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AbstratMaximum a Posteriori assignment (MAP) is the most probable instantia-tion of a set of variables given a partial evidene on the remaining variables ina Bayesian network. Finding MAP has been proven to be an NP-hard prob-lem [20℄, and it is not only exponential in the network treewidth, but also inthe onstrained treewidth [13℄. Exat approahes often fail to yield any resultsfor MAP problems in very large Bayesian networks, and even approximate ap-proahes may not yield aeptable solutions.We introdue the Dynami Weighting A� (DWA�) searh algorithm for solv-ing MAP. By exploiting asymmetries in the distribution of MAP variables, thealgorithm is able to greatly redue the searh spae, yielding very good qualityMAP solutions. Experimental results demonstrate that my algorithm �nds so-lutions generally faster and with a lower variane in searh time than existingalgorithms.
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Chapter 1IntrodutionThe purpose of this thesis is to desribe the researh I arried out in the De-ision Systems Laboratory (DSL) at the Shool of Information Sienes of theUniversity of Pittsburgh. In short, the main objetive of this researh is to de-velop an eÆient and aurate algorithm for solving the Maximum a PosterioriAssignment (MAP) problem in Bayesian networks.1.1 Bakground IntrodutionThe Maximum a Posteriori assignment (MAP) is the problem of �nding themost probable instantiation of a set of variables given partial evidene on theremaining variables in a Bayesian networks. A Bayesian network [17℄ (alsoknown as a belief network or probabilisti network) is a formalism for reason-ing under unertainty. Deision support based on probabilisti reasoning wasdeveloped in the late 1970s and gained popularity when eÆient algorithms forinferene were introdued in Bayesian networks [12℄. Thanks to an intuitivegraphial interfae and a sound probabilisti framework, the Bayesian networkhas beome a popular approah to model various expert systems, e.g., medial,image interpretation, troubleshooting, and information proessing.In detail, a Bayesian network is an ayli direted graph that represents afatorization of the joint probability distribution over a set of random variables.The graphial struture of the network is the qualitative part of a Bayesiannetwork and embodies a set of nodes representing the random variables anda set of arrows representing diret dependenies between onneted variables.Absene of an arrow between variables implies that these variables are (on-ditionally) independent. The parents of a variable are the variables whih areonneted with an arrow with its diretion going into this variable.The joint probability distribution is the quantitative part of a Bayesian net-work and embodies the onditional probability distribution de�ned with eah5



variable. This distribution haraterizes the inuene of the values of the prede-essors (parents) on the probabilities of the values of the variable itself. Whena variable has no parents, the probability distribution is the prior probabilitydistribution. In pratie, these distributions are derived from frequeny data oreliited from an expert judgment.Given a joint probability distribution over a set of random variables, manydi�erent graphs exist whih fatorize the same joint probability distribution.A fatorization that is espeially desired is the graph that reets the ausalstruture of the problem. This graph, also known as a ausal graph, normallyreets an expert's understanding of the domain and failitates a user's insightduring the operational stage.One speialization of the MAP that has been paid muh attention is theMost Probable Explanation (MPE) problem. MPE is the problem of �ndingthe most probable assignment of a set of variables given full evidene of theremaining variables. MAP turns out to be a very diÆult problem even whenompared to MPE or omputing the probability of evidene. Partiularly, thedeision problem for MPE is NP-omplete while the orresponding MAP prob-lem is NPPP -omplete [13℄. MAP is more useful than MPE for providingexplanations. For instane, in diagnosis, generally we are only interested in theon�guration of fault variables given some observations. There may be manyother variables that have not been observed and are outside the sope of ourinterest.The formula to ompute the probability of eah possible senario of MAPis not too omplex. Give a Bayesian network, let M be the set of MAP vari-ables, the on�guration of whih is what we are interested in; E is the set ofevidene, namely the variables whose states we have known; The remainder ofthe variables, denoted by S, are variables that we neither know their states norare about their on�guration. If a variable in the set of MAP variables M isintantiated at the ith plae using its jth state, it will be denoted as Mij :By using hain rule, the probability of the MAP problem whih onsists ofn MAP variables an be presented as follows:P (M j E) = P (Mni jM1j ;M2k; : : :M(n�1)t; E): : : P (M2k jM1j ; E)P (M1j j E) :Eah posteriori probability at the righthand side of the equation above anbe omputed by the jointree algorithm [12℄ eÆiently. In other words, the MAPproblem is to �nd the senario with the largest posteriori probability among allpossible assignments to the M given E.1.2 Motivation and ObjetiveSeveral researhers have proposed algorithms for solving the MAP problem. Avery eÆient approximate searh-based algorithm based on loal searh, pro-6



posed by Park and Darwihe [13℄, is apable of solving MAP eÆiently whihis based on loal searh. An exat method, based on branh-and-bound depth-�rst searh, proposed by Park and Darwihe [15℄, performs quite well when thesearh spae is not too large. Another approximate proposed more reently byYuan et al. [21℄ is a Reheated Annealing MAP algorithm. It is somewhat sloweron simple networks but it is able to handle very hard ases whih the exatalgorithm an not solve.In my thesis, I propose the Dynami Weighting A� (DWA�) Searh algo-rithm for solving MAP that is faster than any of the existing algorithms. Thealgorithm explores the asymmetries among all possible assignments in the jointprobability distributions. Typially, a small fration of assignments an be ex-peted to over a large portion of the total probability spae with the remainingassembles having pratially negligible probability [7℄.Previous researh and simulation results have shown that the greedy guess [14,21℄, whih is represented as follows:P (M jE) = nYi=1maxj P (Mij jM(i�1)k : : :M1m; E) (1.1)is quite lose to the optimal solution of the MAP problems. In other words, ito�ers a very tight lower bound on the optimal solution. While it is theoretiallynot admissible (admissible heuristi should o�er an upper bound on the MAP),with a simple extension it o�ers �-admissibility [16℄ and exellent performane.1.3 OverviewThe remainder of this thesis is strutured as follows. Setion 2 de�nes the MAPproblem and summarizes the main results on its omplexity. It also outlinesseveral methods for solving MAP. Setion 3 introdues the theory of asymme-tries among joint probability distributions. Setion 4 desribes the DynamiWeighting A� Searh algorithm. Setion 5 desribes the implementation of thealgorithm. Setion 6 presents the results of applying the algorithm to severalreal omplex Bayesian networks.
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Chapter 2MAP and PreviousResearh2.1 Bayesian NetworksThis setion presents a brief introdution into Bayesian networks and desribesthe neessary onepts for this thesis. I assume that the reader is familiar withthe essentials of theory and probability theory.A Bayesian network [17℄ (also known as a belief network or probabilis-ti network) is a formalism for reasoning under unertainty. Deision supportbased on probabilisti reasoning was developed in the late 1970s and gainedpopularity when eÆient algorithms for inferene were introdued in Bayesiannetworks [12℄. Thanks to an intuitive graphial interfae and a sound probabilis-ti framework, the Bayesian network has beome a popular approah to modelvarious expert systems, e.g., medial, image interpretation, troubleshooting, andinformation proessing.In detail, a Bayesian network is an ayli direted graph that represents afatorization of the joint probability distribution over a set of random variables.The graphial struture of the network is the qualitative part of a Bayesiannetwork and embodies a set of nodes representing the random variables anda set of arrows representing diret dependenies between onneted variables.Absene of an arrow between variables implies that these variables are (on-ditionally) independent. The parents of a variable are the variables whih areonneted with an arrow with its diretion going into this variable.The joint probability distribution is the quantitative part of a Bayesian net-work and embodies the onditional probability distribution de�ned with eahvariable. This distribution haraterizes the inuene of the values of the prede-essors (parents) on the probabilities of the values of the variable itself. Whena variable has no parents, the probability distribution is the prior probability9



distribution. In pratie, these distributions are derived from frequeny data oreliited from an expert judgment.Given a joint probability distribution over a set of random variables, manydi�erent graphs exist whih fatorize the same joint probability distribution.A fatorization that is espeially desired is the graph that reets the ausalstruture of the problem. This graph, also known as a ausal graph, normallyreets an expert's understanding of the domain and failitates a user's insightduring the operational stage.Example 1. Consider the Bayesian network in Figure 2.1, whih representsa �titious Asia example from Spiegelhalter and Knill-Jones [1984℄. This net-work is based on the knowledge that dyspnea (DY), i.e., shortness-of-breath,may be due to tuberulosis (TC), lung aner (LC), or bronhitis (BC). A re-ent visit to Asia (VA) inreases the probability of tuberulosis, while smoking(SM) is known to be a risk fator for both lung aner and bronhitis. Neitherthe result of a single hest X-ray (bf XR) nor the presene or absene of dyspnea,disriminates between lung aner and tuberulosis. Eah of the variables is as-soiated with a probability distribution. So has the variable SM the marginalprobability distribution of Table 2.1. And, sine the variable SM is the parentof the variable LC, this variable has a onditional probability distribution ofLC onditioned on SM, see Table 2.2.

Figure 2.1: An example of Bayesian network.The jointree algorithm, a various eÆient algorithms �rst proposed by Lau-ritzen and Spiegelhalter [12℄ exists for reasoning in Bayesian networks, e.g.,determining the impat of proessing evidene into the network. Although the10



Table 2.1: Prior probability table of the variable SM.Pr(SM)SM nonsmoker 0.75SM smoker 0.25Table 2.2: Conditional probability table of the variable LC onditioned on thevariable SM. Pr (LCj SM) SM nonsmoker SM smokerLC absent 0.75 0.45LC present 0.25 0.55alulation of probabilisti inferene is NP-hard, the algorithms provide rea-sonable omputing times for networks onsisting of tens or even hundreds ofnodes.Before I present the de�nition of a Bayesian network and Bayes rule, I intro-due some neessary notations. Consider a �nite set of disrete random variablesV, where eah variable X 2 V is denoted as a apital letter, e.g., X, Y, Z. Eahstate of a variable is denoted as a lowerase letter, e.g., x, y, z. The set of allstates within a variable X, is denoted as DX. The probability distribution overa random variable X is denoted as Pr(X) and the probability of a state x 2 DXas Pr(X = x) or in shorter form Pr(x).A ombination of states of multiple variables is denoted as a senario. Theset of all the senarios from a set of variables V, is denoted as DV , and eahsenario as s 2 DV . In ase of one variable, the set of senarios and the set ofstates of the variable are idential. In Table 2.2 from Example 1 the variablesLC and SM yield the four senarios displayed in Table 2.3. The probabilityof a senario is de�ned by the joint probability over the states in the senario.The probability distribution over a set of variables is denoted as Pr(V) and theprobability of a senario s 2 DV as Pr(V = s) or in shorter form Pr(s). The setof parents of a variable X is denoted as QX .Table 2.3: Four possible senarios of the variables SM and LC.SM nonsmoker & LC absent SM nonsmoker & LC presentSM smoker & LC absent SM smoker & LC presentThe foundation of the Bayesian network is the Bayes theorem,Pr(B j A) = Pr(A j B)Pr(B)Pr(A) :named after Reverent Thomas Bayes (1702-1761). The initial probabilityPr(A) is alled the prior probability, and the updated probability Pr(A j B) the11



posterior probability. An interpretation of the posterior probability is the prob-ability of A with the knowledge of the state of variable B. When the knowledgeof a variables has an e�et on the probability of another variable these variablesare alled dependent. If variables are independent of eah other, the posteriorprobability and the prior probability are equal, Pr(A j B) = Pr(A).De�nition 1 Bayesian network. A Bayesian network, BN = hG;�i is anayli direted graph, G = hV ;Ai, where the arrows A denote a probabilisti re-lation between the verties and eah vertex, V 2 V represents a disrete randomvariable. Assoiated with the vertexes is a �V 2V : DV �D�V ! [0, 1℄ funtionwith the ondition that for eah ombination of �V 2 �V , there holds:XdV 2DV �V (dV ; �V ) = 1:The probability distribution of eah variable is embodied by the joint probabil-ity distribution enoded in a Bayesian network. Suppose for example two vari-ables, A and B, with the joint probability distribution Pr(A,B). With marginal-ization, the probability distribution of A is alulated by taking the sum over thejoint probability of A with all the states of B.Pr(A) = Xbi2DB Pr(A; bi)In order to determine and present the joint probability, the following theorembetter known as the hain rule may be applied.De�nition 2 Chain rule. Let BN be a Bayesian network over a �nite set ofdisrete random variables V = fV1,:::, Vng. The joint probability distributionPr(V) is then, Pr(V) = nXi=1 Pr(Vi j �Vi):When variables are instantiated (=set to a state) I refer to these variables asevidene. A possible e�et of entering evidene is a hange in the dependenyrelations between variables, i.e., di�erent variables may beome independent ofor dependent on eah other. When two sets of variables beome independent ofeah other given the instantiation of a third set, this is identi�ed as onditionalindependene.De�nition 3 Conditional independene. Let V be a �nite set of disreterandom variables and let Pr (V) denote the joint probability distribution overthe variables. Suppose three disjoint subsets of variables, X ;Y ;Z � V. The sets12



X and Y are onditionally independent given Z, if for all sx 2 DX , sy 2 DY ,and sz 2 DZ ; thereholds :Pr(sx j sy; sz) = Pr(sx j sz):De�nition 4 d-separation. Let BN be a Bayesian network over a �nite setof disrete random variables V and let X, Y, and Z stand for any three disjointsubsets of variables of V. Z is said to d-separate X from Y, if along every path(sequene of onneted variables) between a variable in X and a variable in Y,there is a variable W satisfying one of the following two onditions: (1) W hasonverging arrows and none of W or its desendants are in Z, or (2) W doesnot have onverging arrows and W is in Z. The sound mathematial frameworkand the support for onditional independene and d-separation make a BN apowerful tool for modelling probability relations between random variables.2.2 MAPConeptually, give a Bayesian network, the MAP problem is de�ned as follows.Let M be the set of MAP variables, the on�guration of whih is what weare interested in; E is the set of evidene, namely the variables whose stateswe have known; The remainder of the variables, denoted by S, are variablesthat we neither know their states nor are about their on�guration. Given anassignment e of variables E, the MAP problem is that of �nding the assignmentm of variablesM whih maximizes the probability of P (m j e), while the MPEproblem is the speial ase of MAP, when S is empty.map = maxM XS p(M;S j E) : (2.1)In general, in Bayesian networks, we use the Conditional Probability Table(CPT) � as the potential over a variable and its parent nodes. A potentialover all the states of one variable after updating beliefs is alled marginal. Thenotation �e stands for the potential in whih we have �xed the value of e 2 E.Then the probability of MAP with � as its CPTs turns out to be a realnumber: map = maxM XS Y�2��e : (2.2)We will introdue the algorithm of Variable Elimination [15℄ here in orderto ompute MAP. The name of the algorithm is just beause it sums or maxi-mizes out variables from a list of variables one by one, and this order is namedthe elimination order. The size of the largest lique [12℄ minus 1 in a join-tree onstruted based on an elimination order is alled the indued width. The13



indued width of the best elimination order is alled the treewidth. In om-puting posterior marginal distributions, we only have summations. Thus, wean ommute summations over di�erent variables in order to minimize the in-dued width of an elimination order. Similarly, we have only maximizationsin an MPE problem. One again, any permutation of the maximizations overdi�erent variables is admissible. Hene, the above two problems an be solvedusing treewidths. However, a MAP problem has both maximizations and sum-mations. Sine summation and maximization do not ommute, we are requiredto do summations �rst. An elimination order is valid if maximizing a variableout of a potential never happens before summing over another variable on thesame potential [13℄. The indued width of the best elimination order underertain onstraints is alled the onstrained width. Beause of the inherent on-straints that MAP problems enfore on elimination orders, they are subjet tothe onstrained widths of the best valid elimination orders.

(a) (b) ()Figure 2.2: (a) A simple Bayesian networkand its moralized graph; (b) The indued graph for solving its MPE prob-lem: maxX1;X2;X3;X4;X5 P (X1; X2; X3; X4; X5); () The indued graph for solvingthe following MAP problem: maxX1;X2;X4 PX3;X5 P (X1; X2; X3; X4; X5).Consider the simple Bayesian network in Fig. 2.2 and its indued graphs. Anindued graph along an elimination order is obtained by moralizing the Bayesiannetwork, arranging the nodes vertially aording to the order, and from topto bottom reursively onneting eah node's neighbors that appear later thanitself. Dashed lines are indued ars, and double arrows are ommutable nodes.The width of a variable X along the order is the number of nodes sueeding Xin the order and onneted to X minus 1. The width of a graph is the maximum14



width among all nodes, whih is also alled the indued width. Shaded nodesare those whose widths are maximal. An indued graph for the network's MPEproblem is shown in part (b). We an solve the MPE problem of the networkusing an elimination order with indued width 1, whih is also the treewidth.Part () shows the indued graph of a MAP problem. In the problem, we haveto sum out X3 and X5 �rst, so the best elimination order has indued width 2.Notie that the network in this example is a simple polytree, for whih beliefupdating and MPE are polynomial. However, beause of the onstrained width,MAP beomes an NP-hard problem. It is still possible to �nd valid orderingsthat interleave summation and maximization variables. However, Park [13℄shows that there is always an elimination order with the same width in whihall the maximizations are done last, and, hene, there is no bene�t of interleavingsummations and maximizations.2.3 Previous ResearhTo solve the MAP problem for Bayesian networks, researhers have proposedvarious approahes, all of whih are trying to sidestep its inherent omplexity.The approah in [5℄ uses the geneti algorithms to approximate the best on-�guration of the MAP variables. Starting from an initial guess, the algorithmtakes ations like rossover and mutation to explore the spae of possible in-stantiations. It stops when a �xed number of iterations have been exeuted andthen hoose the best instantiation as the MAP solution. Dehter and Rish [6℄propose a general sheme for probabilisti inferene: Mini-bukets. A full mini-buket algorithm is subjet to the size of the largest potential reated, whih isequal to the onstrained width of the MAP problem plus 1. Hene, the mini-buket method sets a limit on the size of potentials. Whenever the size of apotential exeeds the limit, the mini-buket method will reate an approximateversion of it instead. Park and Darwihe [14℄ propose an approah using loalsearh to solve the MAP problem. The algorithm starts from an initial guessand then iteratively improves the solution by moving to a better neighbor. Ina later paper [15℄, the authors improve the loal searh algorithm by meansof branh-and-bound depth-�rst systemati searh algorithm. The advantage ofthe improved algorithm is that it provides a guarantee on the optimality of theobtained solution. All of these algorithms ould provide very eÆient solutionsfor most of the MAP problems when the networks are not too large or omplex.Another approximate algorithm proposed by Yuan et al. [21℄ is a Reheated An-nealing MAP algorithm. It uses Markov Chain Monte Carlo methods to samplefrom the target distribution, and applies the reheated simulated annealing teh-nique to simulate a nonhomogeneous Markov hain. It is somewhat slower onsimple networks but it is able to handle very hard ases that the exat algorithman not solve.All of the above approahes alleviate to some degree the omplexity of the15



original problem. However, in fae of large omplex models, they often fail toprovide good results, if any: the approah in [5℄ does not provide any guidaneto explore the more probable spaes. The quality of the results of the mini-buket method largely depend on the limit of the potential size. The algorithmsin [14, 15℄ redue the omplexity of the MAP problems to treewidths, but theyare still subjet to the exponential searh spaes introdued in the problems.Later of my thesis, I will show the eÆieny and auray of the DWA�algorithm by omparing the simulation results of it with those of the loalsearh, systemati searh, and the AnnealedMAP .
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Chapter 3Asymmetries Among JointProbability DistributionsA small fration of states of a joint probability distribution an be expeted toover a large portion of the total probability spae with the remaining stateshaving pratially negligible probability [7℄. Theoretial disussion has beensupplemented by simulation results. Let us give an onise introdution tothe argument of the asymmetry among probability of the Joint ProbabilityDistributions.3.1 Preliminaries3.1.1 Probabilisti ModelsThe essene of any probabilisti model is a spei�ation of the joint probabilitydistribution over the model's variables. i.e., probability distribution over allpossible deterministi states of the model. It is suÆient for deriving all prior,onditional, and marginal probabilities of the model's individual variables.Most modern textbooks on probability theory relate the joint probabilitydistribution to the interations among variables in a model by fatorizing it,i.e., breaking it into a produt of priors and onditionals. While theis view hasits merits in formal expositions, it suggests viewing a probabilisti model asmerely a numerial spei�ation of a joint probability distribution that an bepossibly algebraially deomposed into fators. This lashes with our intuitionthat whatever probability distribution we observe, they are a produt of stru-tural, ausal properties of the domain. Causal interations among variables ina system determine the observed probabilisti dependene and, in e�et, thejoint probability distribution over all model's variables. An alternative view ofa joint probability distribution is, therefore, that it is omposable from rather17



than deomposable into prior and onditional probability distribution. In thisview, eah of these distributions orresponds to a ausal mehanism ating in thesystem. This reets the proess of onstruting joint probability distributionsover domain models in most pratial situations.Sine insight obtained from two modeling tools: Bayesian belief networks(BBNs) (Pearl, 1988) and probability trees may prove useful for the reader, Iwill show how they both represent a simple unertain model involving a ommonativity of a liniian interpreting the result of a sreening test for a disease. Thismodel ontains two binary variables: disease and test. The outomes of variabledisease, d and d, stand for disease present and disease absent respetively. Theoutomes of variable test, t and t, stand for test positive and test negativerespetively A BBN representing this problem, shown in Figure 3.1, reetsthe qualitative struture of the domain, showing expliitly dependenes amongvariables Eah variable is haraterized by a probability distribution onditionalon its predeessors or by a prior probability distribution if the variable hasno predeessors. Figure 3.1 shows also a probability tree enoding the sameproblem. Eah node in this tree represents a random variable and eah branhoriginating from that node a possible outome of that variable. Eah ompletepath starting at the root of the tree and ending at a leaf orresponds to one ofthe four possible deterministi states of the model.

Figure 3.1: Two probabilisti representations of the sreening test problemBayesian belief network (upper) and probability tree (lower).18



The probabilities of various states of a model an be easily retrieved in BBNsand probability trees by multiplying out the prior and onditional probabilitiesof individual variables In the models of Figure 3.1, we multiply the priors ofvarious outomes of disease by the onditionals of respetive outome of testgiven presene or absene of disease.3.1.2 State ProbabilitiesFirst we hoose at random one state of a model that onsists of n variablesX1; X2; X3; : : : ; Xn�1; Xn: We hoose this state equationally from among allpossible states, regardless of its probability. As a state is an assignment of eahof the model's n variables, one way of looking at this seletion proess is thatwe are traversing the probability tree representing the model from its root toone of its leaves taking at eah step one of the possible branhes with equalprobability. This amounts to a random hoie of one outome from among theoutomes of eah of the variables. The probability of p of a seleted state isequal to the produt of onditionals of eah of the randomly seleted outomes.It is equal for our seleted state to p = Pr(d; t) = Pr(d)Pr(t j d). Generally, ifwe denote pi to be the onditional(or prior) probability of the randomly seletedoutome of variable Xi, We havep = p1p2p3 : : : pn�1pn = nYi=1 pi : (3.1)In random seletion of state, We hose eah pi to be one number from among theprobabilities of various outomes of variable Xi. We an, therefore, regard eahpi as a random variable taking equiprobable values from among the probabilitiesof the outomes of variable Xi.Obviously, the distribution of pi is not always independent from the distri-bution of pj , when i 6= j, as the outomes of some variables may impat theonditional probability distributions of other variables. Seletion of pi within itsdistribution is nevertheless independent of any other pj , when i 6= j. Spei�ally,in Bayesian networks, whih are depited by onditional probability distribu-tion between any pair of nodes onneted by ars, the state of eah inner nodedepends on the outomes of its ausal anestors. The exat form of this distri-bution is a property of the mehanism and is independent on anything else inthe systems.By taking the logarithm of both side of equation 3.1 I an obtain that:Lnp = ln nYi=1 pi = nXi=1 lnpi : (3.2)As for eah i, pi is a random variable, its algorithm lnpi is also a random vari-able for pi is a random variable. The asymptoti behavior of a sum of random19



variables is relatively well understood and addressed by a lass of limit theoremsknown olletively as Central Limit Theorem. When the number of omponentsof the sum approahes in�nity, the distribution of the sum approahes normaldistribution, regardless of the probability distribution of the individual om-ponents. Even though in any pratial ase we will be dealing with a �nitenumber of variables, the theorem gives a good approximation even the numberof variables is small.3.1.3 Central Limit TheoremCentral limit theorem (CLT) is one of the fundamental and most robust theo-rems of statistis, appliable to a wide range of distributions. It was originallyproposed for Bernoulli variables, then generalized to independent identially dis-tributed variables, then to non-identially distributed, and to some ases whereindependene is violated. Extending the boundaries of distributions to whihCLT is appliable is one of ative areas of researh in statistis. CLT is so ro-bust and surprising that it is sometimes referred to as \order out of haos" (deFinetti, 1974)One of the most general forms of CLT is due to Liapounov (to be found inmost statistis textbooks)Theorem 1 Let X1; X2; X3; : : : ; Xn be a sequene of n independent randomvariables suh that E(Xi) = �i, E((Xi � �i)2) = �2i , and E(j Xi � �i j3) = !3iall exist for every i. Then their sum, Y =Pni=1Xi is asymptotially distributedas N(Pni=1 �i;Pn1 �2i=1), provided thatlimn!1 Pni=1 !3i(Pni=1 �2i )3=2 = 0: (3.3)This ondition is satis�ed for any distribution for whih � and � exist andthe theorem redues to Lindeberg and Levy's version of CLT (also reported inmost textbooks).Returning to Equation 3.2, we have by the CLT, that assuming that thepreonditions of CLT are satis�ed, the sum on the right side is in the limitnormally distributed. If lnp is normally distributed, then p itself must be drawnfrom a lognormal distribution.3.2 Properties of the Joint Probability Distri-butionCLT aptures the growth of a proess showing strong regularity and satisfyingertain independene onditions, and these onditions are reasonably satis�ed inthe proess of onstruting a joint probability distribution [7℄. In what follows,I will be showing the properties of the logarithm of the distribution.20



Let a model onsist of n variablesX1; X2; X3; : : : ; Xn, having k1; k2; k3; : : : ; kn,states respetively (1 � i � n). For any single state, we an apply the Cen-tral Limit Theorem to equation 3.2, viewing eah pi as an independent randomvariable. The value of pi will be the probability of a randomly seleted outomeof variable Xi. Let the mean and the variane of the distribution of pi be �iand �2i respetively. The logarithm of p, the probability of an individual state,obtained by multiplying priors and onditionals of individual variables in thendistributed as lnp � N(Pn1 �i;Pn1 �2i ).The density funtion f(lnp) is:f(lnp) = 1p2�Pni=1 �2i exp�(lnp�Pni=1 �i)22Pni=1 �2i ; : (3.4)Example. In order to give readers a diret impression, I ited one of themost lassial simulation results that has been reported [Druzdzel 1994, Con-ferene of Unertainty in Arti�ial Intelligene℄.

Figure 3.2: Plot of the probability density funtion f(lnp)(in blue) and ontri-butions of eah senario's probability pf(lnp)(in red).In the Bayesian network ALARM [4℄, the researher hose a subset of 13variables as MAP variables, whih led to 525,312 senarios.The sum of the probability of eah senario is 1, and we an see that amongall 525,312 senarios, there was only one senario with the probability of 0.52,21



and other ten senarios with a sum of the probability to 0.23. From the perspe-tive of MAP Problem, there are 99:9979% senarios with pratially negligibleprobability whih are very unlikely to be the solution.3.3 Tentative Researh Related to Joint Proba-bility DistributionsThe estimation of joint probability distributions of MAP variables given evi-denes was also a hot point of researh. Tomasz Loboda, my olleague in theDeision Systems Laboratory (DSL) reported his researh result that the esti-mation of the mean of the lognormal distribution is the exat value, while theerror of the estimation of variane was up to 67% in terms of perentage error.During the �rst three months's researh in DSL, the onentration of myresearh was proposed to exploit the estimation of joint probability distributionsof MAP variables given evidenes.It was a branh-and-bound searh algorithm ombined with the estimationof joint probability distribution. The basi idea was in eah searh path of theprobability tree, I ould estimate the upper bound of the senario by using theintegration of funtion 3.4. If the upper bound is smaller than the probabilityof the best senario found so far, then the urrent searh path should be ut.The requirement to the auray of the upper bound was so strit thatthe estimation errors led the algorithm to be a quite frustrating one, however,the experienes aumulated from developing the branh-and-bound algorithmgreatly helped me to �nd new inspiration for the Dynami Weighting A� Searh.
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Chapter 4Solving MAP usingDynami Weighting A�SearhI present in this setion an algorithm for solving MAP using Dynami Weight-ing A� searh, whih inorporates the dynami weighting [16℄ in the heuristifuntion, relevane reasoning [8℄ and dynami ordering in the searh tree.The remainder of this hapter is organized as follows. First, I introdue theA� Searh. Seond, I ompare the A� searh algorithm with the branh-and-bound algorithm whih is also suitable for solving the MAP problem, and showwhy it is superior. Third, I introdue our method of omposing the heuristifuntion h(n). Fourth, I analyze the eÆieny and auray of the dynamiweighting A� searh algorithm and the situation when over-estimate happened.Finally, I disuss two tehniques for improving the eÆieny of the algorithm.4.1 A� searhThe A� searh is omplete, optimal, and optimally eÆient among all searhalgorithms is rather satisfying [18℄.The MAP problems an be solved by A� searh in the probability tree thatis omposed of all the variables in the MAP set. The nodes in the searh treerepresent partial assignments of the MAP variablesM. The root node representsan empty assignment. Eah MAP variable will be instantiated in a ertain order.If a variable x in the set of the set of MAP variables M is intantiated at theith plae using its jth state, it will be denoted as Mij : Leaves of the searh treeorrespond to the last MAP variable that has been instantiated. The vetor ofinstantiated states of eah MAP variable is alled an assignments or a senario.23



I ompute the probability of assignments while searhing the whole proba-bility tree using hain rule. For eah inner node, the newly instantiated nodewill be added into the evidene set, i.e., the evidene set will be extended toMij [E.Then the probability of the MAP problem whih onsists of nMAP variablesan be presented as follows:P (M j E) = P (Mni jM1j ;M2k; : : :M(n�1)t; E): : : P (M2k jM1j ; E)P (M1j j E) :Eah posteriori probability at the righthand side of the equation above an beomputed by the jointree algorithm [12℄ eÆiently. The jointree algorithm is avery omplex while eÆient algorithm for omputing the posteriori probability ofMAP variables given evidenes in Bayesian networks whih has been developedand inluded in the SMILE library. If the readers are interested in the jointreealgorithm, I refer the reader to the artile of Lauritzen and Spiegelhalter [12℄for more information.Suppose we are in the xth layer of the searh tree and preparing for instan-tiating the x th MAP variables. Then the funtion above an be rewritten asfollows:P (M j E) = bz }| {P (Mni jM1j : : :M(n�1)t; E) : : : P (M(x+1)z jMxy : : : E)�P (Mxy jM1j ;M2k : : :M(x�1)q; E) : : : P (M1j j E)| {z }a(4.1)The general idea of the Dynami Weighting A� Searh algorithm is that duringthe searh, in eah inner node of the probability tree, I an ompute the valueof item (a) in the above funtion exatly. I an estimate the heuristi valueof the item (b) for the MAP variables that have not been instantiated giventhe initial evidene set and the MAP variables that have been intantiated asthe new evidene. In order to �t the typial format of the ost funtion of A�Searh, I just take the logarithm of the equation above, whih will not hangeits monotoniity. Then I an get f(n) = g(n) + h(n), where g(n) and h(n) areobtained from the logarithmi transformation of items (a) and (b) respetively.g(n) gives the exat ost from the start node to node in the nth layer of thesearh tree, and h(n) is the estimated ost of the best searh path from the nthlayer to the leaf nodes of the searh tree. In order to guarantee the optimalityof the solution, h(n) should be admissible, whih in this ase means that itshould be an upper-bound on the value of any assignment with the urrentlyintantiated MAP variables as its elements.24



4.2 EÆieny Comparison between A� and Branh-Bound Searh for MAP ProblemsA� Searh is losely related to the branh-and-bound tehniques. For the MAPproblems, the eÆieny of the searh algorithm is dominated by the numberof nodes in the probability tree that are instantiated. In order to omparethe eÆieny of the two searh algorithms for the MAP problems, I will �rstintrodue some de�nitions.De�nition 5 : An algorithm A1 is said to dominate an algorithm A2 if everynode expanded by A1 is also expanded by A2. I will also use the phrase moreeÆient than interhangeably with dominates [16℄.Let smax be the most probable assignment and its probability be Pmax. LetPBestSoFar denote the probability of the best assignment that we have found sofar, whih is less or equal to the Pmax.Theorem 2 Given the same ost funtion f(x), A� dominates branh and boundon MAP problems.Proof: The ondition for utting the urrent searh path in \branh andbound" searh is f(x) < PBestSoFar . So the whole searh spae an be denotedby: S1 = fx : f(x) � PBestSoFar[ x 2 optimal assignmentg :For the A�, onsider a node y that is urrently in the searh frontier whih isalso an element of the vetor of the optimal senario. With the admissibility ofthe f(y), whih guarantees that f(y) an upper-bound on the probability of theoptimal solution, we have f(y) � Pmax. For all nodes x that on the searh pathother than the optimal assignment, we have f(x) � f(y). The whole searhspae an be denoted by:S2 = fx : f(x) � f(y)[ x 2 optimal assignmentgGiven that PBestSoFar � Pmax and f(y) � Pmax, we have f(y) � PBestSoFar ,whih implies S2 � S1, i.e., that the A� searh dominates the branh-and-boundsearh. 24.3 Heuristi Funtion with Dynami WeightingThe A� Searh is known for its ompleteness and optimality. For eah searhstep, I only expand the node in the frontier with the largest value of f(n).25



De�nition 6 A heuristi funtion h2 is said to be more informed than h1 ifboth are admissible and h2 is loser to the optimal ost. For the MAP problem,the probability of the optimal assignment Popt < h2 < h1.Theorem 3 If h2 is more informed than h1 then A�2 dominates A�1 (Nils-son). [16℄The power of the heuristi funtion is measured by the amount of pruningindued by h(n) and depends on the auray of this estimate. If h(n) estimatesthe ompletion ost preisely (h(n) = Popt), then A� will only expand nodes onthe optimal path. On the other hand, if no heuristi at all is used, (for the MAPproblem this amounts to h(n) = 1), then a uniform-ost searh ensues, whih isfar less eÆient. So it is ritial for us to �nd an admissble and tight h(n) toget both aurate and eÆient solutions for MAP.Greedy GuessIf eah variable in the MAP setM is onditionally independent of all the rest ofMAP variables (this is alled exhaustive independene), then the MAP problemamounts to a simple omputation based on the greedy hain rule. I instantiatethe MAP variable in the urrent searh layer to the state with the largest prob-ability and repeat this for eah of the remaining MAP variables one by one.The probability of MAP is thenP (M jE) = nYi=1maxj P (Mij jM(i�1)k : : :M1m; E) : (4.2)The requirement of exhaustive independene is too strit for most of theMAP problem to be alulated by using the funtion above. Simulation resultsshow that in pratie, when this requirement is violated, the produt is stillextremely lose to the MAP probability [21℄. This suggests using it as an �-admissible heuristi funtion [16℄.The urve Greedy Guess Estimate in Figure 4.1 shows that with the inreaseof the MAP variables, the ratio between the greedy guess and the aurateestimate of the optimal probability diverges from the ideal ratio 1.0 althoughnot always monotonially.Dynami WeightingSine the greedy guess is a tight lower bound on the optimal probability ofMAP, it is possible to ompensate for the error between the greedy guess andthe optimal probability. I an do this by adding a weight to the greedy guesssuh that the produt of them is equal or larger than the optimal probabilityfor eah inner node in the searh tree. This yields an �-admissible heuristi26



funtion that I need in order to �nd the optimal solutions. This assumption anbe represented as follows:9�f8PGreedyGuess � (1 + �) � Popt ^ 8PGreedyGuess � (1 + �0) � Popt ) � < �0gwhere � is the minimum weight that an guarantee the heuristi funtion tobe admissible. Figure 4.1 shows that if I just keep � onstant, negleting thehanges of the estimate auray with the inrease of the MAP variables, theestimate funtion and the optimal probability an be represented by the urveConstant Weighting Heuristi. Obviously, the problem with this idea is that itis less informed when the searh progresses, as there are fewer MAP variablesto estimate.Dynami Weighting (Pohl, 1973) is an eÆient tool for improving the ef-�ieny of A� Searh. If applied properly, it will keep the heuristi funtionadmissible while remaining tight on the optimal probability. For MAP, in theshallow layer of the searh tree, we get more MAP variables than the deeperlayer for estimate. Hene the greedy estimate will be more likely to diverge fromthe optimal probability. I propose the following Dynami Weighting HeuristiFuntion for the xth layer of the Searh tree of n MAP variables:h(x) = PGreedyGuess � (1 + �n� (x+ 1)n )(� � �) :Rather than keeping the weight onstant throughout the searh, I dynamiallyhange it so as to make it less heavy as the searh goes deeper. In the last stepof the searh (x = n � 1), the weight will be zero, sine the Greedy Guess foronly one MAP variable is exat and then the ost funtion f(n-1) is equal tothe probability of the assignment. Figure 4.1 shows an empirial omparison ofgreedy guess, onstant, and dynami weighting heuristis against aurate esti-mate of the probability. We see that the dynami weighting heuristi beomesmore informed than onstant weighting. In our experiments, I set � to be 1:0,whih is tested to be a quite onservative while eÆient parameter.4.4 Searhing with Nonadmissible Heuristis forMAP ProblemLet us have a loser look at the onditions under whih the algorithm fails toahieve optimality. Suppose there are two andidate assignments: s1 and s2 withprobability p1 and p2 respetively, among whih s2 is the optimal assignmentthat the algorithm fails to �nd. And s1 is now in the last step of searh whihwill lead to a suboptimal solution. I skip the logarithm in the funtion for thesake of larity here (then the ost funtion f is a produt of transformed g andh instead of their sum). 27



Figure 4.1: Constant Weighting Heuristi and Dynami Weighting Heuristibased on Greedy Guess. f1 = g1 � h1 and f2 = g2 � h2The error introdued by a non-admissible h2 is f1 > f2. The algorithm willthen �nd s1 instead of s2, i.e.,f1 > f2 ) g1 � h1 > g2 � h2.Sine s1 is now in the last step of searh, f1 = p1 (Setion 3.3.2). Now supposethat I have an ideal heuristi funtion h02, whih leads to p2 = g2 � h02. Then Ihave: g1 � h1p2 > g2 � h2g2 � h02 ) p1p2 > g2 � h2g2 � h02 ) p1p2 > h2h02It is lear that only when the ratio between the probability of suboptimalassignment and the optimal one is larger than the ratio between the nonadmis-sible heuristi funtion and the ideal one, may the algorithm �nd a suboptimalsolution.Beause of large asymmetries among probabilities that are further ampli�edby their multipliative ombination [7℄, I an expet that for most of ases, theratios between p1 and p2 are far less than 1. Even though the heuristi funtionwill sometimes break the rule of admissibility, if only the greedy guess is nottoo divergent from the ideal estimate, the algorithm will still not diverge fromthe optimal probability. Our simulation results also proved the robustness ofthe algorithm in �nding optimal solutions.28



4.5 Improvements to the AlgorithmThere are two main tehniques that I used to improve the eÆieny of the basiA� algorithm.4.5.1 Relevane ReasoningThe main problem faed by the deision-theoreti approah is the omplexityof probabilisti reasoning. The ritial fator in exat inferene shemes forBayesian networks is the topology of the underlying graph and, more spei�ally,its onnetivity. The framework of relevane reasoning ([8℄ is an aessiblesummary of the relevant tehniques) is based on d-separation and other simpleand omputational eÆient tehniques for pruning irrelevant parts of a Bayesiannetworks and an yield sub-networks that are smaller and less densely onnetedthan the original network. Relevane reasoning is an integral part of the SMILElibrary on whih the implementation of our algorithm is based.For MAP, our fous is the set of variables M and the evidene set E. Partsof the model that are probabilistially independent from the nodes in M giventhe observed evidene E are omputationally irrelevant to reasoning about theMAP problem.4.5.2 Dynami OrderingAs the searh tree is onstruted dynamially, I have the freedom to order thevariables in a way that will improve the eÆieny of the DWA� searh. Ex-panding nodes with the largest asymmetries in marginal probability distributionleads to early ut-o� of less promising branhes of the searh tree. I use theentropy of the marginal probability distributions as a measure of asymmetry.The basi onept of entropy in information theory has to do with how muhrandomness is in a signal or in a random event and how muh information isarried by the signal. An alternative way to look at this is to talk about howasymmetri the probability of di�erent states of a MAP variable is.Claude E. Shannon de�nes entropy in terms of a disrete random event x,with possible states 1..n as:H(x) = �Pni=1 p(i) log2 p(i)Theoretially, the lower the entropy of a probability distribution is, the moreasymmetri its probability of di�erent states will be.The �rst step is to ompute entropy H for eah variable in M that has notbeen instantiated. This an be omputed from the marginal potential of eahvariable in M eÆiently. I then hoose the variable with the least entropy asthe next variable to be instantiated. 29



The reason that I take this way is not diÆult to understand. Let us lookbak at the equation (4.1). When deiding the instantiation order that leads tothe \early-ut", I always selet the variable that ould diverge the value of item(a) after instantiation. The result of this is that the probability of di�erentbranhes in the searh tree will be quikly driven to be two polars, a smallportion of them with very large values of item (a) and most of the others withvery small values, whih are named less-promising branhes and more likely togenerate senarios with very little probabilities.Hene, by dynami ordering, the DWA� algorithm works even better be-ause of typially enormous asymmetries among the probabilities of individualsenarios will be found even in shallow layer of the searh tree. Then the DWA�algorithm will not spend a large amount of time disriminating among pathswhose osts do not vary signi�antly from eah other, whih leads to greatredution of the searh spae.4.6 DWA� AlgorithmGiven the above disussion, I outline the DWA� Algorithm in Fig. 4.2. Whenone of the elements of the searh frontier reahes the leaf node of the searh treethe DWA� algorithm will terminate, and I an take the �nal on�guration asthe output.
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Algorithm: DWA�Input: Bayesian network B, a set of MAP variables M, a set ofevidene variables E, Weight �;Output: The most probable on�guration of M.1. Call Greedy Guess at searh layer 0, and setL=GreedyGuess(0).2. while urrent searh layer is not the bottom of the searhtree:3. Selet the node Ml with the largest value of the ost fun-tion F (x) in the searh frontier.4. Set all the instantiated variables before Ml to be new Evi-denes nodes.5. Set all uninstantiated variables in M to be Target Nodes.6. Update beliefs of B.7. Sort all uninstantiated variables in M in a inreasing orderof Entropy, among whih Ms has the least Entropy.8. Expand the node Ml by using Ms as its hild nodes.9. Insert new generated hild nodes into the searh frontier.10. Clear Evidenes.11. Unset Target Nodes.end while12. Output the best on�guration found and its probability.Figure 4.2: The DWA� algorithm.
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Chapter 5ImplementationThe total programming work of implementing the DWA� algorithm was aom-plished by myself using C++ in the Windows programming environment.The remainder of this hapter is organized as follows. First, I introdue theStrutural Modeling, Inferene, and Learning Engine (SMILE) library by whihthe DWA� algorithm is supported. Seond, I introdue my programming workon the DWA� algorithm whih will be inluded in the new version of SMILEfor solving the MAP problem. Finally, I will give a brief introdution on theapproahes that I used to ompare the DWA� algorithm with the other existentalgorithms.5.1 SMILEStrutural Modeling, Inferene, and Learning Engine (SMILE) is a fully plat-form independent library of C++ lasses implementing graphial probabilistiand deision-theoreti models, suh as Bayesian networks, inuene diagrams,and strutural equation models. Its individual lasses, de�ned in SMILE Ap-pliations Programmer Interfae, allow to reate, edit, save, and load graphialmodels, and use them for probabilisti reasoning and deision making underunertainty. These lasses are aessible from C++ or (as funtions) from Cprogramming languages. As most implementations of programming languagesde�ne a C interfae, this makes SMILE aessible from pratially any languageon any system. Also SMILE may be embedded in programs that use graphialprobabilisti models as their reasoning engines. Furthermore, models devel-oped in SMILE an be equipped with a user interfae that suits the user ofthe resulting appliation most. Additional to the SMILE platform is the devel-opment of SmileX, an AtiveX Windows omponent that allows SMILE to beaessed from any Windows programming environment, inluding World WideWeb pages. 33



5.2 DWA� ClassThe DWA� algorithm was implemented in the new Class named \DWAstar".The introdution to this lass will be given in terms of two subsetions: Datamember and Member funtion.

Figure 5.1: DWAstar Class.5.2.1 Data memberIn Figure 5.2, I listed main data member of the Class \DWAstar":� DSL network � netThe Bayesian networks in whih the MAP problem is.� num MAPThe number of variables in MAP set.34



� nEvidenesThe number of variables in Evidenes set.� MAP layerThe urrent searh layer in the probability tree.� evidene node id[501℄The handle of eah Evidene variable.� evidene state[501℄The state of eah Evidene variable.� MAP array[501℄The handle of eah MAP variable.� MAP best array[501℄The handle of eah MAP variable in the �nal senario that the algorithmreturns. Sine the sequene of MAP variables will be dynamially or-dered, the sequene of MAP variables in MAP best array[501℄ is generallydi�erent from that in MAP array[501℄.� MAP urrent on�g array[501℄The handle of eah MAP variable in the urrent searh path.� ag endThe variable to testify whether the algorithm should be terminated.� map node id[501℄The handle of the MAP variables that have been randomly generated fortesting the algorithm.� largest produt indexThe index of the searh path with the largest value of ost funtion in thesearh frontier.� Final Joint ProbabilityThe probability of the senario that the algorithm returns.� greedy thresholdThe probability that the greedy guess generated before the searh. It is atight lower bound on the MAP problem.� inner nodeThe strut that reords eah node in the searh tree.� inne pointsThe vetor that reords the searh frontier.35



5.2.2 Member funtionHere listed in Figure 5.3 are the main member funtions of the Class \DWAstar",among whih I will show Greedy guess, Estimate inner node, and A Star Searhin detail whih are key omponents of the DWA� algorithm:� DWAstar (DSL network � theNet; intnumber Evidene; intnumber MAP)Construtor of the Class.� void Set evidene(int a)Randomly generate a evidene variable, and randomly selet one of all itspossible states as its state.� void Set map(int b)Randomly generate b MAP variable.� double Entropy(int node id)Compute and return the Entropy of the MAP variable.� void Order single MAP variables entropy(int MAP layer)Order the MAP variables in terms of Entropy of them, and shift thevariable with the least Entropy to the �rst position to be instantiated.� double Get greedy threshold()Return the lower bound on the MAP problem.� void Show MAP array()Print out the handle of eah MAP variable.� void Set One Evi Node(int Evi id; int Evi state; int Squene)Set only one Evidene node.� void Set One MAP Node(int MAP id; int Squene)Set only one MAP node.� void Show all initial variables()Show all the handles of MAP variables and Evidene variables.� void Show all evidene and state()Show all evidene variables and their states orrespondingly.� void Change num of Evidene(int num evidene)Assign the value of the number of evidene variables.� void Change num of MAP(int num map)Assign the value of the number of MAP variables.� double Compute PRE(int num of evidenes)Compute the joint probability of all evidene variables.36



� void Set greedy threashold(double a)Set the value of the greedy threashold, it is a lower bound on the MAPproblem.� void Show greedy threashold()Print out the value of the greedy threashold.� void Extend node(int MAP layer)Expand the urrent searh path to the next layer in the probability tree.� double Greedy guess(int MAP layer)Return the posteriori probability of the MAP variables that have not beeninstantiated, given the evidenes and the MAP variables that have beeninstantiated. Readers an resort to the odes shown in �gure 5.4 for detail.� double Estimate inner node(int MAP layer)Return the value of the heuristi funtion h(x =MAP layer). The om-putation is ful�lled by using Dynami Weighting Tehniques, whih is theritial part of the DWA� searh algorithm. Readers an resort to theodes shown in �gure 5.5 for detail.� double A Star Searh(int num of MAP)Searh the probability tree. Readers an resort to the odes shown in�gure 5.6 for detail.
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Figure 5.2: Data member of the DWAstar Class.
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Figure 5.3: Member funtion of the DWAstar Class.
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Figure 5.4: double Greedy guess(int MAP layer).
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Figure 5.5: double Estimate inner node(int MAP layer).
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Figure 5.6: double A Star Searh(int num of MAP ).
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Chapter 6Experimental Results6.1 Experimental EnvironmentTo test theDWA� algorithm, I studied its performane on many MAP problemsin real Bayesian networks. I ompare our results against those of urrent stateof the art MAP algorithms: the P-Lo [14℄, P-Sys [15℄ and AnnealedMAP[21℄ algorithms respetively. I implemented the DWA� algorithm in C++ andperformed our tests on a 2.4 GHz Pentium IV Windows XP omputer with750MB memory.The DWA� algorithm is supported by the Strutural Modeling, Inferene,and Learning Engine (SMILE) whih is developed by Deision Systems Labo-ratory (DSL).6.2 Experimental DesignIn order to exam the performane of the DWA� algorithm omprehensively, Iompared the eÆieny and auray of the DWA� algorithm with the otherthree existent algorithms P-Lo, P-Sys, AnnealedMAP in terms of runningtime and probability of the assignment. I used the same set of Bayesian networksthat have been used for testing the performane of the MAP-solving algorithmsat the Deision Systems Laboratory, University of Pittsburgh, and the Auto-mated Reasoning Group, University of California, Los Angeles, whih inludeAlarm [4℄, Barley [11℄, CPCS179 and CPCS360 [19℄, Diabetes [2℄, Hail�nder [1℄,Munin [3℄, Path�nder [9℄, P223layout, and Win95pts [10℄, some of whih areonstruted for diagnosis. I also tested the algorithms on two very large pro-prietary diagnosti networks built at the HRL Laboratories (HRL1 and HRL2).The statistis for these networks are summarized in Table 6.1. I divided thenetworks into three groups: (1) small and middle-sized, (2) large but tratable,and (3) hard networks. 43



Table 6.1: Statistis for the Bayesian networks that I am using.Group Network #Nodes #ArsAlarm 37 46CPCS179 179 239CPCS360 360 7291 Hail�nder 56 66Path�nder 135 195P223layout 223 338Win95pts 76 1122 Munin 1,041 1,397HRL1 1,999 3,112HRL2 1,528 2,4923 Barley 48 84Diabetes 413 602For eah network, I randomly generated 20 ases, and ran the above fouralgorithms on them. For eah ase, I randomly hose 20 MAP variables amongthe root nodes or all the them if root nodes were less than 20. I hose the samenumber of evidene nodes from among the leaf nodes. To set evidene, I sampledfrom the prior probability distribution of a Bayesian network in its topologialorder and ast the states of the sample to the evidene nodes. Following previoustests of MAP algorithms, I set the searh time limit to be 3; 000 seonds (50minutes). In all of our experiments, I used the default settings and parametersof P-Lo, P-Sys, AnnealedMAP unless mentioned spei�ally.6.3 Results for the First and Seond GroupIn the �rst experiment, I ran the P-Lo, P-Sys, AnnealedMAP and DWA�on all the networks in the �rst and seond group, and all of the four algorithmsgenerate results within the time limit. The P-Sys algorithm reported that itfound all the optimal solutions. Table 6.2 reports the number of MAP problemsthat are solved orretly by the P-Lo AnnealedMAP andDWA� algorithms.They all performed well on these networks. The DWA� was able to �nd all theoptimal solutions. The P-Lo algorithmmissed only one ase on the P223layoutnetwork and the AnnealedMAP missed one on Hai�nder and two ases onP223layout.Sine both AnnealedMAP and P-Lo failed to �nd all the optimal solu-tion in P223layout, in eah of the 20 ases I studied the performane of the 4algorithms as a funtion of the number of MAP variables ( I randomly generated20 ases for eah number of MAP variables).Beause the searh time of P-Sys inreased very fast with the number ofMAP variables, and it failed to generate any result when the number of MAP44



Table 6.2: The number of ases that are solved orretly out of 20 random asesfor the �rst and seond group of networks.P-Lo A-MAP DWA�Alarm 20 20 20CPCS179 20 20 20CPCS360 20 20 20Hail�nder 20 19 20Path�nder 20 20 20P223layout 19 18 20Win95pts 20 20 20Munin 20 20 20HRL1 20 20 20HRL2 20 20 20Table 6.3: The running time (in seonds) and the number of ases that theother 3 algorithms found smaller probabilities than DWA� Searh in networkP223layout using their default settings.MAP P-Sys P-Lo A-MAP DWA�Runtime Smaller Runtime Smaller Runtime Smaller Runtime10 0.265 0 0.361 0 1.575 0 0.22120 23.236 0 1.179 1 12.089 2 2.38530 68.829 0 2.563 1 32.579 0 9.92340 TimeOut - 3.305 4 10.601 4 5.90650 TimeOut - 4.219 6 12.168 2 10.57860 TimeOut - 5.031 5 15.481 2 10.11270 TimeOut - 5.906 6 15.981 5 10.31280 TimeOut - 6.828 6 11.171 1 11.093variables reahed 40, while the DWA� Searh found all the largest probabilities,I ompared all the other 3 algorithms with DWA� Searh. With the inreaseof the number of MAP variables, both the P-Lo and AnnealedMAP turnedto be less aurate for P223layout. When the number of MAP variables wasabove 40, there were about 25% ases of P-Lo and 15% ases in whih An-nealedMAP found smaller probabilities than DWA�.Sine only P-Lo spent less time than DWA� when using its default set-tings, I am interested in the result when inreasing the searh steps of P-Losuh that it spends the same time as DWA�. However, in pratie the searhtime is not ontinuous in the number of searh steps, so I just tried to �ndthe parameters for P-Lo suh that it spent only a little bit more time thanDWA�. Table. 6.4 shows the omparison between P-Lo and DWA� in termsof run time and the number of ases that the two algorithms found di�erent45



result. We an see that after inreasing the searh steps of P-Lo, DWA� stillkept better auray when ompared with P-Lo.Table 6.4: The running time(in seonds) and the number of ases that theP-Lo found larger/smaller probabilities than DWA� in network P223layoutwhen spending a little bit more time than DWA�.MAP P-Lo DWA�RunTime P-Lo < DWA� RunTime P-Lo > DWA�10 0.262 0 0.181 020 3.685 0 3.531 030 8.134 0 7.150 040 8.140 1 6.635 050 8.221 2 6.792 060 8.215 2 7.248 170 9.968 3 8.599 280 11.609 5 9.520 0In addition to the preision of the results, I also ompared the eÆieny ofthe algorithms. Table 6.5 reports the average running time of the four algo-rithms on the �rst and the seond groups of networks. For the �rst group, theTable 6.5: Average running time in seonds of the P-Sys, P-Lo, An-nealedMAP and DWA� algorithms on the �rst and seond group of networks.P-Sys P-Lo A-MAP A�Alarm 0.011 0.019 0.076 0.006CPCS179 0.030 0.134 0.250 0.019CPCS360 0.057 90.202 0.820 0.123Hail�nder 3.910 0.118 0.452 0.239Path�nder 0.054 0.061 0.050 0.001P223layout 32.370 1.376 12.166 2.507Win95pts 0.031 0.041 0.292 0.030Munin 3.382 5.353 19.620 2.996HRL1 1.287 224.968 7.157 0.418HRL2 0.087 5.45 4.071 0.384AnnealedMAP, P-Lo and P-Sys algorithms showed similar eÆieny on allexept the CPCS360 and P223layout networks. The DWA� searh generatedsolutions within the shortest time on average. The small variane of the searhtime indiates that DWA� is more stable aross di�erent networks.For the seond group, whih onsists of large Bayesian networks, P-Sys,AnnealedMAP and DWA� are all eÆient. DWA� searh still spent shortestsearh time on average, while the P-Lo was muh slower on the HRL1 network.46



6.4 Results for the Third GroupThe third group onsisted of two omplex Bayesian networks: Barley and Dia-betes, many nodes of whih have more then 10 di�erent states. As the P-Sysalgorithm did not produe any results within the time limit, the only availablemeasure of auray was a relative one: whih of the algorithms found an as-signment with higher probability. Table 6.6 lists the number of ases that weresolved di�erently between P-Lo, AnnealedMAP, and the DWA� algorithmand the number of ases that the DWA� algorithm found a more probable as-signment. PL, PA and P� stand for the probability of MAP solutions found byP-Lo, AnnealedMAP and DWA� respetively.Table 6.6: The number of ases that were solved di�erently from P-Lo, An-nealedMAP and DWA�.P� > PL=P� < PL P� > PA=P� < PABarley 3/2 5/3Diabetes 5/0 4/0For Barley, the auray of the three algorithms is quite similar. However, forDiabetes DWA� is more aurate: it found solutions with largest probabilitiesfor all 20 ases, while P-Lo failed to �nd 5 and AnnealedMAP failed to �nd4 of them.Table 6.7: Average running time in seonds of the P-Sys, P-Lo, An-nealedMAP and DWA� algorithms on the third groups of Bayesian networks.P-Sys P-Lo A-MAP A�Barley TimeOut 101.47 34.67 199.16Diabetes TimeOut 369.35 315.79 185.89DWA� turned out to be slower than P-Lo and AnnealedMAP on Barleybut more eÆient on Diabetes (see Table 6.7).6.5 Results for Inremental Evidene and MAPVariables TestIn order to give a more omprehensive omparison of the P-Sys, P-Lo, An-nealedMAP and DWA� algorithms, I run the four algorithms on Munin net-work in di�erent number of evidene variables or di�erent MAP variables. Ihose the Munin network for this experiment beause only this network hassuitable number of root nodes and leaf nodes, 183 and 259 respetively, and Iwas able to run all four algorithms on it.47



For the �rst step, I generated MAP problem with an inreasing number ofevidenes nodes and keep the number of MAP nodes to be 50. The running timesfor eah of the four algorithms are shown in Figure 6.1. We an see that theAnnealedMAP spent muh longer time in generating the searh result. TheP-Sys, P-Lo, and DWA� spent similar time when the number of evidenenodes is less than 100. But when the number of evidene nodes is beyond100, the DWA� is more eÆient than P-Sys and P-Lo. The only exeptionhappened when the number of evidenes nodes was between 140 and 150.

Figure 6.1: Plot of the running time of the P-Sys, P-Lo, AnnealedMAPand DWA� algorithms when inreasing the number of evidene nodes on theMunin network.For the seond step, I generated MAP problem with an inreasing number ofMAP nodes and keep the number of Evidene nodes to be 50. The running timesfor eah of the four algorithms are shown in Figure 6.2. It indiates that theP-Sys, P-Lo, and DWA� algorithms were all very eÆient when the numberof MAP variables was not too large. However, when there were more MAPnodes whih leads the MAP problem to be muh harder, the AnnealedMAPand DWA� were more eÆient.My last experiment foused on the robustness of the four algorithms to thenumber of nodes in the MAP set and the evidene set. In this experiment,I generated MAP problems with an inreasing number of MAP and evidenenodes at the same time and ran four algorithms on these ases. The P-Sys wasable to solve only ases with fewer than 140 MAP and evidene variables. Thetimes for eah of the ases are shown in Figure 6.3.48



Figure 6.2: Plot of the running time of the P-Sys, P-Lo, AnnealedMAP andDWA� algorithms when inreasing the number of MAP nodes on the Muninnetwork.
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Figure 6.3: Plot of the running time of the P-Sys, P-Lo, AnnealedMAPand DWA� algorithms when inreasing the number of MAP nodes and evidenenodes at the same time on the Munin network.
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Chapter 7ConlusionMAP problems in Bayesian networks are hard beause they are not only subjetto the omplexity of the models (treewidth), but also subjet to the omplexityintrodued by spei� problems (onstrained width).My researh on MAP problems at the Deision Systems Laboratory is mainlybased on the theory of asymmetries among joint probability distributions. Al-though for the �rst three months, my tentative researh of exploiting the estima-tion of the probability density funtions was proved to be unsuessful, and yetit drove me to realize that the auray of the upper bound on the MAP problemis the most inuential element for the algorithm, whih is quite sensitive to theerror of the estimated mean and variane of the lognormal distribution funtion.Temporarily trapped in the darkness, I got new inspiration from the theory ofasymmetries. That is to use greedy guess instead of estimating the lognormalprobability density funtion in order to get a tight and aurate upper boundon MAP problem. The instrutions from my supervisor Professor Druzdzel andpositive omments on this idea from my olleague Changhe Yuan greatly en-ouraged me to embark on the implementation of the DWA� algorithm, andlead to the aomplishment of this new eÆient solution for MAP problems.Another point that I would like to address is that the searh algorithm thatI hose. When I implemented the branh-and-bound searh algorithm ombinedwith the estimation of the lognormal probability density funtion, I found thatthe branh-and-bound was always turned to be a futile one: on one hand, whenthe upper bound is far larger than the probability of senario, take 1.0 forexample, the algorithm was far less eÆient sine there was not any \ut" inthe probability tree; one the other hand, when the error of the estimation led thebound to be a lower bound instead of an upper one, the searh path that ouldlead to the right solution would be ut by mistake. Then the branh-and-boundsearh would not generate the right senario as the solution.Compared with the branh-and-bound searh, the Dynami Weighting A�Searh is more robust for the MAP problems. Beause of large asymmetries51



among probabilities that are further ampli�ed by their multipliative ombina-tion, it is testi�ed that for most of ases, the DWA� an lead to the optimalsolution, even though the heuristi funtion will sometimes break the rule of ad-missibility, if only the greedy guess is not too divergent from the ideal estimate,the algorithm will still not diverge from the optimal probability. Our simulationresults also proved the robustness of the algorithm in �nding optimal solutions.The programming work of implementing the DWA� searh algorithm wasaomplished by using C++ in the Windows programming environment withstrong support of the SMILE library. The join tree algorithm and the relevanereasoning is an integral part of the SMILE library on whih the implementationof my algorithm is based. I am very pleased that the DWA� searh algorithmwill be inluded in the new version of SMILE released later.Finding MAP in Bayesian networks is hard. By exploiting asymmetriesamong the probabilities of possible assignments properties of joint probabilitydistributions among all the possible assignments, the Dynami Weighting A�Searh is able to greatly redue the searh spae and lead to eÆient and a-urate solution of the MAP problem. Our experimental result also show thatgenerally, the Dynami Weighting A� Searh is more eÆient than the existentalgorithms. Espeially for large and omplex Bayesian networks, when the exatalgorithm fails to generate any result within a reasonable time, the DynamiWeighting A� Searh an still provide aurate solutions eÆiently.Further extension of this researh is to apply the Dynami Weighting A�Searh algorithm to the K-MAP problem, whih is to �nd k most probableassignments for MAP variables. It is very onvenient for the DWA� algorithmto ahieve that, sine after �nding the most probable assignment the algorithmkeeps all the andidate assignments in the searh frontier. I an expet that theadditional searh time will be linear in k.In sum, the Dynami WeightingA� Searh algorithm enrihes the approahesfor solving MAP problem and extends the sope of MAP problems that an besolved.
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