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Abstra
tMaximum a Posteriori assignment (MAP) is the most probable instantia-tion of a set of variables given a partial eviden
e on the remaining variables ina Bayesian network. Finding MAP has been proven to be an NP-hard prob-lem [20℄, and it is not only exponential in the network treewidth, but also inthe 
onstrained treewidth [13℄. Exa
t approa
hes often fail to yield any resultsfor MAP problems in very large Bayesian networks, and even approximate ap-proa
hes may not yield a

eptable solutions.We introdu
e the Dynami
 Weighting A� (DWA�) sear
h algorithm for solv-ing MAP. By exploiting asymmetries in the distribution of MAP variables, thealgorithm is able to greatly redu
e the sear
h spa
e, yielding very good qualityMAP solutions. Experimental results demonstrate that my algorithm �nds so-lutions generally faster and with a lower varian
e in sear
h time than existingalgorithms.
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Chapter 1Introdu
tionThe purpose of this thesis is to des
ribe the resear
h I 
arried out in the De-
ision Systems Laboratory (DSL) at the S
hool of Information S
ien
es of theUniversity of Pittsburgh. In short, the main obje
tive of this resear
h is to de-velop an eÆ
ient and a

urate algorithm for solving the Maximum a PosterioriAssignment (MAP) problem in Bayesian networks.1.1 Ba
kground Introdu
tionThe Maximum a Posteriori assignment (MAP) is the problem of �nding themost probable instantiation of a set of variables given partial eviden
e on theremaining variables in a Bayesian networks. A Bayesian network [17℄ (alsoknown as a belief network or probabilisti
 network) is a formalism for reason-ing under un
ertainty. De
ision support based on probabilisti
 reasoning wasdeveloped in the late 1970s and gained popularity when eÆ
ient algorithms forinferen
e were introdu
ed in Bayesian networks [12℄. Thanks to an intuitivegraphi
al interfa
e and a sound probabilisti
 framework, the Bayesian networkhas be
ome a popular approa
h to model various expert systems, e.g., medi
al,image interpretation, troubleshooting, and information pro
essing.In detail, a Bayesian network is an a
y
li
 dire
ted graph that represents afa
torization of the joint probability distribution over a set of random variables.The graphi
al stru
ture of the network is the qualitative part of a Bayesiannetwork and embodies a set of nodes representing the random variables anda set of arrows representing dire
t dependen
ies between 
onne
ted variables.Absen
e of an arrow between variables implies that these variables are (
on-ditionally) independent. The parents of a variable are the variables whi
h are
onne
ted with an arrow with its dire
tion going into this variable.The joint probability distribution is the quantitative part of a Bayesian net-work and embodies the 
onditional probability distribution de�ned with ea
h5



variable. This distribution 
hara
terizes the in
uen
e of the values of the prede-
essors (parents) on the probabilities of the values of the variable itself. Whena variable has no parents, the probability distribution is the prior probabilitydistribution. In pra
ti
e, these distributions are derived from frequen
y data oreli
ited from an expert judgment.Given a joint probability distribution over a set of random variables, manydi�erent graphs exist whi
h fa
torize the same joint probability distribution.A fa
torization that is espe
ially desired is the graph that re
e
ts the 
ausalstru
ture of the problem. This graph, also known as a 
ausal graph, normallyre
e
ts an expert's understanding of the domain and fa
ilitates a user's insightduring the operational stage.One spe
ialization of the MAP that has been paid mu
h attention is theMost Probable Explanation (MPE) problem. MPE is the problem of �ndingthe most probable assignment of a set of variables given full eviden
e of theremaining variables. MAP turns out to be a very diÆ
ult problem even when
ompared to MPE or 
omputing the probability of eviden
e. Parti
ularly, thede
ision problem for MPE is NP-
omplete while the 
orresponding MAP prob-lem is NPPP -
omplete [13℄. MAP is more useful than MPE for providingexplanations. For instan
e, in diagnosis, generally we are only interested in the
on�guration of fault variables given some observations. There may be manyother variables that have not been observed and are outside the s
ope of ourinterest.The formula to 
ompute the probability of ea
h possible s
enario of MAPis not too 
omplex. Give a Bayesian network, let M be the set of MAP vari-ables, the 
on�guration of whi
h is what we are interested in; E is the set ofeviden
e, namely the variables whose states we have known; The remainder ofthe variables, denoted by S, are variables that we neither know their states nor
are about their 
on�guration. If a variable in the set of MAP variables M isintantiated at the ith pla
e using its jth state, it will be denoted as Mij :By using 
hain rule, the probability of the MAP problem whi
h 
onsists ofn MAP variables 
an be presented as follows:P (M j E) = P (Mni jM1j ;M2k; : : :M(n�1)t; E): : : P (M2k jM1j ; E)P (M1j j E) :Ea
h posteriori probability at the righthand side of the equation above 
anbe 
omputed by the jointree algorithm [12℄ eÆ
iently. In other words, the MAPproblem is to �nd the s
enario with the largest posteriori probability among allpossible assignments to the M given E.1.2 Motivation and Obje
tiveSeveral resear
hers have proposed algorithms for solving the MAP problem. Avery eÆ
ient approximate sear
h-based algorithm based on lo
al sear
h, pro-6



posed by Park and Darwi
he [13℄, is 
apable of solving MAP eÆ
iently whi
his based on lo
al sear
h. An exa
t method, based on bran
h-and-bound depth-�rst sear
h, proposed by Park and Darwi
he [15℄, performs quite well when thesear
h spa
e is not too large. Another approximate proposed more re
ently byYuan et al. [21℄ is a Reheated Annealing MAP algorithm. It is somewhat sloweron simple networks but it is able to handle very hard 
ases whi
h the exa
talgorithm 
an not solve.In my thesis, I propose the Dynami
 Weighting A� (DWA�) Sear
h algo-rithm for solving MAP that is faster than any of the existing algorithms. Thealgorithm explores the asymmetries among all possible assignments in the jointprobability distributions. Typi
ally, a small fra
tion of assignments 
an be ex-pe
ted to 
over a large portion of the total probability spa
e with the remainingassembles having pra
ti
ally negligible probability [7℄.Previous resear
h and simulation results have shown that the greedy guess [14,21℄, whi
h is represented as follows:P (M jE) = nYi=1maxj P (Mij jM(i�1)k : : :M1m; E) (1.1)is quite 
lose to the optimal solution of the MAP problems. In other words, ito�ers a very tight lower bound on the optimal solution. While it is theoreti
allynot admissible (admissible heuristi
 should o�er an upper bound on the MAP),with a simple extension it o�ers �-admissibility [16℄ and ex
ellent performan
e.1.3 OverviewThe remainder of this thesis is stru
tured as follows. Se
tion 2 de�nes the MAPproblem and summarizes the main results on its 
omplexity. It also outlinesseveral methods for solving MAP. Se
tion 3 introdu
es the theory of asymme-tries among joint probability distributions. Se
tion 4 des
ribes the Dynami
Weighting A� Sear
h algorithm. Se
tion 5 des
ribes the implementation of thealgorithm. Se
tion 6 presents the results of applying the algorithm to severalreal 
omplex Bayesian networks.
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Chapter 2MAP and PreviousResear
h2.1 Bayesian NetworksThis se
tion presents a brief introdu
tion into Bayesian networks and des
ribesthe ne
essary 
on
epts for this thesis. I assume that the reader is familiar withthe essentials of theory and probability theory.A Bayesian network [17℄ (also known as a belief network or probabilis-ti
 network) is a formalism for reasoning under un
ertainty. De
ision supportbased on probabilisti
 reasoning was developed in the late 1970s and gainedpopularity when eÆ
ient algorithms for inferen
e were introdu
ed in Bayesiannetworks [12℄. Thanks to an intuitive graphi
al interfa
e and a sound probabilis-ti
 framework, the Bayesian network has be
ome a popular approa
h to modelvarious expert systems, e.g., medi
al, image interpretation, troubleshooting, andinformation pro
essing.In detail, a Bayesian network is an a
y
li
 dire
ted graph that represents afa
torization of the joint probability distribution over a set of random variables.The graphi
al stru
ture of the network is the qualitative part of a Bayesiannetwork and embodies a set of nodes representing the random variables anda set of arrows representing dire
t dependen
ies between 
onne
ted variables.Absen
e of an arrow between variables implies that these variables are (
on-ditionally) independent. The parents of a variable are the variables whi
h are
onne
ted with an arrow with its dire
tion going into this variable.The joint probability distribution is the quantitative part of a Bayesian net-work and embodies the 
onditional probability distribution de�ned with ea
hvariable. This distribution 
hara
terizes the in
uen
e of the values of the prede-
essors (parents) on the probabilities of the values of the variable itself. Whena variable has no parents, the probability distribution is the prior probability9



distribution. In pra
ti
e, these distributions are derived from frequen
y data oreli
ited from an expert judgment.Given a joint probability distribution over a set of random variables, manydi�erent graphs exist whi
h fa
torize the same joint probability distribution.A fa
torization that is espe
ially desired is the graph that re
e
ts the 
ausalstru
ture of the problem. This graph, also known as a 
ausal graph, normallyre
e
ts an expert's understanding of the domain and fa
ilitates a user's insightduring the operational stage.Example 1. Consider the Bayesian network in Figure 2.1, whi
h representsa �
titious Asia example from Spiegelhalter and Knill-Jones [1984℄. This net-work is based on the knowledge that dyspnea (DY), i.e., shortness-of-breath,may be due to tuber
ulosis (TC), lung 
an
er (LC), or bron
hitis (BC). A re-
ent visit to Asia (VA) in
reases the probability of tuber
ulosis, while smoking(SM) is known to be a risk fa
tor for both lung 
an
er and bron
hitis. Neitherthe result of a single 
hest X-ray (bf XR) nor the presen
e or absen
e of dyspnea,dis
riminates between lung 
an
er and tuber
ulosis. Ea
h of the variables is as-so
iated with a probability distribution. So has the variable SM the marginalprobability distribution of Table 2.1. And, sin
e the variable SM is the parentof the variable LC, this variable has a 
onditional probability distribution ofLC 
onditioned on SM, see Table 2.2.

Figure 2.1: An example of Bayesian network.The jointree algorithm, a various eÆ
ient algorithms �rst proposed by Lau-ritzen and Spiegelhalter [12℄ exists for reasoning in Bayesian networks, e.g.,determining the impa
t of pro
essing eviden
e into the network. Although the10



Table 2.1: Prior probability table of the variable SM.Pr(SM)SM nonsmoker 0.75SM smoker 0.25Table 2.2: Conditional probability table of the variable LC 
onditioned on thevariable SM. Pr (LCj SM) SM nonsmoker SM smokerLC absent 0.75 0.45LC present 0.25 0.55
al
ulation of probabilisti
 inferen
e is NP-hard, the algorithms provide rea-sonable 
omputing times for networks 
onsisting of tens or even hundreds ofnodes.Before I present the de�nition of a Bayesian network and Bayes rule, I intro-du
e some ne
essary notations. Consider a �nite set of dis
rete random variablesV, where ea
h variable X 2 V is denoted as a 
apital letter, e.g., X, Y, Z. Ea
hstate of a variable is denoted as a lower
ase letter, e.g., x, y, z. The set of allstates within a variable X, is denoted as DX. The probability distribution overa random variable X is denoted as Pr(X) and the probability of a state x 2 DXas Pr(X = x) or in shorter form Pr(x).A 
ombination of states of multiple variables is denoted as a s
enario. Theset of all the s
enarios from a set of variables V, is denoted as DV , and ea
hs
enario as s 2 DV . In 
ase of one variable, the set of s
enarios and the set ofstates of the variable are identi
al. In Table 2.2 from Example 1 the variablesLC and SM yield the four s
enarios displayed in Table 2.3. The probabilityof a s
enario is de�ned by the joint probability over the states in the s
enario.The probability distribution over a set of variables is denoted as Pr(V) and theprobability of a s
enario s 2 DV as Pr(V = s) or in shorter form Pr(s). The setof parents of a variable X is denoted as QX .Table 2.3: Four possible s
enarios of the variables SM and LC.SM nonsmoker & LC absent SM nonsmoker & LC presentSM smoker & LC absent SM smoker & LC presentThe foundation of the Bayesian network is the Bayes theorem,Pr(B j A) = Pr(A j B)Pr(B)Pr(A) :named after Reverent Thomas Bayes (1702-1761). The initial probabilityPr(A) is 
alled the prior probability, and the updated probability Pr(A j B) the11



posterior probability. An interpretation of the posterior probability is the prob-ability of A with the knowledge of the state of variable B. When the knowledgeof a variables has an e�e
t on the probability of another variable these variablesare 
alled dependent. If variables are independent of ea
h other, the posteriorprobability and the prior probability are equal, Pr(A j B) = Pr(A).De�nition 1 Bayesian network. A Bayesian network, BN = hG;�i is ana
y
li
 dire
ted graph, G = hV ;Ai, where the arrows A denote a probabilisti
 re-lation between the verti
es and ea
h vertex, V 2 V represents a dis
rete randomvariable. Asso
iated with the vertexes is a �V 2V : DV �D�V ! [0, 1℄ fun
tionwith the 
ondition that for ea
h 
ombination of �V 2 �V , there holds:XdV 2DV �V (dV ; �V ) = 1:The probability distribution of ea
h variable is embodied by the joint probabil-ity distribution en
oded in a Bayesian network. Suppose for example two vari-ables, A and B, with the joint probability distribution Pr(A,B). With marginal-ization, the probability distribution of A is 
al
ulated by taking the sum over thejoint probability of A with all the states of B.Pr(A) = Xbi2DB Pr(A; bi)In order to determine and present the joint probability, the following theorembetter known as the 
hain rule may be applied.De�nition 2 Chain rule. Let BN be a Bayesian network over a �nite set ofdis
rete random variables V = fV1,:::, Vng. The joint probability distributionPr(V) is then, Pr(V) = nXi=1 Pr(Vi j �Vi):When variables are instantiated (=set to a state) I refer to these variables aseviden
e. A possible e�e
t of entering eviden
e is a 
hange in the dependen
yrelations between variables, i.e., di�erent variables may be
ome independent ofor dependent on ea
h other. When two sets of variables be
ome independent ofea
h other given the instantiation of a third set, this is identi�ed as 
onditionalindependen
e.De�nition 3 Conditional independen
e. Let V be a �nite set of dis
reterandom variables and let Pr (V) denote the joint probability distribution overthe variables. Suppose three disjoint subsets of variables, X ;Y ;Z � V. The sets12



X and Y are 
onditionally independent given Z, if for all sx 2 DX , sy 2 DY ,and sz 2 DZ ; thereholds :Pr(sx j sy; sz) = Pr(sx j sz):De�nition 4 d-separation. Let BN be a Bayesian network over a �nite setof dis
rete random variables V and let X, Y, and Z stand for any three disjointsubsets of variables of V. Z is said to d-separate X from Y, if along every path(sequen
e of 
onne
ted variables) between a variable in X and a variable in Y,there is a variable W satisfying one of the following two 
onditions: (1) W has
onverging arrows and none of W or its des
endants are in Z, or (2) W doesnot have 
onverging arrows and W is in Z. The sound mathemati
al frameworkand the support for 
onditional independen
e and d-separation make a BN apowerful tool for modelling probability relations between random variables.2.2 MAPCon
eptually, give a Bayesian network, the MAP problem is de�ned as follows.Let M be the set of MAP variables, the 
on�guration of whi
h is what weare interested in; E is the set of eviden
e, namely the variables whose stateswe have known; The remainder of the variables, denoted by S, are variablesthat we neither know their states nor 
are about their 
on�guration. Given anassignment e of variables E, the MAP problem is that of �nding the assignmentm of variablesM whi
h maximizes the probability of P (m j e), while the MPEproblem is the spe
ial 
ase of MAP, when S is empty.map = maxM XS p(M;S j E) : (2.1)In general, in Bayesian networks, we use the Conditional Probability Table(CPT) � as the potential over a variable and its parent nodes. A potentialover all the states of one variable after updating beliefs is 
alled marginal. Thenotation �e stands for the potential in whi
h we have �xed the value of e 2 E.Then the probability of MAP with � as its CPTs turns out to be a realnumber: map = maxM XS Y�2��e : (2.2)We will introdu
e the algorithm of Variable Elimination [15℄ here in orderto 
ompute MAP. The name of the algorithm is just be
ause it sums or maxi-mizes out variables from a list of variables one by one, and this order is namedthe elimination order. The size of the largest 
lique [12℄ minus 1 in a join-tree 
onstru
ted based on an elimination order is 
alled the indu
ed width. The13



indu
ed width of the best elimination order is 
alled the treewidth. In 
om-puting posterior marginal distributions, we only have summations. Thus, we
an 
ommute summations over di�erent variables in order to minimize the in-du
ed width of an elimination order. Similarly, we have only maximizationsin an MPE problem. On
e again, any permutation of the maximizations overdi�erent variables is admissible. Hen
e, the above two problems 
an be solvedusing treewidths. However, a MAP problem has both maximizations and sum-mations. Sin
e summation and maximization do not 
ommute, we are requiredto do summations �rst. An elimination order is valid if maximizing a variableout of a potential never happens before summing over another variable on thesame potential [13℄. The indu
ed width of the best elimination order under
ertain 
onstraints is 
alled the 
onstrained width. Be
ause of the inherent 
on-straints that MAP problems enfor
e on elimination orders, they are subje
t tothe 
onstrained widths of the best valid elimination orders.

(a) (b) (
)Figure 2.2: (a) A simple Bayesian networkand its moralized graph; (b) The indu
ed graph for solving its MPE prob-lem: maxX1;X2;X3;X4;X5 P (X1; X2; X3; X4; X5); (
) The indu
ed graph for solvingthe following MAP problem: maxX1;X2;X4 PX3;X5 P (X1; X2; X3; X4; X5).Consider the simple Bayesian network in Fig. 2.2 and its indu
ed graphs. Anindu
ed graph along an elimination order is obtained by moralizing the Bayesiannetwork, arranging the nodes verti
ally a

ording to the order, and from topto bottom re
ursively 
onne
ting ea
h node's neighbors that appear later thanitself. Dashed lines are indu
ed ar
s, and double arrows are 
ommutable nodes.The width of a variable X along the order is the number of nodes su

eeding Xin the order and 
onne
ted to X minus 1. The width of a graph is the maximum14



width among all nodes, whi
h is also 
alled the indu
ed width. Shaded nodesare those whose widths are maximal. An indu
ed graph for the network's MPEproblem is shown in part (b). We 
an solve the MPE problem of the networkusing an elimination order with indu
ed width 1, whi
h is also the treewidth.Part (
) shows the indu
ed graph of a MAP problem. In the problem, we haveto sum out X3 and X5 �rst, so the best elimination order has indu
ed width 2.Noti
e that the network in this example is a simple polytree, for whi
h beliefupdating and MPE are polynomial. However, be
ause of the 
onstrained width,MAP be
omes an NP-hard problem. It is still possible to �nd valid orderingsthat interleave summation and maximization variables. However, Park [13℄shows that there is always an elimination order with the same width in whi
hall the maximizations are done last, and, hen
e, there is no bene�t of interleavingsummations and maximizations.2.3 Previous Resear
hTo solve the MAP problem for Bayesian networks, resear
hers have proposedvarious approa
hes, all of whi
h are trying to sidestep its inherent 
omplexity.The approa
h in [5℄ uses the geneti
 algorithms to approximate the best 
on-�guration of the MAP variables. Starting from an initial guess, the algorithmtakes a
tions like 
rossover and mutation to explore the spa
e of possible in-stantiations. It stops when a �xed number of iterations have been exe
uted andthen 
hoose the best instantiation as the MAP solution. De
hter and Rish [6℄propose a general s
heme for probabilisti
 inferen
e: Mini-bu
kets. A full mini-bu
ket algorithm is subje
t to the size of the largest potential 
reated, whi
h isequal to the 
onstrained width of the MAP problem plus 1. Hen
e, the mini-bu
ket method sets a limit on the size of potentials. Whenever the size of apotential ex
eeds the limit, the mini-bu
ket method will 
reate an approximateversion of it instead. Park and Darwi
he [14℄ propose an approa
h using lo
alsear
h to solve the MAP problem. The algorithm starts from an initial guessand then iteratively improves the solution by moving to a better neighbor. Ina later paper [15℄, the authors improve the lo
al sear
h algorithm by meansof bran
h-and-bound depth-�rst systemati
 sear
h algorithm. The advantage ofthe improved algorithm is that it provides a guarantee on the optimality of theobtained solution. All of these algorithms 
ould provide very eÆ
ient solutionsfor most of the MAP problems when the networks are not too large or 
omplex.Another approximate algorithm proposed by Yuan et al. [21℄ is a Reheated An-nealing MAP algorithm. It uses Markov Chain Monte Carlo methods to samplefrom the target distribution, and applies the reheated simulated annealing te
h-nique to simulate a nonhomogeneous Markov 
hain. It is somewhat slower onsimple networks but it is able to handle very hard 
ases that the exa
t algorithm
an not solve.All of the above approa
hes alleviate to some degree the 
omplexity of the15



original problem. However, in fa
e of large 
omplex models, they often fail toprovide good results, if any: the approa
h in [5℄ does not provide any guidan
eto explore the more probable spa
es. The quality of the results of the mini-bu
ket method largely depend on the limit of the potential size. The algorithmsin [14, 15℄ redu
e the 
omplexity of the MAP problems to treewidths, but theyare still subje
t to the exponential sear
h spa
es introdu
ed in the problems.Later of my thesis, I will show the eÆ
ien
y and a

ura
y of the DWA�algorithm by 
omparing the simulation results of it with those of the lo
alsear
h, systemati
 sear
h, and the AnnealedMAP .
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Chapter 3Asymmetries Among JointProbability DistributionsA small fra
tion of states of a joint probability distribution 
an be expe
ted to
over a large portion of the total probability spa
e with the remaining stateshaving pra
ti
ally negligible probability [7℄. Theoreti
al dis
ussion has beensupplemented by simulation results. Let us give an 
on
ise introdu
tion tothe argument of the asymmetry among probability of the Joint ProbabilityDistributions.3.1 Preliminaries3.1.1 Probabilisti
 ModelsThe essen
e of any probabilisti
 model is a spe
i�
ation of the joint probabilitydistribution over the model's variables. i.e., probability distribution over allpossible deterministi
 states of the model. It is suÆ
ient for deriving all prior,
onditional, and marginal probabilities of the model's individual variables.Most modern textbooks on probability theory relate the joint probabilitydistribution to the intera
tions among variables in a model by fa
torizing it,i.e., breaking it into a produ
t of priors and 
onditionals. While theis view hasits merits in formal expositions, it suggests viewing a probabilisti
 model asmerely a numeri
al spe
i�
ation of a joint probability distribution that 
an bepossibly algebrai
ally de
omposed into fa
tors. This 
lashes with our intuitionthat whatever probability distribution we observe, they are a produ
t of stru
-tural, 
ausal properties of the domain. Causal intera
tions among variables ina system determine the observed probabilisti
 dependen
e and, in e�e
t, thejoint probability distribution over all model's variables. An alternative view ofa joint probability distribution is, therefore, that it is 
omposable from rather17



than de
omposable into prior and 
onditional probability distribution. In thisview, ea
h of these distributions 
orresponds to a 
ausal me
hanism a
ting in thesystem. This re
e
ts the pro
ess of 
onstru
ting joint probability distributionsover domain models in most pra
ti
al situations.Sin
e insight obtained from two modeling tools: Bayesian belief networks(BBNs) (Pearl, 1988) and probability trees may prove useful for the reader, Iwill show how they both represent a simple un
ertain model involving a 
ommona
tivity of a 
lini
ian interpreting the result of a s
reening test for a disease. Thismodel 
ontains two binary variables: disease and test. The out
omes of variabledisease, d and d, stand for disease present and disease absent respe
tively. Theout
omes of variable test, t and t, stand for test positive and test negativerespe
tively A BBN representing this problem, shown in Figure 3.1, re
e
tsthe qualitative stru
ture of the domain, showing expli
itly dependen
es amongvariables Ea
h variable is 
hara
terized by a probability distribution 
onditionalon its prede
essors or by a prior probability distribution if the variable hasno prede
essors. Figure 3.1 shows also a probability tree en
oding the sameproblem. Ea
h node in this tree represents a random variable and ea
h bran
horiginating from that node a possible out
ome of that variable. Ea
h 
ompletepath starting at the root of the tree and ending at a leaf 
orresponds to one ofthe four possible deterministi
 states of the model.

Figure 3.1: Two probabilisti
 representations of the s
reening test problemBayesian belief network (upper) and probability tree (lower).18



The probabilities of various states of a model 
an be easily retrieved in BBNsand probability trees by multiplying out the prior and 
onditional probabilitiesof individual variables In the models of Figure 3.1, we multiply the priors ofvarious out
omes of disease by the 
onditionals of respe
tive out
ome of testgiven presen
e or absen
e of disease.3.1.2 State ProbabilitiesFirst we 
hoose at random one state of a model that 
onsists of n variablesX1; X2; X3; : : : ; Xn�1; Xn: We 
hoose this state equationally from among allpossible states, regardless of its probability. As a state is an assignment of ea
hof the model's n variables, one way of looking at this sele
tion pro
ess is thatwe are traversing the probability tree representing the model from its root toone of its leaves taking at ea
h step one of the possible bran
hes with equalprobability. This amounts to a random 
hoi
e of one out
ome from among theout
omes of ea
h of the variables. The probability of p of a sele
ted state isequal to the produ
t of 
onditionals of ea
h of the randomly sele
ted out
omes.It is equal for our sele
ted state to p = Pr(d; t) = Pr(d)Pr(t j d). Generally, ifwe denote pi to be the 
onditional(or prior) probability of the randomly sele
tedout
ome of variable Xi, We havep = p1p2p3 : : : pn�1pn = nYi=1 pi : (3.1)In random sele
tion of state, We 
hose ea
h pi to be one number from among theprobabilities of various out
omes of variable Xi. We 
an, therefore, regard ea
hpi as a random variable taking equiprobable values from among the probabilitiesof the out
omes of variable Xi.Obviously, the distribution of pi is not always independent from the distri-bution of pj , when i 6= j, as the out
omes of some variables may impa
t the
onditional probability distributions of other variables. Sele
tion of pi within itsdistribution is nevertheless independent of any other pj , when i 6= j. Spe
i�
ally,in Bayesian networks, whi
h are depi
ted by 
onditional probability distribu-tion between any pair of nodes 
onne
ted by ar
s, the state of ea
h inner nodedepends on the out
omes of its 
ausal an
estors. The exa
t form of this distri-bution is a property of the me
hanism and is independent on anything else inthe systems.By taking the logarithm of both side of equation 3.1 I 
an obtain that:Lnp = ln nYi=1 pi = nXi=1 lnpi : (3.2)As for ea
h i, pi is a random variable, its algorithm lnpi is also a random vari-able for pi is a random variable. The asymptoti
 behavior of a sum of random19



variables is relatively well understood and addressed by a 
lass of limit theoremsknown 
olle
tively as Central Limit Theorem. When the number of 
omponentsof the sum approa
hes in�nity, the distribution of the sum approa
hes normaldistribution, regardless of the probability distribution of the individual 
om-ponents. Even though in any pra
ti
al 
ase we will be dealing with a �nitenumber of variables, the theorem gives a good approximation even the numberof variables is small.3.1.3 Central Limit TheoremCentral limit theorem (CLT) is one of the fundamental and most robust theo-rems of statisti
s, appli
able to a wide range of distributions. It was originallyproposed for Bernoulli variables, then generalized to independent identi
ally dis-tributed variables, then to non-identi
ally distributed, and to some 
ases whereindependen
e is violated. Extending the boundaries of distributions to whi
hCLT is appli
able is one of a
tive areas of resear
h in statisti
s. CLT is so ro-bust and surprising that it is sometimes referred to as \order out of 
haos" (deFinetti, 1974)One of the most general forms of CLT is due to Liapounov (to be found inmost statisti
s textbooks)Theorem 1 Let X1; X2; X3; : : : ; Xn be a sequen
e of n independent randomvariables su
h that E(Xi) = �i, E((Xi � �i)2) = �2i , and E(j Xi � �i j3) = !3iall exist for every i. Then their sum, Y =Pni=1Xi is asymptoti
ally distributedas N(Pni=1 �i;Pn1 �2i=1), provided thatlimn!1 Pni=1 !3i(Pni=1 �2i )3=2 = 0: (3.3)This 
ondition is satis�ed for any distribution for whi
h � and � exist andthe theorem redu
es to Lindeberg and Levy's version of CLT (also reported inmost textbooks).Returning to Equation 3.2, we have by the CLT, that assuming that thepre
onditions of CLT are satis�ed, the sum on the right side is in the limitnormally distributed. If lnp is normally distributed, then p itself must be drawnfrom a lognormal distribution.3.2 Properties of the Joint Probability Distri-butionCLT 
aptures the growth of a pro
ess showing strong regularity and satisfying
ertain independen
e 
onditions, and these 
onditions are reasonably satis�ed inthe pro
ess of 
onstru
ting a joint probability distribution [7℄. In what follows,I will be showing the properties of the logarithm of the distribution.20



Let a model 
onsist of n variablesX1; X2; X3; : : : ; Xn, having k1; k2; k3; : : : ; kn,states respe
tively (1 � i � n). For any single state, we 
an apply the Cen-tral Limit Theorem to equation 3.2, viewing ea
h pi as an independent randomvariable. The value of pi will be the probability of a randomly sele
ted out
omeof variable Xi. Let the mean and the varian
e of the distribution of pi be �iand �2i respe
tively. The logarithm of p, the probability of an individual state,obtained by multiplying priors and 
onditionals of individual variables in thendistributed as lnp � N(Pn1 �i;Pn1 �2i ).The density fun
tion f(lnp) is:f(lnp) = 1p2�Pni=1 �2i exp�(lnp�Pni=1 �i)22Pni=1 �2i ; : (3.4)Example. In order to give readers a dire
t impression, I 
ited one of themost 
lassi
al simulation results that has been reported [Druzdzel 1994, Con-feren
e of Un
ertainty in Arti�
ial Intelligen
e℄.

Figure 3.2: Plot of the probability density fun
tion f(lnp)(in blue) and 
ontri-butions of ea
h s
enario's probability pf(lnp)(in red).In the Bayesian network ALARM [4℄, the resear
her 
hose a subset of 13variables as MAP variables, whi
h led to 525,312 s
enarios.The sum of the probability of ea
h s
enario is 1, and we 
an see that amongall 525,312 s
enarios, there was only one s
enario with the probability of 0.52,21



and other ten s
enarios with a sum of the probability to 0.23. From the perspe
-tive of MAP Problem, there are 99:9979% s
enarios with pra
ti
ally negligibleprobability whi
h are very unlikely to be the solution.3.3 Tentative Resear
h Related to Joint Proba-bility DistributionsThe estimation of joint probability distributions of MAP variables given evi-den
es was also a hot point of resear
h. Tomasz Loboda, my 
olleague in theDe
ision Systems Laboratory (DSL) reported his resear
h result that the esti-mation of the mean of the lognormal distribution is the exa
t value, while theerror of the estimation of varian
e was up to 67% in terms of per
entage error.During the �rst three months's resear
h in DSL, the 
on
entration of myresear
h was proposed to exploit the estimation of joint probability distributionsof MAP variables given eviden
es.It was a bran
h-and-bound sear
h algorithm 
ombined with the estimationof joint probability distribution. The basi
 idea was in ea
h sear
h path of theprobability tree, I 
ould estimate the upper bound of the s
enario by using theintegration of fun
tion 3.4. If the upper bound is smaller than the probabilityof the best s
enario found so far, then the 
urrent sear
h path should be 
ut.The requirement to the a

ura
y of the upper bound was so stri
t thatthe estimation errors led the algorithm to be a quite frustrating one, however,the experien
es a

umulated from developing the bran
h-and-bound algorithmgreatly helped me to �nd new inspiration for the Dynami
 Weighting A� Sear
h.
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Chapter 4Solving MAP usingDynami
 Weighting A�Sear
hI present in this se
tion an algorithm for solving MAP using Dynami
 Weight-ing A� sear
h, whi
h in
orporates the dynami
 weighting [16℄ in the heuristi
fun
tion, relevan
e reasoning [8℄ and dynami
 ordering in the sear
h tree.The remainder of this 
hapter is organized as follows. First, I introdu
e theA� Sear
h. Se
ond, I 
ompare the A� sear
h algorithm with the bran
h-and-bound algorithm whi
h is also suitable for solving the MAP problem, and showwhy it is superior. Third, I introdu
e our method of 
omposing the heuristi
fun
tion h(n). Fourth, I analyze the eÆ
ien
y and a

ura
y of the dynami
weighting A� sear
h algorithm and the situation when over-estimate happened.Finally, I dis
uss two te
hniques for improving the eÆ
ien
y of the algorithm.4.1 A� sear
hThe A� sear
h is 
omplete, optimal, and optimally eÆ
ient among all sear
halgorithms is rather satisfying [18℄.The MAP problems 
an be solved by A� sear
h in the probability tree thatis 
omposed of all the variables in the MAP set. The nodes in the sear
h treerepresent partial assignments of the MAP variablesM. The root node representsan empty assignment. Ea
h MAP variable will be instantiated in a 
ertain order.If a variable x in the set of the set of MAP variables M is intantiated at theith pla
e using its jth state, it will be denoted as Mij : Leaves of the sear
h tree
orrespond to the last MAP variable that has been instantiated. The ve
tor ofinstantiated states of ea
h MAP variable is 
alled an assignments or a s
enario.23



I 
ompute the probability of assignments while sear
hing the whole proba-bility tree using 
hain rule. For ea
h inner node, the newly instantiated nodewill be added into the eviden
e set, i.e., the eviden
e set will be extended toMij [E.Then the probability of the MAP problem whi
h 
onsists of nMAP variables
an be presented as follows:P (M j E) = P (Mni jM1j ;M2k; : : :M(n�1)t; E): : : P (M2k jM1j ; E)P (M1j j E) :Ea
h posteriori probability at the righthand side of the equation above 
an be
omputed by the jointree algorithm [12℄ eÆ
iently. The jointree algorithm is avery 
omplex while eÆ
ient algorithm for 
omputing the posteriori probability ofMAP variables given eviden
es in Bayesian networks whi
h has been developedand in
luded in the SMILE library. If the readers are interested in the jointreealgorithm, I refer the reader to the arti
le of Lauritzen and Spiegelhalter [12℄for more information.Suppose we are in the xth layer of the sear
h tree and preparing for instan-tiating the x th MAP variables. Then the fun
tion above 
an be rewritten asfollows:P (M j E) = bz }| {P (Mni jM1j : : :M(n�1)t; E) : : : P (M(x+1)z jMxy : : : E)�P (Mxy jM1j ;M2k : : :M(x�1)q; E) : : : P (M1j j E)| {z }a(4.1)The general idea of the Dynami
 Weighting A� Sear
h algorithm is that duringthe sear
h, in ea
h inner node of the probability tree, I 
an 
ompute the valueof item (a) in the above fun
tion exa
tly. I 
an estimate the heuristi
 valueof the item (b) for the MAP variables that have not been instantiated giventhe initial eviden
e set and the MAP variables that have been intantiated asthe new eviden
e. In order to �t the typi
al format of the 
ost fun
tion of A�Sear
h, I just take the logarithm of the equation above, whi
h will not 
hangeits monotoni
ity. Then I 
an get f(n) = g(n) + h(n), where g(n) and h(n) areobtained from the logarithmi
 transformation of items (a) and (b) respe
tively.g(n) gives the exa
t 
ost from the start node to node in the nth layer of thesear
h tree, and h(n) is the estimated 
ost of the best sear
h path from the nthlayer to the leaf nodes of the sear
h tree. In order to guarantee the optimalityof the solution, h(n) should be admissible, whi
h in this 
ase means that itshould be an upper-bound on the value of any assignment with the 
urrentlyintantiated MAP variables as its elements.24



4.2 EÆ
ien
y Comparison between A� and Bran
h-Bound Sear
h for MAP ProblemsA� Sear
h is 
losely related to the bran
h-and-bound te
hniques. For the MAPproblems, the eÆ
ien
y of the sear
h algorithm is dominated by the numberof nodes in the probability tree that are instantiated. In order to 
omparethe eÆ
ien
y of the two sear
h algorithms for the MAP problems, I will �rstintrodu
e some de�nitions.De�nition 5 : An algorithm A1 is said to dominate an algorithm A2 if everynode expanded by A1 is also expanded by A2. I will also use the phrase moreeÆ
ient than inter
hangeably with dominates [16℄.Let smax be the most probable assignment and its probability be Pmax. LetPBestSoFar denote the probability of the best assignment that we have found sofar, whi
h is less or equal to the Pmax.Theorem 2 Given the same 
ost fun
tion f(x), A� dominates bran
h and boundon MAP problems.Proof: The 
ondition for 
utting the 
urrent sear
h path in \bran
h andbound" sear
h is f(x) < PBestSoFar . So the whole sear
h spa
e 
an be denotedby: S1 = fx : f(x) � PBestSoFar[ x 2 optimal assignmentg :For the A�, 
onsider a node y that is 
urrently in the sear
h frontier whi
h isalso an element of the ve
tor of the optimal s
enario. With the admissibility ofthe f(y), whi
h guarantees that f(y) an upper-bound on the probability of theoptimal solution, we have f(y) � Pmax. For all nodes x that on the sear
h pathother than the optimal assignment, we have f(x) � f(y). The whole sear
hspa
e 
an be denoted by:S2 = fx : f(x) � f(y)[ x 2 optimal assignmentgGiven that PBestSoFar � Pmax and f(y) � Pmax, we have f(y) � PBestSoFar ,whi
h implies S2 � S1, i.e., that the A� sear
h dominates the bran
h-and-boundsear
h. 24.3 Heuristi
 Fun
tion with Dynami
 WeightingThe A� Sear
h is known for its 
ompleteness and optimality. For ea
h sear
hstep, I only expand the node in the frontier with the largest value of f(n).25



De�nition 6 A heuristi
 fun
tion h2 is said to be more informed than h1 ifboth are admissible and h2 is 
loser to the optimal 
ost. For the MAP problem,the probability of the optimal assignment Popt < h2 < h1.Theorem 3 If h2 is more informed than h1 then A�2 dominates A�1 (Nils-son). [16℄The power of the heuristi
 fun
tion is measured by the amount of pruningindu
ed by h(n) and depends on the a

ura
y of this estimate. If h(n) estimatesthe 
ompletion 
ost pre
isely (h(n) = Popt), then A� will only expand nodes onthe optimal path. On the other hand, if no heuristi
 at all is used, (for the MAPproblem this amounts to h(n) = 1), then a uniform-
ost sear
h ensues, whi
h isfar less eÆ
ient. So it is 
riti
al for us to �nd an admissble and tight h(n) toget both a

urate and eÆ
ient solutions for MAP.Greedy GuessIf ea
h variable in the MAP setM is 
onditionally independent of all the rest ofMAP variables (this is 
alled exhaustive independen
e), then the MAP problemamounts to a simple 
omputation based on the greedy 
hain rule. I instantiatethe MAP variable in the 
urrent sear
h layer to the state with the largest prob-ability and repeat this for ea
h of the remaining MAP variables one by one.The probability of MAP is thenP (M jE) = nYi=1maxj P (Mij jM(i�1)k : : :M1m; E) : (4.2)The requirement of exhaustive independen
e is too stri
t for most of theMAP problem to be 
al
ulated by using the fun
tion above. Simulation resultsshow that in pra
ti
e, when this requirement is violated, the produ
t is stillextremely 
lose to the MAP probability [21℄. This suggests using it as an �-admissible heuristi
 fun
tion [16℄.The 
urve Greedy Guess Estimate in Figure 4.1 shows that with the in
reaseof the MAP variables, the ratio between the greedy guess and the a

urateestimate of the optimal probability diverges from the ideal ratio 1.0 althoughnot always monotoni
ally.Dynami
 WeightingSin
e the greedy guess is a tight lower bound on the optimal probability ofMAP, it is possible to 
ompensate for the error between the greedy guess andthe optimal probability. I 
an do this by adding a weight to the greedy guesssu
h that the produ
t of them is equal or larger than the optimal probabilityfor ea
h inner node in the sear
h tree. This yields an �-admissible heuristi
26



fun
tion that I need in order to �nd the optimal solutions. This assumption 
anbe represented as follows:9�f8PGreedyGuess � (1 + �) � Popt ^ 8PGreedyGuess � (1 + �0) � Popt ) � < �0gwhere � is the minimum weight that 
an guarantee the heuristi
 fun
tion tobe admissible. Figure 4.1 shows that if I just keep � 
onstant, negle
ting the
hanges of the estimate a

ura
y with the in
rease of the MAP variables, theestimate fun
tion and the optimal probability 
an be represented by the 
urveConstant Weighting Heuristi
. Obviously, the problem with this idea is that itis less informed when the sear
h progresses, as there are fewer MAP variablesto estimate.Dynami
 Weighting (Pohl, 1973) is an eÆ
ient tool for improving the ef-�
ien
y of A� Sear
h. If applied properly, it will keep the heuristi
 fun
tionadmissible while remaining tight on the optimal probability. For MAP, in theshallow layer of the sear
h tree, we get more MAP variables than the deeperlayer for estimate. Hen
e the greedy estimate will be more likely to diverge fromthe optimal probability. I propose the following Dynami
 Weighting Heuristi
Fun
tion for the xth layer of the Sear
h tree of n MAP variables:h(x) = PGreedyGuess � (1 + �n� (x+ 1)n )(� � �) :Rather than keeping the weight 
onstant throughout the sear
h, I dynami
ally
hange it so as to make it less heavy as the sear
h goes deeper. In the last stepof the sear
h (x = n � 1), the weight will be zero, sin
e the Greedy Guess foronly one MAP variable is exa
t and then the 
ost fun
tion f(n-1) is equal tothe probability of the assignment. Figure 4.1 shows an empiri
al 
omparison ofgreedy guess, 
onstant, and dynami
 weighting heuristi
s against a

urate esti-mate of the probability. We see that the dynami
 weighting heuristi
 be
omesmore informed than 
onstant weighting. In our experiments, I set � to be 1:0,whi
h is tested to be a quite 
onservative while eÆ
ient parameter.4.4 Sear
hing with Nonadmissible Heuristi
s forMAP ProblemLet us have a 
loser look at the 
onditions under whi
h the algorithm fails toa
hieve optimality. Suppose there are two 
andidate assignments: s1 and s2 withprobability p1 and p2 respe
tively, among whi
h s2 is the optimal assignmentthat the algorithm fails to �nd. And s1 is now in the last step of sear
h whi
hwill lead to a suboptimal solution. I skip the logarithm in the fun
tion for thesake of 
larity here (then the 
ost fun
tion f is a produ
t of transformed g andh instead of their sum). 27



Figure 4.1: Constant Weighting Heuristi
 and Dynami
 Weighting Heuristi
based on Greedy Guess. f1 = g1 � h1 and f2 = g2 � h2The error introdu
ed by a non-admissible h2 is f1 > f2. The algorithm willthen �nd s1 instead of s2, i.e.,f1 > f2 ) g1 � h1 > g2 � h2.Sin
e s1 is now in the last step of sear
h, f1 = p1 (Se
tion 3.3.2). Now supposethat I have an ideal heuristi
 fun
tion h02, whi
h leads to p2 = g2 � h02. Then Ihave: g1 � h1p2 > g2 � h2g2 � h02 ) p1p2 > g2 � h2g2 � h02 ) p1p2 > h2h02It is 
lear that only when the ratio between the probability of suboptimalassignment and the optimal one is larger than the ratio between the nonadmis-sible heuristi
 fun
tion and the ideal one, may the algorithm �nd a suboptimalsolution.Be
ause of large asymmetries among probabilities that are further ampli�edby their multipli
ative 
ombination [7℄, I 
an expe
t that for most of 
ases, theratios between p1 and p2 are far less than 1. Even though the heuristi
 fun
tionwill sometimes break the rule of admissibility, if only the greedy guess is nottoo divergent from the ideal estimate, the algorithm will still not diverge fromthe optimal probability. Our simulation results also proved the robustness ofthe algorithm in �nding optimal solutions.28



4.5 Improvements to the AlgorithmThere are two main te
hniques that I used to improve the eÆ
ien
y of the basi
A� algorithm.4.5.1 Relevan
e ReasoningThe main problem fa
ed by the de
ision-theoreti
 approa
h is the 
omplexityof probabilisti
 reasoning. The 
riti
al fa
tor in exa
t inferen
e s
hemes forBayesian networks is the topology of the underlying graph and, more spe
i�
ally,its 
onne
tivity. The framework of relevan
e reasoning ([8℄ is an a

essiblesummary of the relevant te
hniques) is based on d-separation and other simpleand 
omputational eÆ
ient te
hniques for pruning irrelevant parts of a Bayesiannetworks and 
an yield sub-networks that are smaller and less densely 
onne
tedthan the original network. Relevan
e reasoning is an integral part of the SMILElibrary on whi
h the implementation of our algorithm is based.For MAP, our fo
us is the set of variables M and the eviden
e set E. Partsof the model that are probabilisti
ally independent from the nodes in M giventhe observed eviden
e E are 
omputationally irrelevant to reasoning about theMAP problem.4.5.2 Dynami
 OrderingAs the sear
h tree is 
onstru
ted dynami
ally, I have the freedom to order thevariables in a way that will improve the eÆ
ien
y of the DWA� sear
h. Ex-panding nodes with the largest asymmetries in marginal probability distributionleads to early 
ut-o� of less promising bran
hes of the sear
h tree. I use theentropy of the marginal probability distributions as a measure of asymmetry.The basi
 
on
ept of entropy in information theory has to do with how mu
hrandomness is in a signal or in a random event and how mu
h information is
arried by the signal. An alternative way to look at this is to talk about howasymmetri
 the probability of di�erent states of a MAP variable is.Claude E. Shannon de�nes entropy in terms of a dis
rete random event x,with possible states 1..n as:H(x) = �Pni=1 p(i) log2 p(i)Theoreti
ally, the lower the entropy of a probability distribution is, the moreasymmetri
 its probability of di�erent states will be.The �rst step is to 
ompute entropy H for ea
h variable in M that has notbeen instantiated. This 
an be 
omputed from the marginal potential of ea
hvariable in M eÆ
iently. I then 
hoose the variable with the least entropy asthe next variable to be instantiated. 29



The reason that I take this way is not diÆ
ult to understand. Let us lookba
k at the equation (4.1). When de
iding the instantiation order that leads tothe \early-
ut", I always sele
t the variable that 
ould diverge the value of item(a) after instantiation. The result of this is that the probability of di�erentbran
hes in the sear
h tree will be qui
kly driven to be two polars, a smallportion of them with very large values of item (a) and most of the others withvery small values, whi
h are named less-promising bran
hes and more likely togenerate s
enarios with very little probabilities.Hen
e, by dynami
 ordering, the DWA� algorithm works even better be-
ause of typi
ally enormous asymmetries among the probabilities of individuals
enarios will be found even in shallow layer of the sear
h tree. Then the DWA�algorithm will not spend a large amount of time dis
riminating among pathswhose 
osts do not vary signi�
antly from ea
h other, whi
h leads to greatredu
tion of the sear
h spa
e.4.6 DWA� AlgorithmGiven the above dis
ussion, I outline the DWA� Algorithm in Fig. 4.2. Whenone of the elements of the sear
h frontier rea
hes the leaf node of the sear
h treethe DWA� algorithm will terminate, and I 
an take the �nal 
on�guration asthe output.
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Algorithm: DWA�Input: Bayesian network B, a set of MAP variables M, a set ofeviden
e variables E, Weight �;Output: The most probable 
on�guration of M.1. Call Greedy Guess at sear
h layer 0, and setL=GreedyGuess(0).2. while 
urrent sear
h layer is not the bottom of the sear
htree:3. Sele
t the node Ml with the largest value of the 
ost fun
-tion F (x) in the sear
h frontier.4. Set all the instantiated variables before Ml to be new Evi-den
es nodes.5. Set all uninstantiated variables in M to be Target Nodes.6. Update beliefs of B.7. Sort all uninstantiated variables in M in a in
reasing orderof Entropy, among whi
h Ms has the least Entropy.8. Expand the node Ml by using Ms as its 
hild nodes.9. Insert new generated 
hild nodes into the sear
h frontier.10. Clear Eviden
es.11. Unset Target Nodes.end while12. Output the best 
on�guration found and its probability.Figure 4.2: The DWA� algorithm.
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Chapter 5ImplementationThe total programming work of implementing the DWA� algorithm was a

om-plished by myself using C++ in the Windows programming environment.The remainder of this 
hapter is organized as follows. First, I introdu
e theStru
tural Modeling, Inferen
e, and Learning Engine (SMILE) library by whi
hthe DWA� algorithm is supported. Se
ond, I introdu
e my programming workon the DWA� algorithm whi
h will be in
luded in the new version of SMILEfor solving the MAP problem. Finally, I will give a brief introdu
tion on theapproa
hes that I used to 
ompare the DWA� algorithm with the other existentalgorithms.5.1 SMILEStru
tural Modeling, Inferen
e, and Learning Engine (SMILE) is a fully plat-form independent library of C++ 
lasses implementing graphi
al probabilisti
and de
ision-theoreti
 models, su
h as Bayesian networks, in
uen
e diagrams,and stru
tural equation models. Its individual 
lasses, de�ned in SMILE Ap-pli
ations Programmer Interfa
e, allow to 
reate, edit, save, and load graphi
almodels, and use them for probabilisti
 reasoning and de
ision making underun
ertainty. These 
lasses are a

essible from C++ or (as fun
tions) from Cprogramming languages. As most implementations of programming languagesde�ne a C interfa
e, this makes SMILE a

essible from pra
ti
ally any languageon any system. Also SMILE may be embedded in programs that use graphi
alprobabilisti
 models as their reasoning engines. Furthermore, models devel-oped in SMILE 
an be equipped with a user interfa
e that suits the user ofthe resulting appli
ation most. Additional to the SMILE platform is the devel-opment of SmileX, an A
tiveX Windows 
omponent that allows SMILE to bea

essed from any Windows programming environment, in
luding World WideWeb pages. 33



5.2 DWA� ClassThe DWA� algorithm was implemented in the new Class named \DWAstar".The introdu
tion to this 
lass will be given in terms of two subse
tions: Datamember and Member fun
tion.

Figure 5.1: DWAstar Class.5.2.1 Data memberIn Figure 5.2, I listed main data member of the Class \DWAstar":� DSL network � netThe Bayesian networks in whi
h the MAP problem is.� num MAPThe number of variables in MAP set.34



� nEviden
esThe number of variables in Eviden
es set.� MAP layerThe 
urrent sear
h layer in the probability tree.� eviden
e node id[501℄The handle of ea
h Eviden
e variable.� eviden
e state[501℄The state of ea
h Eviden
e variable.� MAP array[501℄The handle of ea
h MAP variable.� MAP best array[501℄The handle of ea
h MAP variable in the �nal s
enario that the algorithmreturns. Sin
e the sequen
e of MAP variables will be dynami
ally or-dered, the sequen
e of MAP variables in MAP best array[501℄ is generallydi�erent from that in MAP array[501℄.� MAP 
urrent 
on�g array[501℄The handle of ea
h MAP variable in the 
urrent sear
h path.� 
ag endThe variable to testify whether the algorithm should be terminated.� map node id[501℄The handle of the MAP variables that have been randomly generated fortesting the algorithm.� largest produ
t indexThe index of the sear
h path with the largest value of 
ost fun
tion in thesear
h frontier.� Final Joint ProbabilityThe probability of the s
enario that the algorithm returns.� greedy thresholdThe probability that the greedy guess generated before the sear
h. It is atight lower bound on the MAP problem.� inner nodeThe stru
t that re
ords ea
h node in the sear
h tree.� inne pointsThe ve
tor that re
ords the sear
h frontier.35



5.2.2 Member fun
tionHere listed in Figure 5.3 are the main member fun
tions of the Class \DWAstar",among whi
h I will show Greedy guess, Estimate inner node, and A Star Sear
hin detail whi
h are key 
omponents of the DWA� algorithm:� DWAstar (DSL network � theNet; intnumber Eviden
e; intnumber MAP)Constru
tor of the Class.� void Set eviden
e(int a)Randomly generate a eviden
e variable, and randomly sele
t one of all itspossible states as its state.� void Set map(int b)Randomly generate b MAP variable.� double Entropy(int node id)Compute and return the Entropy of the MAP variable.� void Order single MAP variables entropy(int MAP layer)Order the MAP variables in terms of Entropy of them, and shift thevariable with the least Entropy to the �rst position to be instantiated.� double Get greedy threshold()Return the lower bound on the MAP problem.� void Show MAP array()Print out the handle of ea
h MAP variable.� void Set One Evi Node(int Evi id; int Evi state; int Squen
e)Set only one Eviden
e node.� void Set One MAP Node(int MAP id; int Squen
e)Set only one MAP node.� void Show all initial variables()Show all the handles of MAP variables and Eviden
e variables.� void Show all eviden
e and state()Show all eviden
e variables and their states 
orrespondingly.� void Change num of Eviden
e(int num eviden
e)Assign the value of the number of eviden
e variables.� void Change num of MAP(int num map)Assign the value of the number of MAP variables.� double Compute PRE(int num of eviden
es)Compute the joint probability of all eviden
e variables.36



� void Set greedy threashold(double a)Set the value of the greedy threashold, it is a lower bound on the MAPproblem.� void Show greedy threashold()Print out the value of the greedy threashold.� void Extend node(int MAP layer)Expand the 
urrent sear
h path to the next layer in the probability tree.� double Greedy guess(int MAP layer)Return the posteriori probability of the MAP variables that have not beeninstantiated, given the eviden
es and the MAP variables that have beeninstantiated. Readers 
an resort to the 
odes shown in �gure 5.4 for detail.� double Estimate inner node(int MAP layer)Return the value of the heuristi
 fun
tion h(x =MAP layer). The 
om-putation is ful�lled by using Dynami
 Weighting Te
hniques, whi
h is the
riti
al part of the DWA� sear
h algorithm. Readers 
an resort to the
odes shown in �gure 5.5 for detail.� double A Star Sear
h(int num of MAP)Sear
h the probability tree. Readers 
an resort to the 
odes shown in�gure 5.6 for detail.
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Figure 5.2: Data member of the DWAstar Class.
38



Figure 5.3: Member fun
tion of the DWAstar Class.
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Figure 5.4: double Greedy guess(int MAP layer).
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Figure 5.5: double Estimate inner node(int MAP layer).
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Figure 5.6: double A Star Sear
h(int num of MAP ).
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Chapter 6Experimental Results6.1 Experimental EnvironmentTo test theDWA� algorithm, I studied its performan
e on many MAP problemsin real Bayesian networks. I 
ompare our results against those of 
urrent stateof the art MAP algorithms: the P-Lo
 [14℄, P-Sys [15℄ and AnnealedMAP[21℄ algorithms respe
tively. I implemented the DWA� algorithm in C++ andperformed our tests on a 2.4 GHz Pentium IV Windows XP 
omputer with750MB memory.The DWA� algorithm is supported by the Stru
tural Modeling, Inferen
e,and Learning Engine (SMILE) whi
h is developed by De
ision Systems Labo-ratory (DSL).6.2 Experimental DesignIn order to exam the performan
e of the DWA� algorithm 
omprehensively, I
ompared the eÆ
ien
y and a

ura
y of the DWA� algorithm with the otherthree existent algorithms P-Lo
, P-Sys, AnnealedMAP in terms of runningtime and probability of the assignment. I used the same set of Bayesian networksthat have been used for testing the performan
e of the MAP-solving algorithmsat the De
ision Systems Laboratory, University of Pittsburgh, and the Auto-mated Reasoning Group, University of California, Los Angeles, whi
h in
ludeAlarm [4℄, Barley [11℄, CPCS179 and CPCS360 [19℄, Diabetes [2℄, Hail�nder [1℄,Munin [3℄, Path�nder [9℄, P223layout, and Win95pts [10℄, some of whi
h are
onstru
ted for diagnosis. I also tested the algorithms on two very large pro-prietary diagnosti
 networks built at the HRL Laboratories (HRL1 and HRL2).The statisti
s for these networks are summarized in Table 6.1. I divided thenetworks into three groups: (1) small and middle-sized, (2) large but tra
table,and (3) hard networks. 43



Table 6.1: Statisti
s for the Bayesian networks that I am using.Group Network #Nodes #Ar
sAlarm 37 46CPCS179 179 239CPCS360 360 7291 Hail�nder 56 66Path�nder 135 195P223layout 223 338Win95pts 76 1122 Munin 1,041 1,397HRL1 1,999 3,112HRL2 1,528 2,4923 Barley 48 84Diabetes 413 602For ea
h network, I randomly generated 20 
ases, and ran the above fouralgorithms on them. For ea
h 
ase, I randomly 
hose 20 MAP variables amongthe root nodes or all the them if root nodes were less than 20. I 
hose the samenumber of eviden
e nodes from among the leaf nodes. To set eviden
e, I sampledfrom the prior probability distribution of a Bayesian network in its topologi
alorder and 
ast the states of the sample to the eviden
e nodes. Following previoustests of MAP algorithms, I set the sear
h time limit to be 3; 000 se
onds (50minutes). In all of our experiments, I used the default settings and parametersof P-Lo
, P-Sys, AnnealedMAP unless mentioned spe
i�
ally.6.3 Results for the First and Se
ond GroupIn the �rst experiment, I ran the P-Lo
, P-Sys, AnnealedMAP and DWA�on all the networks in the �rst and se
ond group, and all of the four algorithmsgenerate results within the time limit. The P-Sys algorithm reported that itfound all the optimal solutions. Table 6.2 reports the number of MAP problemsthat are solved 
orre
tly by the P-Lo
 AnnealedMAP andDWA� algorithms.They all performed well on these networks. The DWA� was able to �nd all theoptimal solutions. The P-Lo
 algorithmmissed only one 
ase on the P223layoutnetwork and the AnnealedMAP missed one on Hai�nder and two 
ases onP223layout.Sin
e both AnnealedMAP and P-Lo
 failed to �nd all the optimal solu-tion in P223layout, in ea
h of the 20 
ases I studied the performan
e of the 4algorithms as a fun
tion of the number of MAP variables ( I randomly generated20 
ases for ea
h number of MAP variables).Be
ause the sear
h time of P-Sys in
reased very fast with the number ofMAP variables, and it failed to generate any result when the number of MAP44



Table 6.2: The number of 
ases that are solved 
orre
tly out of 20 random 
asesfor the �rst and se
ond group of networks.P-Lo
 A-MAP DWA�Alarm 20 20 20CPCS179 20 20 20CPCS360 20 20 20Hail�nder 20 19 20Path�nder 20 20 20P223layout 19 18 20Win95pts 20 20 20Munin 20 20 20HRL1 20 20 20HRL2 20 20 20Table 6.3: The running time (in se
onds) and the number of 
ases that theother 3 algorithms found smaller probabilities than DWA� Sear
h in networkP223layout using their default settings.MAP P-Sys P-Lo
 A-MAP DWA�Runtime Smaller Runtime Smaller Runtime Smaller Runtime10 0.265 0 0.361 0 1.575 0 0.22120 23.236 0 1.179 1 12.089 2 2.38530 68.829 0 2.563 1 32.579 0 9.92340 TimeOut - 3.305 4 10.601 4 5.90650 TimeOut - 4.219 6 12.168 2 10.57860 TimeOut - 5.031 5 15.481 2 10.11270 TimeOut - 5.906 6 15.981 5 10.31280 TimeOut - 6.828 6 11.171 1 11.093variables rea
hed 40, while the DWA� Sear
h found all the largest probabilities,I 
ompared all the other 3 algorithms with DWA� Sear
h. With the in
reaseof the number of MAP variables, both the P-Lo
 and AnnealedMAP turnedto be less a

urate for P223layout. When the number of MAP variables wasabove 40, there were about 25% 
ases of P-Lo
 and 15% 
ases in whi
h An-nealedMAP found smaller probabilities than DWA�.Sin
e only P-Lo
 spent less time than DWA� when using its default set-tings, I am interested in the result when in
reasing the sear
h steps of P-Lo
su
h that it spends the same time as DWA�. However, in pra
ti
e the sear
htime is not 
ontinuous in the number of sear
h steps, so I just tried to �ndthe parameters for P-Lo
 su
h that it spent only a little bit more time thanDWA�. Table. 6.4 shows the 
omparison between P-Lo
 and DWA� in termsof run time and the number of 
ases that the two algorithms found di�erent45



result. We 
an see that after in
reasing the sear
h steps of P-Lo
, DWA� stillkept better a

ura
y when 
ompared with P-Lo
.Table 6.4: The running time(in se
onds) and the number of 
ases that theP-Lo
 found larger/smaller probabilities than DWA� in network P223layoutwhen spending a little bit more time than DWA�.MAP P-Lo
 DWA�RunTime P-Lo
 < DWA� RunTime P-Lo
 > DWA�10 0.262 0 0.181 020 3.685 0 3.531 030 8.134 0 7.150 040 8.140 1 6.635 050 8.221 2 6.792 060 8.215 2 7.248 170 9.968 3 8.599 280 11.609 5 9.520 0In addition to the pre
ision of the results, I also 
ompared the eÆ
ien
y ofthe algorithms. Table 6.5 reports the average running time of the four algo-rithms on the �rst and the se
ond groups of networks. For the �rst group, theTable 6.5: Average running time in se
onds of the P-Sys, P-Lo
, An-nealedMAP and DWA� algorithms on the �rst and se
ond group of networks.P-Sys P-Lo
 A-MAP A�Alarm 0.011 0.019 0.076 0.006CPCS179 0.030 0.134 0.250 0.019CPCS360 0.057 90.202 0.820 0.123Hail�nder 3.910 0.118 0.452 0.239Path�nder 0.054 0.061 0.050 0.001P223layout 32.370 1.376 12.166 2.507Win95pts 0.031 0.041 0.292 0.030Munin 3.382 5.353 19.620 2.996HRL1 1.287 224.968 7.157 0.418HRL2 0.087 5.45 4.071 0.384AnnealedMAP, P-Lo
 and P-Sys algorithms showed similar eÆ
ien
y on allex
ept the CPCS360 and P223layout networks. The DWA� sear
h generatedsolutions within the shortest time on average. The small varian
e of the sear
htime indi
ates that DWA� is more stable a
ross di�erent networks.For the se
ond group, whi
h 
onsists of large Bayesian networks, P-Sys,AnnealedMAP and DWA� are all eÆ
ient. DWA� sear
h still spent shortestsear
h time on average, while the P-Lo
 was mu
h slower on the HRL1 network.46



6.4 Results for the Third GroupThe third group 
onsisted of two 
omplex Bayesian networks: Barley and Dia-betes, many nodes of whi
h have more then 10 di�erent states. As the P-Sysalgorithm did not produ
e any results within the time limit, the only availablemeasure of a

ura
y was a relative one: whi
h of the algorithms found an as-signment with higher probability. Table 6.6 lists the number of 
ases that weresolved di�erently between P-Lo
, AnnealedMAP, and the DWA� algorithmand the number of 
ases that the DWA� algorithm found a more probable as-signment. PL, PA and P� stand for the probability of MAP solutions found byP-Lo
, AnnealedMAP and DWA� respe
tively.Table 6.6: The number of 
ases that were solved di�erently from P-Lo
, An-nealedMAP and DWA�.P� > PL=P� < PL P� > PA=P� < PABarley 3/2 5/3Diabetes 5/0 4/0For Barley, the a

ura
y of the three algorithms is quite similar. However, forDiabetes DWA� is more a

urate: it found solutions with largest probabilitiesfor all 20 
ases, while P-Lo
 failed to �nd 5 and AnnealedMAP failed to �nd4 of them.Table 6.7: Average running time in se
onds of the P-Sys, P-Lo
, An-nealedMAP and DWA� algorithms on the third groups of Bayesian networks.P-Sys P-Lo
 A-MAP A�Barley TimeOut 101.47 34.67 199.16Diabetes TimeOut 369.35 315.79 185.89DWA� turned out to be slower than P-Lo
 and AnnealedMAP on Barleybut more eÆ
ient on Diabetes (see Table 6.7).6.5 Results for In
remental Eviden
e and MAPVariables TestIn order to give a more 
omprehensive 
omparison of the P-Sys, P-Lo
, An-nealedMAP and DWA� algorithms, I run the four algorithms on Munin net-work in di�erent number of eviden
e variables or di�erent MAP variables. I
hose the Munin network for this experiment be
ause only this network hassuitable number of root nodes and leaf nodes, 183 and 259 respe
tively, and Iwas able to run all four algorithms on it.47



For the �rst step, I generated MAP problem with an in
reasing number ofeviden
es nodes and keep the number of MAP nodes to be 50. The running timesfor ea
h of the four algorithms are shown in Figure 6.1. We 
an see that theAnnealedMAP spent mu
h longer time in generating the sear
h result. TheP-Sys, P-Lo
, and DWA� spent similar time when the number of eviden
enodes is less than 100. But when the number of eviden
e nodes is beyond100, the DWA� is more eÆ
ient than P-Sys and P-Lo
. The only ex
eptionhappened when the number of eviden
es nodes was between 140 and 150.

Figure 6.1: Plot of the running time of the P-Sys, P-Lo
, AnnealedMAPand DWA� algorithms when in
reasing the number of eviden
e nodes on theMunin network.For the se
ond step, I generated MAP problem with an in
reasing number ofMAP nodes and keep the number of Eviden
e nodes to be 50. The running timesfor ea
h of the four algorithms are shown in Figure 6.2. It indi
ates that theP-Sys, P-Lo
, and DWA� algorithms were all very eÆ
ient when the numberof MAP variables was not too large. However, when there were more MAPnodes whi
h leads the MAP problem to be mu
h harder, the AnnealedMAPand DWA� were more eÆ
ient.My last experiment fo
used on the robustness of the four algorithms to thenumber of nodes in the MAP set and the eviden
e set. In this experiment,I generated MAP problems with an in
reasing number of MAP and eviden
enodes at the same time and ran four algorithms on these 
ases. The P-Sys wasable to solve only 
ases with fewer than 140 MAP and eviden
e variables. Thetimes for ea
h of the 
ases are shown in Figure 6.3.48



Figure 6.2: Plot of the running time of the P-Sys, P-Lo
, AnnealedMAP andDWA� algorithms when in
reasing the number of MAP nodes on the Muninnetwork.
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Figure 6.3: Plot of the running time of the P-Sys, P-Lo
, AnnealedMAPand DWA� algorithms when in
reasing the number of MAP nodes and eviden
enodes at the same time on the Munin network.
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Chapter 7Con
lusionMAP problems in Bayesian networks are hard be
ause they are not only subje
tto the 
omplexity of the models (treewidth), but also subje
t to the 
omplexityintrodu
ed by spe
i�
 problems (
onstrained width).My resear
h on MAP problems at the De
ision Systems Laboratory is mainlybased on the theory of asymmetries among joint probability distributions. Al-though for the �rst three months, my tentative resear
h of exploiting the estima-tion of the probability density fun
tions was proved to be unsu

essful, and yetit drove me to realize that the a

ura
y of the upper bound on the MAP problemis the most in
uential element for the algorithm, whi
h is quite sensitive to theerror of the estimated mean and varian
e of the lognormal distribution fun
tion.Temporarily trapped in the darkness, I got new inspiration from the theory ofasymmetries. That is to use greedy guess instead of estimating the lognormalprobability density fun
tion in order to get a tight and a

urate upper boundon MAP problem. The instru
tions from my supervisor Professor Druzdzel andpositive 
omments on this idea from my 
olleague Changhe Yuan greatly en-
ouraged me to embark on the implementation of the DWA� algorithm, andlead to the a

omplishment of this new eÆ
ient solution for MAP problems.Another point that I would like to address is that the sear
h algorithm thatI 
hose. When I implemented the bran
h-and-bound sear
h algorithm 
ombinedwith the estimation of the lognormal probability density fun
tion, I found thatthe bran
h-and-bound was always turned to be a futile one: on one hand, whenthe upper bound is far larger than the probability of s
enario, take 1.0 forexample, the algorithm was far less eÆ
ient sin
e there was not any \
ut" inthe probability tree; one the other hand, when the error of the estimation led thebound to be a lower bound instead of an upper one, the sear
h path that 
ouldlead to the right solution would be 
ut by mistake. Then the bran
h-and-boundsear
h would not generate the right s
enario as the solution.Compared with the bran
h-and-bound sear
h, the Dynami
 Weighting A�Sear
h is more robust for the MAP problems. Be
ause of large asymmetries51



among probabilities that are further ampli�ed by their multipli
ative 
ombina-tion, it is testi�ed that for most of 
ases, the DWA� 
an lead to the optimalsolution, even though the heuristi
 fun
tion will sometimes break the rule of ad-missibility, if only the greedy guess is not too divergent from the ideal estimate,the algorithm will still not diverge from the optimal probability. Our simulationresults also proved the robustness of the algorithm in �nding optimal solutions.The programming work of implementing the DWA� sear
h algorithm wasa

omplished by using C++ in the Windows programming environment withstrong support of the SMILE library. The join tree algorithm and the relevan
ereasoning is an integral part of the SMILE library on whi
h the implementationof my algorithm is based. I am very pleased that the DWA� sear
h algorithmwill be in
luded in the new version of SMILE released later.Finding MAP in Bayesian networks is hard. By exploiting asymmetriesamong the probabilities of possible assignments properties of joint probabilitydistributions among all the possible assignments, the Dynami
 Weighting A�Sear
h is able to greatly redu
e the sear
h spa
e and lead to eÆ
ient and a
-
urate solution of the MAP problem. Our experimental result also show thatgenerally, the Dynami
 Weighting A� Sear
h is more eÆ
ient than the existentalgorithms. Espe
ially for large and 
omplex Bayesian networks, when the exa
talgorithm fails to generate any result within a reasonable time, the Dynami
Weighting A� Sear
h 
an still provide a

urate solutions eÆ
iently.Further extension of this resear
h is to apply the Dynami
 Weighting A�Sear
h algorithm to the K-MAP problem, whi
h is to �nd k most probableassignments for MAP variables. It is very 
onvenient for the DWA� algorithmto a
hieve that, sin
e after �nding the most probable assignment the algorithmkeeps all the 
andidate assignments in the sear
h frontier. I 
an expe
t that theadditional sear
h time will be linear in k.In sum, the Dynami
 WeightingA� Sear
h algorithm enri
hes the approa
hesfor solving MAP problem and extends the s
ope of MAP problems that 
an besolved.
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