300 56.21 27.95 40.50
0.400 57.75 30.24 40.29
0.500 58.51 32.64 39.41
0.600 60.45 36.24 38.54
0.700 62.13 40.61 36.90
0.800 63.94 45.20 35.04
0.900 65.96 48.69 33.84
1.000 69.45 54.26 31.77

Again the classifier trained on recognized output does
slightly better than the one trained on transcriptions at com-
parable rejection levels. The rejection facility works, and it
adds another parameter for configuring the classifier. Higher
classification accuracy can be gained by setting the recognition
threshold higher at the cost of more rejected calls.

Comparing the most similar tests in the previous test series
which showed the best achievable accuracy result was around
42% (with no rejection allowed), the results are now ranging
from 53% to 69% (relative) when the classifier is allowed to re-
ject calls for varying values of the threshold. This improvement
has a downside and will be explained further.

When counting rejections as misclassified, and thus comput-
ing the absolute accuracy, the scores in this test are ranging
from 30% (highest threshold) to 40% (lowest threshold). The
setting with the lowest threshold is the most comparable to
the previous test series, and with 40% versus 42% in the pre-
vious test series this is a small decrease. The decrease can
be explained by the fact there is now an additional classifier
which distinguishes between “saldo” and “not saldo” and the
classifier can fail to recognize some calls as “saldo”, whereas
in the previous test series calls were given the label “saldo” by
default if they did not match any other rule. However most of
the calls which are now rejected would be false positives and
wrongly classified as “saldo” in the previous test series.

Generally, for the sake of improving the dialog success rate,
it is better to have a higher accuracy ratio when the classifier
makes a classification, instead of having a lot of false positives

where the caller is directed to the wrong agent, as would be
the case in the previous test series. In the case of a rejection
the caller can be asked to restate his request differently, and if
it fails again the caller can ultimately be directed to a human
agent. So overall the modifications are successful and a definite
improvement, even if the absolute number of correctly classified
calls is a bit lower.

2.6.2 Reduced classes

Because of overtraining and lack of enough data for each class,
the data was relabeled to have fewer, but broader classes, and
with more data for each broad class. This test serves to see
how the performance of the classifier changes when it has to
deal with the simplified problem.

The classifier was constructed much the same way as the
other with rejection facility and consisting of rules from 2 clas-
sifiers.

The corresponding results are shown here in Table 10 for
varying values of the threshold. The relative accuracy is the
ratio of correctly classified calls from those which were not re-
jected, and absolute accuracy is the ratio of correctly classified
calls from all calls, rejected and non-rejected.

Table 10: JRIP trained on reduced classes training-set recog-
nizer output with rejection

Threshold Rel. Acc. % Rej.% Abs. Acc.%
0.000 72.17 26.53 53.02
0.100 72.86 27.07 53.14
0.200 75.23 28.93 53.47
0.300 76.90 30.90 53.14
0.400 79.01 33.30 52.70
0.500 79.18 35.92 50.74
0.600 80.69 39.41 48.89
0.700 81.34 43.12 46.27
0.800 82.87 48.25 42.89
0.900 84.39 51.64 40.81
1.000 86.18 57.21 36.88

As this is now a simplified problem with less confusion be-
tween categories and more training data for each category, the
accuracy is improved from 72% to 86% for varying values of
the threshold. As expected, at comparable rejection levels in
Table 9, both the relative and absolute accuracy scores gotten
in this test are higher.

2.7 Conclusion

Overall the machine learning classifiers do not perform at an
acceptable operational level yet, therefore these must be im-
proved first. The apparent lack of data is a serious hindering
factor in the training procedure. Using JRIP does not seem in-
ferior to BoosTexter at this stage, but the performance of both
leaves much to be desired. Unfortunately it is only possible to
know once more data becomes available.

Yet, still some ways to improve performance can be thought
of. Adding rejection and reducing the number of classes im-
proved the performance, but the future several other improve-
ments can also be done. With JRIP there is the possibility
of easily modifying the auto-generated rules with some human
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knowledge, especially in the beginning stages of a project, since
it works pretty much like an expert system. Even though over-
all performance is still low, one can make use of the fact clas-
sification performance is not the same for all classes. By only
allowing high scoring classes to be classified, thus further re-
ducing the number of classes, the overall performance can go
up even further, again at the cost of higher rejection.
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