

Master Thesis report

AIBO as an Intelligent
Robot Watchdog

Bou Tsing Hau
Delft, December 2006

Man-Machine Interaction Group
Faculty of Electrical Engineering, Mathematics and
Computer Science
Delft University of Technology, the Netherlands

Unknown human…
INTRUDER
DETECTED!!

 ALARM…!

Human...

Graduation committee:
Dr. drs. L.J.M. Rothkrantz
Ir. H.J.A.M. Geers
Dr. ir. C.A.P.G. van der Mast

Faculty of Electrical Engineering, Mathematics and Computer Science
Section Man-Machine Interaction
Delft University of Technology
Mekelweg 4
2628 CD, Delft

AIBO as an Intelligent Robot Watchdog
Bou Tsing Hau
Student number: 1015184
E-Mail: boutsing@gmail.com

Title: AIBO as an Intelligent Robot Watchdog
Author: Bou Tsing Hau, 1015184
Discipline: Media & Knowledge Engineering
Delft, December 2006
Graduation committee:
Dr. drs. L.J.M. Rothkrantz
Ir. H.J.A.M. Geers
Dr. ir. C.A.P.G. van der Mast

Abstract

The annual crime reports from the countries in the world have presented us continuous increasing
crime affairs. Crime experts are arguing that the increasing of the number of crime affairs is due to
the improved registration method. But we are all convinced that an extra security unit can make an
environment safer. At least occurred crimes will be registered and extra surveillance in that
environment can reduce this problem.
By the rapid advancement of the technology it is nowadays possible to secure the home
environment. Static cameras are installed at many places, mounted at the ceiling, to safeguard its
environment. The automated panning cameras which are able to turn itself around its axes can
monitor a larger area around itself. Since the growing interest of research on image processing,
cameras are now also able to recognize moving objects and follow them. The object recognition
possibilities of cameras are advancing in a rapid pace, but the problem with static cameras is its
limited range. Occluded objects can not be detected by the static cameras. A camera which is able
to move around the environment can observe better and more in detail than a static one.
The Sony AIBO robot dog which is able to move itself around freely is a very popular research
robot around the world. This Sony AIBO robot has a built-in camera and other modalities which
make this robot dog a good approach to free the limitations of the static cameras. This project,
AIBO watchdog, has developed a Sony AIBO robot dog to safeguard the home environment. By its
camera and microphone evidences can be saved and by using its wireless connection the evidences
can be transferred to the right person or instances immediately.
The concept of an AIBO watchdog is not new. The author has developed the AIBO watchdog from
the point that the predecessor, Silvia Oana Tanase [40], has left behind. This predecessor only
shows the global working of the AIBO watchdog. It lacks of a good fundament which we can use to
build the complete one. Therefore it was required to develop a new architecture which has an
expansion option to add or replace certain functionalities. The developed AIBO watchdog is
intelligent enough to see related events during its patrolling and navigate in the home environment.
Furthermore AIBO is able to protect itself from damages during patrolling and carry out appropriate
reactions in most situations. To increase its intelligence we have given the AIBO watchdog abilities
to prioritize events and use the tools that it has encountered before. The intelligence has been
encapsulated in the reasoning system of the AIBO watchdog.

Acknowledgements

First of all, I would like to thank my thesis supervisor, Leon Rothkrantz, for all the inspirations that
he gave during my thesis project. His knowledge and ideas have given me a lot of illuminations on
my work and many of these became part of my thesis project.

Secondly, I would like to thank my advisors, Siska Fitrianie and Zhenke Yang, for providing me the
patient guidance and academic support. Their knowledge and instructions help me to conquer a lot
of challenges in the process of my research.

Furthermore, I would like to thank the other PhD. and MSc. students and other people from the
university who helped me during the project and gave me useful advices during my thesis project.
These are (in a random order): Manou Plattje, Iulia Tatomir, Dragos Datcu, Dimitri Vukadihovic,
Gertjan Feijten, Tom Benjamin, Jose Maria Blanco Calvo.

Last, but certainly not least, I would like to thank my parents, my brother, my sister and especially
my girlfriend Xueli for supporting me day and night and even in the most difficult times.

I

TABLE OF CONTENTS

1 INTRODUCTION... 1
1.1. SECURITY IN HOME ENVIRONMENT ...2
1.2. POSSIBLE SECURITY UNITS IN HOME ENVIRONMENT ..2
1.3. MULTIMODAL SYSTEMS ..3
1.4. THESIS MOTIVATION AND CHALLENGES..4
1.5. RESEARCH TOPIC...4
1.6. APPROACH...6
1.7. OUTLINE OF THESIS ...6

2 ARTIFICIAL INTELLIGENT SYSTEM .. 7
2.1. INTRODUCTION TO ARTIFICIAL INTELLIGENCE ..7
2.2. AGENT’S ENVIRONMENT ...8
2.3. AGENT ARCHITECTURES..9

2.3.1. Reactive Agent Architecture...10
2.3.2. Deliberative Agent Architectures ...12
2.3.3. Hybrid Agent Architectures..13

2.4. KNOWLEDGE REPRESENTATION ..15
2.4.1. Production Rules...15
2.4.2. Decision Trees ..17
2.4.3. Frames ..18
2.4.4. Semantic Nets ...19
2.4.5. Conclusion ..20

2.5. MEANING OF KNOWLEDGE ..21
2.6. REASONING OF ARTIFICIAL AGENTS..23

2.6.1. Expert System...23
2.6.2. Case Based Reasoning..27
2.6.3. Bayesian Network...28
2.6.4. Neural Networks...29
2.6.5. Conclusion ..30

2.7. MEMORY OF REASONING SYSTEMS ...31
2.8. AIBO WORLD ENVIRONMENT...32

2.8.1. World Model...32
2.8.2. Interpretation of World Environment ...33
2.8.3. Concept for World Environment Interpretation ...34

3 RELATED RESEARCH.. 35
3.1. RELATED WORK ..35

3.1.1. AIBO Soccer Robot Competition...35
3.1.2. Fusing Speech and Face Recognition on the AIBO ERS-7..........................35
3.1.3. Autonomous AIBO Watchman ..37
3.1.4. AIBO Watchdog and AIBO Companion Dog Project..................................37

3.2. LITERATURE RESEARCH ..39
3.2.1. Multimodalities...39
3.2.2. Path Planning and World Modeling ...41

 II

3.2.3. Internal Components .. 44

4 AIBO ...49
4.1. AIBO HARDWARE... 51
4.2. AIBO SOFTWARE.. 52

4.2.1. Apertos ... 52
4.2.2. Open-R system Layer ... 53
4.2.3. Open-R Application Layer’s Software Development Environments........... 53

4.3. WORKING OF THE AIBO WATCHDOG.. 55
4.3.1. AIBO Perception .. 55
4.3.2. AIBO Brain .. 55
4.3.3. AIBO Actuators.. 56

4.4. FUNCTIONALITIES.. 56
4.4.1. Basic Physical Operations .. 56
4.4.2. Basic Technical Operations.. 57
4.4.3. Advanced Operations ... 58
4.4.4. High Level Operations ... 59

5 MODEL DESIGN..61
5.1. REQUIREMENTS ANALYSIS .. 61

5.1.1. Functional Requirements.. 61
5.1.2. Nonfunctional Requirements.. 64
5.1.3. Pseudo Requirements ... 64
5.1.4. Scope of This Project ... 65

5.2. INTERACTION PROCESS WITH ENVIRONMENT.. 66
5.2.1. Environment ... 67
5.2.2. Perception by Sensors... 67
5.2.3. Interpretation .. 68
5.2.4. Reasoning Process .. 69
5.2.5. Execution Process... 70

5.3. ARCHITECTURE REASONING.. 70
5.3.1. Reasoning Preprocessing.. 71
5.3.2. Reasoning ... 72
5.3.3. Execution.. 80

5.4. HOME ENVIRONMENT.. 81
5.4.1. Ideal Home Environment ... 81
5.4.2. AIBO Navigation ... 82

6 SOFTWARE DESIGN ..85
6.1. USE-CASE DIAGRAM ... 86
6.2. SUBSYSTEM DECOMPOSITION DIAGRAM ... 87
6.3. CLASS DIAGRAM ... 89

6.3.1. Class Diagram of Environment .. 89
6.3.2. Features World ... 89
6.3.3. Interpreted World ... 90
6.3.4. Scenario Reasoning System ... 90
6.3.5. Action Reasoning System .. 91

III

6.3.6. Actions Execution...92
6.3.7. Total Class Diagram ...93

6.4. SEQUENCE DIAGRAM...93
6.5. FLOWCHART ..96

7 IMPLEMENTATION .. 97
7.1. USED SOFTWARE & TOOLS..97
7.2. IMPLEMENTED ARCHITECTURE..99

7.2.1. Overview of the Implemented Architecture ...99
7.2.2. Overview of the System..100

7.3. MANUAL..109
7.3.1. Using the Program ..109
7.3.2. Modifying the Settings ...112

8 EXPERIMENTS & RESULTS.. 117
8.1. TEST METHODOLOGY ..117

8.1.1. Scenario 1: Intrusion with Broken Glasses...118
8.1.2. Scenario 2: Escape Caused by Fire...120
8.1.3. Scenario 3: Behavior Triggered by Ringing Doorbell................................121
8.1.4. Scenario 4: Intruder who has lighted up the Fire..123

8.2. TEST CONCLUSION ..124

9 CONCLUSION AND RECOMMENDATIONS.. 127
9.1. CONCLUSION ...127

9.1.1. Design an Architecture ...128
9.1.2. Design a Reasoning System ...128
9.1.3. Design World Model and Corresponding Navigation Algorithm128
9.1.4. Implement a Prototype..129
9.1.5. Test Prototype...129

9.2. RECOMMENDATIONS..130
9.2.1. Recommendations for not Implemented Components130
9.2.2. Recommendations for Future work ..130

APPENDIX A.. 133

APPENDIX B .. 135

APPENDIX C.. 137

REFERENCE.. 139

 IV

V

Table of Figures

Figure 1.1: The two blue components of the AIBO watchdog show the focus of this AIBO
watchdog project. .. 5
Figure 2.1. Agent’s interaction process with environments through sensors and actuators................ 7
Figure 2.2: The subsumption architecture which consists of 8 layers represents an example of the
reactive agent architecture... 12
Figure 2.3: A representation of PRS architecture with its internal components. 13
Figure 2.4: Representation of the architecture of TouringMachines, which is an example of the
hybrid architecture. ... 14
Figure 2.5: Explanation of conjunctive and distinctive rules. ... 16
Figure 2.6: Simple decision tree which can determine the object by answering the questions at the
roots... 17
Figure 2.7: An example content from a frame-based knowledge base. .. 18
Figure 2.8: Semantic nets representation of the sentence: The AIBO watchdog kicks the red ball.. 19
Figure 2.9: Wisdom pyramid. ... 22
Figure 2.10: Relationships between the process stages of acquiring wisdom................................... 23
Figure 2.11: The architecture of a expert system. ... 25
Figure 2.12: An example architecture of a CBR system. .. 28
Figure 2.13: Architecture of CBR system showing the 2 major components. 28
Figure 2.14: A typical Bayesian network, showing both the topology and the conditional probability
tables (CPTs)... 29
Figure 2-15: A simple neural network with two inputs, one hidden layer of two units and one output.
... 30
Figure 2.16: A global representation of the real world environment. ... 32
Figure 2.17: Working of object recognition with sound and vision.. 33
Figure 2.18: Interpretation process of the world environment. ... 34
Figure 3.1: Recognition model.. 36
Figure 3.2: Model of the digging machine and watchmen.. 37
Figure 3.3: Emotion reasoning model. .. 38
Figure 3.4: Architecture of attention steered vision. ... 40
Figure 3.5: Left image: image from the camera, moving yellow car. ... 41
Figure 3.6: Sample frame with flow field of the fully occluded moving sound source. 41
Figure 3.7: Map of a house represented with a graph. .. 42
Figure 3.8: Right image shows the occupancy grid and planned path of the left original image. 43
Figure 3.9: Global software architecture of obstacles avoidance and path planning. 44
Figure 3.10: Architecture of the RL-LSTM network. ... 45
Figure 3.11: Mars rover architecture... 45
Figure 3.12: States of the Finite State Machine of the search and kick behavior. 46
Figure 4.1. AIBO sensors and actuators – front view. .. 51
Figure 4.2 AIBO sensors and actuators – rear view.. 51
Figure 4.3: Hardware/software architecture of AIBO... 52
Figure 4.4: Open-R System layer overview. ... 53
Figure 4.5: A simple representation of the working of AIBO watchdog. ... 55
Figure 5.1: The global interaction process of AIBO and its environment. 66
Figure 5.2: Example of the content of the environment which will be used in the simulation process.
... 67
Figure 5.3: The pre-processing diagram of the sensor’s input and output data. 68
Figure 5.4: Example output of perception process transferring to the interpretation process........... 68
Figure 5.5: Example of the interpretation process. ... 69

 VI

Figure 5.6: Example of rules in reasoning engine... 69
Figure 5.7: The designed architecture of the reasoning component of AIBO watchdog. 70
Figure 5.8: Example structure and contents of the extracted features database. 72
Figure 5.9: Communication sequences of the manager component.. 73
Figure 5.10: The content and structure of the passive memory component...................................... 73
Figure 5.11: The adding process of a new useful object. .. 75
Figure 5.12: Result of a card tray system in a scenario knowledge base system with a threshold of
50... 75
Figure 5.13: Result of the chance assigning process to the scenario objects. 76
Figure 5.14: Example content of a scenario priority list component... 77
Figure 5.15: Example content of the scenario selector component... 77
Figure 5.16: The content and structure of the short term memory and long term memory
components. .. 78
Figure 5.17: A situation that the used LIFO approach for executing the next scenario will not work
very well.. 79
Figure 5.18: Example content of the XML file of the world model.. 79
Figure 5.19: Example of a rule in the action knowledge base system based on an expert system.... 80
Figure 5.20: Example of the content in an action stack component.. 80
Figure 5.21: Example content of the Actions Attributes XML file... 81
Figure 5.22: An example representation of the ideal home environment where the AIBO watchdog
has to take care of.. 82
Figure 5.23: A picture representation of the test environment for the AIBO watchdog project. 83
Figure 6.1: Use-case diagram of AIBO watchdog. ... 86
Figure 6.2: Subsystems of the AIBO watchdog. ... 87
Figure 6.3: Class diagram environment. ... 89
Figure 6.4: Relationship between environment and features world in class diagram. 90
Figure 6.5: Relationship of interpreted world and features world in class diagram.......................... 90
Figure 6.6: Class diagrams of the scenario reasoning system. .. 91
Figure 6.7: Class diagrams of the action reasoning system... 92
Figure 6.8: The class diagrams of the execution of actions. ... 92
Figure 6.9: Total class diagram, design of AIBO watchdog. .. 94
Figure 6.10: A part of the sequence diagram of the reasoning classes.. 95
Figure 6.11: The sequence diagram of the Action reasoning system and the actions execution. 95
Figure 6.12. Simplified flowchart of the reasoning process.. 96
Figure 7.1: Advantage illustration of XML editing with Microsoft Visual Studio. 99
Figure 7.2: Implemented components of the architecture. .. 100
Figure 7.3: Overview of the packages in the implemented framework... 100
Figure 7.4: Interface of the Main GUI. ... 101
Figure 7.5: Interface of the Legend GUI. .. 102
Figure 7.6: Interface of the Object GUI. ... 102
Figure 7.7: Illustration when AIBO will perceive the image features of an object......................... 103
Figure 7.8: Situation when AIBO perceives the sound features of an object.................................. 103
Figure 7.9: Example rule in the image object matching expert system... 104
Figure 7.10: Example rule in the sound object matching expert system... 104
Figure 7.11: Global classdiagrams of the reasoner package. .. 105
Figure 7.12: Classdiagrams of the eventhandler package. .. 106
Figure 7.13: Timeline of actions that will be executed based on the origin of the event. 107
Figure 7.14: Classdiagrams of the execution package. ... 107
Figure 7.15: Global total view of all implemented class diagrams. .. 108
Figure 7.16: The User Interface after initialization of the program. ... 110
Figure 7.17: All GUI’s in the program.. 110

VII

Figure 7.18: Part of the world model xml file... 112
Figure 7.19: Part of the scenario priority list XML file. ... 112
Figure 7.20: Part of the object attributes XML file... 113
Figure 7.21: One of the rules in the expert system.. 114
Figure 7.22: The new inserted rule in the expert system... 114
Figure 7.23: A part of the rules in the expert system to find the highest chance. 114
Figure 7.24: Example rule in the ActionAdder’s expert system. .. 115
Figure 8.1: A predefined map that will be loaded during the initialization process of the AIBO... 118
Figure 8.2: Map representation of the start environment of the first scenario. 119
Figure 8.3: The result of the first test scenario.. 119
Figure 8.4: Map representation of the start environment of the second scenario............................ 120
Figure 8.5: The result of the second test scenario. .. 121
Figure 8.6: Map representation of the start environment of the third scenario. 122
Figure 8.7: The result of the third scenario. .. 122
Figure 8.8: Map representation of the start environment of the fourth scenario. 124
Figure 8.9: The result of the fourth test scenario. ... 124
Figure 8.10: A situation which leads to incorrect walking movements of the AIBO watchdog..... 125
Figure B.1: Pictures of detected fire taken by AIBO. ... 135
Figure B.2: Pictures of detected owner taken by AIBO.. 135
Figure C.1 A rule in eventhandler.clp that will place reactions on the stack if the fire scenario is
active. .. 137

 VIII

IX

Table of Tables

Table 1.1. Comparison table of the security units... 3
Table 2.1: World model AIBO watchdog. .. 33
Table 3.1: Summary of the result of the literature survey about the concepts which can be used for
the AIBO watchdog... 47
Table 4.1: Specifications of the AIBO-ERS7. ... 49
Table 5.1: Sequence of the working of the manager component. ... 74
Table 6.1: Use-case diagram, decide actions. ... 87
Table 8.1: Test environment specifications... 118
Table 8.2: Test scenario 1 specifications .. 119
Table 8.3: Test scenario 2 specifications. ... 120
Table 8.4: Test scenario 3 specifications. ... 121
Table 8.5: Test scenario 4 specifications. ... 123
Table C.1: Implemented reactions for the expert system. ... 138

 X

1

Introduction

“You don’t invent your mission, you detect it.”

 Victor Frankl

uring the last few years violence has not decreased worldwide. In the optimistic way we can
say that violence remains approximately constant, but pessimists will tell us violence has

increased a few percent a year recently [1][2]. If we take the US as example, the FBI has reported
that there were almost 1.4 Million violent crimes in 2005 and more than 10 Million property crimes
[2]. Violent crimes can be manslaughter, forcible rape, robbery, or aggravated assault. Examples of
property crimes are burglary, larceny-theft, motor vehicle theft, and arson. For the social aspect
point of view, if we express these numbers differently, it means that there were at least 3 people
shot, raped or robbed every minute and at least 19 people lost their properties in US every minute.
These are the results of a country with a population of 300 million. There are 6.5 Billion people on
this world [3]. If we extrapolate these numbers, the result will shock us all. Therefore this important
social issue concerns the safety of all of us. In order to support security and safety of people, an
increase in surveillance is needed. Surveillance by people is expensive and difficult to realize 24
hours a day on all places. In nowadays, surveillance systems by cameras and other sensors are used.
There is a requirement for smart cameras, again to reduce the effort of human operators.

The violence do not only occur at the high risk places such as disco and pubs, but also at the public
places which are supposed to be safe, e.g. train station, shopping mall, home, etc. People’s safety,
security and belongings are the biggest worry for most of the people nowadays. Justice does not
always play an important role, when people’s own safety is at stake. Recently the insurance
companies are complaining that the number of stolen cars has increased a lot, despite the better and
advanced locking system [4]. The main reason is that the traditional way of securing may not be
effective. Nowadays people do not react, when it is clear that somebody is trying to steal a car. For
their safety it is wiser to pass by and pretend that they have not seen anything. Therefore sound
alarms are not as effective as in the past now. They will most probably be ignored.

D

AIBO as an Intelligent Robot Watchdog

2

1.1. Security in Home Environment
Nowadays people have to be very careful when they leave their house behind, especially when they
go on holiday or to work. Insurance companies will not cover the losses when there is no strong
evidence that people have attempted to hold back the burglars. They expect people to secure their
house as much as possible to discourage and delay the thieves. Gross omission of the owner that
causes fire damage to his house will also not be covered by the insurance. Therefore a good and
reliable maintenance of their house is necessary [11]. The most common way to secure house can
be divided in 4 categories: discourage, prevent, detect and register [12][13][14][15].

Discourage:
• Pretend that there is someone in your house, even there is no one present. A lively house

discourages the intruders. E.g. Turn the light on when it is getting dark.
Prevent:

• Time and safety of the intruder are inversely proportional. The more time it costs to break
in, the less safe the intruder feels. E.g. Use good locks for your doors and light up your
balcony and garden to prevent intruders breaking into the house without being noticed.

Detect:
• Dogs. Dogs can detect intruders from miles away and they are also able to attack the

intruder. But he can scare the people who just passed by.
• Detection system. When the door has been opened abnormally, the detection system can

alarm the police. But the false alarms can become a nuisance as well as potentially
dangerous.

Register:
• Surveillance cameras which can be monitored by a professional security company can

provide the surveillance guards or police the needed information to track and identify the
intruder.

1.2. Possible Security Units in Home Environment
What system can be more effective and reliable than sound alarms and static cameras when money
also plays an important role? There are 3 abilities concerning a security unit: able to detect the
intruder at any time, able to stop the intruder at any place and able to save the evidence (images or
sounds of the intruder). The ideal security unit fulfills these requirements perfectly and is able to
execute them with a success rate of 100%. One way for approaching this ideal security unit is a
robot. Robots can be operational for 24 hours a day and 7 days a week. Depending on the robot
abilities the 3 security abilities can be carried out by the robot. Table 1.1 shows a comparison
between the 4 security units. As the table shows the robot has high potentials to replace the other 3
security units or use it as an additional security unit to cover the weak points of the other security
units. But to achieve a robot which can really carry out these tasks in practice, a lot of problems still
need to be conquered.

AIBO as an Intelligent Robot Watchdog

3

Table 1.1. Comparison table of the security units.

 Camera Guard Dog Robot

Detect intruder sometimes often often usually

Stop intruder never often often possible

Save evidence yes no no yes

Costs low high average average

Development state Matured Matured Matured Start phase

1.3. Multimodal Systems
Human beings have five senses to interact with its environment: sight, hearing, smell, taste and
touch [6]. These five basic senses are necessary to interact with the environment efficiently. Some
animals have more than these five senses to survive in their world. According to our research there
are 4 sensors which are in a more matured state in the robotic field: sight, hearing, touch and smell.
The more sensors one have, the more information one will get and more appropriate actions can be
determined for a certain situation. Cameras are unimodal systems that can only sense sight.
Therefore image detection is the only ability of cameras.

The Sony quadruped robot dog, AIBO, is a good example which carries 3 of these 4 sensors, sound,
image and touch sensors. By using these 3 sensors and its corresponding programs AIBO is able to
detect abnormalities in images, detect abnormal sounds and conquer bad sight using its touch sensor.
Many researchers have chosen for the AIBO as their research medium for robotic research because
of its completeness and low cost [8][9]. Because of these reasons this robot will also be used as a
medium for this project.

Although there are a lot of benefits by using multimodal systems compared to unimodal system,
there are problems that need to be conquered. Using more sensors means more inputs. More input
information can be very helpful to decide the most appropriate action in a certain situation, but
these inputs will be processed in an intelligent way to produce the most suitable output, the reaction.
This means that the system is able to process all inputs on time, information overload have to be
avoided. This implicates that a good architecture has to be used for an effective concurrent
processing of data and data fusion [10]. In order to choose the most appropriate action the inputs of
all sensors have to be delivered on time before processing. Otherwise the decision is based on the
wrong state. The way of concurrent processing of data and data fusion of the sensors inputs are the
key issues for the success of a multimodal system.

AIBO as an Intelligent Robot Watchdog

4

1.4. Thesis Motivation and Challenges
Motivation:

Usually a multimodal system, e.g. robot, consists of 4 main stages: receiving input information from
sensors, processing the sensors information, reasoning for appropriate reactions and executing these
reactions by the output actuators. These 4 stages form a cycle and it is a continuing process that can
last forever.

To create the ideal multimodal robot which can secure the home environment, it is necessary to
have as many sensors as possible. More information can lead to a better understanding of the
situation. An intelligent reasoning system is needed to choose the most appropriate reaction
depending on the situation. Thereafter the multimodal system has a range of possible output
actuators to react on its environment.

As concluded before the author has decided to use the Sony robot dog AIBO to approach this ideal
robot watchdog. The Sony AIBO has 4 kinds of input sensors: image, sound, touch and distance,
and 5 kinds of output actuators: wireless communication, image, sound, physical movement and led
display on its face. The reasoning system that connects the input modalities and output modalities is
not available. Therefore we are required to develop a reasoning architecture. Our reasoning
architecture contains a detection component, reasoning component and action component. These
components collaborate with each other and their outputs are optimized.

Challenges:

• Fusion of sound and image is a complex process. If we use a reasoning system which is
based on sound and image, contradiction will certainly arise. The challenge is how we are
going to deal with this contradiction.

• A new architecture for the AIBO watchdog has to be developed. This architecture makes
sure that the detection component, reasoning component and action component work
correctly and let them collaborate effectively with each other to optimize their output.

• The reasoning component produces the commands that and where AIBO needs to carry out
for its security functions and it also deals with the navigation in its world environment. An
intelligent algorithm needs to be developed to let AIBO navigate properly in its
environment without damaging the AIBO itself.

1.5. Research Topic
The challenges described in the previous section results in the general research topic of this thesis.
In general the purpose of this thesis is to create a security system for the home environment by
using the AIBO. The main focus is on the reasoning component and reaction component of the
security system, since the AIBO lacks a decent reasoning component. The output part is necessary
to show the correct working of the reasoning component. The general research topic can be
summarized as:

AIBO as an Intelligent Robot Watchdog

5

Design an intelligent reasoning system that is able to process information from the environment
and to generate appropriate reactions of the AIBO to take care of the home environment.

In the sensors detection components the image sensor, sound sensor and distance sensor will be
used. The reasoning system will be developed from scratch and having the ability to reason about
the data from the 3 input sensors and choose the appropriate outputs. At the output side the wireless
communication, image, sound and physical movements will be used to show the results of the
reasoning system.

The intelligence of the AIBO watchdog is determined by the reasoning component. Having a more
intelligent AIBO is necessary to operate in a more chaotic environment. In one of the most extreme
situation there are a lot of objects and they can not easily be identified e.g. a half burned book, or
the object does not belong to that location, e.g. a bed in the kitchen. The following reasoning
component ability forms the base of this project: ability to know related events and understand the
degree of importance of every event in all situations, so that the most appropriate reaction can be
executed.

The topic concerning the design and implementation of the solution that has been described in this
chapter can be split in some more detailed subtopics. The research assignment is therefore the
following:

• Design an architecture to let the sensors detection component, reasoning component and
action component collaborate efficiently with each other.

• Design an intelligent reasoning component which is capable to collaborate with the sensors
detection component and action component.

• Design the world model of the AIBO watchdog and its related navigation algorithm.
• Implement a prototype which can prove the proper working of the designed architecture

and reasoning component, in the designed world model.
• Test this prototype to see whether the designed system and approach perform as expected.

The developed system will be a proof of concept and it is able to present the possibilities of the
AIBO watchdog. Figure 1.1 shows the focus of this AIBO watchdog project.

Figure 1.1: The two blue components of the AIBO watchdog show the focus of this AIBO

watchdog project.

Input
Sensors

Reasoning
System

Output
Actuators

Environment

AIBO

AIBO as an Intelligent Robot Watchdog

6

1.6. Approach
After understanding the research assignment we have to know the details about the related research
on this field. A literature survey has to be conducted about the AIBO as a security system. The
survey must at least contain the following topics: current available reasoning models, ways to use
multimodalities and the current problems and current route planning systems.

An analysis has to be made about these topics and the useful theories and algorithms has to be listed
which can be used for the AIBO watchdog. Advantages and problems when applying these theories
and algorithms on the AIBO need to be researched.

The home environment where the AIBO should operate needs to be described by a world model.
This world model will give the AIBO knowledge about its environment and the relationship
between objects. A new design of the reasoning system has to be developed to cooperate with the
world model. This design can be fine-tuned by using the theories from the literature research.
Additionally a complete new architecture has to be developed to synchronize the reasoning system
with the physical movements and technical outputs of the AIBO. An intelligent navigation approach
of the AIBO watchdog in its environment needs also to be designed. A new route planner will be
added to the architecture to increase the usefulness of the AIBO watchdog.

After acquiring the architecture design the whole architecture will be implemented and tested. By
developing the test scenarios we are able to test the success of the developed architecture. As a
completion of this thesis project the created security system, AIBO watchdog, will be evaluated and
based on the evaluation recommendations will be made for future work.

1.7. Outline of Thesis
The thesis report consists of nine chapters. The first chapter gives an introduction about the project
and the problem definition that need to be solved. Chapter 2 explains the related background
knowledge about the design concepts and terms for the AIBO watchdog. Chapter 3 presents related
research about AIBO, and particularly the research to design AIBO as a watchdog. Chapter 4
provides the basic knowledge of AIBO and its functionalities. Chapter 5 presents the models and
concepts to design the AIBO watchdog. It encloses the detailed explanations of the design. Chapter
6 discusses the software design of AIBO watchdog based on the concepts and models introduced in
Chapter 5. Chapter 7 describes the implementations of the developed architecture for AIBO
watchdog. Chapter 8 discusses the test methodology and test results of the design and
implementations. Conclusions and recommendations regarding the whole project are given in
Chapter 9.

7

Artificial Intelligent System

“A journey of a thousand miles begins with a single step.”
 Ancient oriental philosophy

his chapter explains the basic knowledge of artificial intelligent systems. First an introduction
will be given about artificial intelligence and the global working of an artificial intelligent

system. Thereafter the aspects of the artificial intelligent system will be discussed. Many examples
will be provided for each aspect of the artificial intelligent system. At the end of each aspect a
conclusion will be drawn regarding the use of these aspects for the development of the AIBO
watchdog.

2.1. Introduction to Artificial Intelligence
An agent is an autonomous system which is able to perceive its environment through sensors,
processing the sensed information, reason for the actions based on the sensed information and
acting upon that environment through actuators. This basic concept is illustrated in Figure 2.1.

Figure 2.1. Agent’s interaction process with environments through sensors and actuators.

Intelligent robots are seen as rational agents in the Artificial Intelligence world. They are making
the most appropriate decisions based on the information that they have. These decisions are called
the rational decisions.

The principal requirements for a robot [23]:

• Obtaining information from the outside world using visual or auditory sensors;

T

Reasoning

Sensors

Actuators
Actions

Environm
ent

Agent Perceptions

AIBO as an Intelligent Robot Watchdog

8

• Matching the information with the internal database to understand the environment;
• Designing an appropriate plan to execute a given task;
• Handling unexpected events, arriving either from the outside world or from the robot itself;
• Learning from experience to improve its performance.

A human agent has eyes, ears, and other organs as sensors and hands, legs, mouth, and other body
parts as actuators. A robotic agent might have cameras and infrared range finders as sensors and
wheels and legs as actuators. A general assumption can be made that every agent can perceive its
own actions, but not always the effects.

The term percept is to refer to the agent’s perceptual inputs at any given instant. An agent’s percept
sequence is the complete history of everything the agent has ever perceived. In general, an agent’s
choice of action at any given instant can depend on the entire percept sequence observed to date. If
we can specify the agent’s choice of action for every possible percept sequence, then we have said
more or less everything there is to say about the agent [38].

“For each possible percept sequence, a rational agent should select an action that is expected to
maximize its performance measure, given the evidence provided by the percept sequence and
whatever built-in knowledge the agent has [38]. “

There are 4 kinds of agents: simple reflex agents, model-based reflex agents, goal-based and utility
based agents. Simple reflex agents respond directly to percepts, whereas model based reflex agents
maintain internal state to track aspects of the world that are not evident in the current percept. Goal-
based agents act to achieve their goals, and utility-based agents try to maximize their own expected
“happiness” which is defined by a utility function [38].

2.2. Agent’s Environment
After understanding the basic concept of the agents’ interaction with its environment in this section
the in depth details about the agents’ environment will be explained. Depending on the complexity
of the environment a reasoning agent will be chosen. The simpler environment, the simpler the
reasoning system of the agent will be. The environment can be divided in 6 dimensions.

1. Fully observable vs. partially observable:
In a fully observable environment an agent’s sensors will have access to the complete state
of the environment at each point in time. On the other hand, in a partially observable
environment the agent will miss some important data about its environment due to
inaccuracy of sensors or lack of certain sensors.

2. Deterministic vs. stochastic:
In a deterministic environment the next state of the environment is completely determined
by the current state and the action executed by the agent. Otherwise it is stochastic.

AIBO as an Intelligent Robot Watchdog

9

3. Episodic vs. sequential:
In an episodic environment the next action does not depend on the actions taken in previous
state. But in a sequential environment the current decision can affect all future decisions.

4. Static vs. dynamic:
If the environment can change while an agent is deliberating, then we say the environment
is dynamic for that agent; otherwise it is static.

5. Discrete vs. continuous:
This dimension tells about the state of the environment. In a discrete situation there are a
finite number of distinct states. In a continuous-state environment, on the other hand, there
is countless number of continuous states. These are caused by the time aspect or other
continuous state variables.

6. Single agent vs. multi agent:
Single agent works alone and there are no other agents involved in its environment. Multi
agents have to collaborate with other agents or compete with them.

Depending on the results of the 6 dimensions of the agent’s environment the complexity of the
agent architecture will be determined. If we use these 6 dimensions to describe the environment of
the AIBO watchdog, it will result to the following list:

1. partially observable
2. stochastic
3. sequential
4. dynamic
5. continuous
6. single agent

After having this list we can forecast the problems which the reasoning system should solve. Since
the environment is partially observable the agent needs to maintain the internal states to keep track
of the world. Uncertainty of the stochastic environment can cause difficulties to make a rational
decision. The sequential environment forces the AIBO watchdog to think ahead and make the
correct decision every step. In a dynamic environment the AIBO needs to keep looking at the world
to perceive sudden changes. As result the reasoning system should be a goal-based agent.

These are the problems that we have to deal with, when designing the reasoning system of the
AIBO watchdog. Therefore new concepts have to be developed to solve these problems or work
around them.

2.3. Agent Architectures
The agent architecture can predict and explain the behavior of an agent system based on its current
state and that of the environment. Furthermore it also provides a methodology or blueprint of how
to go about building the real agent system. Therefore we will provide a general background to agent

AIBO as an Intelligent Robot Watchdog

10

systems by showing some of the variety of ways in which the agent metaphor has been interpreted
and implemented. Benefits and limitations of each approach will also be discussed. There are 3
agent architecture categories for single agents: reactive architectures, deliberative architectures and
hybrid architectures [28].

• Reactive agent systems act by means of stimulus-response rules and do not symbolically
represent their environment.

• Deliberate agent systems symbolically model their environment and manipulate these
symbols in order to act.

• Hybrid agent systems can act both deliberatively and reactively.

In general, architectures provide information about essential data structures, relationships between
these data structures, the processes or functions that operate on these data structures, and the
operation or execution cycle of an agent [27].

2.3.1. Reactive Agent Architecture
The traditional AI view is that in order for software agents to exhibit intelligent behavior, they need
an internal (symbolic) representation of their environment. The agents can manipulate and reason
about this internal representation in order to determine what to do next. However, some have argues
that effective behavior does not necessarily require symbolic representations and manipulation, a
view strengthened by the problems that have emerged in mainstream artificial intelligence such as
the complexity and, in some cases, intractability, of some symbolic manipulation problems such as
planning. This is because symbolic reasoning is very resource and time-intensive in determining the
best action to perform next, so that by the time the action is performed, the environment may have
changed in such a way that the action is no longer useful. In this case, the agent could be said to
have failed. The opposite view is that effective behavior is only achieved when systems are situated
and embodied in the real world, and can respond to events in the environment in a timely fashion. In
this view, agent behavior is directly coupled with the world, typically incorporating stimulus-
response rules; the environment provides a stimulus that causes a rule to fire and the agent to
respond in specified way.

Agents that do not maintain a symbolic representation of their environment are known as reactive
agents, and their architectures as reactive architectures. Such reactive systems were originally
proposed by Brooks, who developed the subsumption architecture for controlling the behavior of a
robot [27].

Subsumption Architecture

Brooks proposed the subsumption architecture as a means of controlling the behavior of a mobile
robot in real time, with three basic requirements [29], as follows:

• Agents should be able to cope with multiple goals. For example, an agent might have the
goal of moving to a certain location in its environment, directly ahead of it, as quickly as

AIBO as an Intelligent Robot Watchdog

11

possible, while at the same time also possessing the goal to avoid obstacles. Clearly, when
there is an obstacle in the path of an agent, these goals conflict, and any control mechanism
for the robot needs to determine which of the goals takes priority.

• Agents should have multiple sensors. In general, physical agents have several different
sensors, each with the possibility of giving erroneous or conflicting readings. Agents must
be able to make decisions in these difficult circumstances.

• Agents should be robust. Essentially, this refers to two aspects: first, agents must be able to
function (albeit possibly less effectively) when some sensors fail; second, agents should be
able to behave effectively when the environment is changing drastically around them.

The approach taken by Brooks is not a functional one in which component parts are isolated
according to perception, action, reasoning, planning and so on, with some overarching central
control mechanism. Instead, it is achieved using an entirely different approach, the layered approach.
Here, the architecture comprises several task-achieving behaviors, each of which is implemented
separately and arranged as shown in Figure 2.2. This hierarchy of layers reflects how specific a
behavior is; the more specific the task, the higher the layer. In the case of the mobile robot, there are
eight layers of behavior, from 1 to 8, as follows [27]:

1. Avoid contact with objects in the environment;
2. Wander randomly;
3. Explore the environment;
4. Build a map of the environment and plan routes within it;
5. Notice change in the environment
6. Reason about and identify objects in the world, and perform certain tasks related to

certain objects;
7. Build and execute plans that involve changing the world in some desirable way;
8. Reason about the behavior of other objects and how it might impact on plans, and

consequently modify plans.

The different layers exist in parallel, with each unaware of the other layers that are above it, but able
to examine data from lower layers. Each layer is connected to the sensors and actuators, but
extracting only those aspects of the world (from the sensors) that is relevant to its function. In
addition, layers can prevent lower layers from trying to control the behavior of the agents by
suppressing their inputs and inhibiting their outputs.

The first step in the agent’s construction is to build the 0th control layer and, once this has been
tested, to build the 1st control layer on top of the 0th layer. The 1st layer has access to the data at
layer 0 and can also inject data to suppress the normal activity of the 0th layer. The 0th layer
continues to execute, unaware that there is a higher layer intermittently influencing its behavior.
The process can then be repeated for each successive layer, with each layer competing to control the
behavior of the robot. In this way, the control system functions at a very early stage of system

AIBO as an Intelligent Robot Watchdog

12

development, with higher layers being added as required without having to change the existing
lower-layer architecture.

Figure 2.2: The subsumption architecture which consists of 8 layers represents an example of the

reactive agent architecture.

2.3.2. Deliberative Agent Architectures
Agent systems that are able to maintain and manipulate representations of the world, without
stimulus-response rules are called deliberative agents [28]. In order to model rational or intentional
agency in these kinds of agents, mentalistic notions, or mental attitudes are used to describe and
characterize behavior. These attitudes include beliefs, goals, desires, knowledge, plans, motivations,
and intentions, and are commonly grouped into three categories: informative, motivational, and
deliberative [31]. The first category refers to aspects that a system considers to be true about the
world, and includes knowledge, beliefs and assumptions; the second refers to the wants of a system,
including goals, desires, and motivations; and the third concerns how an agent’s behavior is directed
and includes plans and intentions. The distinction between the second and third categories is subtle,
since it is possible that a system may desire a certain state without planning for it, or without
intending it to happen.

There are several compelling reasons why agents defined using mental attitudes might be useful.
First, if an agent can be described in terms of what it knows, what it wants, and what it intends, then,
since it is modeled on familiar concepts, it becomes possible for users to understand and predict its
behavior. Second, understanding the relationship between these different attitudes and how they
affect behavior can provide the control mechanism for intelligent action in general. Third,
computational agents designed in this way may be able to interpret the behavior of others
independently from any implementation.

Many agent systems include a deliberative architecture to support reasoning at the mental-attitude
level. Moreover, many of these deliberative architectures are based on the belief-desire-intention
(BDI) model of rational agency [27].

AIBO as an Intelligent Robot Watchdog

13

BDI architecture

The BDI model provides a foundation for many systems. Architectures based on the BDI model
explicitly represent beliefs, desires, and intentions as data structures, which determine the
operations of the agent. The intuition with BDI systems is that an agent will not, in general, be able
to achieve all its desires, even if these desires are consistent. Agents must therefore fix upon some
subsets of available desires and commit resources to achieving them. These chosen desires are
intentions, and an agent will typically continue to try to achieve an intention until either it believes
the intention is satisfied, or it believes the intention is no longer achievable [32]. Figure 2.3 shows
the global working of a reasoning system, PRS (procedural reasoning system), which is based on
the BDI architecture.

Figure 2.3: A representation of PRS architecture with its internal components.

At the start of execution, agents are initialized with a set of plans, goals, beliefs, an empty event
buffer and no intentions. The operation of the agent can then be enumerated as follows:

1. Perceive the world, and update the set of events.
2. For each event, generate the set of plans whose trigger condition matches the vent. These

are known as the relevant plans of an event.
3. For each event, select the subset of relevant plans whose context condition is satisfied by

the agent’s current beliefs. These plans are known as active plans.
4. From the set of active plans, select one for execution so that it is now an intention.
5. Include this new intention in the current intention structure either by creating a new

intention stack or by placing it on the top of an existing stack.
6. Select an intention stack, take the topmost intention, and execute the next formula in it.

2.3.3. Hybrid Agent Architectures
In general, agents can be neither totally deliberative nor totally reactive. If they are only reactive,
they cannot reason about their actions and will not be able to achieve any sophisticated behavior; if

ENVIRONMENT

DATABASE
(BELIEFS)

KA LIBRARY
(PLANS)

INTERPRETER
(REASONER)

INTENTION
STRUCTURE

SENSOR

EFFECTOR

COMMAND
GENERATOR

GOALS

MONITOR

AIBO as an Intelligent Robot Watchdog

14

they are just deliberative they may never be able to act in time. It is generally recognized that if
agent systems are to survive in real and complex environments they need to be reactive in order to
respond to environmental changes with sufficient speed, and be deliberative in order to achieve
complex goals without deleteriously affecting longer-tem option [52]. If environments change
rapidly or unexpectedly, agents may need to act in a reactive manner, whereas more stable
environments may allow agents time to deliberate on the best course of action. Architectures
containing both deliberative and reactive components are hybrid architectures. Figure 2.4 shows an
example of a hybrid architecture, TouringMachines [30].

Figure 2.4: Representation of the architecture of TouringMachines, which is an example of the

hybrid architecture.

This system was designed with the following issues in mind:

• They need the ability to deal with unexpected events in the real (physical or electronic)
world, and do so at different levels of granularity.

• They need to deal with the dynamism in the environment created by the actions of other
agents.

• They must pay attention to environmental change.
• They need to reason about temporal constraints in the knowledge that computation is

necessarily resource-bounded.
• They must reason about the impact the short-term actions may have on long-term goals.

This architecture is similar to the subsumption architecture in that it consists of a number of layers,
the reactive layer, the planning layer, and the modeling layer, which continually compete to control
the agent’s behavior. The reactive layer responds quickly to events not explicitly programmed in the
other layers, such as when a new agent or obstacle is perceived. Generating, executing and
modifying plans, such as constructing a route in order to move to a target destination, are the
responsibilities of the planning layer. Finally, the modeling layers is used for building and
maintaining models of entities in the environment, which are used to understand the current
behaviors of others and make predictions about their future behaviors.

AIBO as an Intelligent Robot Watchdog

15

2.4. Knowledge Representation
For the answer of the question, “Why do people in AI who want their systems to know a lot, also
want their systems to represent that knowledge symbolically?”, there is a clear reason. Much of the
work in AI wants to construct systems that do contain symbolic representations with two important
properties. First is that we can understand them as standing for propositions. Second is that the
system is designed to behave the way that it does because of these symbolic representations [41].
Since the start of Artificial Intelligence in the 1950’s several knowledge representation formalisms
have been developed. These knowledge representations describe the way that the data knowledge
will be stored. The most well known will be briefly discussed here.

2.4.1. Production Rules
One of the most common knowledge formalisms used in AI is the standard production rule. Their
popularity is partly due to the fact that they have turned out to be very useful in the construction of
expert systems. A production rule consists of a condition-action pair. If the condition part of the rule
is met, the rule is fired and the action in the action part of the rule is carried out. The format of a
rule is:

IF A THEN B

Where A is the condition part and B is the action part. A can consist of a number of premises, A1,
A2, …, An, joined by various connectives. The IF part is also known as the antecedent of the rule,
while the THEN part is the consequent of the rule. For example, if a AIBO ball is known to have a
pink color and also a round shape, then the following rule can represent this:

IF Pink AND Round THEN AIBO Ball.

Many expert systems use rules to represent their information [33]. There are two types of rules:
conjunctive and disjunctive. A conjunctive rule is defined as a rule containing attributes linked by
the AND connective. Therefore, the previous rule is a conjunctive rule. This is the original form of
production rules utilized in knowledge based systems. However, most knowledge-based system
building tools today also permit the use of other connectives. A disjunctive rule is represented as
attributes (which can be in the form of a conjunctive rule) linked together by the OR connective.
For instance:

IF (Pink AND Plastic AND Hard) OR (Pink AND Round) THEN AIBO Ball

is a disjunctive rule. This rule is equivalent to the following 2 conjunctive rules:

IF Pink AND Plastic AND Hard THEN AIBO Ball.

IF Pink AND Round THEN AIBO Ball.

Conjunctive rules correspond to a mapping between the input space and the output space, as shown
in Figure 2.5. Distinctive rules, on the other hand, correspond to mapping such as those in Figure
2.5 for a rule with one OR connective.

AIBO as an Intelligent Robot Watchdog

16

Figure 2.5: Explanation of conjunctive and distinctive rules. The figure on the top shows the

conjunctive rules mapping between input space and output space. The figure on the bottom shows
the disjunctive rules mapping with one OR connective between input space and output space.

Advantages

• Naturalness of expression. It is claimed that production rules often provide the right grain
size at which to represent the knowledge that expert problem solvers use. This makes it
relatively straightforward for the domain experts to understand the rules [34].

• Modularity. Permanent knowledge is separated from temporary knowledge. Production rule
systems contain both a rule base, in which the more permanent knowledge resides, and a
working memory, which contains the temporary knowledge describing the problem the
system is currently working on.
Different rules are structurally independent. Each production rule represents a specific piece
of knowledge that is completely independent of the other rules. Therefore maintaining and
constructing a rule base is easier.
The fact that the rules are independent of each other facilitates the incremental construction
of a knowledge base.

• Simple problem solving method. Production rules determine what to do next by examining
the representation of the present state of the problem solving process in working memory.
First, minimal changes to working memory can quickly lead to important focus shifts in the
problem-solving process. Second, because the whole state of working memory is open to
inspection, production rule systems can pursue a large number of different solutions at any
time.

Disadvantages

• Efficiency problems. With large rule bases determining the conflict set may be an
expensive process. If the conflict set is very large, the conflict resolution may become very
expensive.

• Restricted syntax and expressibility problems. Certain types of knowledge can not be
expressed easily or knowledge that can not be expressed at all. The inability to express

AIBO as an Intelligent Robot Watchdog

17

structural knowledge leads to these strange looking rules, with the problems that this entails
for intelligibility and maintainability of large rule bases [34].

2.4.2. Decision Trees
A decision tree is a directed graph showing the various possible sequences of questions, answers,
and classifications. The decision tree may consist of a test that has a set of mutually exclusive
possible outcomes together with a subsidiary decision tree for each such outcome. The subsidiary
decision tree may be a test or, alternatively, it may be a leaf. The process of classifying an object
starts at the root of the tree. If this is a leaf, the object is assigned the class associated with that leaf.
Alternatively, if the root of the decision tree is a test, the outcome of this test is determined for the
given object and the process continues using the subsidiary decision tree of that outcome. An object
is thus classified by racing out a path from the root of the decisions tree to one of its leaves. Figure
2.6 shows a simple decision tree.

Figure 2.6: Simple decision tree which can determine the object by answering the questions at the

roots.

Advantages

• Decision trees can have discrete or continuous values as its input and discrete or
continuous values as its output.

• Decision tree representation is very natural for humans and many “How to” manuals are
explained in decision trees [38].

• Decision trees are fully expressive within the class of propositional languages. Any
Boolean function can be written as a decision tree.

Disadvantages

• Decision trees are not capable to represent tests that refer to two or more different objects.
• Decision trees grow exponentially when certain functions are used, the parity functions and

majority functions. Parity functions returns 1 if and only if an even number of inputs are 1.
Majority functions returns 1 if more than half of its inputs are 1 [38].

AIBO as an Intelligent Robot Watchdog

18

2.4.3. Frames
Frames are defined as data structures for the representation of stereotypical situations [55]. Frames
are retrieved whenever the system encounters a new situation. They are formed on the basis of
previous experiences in similar situations and can best be seen as a structure representing
expectations of the system about situations of this kind. Information is stored in a frame by
associating descriptions with it. Thus, they are descriptions of objects. The descriptions in a frame
are called slots. A slot usually consists of two parts: a slot-name, which describes an attribute, and a
slot-filler, which describes either a value for that attribute or a restriction on the range of possible
values. Figure 2.7 illustrate a knowledge base based on frames.

Figure 2.7: An example content from a frame-based knowledge base.

As Figure 2.7 illustrates frame-based knowledge representations have a hierarchical nature. The
way to use this knowledge consists of a few steps. The first step to use this information in the
reasoning process concerns the discovery of those frames that can be applied to the situation the
system currently finds itself in. Given a partial description of the situation, find the frames in the
knowledge base that are consistent with this situation. Thus, the system has to match a description
of the specific situation that it is facing with a general description of situations of this kind.

Advantages

The advantages of the frame-based knowledge representation languages are mostly at the
epistemological level and concern the way in which knowledge can be organized in frame-based
representation languages.

• Frame-based knowledge representation languages capture the way in which domain experts
typically think about their knowledge. The structure of the domain about which the
knowledge is modeled is directly reflected in the knowledge base [42].

• The way in which entities are described. The most important way of describing an entity in
frame-based knowledge representation languages is by specialization, that is, by comparing
the entity to other things that you already know about.

<ball

 <superclass object>

 <color red>>

<football

 <superclass ball>>

<AIBO ball

 <superclass ball>

 <color pink>>

<E2

 <member-of AIBO ball>

 <name “pink AIBO ball”>>

AIBO as an Intelligent Robot Watchdog

19

Disadvantages

The disadvantages of frame-based knowledge representations language are mostly at the logical
level and concern such things as the meaning and the expressive power of the formalism.

• Absence of a clear semantics for frame-based representation languages. None of the frame-
based representation languages that were originally proposed had a semantics defined for
them.

• Problems from the use of default heritance for inference. The question is what exactly is not
being inherited when a class frame or instance frame does not inherit a slot associated with
a higher class frame. We can make a distinction between the value of slot not being
inherited, and the slot itself not being inherited.

• Problems with the expressive power of frames. Expressing existential knowledge is very
difficult to realize [34].

2.4.4. Semantic Nets
However semantic nets are very similar to frames, there is a clear difference between them.
Semantic network representations are primarily based on the interconnectivity intuition and frame-
based representations stress the intuition that knowledge should be organized in larger chunks. The
basic idea of a semantic network representation consists of two types of primitives: nodes and links
or arcs. Links are unidirectional connections between nodes. Nodes correspond to objects, or classes
of objects, in the world, whereas links correspond to relationships between these objects. Nodes and
links are often labeled using a mnemonic device so that the user of the network language knows
their intended meaning. The important point is that there is no information stored at a node. All the
knowledge is represented by the links between the different nodes. Thus, the information stored in a
node is simply the set of links that impinge on it. Figure 2.8 illustrates an example of this idea.

Figure 2.8: Semantic nets representation of the sentence: The AIBO watchdog kicks the red ball.

This kind of representation rather defines the meaning of a sentence than the meaning of a word.
The meanings of the annotations Mod (Modifications), Sub (Subject), and Obj(Object), are self
evident. The Inst (Instance of) link is used as a link between a token node and its type node. Thus
g53 and b42 are token nodes which have Inst links to the types nodes watchdog and ball. G53 and
b42 represent the particular watchdog and the particular ball mentioned in the sentence [33][34].

AIBO as an Intelligent Robot Watchdog

20

Advantages

• Fewer explicit inference rules are needed.
• Most of the inferences that would otherwise have to be drawn are already implicit in the

representation. Thus, if everything was stored in terms of a few primitives, then
synonymous sentences would be stored in exactly the same format.

Disadvantages

• A lot of work needs to be done to translate a sentence into the underlying representation.
• It is often either impossible or very difficult to find the right set of primitives. An example

of a domain where it seems difficult to give a set of primitives is that of kinship
relationships [43].

• There is still a lot of inferential work that needs to be done, even if information has been
stored in terms of primitives.

• Primitive representations are often rather complex and may require a lot of storage.

2.4.5. Conclusion
After reviewing the 4 most popular knowledge representation methods we need to decide the
knowledge representation method for application in this AIBO watchdog project. Each method will
be discussed briefly below.

Semantic web

As we mentioned already semantic web is a representation of knowledge comparable to human
brain (and dog brain). So in principle it is possible to use semantic web as knowledge representation.
The disadvantage of semantic web is that it is necessary to link objects with different strength.
Usually the strength between objects is obtained by learning methods. So after we have a running
prototype of our watchdog it is possible that we use semantic web for adaptive learning.

Frames

Frames are very useful to group objects which belong to each other. This method can be very
helpful to develop the reasoning system of the AIBO watchdog.

Decision trees

A decision tree is a method that looks like production rules. The classification of objects by
decision trees can also be achieved with if-then rules, but decision trees can also operate with
probabilities. The probabilistic version of decision trees is the basis for the reasoning method of
Bayesian networks. This method will be discussed later in this chapter.

AIBO as an Intelligent Robot Watchdog

21

Production rules

Production rules is one of the most used knowledge based system in application. It is very natural
for human beings to represent knowledge as if-then rules. To create a reasonable reasoning system
in a relatively short period this is one of the first choices [54].

Frames, production rules and decision trees are the potential candidates for this AIBO watchdog
thesis project. The choice of the knowledge representation method is also dependent on the kind of
reasoning system that the AIBO watchdog uses. Not all knowledge representation method forms the
best combination with the reasoning system. Moreover about the reasoning systems will be
discussed later in this chapter.

2.5. Meaning of Knowledge
After knowing the ways to represents the knowledge we need to know why we wants to have
knowledge and what exactly are knowledge. We understand that knowledge can help the human
beings make rational decisions, but how can we achieve knowledge. In the data mining world,
automated extraction of novel and interesting information from large data sets, they are already
trying to extract knowledge from raw computer data. Their process is similar to the concept of
Professor Russel Ackoff [39]. According to Professor Russel Ackoff the content of the human brain
can be classified into 5 categories:

1. Data: symbols.
2. Information: data that are processed to be useful; provides answers to "who", "what",

"where", and "when" questions.
3. Knowledge: application of data and information; answers "how" questions.
4. Understanding: appreciation of "why".
5. Wisdom: evaluated understanding.

Ackoff indicates that the first four categories relate to the past; they deal with what has been or what
is known. Only the fifth category, wisdom, deals with the future because it incorporates vision and
design. With wisdom, people can create the future rather than just grasp the present and past. But
achieving wisdom isn't easy; people must move successively through the other categories [39].
Figure 2.9: Wisdom pyramid shows the visual representation of this concept.

Data

Data is raw. It simply exists and has no significance beyond its existence. It can exist in any form,
usable or not. It does not have meaning of itself, e.g. a spreadsheet generally starts out by holding
data.

AIBO as an Intelligent Robot Watchdog

22

Information

Information is data that has been given meaning by way of relational connection. This meaning can
be useful, but does not have to be, e.g. a relational database makes information from the data stored
within it.

Figure 2.9: Wisdom pyramid.

Knowledge

Knowledge is the appropriate collection of information, such that its intent is to be useful.
Knowledge is a deterministic process. When someone memorizes information, then they have
amassed knowledge. This knowledge has useful meaning to them, but it does not provide inference
to further knowledge. For example, elementary school children memorize, or amass knowledge of,
the "times table". They can tell you that "2 x 2 = 4" because they have amassed that knowledge (it
being included in the times table). But when asked what is "1267 x 300", they can not respond
correctly because that entry is not in their times table. To correctly answer such a question requires
a true cognitive and analytical ability that is only encompassed in the next level, understanding.
Most of the applications we use (modeling, simulation, etc.) exercise some type of stored
knowledge.

Understanding

Understanding is an interpolative and probabilistic process. It is cognitive and analytical. It is the
process by which human beings can take knowledge and synthesize new knowledge from the
previously held knowledge. The difference between understanding and knowledge is the difference
between learning and memorizing. People who have understanding can undertake useful actions,
because they can synthesize new knowledge, or in some cases, at least new information, from what
is previously known and understood. That is, understanding can build upon currently held
information, knowledge and understanding itself. AI systems possess understanding in the sense
that they are able to synthesize new knowledge from previously stored information and knowledge
[39].

Wisdom

Understanding

Knowledge

Information

Data

AIBO as an Intelligent Robot Watchdog

23

Wisdom

Wisdom is an extrapolative and non-deterministic, non-probabilistic process. It calls upon all the
previous levels of consciousness, and specifically upon special types of human programming (moral,
ethical codes, etc.). It beckons to give us understanding about which there has previously been no
understanding, and in doing so, goes far beyond understanding itself. It is the essence of
philosophical probing. Unlike the previous four levels, it asks questions to which there is no (easily-
achievable) answer, and in some cases, to which there can be no humanly-known answer period.
Wisdom is therefore, the process by which we also discern, or judge, between right and wrong,
good and bad [39]. The relationships between these 5 stages are visually presented in Figure 2.10.

Figure 2.10: Relationships between the process stages of acquiring wisdom.

2.6. Reasoning of Artificial Agents
Reasoning is the formal manipulation of the symbols representing a collection of believed
propositions to produce representations of new ones. It is here that we use the fact that symbols are
more accessible than the propositions they represent: they must be concrete enough that we can
manipulate them (move them around, take them apart, copy them, and string them together) in such
a way as to construct representations of new propositions [35]. In this section we will briefly
discuss some reasoning systems. Not all aspects and abilities of these systems will be discussed.

2.6.1. Expert System
Expert system, also known as knowledge based system, is a computer program that represents and
reasons with knowledge of some specialist subject with a view to solving problems or giving advice.
Such a system may completely fulfill a function that normally requires human expertise, or it may
play the role of an assistant to a human decision maker. The following characteristics of an expert
system can be mentioned:

• It simulates human reasoning about a problem domain, rather than simulating the domain
itself. This distinguishes expert systems from more familiar programs that involve
mathematical modeling. This is not to say that the program is a faithful psychological

data

information

knowledge

wisdom

understanding
relations

understanding
pattens

understanding
principles

connectedness

understanding

AIBO as an Intelligent Robot Watchdog

24

model of the expert, merely that the focus is upon emulating an expert’s problems-solving
abilities; that is, performing the relevant tasks as well as, or better than the expert.

• It performs reasoning over representation of human knowledge, in addition to doing
numerical calculations or data retrieval. The knowledge in the program is normally
expressed in some special-purpose language and kept separate from the code that performs
the reasoning. These distinct program modules are referred to as the knowledge base and
the inference engine, respectively.

• It solves problems by heuristic or approximate methods which, unlike algorithmic solutions,
are not guaranteed to succeed. A heuristic is essentially a rule of thumb which encodes a
piece of knowledge about how to solve problems in some domain. Such methods are
approximate in the sense that they do not require perfect data and the solution derived by
the system may be proposed with varying degree of certainty [36].

Inference rule

An understanding of the inference rule concept is important to understand expert systems. An
inference rule is a statement that has two parts, an if-clause and a then-clause. This rule is what
gives expert systems the ability to find solutions to diagnostic and prescriptive problems. An
example of an inference rule is:

As this example also shows inference rules, which are the same as production rules, are the
knowledge representation of the expert system. An expert system's rule base is made up of many
such inference rules. They are entered as separate rules and it is the inference engine that uses them
together to draw conclusions. Because each rule is a unit, rules may be deleted or added without
affecting other rules (though it should affect which conclusions are reached). One advantage of
inference rules over traditional programming is that inference rules use reasoning which more
closely resemble human reasoning.

Thus, when a conclusion is drawn, it is possible to understand how this conclusion was reached.
Furthermore, because the expert system uses knowledge in a form similar to the expert, it may be
easier to retrieve this information from the expert.

Architecture of expert systems

Expert system is also called rule-based system. It consists of inference engine, rule base and
working memory. The inference engine, in turn, consists of pattern matcher, agenda and execution
engine. Figure 2.11 shows the architecture of an expert system.

IF the object color is pink and the object shape is a circle,

THEN the object is an AIBO ball.

AIBO as an Intelligent Robot Watchdog

25

Figure 2.11: The architecture of a expert system. The pattern matcher applies the rules in the rule-
base to the facts in working memory to construct the agenda. The execution engine fires the rules

from the agenda, which changes the contents of working memory and restarts the cycle.

The inference engine

The primary business of a rule engine is to apply rules to data. That makes the inference engine the
central part of a rule engine. The inference engine controls the whole process of applying the rules
to the working memory to obtain the outputs of the system. Usually an inference engine works in
discrete cycles as follows:

• All the rules are compared to working memory (using the pattern matcher) to decide which
ones should be activated during this cycle. This unordered list of activated rules, together
with any other rules activated in previous cycles, is called the conflict set.

• The conflict set is ordered to form the agenda—the list of rules whose right-hand sides will
be executed, or fired. The process of ordering the agenda is called conflict resolution. The
conflict resolution strategy for a given rule engine will depend on many factors, only some
of which will be under the programmer’s control.

• To complete the cycle, the first rule on the agenda is fired (possibly changing the working
memory) and the entire process is repeated. This repetition implicates a large amount of
redundant work, but many rule engines use sophisticated techniques to avoid most or all of
the redundancy.
In particular, results from the pattern matcher and from the agenda’s conflict resolver can
be preserved across cycles, so that only the essential, new work needs to be done.

The rule engine will decide the order in which the rules will be fired and this is one of the great
strengths of rule-based programming. The rule engine can more or less create a custom program for
each situation that arises, smoothly handling combinations of inputs the programmer might not have
imagined.

Pattern Matcher

Agenda

(f1,f2) r1
(f2,f3) r2

Inference Engine

Execution Engine
(f1,f2) r1

(fact f1)
(fact f2)
(fact f3)

Working Memory

(rule r1)
(rule r2)
(rule r3)

Rule Base

AIBO as an Intelligent Robot Watchdog

26

The rule base

The rule engine will obviously need some location to store rules. The rule base contains all the rules
the system knows. They may simply be stored as strings of text, but most often a rule compiler
processes them into some form that the inference engine can work with more efficiently.

In addition, the rule compiler may add to or rearrange the premises or conclusions of a rule, either
to make it more efficient or to clarify its meaning for automatic execution. Depending on the
particular rule engine, these changes may be invisible to the programmer.

Some rule engines allow the designers to store the rule base in an external relational database, and
others have an integrated rule base. Storing rules in a relational database allows us to select rules to
be included in a system based on criteria like date, time, and user access rights.

The working memory

It is essential to store the data the rule engine will operate on. In a typical rule engine, the working
memory, sometimes called the fact base, contains all the pieces of information the rule-based
system is working with. The working memory can hold both the premises and the conclusions of
the rules. Typically, the rule engine maintains one or more indexes, similar to those used in
relational databases, to make searching the working memory a very fast operation.

It is up to the designer of the rule engine to decide what kinds of things can be stored in working
memory. Some working memories can hold only objects of a specific type, and others can include,
for example, Java objects.

The pattern matcher

The inference engine has to decide what rules to fire, and when. The purpose of the pattern matcher
is to decide which rules apply, given the current contents of the working memory. In general, this is
a hard problem. If the working memory contains thousands of facts, and each rule has two or three
premises, the pattern matcher might need to search through millions of combinations of facts to find
those combinations that satisfy rules. Fortunately, a lot of research has been done in this area, and
very efficient ways of approaching the problem have been found. Still, for most rule-based
programs, pattern matching is the most expensive part of the process.

The agenda

Once the inference engine figures out which rules should be fired, it still must decide which rule to
fire first. The list of rules that could potentially fire is stored on the agenda. The agenda is
responsible for using the conflict strategy to decide which of the rules, out of all those that apply,
have the highest priority and should be fired first. Again, this is potentially a hard problem, and
each rule engine has its own approach. Commonly, the conflict strategy might take into account the
specificity or complexity of each rule and the relative age of the premises in the working memory.
Rules may also have specific priorities attached to them, so that certain rules are more important
and always fire first. As an example, the AIBO navigation system might have two rules like these:

AIBO as an Intelligent Robot Watchdog

27

If the next position that the AIBO needs to go is the north position, then both rules will apply. It is
important that the second rule fire before the first one. This second rule should therefore be given a
very high priority.

Execution engine

Finally, once the rule engine decides what rule to fire, it has to execute that rule’s action part. The
execution engine is the component of a rule engine that fires the rules. In a classical production
system, rules could do nothing but add, remove, and modify facts in the working memory. In
modern rule engines, firing a rule can have a wide range of effects. Some modern rule engines, e.g.
Jess, offer a complete programming language you can use to define what happens when a given rule
fires. The execution engine then represents the environment in which this programming language
executes. For some systems, the execution engine is a language interpreter; for others, it is a
dispatcher that invokes compiled code.

2.6.2. Case Based Reasoning
Case based reasoning (CBR) is a methodology for solving problems by utilizing previous
experience. It involves retaining a memory of previous problems and their solution and, by
referencing these, solving new problems. Generally, a case based reasoner will be presented with a
problem. It may be presented by either a user or another program or system. The case based
reasoner then searches its memory of past cases (the case base) and attempt to find a case that has
the same problems specifications as the current cases. If the reasoner can not find an identical case
in its case base, it will attempt to find the case or cases in the case base that most closely match the
current query case.

In the situation where a previous identical case is retrieved, assuming its solution was successful, it
can be returned as the current problem’s solution. In the more likely case that the retrieved case is
not identical to the current case, an adaptation phase occurs. In adaptation, the differences between
the current case and the retrieved case must first be identified and then the solution associated with
the retrieved case modified, taking into account these differences. The solution returned in response
to the current problem specification may then be tried in the appropriate domain setting [37].

The structure of a case-based reasoning system therefore is usually devised in a manner that reflects
these separate stages. At the highest level a case-based reasoning (CBR) system can be thought of
as a black box (see Figure 2.12) that incorporates the reasoning mechanism and the external facets:

• The input specification (or problem case).
• The output suggested solution.
• The memory of past cases that are referenced by the reasoning mechanism.

IF next position is north THEN walk northwards END

IF north position contains an obstacle THEN recalculate next position END

AIBO as an Intelligent Robot Watchdog

28

Figure 2.12: An example architecture of a CBR system.

In most CBR systems, the CBR mechanism can also be divided into two parts: the case retriever
and the case reasoner, illustrated in Figure 2.13.

Figure 2.13: Architecture of CBR system showing the 2 major components.

The case retriever’s task is to find the appropriate cases in the case base while the case reasoner
uses the retrieved cases to find a solution to the given problem description. This reasoning generally
involves both determining the differences between the retrieved cases and the current query case;
and modifying the retrieved solution appropriately, reflecting these differences. This reasoning part
itself may or may not retrieve further cases or portions of cases from the case base.

2.6.3. Bayesian Network
A Bayesian network is a directed graph in which each node is annotated with quantitative
probability information. The specification is as follows:

• A set of random variables makes up the nodes of the network. Variables may be discrete or
continuous.

• A set of directed links or arrows connects pairs of nodes. If there is an arrow form node X
to node Y, X is said to be a parent of Y.

• Each node Xi has a conditional probability distribution P(Xi|Parents(Xi)) that quantifies the
effect of the parents on the node.

• The graph has no directed cycles.

The topology of the network, the set of nodes and links, specifies the conditional independence
relationships that hold in the domain, in a way that will be made precise shortly. The intuitive
meaning of an arrow in a properly constructed network is usually that X has a direct influence on Y.
It is usually easy for a domain expert to decide what direct influences exist in the domain than

Case-based
Reasoning
mechanism

PROBLEM CASE DERIVED
SOLUTION

CASE-BASE

PROBLEM
CASE

DERIVED
SOLUTION

CASE-BASE
Normal interactions
Possible interactions

Case
Reasoner

Case
Retriever

AIBO as an Intelligent Robot Watchdog

29

actually specify in the probabilities themselves. Once the topology of the Bayesian network is laid
out, we need only specify a conditional probability distribution for each variable, given its parents.
We will see that the combination of the topology and the conditional distributions suffices to
specify the full joint distribution for all the variables [38]. This concept is illustrated in Figure 2.14.
The topology of Figure 2.14 shows that fire directly affect the probability of the smoke is present
and whether the fire scenario or not depends on the fire and smoke. The conditional probability
tables of smoke shows the probability of the values of smoke based on the fire value. For example
there is a chance of 40% that there is smoke present when there is fire and when there is no fire that
probability will be decreased till 1%.

If we consider the conditional probability table of fire scenario, we can notice that there is 1%
chance that there is no fire scenario, when fire and smoke are detected.

Figure 2.14: A typical Bayesian network, showing both the topology and the conditional probability

tables (CPTs).

2.6.4. Neural Networks
Neural networks were inspired by the architecture of the human brain and various mathematical
theories. They comprise a set of nodes connected by weighted links and are trained by examples.
Rather than being programmed, neural networks are trained with examples and acquire knowledge
through experience. The advantages of this system are [44]:

• The designer does not have to worry about defining formal methods for the representation
of the knowledge;

• There is no need for exhaustive searches to retrieve the knowledge.
Neural networks have two further aspects [45] that make them invaluable in real-world applications
and are similar to the way humans use information.

• Generalization ability. The real world rarely presents information with the precision
required. Neural networks accomplish the generalization needed by their structure rather
than by elaborate programming. This is crucial in real world problems where one cannot
brain a network in advance for every circumstance it might encounter in the field [46].

• Abstraction ability. Neural networks can abstract the ideal from a non-ideal training set.
Through training, neural networks form an internal representation of the salient features of
the training set [45].

AIBO as an Intelligent Robot Watchdog

30

Neural networks are built from simple units, called neurons. These neurons are connected by
weighted links. During training the learning ability of the neural network will be activated. Training
is by given the training examples with its related inputs and outputs, the weight of the links will be
adapted using a backpropagation algorithm. After the adaptations the neural network can classify
the inputs with its network and an appropriate output will be given. Figure 2-15 illustrates an
example of a simple neural network.

Figure 2-15: A simple neural network with two inputs, one hidden layer of two units and one output.

2.6.5. Conclusion
After reviewing the 4 most popular reasoning systems a decision needs to be made regarding the
reasoning system of the AIBO watchdog. Each reasoning system will be discussed briefly below.

Expert system

Expert systems are the wide used knowledge base systems in daily applications. By its ease of use
systems can be developed rapidly [54]. Therefore it is a good candidate for the reasoning system of
the AIBO watchdog. Time can be saved for the other components in the reasoning system.

Case based reasoning

Case based reasoning uses its experiences that it has gained during previous interactions to decide
the output based on the current input. The most likely case will be selected and its output will be
determined. Case based reasoning is therefore also a good candidate for the reasoning system of the
AIBO watchdog.

Bayesian network

Bayesian network deals with the uncertainty of the inputs. Due to noise in sensors and ambiguity in
the real environment uncertainty of the inputs will certainly arise. In this aspect Bayesian network is
one of the best reasoning system for uncertain environment, but due to its complexity it is hard to
realize.

Neural networks

Neural networks will be trained with the training samples. These samples have to be developed to
train the neural network. After successful training it will usually work correctly when the inputs do
not differ from the training samples. The user is not able to follow the reasoning of the network and
there is no guarantee that the network will always produce the correct output in all situations.
Modifying the reasoning can not easily be achieved.

AIBO as an Intelligent Robot Watchdog

31

For showing the correct working of the developed architecture it is necessary to understand the
reasoning process. Expert systems, case based reasoning and Bayesian network provides the
transparency of the reasoning process. For creating the Bayesian network many researches have to
be conducted to obtain the probabilities of the occurring events. Since this thesis project does not
only consist of a reasoning system, but also the other components in the reasoning architecture, it is
wiser to choose another reasoning system which fits in the time constraint. The predecessor of the
AIBO watchdog project has chosen for the expert system. The author will continue with this expert
system and some case base reasoning concepts will be added in the expert system. The reasoning
system is the so called dynamic scripting approach. In the next future the Bayesian network is on
the planning.

2.7. Memory of Reasoning Systems
For creating an intelligent reasoning system it is required to be able to reason about the current
situation based on nothing or based on the past. The last option can provide the AIBO watchdog
more intelligence and behaving more naturally. The information of the past can give human beings
a global illustration what they can expect at the moment. It allows the AIBO to reflect on the past
and anticipate the future [20]. How can memory help us to remember the current events? To answer
this question we need to know the basic knowledge of remembering.

Varieties of remembering
‘Memory’ is a label for a diverse set of cognitive capacities by which humans and perhaps other
animals retain information and reconstruct past experiences, usually for present purposes. Human’s
particular abilities to conjure up long-gone episodes of their lives are both familiar and puzzling.
People remember experiences and events which are not happening now, so memory seems to differ
from perception. They remember events which really happened, so memory is unlike pure
imagination. Memory seems to be a source of knowledge, or perhaps just is retained knowledge.
Remembering is often suffused with emotion. It is an essential part of much reasoning [19].

• Procedural memory
Philosophers' ‘habit memory’ is psychologists' ‘procedural memory’, a label for embodied
skills such as typing, playing golf, using a knife and fork, dancing, or solving jigsaw
puzzles. People naturally refer to procedural memories with the grammatical construction
‘remembering how’ [19].

• Semantic memory
‘Propositional memory’ is ‘semantic memory’ or memory for facts, the vast network of
conceptual information underlying human’s general knowledge of the world: this is
naturally expressed as ‘remembering that’, for example, that Sony created AIBO in 1999
[19].

• Episodic memory
‘Recollective memory’ is ‘episodic memory’, also sometimes called ‘personal memory’ or
‘direct memory’ by philosophers: this is memory for experienced events and episodes, such

AIBO as an Intelligent Robot Watchdog

32

as a conversation this morning or the death of a friend eight years ago. Episodic memories
are naturally expressed with a direct object: I remember our argument about Descartes
yesterday, and I remember my emotions and my bodily sensations as we talked. Such
personal memories can be generic or specific, and they can be memories of more or less
extended temporal periods [19].

Both semantic and episodic memories, whether linguistically expressed or not, usually aim at truth,
and are together sometimes called ‘declarative memory’, in contrast to nondeclarative forms of
memory, which don't seem to represent the world or the past in the same sense [19].

2.8. AIBO World Environment
In this section the global world model of the AIBO watchdog and the way to interpret the world
environment will be presented.

2.8.1. World Model
The world model of AIBO watchdog describes the interaction processes between AIBO and its
environment. AIBO sensors and actuators provide the capability to interact with its environment.
Figure 2.16 illustrates a global real world environment of the AIBO watchdog.

Figure 2.16: A global representation of the real world environment.

AIBO watchdog is able to interact with its owner and the objects in its environment. The features
from the environment e.g. sound and video can be perceived by the sensors of AIBO watchdog.
Based on these features AIBO watchdog will react to them. Reactions are executed by its actuators.
Table 2.1 shows the world model of the AIBO watchdog.

Interaction

Object

Sound
Object

Video

Real World

AIBO as an Intelligent Robot Watchdog

33

Table 2.1: World model AIBO watchdog.

List of features Functionality Relation

4 legs able to move/walk object collision avoidance

mouth (speaker) able to bark people notification by
sound

eyes (camera) able to see objects object recognition

ears (microphone) able to hear sounds sound recognition

wireless connection able to send digital
messages

people notification by
digital messages

AIBO

watchdog

Face
(many colored leds)

able to show emotion people notification by
emotion

2.8.2. Interpretation of World Environment
The ways that robots use to understand its world environment is comparable with the human beings.
Objects recognition in its environment can be achieved with image sensors, cameras, and sound
sensors, microphones. By comparing the features of the objects in its environment with the features
in its database robots are able to identify the objects [23]. The global idea of this approach is
illustrated by Figure 2.17.

Figure 2.17: Working of object recognition with sound and vision.

The received analogue signals from the sensors will be digitized first before other software
techniques can be applied. The result of the digitization will be filtered by a filtering technique. This
filtering technique can be built in the hardware or using a software to remove the noise. Using the
clean result of the raw image objects on the image can be extracted by an object extraction program

Extraction of objects

Noise filtering

Digitization of raw
image

Extraction of sound
objects

Noise filtering

Digitization of raw
sound

Vision system Sound system

AIBO as an Intelligent Robot Watchdog

34

[22]. The working of the sound object recognition system is the same as the vision system. Instead
of raw image data the input is using the raw sound data.

2.8.3. Concept for World Environment Interpretation
The environment is an open system which implicates that it can have infinite objects. Therefore it is
impossible to recognize all possible objects in the world environment. Every object has its own
unique features: color, shape, material, size, weight, smell, sound etc. This is the only way for
human beings to distinguish a certain object from the other ones. This theory also applies for the
robots. By perceiving the features of the objects using the sensors the robots are also able to classify
the objects. Figure 2.18 illustrates the interpretation concept of robots with its environment.

The perceived features will be interpreted by the robots and objects can be recognized. The
interpretation process can be a matching of perceived features with a features database. Because of
the ambiguity of objects in the world, it is not always possible to recognize the object correctly. For
example an orange and a ball both have the same color, shape and size, but the other features are
different. The issue is whether they are detectable by the sensors or not.

Figure 2.18: Interpretation process of the world environment.

Environment world

Features world

Interpreted world

35

Related Research

“The Past: Our cradle, not our prison; there is danger as well as appeal in its glamour. The past is
for inspiration, not imitation, for continuation, not repetition.”

Israel Zangwill

n this chapter the projects that are related to the AIBO watchdog will be presented. First all
related projects concerning the AIBO robot dog will be discussed and thereafter useful papers

from the literature research that can improve the AIBO watchdog will be presented.

3.1. Related Work
Since the launch of the first AIBO robot dog 1999 by Sony a lot of scientists are using this robot
dog to conduct research experiments. Because its affordable price and good possibilities it is the
most popular robot used in research.

3.1.1. AIBO Soccer Robot Competition
Robot soccer competition, RoboCup is an annual event that will taken place somewhere in the
world [47][48]. This year, 2006, this event has taken place in Germany. Many teams from
everywhere around the world has gathered in this place and compete with each other for the
honorable first place. The soccer teams consist of 4 AIBO robots which will play in a 6 x 4 m field.
In a strategic point of view coordination and cooperation of AIBO is the key factor to win the
competition. On the other hand in the technical point of view ball control and shoot techniques are
also an important issue.

The reasoning system of the soccer robots must deal with object recognition and motion expectation.
For strategic purposes it also has to deal with positioning of its own AIBO for smoothing their
offense or defending the attack of the opponents.

3.1.2. Fusing Speech and Face Recognition on the AIBO ERS-7
This project is about the fusing visual and audio recognition on the AIBO robot dog [64]. The
AIBO is communicating wireless through a TCP/IP connection to a remote computer which

I

AIBO as an Intelligent Robot Watchdog

36

manages face and speech recognition of a person in its environment. Both visual and audio data are
sent by the AIBO to the computer which analyses them and gives a feedback to the robot how to
behave according to the result of the calculation.

The author has used two modalities to recognize persons: vision and sound. By fusing these 2
modalities the author tried to achieve better recognition result. A face recognition algorithm
designed by the author was implemented and tested. For the sound part a sound localization module
was used which has been developed by the MMI Department of TUDelft and has proved its value at
the Robocup in 2004.

Figure 3.1: Recognition model.

Figure 3.1 shows the recognition model of the designed AIBO. First the features of the input data
will be extracted and thereafter be matched with the features in the Database. Depending on the
matching differences a decision will be made and the AIBO will change its behavior.

Because of the time constraint and the use of Matlab files, this approach was realized with Tekkotsu
and URBI, using the client/server architecture. Therefore a normal pc is needed to process the
calculations. As many papers have also indicated about image recognition it is very hard to deal
with the light conditions in the environment. When the light conditions are very weak or very strong,
the color table is completely different from normal circumstances. Therefore the face recognition
algorithm works only acceptable.

The used approach was based on static images from the camera. Streaming video may provide
better results. The image identification algorithm seems to work not fast enough to keep the same
pace as the image input. The sound identification part resulted to an acceptable success rate, but it is
very dependent on the quality and duration of the referenced sounds. It is required to have
referenced sounds which have more voice characteristics. During its test phase silences give the
wrong identification. This multimodal approach for the face recognition can be a good additional
functionality for the AIBO watchdog. Being able to recognize the owner makes the watchdog more
social and it also gives a good feedback to the owner.

Input data Feature
extraction

Similarity

Base
Member 1

Similarity

Base
Member N

 . . .

Decision

Threshold

Identification
Result

AIBO as an Intelligent Robot Watchdog

37

3.1.3. Autonomous AIBO Watchman
In this project the author tried to let the LEGO robot collaborate with the AIBO robot and a PC in
between, which functions as a communication server [62]. A whole risk and cost analysis is made to
compare the lost when using the AIBO as a watchman (guard) instead of human beings. Not really
surprisingly the AIBO was chosen as the most suitable candidate to do the job. Especially the low
operational cost and less threatening when heavy weapons were used, was the big advantage of the
AIBO.

There are a lot of diagrams which are modeled for the AIBO watchman. A big part of the
programming source code is also included in the report. The author used Tekkotsu to program the
AIBO watchman, because there was no other framework available at that moment.

Figure 3.2: Model of the digging machine and watchmen.

The mission of the project was to use the AIBO robot dogs as guards to guide and support the Lego
digging machine. Figure 3.2 shows the model representation of this situation. Everything that
crosses the virtual fence will be noticed by the AIBO dogs. As a result the digging machine can
operate in a safe environment. The functionality of the AIBO ‘watchman’ was modeled very limited:
walk forward, detect a wall, detect a pink ball as an intruder and respond to it. These are the most
basic operations that an AIBO watchman can carry out, but not all functionalities has been
implemented and tested.

3.1.4. AIBO Watchdog and AIBO Companion Dog Project
At the University of Technology Delft in the MMI department there were also 2 projects conducted
concerning the reasoning system of the AIBO robot dog. The first project is concerning the
personality model of a companion robot dog. Its main purpose was developing a reasoning system
which can interact with humans by showing emotions and actions [49]. The second project is
concerning the AIBO watchdog [40]. These 2 projects will be described in this section.

Virtual fence Virtual fence

Virtual fence

Virtual fence

Digging machine

AIBO AIBO

AIBO AIBO

AIBO as an Intelligent Robot Watchdog

38

AIBO Companion Dog

In this project the author describes a complex set of models and architectures that allow the
embodiment of an emotionally intelligent robot in interacting with other humans or robots. The
robot used for deploying these ideas and concepts is the AIBO robot dog.

The author has designed a new emotion reasoning model for the AIBO companion robot which can
give the AIBO companion robot its own personality. Figure 3.3 shows this reasoning model.

Figure 3.3: Emotion reasoning model.

Depending on the current mood, needs and other environment variables, new mood, needs and
actions will be inferred. After a platform comparison the author chooses URBI as programming
platform and Jess as rule based Inference Engine. All programming models and details were given.
Most of them were implemented in the AIBO at the end. This report can serve as the base ground
for the AIBO watchdog.

Due to time constraints the only working components were the emotion reasoning functionality
what the main purpose was. As the author also has concluded and what the AIBO watchdog need is
a memory and history module. Based on the history a more sophisticated action can be inferred
from the rule based Inference Engine.

A multimodal approach was desirable. By integrating vision and sound more accurate results can be
achieved, but problems like synchronization will arise. The emotion reasoning model can be a part
of the AIBO watchdog, when the basic functionalities of a watchdog are operational.

History of Emotions

History of Actions

E
valuation

Engine

Set of actions [i+1]
Emotive state [i+1]

Mood [i+1] Mood [i]

G, P, S [i+1] G, P, S [i]

Needs [i] Needs [i +1] Event [i+1]

Personality

t=i

AIBO as an Intelligent Robot Watchdog

39

AIBO watchdog

The second project was developing an AIBO watchdog. AIBO thought as a companion dog that
entertains people and makes people smile could be also programmed to do more useful things such
as protect us and announce us when it sees an intruder in the home environment. AIBO could be a
dog, a companion and a surveillance camera and it also has the capacity of being on duty day and
night, 24 hours of 24 hours, 7 days a week.

Recent researches have been done on transforming the AIBO into a watchdog. These researches
transformed AIBO into a simple camera that has the capacity of barking at the moving objects and
saving an image of the moving object which could be later seen by the owner.

This project inspires to “train” AIBO ERS-7 dog to be a watchdog. The AIBO will be able to detect
motions and sounds, to bark and save images of moving objects, engage into investigations, and
moreover will be able to “see” the intruder. It could even be used as a smoke detector: if AIBO
"smells” smoke it starts exploring to see if the house is on fire. AIBO watchdog will send an alarm
via his wireless communication network if there is any threat. The AIBO watchdog will act as a live
trained dog and maybe in time it will replace the real ones.

But due to time constraint the system lacks of a good reasoning system. A very simple reasoning
system was used and detecting relevant objects is not possible. The author has chosen for a static
environment which does not provide good interactivity for the AIBO and its environment [40].

Therefore the author has chosen to complete the AIBO watchdog project that his predecessor has
left behind. A complete new design will be developed and existing models will be improved to be a
part of the new design.

3.2. Literature Research
Before the design phase a lot of researches have to be conducted that are related to the AIBO
watchdog. The existing theories and algorithms can be refined and used for the AIBO watchdog.
The relevant research can be an inspiration source for the design of the reasoning system. The
working of the AIBO watchdog can be divided into 3 main aspects: use of multimodalities, path
planning and world modeling, internal components. Each of these aspects will be discussed in detail
in this section.

3.2.1. Multimodalities
In the case of AIBO watchdog it uses the image sensor, sound sensor and distance sensor. Benefits
and drawbacks of the use of multimodalities have to be researched and methods to improve the
concurrent working of these sensors. This section will discuss 2 papers that have a high potential to
improve the AIBO watchdog.

AIBO as an Intelligent Robot Watchdog

40

Purposeful Perception by Attention-Steered Robots

In this paper the authors have proposed a new heuristic in image perception [56]. Sometimes it is
not necessary to be able to perceive everything in your view and remind them; by untying your
focus you can get more relevant information.

In purposeful perception you select only the most important object that you want to perceive in your
view. When you do not see that object in the current view, it is not necessary to memorize the other
objects in the current view. They are not the primary target, but secondary target. Secondary targets
are only useful when the primary target exists. Figure 3.4 shows the architecture of attention steered
vision.

Figure 3.4: Architecture of attention steered vision.

When using this heuristic you can use the shape or the color of the primary object. This heuristic is
very useful when you are looking for something, e.g. looking for a pink ball. It does not matter what
kind of color you see around you, if it is not the pink color, you are not interested in it. That is also
the reason that you do not need to remember the other color that you saw. As the architecture also
shows, if the AIBO does not see the color (B)lue, it means the AIBO is not facing the B-goal or B-
flag.

For the AIBO watchdog this is a useful heuristic which can speed up the processing time and
simplify the programming code. Since the watchdog is only looking for suspicious and abnormal
situations.

Audio-Visual Flow – A Variational Approach to Multi-Modal Flow Estimation

In this paper the authors have designed their own framework to estimate the audio-visual flow field
of a moving audio source [57]. By using the multimodal approach, in this paper vision and sound, it
is much easier to track a moving audio source object with the camera. The authors explained with
their framework and formula how to calculate an audio flow field. Using this audio flow field we
can match it with the images of the camera. When something suddenly goes in front of the camera
and blocks the moving audio source object, this approach is still able to follow the moving audio
source object with its camera using their sound localization theory. Therefore the camera will not

B/Y/G/O/W/P

B/G/O/W
B/G/O
B/G

B/W/P/O
B/W/P

G/O/W/B
G/O/W
G/O

Grid1 Grid2 Grid3

B-Goal B-Flag Ball

AIBO as an Intelligent Robot Watchdog

41

lose track of the audio source object, when the blocking object are moved away. Figure 3.5 and
Figure 3.6 illustrate this concept.

Figure 3.5: Left image: image from the camera, moving yellow car.

Right image: sound source localization map.

Figure 3.6: Sample frame with flow field of the fully occluded moving sound source.

This paper offers only a solution for one moving audio source object. Multiple moving audio source
objects will be a big problem, especially when they have the same audio output. Another problem
which this paper has ignored is the background sound. In many cases the background sound can be
minimized with a sound filter, but they have not tested their framework under these circumstances.
Therefore this framework and calculation will perform its best in a very quiet environment with
only one moving audio source object.

3.2.2. Path Planning and World Modeling
AIBO watchdog has to be able to move freely in its environment; therefore good path planning
algorithms are necessary. Prior knowledge of the environment can simplify the path planning
system, but sudden changes in the environment must also be taken into account. In this subchapter 3
papers regarding this topic will be discussed.

AIBO Programming Report of Group Vision1b

This paper discussed several possible models for representing the world environment: grid base,
graph base, Kalman Filters, particle maps and a mix of these models [65]. All approaches have its
own advantages, so it depends on the kind of information that you have from the environment to
choose which approach is the best to use. After having the world model, the robot has to navigate to
its destination. When we are having a holonomic robot, a robot that has to turn something, e.g. the

AIBO as an Intelligent Robot Watchdog

42

steer axes, to determine the path direction; it is needed to take the movements restrictions of the
robot into account. The planner component of the robot has to deal with the movements restrictions
and define the correct actions. For the path planning component the paper discussed 2 planning
algorithm: visibility planner and probabilistic planner. Both planners used graphs to find the paths.
The last one is not optimal, but it is simpler to implement.

For static environments there are already some path planning algorithms available, but in dynamic
environments it is hard to plan your path. Many objects are moving constantly. The author made
this research for the soccer AIBO; therefore the planner will not be that difficult. There are not
much obstacles on the soccer field. Since the AIBO watchdog has to find its way in a normal house,
there will be lots of obstacles on its way. This paper functions as an information source for the path
planning algorithm and world modeling of the AIBO watchdog.

Improving AIBO with Artificial Intelligence Technique

This paper proposed an interesting functionality for the AIBO dog and a solution to achieve that
[58]. Many dog owners have already done it before with their real dogs. The words ‘AIBO, come
here’ should be familiar with most people. The offered method for this problem is very logical. At
first the AIBO has to recognize the words, ‘AIBO, come here’, and locate the voice direction.
Thereafter there are 3 new basic functions needed: map construction, room recognition and way
finding. The automated way to construct the map requires an object recognition algorithm with
simple shape and color recognition ability.

The proposed idea is the semi-automatic approach, just like showing your house to your guests. The
owner can take the AIBO to each place of the house and tell where it is. This way the AIBO can
draw a graph of the whole house. Figure 3.7 illustrate this concept.

Figure 3.7: Map of a house represented with a graph.

To recognize each room it is recommended to put the tags on the doors which are easier to locate.
Instead of ID tags the author recommended to use Cyber Codes for tagging the rooms. This 2D-
tagging system offers more information than ID Tags, e.g. position and orientation. After having a

Bedroom
1

Living
Room

Bath
Room

Front
Door Kitchen

Bedroom
2

Dining
Room

AIBO as an Intelligent Robot Watchdog

43

graph of the whole house it is not hard to find the way from one room to another one. A simple
depth first search algorithm can simply do the job.

The proposed functionality of the AIBO, ‘AIBO, come here’, is a part of the AIBO watchdog. The
proposed solution to realize this functionality is very smart. The whole idea is very subtle, but the
details have to be worked out to realize this idea.

Obstacle Avoidance and Path Planning for Humanoid Robots using Stereo Vision

The authors have applied stereo vision to estimate the floor distance and obstacles on the floor [59].
As a result a biped humanoid robot can walk safely on the ground and avoid obstacles on its way.
First the two images of 2 vision systems have to be combined to a bigger image by using block
matching. Obstacles with lots of textures will be recognized as obstacles. While scanning the area
with both cameras on its head, a grid map will be made. The whole area will be divided into grid
lines. Not scanned area will be represented with a particular color on the map. Obstacles and floor
will be given with another color. During walking around its environment a real time grid will be
made that is used for path planning. A simple A* search algorithm can find a path to move to its
destination. This concept is illustrated in Figure 3.8.

Figure 3.8: Right image shows the occupancy grid and planned path of the left original image.

As the authors also have mentioned this approach can only work when the environment contains
enough textures. Using the approach the biped robot is able to move around in a static environment.
The authors have not given a solution to the problem when the environment is not static, but
dynamic. So when a moving object is running around, shall we take another path or walk carefully
without standing on it, but this is the first step to move to that goal. A global architecture was given
to use this stereo vision to avoid obstacles and for path planning. This global architecture is
illustrated in Figure 3.9.

Kinematics component reads all the joints sensors and image sensor. The Plane Extractor
component extracts the objects of the image and let the Occupancy component update the
occupancy grid. As a result the path planner can find an obstacle free path to its destination. This

AIBO as an Intelligent Robot Watchdog

44

paper can serve as a baseline for obstacles avoidance and path planning of the AIBO watchdog,
however the physical possibilities are not the same; AIBO has only one camera.

Figure 3.9: Global software architecture of obstacles avoidance and path planning.

3.2.3. Internal Components
Internal components are concepts components that are necessary to improve the intelligence of
robots. By providing the AIBO watchdog a short term memory component it is able to recognize
events in time space. A long term memory component can provide storage of its learning during its
exploration. Task planner component will choose the right task to be executed at the right time. In
this section 3 papers will be discussed.

A Robot that Reinforcement-Learns to Identify and Memorize Important Previous
Observations

The author has designed an approach to extract the important events from the previous observations
and use them to make a decision later on [60]. Situations where the environment is fully observable
one can decide its output immediately, but in partially observable situations there is a short term
memory needed to remember the important events to search for the appropriate output. The author
has set up a test case for this theory.

First the events will be extracted with an unsupervised learning method, ARAVQ (Adaptive
Resource Allocation Vector Quantization). Thereafter the events will be put in the Reinforcement
Learning (RL) system. The Long short term memory (LSTM) is an important part of the RL system.
Events that are useless will be discarded by this component. Events that are no more needed will be
removed from the LSTM to prevent overload. Only the useful input and output will be memorized.
Figure 3.10 shows the architecture of the RL-LSTM network.

odmetry

Occupancy
Grid

Situated Behavior
Layer

Resource
Manager

Plane
Extractor Motion

Controller

Kinematics LocomoEngine

occupancy
grid

obstacle

disparity
image

kinematics

odmetry

sensor
(joint)

image sensor joint angle

walk command

Motion command

action

Path planner

AIBO as an Intelligent Robot Watchdog

45

The data will be gathered with online exploration. After many iterations the gathered information
will be used for the offline learning. As a result the author achieved very good result with this
model. Since the AIBO watchdog does not have a full view of the whole environment, this
approach forms the base idea to let the AIBO see the relationship between two or more related
events.

Figure 3.10: Architecture of the RL-LSTM network.

Autonomous Rovers for Mars Exploration

This paper explained what a Mars rover robot has to be [61]. It has to be a robust semi-autonomous
robot which can deal with all kind of environment. Self-repairing and charging are basic operations
that it can operate. Navigating around the Mars-planet and decision making when in danger are also
a part of the basic operations. The architecture that they have developed to meet the requirements is
also promising. Figure 3.11 illustrates this architecture.

Figure 3.11: Mars rover architecture.

A a1 A a2 A a3

hidden hidden

event

Memory cells

hidden

Scientist
interfaces

Planner/Scheduler

Schedule Science
goals

Simulator

Rover Op
interface

Scientists
Rover

operator

Ground

Rover

Executive
Resource
manager

Rover real-time
system

Mode
identification

requests

conflicts

State
information

commands

Uplinked
sequence

AIBO as an Intelligent Robot Watchdog

46

This architecture has a planner which deal with the priorities of its missions. The Rover operators
from Earth can set the priorities when needed. The resource manager inside the rover robot, the
mode identification object and the Executive object are the intelligence of the Rover robot. A more
detailed architecture of the inside of the Rover robot was not provided, but the important
components were explained with figures. However this architecture is not fully autonomous, it can
serve as a good inspiration source for the design of the AIBO watchdog.

Find Kick Play - An Innate Behavior for the Aibo Robot

The author proposed to use innate behavior to let the AIBO develop and learn about its environment
[63]. The innate behavior that was designed and implemented is finding the pink ball and kicking it
to the goal. A lot of basic functions were needed and most of them can be used for the AIBO
watchdog. The common problems were also discussed and solved partially.

Figure 3.12: States of the Finite State Machine of the search and kick behavior.

Problems like object recognition, setting up a connection with the server, stable walking
functionality, stable camera input, searching for the ball object, etc. were discussed and resulted to
some useful advises. The author has used a Finite State Machine (FSM) to model the innate
behavior. Since Finite State Machine is designed modular, it is very easy to add or create new

Search Down Search Left-Right Search Right-Left Search Dynamic

Lost Ball

Approach Ball

SEARCH STATE

“See ball”

“See ball” “See ball” “See ball”

“See ball”

“Lost ball”

“Lost ball”

Find Goal Look for Goal
“See goal”

“close enough” POSITION TOWARDS GOAL

Kick Prepare to Kick

“Leg is next
to ball”

Did you Score?

“yes”

DONE!

“no”

“Too far”

“Lost ball”

“Lost ball”

“Goal is aligned with ball”

AIBO as an Intelligent Robot Watchdog

47

behaviors with this model. Figure 3.12 illustrates the states of the Finite State Machine of the search
and kick behavior.

All of these functionalities were realized with the Pyro AIBO Controller connected with the
Tekkotsu server. The author has succeeded with converting his model to working implementation.
Detailed programming code was not given why this paper resulted to only some useful hints and
working recommendations. The result of this literature research is summarized in Table 3.1.

Table 3.1: Summary of the result of the literature survey about the concepts which can be used for
the AIBO watchdog.

Use of multimodalities

• Use purposeful perception to look for abnormal objects and
situations.

• Use audio-visual flow estimation to follow suddenly hidden moving
sound objects.

Path planning and world modeling

• Use graph representation for the home environment.
• Use occupancy grid for individual rooms.
• Use Cybercode tagging on the doors for room identification.

Internal components

• Short term memory components.
• Task planner and resource manager.
• Innate behavior component.

AIBO as an Intelligent Robot Watchdog

48

49

AIBO

“Anything you can do needs to be done, so pick up the tool of your choice and get started.”
Ben Linder

n this chapter the most important issues regarding the AIBO robot dog will be discussed. First
the AIBO hardware will be discussed and thereafter the software environment. The working of

the AIBO concept will follow and at last the functionalities of the AIBO watchdog regarding the
hardware specifications will be presented.

AIBO is a robot dog which is developed by Sony as an entertainment robot [7]. There are lots of
variants of the AIBO robot dog. Every new one gives more possibilities than the previous one. The
AIBO that this project uses is the revised version ERS-7 which is launched in the winter of 2005.
The specifications of AIBO-ERS7 are shown in the table below.

Table 4.1: Specifications of the AIBO-ERS7.

CPU 64-bit RISC Processor

CPU clock speed 576 MHz

RAM 64 MB

Program media Dedicated AIBO robot “Memory Stick™” media

Moveable parts Head – 3 degrees of freedom
Mouth – 1 degree of freedom
Legs – 3 degrees of freedom x 4
Ears – 1 degree of freedom x 2
Tail – 2 degrees of freedom
(Total 20 degrees of freedom)

Input section Charging contacts

I

AIBO as an Intelligent Robot Watchdog

50

Setting switches Volume control switch
Wireless LAN switch

Image input 350.000-pixel CMOS image sensor

Audio input Stereo microphones

Audio output Speaker 20.8mm, 500mW

Integrated sensors Infrared distance sensors x 2
Acceleration sensor
Vibration sensor

Input sensors Head sensor
Back sensor
Chin sensor
Paw sensors

Power consumption Approx. 7 W (in standard mode)

Operating time Approx. 1,5 hours (with fully charged ERA-7B1, in standard mode)

Dimensions Approx. 180 (w) x 278 (h) x 319 (d) mm

Weight 1.6 kg (including battery pack and “Memory Stick™” media)

Operating
temperature

5°C to 35°C (41°F to 95°F)

Operating humidity 10% to 80% (no condensation)

Operating wet-bulb
temperature

Max. 29°C (84°F)

Storage temperature -10°C to 60°C (14°F to 140°F)

Storage humidity 10% to 90% (non condensation)

Storage wet-bulb
temperature

Max. 29°C (84°F)

Wireless LAN
function

Wireless LAN module (Wi-Fi certified)
Internal standard compatibility: IEEE 802.11b/IEEE 802.11
Frequency band: 2,4 GHz
Wireless channels: 1 – 11
Modulation : DS-SS (IEEE 802.11 – compliant)
Encryption : WEP 64 (40 bits), WEP 128 (104 bits)

AIBO as an Intelligent Robot Watchdog

51

4.1. AIBO Hardware
Figure 4.1 and Figure 4.2 shows the AIBO features respectively from the front view and the rear
view. AIBO receives the information from its environment through its sensors: video camera (a
350,000 CMOS image sensor), stereo microphones in its ears, two distance sensor, and various
touch sensors on head, back, chin, paws, acceleration sensor, and a vibration sensor [7].

The equipments of the AIBO to show its reactions are: speaker on its chest, LED Lights (on face,
ears and back) and a series of movable parts: head (3 DOF1), mouth (1 DOF), legs (4*3 DOF), ears
(2*1 DOF) and tail (2 DOF). Apart from this AIBO is also equipped with a wireless connection
802.11b and a blue LED to show its status [7].

Figure 4.1. AIBO sensors and actuators – front view.

Figure 4.2 AIBO sensors and actuators – rear view.

AIBO as an Intelligent Robot Watchdog

52

4.2. AIBO Software
OPEN-R is promoted by Sony as the standard interface for its entertainment robots systems, such as
the AIBO. Figure 4.3 shows the hardware/software architecture of the AIBO.

Figure 4.3: Hardware/software architecture of AIBO.

OPEN-R system layer is built on top of the operating system APERTOS. OPEN-R system layer
offers the access to the software, hardware and network capabilities of the AIBO. In the OPEN-R
application layer Sony has developed advanced features for the AIBO, such as face recognition,
voice recognition, obstacles avoidance, etc. Since Sony does not provide the documentation about
the application layer, there is only documentation about the system layer. Therefore designing and
implementing a new model can only be realized with help of third parties software which interact
directly with the OPEN-R system layer.

4.2.1. Apertos
APERTOS is an object-oriented embedded operating system based on meta-level architecture.
Many of the APERTOS' design concepts have a heavy weight in the way AIBO is programmed
with OPEN-R. Everything in APERTOS is an object. Each object encapsulates the state, methods
which access such state, and a virtual processor which executes its methods.

The communication inter-objects is made by message passing and the object execution is guided by
events. After the initialization, an object uses to be idle. When an object wants to communicate with
others, it sends a message, writing the data in shared memory and sending an event to the
destination object, which will eventually be activated, it will read the data and handle it depending
on the message type has arrived. These events have some assigned priority so that it can be
distinguished between an ordinary event from a hardware interruption and other events.

When an object is performing an operation (a method typically) it will not be interrupted by an
event or interruption until the operation is finished to avoid race conditions. It will achieve this by
interruption masking. The message that can not be manager immediately is stored in a message
buffer allocated in shared memory. Although all the objects share the same memory space, no
object can overwrite any data belonging to other object. The only exception is in message buffer
case. The message delivered to other object is allocated in a shared region in memory. APERTOS
does not provide a transparent way to protect this memory. It only provides a counter for references
to a memory region. The objects use a meta-hierarchy of meta-objects to define its behavior. The set

OPEN-R: Application

OPEN-R: System Layer

APERTOS

Sensors Communications Actuators

AIBO as an Intelligent Robot Watchdog

53

of meta-object that a object uses is called meta-space. If an object, for example, wants TCP/IP
communication and its meta-space do not support this, the object can migrate to other meta-space
that support this kind of communication [50].

4.2.2. Open-R system Layer

Figure 4.4: Open-R System layer overview.

Figure 4.4 shows an overview of the OPEN-R system on AIBO. The system contains several
objects that communicate with each other by means of message passing. The term “object” is not
the same as the term “Object” as we know it from the Object Oriented programming paradigm. In
Open-R, an object must be interpreted as an executable program. In this sense, OPEN-R is a system
in which several objects run concurrently and communicate with each other through message
passing. The object sending a message is called a subject and the object receiving the message is
called the observer. A single object can be subject and/or observer depending on the situation.

The OPEN-R system contains two special objects, OVirtualRobotComm and
OVirtualRobotAudioComm, these are the only two objects that can directly access the physical
AIBO (sensors, joints etc). From a programmer’s point of view, both objects can be regarded as any
other normal object [51].

Object OVirtualRobotComm deals with the joints, LEDs, sensor values and image capturing. On
the other hand Object OVirtualRobotAudioComm deals with the microphone and speakers of the
AIBO. These objects will be steered by the commands of the application layer.

4.2.3. Open-R Application Layer’s Software Development Environments
There are 5 software environments to replace the OPEN-R application layer and program the AIBO.
A short introduction of each software environment will be presented below.

OPEN-R SDK

Sony developed an OPEN-R SDK with which applications that make use of OPEN-R system level
functions can be developed. The OPEN-R SDK is a cross development environment based on gcc

AIBO
(Physical)

OVritualRobotComm

OVritualRobotAudio
Comm

Object

Another
Object

AIBO as an Intelligent Robot Watchdog

54

(C++). Applications created with the OPEN-R SDK can run on AIBO, but the application has to be
copied to a programmable memory stick first. The OPEN-R SDK can be considered the most basic
of the packages. In addition, the OPEN-R SDK contains "Remote Processing OPEN-R"
(RP_OPEN-R). RP_OPEN-R is a remote processing environment where OPEN-R based programs
can be executed on machines other then AIBO [51].

URBI

URBI, Universal Robotic Body Interface, is a scripted command language used to control robots
(AIBO, pioneer,etc). It is a robot-independent API based on client/server architecture. In the OPEN-
R programming model the URBI server can be viewed as another object. The developer can make
use of the URBI server in two ways: via a computer through the wireless LAN using the liburbi
C++ (external client) or through direct inter process communication using liburbi-openr (onboard
client) [51].

Tekkotsu

Tekkotsu is a framework built on top of OPEN-R SDK. This means, that in order to use Tekkotsu,
the OPEN-R SDK also has to be installed. Tekkotsu offers a way to interface with WLAN. Joints,
headmovement camera etc. can be controlled via wireless LAN. The programming model with
URBI also holds for Tekkotsu. (Tekkotsu server is also an object running on OPEN-R).

The advantage of Tekkotsu is that it offers higher level commands (instead of moving individual
joints, one can issue commands like “walk”). Furthermore the Tekkotsu framework aids people who
develop objects intended to work on the AIBO (with Tekkotsu) by adding a level of abstraction. So
instead of having the to know the message passing details of ones object with other objects (like in
the URBI) a Tekkotsu programmer can think in terms of behaviors [51].

OPEN-R framework

AIBO Remote Framework is a Windows PC application development environment based on Visual
C++ with which you can make software that works on a Windows PC. The software can control
AIBO (ERS-7) via a wireless LAN. Multiple AIBO and PC applications can be connected at the
same time. OPEN-R framework also offers high level commands [51].

R-Code

R-CODE is a high-level, interpreted script language created for AIBO Master Studio. It is intended
for hobbyists and end-users. An R-CODE script is interpreted and executed by the R-CODE
interpreter object, which is actually an OPEN-R object. As R-CODE is an interpreted script, it is not
suitable for computing-intensive processing [51].

AIBO as an Intelligent Robot Watchdog

55

4.3. Working of the AIBO Watchdog
The AIBO watchdog can be viewed as an agent. It perceives its environment through sensors and
acting upon that environment through actuators. A global description of this process will be
explained in this section. Figure 4.5 shows a simple representation of this process.

Figure 4.5: A simple representation of the working of AIBO watchdog.

4.3.1. AIBO Perception
The perception of the AIBO relies on its input sensors. Every sensor can sense some features of an
object. Features of an object that an image sensor can perceive are for example the color and shape
of an object. The sound frequency is an example of a sound feature that the sound sensor can
perceive. Figure 4.5 shows some possible perception by AIBO watchdog. Objects can have sound
features and image features or only one of them. Other features are also possible. The big question
is whether they are detectable by the available sensors. That is the reason why some sensors are
more important than the others in certain environments.

4.3.2. AIBO Brain
As mentioned before AIBO lacks of a good reasoning system for the AIBO watchdog. Therefore an
intelligent reasoning system needs to be developed. To have an intelligent reasoning system the
perceived features from its sensors have to be combined and synchronized on time. As a result a
clear picture can be drawn about the situation and the most appropriate reaction can be derived.

Prior to being able to perceive features of objects a complete environment needs to be designed.
The relevant objects for the AIBO watchdog, which the reasoning system will reason about, need to
be described and modeled. This world model will contain the object list of the AIBO environment
and a description about the transformation of objects into features.

In order to get new inputs from its environment the AIBO watchdog needs to be able to walk
around and perceive information from the new location. A route planning system is therefore a part
of the AIBO brain. Depending on the situation this planning system gives the safest, fastest or
shortest path or a combination of these aspects.

AIBO as an Intelligent Robot Watchdog

56

4.3.3. AIBO Actuators
The actions that the reasoning system prescribed need to be executed by AIBO. The actuators of
AIBO, e.g. legs, head, wireless connection, speaker, can work in parallel or sequential. Advanced
and efficient movements can be executed, but the synchronization aspect plays an important role to
coordinate the AIBO successfully. Figure 4.5 shows some possible actuators by the AIBO
watchdog.

4.4. Functionalities
In this section the functionalities of the AIBO watchdog will be explained. Based on the hardware
capabilities and limitations the functionalities of AIBO can be determined. The functionalities of the
AIBO watchdog can be divided into 4 categories: basic physical operations, basic technical
operations, advanced operations, high level operations.

1. The basic physical operations deal with physical joint movements of the AIBO. These
operations form the base for all functionalities of the AIBO.

2. The basic technical operations deal with the technical devices in the AIBO, such as sound
and display devices.

3. Advanced operations combine the basic physical operations and basic technical operations
to realize a complex action.

4. After being able to execute advanced tasks by the AIBO, high level operations provide the
owner the one-touch command functionality, e.g. by touching its head it can patrol its
environment autonomously and reports the owner when something suspicious has been
found.

4.4.1. Basic Physical Operations
Leg Movements

• Walk slowly.
• Walk normally.
• Walk fast.
• Turn left.
• Turn right.
• Stand still.
• Lay down.

The pace of walking should be fully dependent on the environment and the state of the AIBO. In
emergency AIBO will walk faster than usual. When there are obstacles on the path, AIBO will turn
left or right to avoid the obstacle and the pace of walking should also be adapted.

Head rotations
• Rotate head to left.
• Rotate head to right.

AIBO as an Intelligent Robot Watchdog

57

Rotating the head is necessary for detecting obstacles on the path. By rotating the head to left and
right, the AIBO is able to detect obstacles on its left side and right side.

4.4.2. Basic Technical Operations
 Input operations

Taking picture
• Capture the scene.

When something suspicious or abnormalities are found, the AIBO can capture the scene and send it
by email. The owner can have a better look on the situation. Beside of that this functionality can
also be used for recognition of objects.

Detecting sound sources
• Amplitude and frequency of sound.
• Direction of sound source.

When the AIBO watchdog hears some sounds, it will determine the amplitude and frequency. These
data are needed for classifying the sound source. When possible the direction of the sound source
needs also to be estimated.

Measuring distance to obstacle
• Measure distance to obstacle with Infrared sensor

By using the Infrared sensor on the head of AIBO, the distance can be measured to the obstacle.
Collision can beforehand be avoided.

Touching objects
• Touched objects with touch sensor.

When the touch sensors bumped onto an obstacle, the AIBO have to react on it. Sometimes it is also
necessary to notice when it do not bump onto an object. This is the case when one of the legs of
AIBO does not touch the ground, after a full step movement of the AIBO. This situation can
indicate that AIBO is standing on 3 legs and it is going to fall down.

 Output operations
Playing sounds

• Play a wave/midi file.

By playing sounds AIBO can alarm the people around the AIBO watchdog. Normally when the
AIBO have not encountered some suspicious things, it can play a tune to let the people know that
everything is safe. When it encounters some abnormalities, it can play another pre-programmed
tune. It is a one way communication with the people. This functionality can be switched off when
there is nobody at home.

Displaying mood on its face
• Display the LED’s on the face.

AIBO as an Intelligent Robot Watchdog

58

By displaying the LED’s on the face of the AIBO, the people will know what the AIBO watchdog
is doing right now. The LED’s can also show whether something serious has happened during the
last hour. For example a green circle on its face indicates nothing serious has happened in the last
hour and a red circle when something serious has happened.

Sending emails
• Send emails to the owner.

When the owner is not at home, this is the only communication channel with its owner. Serious
event can be reported to the owner.

4.4.3. Advanced Operations
Recognizing objects

• Color, shape and material.

By capturing the images by the camera of the AIBO, an analysis of the color, shape and material of
the objects in the picture can be made. Using predefined suspicious color, shape and material a
match can be made with the captured picture.

Scanning area
• Obstacles on path.

By scanning the area with camera and Infrared distance sensor the AIBO is able to detect obstacles
on its path.

Obstacles avoidance
• Bumping on the obstacle.
• Avoiding collision with the obstacle.

When the AIBO is not quick enough to detect the obstacle, it will bump onto the obstacle and
choose another path to walk. Choosing another path is necessary to avoid bumping onto it forever.
When the AIBO is quick enough to detect the obstacle, AIBO will choose another path to walk.

Moving to another room
• Locate its current position and find the destination.

The AIBO must be able to locate its current position. This can be done by tagging each room or
finding key objects. Using this information and a map the AIBO is able to move to another room.

Detecting abnormalities
• Pre-programmed suspicious color or shape.
• Missing objects.

After pre-setting the suspicious color and shape, every time when AIBO encounters that color and
shape, the AIBO will alarm itself and the owner that something suspicious has been found. Based
on the kind of abnormality an appropriate action will be carried out. In a predefined world

AIBO as an Intelligent Robot Watchdog

59

environment, AIBO is able to detect missing objects and changes in the predefined world
environment. An appropriate action can be linked to the kind of change.

Moving to a sound source
• Sounds amplitude and sound frequency.
• Sound direction.

When the AIBO hears some sounds, it will move to the sound source with the highest sounds
amplitude and thereafter searching for the highest frequency. The sound direction of the sound
source has to be estimated.

4.4.4. High Level Operations
Patrolling the environment

• Walking around the whole house.

The AIBO is able to patrol the whole environment. The AIBO must be aware of its current location
and be able to move from one location to another location in the home environment. It must not be
stuck in one room and it must have the intelligence to escape.

Finding suspicious events
• Detect abnormalities.
• Detect sound.

When AIBO detects sounds or abnormalities, it will explore the environment and find the cause of
the abnormalities. Thereafter an appropriate action will be carried out.

AIBO as an Intelligent Robot Watchdog

60

61

Model Design

"Imagination is the beginning of creation. You imagine what you desire, you will what you
imagine and at last you create what you will."

George Bernard Shaw

his chapter presents the models regarding the design of the AIBO watchdog. First the
requirements analysis of the AIBO watchdog will be discussed; thereafter the developed

architecture and finally the used models will be presented. Furthermore the global interaction
process of AIBO with its environment will be explained. Thereafter an architecture will be
presented based on this interaction process. Additionally a navigation method will be presented
including the test environment.

5.1. Requirements Analysis
In this section the requirements of the ideal AIBO watchdog will be discussed and the scope of this
project will be determined. There are three kinds of requirements: functional requirements,
nonfunctional requirements and pseudo requirements. Functional requirements describe the
interactions between the system and its environment independent of its implementation. The
environment includes the user and any other external system with which the system interacts. On
the other hand nonfunctional requirements describe the user-visible aspects of the system that are
not directly related with the functional behavior of the system. Nonfunctional requirements include
quantitative constraints, such as response time or accuracy. Furthermore pseudo requirements are
requirements imposed by the client that restrict the implementation of the system.

5.1.1. Functional Requirements
 Ability to move freely in its environment

The first requirement of the AIBO watchdog is that it must be able to move freely in its
environment, a home environment. This implicates that it can avoid obstacles and avoids falling
down from the stairs. Using the distance sensor and edge sensor of the AIBO these 2 situations can

T

AIBO as an Intelligent Robot Watchdog

62

be solved. Obstacles which are not directly blocking the AIBO watchdog need also be avoided. A
good example of such kind of object is a small chair with 4 legs. At the first sight it seems that the
AIBO can walk through the hole, but when AIBO is walking through it, AIBO head may collide
with the upper part of the chair. Therefore AIBO must be able to move freely its environment
without damaging itself.

 Creating a map of the environment

When AIBO has started up, it can perceive the environment with its sensors. At this stage AIBO
can create a map of its environment. So by exploring its environment a real-time map can be created.
This approach requires at least 2 cameras to estimate the distance to this object. The built-in
distance sensor can give a good support for this approach. But this approach heavily relies on its
vision. Therefore a good lighting condition is required. A less flexible approach is importing the
map of the environment in the AIBO. This can save a lot of time for the AIBO and it can patrol the
environment immediately. If AIBO discovers some changes in the environment during patrolling,
the imported map will be updated. As a result AIBO will always have an updated map even when
the imported map was not up to date.

 Navigation in the environment

Based on the created map and the features around the AIBO, AIBO must be able to locate itself on
the map. After knowing the goal position AIBO has to calculate the best route to the goal position.
The best route can be based on the shortest path, the fastest path or something else. The navigation
algorithm can be based on a discrete representation of the map or the continuous representation.
Using the discrete approach it is much easier to navigate to the destination.

An example of the discrete approach is using waypoints. We divide the whole environment into
equally divided squares, so called cells. The start location is the middle of the cell and the end
location is the middle of an adjacent cell. An adjacent cell can be a cell which is vertically,
horizontally or diagonally related to the start cell. In a continuous approach AIBO will update its
location after every small step. This approach is more natural and flexible. The drawbacks of this
approach are that the navigation algorithm is very complicated and it requires a robot which is able
to move accurately.

 Objects recognition

When AIBO is able to move around freely, AIBO needs to react to objects that it encounters.
Therefore recognizing the objects is the next step. In a real environment it is very difficult with
recognizing the objects, especially when it is not possible to define the objects unambiguously. A
simple example is defining the features of a chair. It can have 1 leg, 2 legs, 3 legs or 4 legs. If it has
4 legs, this can also be a table. To be able to recognize objects properly, we need a classifier which
is able to classify the objects properly based on its features.

AIBO as an Intelligent Robot Watchdog

63

 Objects tracking

It is not sufficient only to recognize the objects. Moving objects need to be tracked after
recognizing. It is important to have a motion estimation algorithm to find the moving object in the
next frame of the incoming video. When AIBO needs to keep track of an object while AIBO is
walking, this motion estimation algorithm has to offer assistance.

 Scenario reasoning

AIBO should have some sense of context awareness. After discovering certain objects AIBO should
react to it. If it was a normal object, nothing special is needed to carry out. Otherwise the discovered
object can indicate that a certain scenario has already started. Therefore a good reasoning system is
needed to reason about which scenario has started based on the incoming objects during patrolling.

 Prioritizing the scenarios and remembering the scenarios

After knowing which scenario is going on it does not mean that scenario need to be solved. Two or
more scenarios can occur at the same time. The reasoning system needs to be able to prioritize the
occurring scenarios. Scenario which has a higher priority needs to be carried out first and the rest of
the scenarios will be solved afterwards. Therefore the AIBO also needs to remember the scenarios
that have occurred till now.

 Remembering the useful objects

During patrolling AIBO can encounter objects that can be used to solve scenarios. When AIBO
needs to escape its environment, it is necessary that AIBO knows the location of the door. If it has
encountered the door before, it is useful to put that in its memory. As a result the intelligence of the
AIBO can be increased.

 Assigning Actions

After knowing the occurring scenarios AIBO must react on it, or in other words AIBO must try to
solve the scenario by itself or with help of others. The reactions that AIBO needs to carry out can be
given beforehand to the AIBO or let the AIBO learn the reactions by training. By implementing the
actions for every scenario in the AIBO, AIBO can react on the predefined scenarios properly. The
advantage of this approach is that it can be used immediately after adding the programming codes.
Adding new actions and removing actions can very easily be done. While training is time
consumptive and it is less flexible with adding and removing actions. But when there are a lot of
scenarios and possible actions this approach can produce the output much faster and less code is
needed.

 Working autonomously

The ideal AIBO watchdog should be able to move on its own without help of other tools or human
being. So the complete program to control the AIBO watchdog should be implemented in the
memory of AIBO. AIBO uses a special Sony memory stick to load the program in the working
memory. The capacity of this memory stick is at most 16MB. Therefore if we want to create an

AIBO as an Intelligent Robot Watchdog

64

AIBO watchdog, the whole program can be at most 16MB. Since object recognition programs are
very large and processor intensive a solution can be running the software on an external PC and
control the AIBO watchdog by this external PC. This approach creates a non-autonomous AIBO
watchdog which relies on the robustness of the external PC and wireless communication.

 Automatic charging

Activation of a scenario should not only consider external incoming events, but also internal events.
Using one full charge of the battery AIBO is able to move around for 2 hours. Therefore it is
necessary to charge the AIBO a few times a day. If there are no people present for a long period to
charge the AIBO, the AIBO watchdog concept is useless. Therefore AIBO watchdog must be able
to charge itself, when its battery level is very low. The Sony software that has been included with
the AIBO robot already has this functionality. It proves that automatic charging is not just a concept,
but it does work in practical.

5.1.2. Nonfunctional Requirements
 Real time patrolling

The AIBO watchdog needs to be able to react on the objects as quick as possible. Therefore it is
required that AIBO watchdog is able to patrol the environment in real time and react on events
within 1 second.

 Loudness of alarm sounds

When AIBO is creating an alarm sound to warn the surrounding people, the sound must be as loud
as possible but not damaging the ears of people. Human beings have different sensitivities for
different sound frequencies. The spectrum of the frequencies that human beings can sense is
between 20 Hz and 20000 Hz. According to the Fletcher - Munson curve [53] the most sensitive
spectrum is between 100 Hz and 10000 Hz and the corresponding sound pressure level is between
50 and 70 dB. Therefore these numbers will be the sound spectrum for the alarm sounds.

 Quality of captured pictures

For recognizing the objects in pictures by people and image processing software it is necessary to
have a picture as large as possible. The largest resolution of the pictures is only 208x160 pixels due
to the camera limitations. Therefore the resolution of the captured images has to be 208x160 pixels
and saved in jpeg format.

5.1.3. Pseudo Requirements
 Modular and flexible

The requirements that are mentioned in this chapter, each of them can be achieved with several
approaches. Due to the time aspect it is not possible to choose the best option at each requirement.
Therefore the architecture of the AIBO watchdog must be designed modular, so changes in future
work will not lead to implementing the AIBO watchdog from scratch on. But only by replacing a

AIBO as an Intelligent Robot Watchdog

65

component is sufficient. The flexibility of the program is also an important issue. Not everyone
likes the barking sound that is standard implemented in the program. So it must remain flexible and
provides the ability to be adapted to everyone’s flavor.

5.1.4. Scope of This Project
Every requirement of the ideal AIBO watchdog consist problems that need to be solved. Due to the
time constraint we are not able to solve them all, but we need most of the requirements to show the
correct working of the AIBO watchdog. Therefore we will fulfill most of the requirements and
sometimes the simplest approach will be chosen. The list below will discuss to which extent the
requirements will be fulfilled:

 Ability to move freely in its environment
AIBO watchdog is able to avoid collision with obstacles while patrolling.

 Creating a map of the environment
AIBO knows its environment after initialization.

 Navigation in the environment
AIBO can calculate the most appropriate route and navigate to a certain point.

 Objects recognition
Recognition of objects will be completed by simulation. The incoming features of objects will
be simulated.

 Objects tracking
No moving objects are taken into account.

 Scenario reasoning
AIBO watchdog is able to reason the scenario of the current situation.

 Prioritizing the scenarios and remembering the scenarios
AIBO knows what to do when more than 1 possible scenario occurs.

 Remembering the useful objects
AIBO understands that some objects can be used and when to use it.

 Assigning actions
AIBO knows what kinds of actions are needed to be executed in a certain situation.

 Working autonomously
AIBO is controlled by an external pc

 Automatic charging
The user has to charge the AIBO manually.

 Real time patrolling
AIBO reacts on real time objects within 3 seconds.

 Loudness of alarm sounds
Frequency of alarms sounds will be between 100 Hz and 10000 Hz and sound pressure level is
between 50 and 70 dB.

 Quality of captured pictures
Resolution of captured pictures is 208x160 pixels in jpeg format.

AIBO as an Intelligent Robot Watchdog

66

 Modular and flexible
The AIBO watchdog architecture is modular and flexible.

 Software
To continue the work of the predecessors the AIBO watchdog will be implemented in Java and
Jess.

5.2. Interaction Process with Environment
Understanding the interaction process of the AIBO watchdog is crucial to develop the reasoning
architecture of the AIBO watchdog. Figure 5.1 illustrates this interaction process.

Figure 5.1: The global interaction process of AIBO and its environment.

The environment contains a collection of physical objects which are spread across the environments
area, e.g. table, door or fire. All objects have features which can be perceived by the AIBO sensors.
The AIBO robot dog has 4 types of sensors which can interact with its environment: sound sensor,
image sensor, distance sensor and touch sensor. The inputs of these sensors create a feature list at a
certain time and location.

The features in the feature list will be used for recognition of the objects in the environment. The
correctness of this recognition is heavily depending on the correctness of the sensor’s signal and the
quantity of features that the sensors can distinguish. Furthermore due to ambiguity of the features
the interpreted objects will not always match the original object. This problem can partly be solved
by introducing more detectable features to decrease the ambiguity level. The interpretation process
will result to the interpreted objects. Furthermore to interpret moving objects it is necessary to track
the objects during a certain time period. Tracking can be achieved by comparing the current video
frame with the previous ones.

The interpreted objects will be presented to the reasoning process for understanding the current
situation and deciding the actions that need to be carried out. After executing all actions the

AIBO as an Intelligent Robot Watchdog

67

environment will provide the sensors with new data and this process will continue eternally. The 4
interaction process will be explained in detail in the following subchapters.

5.2.1. Environment
The environment contains physical objects that the sensors of AIBO partially can perceive. These
physical objects can be moving objects or nonmoving objects. The common objects that do not need
to be reacted to by the AIBO watchdog are called the normal objects. Other the other hand objects
that require special execution by the AIBO watchdog are called the special objects. These special
objects can be divided into 2 categories: causal and result. The causal objects will cause the
presence of other special objects and result objects on the other hand are the resulted special objects
caused by one or more causal objects. Therefore it is necessary to find the cause of these resulted
special objects to understand the situation. Figure 5.2 shows some examples of the normal and
special objects.

Sofa
TV

Table
Wall

Aibo Charging station

Bed
Desk
Wall
Chair

Window

smoke
sound of alarm

Fire
Intruder

Broken glass
Owner

Figure 5.2: Example of the content of the environment which will be used in the simulation process.

As mentioned in the requirements analysis section the information about the AIBO watchdog
environment will be imported in AIBO during initialization. The normal objects will be imported in
AIBO watchdog during initialization. On the other hand to be able to show the correct reasoning of
the special objects the special objects will not be imported in AIBO watchdog prototype during
initialization, but AIBO watchdog need to discover them during patrolling.

5.2.2. Perception by Sensors
The sensors raw data of the perceived objects in the environment will be preprocessed by the
preprocessing programs. These programs will filter out the noises and irrelevant redundant data and
process some useful outputs. These outputs are the features of the objects. Figure 5.3 illustrate these
processes.

AIBO as an Intelligent Robot Watchdog

68

Figure 5.3: The pre-processing diagram of the sensor’s input and output data.

The resulted outputs of the preprocessing process need to be transferred to the next stage of the
interaction process, interpretation process. Figure 5.4 shows an example of the data transferring to
the next stage.

Figure 5.4: Example output of perception process transferring to the interpretation process.

In this example only the features color, shape and material are shown. There are much more
features possible, such as sound features. The more features you have and the more accurately you
can describe, the less ambiguity is left and the more accurately AIBO can recognize.

5.2.3. Interpretation
The interpretation process consists of 2 main processes: object recognition and object tracking. The
received features from the perception process need to be processed by the object recognition
process. Based on the incoming features objects can be recognized. The accuracy of the recognition
process depends on the ambiguity of the perceived features. More classification classes can reduce
this problem. For monitoring the moving objects it is also necessary to track the movement of these
objects. The recognized objects and eventually its movements will be transferred to the next stage.
Figure 5.5 shows an example how the interpretation process works.

This example shows three features of the object at a certain location and concludes that a human
being has been detected. But ambiguity still exists with these kinds of rules. The conclusion did not
tell us whether it is a living human body or a corpse. If the AIBO has detected the first possibility,

AIBO as an Intelligent Robot Watchdog

69

then it does not need to execute any actions. But if AIBO has detected the last one, it should carry
out some appropriate actions, e.g. take a picture of the corpse, send the picture to the police and
alarm people around it. Because the real world is an open system and changes over time, it is not
possible to describe the world with limited rules.

Figure 5.5: Example of the interpretation process.

5.2.4. Reasoning Process
The reasoning process consists of 2 main processes: situation assessment and action determining
process. After receiving the information about the recognized object, such as position, orientation,
state and type, the current situation needs to be understood. By reasoning the possible situations that
the current objects can lead an appropriate plan need to be developed to solve the current situation.
It is important that the time aspect will also be taken into account during reasoning. Since time is
also a property of objects [17]. The solution is the actions that AIBO needs to carry out. These
actions will be transferred to the next process, execution process.

An object can be at position (x,y,z) at a certain moment, but it does not implicates that the object
will be at the same position after a certain time period. There are three reasons why the position of
the object has changed.

1. People moved away the object.
2. Object moved away by itself.
3. Object has been transformed.

The last possibility describes that objects can have a different shape, color material and other
features during interaction with its environment. A good example is an ice cream in the open air
during a hot summer day. Depending on the time period that the ice cream is exposed in the open
air environment its material, shape and color will be changed. The degree of its changing is
dependent on the time aspect [18].

Figure 5.6: Example of rules in reasoning engine.

AIBO as an Intelligent Robot Watchdog

70

A normal way to deal with the time aspect is introducing a memory component in the reasoning
engine. Correlation between the ice cream before melting and melted ice cream can be understood
by the reasoning engine. The memory component is the key component for human beings to be able
to think and reason. It is a part of our intelligence [21]. Figure 5.6 shows an example of a reaction
on the recognized object.

5.2.5. Execution Process
The received actions from the reasoning process will be stored in a queue. Two or more consecutive
actions that can be executed in parallel will be grouped and executed in parallel. Otherwise these
actions will be executed in the serial way, one by one. By these actions AIBO and its environment
are changed. The new sensors inputs will lead to new actions. The interaction process of the AIBO
watchdog with its environment will continue eternally.

5.3. Architecture Reasoning
After understanding the global interaction process of the AIBO watchdog with its environment the
architecture developing process can start. The total architecture should be developed to match the
interaction process. Figure 5.7 shows the developed architecture of the AIBO watchdog. The main
focus of this project is the reasoning system and partly of the execution process to show the
correctness of the reasoning process.

Simulation
software

Icons

Video

Extracted
features
database

Manager

Scenario Selector

Passive Memory Long Term Memory

Map

Event Handler Action Stack

Executor

Scenario
Priority List

XML

Scenario
knowledge

base system

Action
Knowledge

base system

World Model
XML

Actions
Attributes

XML

Short Term Memory

Interpreted Objects

Preprocessing
algorithms

ExecutionReasoning

Output

Reasoning
Preprocessing

Safety Protector

Obstacle

Navigator

Scenarios Manager

Internal Needs

Figure 5.7: The designed architecture of the reasoning component of AIBO watchdog.

AIBO as an Intelligent Robot Watchdog

71

Only the reasoning process has been totally worked out. The execution process is modeled to the
level that it can cooperate with the reasoning system. All components of this architecture will be
explained in details in the next subchapters.

5.3.1. Reasoning Preprocessing
This part of the architecture deals with the data preparation for the reasoning process. First the data
from sensors will be preprocessed with software and the extracted features of objects will be stored
in a features database. The interpretation process will recognize the objects from the features
database. These recognized objects will be passed to the manager of the reasoning system.

 Preprocessing algorithms

This component will receive sensors input of the environment. Environment can be simulated by a
program which will give the objects to the preprocessing component automatically when it reaches
a certain place. In this situation the tasks of the preprocessing component is very simple. According
to a predefined look-up table the features of that object can be found and these data will be
transferred to the features database.

Another approach for representing the environment is with icons in a real environment. Instead of
real objects it will show an icon of the real object. The icon represents the real object. In this case
the preprocessing component contains a software program which can recognize the icons. Usually
this kind of programs contains internally a features database of all possible icons. The external
features database will be replaced by the internal one. The output data can be transferred to the
interpreted object component directly.

The most difficult approach for representing the world environment is the real world itself. The
software in the preprocessing component has to recognize real objects in the real world environment.
This can be completed by finding the shape, color and sound of the objects. All kind of features of
objects can be used, e.g. material and shadow. After extracting all these features from its sensors
these data will be transferred to the features database for further matching. This is the ultimate goal
of the AIBO watchdog project an autonomous robot which is able to navigate in a real world and
able to understand the real objects in the environment as the human beings. Before the developed
architecture can achieve this stage, the developed reasoning system firstly has to be able to conquer
the first 2 approaches.

 Extracted features database

The extracted features database contains the result of the preprocessing programs. The structure of
the features database is fully dependent on the preprocessing programs. Figure 5.8 illustrates an
example of the structure of the features database.

 Interpreted Objects

The Interpreted Objects component tries to use the content in the extracted features database to
recognize the original object. The structure of this component is fully dependent on the previous

AIBO as an Intelligent Robot Watchdog

72

two stages. Many approaches can be used for this component. A neural network approach can be
used to classify the features in the features database. If the possible objects are very limited and the
uncertainty is very low one can also consider an expert system approach for this component. The
results of this component are objects. These objects will be given to the manager component in the
reasoning system.

These three components in the reasoning preprocessing can be merged into one program. But the
tasks of these three components will still be recognizable in the merged program.

Shape: circle
Color: red
Material: wood
Sound: Alarm

Shape: Square
Color: blue
Material: plastic
Sound: Ringing Bell

Figure 5.8: Example structure and contents of the extracted features database.

 Internal Needs

The internal needs component takes care of the AIBO health and mood. AIBO was designed to
accompany people who feel lonely. By adding this component AIBO can also express its desires
and needs. The complexity of these desires needs to be modeled in this component. Another
important factor in this component is it desires for food when it is hungry. When the battery is
running low, the AIBO watchdog needs to find the charging station and charges itself up. The low
battery level message will be sent to the manager component which will handle it professionally.

 Safety protector

The safety protector component monitors the input signals from the touch sensors of the paws and
the distance sensor. This component is added in the architecture to protect the AIBO from damages.
When the input signals of these sensors differ from the values in the safety protector component, the
execution of the actions needs to be terminated immediately and the executed physical actions need
to be reversed. The event handler component will find the last executed actions and a reversal of
these actions will be made. The new path needs to be recalculated by the Navigator component to
avoid the same dangerous situation.

5.3.2. Reasoning
The reasoning process contains a few components which deal with the proper working of the
reasoning system. The results of the reasoning process are the actions that need to be executed.
These actions will be put on the action stack. This subchapter will explain the details of the
reasoning process.

AIBO as an Intelligent Robot Watchdog

73

 Manager

The manager component manages the working of the first part of the reasoning process. The
manager only knows the sequential actions that are needed to be executed. It takes care of the
execution plan and this is its limited functionality. It acts like a middleman. It gets information from
a component and passes it on to another component. When all two-ways linked components, except
the event handler component, have communicated with the manager component the end result, a
scenario, will be given to the event handler component to decide the actions. Figure 5.9 and Table
5.1 illustrates the working of the manager component.

Figure 5.9: Communication sequences of the manager component. First recognized objects will be
stored in passive memory and map component. Thereafter a scenario is selected and saved in the
short term and long term memory. The most important scenario is passed to the event handler.

 Passive memory

Human beings can memorize objects unaware that they have seen. When the time comes that they
need it, they will try to remember what it exactly was and where did they exactly encounter it. This
is a kind of passive memory that human beings normally are not aware that they use it, but it will
sometimes be activated when they need that information in certain situations. This kind of memory
has been mentioned in chapter 2, the episodic memory. Therefore this kind of memory will be also
included in the design of the AIBO watchdog to make it more intelligent. Figure 5.10 illustrates this
concept.

Figure 5.10: The content and structure of the passive memory component. The memory contains a

vector of the name and coordinates of objects and also its usage.

The passive memory in the AIBO watchdog will memorize the objects that it has perceived and its
usage. For example when AIBO has encountered a door, then AIBO will assign a meaning to this
object. A door can be used to escape from this environment when necessary. The more useful

AIBO as an Intelligent Robot Watchdog

74

objects that AIBO has perceived during its patrolling, the more useful reactions AIBO can make,
when it encounters some suspicious situations.

Table 5.1: Sequence of the working of the manager component.

Sequence Working

0 The incoming objects need conditionally to be stored in the passive memory
for later usage. These objects need also to be placed on the map. This way the
map will also be updated. These 2 actions need to be done before the manager
component communicates with the other components. But the sequences of
these 2 actions are independent of each other.

1 Manager component communicates with the scenario selector component to
determine the new scenario based on the incoming objects. The new objects
will be communicated to the scenario selector and the scenario selector will
provide the manager the changes of the current scenario or a new scenario.

2 Manager component checks whether the new scenario has a higher priority
than the scenario in short term memory and try to put it in short term memory.

3 Manager component could not save the new scenario in the short term
memory, because the current scenario in short term memory has a higher
priority. Therefore the new scenario will be put in the long term memory. This
scenario will temporarily be ignored.

4 Manager component tells the event handler component whether the current
scenario has changed or not based on the incoming objects. If it has changed,
the new scenario will be communicated to the event handler component.

Every time when AIBO watchdog encounters a special object, it will search in its passive memory
to find a useful solution. When there are useful objects found, AIBO will set its new goal point to
that location. Otherwise a default routine which is pre-programmed will be executed. The size of
the passive memory is infinite, but usually it is limited by the boundary of the computer where the
program is running.

New incoming objects which are identical to the objects in the passive memory will replace the old
objects. Figure 5.11 illustrates the working of this concept. This approach is chosen to ascertain the
newest solution is the closest solution to solve the current situation. This last-in-first-out approach
will have the same handicap as the short and long term memory concept. When walking in a round
and only a few useful objects are discovered this approach will not give the best solution. But in
general, considering the complexity of the evaluation algorithm, this approach should give the
AIBO watchdog the best behavior. A better algorithm can be a heuristic function which will take
current AIBO position, goal position and estimated walk distance into account.

AIBO as an Intelligent Robot Watchdog

75

n
Object Usage

Object Usage

Object Usage
1

2

Object Usage
n+1

n
Object Usage

Object Usage

Object Usage
1

2

Figure 5.11: The adding process of a new useful object. When a new useful object has arrived
which has already been detected in the past, the new object will be put on the top of the stack.

 Scenario knowledge base system

The scenario knowledge base system contains a lot of possible scenarios that can occur in a home
environment. These scenarios are described using a card system. All these cards are sorted in a
card-tray. Figure 5.12 shows an example of this card-tray system.

Figure 5.12: Result of a card tray system in a scenario knowledge base system with a threshold of
50. The scenarios which have a value larger than the threshold and at least one involved object has

been detected will be selected.

Every time when an object arrives, the object will be matched with all objects in the card tray. For
example when the new object smoke has been detected, the state of all scenarios which contains the
smoke object will be updated. The object smoke will be highlighted and the total chance of that
scenario will be updated. Figure 5.12 shows a situation when the threshold has been set to 50. Every
scenario which has a chance probability of 50 or higher will be selected, but this is only the case
when there is an involved object highlighted. Otherwise that card will not be selected as a potential

AIBO as an Intelligent Robot Watchdog

76

scenario. So even when all conditional objects has been highlighted and the total chance is more
than the threshold, that card will not be selected if there are no involved object highlighted.

When an incoming object changed a value of a card, but it was not sufficient to trigger the scenario
to be selected, this change will be reported to the manager to carry out a small sub-action. A small
sub-action can be take a picture or capture the sound. These sub-actions do not interfere with the
main actions and can be executed in parallel. The idea behind this concept is that the new low-
prioritized scenario will not be totally ignored, but it will be partly executed.

 Designing a scenario

If one has written down all involved objects in a scenario, how can one assign chances to these
objects? Firstly there is a threshold defined, e.g. 50. Secondly split the involved objects into
conditional involved objects, objects which can occur in a scenario, but not necessary, and involved
objects which certainly will occur in this scenario. The assigned chances to the conditional involved
objects are not the most important, therefore based on your own intuition the values can be assigned,
but this has to be assigned relatively to the other involved objects. The last part is assigning the
chances to the involved objects. We have to consider which of the involved objects can ascertain
the existence of this scenario. These involved objects will have a chance of more than the threshold.
As a result this scenario will be ready to be selected. The other involved objects will have a chance
below the threshold. If combining these involved objects can lead to certainty of the scenario, then
the sum of the chances of these objects will be more than the threshold. Otherwise the sum of the
chances of these objects is lower than the threshold. Figure 5.13 illustrates the result of this process.

Figure 5.13: Result of the chance assigning process to the scenario objects. Scenario 1 has a chance

of 75, because of the detected smoke object.

Smoke is necessary in a fire scenario, because when smoke exists, there must be something burning.
Fire object is the core of the whole scenario. Therefore the maximum chance has been assigned to
this object. The conditional objects alarm sound will not always exist in a fire scenario, because it
will only be heard when someone has hit the alarm button. Yelling sound and running people can
only be the case, when there are people in the environment who have detected the fire scenario.

AIBO as an Intelligent Robot Watchdog

77

 Scenario Priority List - XML

This scenario priority list deals with the priority of the occurring scenarios. When there are more
than 1 scenario occurs at the same time, the scenario selector will select the most important scenario
based on the scenario priority list. This scenario will be executed first. Figure 5.14 shows an
example content of a scenario priority list.

Figure 5.14: Example content of a scenario priority list component. The lower the number the

higher the priority of that scenario.

In this example when there are two scenarios selected, e.g. fire and intruder scenario, the one with
the highest priority, e.g. fire scenario, will be executed first. This information is stored in an XML
file providing the option to be modified easily without modifying the code of the main program.
Anyone who wants to modify the priority list can open it with a simple text editor program and
change the settings that one needs.

 Scenario selector

The incoming objects will be inserted in the scenario knowledge base system. Based on the results
of the scenario knowledge base system the scenario selector component will select the most
appropriate scenario. There is a threshold defined in this component. Any scenarios that the
scenario knowledge base system selects have to be more than the threshold value. When multiple
scenarios are selected the selector will choose the scenario with the highest priority based on the
values in scenario priority list component. Figure 5.15 shows an example content of the scenario
selector component.

Scenario Score Board

Fire

Intruder

RingingBell

75

100

50

Scenario Chance

1.

2.

3.

Figure 5.15: Example content of the scenario selector component. Fire scenario is at the first place

because of its higher priority in the priority list, although its chance is lower than the intruder
scenario.

 Short term memory and long term memory

The most advanced specifies on this world, the human beings have two kinds of memory
components, the short term memory and long term memory. Imitating the memory concept of the

AIBO as an Intelligent Robot Watchdog

78

human beings the AIBO will also use two memory components. The short term memory component
contains the object and event that AIBO is dealing with at the moment. Figure 5.16 shows the two
memory components and its content and their relationship.

First, when an object is recognized, it will be compared with the object in the short term memory.
When the new object and its related event has a lower priority than the current object in the short
term memory, the new object will be placed in the long term memory. Otherwise the new object
will be placed in the short term memory and the old object which was in short term memory, will be
placed in the long term memory. Duplication in the long term memory is not allowed. Therefore
new objects which have exactly the same attributes as the objects in the long term memory, the old
one will be removed. When AIBO encounters a lower priority object on its way to the goal point
and also encounters it at the way back, the oldest object will be removed from the long term
memory and a new one will be placed in the long term memory.

Figure 5.16: The content and structure of the short term memory and long term memory

components. New incoming scenarios that have a lower priority than the scenario in the short term
memory, will be placed in the long term memory.

The author has given this last-in-first-out approach for the long term memory above the approach
based on the priority of the objects. The explanation for this choice is that when the current event
consumes a lot of time the next event with the highest priority will probably not exist any more.
Therefore it is no use to execute that event any more. Except the time issue there is also another
reason to choose for the last-in-first-out approach, the place issue. When AIBO has just finished its
last mission, the event of the last object is also the closest object to its current point. There is one
exception for this rule: when AIBO has not encountered an object for a long time and AIBO is
walking in a circle, then the closest one can be the oldest detected object. Figure 5.17 shows this
situation. In general the last-in-first-out approach will be more efficient.

The best approach for the long term memory issue is a combination of the two approaches. We can
set some threshold to determine which of the two approaches will be used. This can be based on the
nearest place to satisfy a certain long term event or based on the priority level which has arrived
within the last 5 minutes.

Reasoning System

Short Term Memory

Long Term Memory

Object Event

Object Event

Object Event
Object Event

AIBO as an Intelligent Robot Watchdog

79

Figure 5.17: A situation that the used LIFO approach for executing the next scenario will not work

very well. After making a round the closest object is not the last detected object, object 2, any more,
but object 1. Therefore the next scenario should actually be object 1.

 Map

The map component deals with the world environment of the AIBO watchdog. The content of the
Map component will be read from an XML file during the startup of the AIBO. This world model
XML file contains the static objects of its environment. During patrolling of the AIBO the new
incoming objects given by the manager component, will be inserted in the map component to keep
the map up to date. Missing objects in the world environment can be noticed this way. If the
manager component returns another object or no objects while the map is expecting a certain
objects, this way changes in the world environment can be noticed.

 World Model - XML

In the world model objects are defined in the world environment of the AIBO watchdog. The XML
file will be read when AIBO starts up. As a result AIBO will know what its environment looks like
and where those objects are located. Figure 5.18 shows an example content of the XML file of the
world model.

Figure 5.18: Example content of the XML file of the world model. The numbers correspond to the x,

y and z coordinates in the world environment respectively.

The structure of this file is fully dependent on the approach that is used to represent the world. This
example shows the way point based approach of the world model.

 Event Handler

The event handler receives the changes of the current scenario or a new scenario will be introduced.
Based on this information the event handler has to find an appropriate reaction. There is an action
knowledge base system which will provide the necessary help for the event handler component to
find the appropriate reactions. The event handler will also calculate the best path that the AIBO

World Model

Wall (1, 1, 0)
Wall (1, 1, 0)
… …
Table (2, 3, 0)

AIBO as an Intelligent Robot Watchdog

80

should take to fulfill its mission. The goal point will be provided by the action knowledge base
system and the path will be calculated based on the information in the map component. Some
certain reactions require some objects that can help the AIBO to fulfill its mission. For example the
reaction is escaping this room; AIBO has to find in its passive memory for an object, e.g. a door,
which can be used for escaping this room. This information can be provided by the manager
component.

 Action knowledge base system

The action knowledge base system contains the actions that need to be carried out when a new
object has been detected. This system can be created by an expert system or XML file. This system
is just a look up table to find the appropriate actions. Figure 5.19 shows an example of a rule in the
action knowledge base system based on an expert system.

Figure 5.19: Example of a rule in the action knowledge base system based on an expert system.

This rule will fire when an intruder object is detected. If this happens, the AIBO need to capture a
picture, email it, alarm the surrounding people and run away to protect itself.

When the object intruder has been detected in an intruder scenario, the actions on the list have to be
carried out. These actions will be put on the action stack component. It is chosen for the expert
system approach, because of its speed of pattern matching.

5.3.3. Execution
The resulted actions from the reasoning process will be executed by the execution components. This
component is the interaction component with its environment.

Figure 5.20: Example of the content in an action stack component. The actions at the bottom will be

executed first. It is based on the first in first out concept.

Walk forward

Turn left

Male alarm sound

Capture sound

AIBO as an Intelligent Robot Watchdog

81

Action stack

The action stack contains the resulted actions from the reasoning process. These action needs to be
executed in the first-in-first-out order. Figure 5.20 shows the possible content of the action stack.
The actions at the bottom will be executed first and new actions will be placed on the top.

Actions Attributes – XML

This XML file contains the attributes of the actions that need to be carried out. As a result actions
can be slightly modified by these attributes. Figure 5.21 illustrates the content of this XML file.

Figure 5.21: Example content of the Actions Attributes XML file. This file describes the attributes
of the movements. In this example a walk movement consists of 3 steps and the barking sound is

located at Bark.wav.

By changing the values of the action attributes, AIBO will walk farther or turn less. The bark sound
can also be modified by a better sound sample. This XML file approach provides an easier
modification process of the actions attributes. This is especially useful when AIBO needs to operate
in a new environment which will give difficulties with the current attribute values.

Executor

The executor component deals with the execution of the actions. It communicates with the internal
operating system of the AIBO and actions will be translated to the syntax of the internal operating
system of the AIBO. First it fetches the action that needs to be carried out from the action stack and
thereafter the matching attributes will be found in the actions attributes xml component. This
information will be translated to the language that the software of AIBO can understand. The last
step will be transferring this information to the AIBO. Based on this information AIBO will carry
out the physical actions.

5.4. Home Environment
In this section the ideal home environment and the test environment for the prototype will
be discussed.

5.4.1. Ideal Home Environment
The ideal environment which can be derived from our environment specification is shown in Figure
5.22. It shows a modal home environment where the AIBO watchdog can patrol in future, but for
testing the prototype a simpler home environment will be chosen.

AIBO as an Intelligent Robot Watchdog

82

Figure 5.23 shows a simple home environment where the AIBO watchdog can operate. It consists
of a living room with the standard objects that can be found in every average family. Further more
the home environment consists of a simple bedroom with its necessities, an average kitchen and a
bathroom which provides simple sanitary facilities. The objects that are found in the rooms of the
home environment are the most important objects that characterize that specific room.

Figure 5.22: An example representation of the ideal home environment where the AIBO watchdog

has to take care of.

5.4.2. AIBO Navigation
To test the developed architecture of the AIBO watchdog a simpler home environment will be used.
Figure 5.23 shows the map of the simpler home environment. There are objects from the
environment world in the test environment. For the navigation of AIBO the area are covered by
waypoints. The start point and endpoint of AIBO walking are the small circle dots on the map.
These small dots will be given beforehand to the AIBO.

The navigation goals are represented as the small squares with a character above it. The next
destination node is default the next character in alphabetic order. When special situations arise, the
goal node will be adapted. The path between the two nodes will freely be chosen by the route
planner, but it will take the node with the shortest distance to the destination node by default.
Except when there are objects on its way, it will take another route to avoid collision.

Since this project is not dealing with the pre processing of the sensors input, the input of the sensors
will be simulated and stored in the nodes of the waypoints. An external event generator component

AIBO as an Intelligent Robot Watchdog

83

which is part of the GUI module will simulate the special events and possible scenario’s which will
change in time. In summary all input features of the sensors will be stored in the nodes and these
features can be modified by the user using the GUI module. This is designed to be able to create the
special objects and its corresponding scenario.

Figure 5.23: A picture representation of the test environment for the AIBO watchdog project.

AIBO as an Intelligent Robot Watchdog

84

85

Software Design

“There are two ways of constructing a software design: One way is to make it so simple that there
are obviously no deficiencies, and the other way is to make so complicated that there are no

obvious deficiencies.”
C.A.R. Hoare

his chapter presents UML models of the AIBO watchdog. First a brief introduction about
UML will be given and thereafter the UML models about the AIBO watchdog will be

discussed. The Unified Modeling Language (UML) is a modeling language for specifying,
visualizing, constructing, and documenting the artifacts of a system intensive process. It was
originally conceived by Rational Software Corporation and three of the most prominent
methodologists in the information systems and technology industry, Grady Booch, James
Rumbaugh, and Ivar Jacobson (the Three Amigos). The language has gained significant industry
support from various organizations via the UML Partners Consortium and has been submitted to
and approved by the Object Management Group (OMG) as a standard (November 17, 1997) [24].

Diagrams depict knowledge in a communicable form. The UML provides the following diagrams,
organized around architectural views, regarding models of problems and solutions:

 The User Model View
• Use case diagrams depict the functionality of a system.

 The Structural Model View
• Class diagrams depict the static structure of a system.
• Object diagrams depict the static structure of a system at a particular time.

 The Behavioral Model View
• Sequence diagrams depict the specification of behavior.
• Collaboration diagrams depict the realization of behavior.
• State diagrams depict the status conditions and responses of participants involved in

behavior.

T

AIBO as an Intelligent Robot Watchdog

86

• Activity diagrams depict the activities of participants involved in behavior.
 The Implementation Model View
• Component diagrams depict the organization of solution components.

 The Environment Model View
• Deployment diagrams depict the configuration of environment elements and the

mapping of solution components onto them.

Fundamentally, diagrams depict knowledge (syntax). Because the foundation of the UML
constitutes the necessary and sufficient engineering practices for problem solving, processes that
utilize the UML are assured of resting upon a foundation that provides the potential for success [24].

6.1. Use-Case Diagram
The Use case diagram is used to identify the primary elements and processes that form the system.
The primary elements are termed as "actors" and the processes are called "use cases." The Use case
diagram shows which actors interact with each use case. In other words it captures the functional
aspect of a system [25]. Figure 6.1 shows the global use-case diagram of the AIBO watchdog.

AIBO sensors

AIBO actuators

Receive data

Send dataStart AIBO

User

Touch AIBO

Decide actions

Figure 6.1: Use-case diagram of AIBO watchdog.

Actors:
• User –The user of the AIBO who can start the AIBO.
• AIBO sensors – These are the sensors of the AIBO watchdog which can perceive its

environment.
• AIBO actuators – The output actuators of AIBO watchdog that interacts with its

environment.
Use-cases:

• Start AIBO – The user can start the AIBO by switching the power-button on. The boot
program on the memory stick will be loaded.

• Touch AIBO – By touching the sensors of the AIBO watchdog certain actions will be
executed.

• Receive data – During perceiving the environment the sensors will get the raw input data of
the objects in the environment.

AIBO as an Intelligent Robot Watchdog

87

• Send data – When the reactions have been determined the commands will be sent to the
AIBO actuators.

• Decide actions – Based on the input from the sensors reactions will be determined.
The table below shows the decide actions use-case:

Table 6.1: Use-case diagram, decide actions.

Use-case name Decide actions

Participating
actors

Initiated by user or AIBO sensors.

Entry condition 1. Sensors input data are received initiated by environment or user.

Flow of events 2. The noise and redundant data from the received sensors data
need to be filtered out.

3. From the filtered data the features of the environment need to be
processed.

4. Objects will be recognized from these features.

5. These recognized objects will be sent to the reasoning system to
determine the current situation.

6. The reasoning system will produce a list of actions that are
needed to be executed.

7. This list of actions will be converted into command data that the
AIBO actuators can interpret.

Exit condition 8. The reactions will be executed by the AIBO actuators.

6.2. Subsystem Decomposition Diagram
The total system of the AIBO watchdog can be decomposed into several subsystems. These
subsystems can be implemented and replaced separately, but they are all necessary to let the AIBO
watchdog work appropriately. Figure 6.2 shows the subsystems of the AIBO watchdog.

Perception Interpretation Reasoner EventHandler Executor

Figure 6.2: Subsystems of the AIBO watchdog. Each of them can be implemented separately, but
they are all needed to make AIBO watchdog working. A missing subsystem will break the chain.

AIBO as an Intelligent Robot Watchdog

88

If one of the subsystems is missing, the chain will be broken. The AIBO watchdog will not function
properly. Therefore it is necessary to create a simplified version of each component that we do not
want to focus. Simulation of a subsystem can be an option.

Perception

The perception subsystem deals with the sensors input data, e.g. data from camera or microphone.
The data from a camera can be a picture or video. From the picture it is required to extract the
useful features. Color and shape are the most useful ones. From the video features of moving
objects can be extracted.

Interpretation

When the features are extracted from the raw sensor’s input, the system needs to recognize the
objects. Features alone do not provide any meaning. When the object has been recognized a useful
meaning can be assigned to that particular object.

An object recognition program can fulfill the perception and interpretation subsystem at the same
time.

Reasoner

The reasoner subsystem deals with the recognized object by the interpretation subsystem. Based on
this object a certain hypothesis has to be made. When there are sufficient evidences, it will become
a scenario. If there are more than one scenario, prioritizing these scenarios will be also a task for the
reasoner subsystem. The most important one will be handled first and the other ones will follow
thereafter. Scenarios will be solved by the eventhandler subsystem.

EventHandler

The eventhandler subsystem receives the most important scenario and solutions needs to be found.
The solutions are the reactions that AIBO watchdog needs to execute. Physical movements of the
AIBO, e.g. turning, will be calculated by the navigation algorithm. This is required to understand
commands like, go to the owner. Therefore the navigation algorithm for calculating the path to a
certain goal point is also included in this subsystem. The resulted reactions will be put on the stack.

Executor

The executor subsystem takes care of the execution of actions that are retrieved from the stack
which are put by the eventhandler subsystem. Actions will be retrieved from the stack one by one.
The next action will be executed when the previous action has already been completed, but there is
an exception on this rule. Two or more actions can be executed in parallel, if they are independent
of each other, e.g. creating sounds and walking at the same time. The actions must be able to be
modified by changing its parameters. On a different floor AIBO walks differently, so sometimes it
needs more steps to turn a full round than normally.

AIBO as an Intelligent Robot Watchdog

89

6.3. Class Diagram
A Class diagram gives an overview of a system by showing its classes, its attributes and the
relationships among them. Class diagrams are static. They display what interacts, but not what
happens when they do interact [26].

A class in the software system is represented by a box with the name of the class written inside it. A
compartment below the class name can show the class's attributes (i.e. its properties). Each attribute
is shown with at least its name, and optionally with its type, initial value, and other properties. The
class's operations (i.e. its methods) can appear in another compartment. Each operation is shown
with at least its name, and optionally also with its parameters and return type.

6.3.1. Class Diagram of Environment
The chosen approach for acquiring the content of the environment was importing them partially
from an external file. All static objects will be read from a clip file which can be changed by using a
normal text editor program. As a result the home environment can easily be changed by modifying
the clip file instead of modifying the internal program code.

The special objects are not read from a file, but created by the user. We can create real fire on
certain parts of the home environment and let the AIBO detect it or create a virtual fire object in the
reasoning system. Since this project is focusing on the reasoning system and not the preprocessing
of the sensors inputs. The second approach will be chosen.

The user manipulates the data in the reasoning engine directly and creates a virtual fire object in the
reasoning knowledge database. When AIBO reaches a point that contains a fire object, AIBO will
carry out the appropriate reactions. Figure 6.3 shows the class diagrams of the environment part.

Static objects -
clips file

batch(staticobjects)
InsertSpecialObjects()

GUI

Environment

Figure 6.3: Class diagram environment.

The special objects will be inserted by the user itself to create certain events. The GUI will help the
user to accomplish this task easily.

6.3.2. Features World
The features world will convert the objects in the environment into features which are sensible by
the AIBO watchdog. Therefore only features which concern the image and sound sensor will be
used. Normally this process will be carried out by the preprocessing unit of the sensors. Figure 6.4
shows the relationship between the environment class and the AIBO features class.

AIBO as an Intelligent Robot Watchdog

90

The features that will be used are color, shape, material, sound amplitude and sound frequency and
wavelength. In the test scenario these features will be assigned to every object.

Environment

InsertFeatures()

Features world

Figure 6.4: Relationship between environment and features world in class diagram.

6.3.3. Interpreted World
After having the features of a certain object the AIBO will try to recognize the perceived object.
The recognized object is not necessary the same one as the one perceived in the environment. This
interpretation error is the cause of ambiguity in the environment world and the few features that
AIBO can sense. Figure 6.5 shows the relationship between the features world and the interpreted
world.

Features world

InterpretFeatures()

Interpreted world

Figure 6.5: Relationship of interpreted world and features world in class diagram.

The interpreted world is in the ideal situation the same as the environment, but because of sensing
errors, noise and limited classification capacity of the programs, the Interpreted world is a simpler
and possibly not identical representation of the environment.

6.3.4. Scenario Reasoning System
The scenario reasoning system deals with the reasoning of the objects that the AIBO perceive at a
certain location. Depending on the new incoming object a specific scenario will be concluded. If
this scenario has a higher priority, this scenario will be solved first. Figure 6.6 shows the complete
class diagram of the scenario reasoning system and its related classes.

AIBO as an Intelligent Robot Watchdog

91

GetObjects()

ReasonScenarios()

InsertSpecialObjects()

Passive Memory

GetCurrentScenario()

Insert Scenario()

SetCurrentScenario()

Short Term Memory

Manager

Scenario Manager

Long Term Memory

Scenario Selector

Scenario Knowledge Base
System

InsertObject()

GetScenario()

InsertReconstructedObjects()

Scenario Priority
List - XML

Interpreted world

Map

EventHandler

Insert Scenario()

Figure 6.6: Class diagrams of the scenario reasoning system.

The manager receives the recognized objects from the interpreted world class. These objects will be
stored and ordered in the passive memory class if these objects are useful. The incoming objects
will be inserted in the map class and the world environment of the AIBO will be updated. The
recognized object will also be passed to the scenario selector class and thereafter to the scenario
knowledge base system. This system determines the scenarios based on the incoming objects. After
matching these scenarios with the scenario priority list the most important scenario will be selected
and passed to the manager class. Depending on the other unfinished scenarios that were detected in
the past the current scenario will be put on the short term memory or long term memory. The
scenario in the short term memory, which is the most important scenario at the moment, will be
passed to the EventHandler class.

6.3.5. Action Reasoning System
After understanding the current situation actions are needed to solve the current situation. The kinds
of required reactions are determined by the action reasoning system. Figure 6.7 shows the class
diagram of the action reasoning system and its related classes. The class EventHandler receives the
decided scenario from the manager class. This scenario will be passed to the Action Knowledge
Base System class to determine the actions that are required to be executed. A matching in the
Action Knowledge Base System will be executed and the results will be passed to the EventHandler.
The resulted actions will be inserted in the class ActionStack. If a moving action was a part of the
resulted actions, the moving direction of AIBO will be calculated by the Navigator class.

AIBO as an Intelligent Robot Watchdog

92

InsertActions()

CalculateNextPosition()

GetCurrentScenario()

Navigator

Map

Action Knowledge Base
System

EventHandler

GetActions()

GetObjectsPosition()

ActionStackSetCurrentScenario()Manager

Figure 6.7: Class diagrams of the action reasoning system.

6.3.6. Actions Execution
When the actions are determined and put on the action stack. The next step, also the last step, will
be the execution of these actions. Figure 6.8 shows class diagrams of the execution of actions.

Action Attributes
List - XML

ActionExecutor

ActionStack

GetAction()

InsertActions()EventHandler

Figure 6.8: The class diagrams of the execution of actions. Class ActionExecutor fetches the actions

from the ActionStack and they will be executed one by one. The action attributes list XML file
contains the parameters of the actions.

The class ActionStack contains the actions that the class EventHandler has put on the stack. The
class ActionExecutor fetches these actions from the ActionStack and these actions will be executed
one by one. The actions parameters, such as the number of steps for a walk function or the directory
that the picture needs to be saved will be obtained from the Action Attributes List XML file.

AIBO as an Intelligent Robot Watchdog

93

6.3.7. Total Class Diagram
Every time when there is something detected, this whole process will be carried out, from sensing to
the actions. This process will never end; it is a continuous and never ending process. The main
reasoning system is based on the reasoning engine and the manager. This reasoning engine is based
on facts and rules, which are if, then, else rules. This reasoning engine is a very deterministic
system which will not always give the best result. It is possible to use another reasoning engine
based on the probabilistic model such as a Bayesian network. The reasoning engine class has to be
replaced by the new model and the activity manager has to be adapted. The total class diagram is
shown in Figure 6.9.

6.4. Sequence Diagram
The sequence diagram shows the behavior of every class during the reasoning process. Since the
class diagrams are already presented the interaction process between the classes can easily be
demonstrated.

Figure 6.10 illustrates the sequence diagram about the reasoning process between the reasoning
classes.

This sequence diagram shows the reasoning process of a new incoming object. This new object
triggers a new scenario. The resulted scenario has a higher priority than the scenario that was
present in the short term memory. Therefore the new scenario will be placed on the short term
memory and the scenario that was present in the short term memory will be placed on the long term
memory. The new scenario will also be passed to the EventHandler, so the reactions on the new
scenario can be determined. This sequence diagram shows only a part of the total sequence diagram.
Only the reasoning process in the scenario reasoning system has been shown.

Figure 6.11 shows the next part of the sequence diagram. This sequence diagram shows the
interaction process after determining the scenario.

This sequence diagram continues the explanation of the previous sequence diagram. The actions
will be determined for the current scenario. In this scenario AIBO needs to walk to a certain place,
therefore a walk path needs to be calculated. These actions will be put on the ActionStack. From
this stack the ActionExecutor will fetch the reactions that are required to be executed. From the
ActionAttributesList the action attributes will be obtained and the appropriate action with its
corresponding attributes can be executed by the ActionExecutor. This sequence diagram shows only
one execution loop by the ActionExecutor, but the idea is that it has to execute all actions on the
stack.

AIBO as an Intelligent Robot Watchdog

94

InsertReconstructedObjects()

Action Attributes
List
- XML

GetObjects()

InsertActions()

CalculateNextPosition()ReasonScenarios()

Static objects -
clips file

batch(staticobjects)
InsertSpecialObjects()

InsertFeatures()

InterpretFeatures()

Features world

Passive Memory

Interpreted world

GetCurrentScenario()

Insert Scenario() Insert Scenario()

SetCurrentScenario()

Short Term Memory

Navigator

Map

Action Knowledge Base
System

EventHandler

ActionExecutor

ActionStackManager

Scenario Manager

Long Term Memory

Scenario Priority
List - XML

Scenario Selector

Scenario Knowledge Base
System

GetActions()

GetAction()

GetObjectsPosition()

InsertObject()

GetScenario()

GUI

Environment

Figure 6.9: Total class diagram, design of AIBO watchdog.

AIBO as an Intelligent Robot Watchdog

95

Figure 6.10: A part of the sequence diagram of the reasoning classes. This sequence diagram shows
the reasoning process of a new incoming object. The resulted scenario has a higher priority than the

scenario that was present in the short term memory.

EventHandler Action KBS Navigator Map ActionStack ActionExecutor ActionAttributesList

findScenarioActions

return actions

findWalkPath getMap

return Map

calculate pathreturn Walk path

addActionsadjustWalkPath

getAction

return action getActionAttributes

return action attribute

executeAction

Figure 6.11: The sequence diagram of the Action reasoning system and the actions execution.

Actions are determined and the walk path for the AIBO will also be calculated. Actions are put on
the stack and executed according to the action attributes.

AIBO as an Intelligent Robot Watchdog

96

6.5. Flowchart
The flowchart diagram provides the inside view of the working of the reasoning process. By
following the flowchart reasoning decisions can be understood. Figure 6.12 shows the simplified
flowchart of the reasoning process of the AIBO watchdog.

During the initialization process the AIBO will be started and the data will be loaded from the
program. Its first task is to explore the environment of the current node. When something is
detected, the appropriate actions will be executed. Otherwise the route planner system has to
calculate the next node that AIBO has to move to. After deciding the next node, AIBO will turn
itself to face that direction. Before the actual movement can be executed, AIBO has to use its
distance sensor to get the latest map information. This can be the case when suddenly some objects
appeared to block its way. Then another route will be calculated. If the way is free to move, AIBO
will move to that position. When AIBO has arrived the goal node, the route planner has to be
updated. Otherwise AIBO can carry on moving itself to the goal position.

Figure 6.12. Simplified flowchart of the reasoning process.

97

Implementation

"All that we are is a result of what we have thought."
Abraham Lincoln

his chapter describes the actual implementation of the AIBO watchdog. First an overview of
the used software and tools are given and afterwards the implementation of the AIBO

watchdog is discussed. As indicated in the previous chapters every component in the architecture
design will be implemented and sometimes a simplified method will be chosen. At the end of this
chapter a manual will be given to use and modify the program.

7.1. Used Software & Tools
 Java & Eclipse

For the implementation of the overall architecture it was chosen for Java. Java was chosen above
C++, because the predecessor of the AIBO watchdog project has chosen for Java. It was better to
start from where the predecessor has stopped and adapt the code when necessary. By reusing a part
of the code it saved a lot of time.

The development environment was chosen for Eclipse. Eclipse is a reasonably complete
development environment that can speed up the development process. It provides a lot of
functionalities for Java programming. The program has a code editor that offers code assistance, e.g.
the possible methods of an instance will be shown after typing the name of the instance. Beside this,
it also provides multiple overviews of the code, which makes it easy to jump to specific parts of the
code. Because of its broad functionalities and its speed compared to other development environment,
the author has chosen for Eclipse. The used version of Eclipse for the development of the program
was Eclipse 3.1.2. The used Java version was based on Java runtime environment (JRE) 1.4.2.

 User Interface & Netbeans

For presenting and manipulating the simulation of the AIBO watchdog environment it was chosen
for the Java development environment Netbeans. By its drag and drop functionality it was relatively
simple to place the corresponding buttons and fields on the user interface. Its automatic aligning

T

AIBO as an Intelligent Robot Watchdog

98

functionality provides a good tool to create a decent user interface. Netbeans provides only a good
tool to create user interfaces. It is very weak at the other usability area of programming, e.g. it is not
possible to adapt the user interface by programming codes. Other weaknesses of Netbeans are its
slowness, its huge requiring of processor intensity and its huge consuming of the working memory.
But for designing the code for user interfaces Netbeans is a better choice. Eclipse does not provide
it at all. Netbeans 5.0 has been used for creating the user interface, which was the newest version at
the moment of development.

 Expert System & Jess

In order to develop a reasoning system rapidly it has been chosen for expert system above all other
reasoning systems in the Artificial Intelligence world. It is because of its ease of use and easy to
understand. If we have already chosen for Java, Jess, Java Expert System Shell, is the best option.
Java can be used within Jess or vice versa. Jess itself is written in Java, therefore it provides us the
best integration with our java framework. The Jess files can easily be modified with a simple text
editor program, such as notepad. For the development of the program Jess version 7.0 has been used.
More information about Jess can be found at appendix A.

 Database & XML

XML, eXtensible Markup Language, is a very popular format to store information for websites,
because of its flexibility. XML files can easily be modified by a simple text editor program, such as
notepad, which can be found standard on every windows pc. XML is actually a small database
where websites can put its temporary data, e.g. the settings of the layout of a website. Therefore we
have also used XML to store the settings of the movements of the AIBO watchdog and other
settings which need flexibility. The flexibility that XML provided, allows the user to modify the
settings of the program and create their own AIBO watchdog.

 XML & Microsoft Visual Studio .Net 2003

For the best representation of the XML files it is chosen for Microsoft Visual Studio .Net 2003.
XML codes will be converted to tables which is visually better readable than a large text file.
Modifications need fewer actions than a text file, because the tags will be standard created or
removed during modifications. This program helps us to save a lot of time. Figure 7.1 shows the
XML representation in Microsoft Visual Studio .Net 2003.

 Hardware requirements

In this part of the section explanations will be given about the hardware requirements that are
needed to run the software. The hardware specifications of the AIBO are fixed; therefore changes
on the AIBO can not be made. For the project the AIBO-ERS7 has been used, it is necessary to use
the same AIBO for running the program. Otherwise it can cause malfunctions or compatibility
problems since the old versions of AIBO offers less sensors input and another software environment.

The used client and server architecture requires an external computer to perform the processor and
memory intensive programs. This computer needs to have a wireless network card which is
compatible with 802.11b. A peer-to-peer connection with the AIBO is made, so a wireless access

AIBO as an Intelligent Robot Watchdog

99

point is not needed. Furthermore a memory stick reader is necessary to transfer the program to the
memory stick. The speed that the AIBO will react depends on its wireless communication speed
with the external computer and the speed of the external computer that executes the program. The
software was developed using an Intel Centrino laptop which provides 768MB working memory
and 1.86 Ghz processing power. During execution everything was running very smooth. So it is
recommended that the external PC has at least 512MB working memory and at least a Pentium 4
processor for processing.

Figure 7.1: Advantage illustration of XML editing with Microsoft Visual Studio. At the left side the
code of the XML are presented. At the right side the spreadsheet-like table is the Microsoft Visual

Studio .Net 2003 representation of the XML code.

7.2. Implemented Architecture
This section discusses the implementation of the AIBO watchdog. First an overview of the
implemented components of the architecture will be provided. Thereafter an overview of the
implemented system will be given and afterwards a more detailed description of each component
will be presented.

7.2.1. Overview of the Implemented Architecture
The architecture that is described in the design chapter has been used for the implementation of
AIBO watchdog. Figure 7.2 shows the implemented components of the architecture. The
components that have a gray color have been implemented. The white components on the other
hand have not been implemented.

AIBO as an Intelligent Robot Watchdog

100

Simulation
software

Icons

Video

Extracted
features
database

Manager

Scenario Selector

Passive Memory Long Term Memory

Map

Event Handler Action Stack

Executor

Scenario
Priority List

XML

Scenario
knowledge

base system

Action
Knowledge

base system

World Model
XML

Actions
Attributes

XML

Short Term Memory

Interpreted Objects

Preprocessing
algorithms

ExecutionReasoning

Output

Reasoning
Preprocessing

Safety Protector

Obstacle

Navigator

Scenarios Manager

Internal Needs

Figure 7.2: Implemented components of the architecture. The gray components have been
implemented.

7.2.2. Overview of the System
The implemented framework is based on the design architecture of the AIBO watchdog. Figure 7.3
illustrates the implemented framework.

aibogui

interpretation reasoner execution

map

eventhandler

Figure 7.3: Overview of the packages in the implemented framework.

If we compare this implemented framework with the design architecture of the AIBO watchdog, we
can discover a lot of similarities. The packages in the implemented framework will be explained in
detail in the following subsections.

AIBO as an Intelligent Robot Watchdog

101

 AIBO GUI

The AIBO GUI is required to test our AIBO watchdog. Ultimately our AIBO watchdog is an
autonomous agent without user interface. The AIBO GUI converts the AIBO mind into a visual
representation that is understandable for human beings. The package AIBO GUI consists of all
available user interfaces to interact with the AIBO watchdog. In total there are three GUI’s: Main
GUI, Legend GUI and Object GUI. Figure 7.4 shows the Main GUI.

Figure 7.4: Interface of the Main GUI. The picture at the left side is the representation of the
simulation of the environment. The other fields will display a certain value so the user can track the

patrolling of the AIBO watchdog and know what has happened.

At the top left side one can fill in the IP of the AIBO. This way a peer-to-peer connection will be
realized. The objects that AIBO encounters during patrolling will be shown in the seen object field.
Every seen object can trigger an event. The corresponding event will be displayed in the seen event
field. Every event that is triggered will be saved in the short term or long term memory. This is fully
dependent on the number of current events and the priority of the new one. The AIBO log area at
the right side will display the events at every point that AIBO has passed by. The picture in the
middle of the Main GUI shows the map of the corresponding environment where AIBO is
patrolling. The environment is divided in waypoints and at each waypoint there can be an icon
present. The meaning of the icons can be found in the Legend GUI. Figure 7.5 shows the interface
of the Legend GUI.

The Legend GUI is nothing more than a legend to find the meaning of the used icons. It functions as
a lookup table for the user.

AIBO as an Intelligent Robot Watchdog

102

Figure 7.5: Interface of the Legend GUI. The Legend GUI shows the meaning of every icons that is
used in the environment representation of the MainGUI.

The third GUI, Object GUI, provides the ability to change the simulation environment of the AIBO
watchdog. Figure 7.6 shows the Object GUI.

Figure 7.6: Interface of the Object GUI. This GUI can modify the objects in the simulation
environment by adding or removing the special objects.

There are two lists that the users can uses. By selecting an object at the first object list, the top one,
the user is able to add new objects in the simulation environment at a certain desired place. The new
added objects will also be visible at the second object list. This list contains all special objects that
are present in the simulation environment. Using this list the user can remove the special objects
from a certain place.

 Map

If we compare the map package carefully with the map component in the design architecture, one
will notice that the implemented map package does not correspond to the map component in the
design architecture. This issue can be explained that the implemented map package has two
different functionalities. The first one is the representation of the world environment and the second
one is the world that will be preloaded in the AIBO watchdog during the initialization stage. The

AIBO as an Intelligent Robot Watchdog

103

difference between these two maps is that the last one only contains the static objects in the home
environment and the first one also includes the special objects. This one is necessary to simulate the
world environment. This environment simulation is required, because the lack of a proper object
recognition program and sound recognition/localization program. Therefore the input of the
environment needs to be simulated according to the available objects on the map. We have chosen
to preload the environment in the AIBO watchdog during initialization of the AIBO. But only the
static objects will be preloaded, so the special objects, e.g. fire, need still to be discovered during
the patrolling of the AIBO watchdog. The simulation program will give the features of an object as
input to the AIBO, when AIBO is standing next to that object. Figure 7.7 illustrates this situation.

Figure 7.7: Illustration when AIBO will perceive the image features of an object. The red node
represents the places where the AIBO is able to perceive the fire features by its camera. The left

picture shows the start situation. The right picture shows the result of AIBO has reached that node.

The sound features will be passed to the AIBO, when AIBO is 2 distance units away from the sound
source. If multiple sound sources are received at the same distance, the loudest one will be chosen.
Figure 7.8 illustrates the situation that AIBO perceives the sound features of an object.

Figure 7.8: Situation when AIBO perceives the sound features of an object. The green nodes
indicate that AIBO will perceive the sound features if AIBO reaches that node. At the left picture
the start situation has been shown. The right picture shows the result when AIBO has reached that

node.

AIBO as an Intelligent Robot Watchdog

104

 Interpretation

The package interpretation receives the features information of the simulation environment from the
map package. These features information will be received every time when AIBO reaches a new
waypoint. The received information will be matched with the object features in the expert system.

Objects can have image features and sound features. From images the color, shape and material will
be extracted. The extraction will be processed by simulation. These features will be matched with
the predefined object matching rules in the expert system. Figure 7.9 shows an example of a rule in
the image object matching expert system.

Figure 7.9: Example rule in the image object matching expert system. This rule assign a chance of
33 to the scenario FIRE, if a red color has been detected.

In this example a chance of 33 will be assigned to the fire object, if the red color is detected in the
image. There are three different kinds of features to be matched with the matching rules in the
expert system, so when all features are matching, it will result to a chance of 100% for that
particular object. It is also possible to select an object, when there is no 100% match. By setting a
threshold an object will be selected, when its chance is larger than the threshold.

From sounds the sound frequency, sound amplitude and wavelength will be extracted. In nearly the
same way these features will be matched with the predefined sound object matching rules in the
expert system. Figure 7.10 shows an example rule in the sound object matching expert system.

Figure 7.10: Example rule in the sound object matching expert system. This rule will assign the
glass sound to the sound object, when the amplitude is higher or equal to 40, frequency is between

10.000 and 12.000 and the wavelength is equal to 3.

AIBO as an Intelligent Robot Watchdog

105

As Figure 7.10 illustrates this expert system does not work with chances, but with 100% matching
rules. This is implemented on purpose to show the flexibility and modularity of the designed
architecture. The way, how the expert system works, can very easily be modified without having
compatibility problems and other modifications in the designed architecture.

 Reasoner

The reasoner is the main part of the reasoning system and it determines the intelligence of the AIBO
watchdog. The reasoner package consists of seven components which can be found in the designed
architecture: manager, short term memory, long term memory, passive memory, scenario selector,
scenario knowledge base system and scenario priority list component. Figure 7.11 shows the global
class diagrams in the reasoner package.

Short Term Memory
Event : Event

Long Term Memory
Event : Vector

Passive Memory
Objects : Vector

Manager
passivemem : Passive Memory
objecthandler : ObjectHandler

Event
eventname : String
scenario : String
priority : int

ObjectHandler
shortmem : Short Term Memory
longmem : Long Term Memory
exml : EventPriorityXml
event : Event

EventPriorityXml
xreader : XmlReader

Scenario Priority
List - XML

Figure 7.11: Global classdiagrams of the reasoner package. When a recognized object arrives at the
Manager instance, it will be passed to passive memory instance and ObjectHandler instance. The

ObjectHandler instance determines the current scenario based on that object.

The implementation of the memory components, short term memory, long term memory and
passive memory are implemented according to the design of the architecture described in the design
chapter. The long term memory and passive memory are holding a vector of event data and the
short term memory is only holding one event. The class ObjectHandler represents the Scenario
selector component and the scenario knowledge base system component presented in the designed
architecture. The scenario knowledge base system is not implemented according to the design.
Instead of reasoning with scenario probabilities a direct match will be executed. So the recognized
object can only lead to one scenario. After matching the event the priority of the new scenario will
be consulted. Depending on its priority it will be put in the Short Term memory or Long Term
memory. The EvenPriorityXml class receives the priority inputs from an external XML file. This is
conforming to the design of the scenario selection process.

AIBO as an Intelligent Robot Watchdog

106

 Eventhandler

The eventhandler package contains the classes that are needed to decide the reactions of the current
scenario. This package contains 5 classes which represent the Event Handler component and Action
Knowledge base system. Figure 7.12 shows the content of this package.

Manager
passivemem : Passive Memory
objecthandler : ObjectHandler
eventhandler : EventHandler

EventHandler
actionStack : Stack
mainactionadder : MainEventActionAdder
longmemactionadder : LongMemEventActionAdder
imageactionadder : ImageEventActionAdder
soundactionadder : SoundEventActionAdder
mainevent : String
imageevent : String
soundevent : String
longmemevent : String

MainEventActionAdder
stack : ActionStack
event : String

ImageEventActionAdder
stack : ActionStack
imageevent : String

LongMemEventActionAdder
stack : ActionStack
longevent : String

SoundEventActionAdder
stack : ActionStack
soundevent : String

ActionStack

Figure 7.12: Classdiagrams of the eventhandler package. Based on the new recognized objects
certain actions needs to be put on the stack. The 4 ActionAdder, expert systems, at the bottom

determine the actions that need to be carried out.

The class EventHandler receives the scenario events from the class manager and this information
will be passed to the rest of the 4 classes: MainEventActionAdder, ImageEventActionAdder,
LongMemEventActionAdder and SoundEventActionAdder. These 4 classes represent the Action
Knowledge base system component of the designed architecture. Based on the incoming scenario
events the 4 classes will decide the actions with the predefined rules in its expert system. The
differences between the classes ImageEventActionAdder, SoundEventActionAdder and
MainEventActionAdder are the location aspect of the actions. ImageEventActionAdder and
SoundEventActionAdder can only add actions that can be executed at the current position, e.g.
capture picture or make sounds. This is needed, when a new scenario has been discovered which
has a lower priority. In this situation the AIBO watchdog will not carry out the reactions of the new
scenario, but it is also nice to take some evidence of the new scenario for the record. Therefore
capturing the sound or picture will be used very frequently in these 2 classes. Figure 7.13 illustrates
the working of this concept.

AIBO as an Intelligent Robot Watchdog

107

On the other hand the class MainEventActionHandler determines all reactions that are required to
carry out to solve the current scenario, and put them on the stack. These actions can be technical
operations, such as capturing the sound, but also physical actions, such as moving to a certain point.
The last action can be used to explain the functionality of the class LongMemEventActionAdder.
This class deals with the situation when the current scenario is completed and an old scenario from
the long term memory need to be placed in the short term memory. In the past the technical
operations, such as capturing the image has already been executed by the classes
ImageEventActionAdder and SoundEventActionadder, therefore the AIBO only needs to move
back to that point where the event has happened and investigate the situation again whether it has
changed or not.

Technical actions

Physical actions

Physical actionsTechnical actions

Figure 7.13: Timeline of actions that will be executed based on the origin of the event. Main Event

will execute technical and physical actions. Image event only deals with technical actions. Long
Mem Event from the long term memory to short term memory deals only with physical action.

 Execution

In the execution package one can find the classes that are required to execute an action. This
package contains the following components from the design architecture: Action Stack and
Executor component. The Actions Attributes XML component is not available. The actions
attributes has been hard coded in the program. Figure 7.14 shows the global view of the classes
inside the execution package.

ActionStack

Actions : Vector
(from sun) MainGui

StackExecutor

stack : ActionStack
robot : UClient
gui : AiboControl

(from text)

Distance

Distance Listener

Movement

MovementListener

PlaySpeaker

SpeakerListener

SavePicture

SavePictureListener

Figure 7.14: Classdiagrams of the execution package. The StackExecutor instance needs to execute
the actions from the stack. The 8 classes at the bottom execute only a particular action of the stack.

Every action that has been executed will be updated in the MainGUI.

AIBO as an Intelligent Robot Watchdog

108

The class StackExecutor obtains the next action from the stack and depending on the action it will
pass that action to a certain action class. Every action that AIBO watchdog has realized, AIBO will
send a message back to the action listener. As a result the program notices that the action has been
taken place and the next action will be obtained from the stack. This process will last till all actions
have been executed in the stack. After every action that is executed the visual representation of the
AIBO environment and AIBO in the MainGUI will also be updated. Figure 7.15 shows a figure of
the global total view of all implemented classes.

Passive Memory

Short Term Memory Long Term Memory

Event

EventPriorityXml

ObjectHandler

Scenario Priority
List - XML

EventHandler ActionStack

Physical Operations Technical Operations

MainEventActionAdder

ImageEventActionAdder

SoundEventActionAdder

LongMemEventActionAdder

Rete

StackExecutor LibUrbi

ObjectGuiLegendGui

Manager

MainGui

Rete

SoundObject

ImageFeatures SoundFeatures

BeanSupport

MapNodes

ImageObject

FeaturesMap

ObjectReasoner

AiboPosition

SoundObjectReasoner

SoundFeaturesMap

World Model -
XML

Object Features -
XML

Sound Features -
XML

Figure 7.15: Global total view of all implemented class diagrams.

AIBO as an Intelligent Robot Watchdog

109

7.3. Manual
This section provides the knowledge to the user for using the program and modifying it to their
desired settings. The first part of this section provides the knowledge to use the program and the
second part of this section provides the knowledge to modify the settings to get the desired program.

7.3.1. Using the Program
 Place the program on the AIBO

The complete program consists of two parts. The first part of the program is running on the AIBO
watchdog. This program let the external PC communicate with the internal operating system of the
AIBO. It is based on the original libUrbi, but it has been modified to fulfill our program
requirements. The content of the modified libUrbi program needs to be copied to the special pink
colored Sony Memory Stick and be placed on the Sony Memory Stick slot in the AIBO.

 Place the program on the PC

The second part of the program will be run from the external PC which has installed the Java
runtime environment (JRE) 1.4.2 and a proper Java compiler program which can execute a
compiled java program. A recommended program is Eclipse.

 Configure the settings of the wireless network card

Before running the Java program confirms that the wireless connection on your PC has been set to
ad-hoc mode and a fixed ip-address has been assigned to your wireless connection. The ip-address
must be a version of 192.168.3.xxx where the xxx stands for a number from 0 to 255 except 14,
because 192.168.3.14 is the ip-address of the AIBO watchdog. An example of an ip-address for the
PC is 192.168.3.10.

 Start the program on the PC

The Main method which starts the program is located in the java class manager. After compiling
and running the program a Graphical User Interface will be prompted on the screen. Figure 7.16
shows the Graphical User Interface of the program.

 Connect to the AIBO

The standard ip-address of the AIBO has been set on the AIBO IP field, but we can change the
value by clicking on it. After confirming the ip-address the user needs to click on the connect-
button to make connection with the AIBO watchdog. When a connection with the AIBO has
successfully been made, AIBO will produce a short sound and thereafter the lights on its back will
be lightened up. This is a signal that the initialization process of the AIBO watchdog has
successfully been executed.

 Show the extra GUI’s

By clicking the legend button and manage objects button new dialogues will be prompted on the
screen. Figure 7.17 illustrates this situation. The top GUI is the LegendGUI where icons

AIBO as an Intelligent Robot Watchdog

110

representation can be found. The GUI in the middle is the MainGUI. The states of the AIBO
watchdog can be read from the GUI. The right GUI is the ObjectGUI. From this GUI objects can be
added or removed.

Figure 7.16: The User Interface after initialization of the program.

Figure 7.17: All GUI’s in the program. The top GUI is the LegendGUI where icons representation
can be found. The GUI in the middle is the MainGUI. The states of the AIBO can be read from the

GUI. The right GUI is the ObjectGUI. Objects can be added or removed.

AIBO as an Intelligent Robot Watchdog

111

 Add or remove objects

New special objects can be added using the ObjectGUI. For adding new objects the user needs to
select one of the options at the object list and specify the x-coordinate and y-coordinate values. By
clicking on the add button an object is added in the simulation. The new object can be found at the
remove object list and also on the picture of the home environment. To remove an object the user
needs to select an object from the remove object list and click on the remove button. The selected
object will disappear from the remove object list and also on the picture of the home environment.

 Start the AIBO watchdog

After setting up the environment with the desired objects the user can start the patrolling process of
the AIBO by clicking on the start button. AIBO will now patrol the environment and search for the
abnormal objects in its environment. All physical movements of the AIBO can be followed by
looking at the picture on the MainGUI. This picture is a real-time representation of the AIBO
location and its environment.

 Encounter special objects

Every time when AIBO encounters a special object the name of the object will be displayed on the
seen object field and the corresponding scenario will be displayed on the seen scenario field. This
scenario will also be displayed on the short term memory field or the long term memory text area.

 See the patrolling history

During the patrolling of the AIBO the detected objects will be displayed on the AIBO log text area.
Not only will the object name be displayed, but also the location of the discovered object. As a
result the user can track the object history that AIBO has encountered.

 Stop AIBO

The patrolling procedure can be stopped by either closing the program or clicking on the stop button.
The AIBO will stop executing actions immediately. This is useful when you do not want the AIBO
running in your way. The stop button has not been implemented yet. Therefore closing the program
is the only option to stop execution.

 Continue patrolling after completing a scenario

Every time when AIBO has completed a scenario, it will stay at the goal destination and making
sounds. AIBO will stay like this till someone will free it from that state. For example when AIBO
has run to the main door because of a fire, it will wait till the fire scenario has finished. The fireman
has to master the fire before the AIBO will go in patrolling again. By clicking on the release event
button the user gives the AIBO a signal that the current scenario has already been completed. In the
future the user can also touch the back sensors of the AIBO to complete a scenario. After
completing the current scenario the AIBO will continue patrolling to find a new one or completing
the ones in the long term memory.

AIBO as an Intelligent Robot Watchdog

112

7.3.2. Modifying the Settings
 Modify AIBO environment

The start configuration of the AIBO environment is described in the world model XML file,
objectposition.xml. This file will be loaded into the program when AIBO starts up. By changing this
XML file the user is able to change the start environment of the AIBO watchdog. Figure 7.18 shows
a part of this XML file.

Figure 7.18: Part of the world model xml file. The object tag gives the name of the object. The x, y

and z tags are respectively the x, y and z coordinates of the objects location.

An object has 4 attributes: name of object, x-coordinate value, y-coordinate value and z-coordinate
value. By modifying these attributes the kind of object and its location will be changed. Inserting
new objects can be performed by adding the complete objectsposition tag. Removing objects from
the environment can be performed by removing the complete objectsposition tag. As a result the
desired environment can be created.

 Modify Scenario Priority list

The priority of scenarios is described in the scenario priority list XML file, events_priority.xml.
Modifying this file the priority of scenario can be adapted. Figure 7.19 illustrates a part of the
scenario priority list XML file.

Figure 7.19: Part of the scenario priority list XML file. The name tag needs to be matched with the

recognized object. The event, priority and scenario tags will assign the value to the recognized
object.

AIBO as an Intelligent Robot Watchdog

113

An event has 4 attributes: name, event, priority and scenario. The tag name indicates the name of
the incoming object and the tag event specifies the name of the event. Furthermore the tag priority
specifies the priority of the scenario. The lower the number the more important it is. At last the tag
scenario specifies the name of the scenario. Adapting the priority can be performed by changing its
priority number. Inserting new events can be completed by adding the tags between the events tags
and removing the object by removing the tags between the events tags. Procedure is the same as the
AIBO environment XML.

 Modify the simulation objects attributes

From the simulation environment the objects will be converted to objects attributes which the AIBO
is able to sense. By passing these attributes to the interpretation component it will try to recognize
the original object. The conversion of the objects to the objects attributes will be performed by
simulation based on the object attributes XML file, objectfeatureslist.xml. Figure 7.20 shows a part
of the object attributes XML file.

Figure 7.20: Part of the object attributes XML file. The objects in the simulation environment will

be simulated with the values in the color, shape and material tags.

An object has 4 attributes: name, color, shape and material. In this simulation only the last 3
attributes are used to match the corresponding object. The user can change these 3 attributes to
redefine the object attributes. Inserting an object can be completed by inserting these 4 tags at the
end of the file. Removing the complete codes between the object tag leads to a removal of an object.

 Modify the interpretation process

The interpretation process is performed by an expert system. The file ObjectFeaturesList.clp is the
corresponding expert system. This system contains a lot of rules which are used to recognize the
corresponding object. Figure 7.21 shows a rule from the expert system.

The assigning of chances to the objects takes place when a certain objects attribute matches. In this
case the color black raises the chance of smoke by 33. New rules can be inserted by copying one of
the rules and change the values of the attributes. For example the user wants to insert a new rule for
white smoke. If the color white is detected, it will raise the chance of white smoke by 30. Figure
7.22 shows the result of the adjustment.

AIBO as an Intelligent Robot Watchdog

114

Figure 7.21: One of the rules in the expert system. This rule raises the chance of the smoke object
by 33 when a black color has been detected.

Figure 7.22: The new inserted rule in the expert system. This rule raises the chance of WhiteSmoke
object by 30 when the white color has been detected. After assigning the chances the program needs

to find the object with the highest chances.

Figure 7.23: A part of the rules in the expert system to find the highest chance.

Figure 7.23 illustrates this process in the expert system. All algorithms in this expert system can be
changed to the desired ones. New variables and java classes can be introduced. To make it
compatible with other classes it is necessary to understand that the final result will be assigned to
the instance imageobject. The new name and chance attribute of the instance imageobject will be
assigned. The inputs at the start for matching are the instances aiboposition and imagefeatures.
These 2 instances are used to find the final result. Any other instances that are needed have to be
imported by the user.

AIBO as an Intelligent Robot Watchdog

115

 Modify the actions allocations of the corresponding scenario

Depending on the current scenario reactions will be determined and put on the stack. The
determining of the actions will be processed by the expert system, maineventhandler.clp. Figure
7.24 shows an example rule in the expert system which will put the actions on the stack.

Figure 7.24 shows a rule which put actions in the stack, when a fire event has been detected.
Actionadder is an instance of the stack. Using the setStack method new actions can be put on the
stack. The assigned sequence in the rule is also the sequence of execution. The last action that is put
on the stack will also be executed as the last one. More information about the kinds of reactions can
be found in Appendix C.

Figure 7.24: Example rule in the ActionAdder’s expert system. If the current scenario is FIRE, then

the actions listed with setStack will be put on the action stack.

 Modify the icons

The used icons of the Graphical User Interface are located at the /icons directory of the program.
Icons can easily be replaced by another one. Replacing the icons can be completed by copying the
new icons in the same directory and by giving the same name. To let the new icons fit in the User
Interface it is necessary to keep the size of the icon at 44 x 44 pixels. The representing picture must
be in the middle of the icon. By changing the code in the java class LegendGui one is able to
change the settings of the icons.

AIBO as an Intelligent Robot Watchdog

116

117

Experiments & Results

“Gold is tested by fire, software by use.”
Bou Tsing Hau

n this chapter the experiments results of the implemented framework will be presented. First an
explanation will be given about the used test methodology and thereafter the results of the test

experiments. Last but not least a conclusion will be derived from the test results. These test
experiments were demonstrated during a special meeting of the MMI department at the faculty
EEMCS of TUDelft.

8.1. Test Methodology
There are 4 test scenarios which are designed to test the implemented architecture. At each test
scenario a description about the scenario will be provided and also the reactions that AIBO should
execute when it encounters that particular object. The result of the test scenarios will be provided at
the end of each test scenario. In order to test the implemented architecture the entire home
environment in the simulation has been replicated in a real environment. This way it can show that
the implemented framework does not only work in the simulation mode on the PC, but also in
practice.

These 4 designed test scenarios are able to show the possibilities of the designed reasoning system.
There can be single events occurring in a scenario or multiple events. Multiple events can occur
sequentially or in parallel. Both situations will be presented in the 4 designed scenarios. Sudden
changes on the map, such as sudden appearing of unknown obstacles, must also be avoided by the
AIBO watchdog. This situation will also be presented in the 4 designed scenarios. The default map
of the home environment which is given to the AIBO beforehand is illustrated by Figure 8.1. This
home environment has been replicated in the real environment. Paper boxes are used to represent
the objects in the simulation. In order to represent the special objects, such as intruder and fire,
some toys were used. The floor where the demonstration was located is very smooth. If another
floor is chosen, there is a probability that the AIBO movements will not function properly.

I

AIBO as an Intelligent Robot Watchdog

118

Figure 8.1: A predefined map that will be loaded during the initialization process of the AIBO. Only

the static objects are loaded in the AIBO watchdog.

Using the preloaded map AIBO is able to maneuver from one point to another point in its
environment. AIBO will react on the special objects which are not present in this map. The reaction
behavior of AIBO on a certain object has already been described in the design chapter, chapter 4.
The specifications of the test environment where the test scenarios where conducted is illustrated in
Table 8.1

Table 8.1: Test environment specifications

Test Environment Specifications

AIBO AIBO-ERS7

Place A room with a smooth floor (no carpet).

Objects Objects are represented by paper boxes with an icon.

Special Objects Special objects are represented by toys.

Size environment About 2 by 2 meters. The distance between each node is
around 20cm.

External PC A Centrino laptop with a wireless connection, IEEE 802.11b/g.

8.1.1. Scenario 1: Intrusion with Broken Glasses
This scenario describes a situation where two different events occur sequentially and the default
handling method will be used. There are no unknown obstacles introduced in this scenario. A short
summary about this test scenario is presented in Table 8.2

On a cloudy day AIBO is patrolling the house environment. At this moment nothing suspicious are
found. Suddenly AIBO hears some glass sound and runs to that direction. On the floor AIBO sees
some broken glasses and decides to explore the entire home environment to find the cause. During
exploration AIBO hears some human voices and under careful inspection AIBO discovers an
intruder. AIBO takes a picture and barks at the intruder. Thereafter AIBO is going to a certain place
where it usually can find his owner and create a big alarm sound.

AIBO as an Intelligent Robot Watchdog

119

Table 8.2: Test scenario 1 specifications

Figure 8.2: Map representation of the start environment of the first scenario. AIBO is located at the
right bottom and it has to navigate to the red stop sign. Intruder and broken glasses are introduced in

this scenario.

Figure 8.2 shows the start situation of the home environment. AIBO should walk to the goal
destination and discover the broken glasses. During handling the scenario of the broken
glasses AIBO should discover the intruder and react on it. By finding the intruder the
broken glass scenario has been completed. The reactions on the intruder scenario will be
executed now. Figure 8.3 shows the result after handling the intruder scenario.

Figure 8.3: The result of the first test scenario. The curved line shows the path that AIBO has taken.

Experiment Results:

During the experiments the reasoning system of the AIBO has performed as expected. The reactions
of AIBO watchdog was executed exactly as expected. The intruder scenario was executed according

 Specifications

Events Broken glass event and intruder event. (Sequential)

Solution Default in program

Obstacles None

AIBO as an Intelligent Robot Watchdog

120

to the description, described above. There were no mistakes that AIBO has made, but the
movements of AIBO are not accurate enough. After turning left and right AIBO does not face the
original direction, but it faces a little bit more to the right. This turning algorithm was part of the
libUrbi program, but after adjusting the parameters it is still not perfect. Therefore it was needed to
correct the AIBO location before AIBO is going to walk a long distance. After clicking on the
release event button, when AIBO has completed the intruder scenario, the AIBO watchdog was
continuing to patrol the home environment.

8.1.2. Scenario 2: Escape Caused by Fire.
This scenario describes a situation that AIBO has discovered a useful object which will be used for
the solution of the detected event. There are no unknown obstacles introduced in this scenario.
Table 8.3 summarizes the environment specifications.

Table 8.3: Test scenario 2 specifications.

 Specifications

Events Fire event

Solution Use door object, which has been found during patrolling.

Obstacles None

In a peaceful afternoon AIBO is patrolling the home environment. Its owner has just left for his
work. During its patrolling AIBO discovered the main door. After a while AIBO sees some black
smoke in the direction of the table. When it steps into the smoke area it hears the sound of fire and
sees that the flames are growing. AIBO stays calm, takes a picture of this scene and create loud
sounds. AIBO is now thinking how to handle this situation. Because AIBO has detected the main
door during its patrolling and it knows that the door can be used to escape, AIBO is running to the
main door and create a big alarm to notify the people in its environment.

Figure 8.4: Map representation of the start environment of the second scenario. AIBO is located at
bottom left and it is heading to the red stop sign. In this scenario the fire, smoke and door objects

are introduced.

AIBO as an Intelligent Robot Watchdog

121

Figure 8.4 shows the start environment of this scenario. AIBO will walk pass the door and
thereafter to the goal destination. The door has a special meaning for the AIBO, because it can be
used for escaping in emergency situations. When AIBO almost gets to the destination, it detects the
smoke and fire and after reasoning it will go back to the door. Figure 8.5 illustrates these
movements. This scenario involves the using of a useful object that AIBO has encountered during
patrolling.

Figure 8.5: The result of the second test scenario. The curved line shows the path that the AIBO has

taken. AIBO is walking back to the door to escape this environment, after it has detected the fire.

Experiment results:

The experiment results have proved again that the reasoning system of the AIBO is working
correctly. All steps that AIBO has taken can be explained before the AIBO starts. The passive
memory component is working properly. Only the movements of AIBO can be improved. Therefore
it was again necessary to correct the location of the AIBO before AIBO is going to walk from the
fire destination to the door.

8.1.3. Scenario 3: Behavior Triggered by Ringing Doorbell
This scenario describes a situation that AIBO encounters a useful object which will be used to solve
the discovered event. Sudden obstacles are present to hinder AIBO. AIBO needs to find another
path to walk to its destination. Table 8.4 summarizes the environment specifications.

Table 8.4: Test scenario 3 specifications.

 Specifications

Events: Ringing door bell event.

Solution: Use owner object, which has been found during patrolling.

Obstacles: Yes

In a very quiet evening the AIBO owner is sitting on the sofa and watching an action movie. AIBO
is very hard working, so it is still patrolling the home environment when its owner is watching a

AIBO as an Intelligent Robot Watchdog

122

movie. Suddenly when AIBO passed by the door it hears the ringing sound of the bells. Someone is
standing behind the door. Since AIBO is not able to open a traditional door AIBO walks to its
owner and create a requesting sound to notify the owner that someone has rung the bells. During its
way back to the owner, some not foreseen obstacles are blocking the fastest path. Therefore after
detection by AIBO it needs to find another path to notify its owner.

Figure 8.6: Map representation of the start environment of the third scenario. AIBO will navigate to

the red stop sign and calculate its next goal. This scenario introduces the owner object and the
ringing bell.

Figure 8.6 shows the start environment of this scenario. After reaching the destination point a new
destination point at the left bottom will be created. During patrolling to the new destination point
AIBO discovers its owner and thereafter the ringing of the doorbell. After hearing the doorbell
AIBO will walk back to notify its owner. When AIBO is walking back, an object will be placed on
the path that AIBO is planning to take. AIBO needs to detect this object and calculate the new path
to its owner. After arriving the goal destination AIBO will create an alarm sound. Figure 8.7
illustrates the movements of the AIBO.

Figure 8.7: The result of the third scenario. The curved line shows the path that AIBO has taken

during the third test scenario. The exclamation mark shows the unknown object that was detected
during its navigation to its owner. Therefore another path needs to be taken.

AIBO as an Intelligent Robot Watchdog

123

Experiment results:

The only difference between this scenario and scenario 2 was the sudden blockade. In this situation
AIBO needed to recalculate the new path that it had to take. After detecting the sudden blockade the
reasoning system of the AIBO watchdog was still producing the correct reactions. The AIBO
watchdog went around the blockade to reach the destination point and it executed the actions that
were necessary. The movement issues were still present in this scenario. Correcting the location of
the AIBO was the only option.

8.1.4. Scenario 4: Intruder who has lighted up the Fire
This scenario describes a situation where AIBO has 2 different events in his mind. The most
important one will be executed first. After completing the first event the second event will be
executed. During execution of the first event there are obstacles on the AIBO path, therefore AIBO
needs to find another path to avoid collision. Table 8.5 summarizes the environment specifications.

Table 8.5: Test scenario 4 specifications.

 Specifications

Events: Intruder event and fire event. (Parallel)

Solution: Use a door object, which has been found during patrolling.

Obstacles: Yes

On a sunny day AIBO is walking around in a messy home environment, but nothing suspicious has
been found yet, except it encounters the main door during patrolling and some unknown objects on
the path. Suddenly AIBO hears some human sounds and it walks to that area for inspection. AIBO
detects an intruder and before it goes to the certain point to alarm the owner, it takes some pictures
and creates some loud sounds. While AIBO is walking to that certain point, AIBO hears the sound
of flames and detects the smoke and fire. After taking pictures and creating some loud sounds
AIBO is now walking to the main door to alarm the people. Because of the mess in the environment
many obstacles have blocked the AIBO path. Therefore it takes a while, before AIBO reaches the
main door. The intruder event will be ignored for a while till the fire event has been handled.

Figure 8.8 illustrates the start situation of the fourth scenario. AIBO starts at the door location
which will be stored in the passive memory. When AIBO is going northwards it detects the intruder.
A picture of the intruder will be captured and alarm sounds will be created. AIBO is now heading to
the certain place where it usually can find its owner. While AIBO is walking to that certain place,
AIBO has detected the burning fire. To protect itself AIBO is running back to the main door and
alarm the people in the outside environment. When AIBO is walking back to the main door, an
obstacle has blocked its path. Therefore a new path will be calculated and taken. Figure 8.9
illustrates this process.

AIBO as an Intelligent Robot Watchdog

124

Figure 8.8: Map representation of the start environment of the fourth scenario. AIBO will detect the

fire and intruder object.

Figure 8.9: The result of the fourth test scenario. The curved line shows the path that AIBO has

taken. The exclamation mark shows the unknown object that suddenly appeared in front of AIBO
when it was heading the door.

Experiments results

AIBO has prioritized the two parallel occurring scenarios and solving them one by one. The
scenario with the highest priority was solved first and thereafter the second highest. This
prioritizing approach was functioning as explained in the design chapter, chapter 4. The
implemented memories were working properly. The data switching from long term memory to short
term memory could be followed from the MainGUI. The navigator has calculated another path,
when an obstacle was blocking the current path. The negative side of the results is the physical
navigation of the AIBO. Because of its inaccurate physical movements, it was necessary to correct
the position of the AIBO during the experiment, but this has already been mentioned at the previous
experiments.

8.2. Test Conclusion
From the experiments results of the 4 test scenarios we can conclude that during the test scenarios
the working of AIBO watchdog was performing as expected. The incoming features were simulated

AIBO as an Intelligent Robot Watchdog

125

by the program and these features were interpreted by the expert system. From this point the
reasoning of the recognized objects started. The manager passes the incoming information to the
destined parts of the reasoning system. The 3 memory components were working as expected. The
useful objects, e.g. door and owner, were stored properly in the passive memory and they were used
when needed. Prioritizing the incoming scenarios was also successful. The most important scenario
was stored in the short term memory and the other incoming scenarios were stored in the long term
memory. When the current scenario was completed successfully the last scenario from the long
term memory was placed in the short memory. This scenario switching in the memory components
was working properly.

The corresponding actions of the scenario were determined properly by the expert system and these
actions were executed one by one. Obstacles were avoided and a new path was calculated. The state
of the environment and AIBO position was updated correctly in the picture of the MainGUI. From
the MainGUI the reasoning state of the AIBO could be followed. New objects that were added
during the simulation were detected properly by the AIBO. The only problem, that was hindering
the AIBO watchdog, was its physical movements. The implemented program requires that the
AIBO watchdog can turn and walk accurately, but in practice AIBO is having difficulties with
turning and walking. AIBO does not turn 90 degrees to the left or right, but 80 degrees to the left
and 85 degrees to the right. Depending on the paw positions the walk algorithm will not always
walk straight. If both left paws are between the right paws, AIBO will have a deviation to the left.
Figure 8.10 illustrates this situation.

Figure 8.10: A situation which leads to incorrect walking movements of the AIBO watchdog. The

positions of the left paws are between the right paws.

AIBO as an Intelligent Robot Watchdog

126

127

Conclusion and Recommendations

“The best way to predict the future is to invent it.”
Alan Kay

s the result of the continuous increasing of violence worldwide it is needed to increase the
surveillance for the safety of people. With this project we have tried to achieve a robot dog

which is able to look after a home environment. AIBO is a multifunctional robot dog. Because of
these integrated functionalities it is a good research medium to understand more about robots. This
project has brought us a closer look at the robot world. The day that robots can help us guard the
home environment will just be a matter of time. In this chapter the results of the project will be
assessed against the requirements that were defined at the start and the results of the implemented
architecture of the AIBO watchdog will be discussed. Furthermore recommendations for future
work will be given.

9.1. Conclusion
This thesis report presents a research in developing an AIBO watchdog that is able to safeguard a
home environment. The architecture and the reasoning system of AIBO watchdog was the main
focus of this project. The resulting AIBO watchdog is able to process information from the
environment and generate appropriate actions to take care of the home environment.

More specifically, the developed AIBO watchdog is able to process features of simulated objects in
the environment and recognize the corresponding objects. Based on this information AIBO
watchdog creates scenario hypotheses and tries to understand the current situation. When multiple
hypotheses are occurring at the same time AIBO is able to prioritize these hypotheses to select the
most important scenario. The most important one gets the attention of the AIBO watchdog and the
other scenarios are dealt with afterwards. Based on the selected scenario the AIBO watchdog selects
the corresponding reaction and these reactions will be executed sequentially. Possible reactions
could be walk forward, walk backward, bark, etc. Some basic reactions such as walk forward and
walk backward were already available for the URBI framework, used for the AIBO watchdog. So
these could be used directly, some reactions had to be modified and others had to be completely
implemented from scratch.

A

AIBO as an Intelligent Robot Watchdog

128

The developed AIBO watchdog has been tested in a test environment that consisted of some small
objects and paper boxes that represented certain objects in the simulation. Within these
simplifications the test results have confirmed that AIBO watchdog is able to take care of a home
environment. Following is a point by point assessment of the thesis requirements.

9.1.1. Design an Architecture
The AIBO watchdog was almost designed from scratch. The work of the predecessor of the AIBO
watchdog project was only used to have an idea of the working of AIBO. The interactions of AIBO
and its environment need to be described and an appropriate framework needs to be designed. The
first requirement:

 Requirement 1: Design an architecture to let the sensors detection component, reasoning
component and action component collaborate efficiently with each other.

has been fulfilled in chapter 5. A new architecture was designed to let the AIBO watchdog interact
efficiently with its environment. This architecture is based on the popular agent architecture. By
conducting literature surveys on currently existing agent architectures the new architecture has been
developed. The developed architecture is modular and flexible, therefore when applying this
watchdog functionally on robots other than the AIBO robot very little modifications are needed.
Not all parts of the designed architecture have been implemented, only the parts that are required to
show the correct behavior of the AIBO watchdog. These parts have been tested extensively.

9.1.2. Design a Reasoning System
The main focus was the reasoning system of the AIBO watchdog. Based on the incoming inputs
AIBO understands its current situation and makes an intelligent judgment. The corresponding
reactions are developed and executed by the AIBO watchdog. Therefore, the second requirement:

 Requirement 2: Design an intelligent reasoning component which is capable to
collaborate with the sensors detection component and action component.

has been achieved. The developed reasoning system is based on dynamic scripting that uses
threshold and ranking. Based on the incoming inputs the most plausible scenario is calculated. The
scenarios with probabilities bigger than a fixed threshold will be ranked in priority. The most
plausible scenario is the scenario that is at the first place of the rank. Thereafter reactions that
belong to that scenario are determined and executed. The developed reasoning component was
completely designed, but partly implemented. This reasoning component has been tested
extensively during the conducted experiments.

9.1.3. Design World Model and Corresponding Navigation Algorithm
AIBO is able to move around and explore its environment. As a result AIBO is able to observe
related events. A description about the world environment of the AIBO watchdog has been made.

AIBO as an Intelligent Robot Watchdog

129

Based on the world environment a corresponding navigation algorithm has been developed.
Therefore, the third requirement:

 Requirement 3: Design the world model of the AIBO watchdog and its corresponding
navigation algorithm.

has been achieved. The world model of the AIBO watchdog contains objects, functionalities and
their relationship. For the navigation algorithm the world environment is divided into a grid. The
intersection of the vertical and horizontal grid lines are the waypoints. At each waypoint there are 4
options: walk forward, walk backwards, turn left and turn right. AIBO is able to move from one
waypoint to the other waypoints. Using this waypoint navigation algorithm AIBO watchdog is able
to move to most of the places and patrol the environment.

9.1.4. Implement a Prototype
To prove that the designed architecture could work properly, the AIBO watchdog has been
implemented. The reactions of AIBO are not only presented in the software, but they are also
executed by the real AIBO watchdog. This leads to the fourth requirement of the AIBO watchdog
project:

 Requirement 4: Implement a prototype which can prove the proper working of the
designed architecture and reasoning component, in the designed world model.

Most of the components in the designed architecture were implemented. The implemented program
was able to demonstrate the correctness of the reasoning system. Each step of the reasoning process
can be followed by the GUI of the program. The output of the reasoning process leads to physical
reactions of the AIBO watchdog. The entire implementation has been explained in very detail and a
manual has also been written to let people adapt the software to their own version. Therefore this
requirement has also been achieved.

9.1.5. Test Prototype
In chapter 8 the results of the implemented architecture has been presented. Experiment with test
scenarios has been conducted and demonstrated during a special meeting. This experiment has
shown the correct working of AIBO watchdog. The reasoning process during the experiment has
performed the results as expected. The results conform the output of the designed reasoning system.
Therefore, the fifth requirement:

 Requirement 5: Test this prototype to see whether the designed system and approach
perform as expected.

has also been achieved. The prototype was tested by four test scenarios. These scenarios require
reasoning of events in parallel or sequential, prioritizing scenarios and avoiding new introduced
obstacles. Normally reasoning about events occurs in a sequential way, but to deal with parallel
inputs two memory components were introduced, the short term and long term memory. The most

AIBO as an Intelligent Robot Watchdog

130

important scenario is placed in the short term memory and the other scenarios are placed in the long
term memory. The physical reactions are not always executed properly. The physical turning and
walking of AIBO watchdog has some deviations and the amount of deviation is dependent on the
floor where AIBO watchdog is operating.

9.2. Recommendations
The implemented architecture contains the minimal functionality required to show adequate
behaviors of the AIBO watchdog in a real environment. Because of the large size of the project
some simplifications have been made in some of the implemented architectures components.
Therefore there is a lot of space for improvements. In this section first recommendations are
discussed for the components of the designed architecture that have not been implemented and
afterwards recommendations for the implemented components are presented.

9.2.1. Recommendations for not Implemented Components
There are two components in the developed architecture that are not implemented, internal needs
and actions attributes XML.

Internal needs

The internal needs component deals with the emotion and needs of the AIBO watchdog. When the
battery level of AIBO is low AIBO should react on this internal event appropriately. This whole
concept can be developed with help of the work of Iulia Dobai, Personality model for a companion
AIBO [49]. In this work many concepts have been proposed and their correctness has been proved.

Actions attributes XML

The actions attributes XML component provides the possibility for the user to change the actions
attributes of the AIBO watchdog. These actions can be walking a certain amount of distance,
barking with a certain sound wave or storing the captured picture in a certain directory. By storing
these attributes in an XML file the user can adjust these values very easily to their desired settings.

9.2.2. Recommendations for Future work
Improvements in the perceiving component

In the current implementation, the AIBO watchdog receives the features information of objects in
its environment from an external PC every time when AIBO reaches a waypoint. A better method is
using the available camera to capture the image and extract these features automatically. The
available microphones should capture the sound, analyze it and estimate the sound direction. As an
intermediate step one can consider to implement a program which is able to recognize icons instead
of real objects. The iconic representation of an object can be attached to a box. This box represents
the object that the icon describes. This approach is much easier to realize, since real objects can be
very big or very small and for iconic representation their size can be the same and many other
object characteristics do not need to be taken into account, such as shadows.

AIBO as an Intelligent Robot Watchdog

131

Improvements in the interpretation component

The number of perceived features of objects must be sufficient to recognize the original objects.
The improvements of this component are heavily dependent on the perceiving component. For the
best result it is advised to develop these 2 components together. If AIBO is only able to distinguish
10 colors and 4 shapes, then AIBO can classify 40 objects at most. Therefore developing new
methods to perceive new features is necessary. When the feature space becomes too large, one can
consider using a neural network to classify the objects instead of an expert system.

Improvements in the scenario reasoning component

In the design it was chosen for the dynamic scripting approach to determine the current scenario.
Based on the incoming objects the chances of the scenarios is adapted. The scenario which has
reached the threshold and has a higher chance score is chosen. This approach can be replaced by a
probabilistic approach, the Bayesian Network. By its probability model it is one of the best models
to operate in an uncertain environment. In an uncertain environment nothing can be concluded for
sure, but it is possible to conclude that this scenario fits 80% of the inputs. Based on the inputs a
better understanding of the environment is achieved by calculating more accurate probability of all
scenarios, but it is not easy to determine the probability values between a certain object and
scenarios. A lot of research needs to be completed to be able to determine the probability values.

Improvements in the reaction reasoning component

After understanding the current environmental situation AIBO needs to know how to react on it.
The chosen approach uses an expert system to determine the appropriate reactions. The reaction
reasoning component can be merged with the scenario reasoning component to determine the
reactions. A Bayesian Network can replace both components and produce the actions immediately.
The number of reactions should be extended to create more natural reactions of the AIBO watchdog.

Improvements in world navigation

During the test of the AIBO watchdog the navigation algorithm has produced the correct outputs,
but there are small deviations of the physical movements of AIBO. When the navigation algorithm
wants to turn 90 degrees to the left, AIBO will make a turn of 85 degrees which results a deviation
of 5 degrees to the right. To solve this problem AIBO should calibrate itself when it discovers that it
is not moving correctly. An algorithm to let AIBO localize itself based on the features in its
environment is the ideal situation. This approach requires accurate sensors inputs. Good lighting is
the basic requirements for this approach.

The used navigation algorithm takes only four walking direction into account at each waypoint:
walk forward, walk backward, turn left and turn right. Besides this algorithm a more accurate
algorithm is required to navigate more efficiently in its environment without bumping into objects.
This approach requires accurate physical movements of the AIBO. It is required that AIBO can turn
at least multiple of 15 degrees, then diagonal movements can also be executed. Since the current
algorithm turns the AIBO multiple of 40 degrees it is very hard to let AIBO navigate correctly to its

AIBO as an Intelligent Robot Watchdog

132

destination. The walk functionality also needs to be improved. AIBO needs to be able to walk
straight at all kind of floors. Furthermore AIBO watchdog should be able to walk appropriately on
sloping roads and bumpy ones. Some researches about walking on sloping and bumpy roads for an
AIBO robot dog has already been conducted, but more research is still required [9].

Improvement in action execution

The implemented action executor executes actions only one by one. In future it must be possible to
execute actions in parallel. Two or more consecutive actions can be executed in parallel, if they are
independent of each other and the place of execution is not an important issue. For example,
creating an alarm sound and walking to the door can be executed at the same time.

Autonomous AIBO watchdog

When the improvements have already been made, the ultimate goal of the AIBO watchdog project
is to let AIBO patrol the environment on its own without help of other tools. An external PC to
control the AIBO watchdog should be redundant. In order to achieve that all programs should be
able to run on the Apertos operating system of AIBO, fit on the 16MB memory stick and run on its
64MB working memory.

The designed architecture provides lots of opportunities for improvements, such as a better
navigation method in the environment, an improved object recognition functionality and a more
sophisticated reasoning system. The implemented architecture is only a proof of concept. It is
required to do real life testing instead of simulation to gather more requirements based on real life
situations. Technology is developing in a rapid pace; with better specification of the robots in future
it is undoubtedly possible to realize such watchdogs. This project has indicated the limitations of the
current technology, but utilizing the current technology we have brought the autonomous robot
watchdogs’ concept a step closer.

AIBO as an Intelligent Robot Watchdog

133

Appendix A
Jess – A Rule-Based System

In this appendix the characteristics of Jess will be discussed. Jess stands for Java Expert System
Shell and it is a rule engine and scripting language developed at Sandia National Laboratories in
Livermore, California in the late 1990s. Jess is written in Java, so it is an ideal tool for adding rules
technology to Java-based software systems.

Jess is dynamic and Java centric, so it automatically gives you access to all of Java’s powerful APIs
for networking, graphics, database access, and so on. Jess has been used to develop a broad range of
commercial software, including:

• Expert systems that evaluate insurance claims and mortgage applications.

• Agents that predict stock prices and buy and sell securities.

• Design assistants that help mechanical engineers.

• Smart network switches for telecommunications.

Jess can be used in command-line applications, GUI applications, servlets, and applets. Jess is a
very flexible system. Its applications can be developed without compiling a single line of Java code
or they are controlled entirely by Java code. Jess has been deployed in everything from enterprise
applications using J2EE on mainframes to personal productivity applications on handheld devices.

Jess’s rule engine uses an improved form of a well-known method called the Rete algorithm (Rete
is Latin for net) to match rules against the working memory. The Rete algorithm explicitly trades
space for speed, so Jess can use a lot of memory. Jess does contain commands that let you sacrifice
some performance to decrease memory usage. The power of the Rete algorithm is that it eliminates
the inefficiency in the simple pattern matcher by remembering past test results across iterations of
the rule loop. Only new or deleted working memory elements are tested against the rules at each
step. Furthermore, Rete organizes the pattern matcher so that these few facts are only tested against
the subset of the rules that may actually match.

AIBO as an Intelligent Robot Watchdog

134

AIBO as an Intelligent Robot Watchdog

135

Appendix B
In this appendix the pictures will be presented that are made during the test scenarios. During the
test scenarios, which have been mentioned in chapter 7, some pictures have been made by the AIBO
watchdog. These pictures give an impression of the AIBO watchdog in practice. Figure B.1 shows
the pictures of the detected fire by the AIBO watchdog.

Figure B.1: Pictures of detected fire taken by AIBO. The left picture shows a picture of the fire

object made by AIBO during patrolling. The right picture shows the fire object itself.

Figure B.1 illustrates the problems to discover the full object with a camera. A focusing algorithm
should be developed to focus on the full object when AIBO takes a picture. Figure B.2 illustrates
the same problem but with a different object.

Figure B.2: Pictures of detected owner taken by AIBO. The left picture shows a picture of the
owner object made by AIBO during patrolling. The right picture shows the owner object itself.

These two pictures show a problem when AIBO is taking a picture of a certain object. It is
insufficient to take a picture only, it is also necessary to find the shape of the object and focus on
that object. These two actions should be implemented when the object simulation approach by the
program are replaced by the real object recognition approach. People also have to take into
consideration that multiple image objects can be detected in one image. Therefore it is necessary to
understand that the shape finding algorithm can find multiple shapes, but some shapes are objects
that are very far away. This issue needs to be solved when we want to work with real object
recognition.

AIBO as an Intelligent Robot Watchdog

136

AIBO as an Intelligent Robot Watchdog

137

Appendix C
In this appendix the implemented reactions of the AIBO watchdog will be explained. These
reactions can be placed in the implemented expert systems that find the corresponding reactions for
every scenario. Table C.1 shows the implemented reactions and a short description is provided.

These actions can be placed in the actions reasoning expert system, evenhandler.clp file, to define
the desired reactions of people for the AIBO watchdog.
Figure C.1 shows a rule in the eventhandler.clp file.

Figure C.1 A rule in eventhandler.clp that will place reactions on the stack if the fire scenario is
active.

By replacing the string behind the setStack command a new action will replace the old one. To add
more reactions for a certain situation, one has to add more setStack lines in the rule. Removing the
setStack line will reduce the number of reactions.

(defrule fire
(actionadder(mainevent "FIRE")(done "FALSE")(OBJECT ?w))
=>
(?w setDone "TRUE")
(?w setStack "turntoobject")
(?w setStack "headscan")
(?w setStack "capturescene")
(?w setStack "email")
(?w setStack "alarm")
(?w setStack "runtocenter")
)

AIBO as an Intelligent Robot Watchdog

138

Table C.1: Implemented reactions for the expert system.

Low level actions

walk Each paw of AIBO will move 3 steps forwards from its origin.

headscan The head of AIBO will move to left and right and it stops in the
neutral zone.

turnleft Each paw of AIBO will move 2 steps and AIBO will turn 80 degrees
to the left.

turnright Two paws of AIBO will move 2 steps and the other two paws will
move 3 steps. AIBO will turn 85 degrees to the right.

turn180 Each paw of AIBO will move 5 steps and AIBO will turn 190
degrees.

capturescene A picture will be taken and saved in the main directory of the
program.

capturesound A picture will be taken and saved in the main directory of the
program. NOT IMPLEMENTED YET

alarm AIBO will create a barking sound.
alarm2 AIBO will create a big alarming sound.
testdistance AIBO will measure the distance to its nearest object. If the distance

is smaller than 30cm, an unknown object will be placed in the
environment map and a new direction will be calculated.

email An email will be sent to a certain person. NOT IMPLEMENTED
YET

High level actions
turntonode The next node on the path will be calculated and AIBO will turn to

the direction of the path.
turntoobject AIBO will turn itself to the detected object direction.
turntosoundobject AIBO will turn itself to the detected sound direction.
runfromfire The new goal point is the default goal node (3,5), if there are no

escape objects were encountered. Otherwise the goal point will be
the location where AIBO discovered the escape object.

runfromintruder The new goal point is the default goal node (3,1).
runfromringingbell The new goal point is the default goal node (7,7), if there are no

notify objects were encountered. Otherwise the goal point will be the
location where AIBO discovered the notify object.

runfrombrokenglass The new goal point is the default goal node (4,1).

AIBO as an Intelligent Robot Watchdog

139

Reference
[1]. Violent offences top million mark:
 http://news.bbc.co.uk/2/hi/uk_news/politics/4700575.stm

[2]. FBI Releases its 2005 Crime Statistics:
http://www.fbi.gov/ucr/05cius/about/crime_summary.html

[3]. U.S. and World Population Clocks – POPClocks:
 http://www.census.gov/main/www/popclock.html

[4]. Toename diefstal jonge auto's:
http://www.rtl.nl/(/actueel/rtlboulevard/crime/)/components/actueel/rtlboulevard/2006/07_j
uli/crime/060714_auto.xml

[5]. Man dringt residentie Britse koningin binnen: http://www.nu.nl/news.jsp?n=415398&c=21

[6]. The incredible human body: The five senses:
 http://school.discovery.com/lessonplans/programs/humanbody/

[7]. Official Sony AIBO website: http://support.sony-europe.com/aibo/index.asp

[8]. Joanne Pransky, “AIBO- the Nr. 1 selling service robot.”, Industrial Robot: an international
journal, Volume 28, Number 1 2001, pp24-26.

[9]. Yuki Naoda, Daiki Satoh, Miyuki Fujii and Michiko Matsuda, “Automatic Walking-Pattern
Acquisition on a punishing road for a quadruped robot: AIBO.”

[10]. Laurence Nigay, Joelle Coutaz, “A design space for multimodal systems: concurrent
processing and data fusion”, Interchi “93, 24-29 April 1993.

[11]. Assuralia, “Verzekering en preventie bij woningen.”:
 http://www.assuralia.be/nl/branches/batibouw/liste.asp

[12]. Home safety and home security: http://www.safewithin.com/homesafe/home.sec.cgi?1,1

[13]. Vakantie beurs. “Je huis veilig achterlaten.” :
http://www.vakantiebeurs.nl/reisinformatie/reisinformatie_algemeen.php?cat=huisachterlat
en

[14]. Wereldreisgids. “Uw huis achterlaten.”: http://www.wereldreisgids.nl/content/new-
main.asp?id=82

[15]. Gemeente Utrecht. “Utrecht steeds veiliger.”:
 http://www.utrecht.nl/smartsite.dws?id=131024

[16]. Fatiha Mamache, “Representing temporal relationships between events and actions.”

[17]. Doreen Massey, “Space-time, ‘Science’ and the relationship between physical geography
and human geography”, June 1999.

[18]. Peter Shirley. “Fundamentals of computer graphics, 2nd Edition.” A.K. Peters Ltd.

AIBO as an Intelligent Robot Watchdog

140

[19]. Stanford encyclopedia of philosophy. “Memory”: http://plato.stanford.edu/entries/memory/

[20]. ” Mnemosyne, Human ecology of memory”:
 http://socrates.berkeley.edu/~kihlstrm/mnemosyne.htm

[21]. Jeff Hawkins with Sandra Blakeslee, “On intelligence”, New York: Times Books.

[22]. Byoung-Ju Lee and Gwi-Tae Park, “A Robot in Intelligent Environment: Soccer Robot”,
Advanced Intelligent Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International
Conference, 1999, pages 73-78.

[23]. Kikuo Fujimura and Hanan Samet, “A hierarchical strategy for path planning among
moving objects”, Robotics and Automation, IEEE Transactions, Feb 1989, pages 61-69.

[24]. Larman, C., “Applying UML and Patterns”.

[25]. Creating Use Case Diagrams:
http://www.developer.com/design/article.php/10925_2109801_1

[26]. Practical UML: A Hands-On Introduction for Developers:
 http://bdn.borland.com/article/0,1410,31863,00.html

[27]. Michael Luck, Ronald Ashri, Mark D’Inverno, “Agent-based software development”,
Artech House Publishers, 2004.

[28]. Wooldridge, M., and N.R. Jennings, “Agent Theories, Architectures, and Languages: A
survey”, Intelligent Agents: Theories, Architectures, and Languages, M. Wooldridge and N.
Jennings, volume 890 of LNCS, New York: Springer, 1995, pp. 1-39.

[29]. Brooks, R. A., “A robust Layered Control System for a Mobile Robot,” IEEE Journal of
Robotics and Automation, Vol. 2, No. 1, 1986, pp14-23.

[30]. Ferguson, I. A., “TouringMachines: an architecture for dynamic, Rational, Mobile Agents,”
Ph.D. thesis, Clare Hall, University of Cambridge, England, 1992.

[31]. Kiss, G., “Goal, Values, and Agent Dynamics,” Foundations of Distributed Artificial
Intelligence, G. O’Hare and N. Jennings, New York: John Wiley and Sons, 1996, pp. 247-
268.

[32]. Cohen, P.R., and H. J. Levesque, “Intention is choice with commitment,” Artificial
Intelligence, Vol. 42, 1990, pp. 213-261.

[33]. Sabrina Sestito, Tharam S. Dillon, “Automated Knowledge Acquisition”, Prentice Hall of
Australia Pty Ltd, 1994.

[34]. Han Reichgelt, “Knowledge Representation: an AI perspective”, Ablex Publishing
Corporation, 1991.

[35]. Hector J. Levesque and Gerhard Lakemeyer, “The logic of knowledge bases”, The MIT
Press, 2000.

[36]. Peter Jackson, “Introduction to expert systems.”, 2nd edition, Addison-Wesley Publishing
company, 1990.

AIBO as an Intelligent Robot Watchdog

141

[37]. Sankar K. Pal, Tharam S. Dillon, and Daniel S. Yeung, “Soft computing in Case Based
Reasoning.”, Springer-Verlag London Limited, 2001, Julie Main, Tharam S. Dillon, and
Simon C.K. Shiu, “A tutorial on Case Based Reasoning”.

[38]. Stuart Russell, Peter Norvig, “Artificial Intelligence: a modern approach”, 2nd edition,
Pearson Education Inc, 2003.

[39]. Gene Bellinger, Durval Castro, Anthony Mills, “Data, Information, Knowledge, and
Wisdom”: http://www.systems-thinking.org/dikw/dikw.htm.

[40]. Silvia Oana Tanase, “Bachelor Thesis: AIBO WatchDog”, EEMCS, TU Delft, 2005.

[41]. Brian Smith, “Reflection and semantics in a procedural language. Ph. D. thesis and
technical report MIT/LCS/TR-272, MIT, Cambridge, 1982.

[42]. Fikes, R., & Kehler, T., “The role of frame-based representation in reasoning.”,
Communications of the ACM, 28, 904-20.

[43]. Lindsay, R., “Inferential memory as the basis of machines which understand natural
language.”, E. Feigenbaum & J.Feldman (Eds.), Computers and thought, New York:
McGraw-Hill.

[44]. Aleksander, I. 1989a, “Connectionist systems: information technology goes brain-like
(again!)”, in Intelligent systems in a human context: Development, implications, and
applications, eds L.A. Murray & J.T.E. Richardson, Oxford University press, Oxford, pp.
47-52.

[45]. Wasserman, P.D. & Schwartz, T. 1988, „Neural networks, part2“, IEEE expert, Spring,
pp10-15.

[46]. Touretzky, D.S. & Pomerleau, D.A. 1989, „What’s hidden in the hidden layers?”, Byte,
August, pp. 227-33

[47]. RoboCup competition: http://www.tzi.de/4legged/bin/view/Website/WebHome

[48]. RoboCup.nl: http://www.robocup.nl/

[49]. Iulia Dobai, “Personality model for a companion AIBO.”, EEMCS, TU Delft, 2005.

[50]. Francisco Martin Rico, Rafaela Gonz_alez-Careaga, Jose Maria Canas Plaza,Vicente
Matellan Olivera, “Programming Model Based on Concurrent Objects for the AIBO Robot”,
Actas de las XII Jornadas de Concurrencia y Sistemas Distribuídos, Universidad Rey Juan
Carlos y Universidad Complutense de Madrid, junio 2004.

[51]. Iulia, Zhenke, ”OPEN-R development tools overview”, EEMCS, TU Delft, 2005.

[52]. Ferguson, I.A., “Integrated control and coordinated behavior: a case for agent models,”
Intelligent agents: Theories, architectures, and languages, M. Wooldridge and N. Jennings,
(eds), Volume 890 of LNCS, New York: Springer, 1995, pp. 203-218.

[53]. Harvey Fletcher, “Auditory patterns”, Bell telephone laboratories, New York.

AIBO as an Intelligent Robot Watchdog

142

[54]. Carlos Martinho, Ana Paiva, “Pathematic Agents: Rapid Development of Believable
Emotional Agents in Intelligent Virtual Environments”, Technical University of Lisbon and
Instituto de Engenharia de Sistemas e Computadores.

[55]. Marvin Minsky, "A Framework for Representing Knowledge", in Patrick Henry Winston
(ed.), The Psychology of Computer Vision, McGraw-Hill, New York, 1975.

[56]. Bayu Slamet, Arnoud Visser, “Purposeful perception by attention-steered robots”.

[57]. Raffay Hamid, Aaron Bobick, Anthony Yezzi, “AUDIO-VISUAL FLOW - A
VARIATIONAL APPROACH TO MULTI-MODAL FLOW ESTIMATION”, Image
Processing, 2004. ICIP '04. 2004 International Conference on Volume 4, 24-27 Oct, 2004
Page(s):2563 - 2566 Vol. 4.

[58]. Gun A. Lee, “Improving AIBO with Artificial Intelligence Technique”, Term paper on A.I.
course, Dec.12, 2002.

[59]. Kohtaro Sabe, Masaki Fukuchi, Jens-Steffen Gutmann, Takeshi Ohashi, Kenta Kawamoto,
and Takayuki Yoshigahara. “Obstacle Avoidance and Path Planning for Humanoid Robots
using Stereo Vision”, Robotics and Automation, 2004, Proceedings. ICRA '04. 2004 IEEE
International Conference on Publication Date: 26 April-1 May 2004, Volume: 1, On page(s):
592- 597 Vol.1.

[60]. Bram Bakker, Viktor Zhumatiy1, Gabriel Gruener3, Jürgen Schmidhuber, “A Robot that
Reinforcement-Learns to Identify and Memorize Important Previous Observations”, In
"IEEE/RSJ International Conference on Intelligent Robots and Systems", IEEE, 2003.

[61]. Richard Washington, Keith Golden, John Bresina, David E. Smith, Corin Anderson, Trey
Smith. “Autonomous Rovers for Mars Exploration”, Proceedings of the IEEE Aerospace
Conference, 1999, IEEE, 1999.

[62]. Ingeborg Strand Friisk, “Autonomous AIBO watchman”, Norwegian University of
Technology and Science, NTNU, 2003.

[63]. Ioana Butoi, “Find Kick Play An Innate Behavior for the Aibo Robot”, Senior Thesis,
spring 2005.

[64]. Mickaël THOUZERY, “Fusing speech and face recognition on the AIBO ERS-7”, EEMCS,
TU Delft, 2005.

[65]. Harm Aarts Jelmer de Vries Jan-Willem van den Broek, “Aibo Programming Report of
Group Vision1b”, 2004.

AIBO as an Intelligent Robot Watchdog

143

