Dynamic Weighting A* Search-based MAP
Algorithm for Bayesian Networks!

Xiaoxun Sun
Department of Media & Knowledge Engineering
Delft University of Technology
The Netherlands
{x.sun@ewi.tudelft.nl }

July 8, 2005

! Thesis submitted in partial fulfillment of the requirements for the degree of Master
of Science in Media & Knowledge Engineering, Delft University of Technology, The
Netherlands

Graduate Committee

of Xiaoxun Sun (TU Delft student No. 1194771)

Dr. Drs. L.J.M. Rothkrantz
Dr. A.H.J.Oomes
Dr. K. van der Meer
Dr. Ir. Marek J.Druzdzel

Abstract

Maximum a Posteriori assignment (MAP) is the most probable instantia-
tion of a set of variables given a partial evidence on the remaining variables in
a Bayesian network. Finding MAP has been proven to be an NP-hard prob-
lem [20], and it is not only exponential in the network treewidth, but also in
the constrained treewidth [13]. Exact approaches often fail to yield any results
for MAP problems in very large Bayesian networks, and even approximate ap-
proaches may not yield acceptable solutions.

We introduce the Dynamic Weighting A* (DW A*) search algorithm for solv-
ing MAP. By exploiting asymmetries in the distribution of MAP variables, the
algorithm is able to greatly reduce the search space, yielding very good quality
MAP solutions. Experimental results demonstrate that my algorithm finds so-
lutions generally faster and with a lower variance in search time than existing
algorithms.

Contents

1 Introduction

1.1
1.2
1.3

Background Introduction,
Motivation and Objective
Overview

2 MAP and Previous Research

21
2.2
2.3

Bayesian Networks L oL
MAP . . .
Previous Research

3 Asymmetries Among Joint Probability Distributions

3.1

3.2
3.3

Preliminaries
3.1.1 Probabilistic Models
3.1.2 State Probabilities
3.1.3 Central Limit Theorem
Properties of the Joint Probability Distribution
Tentative Research Related to Joint Probability Distributions . .

4 Solving MAP using Dynamic Weighting A* Search

4.1
4.2

4.3

4.4
4.5

4.6

A*search
Efficiency Comparison between A* and Branch-Bound Search for
MAP Problems
Heuristic Function with Dynamic Weighting
Searching with Nonadmissible Heuristics for MAP Problem

Improvements to the Algorithm
4.5.1 Relevance Reasoning
4.5.2 Dynamic Ordering
DWA* Algorithm

5 Implementation

5.1
9.2

SMILE
DWA* Class o i e

17
17
17
19
20
20
22

23
23

52.1 Datamember,
5.2.2 Member function

6 Experimental Results
6.1 Experimental Environment,
6.2 Experimental Design o L.
6.3 Results for the First and Second Group
6.4 Results for the Third Group
6.5 Results for Incremental Evidence and MAP Variables Test

7 Conclusion

43
43
43
44
47
47

51

Acknowledgements

The fantastic time I enjoyed at the University of Pittsburgh, could not have
been possible without the support of all the people involved in my graduation
project and my stay in Pittsburgh.

First and foremost, I would like to thank my advisor from the Delft Uni-
versity of Technology, Drs. Dr. L.J.M. Rothkrantz and my supervisor at the
University of Pittsburgh, Dr. Ir. Marek J. Druzdzel. Not only did their in-
structions lead me to realize the excitement of research, but also their strong
support and continuous effort endowed me with power when facing challenges
on the way. I could have never taken directed steps to prepare myself for a
career in science without their inspiration.

Next, I would like to thank my fellow colleagues at the Decision Systems
Laboratory for their support and help. In particular, Changhe Yuan and Adam
Zagorecki for always being close friends and offering insightful comments on my
research.

My life and study in the Delft University of Technology could not have been
so exciting without my Dutch classmates and close friends: Paul Klapwijk,
Dennis Joele, and Vincent de Lange.

Last but certainly not the least, I would like to express my sincere gratitude
to Xiaotian Shen for her love, no matter how far away I was.

This research was supported by the Air Force Office of Scientific Research
grant F49620-03-1-0187. I thank Adam Zagorecki and Tomek Sowinski for
insightful comments that led to improvements in the thesis. I thank James
D. Park for answering the question regarding his systematic search algorithm
and I thank Adnan Darwiche and Keith Cascio for providing us with the lat-
est version of the P-Sys and P-Loc algorithms within the SamIam software.
All experimental data have been obtained using SMILE, a Bayesian infer-
ence engine developed at the Decision Systems Laboratory and available at
http://wuw.sis.pitt.edu/~genie.

Chapter 1

Introduction

The purpose of this thesis is to describe the research I carried out in the De-
cision Systems Laboratory (DSL) at the School of Information Sciences of the
University of Pittsburgh. In short, the main objective of this research is to de-
velop an efficient and accurate algorithm for solving the Maximum a Posteriori
Assignment (MAP) problem in Bayesian networks.

1.1 Background Introduction

The Maximum a Posteriori assignment (MAP) is the problem of finding the
most probable instantiation of a set of variables given partial evidence on the
remaining variables in a Bayesian networks. A Bayesian network [17] (also
known as a belief network or probabilistic network) is a formalism for reason-
ing under uncertainty. Decision support based on probabilistic reasoning was
developed in the late 1970s and gained popularity when efficient algorithms for
inference were introduced in Bayesian networks [12]. Thanks to an intuitive
graphical interface and a sound probabilistic framework, the Bayesian network
has become a popular approach to model various expert systems, e.g., medical,
image interpretation, troubleshooting, and information processing.

In detail, a Bayesian network is an acyclic directed graph that represents a
factorization of the joint probability distribution over a set of random variables.

The graphical structure of the network is the qualitative part of a Bayesian
network and embodies a set of nodes representing the random variables and
a set of arrows representing direct dependencies between connected variables.
Absence of an arrow between variables implies that these variables are (con-
ditionally) independent. The parents of a variable are the variables which are
connected with an arrow with its direction going into this variable.

The joint probability distribution is the quantitative part of a Bayesian net-
work and embodies the conditional probability distribution defined with each

variable. This distribution characterizes the influence of the values of the prede-
cessors (parents) on the probabilities of the values of the variable itself. When
a variable has no parents, the probability distribution is the prior probability
distribution. In practice, these distributions are derived from frequency data or
elicited from an expert judgment.

Given a joint probability distribution over a set of random variables, many
different graphs exist which factorize the same joint probability distribution.
A factorization that is especially desired is the graph that reflects the causal
structure of the problem. This graph, also known as a causal graph, normally
reflects an expert’s understanding of the domain and facilitates a user’s insight
during the operational stage.

One specialization of the MAP that has been paid much attention is the
Most Probable Explanation (MPE) problem. MPE is the problem of finding
the most probable assignment of a set of variables given full evidence of the
remaining variables. MAP turns out to be a very difficult problem even when
compared to MPE or computing the probability of evidence. Particularly, the
decision problem for MPE is NP-complete while the corresponding MAP prob-
lem is NPFPP_complete [13]. MAP is more useful than MPE for providing
explanations. For instance, in diagnosis, generally we are only interested in the
configuration of fault variables given some observations. There may be many
other variables that have not been observed and are outside the scope of our
interest.

The formula to compute the probability of each possible scenario of MAP
is not too complex. Give a Bayesian network, let M be the set of MAP vari-
ables, the configuration of which is what we are interested in; E is the set of
evidence, namely the variables whose states we have known; The remainder of
the variables, denoted by S, are variables that we neither know their states nor
care about their configuration. If a variable in the set of MAP variables M is
intantiated at the ith place using its jth state, it will be denoted as M;;.

By using chain rule, the probability of the MAP problem which consists of
n MAP variables can be presented as follows:

PM|E) = P(Mpui| My, Mog,... Mn_1y, E)
... P(Msy, | My, E)P(M,; | E) .
Each posteriori probability at the righthand side of the equation above can
be computed by the jointree algorithm [12] efficiently. In other words, the MAP

problem is to find the scenario with the largest posteriori probability among all
possible assignments to the M given E.

1.2 Motivation and Objective

Several researchers have proposed algorithms for solving the MAP problem. A
very efficient approximate search-based algorithm based on local search, pro-

posed by Park and Darwiche [13], is capable of solving MAP efficiently which
is based on local search. An exact method, based on branch-and-bound depth-
first search, proposed by Park and Darwiche [15], performs quite well when the
search space is not too large. Another approximate proposed more recently by
Yuan et al. [21] is a Reheated Annealing MAP algorithm. It is somewhat slower
on simple networks but it is able to handle very hard cases which the exact
algorithm can not solve.

In my thesis, I propose the Dynamic Weighting A* (DW A*) Search algo-
rithm for solving MAP that is faster than any of the existing algorithms. The
algorithm explores the asymmetries among all possible assignments in the joint
probability distributions. Typically, a small fraction of assignments can be ex-
pected to cover a large portion of the total probability space with the remaining
assembles having practically negligible probability [7].

Previous research and simulation results have shown that the greedy guess [14,
21], which is represented as follows:

P(M|E) = Hm]axP(MiﬂM(i,l)k...Mlm,E) (1.1)
i=1

is quite close to the optimal solution of the MAP problems. In other words, it
offers a very tight lower bound on the optimal solution. While it is theoretically
not admissible (admissible heuristic should offer an upper bound on the MAP),
with a simple extension it offers e-admissibility [16] and excellent performance.

1.3 Overview

The remainder of this thesis is structured as follows. Section 2 defines the MAP
problem and summarizes the main results on its complexity. It also outlines
several methods for solving MAP. Section 3 introduces the theory of asymme-
tries among joint probability distributions. Section 4 describes the Dynamic
Weighting A* Search algorithm. Section 5 describes the implementation of the
algorithm. Section 6 presents the results of applying the algorithm to several
real complex Bayesian networks.

Chapter 2

MAP and Previous
Research

2.1 Bayesian Networks

This section presents a brief introduction into Bayesian networks and describes
the necessary concepts for this thesis. I assume that the reader is familiar with
the essentials of theory and probability theory.

A Bayesian network [17] (also known as a belief network or probabilis-
tic network) is a formalism for reasoning under uncertainty. Decision support
based on probabilistic reasoning was developed in the late 1970s and gained
popularity when efficient algorithms for inference were introduced in Bayesian
networks [12]. Thanks to an intuitive graphical interface and a sound probabilis-
tic framework, the Bayesian network has become a popular approach to model
various expert systems, e.g., medical, image interpretation, troubleshooting, and
information processing.

In detail, a Bayesian network is an acyclic directed graph that represents a
factorization of the joint probability distribution over a set of random variables.

The graphical structure of the network is the qualitative part of a Bayesian
network and embodies a set of nodes representing the random variables and
a set of arrows representing direct dependencies between connected variables.
Absence of an arrow between variables implies that these variables are (con-
ditionally) independent. The parents of a variable are the variables which are
connected with an arrow with its direction going into this variable.

The joint probability distribution is the quantitative part of a Bayesian net-
work and embodies the conditional probability distribution defined with each
variable. This distribution characterizes the influence of the values of the prede-
cessors (parents) on the probabilities of the values of the variable itself. When
a variable has no parents, the probability distribution is the prior probability

distribution. In practice, these distributions are derived from frequency data or
elicited from an expert judgment.

Given a joint probability distribution over a set of random variables, many
different graphs exist which factorize the same joint probability distribution.
A factorization that is especially desired is the graph that reflects the causal
structure of the problem. This graph, also known as a causal graph, normally
reflects an expert’s understanding of the domain and facilitates a user’s insight
during the operational stage.

Example 1. Consider the Bayesian network in Figure 2.1, which represents
a fictitious Asia example from Spiegelhalter and Knill-Jones [1984]. This net-
work is based on the knowledge that dyspnea (DY), i.e., shortness-of-breath,
may be due to tuberculosis (TC), lung cancer (LC), or bronchitis (BC). A re-
cent visit to Asia (VA) increases the probability of tuberculosis, while smoking
(SM) is known to be a risk factor for both lung cancer and bronchitis. Neither
the result of a single chest X-ray (bf XR) nor the presence or absence of dyspnea,
discriminates between lung cancer and tuberculosis. Each of the variables is as-
sociated with a probability distribution. So has the variable SM the marginal
probability distribution of Table 2.1. And, since the variable SM is the parent
of the variable LC, this variable has a conditional probability distribution of
LC conditioned on SM, see Table 2.2.

Wisit To Asia?
(VA)
Tuberculosis? Lung
(TC] Cancer? [LC)
Tuberculosis or
Lung Cancer?
#-Ray
Result (<R

Figure 2.1: An example of Bayesian network.

Bronchitis?
(BC)

Dyzpnea
(DY)

The jointree algorithm, a various efficient algorithms first proposed by Lau-
ritzen and Spiegelhalter [12] exists for reasoning in Bayesian networks, e.g.,
determining the impact of processing evidence into the network. Although the

10

Table 2.1: Prior probability table of the variable SM.

Pr(SM)
SM_nonsmoker 0.75
SM_smoker 0.25

Table 2.2: Conditional probability table of the variable LC conditioned on the
variable SM.

Pr (LC| SM) | SM_nonsmoker | SM_smoker
LC_absent 0.75 0.45
LC_present 0.25 0.55

calculation of probabilistic inference is NP-hard, the algorithms provide rea-
sonable computing times for networks consisting of tens or even hundreds of
nodes.

Before I present the definition of a Bayesian network and Bayes rule, I intro-
duce some necessary notations. Consider a finite set of discrete random variables
V, where each variable X € V is denoted as a capital letter, e.g., X, Y, Z. Each
state of a variable is denoted as a lowercase letter, e.g., x, y, z. The set of all
states within a variable X, is denoted as DX. The probability distribution over
a random variable X is denoted as Pr(X) and the probability of a state x € DX
as Pr(X = x) or in shorter form Pr(x).

A combination of states of multiple variables is denoted as a scenario. The
set of all the scenarios from a set of variables V, is denoted as Dy, and each
scenario as s € Dy. In case of one variable, the set of scenarios and the set of
states of the variable are identical. In Table 2.2 from Example 1 the variables
LC and SM yield the four scenarios displayed in Table 2.3. The probability
of a scenario is defined by the joint probability over the states in the scenario.
The probability distribution over a set of variables is denoted as Pr(V) and the
probability of a scenario s € DV as Pr(V = s) or in shorter form Pr(s). The set
of parents of a variable X is denoted as [[X.

Table 2.3: Four possible scenarios of the variables SM and LC.
SM_nonsmoker & LC_absent | SM_nonsmoker & LC_present
SM_smoker & LC_absent SM_smoker & LC_present

The foundation of the Bayesian network is the Bayes theorem,

Pr(A| B)Pr(B)

Pr(B | A))

named after Reverent Thomas Bayes (1702-1761). The initial probability
Pr(A) is called the prior probability, and the updated probability Pr(A | B) the

11

posterior probability. An interpretation of the posterior probability is the prob-
ability of A with the knowledge of the state of variable B. When the knowledge
of a variables has an effect on the probability of another variable these variables
are called dependent. If variables are independent of each other, the posterior
probability and the prior probability are equal, Pr(A | B) = Pr(A).

Definition 1 Bayesian network. A Bayesian network, BN = (G, 0) is an
acyclic directed graph, G = (V, A), where the arrows A denote a probabilistic re-
lation between the vertices and each vertex, V € V represents a discrete random
variable. Associated with the vertezes is a 8y ey : Dy * D, — [0, 1] function
with the condition that for each combination of my € Iy , there holds:

Z GV(dv,’/Tv) = 1.

dVeDy

The probability distribution of each variable is embodied by the joint probabil-
ity distribution encoded in a Bayesian network. Suppose for example two vari-
ables, A and B, with the joint probability distribution Pr(A,B). With marginal-
ization, the probability distribution of A is calculated by taking the sum over the
joint probability of A with all the states of B.

Pr(4) = > Pr(4b)

b;€eDp

In order to determine and present the joint probability, the following theorem
better known as the chain rule may be applied.

Definition 2 Chain rule. Let BN be a Bayesian network over a finite set of
discrete random variables V = {Vq,..., V,}. The joint probability distribution
Pr(V) is then,

Pr(v) = > Pr(V;[Iy,).

i=1

When variables are instantiated (=set to a state) I refer to these variables as
evidence. A possible effect of entering evidence is a change in the dependency
relations between variables, i.e., different variables may become independent of
or dependent on each other. When two sets of variables become independent of
each other given the instantiation of a third set, this is identified as conditional
independence.

Definition 3 Conditional independence. Let V be a finite set of discrete
random variables and let Pr (V) denote the joint probability distribution over
the variables. Suppose three disjoint subsets of variables, X,Y,Z C V. The sets

12

X and Y are conditionally independent given Z, if for all s, € Dx , sy € Dy,
and s, € Dz, thereholds :

Pr(sy | sy,s:) = Pr(sg]ss).

Definition 4 d-separation. Let BN be a Bayesian network over a finite set
of discrete random variables V and let X, Y, and Z stand for any three disjoint
subsets of variables of V. Z is said to d-separate X from Y, if along every path
(sequence of connected variables) between a variable in X and a variable in Y,
there is a variable W satisfying one of the following two conditions: (1) W has
converging arrows and none of W or its descendants are in Z, or (2) W does
not have converging arrows and W is in Z. The sound mathematical framework
and the support for conditional independence and d-separation make a BN a
powerful tool for modelling probability relations between random variables.

2.2 MAP

Conceptually, give a Bayesian network, the MAP problem is defined as follows.
Let M be the set of MAP variables, the configuration of which is what we
are interested in; E is the set of evidence, namely the variables whose states
we have known; The remainder of the variables, denoted by S, are variables
that we neither know their states nor care about their configuration. Given an
assignment e of variables E, the MAP problem is that of finding the assignment
m of variables M which maximizes the probability of P(m | e), while the MPE
problem is the special case of MAP, when S is empty.

map = mﬂz}xgp(M,S | E) . (2.1)

In general, in Bayesian networks, we use the Conditional Probability Table
(CPT) ¢ as the potential over a variable and its parent nodes. A potential
over all the states of one variable after updating beliefs is called marginal. The
notation ¢, stands for the potential in which we have fixed the value of e € E.

Then the probability of MAP with ® as its CPTs turns out to be a real

number:
map = mﬁxz H de (2.2)

S ¢cd

We will introduce the algorithm of Variable Elimination [15] here in order
to compute MAP. The name of the algorithm is just because it sums or maxi-
mizes out variables from a list of variables one by one, and this order is named
the elimination order. The size of the largest cligue [12] minus 1 in a join-
tree constructed based on an elimination order is called the induced width. The

13

induced width of the best elimination order is called the treewidth. In com-
puting posterior marginal distributions, we only have summations. Thus, we
can commute summations over different variables in order to minimize the in-
duced width of an elimination order. Similarly, we have only maximizations
in an MPE problem. Once again, any permutation of the maximizations over
different variables is admissible. Hence, the above two problems can be solved
using treewidths. However, a MAP problem has both maximizations and sum-
mations. Since summation and maximization do not commute, we are required
to do summations first. An elimination order is walid if maximizing a variable
out of a potential never happens before summing over another variable on the
same potential [13]. The induced width of the best elimination order under
certain constraints is called the constrained width. Because of the inherent con-
straints that MAP problems enforce on elimination orders, they are subject to
the constrained widths of the best valid elimination orders.

b) (c)

E
@
® ©

-

ONOXO

() \

a)

0
‘@g
00006

~

Figure 2.2: (a) A simple Bayesian network

and its moralized graph; (b) The induced graph for solving its MPE prob-

lem: max P(X,, X2, X35,X4,X5); (c) The induced graph for solving
X1,X2,X3,X4,X5

the following MAP problem: max > P(Xy,Xa, X3, X4, X5).
X1,X2, X4 x7x,

Consider the simple Bayesian network in Fig. 2.2 and its induced graphs. An
induced graph along an elimination order is obtained by moralizing the Bayesian
network, arranging the nodes vertically according to the order, and from top
to bottom recursively connecting each node’s neighbors that appear later than
itself. Dashed lines are induced arcs, and double arrows are commutable nodes.
The width of a variable X along the order is the number of nodes succeeding X
in the order and connected to X minus 1. The width of a graph is the maximum

14

width among all nodes, which is also called the induced width. Shaded nodes
are those whose widths are maximal. An induced graph for the network’s MPE
problem is shown in part (b). We can solve the MPE problem of the network
using an elimination order with induced width 1, which is also the treewidth.
Part (c) shows the induced graph of a MAP problem. In the problem, we have
to sum out X3 and Xj first, so the best elimination order has induced width 2.
Notice that the network in this example is a simple polytree, for which belief
updating and MPE are polynomial. However, because of the constrained width,
MAP becomes an NP-hard problem. It is still possible to find valid orderings
that interleave summation and maximization variables. However, Park [13]
shows that there is always an elimination order with the same width in which
all the maximizations are done last, and, hence, there is no benefit of interleaving
summations and maximizations.

2.3 Previous Research

To solve the MAP problem for Bayesian networks, researchers have proposed
various approaches, all of which are trying to sidestep its inherent complexity.
The approach in [5] uses the genetic algorithms to approximate the best con-
figuration of the MAP variables. Starting from an initial guess, the algorithm
takes actions like crossover and mutation to explore the space of possible in-
stantiations. It stops when a fixed number of iterations have been executed and
then choose the best instantiation as the MAP solution. Dechter and Rish [6]
propose a general scheme for probabilistic inference: Mini-buckets. A full mini-
bucket algorithm is subject to the size of the largest potential created, which is
equal to the constrained width of the MAP problem plus 1. Hence, the mini-
bucket method sets a limit on the size of potentials. Whenever the size of a
potential exceeds the limit, the mini-bucket method will create an approximate
version of it instead. Park and Darwiche [14] propose an approach using local
search to solve the MAP problem. The algorithm starts from an initial guess
and then iteratively improves the solution by moving to a better neighbor. In
a later paper [15], the authors improve the local search algorithm by means
of branch-and-bound depth-first systematic search algorithm. The advantage of
the improved algorithm is that it provides a guarantee on the optimality of the
obtained solution. All of these algorithms could provide very efficient solutions
for most of the MAP problems when the networks are not too large or complex.
Another approximate algorithm proposed by Yuan et al. [21] is a Reheated An-
nealing MAP algorithm. It uses Markov Chain Monte Carlo methods to sample
from the target distribution, and applies the reheated simulated annealing tech-
nique to simulate a nonhomogeneous Markov chain. It is somewhat slower on
simple networks but it is able to handle very hard cases that the exact algorithm
can not solve.

All of the above approaches alleviate to some degree the complexity of the

15

original problem. However, in face of large complex models, they often fail to
provide good results, if any: the approach in [5] does not provide any guidance
to explore the more probable spaces. The quality of the results of the mini-
bucket method largely depend on the limit of the potential size. The algorithms
in [14, 15] reduce the complexity of the MAP problems to treewidths, but they
are still subject to the exponential search spaces introduced in the problems.

Later of my thesis, I will show the efficiency and accuracy of the DWW A*
algorithm by comparing the simulation results of it with those of the local
search, systematic search, and the ANNEALEDMAP .

16

Chapter 3

Asymmetries Among Joint
Probability Distributions

A small fraction of states of a joint probability distribution can be expected to
cover a large portion of the total probability space with the remaining states
having practically negligible probability [7]. Theoretical discussion has been
supplemented by simulation results. Let us give an concise introduction to
the argument of the asymmetry among probability of the Joint Probability
Distributions.

3.1 Preliminaries

3.1.1 Probabilistic Models

The essence of any probabilistic model is a specification of the joint probability
distribution over the model’s variables. i.e., probability distribution over all
possible deterministic states of the model. It is sufficient for deriving all prior,
conditional, and marginal probabilities of the model’s individual variables.
Most modern textbooks on probability theory relate the joint probability
distribution to the interactions among variables in a model by factorizing it,
i.e., breaking it into a product of priors and conditionals. While theis view has
its merits in formal expositions, it suggests viewing a probabilistic model as
merely a numerical specification of a joint probability distribution that can be
possibly algebraically decomposed into factors. This clashes with our intuition
that whatever probability distribution we observe, they are a product of struc-
tural, causal properties of the domain. Causal interactions among variables in
a system determine the observed probabilistic dependence and, in effect, the
joint probability distribution over all model’s variables. An alternative view of
a joint probability distribution is, therefore, that it is composable from rather

17

than decomposable into prior and conditional probability distribution. In this
view, each of these distributions corresponds to a causal mechanism acting in the
system. This reflects the process of constructing joint probability distributions
over domain models in most practical situations.

Since insight obtained from two modeling tools: Bayesian belief networks
(BBNs) (Pearl, 1988) and probability trees may prove useful for the reader, I
will show how they both represent a simple uncertain model involving a common
activity of a clinician interpreting the result of a screening test for a disease. This
model contains two binary variables: disease and test. The outcomes of variable
disease, d and d, stand for disease present and disease absent respectively. The
outcomes of variable test, t and #, stand for test positive and test negative
respectively A BBN representing this problem, shown in Figure 3.1, reflects
the qualitative structure of the domain, showing explicitly dependences among
variables Each variable is characterized by a probability distribution conditional
on its predecessors or by a prior probability distribution if the variable has
no predecessors. Figure 3.1 shows also a probability tree encoding the same
problem. Each node in this tree represents a random variable and each branch
originating from that node a possible outcome of that variable. Each complete
path starting at the root of the tree and ending at a leaf corresponds to one of
the four possible deterministic states of the model.

disease

Pr(d)
Pr{d)

test
Pr(tld) Pr(f|d)
Pr(t|d) Pr(t|d)

test

i Pr(d, t) = Pr{d)Pr(t|d)

disease d Pr(d,T) = Pr(d)Pr(T|d)

Pr(d, 1) = Pr(d)Pr(t|d)
Pr(d, 1) = Pr(d)Pr(t|d)

Figure 3.1: Two probabilistic representations of the screening test problem
Bayesian belief network (upper) and probability tree (lower).

18

The probabilities of various states of a model can be easily retrieved in BBNs
and probability trees by multiplying out the prior and conditional probabilities
of individual variables In the models of Figure 3.1, we multiply the priors of
various outcomes of disease by the conditionals of respective outcome of test
given presence or absence of disease.

3.1.2 State Probabilities

First we choose at random one state of a model that consists of n variables
X1, X5, X3,..., X1, X,,. We choose this state equationally from among all
possible states, regardless of its probability. As a state is an assignment of each
of the model’s n variables, one way of looking at this selection process is that
we are traversing the probability tree representing the model from its root to
one of its leaves taking at each step one of the possible branches with equal
probability. This amounts to a random choice of one outcome from among the
outcomes of each of the variables. The probability of p of a selected state is
equal to the product of conditionals of each of the randomly selected outcomes.
It is equal for our selected state to p = Pr(d,t) = Pr(d)Pr(t | d). Generally, if
we denote p; to be the conditional(or prior) probability of the randomly selected
outcome of variable X;, We have

n
D =Dpi1P2P3 - -Pn—1Pn = Hpi . (3.1)
i=1

In random selection of state, We chose each p; to be one number from among the
probabilities of various outcomes of variable X;. We can, therefore, regard each
p; as a random variable taking equiprobable values from among the probabilities
of the outcomes of variable Xj.

Obviously, the distribution of p; is not always independent from the distri-
bution of p;, when ¢ # j, as the outcomes of some variables may impact the
conditional probability distributions of other variables. Selection of p; within its
distribution is nevertheless independent of any other p;, when ¢ # j. Specifically,
in Bayesian networks, which are depicted by conditional probability distribu-
tion between any pair of nodes connected by arcs, the state of each inner node
depends on the outcomes of its causal ancestors. The exact form of this distri-
bution is a property of the mechanism and is independent on anything else in
the systems.

By taking the logarithm of both side of equation 3.1 I can obtain that:

Lnp=In ﬁpi = ilnpi) (3.2)
i=1

i=1

As for each i, p; is a random variable, its algorithm Inp; is also a random vari-
able for p; is a random variable. The asymptotic behavior of a sum of random

19

variables is relatively well understood and addressed by a class of limit theorems
known collectively as Central Limit Theorem. When the number of components
of the sum approaches infinity, the distribution of the sum approaches normal
distribution, regardless of the probability distribution of the individual com-
ponents. Even though in any practical case we will be dealing with a finite
number of variables, the theorem gives a good approximation even the number
of variables is small.

3.1.3 Central Limit Theorem

Central limit theorem (CLT) is one of the fundamental and most robust theo-
rems of statistics, applicable to a wide range of distributions. It was originally
proposed for Bernoulli variables, then generalized to independent identically dis-
tributed variables, then to non-identically distributed, and to some cases where
independence is violated. Extending the boundaries of distributions to which
CLT is applicable is one of active areas of research in statistics. CLT is so ro-
bust and surprising that it is sometimes referred to as “order out of chaos” (de
Finetti, 1974)

One of the most general forms of CLT is due to Liapounov (to be found in
most statistics textbooks)

Theorem 1 Let X1, X5, X3,...,X,, be a sequence of n independent random
variables such that E(X;) = w;, E(X; — mi)?) = o2, and E(| X; — w; [?) = w}
all exist for every i. Then their sum,Y =Y. | X; is asymptotically distributed
as N(X0, i, >y 07-,), provided that

Do Wi
lim i=1 Wi

w0 33

This condition is satisfied for any distribution for which p and o exist and
the theorem reduces to Lindeberg and Levy’s version of CLT (also reported in
most textbooks).

Returning to Equation 3.2, we have by the CLT, that assuming that the
preconditions of CLT are satisfied, the sum on the right side is in the limit
normally distributed. If Inp is normally distributed, then p itself must be drawn
from a lognormal distribution.

3.2 Properties of the Joint Probability Distri-
bution

CLT captures the growth of a process showing strong regularity and satisfying
certain independence conditions, and these conditions are reasonably satisfied in

the process of constructing a joint probability distribution [7]. In what follows,
I will be showing the properties of the logarithm of the distribution.

20

Let a model consist of n variables X1, X5, X3,..., X, having k1, ko, k3, . . ., kn,
states respectively (1 < i < m). For any single state, we can apply the Cen-
tral Limit Theorem to equation 3.2, viewing each p; as an independent random
variable. The value of p; will be the probability of a randomly selected outcome
of variable X;. Let the mean and the variance of the distribution of p; be u;
and o? respectively. The logarithm of p, the probability of an individual state,
obtained by multiplying priors and conditionals of individual variables in then
distributed as Inp ~ N (37 pi, 2.1 07).

The density function f(Inp) is:

f(Inp) = . eap— P Z Yo 1),

\/ 2w Z?Zl o? 22?:1 o} a

Example. In order to give readers a direct impression, I cited one of the
most classical simulation results that has been reported [Druzdzel 1994, Con-
ference of Uncertainty in Artificial Intelligence].

(3.4)

‘ Econtributions Efrequencies ‘

/- (1 state, p=0.52]|
750 i
— [10 states, p=0.23) \
| = T

0.4 1 Most (99.997904) scenarios
are very unlikely

0.6

0.5

o3 \
0.2

~

0.1

22 20 -18 -6 -14 -12 -10 -B - -4 e 0
log P(X)

Figure 3.2: Plot of the probability density function f(Inp)(in blue) and contri-
butions of each scenario’s probability pf(Inp)(in red).

In the Bayesian network ALARM [4], the researcher chose a subset of 13
variables as MAP variables, which led to 525,312 scenarios.

The sum of the probability of each scenario is 1, and we can see that among
all 525,312 scenarios, there was only one scenario with the probability of 0.52,

21

and other ten scenarios with a sum of the probability to 0.23. From the perspec-
tive of MAP Problem, there are 99.9979% scenarios with practically negligible
probability which are very unlikely to be the solution.

3.3 Tentative Research Related to Joint Proba-
bility Distributions

The estimation of joint probability distributions of MAP variables given evi-
dences was also a hot point of research. Tomasz Loboda, my colleague in the
Decision Systems Laboratory (DSL) reported his research result that the esti-
mation of the mean of the lognormal distribution is the exact value, while the
error of the estimation of variance was up to 67% in terms of percentage error.

During the first three months’s research in DSL, the concentration of my
research was proposed to exploit the estimation of joint probability distributions
of MAP variables given evidences.

It was a branch-and-bound search algorithm combined with the estimation
of joint probability distribution. The basic idea was in each search path of the
probability tree, I could estimate the upper bound of the scenario by using the
integration of function 3.4. If the upper bound is smaller than the probability
of the best scenario found so far, then the current search path should be cut.

The requirement to the accuracy of the upper bound was so strict that
the estimation errors led the algorithm to be a quite frustrating one, however,
the experiences accumulated from developing the branch-and-bound algorithm
greatly helped me to find new inspiration for the Dynamic Weighting A* Search.

22

Chapter 4

Solving M AP using
Dynamic Weighting A*
Search

I present in this section an algorithm for solving MAP using Dynamic Weight-
ing A* search, which incorporates the dynamic weighting [16] in the heuristic
function, relevance reasoning [8] and dynamic ordering in the search tree.

The remainder of this chapter is organized as follows. First, I introduce the
A* Search. Second, I compare the A* search algorithm with the branch-and-
bound algorithm which is also suitable for solving the MAP problem, and show
why it is superior. Third, I introduce our method of composing the heuristic
function h(n). Fourth, I analyze the efficiency and accuracy of the dynamic
weighting A* search algorithm and the situation when over-estimate happened.
Finally, T discuss two techniques for improving the efficiency of the algorithm.

4.1 A* search

The A* search is complete, optimal, and optimally efficient among all search
algorithms is rather satisfying [18].

The MAP problems can be solved by A* search in the probability tree that
is composed of all the variables in the MAP set. The nodes in the search tree
represent partial assignments of the MAP variables M. The root node represents
an empty assignment. Each MAP variable will be instantiated in a certain order.
If a variable x in the set of the set of MAP variables M is intantiated at the
ith place using its jth state, it will be denoted as M;;. Leaves of the search tree
correspond to the last MAP variable that has been instantiated. The vector of
instantiated states of each MAP variable is called an assignments or a scenario.

23

I compute the probability of assignments while searching the whole proba-
bility tree using chain rule. For each inner node, the newly instantiated node
will be added into the evidence set, i.e., the evidence set will be extended to
Mij UE.

Then the probability of the MAP problem which consists of n MAP variables
can be presented as follows:

PMM|E) = P(Mgi|Mj, Mag,... Mu_1y, E)
P(May | My;, E)P(My; | E) .

Each posteriori probability at the righthand side of the equation above can be
computed by the jointree algorithm [12] efficiently. The jointree algorithm is a
very complex while efficient algorithm for computing the posteriori probability of
MAP variables given evidences in Bayesian networks which has been developed
and included in the SMILE library. If the readers are interested in the jointree
algorithm, I refer the reader to the article of Lauritzen and Spiegelhalter [12]
for more information.

Suppose we are in the xth layer of the search tree and preparing for instan-
tiating the x th MAP variables. Then the function above can be rewritten as
follows:

b

PM | E) = (ni | Myj .. M(nfl)taE) - -P(M z+1)z | May ... E)
P(Myy | Myj, Moy, ... M5 _1)q, E) ... P(My; | E)

~~

a

(4.1)

The general idea of the Dynamic Weighting A* Search algorithm is that during
the search, in each inner node of the probability tree, I can compute the value
of item (a) in the above function ezactly. I can estimate the heuristic value
of the item (b) for the MAP variables that have not been instantiated given
the initial evidence set and the MAP variables that have been intantiated as
the new evidence. In order to fit the typical format of the cost function of A*
Search, I just take the logarithm of the equation above, which will not change
its monotonicity. Then I can get f(n) = g(n) + h(n), where g(n) and h(n) are
obtained from the logarithmic transformation of items (a) and (b) respectively.
g(n) gives the exact cost from the start node to node in the nth layer of the
search tree, and h(n) is the estimated cost of the best search path from the nth
layer to the leaf nodes of the search tree. In order to guarantee the optimality
of the solution, h(n) should be admissible, which in this case means that it
should be an upper-bound on the value of any assignment with the currently
intantiated MAP variables as its elements.

24

4.2 Efficiency Comparison between A* and Branch-
Bound Search for MAP Problems

A* Search is closely related to the branch-and-bound techniques. For the MAP
problems, the efficiency of the search algorithm is dominated by the number
of nodes in the probability tree that are instantiated. In order to compare
the efficiency of the two search algorithms for the MAP problems, I will first
introduce some definitions.

Definition 5 : An algorithm A; is said to dominate an algorithm As if every
node expanded by Ay is also expanded by As. I will also use the phrase more
efficient than interchangeably with dominates [16].

Let syuq, be the most probable assignment and its probability be P,,q,. Let
Ppgestsorar denote the probability of the best assignment that we have found so
far, which is less or equal to the Pp,qp.

Theorem 2 Given the same cost function f(z), A* dominates branch and bound
on MAP problems.

Proof: The condition for cutting the current search path in “branch and
bound” search is f(x) < Pgestsorar- S0 the whole search space can be denoted
by:

Sl = {il',‘ : f(ill') Z PBestSoFar
U z € optimal assignment} .
For the A*, consider a node y that is currently in the search frontier which is
also an element of the vector of the optimal scenario. With the admissibility of
the f(y), which guarantees that f(y) an upper-bound on the probability of the
optimal solution, we have f(y) > Ppqe- For all nodes x that on the search path

other than the optimal assignment, we have f(xz) > f(y). The whole search
space can be denoted by:

S = H{z:f(x) > fly)
Uz € optimal assignment}

Given that PBestSoFar S Pmaz and f(y) Z Pmam: we have f(y) Z PBestSoFar:
which implies Sy C S, i.e., that the A* search dominates the branch-and-bound
search. a

4.3 Heuristic Function with Dynamic Weighting

The A* Search is known for its completeness and optimality. For each search
step, I only expand the node in the frontier with the largest value of f(n).

25

Definition 6 A heuristic function hs is said to be more informed than h; if
both are admissible and hs is closer to the optimal cost. For the MAP problem,
the probability of the optimal assignment P,y: < hy < hy.

Theorem 3 If hy is more informed than hy then A% dominates A} (Nils-

son). [16]

The power of the heuristic function is measured by the amount of pruning
induced by h(n) and depends on the accuracy of this estimate. If h(n) estimates
the completion cost precisely (h(n) = P,p;), then A* will only expand nodes on
the optimal path. On the other hand, if no heuristic at all is used, (for the MAP
problem this amounts to h(n) = 1), then a uniform-cost search ensues, which is
far less efficient. So it is critical for us to find an admissble and tight h(n) to
get both accurate and efficient solutions for MAP.

Greedy Guess

If each variable in the MAP set M is conditionally independent of all the rest of
MAP variables (this is called ezhaustive independence), then the MAP problem
amounts to a simple computation based on the greedy chain rule. I instantiate
the MAP variable in the current search layer to the state with the largest prob-
ability and repeat this for each of the remaining MAP variables one by one.
The probability of MAP is then

n
P(M|E) = HmjaXP(Mij\M(i,l)k...Mlm,E). (4.2)
i=1

The requirement of exhaustive independence is too strict for most of the
MAP problem to be calculated by using the function above. Simulation results
show that in practice, when this requirement is violated, the product is still
extremely close to the MAP probability [21]. This suggests using it as an -
admissible heuristic function [16].

The curve Greedy Guess Estimate in Figure 4.1 shows that with the increase
of the MAP variables, the ratio between the greedy guess and the accurate
estimate of the optimal probability diverges from the ideal ratio 1.0 although
not always monotonically.

Dynamic Weighting

Since the greedy guess is a tight lower bound on the optimal probability of
MAP, it is possible to compensate for the error between the greedy guess and
the optimal probability. I can do this by adding a weight to the greedy guess
such that the product of them is equal or larger than the optimal probability
for each inner node in the search tree. This yields an e-admissible heuristic

26

function that I need in order to find the optimal solutions. This assumption can
be represented as follows:

Ele{VPGMedyGuess * (1 + 5) > Pope A vareedyGuess * (1 + 61) > Pyt = €< 61}

where € is the minimum weight that can guarantee the heuristic function to
be admissible. Figure 4.1 shows that if I just keep e constant, neglecting the
changes of the estimate accuracy with the increase of the MAP variables, the
estimate function and the optimal probability can be represented by the curve
Constant Weighting Heuristic. Obviously, the problem with this idea is that it
is less informed when the search progresses, as there are fewer MAP variables
to estimate.

Dynamic Weighting (Pohl, 1973) is an efficient tool for improving the ef-
ficiency of A* Search. If applied properly, it will keep the heuristic function
admissible while remaining tight on the optimal probability. For MAP, in the
shallow layer of the search tree, we get more MAP variables than the deeper
layer for estimate. Hence the greedy estimate will be more likely to diverge from
the optimal probability. I propose the following Dynamic Weighting Heuristic
Function for the xth layer of the Search tree of n MAP variables:

n—(z+1)

)

h(w) = PGreedyGuess ' (1 +
(a>e€).

Rather than keeping the weight constant throughout the search, I dynamically
change it so as to make it less heavy as the search goes deeper. In the last step
of the search (x = n — 1), the weight will be zero, since the Greedy Guess for
only one MAP variable is exact and then the cost function f(n-1) is equal to
the probability of the assignment. Figure 4.1 shows an empirical comparison of
greedy guess, constant, and dynamic weighting heuristics against accurate esti-
mate of the probability. We see that the dynamic weighting heuristic becomes
more informed than constant weighting. In our experiments, I set a to be 1.0,
which is tested to be a quite conservative while efficient parameter.

4.4 Searching with Nonadmissible Heuristics for
MAP Problem

Let us have a closer look at the conditions under which the algorithm fails to
achieve optimality. Suppose there are two candidate assignments: s; and so with
probability p; and ps respectively, among which s, is the optimal assignment
that the algorithm fails to find. And s; is now in the last step of search which
will lead to a suboptimal solution. I skip the logarithm in the function for the
sake of clarity here (then the cost function f is a product of transformed g and
h instead of their sum).

27

—— Greedy Guess Estimate —s— Accurate Heuristic
—— Constant Weighting Heuristic —+— Dynarmic YWeighting Heuristic

.g 14
212 _*——;——::—;l*—___ﬂ\a\
e 1 »——— F— n
t" w
N
ke
E 06
2 04
w
§ 02
2 0 : : : :
0 20 40 60 a0 100

Nuber of MAP variables

Figure 4.1: Constant Weighting Heuristic and Dynamic Weighting Heuristic
based on Greedy Guess.

fi=g1-hyand fo =go-ho

The error introduced by a non-admissible hy is f; > fo. The algorithm will
then find s; instead of ss, i.e.,

fi>fao=91-h1> g2 ho.

Since s; is now in the last step of search, f; = p; (Section 3.3.2). Now suppose
that I have an ideal heuristic function h,, which leads to p» = ¢ - hy,. Then I
have:

h -h - h h
91 1>g2 ,2:>I£>92 12:&>_,2
D2 g2-hy D2 ga-hy, p2 hy

It is clear that only when the ratio between the probability of suboptimal
assignment and the optimal one is larger than the ratio between the nonadmis-
sible heuristic function and the ideal one, may the algorithm find a suboptimal
solution.

Because of large asymmetries among probabilities that are further amplified
by their multiplicative combination [7], I can expect that for most of cases, the
ratios between p; and p» are far less than 1. Even though the heuristic function
will sometimes break the rule of admissibility, if only the greedy guess is not
too divergent from the ideal estimate, the algorithm will still not diverge from
the optimal probability. Our simulation results also proved the robustness of
the algorithm in finding optimal solutions.

28

4.5 Improvements to the Algorithm

There are two main techniques that I used to improve the efficiency of the basic
A* algorithm.

4.5.1 Relevance Reasoning

The main problem faced by the decision-theoretic approach is the complexity
of probabilistic reasoning. The critical factor in exact inference schemes for
Bayesian networks is the topology of the underlying graph and, more specifically,
its connectivity. The framework of relevance reasoning ([8] is an accessible
summary of the relevant techniques) is based on d-separation and other simple
and computational efficient techniques for pruning irrelevant parts of a Bayesian
networks and can yield sub-networks that are smaller and less densely connected
than the original network. Relevance reasoning is an integral part of the SMILE
library on which the implementation of our algorithm is based.

For MAP, our focus is the set of variables M and the evidence set E. Parts
of the model that are probabilistically independent from the nodes in M given
the observed evidence E are computationally irrelevant to reasoning about the
MAP problem.

4.5.2 Dynamic Ordering

As the search tree is constructed dynamically, I have the freedom to order the
variables in a way that will improve the efficiency of the DW A* search. Ex-
panding nodes with the largest asymmetries in marginal probability distribution
leads to early cut-off of less promising branches of the search tree. I use the
entropy of the marginal probability distributions as a measure of asymmetry.

The basic concept of entropy in information theory has to do with how much
randomness is in a signal or in a random event and how much information is
carried by the signal. An alternative way to look at this is to talk about how
asymmetric the probability of different states of a MAP variable is.

Claude E. Shannon defines entropy in terms of a discrete random event x,
with possible states 1..n as:

H(z) = = 322, p(i) logs p(i)

Theoretically, the lower the entropy of a probability distribution is, the more
asymmetric its probability of different states will be.

The first step is to compute entropy H for each variable in M that has not
been instantiated. This can be computed from the marginal potential of each
variable in M efficiently. I then choose the variable with the least entropy as
the next variable to be instantiated.

29

The reason that I take this way is not difficult to understand. Let us look
back at the equation (4.1). When deciding the instantiation order that leads to
the “early-cut’, I always select the variable that could diverge the value of item
(a) after instantiation. The result of this is that the probability of different
branches in the search tree will be quickly driven to be two polars, a small
portion of them with very large values of item (a) and most of the others with
very small values, which are named less-promising branches and more likely to
generate scenarios with very little probabilities.

Hence, by dynamic ordering, the DW A* algorithm works even better be-
cause of typically enormous asymmetries among the probabilities of individual
scenarios will be found even in shallow layer of the search tree. Then the DW A*
algorithm will not spend a large amount of time discriminating among paths
whose costs do not vary significantly from each other, which leads to great
reduction of the search space.

4.6 DWA* Algorithm

Given the above discussion, I outline the DW A* Algorithm in Fig. 4.2. When
one of the elements of the search frontier reaches the leaf node of the search tree
the DW A* algorithm will terminate, and I can take the final configuration as
the output.

30

Algorithm: DW A*

Input: Bayesian network B, a set of MAP variables M, a set of
evidence variables E, Weight «;

Output: The most probable configuration of M.

1.

10.
11.

12.

Call Greedy Guess at search layer 0, and set
L=GreedyGuess(0).

while current search layer is not the bottom of the search
tree:

Select the node M; with the largest value of the cost func-
tion F(z) in the search frontier.

Set all the instantiated variables before M; to be new Evi-
dences nodes.

Set all uninstantiated variables in M to be Target Nodes.
Update beliefs of B.

Sort all uninstantiated variables in M in a increasing order
of Entropy, among which M; has the least Entropy.

Expand the node M; by using M, as its child nodes.
Insert new generated child nodes into the search frontier.
Clear Evidences.

Unset Target Nodes.

end while

Output the best configuration found and its probability.

Figure 4.2: The DW A* algorithm.

31

32

Chapter 5

Implementation

The total programming work of implementing the DWW A* algorithm was accom-
plished by myself using C++ in the Windows programming environment.

The remainder of this chapter is organized as follows. First, I introduce the
Structural Modeling, Inference, and Learning Engine (SMILE) library by which
the DW A* algorithm is supported. Second, I introduce my programming work
on the DW A* algorithm which will be included in the new version of SMILE
for solving the MAP problem. Finally, T will give a brief introduction on the
approaches that I used to compare the DW A* algorithm with the other existent
algorithms.

5.1 SMILE

Structural Modeling, Inference, and Learning Engine (SMILE) is a fully plat-
form independent library of C++ classes implementing graphical probabilistic
and decision-theoretic models, such as Bayesian networks, influence diagrams,
and structural equation models. Its individual classes, defined in SMILE Ap-
plications Programmer Interface, allow to create, edit, save, and load graphical
models, and use them for probabilistic reasoning and decision making under
uncertainty. These classes are accessible from C++ or (as functions) from C
programming languages. As most implementations of programming languages
define a C interface, this makes SMILE accessible from practically any language
on any system. Also SMILE may be embedded in programs that use graphical
probabilistic models as their reasoning engines. Furthermore, models devel-
oped in SMILE can be equipped with a user interface that suits the user of
the resulting application most. Additional to the SMILE platform is the devel-
opment of SmileX, an ActiveX Windows component that allows SMILE to be
accessed from any Windows programming environment, including World Wide
Web pages.

33

5.2 DWA* Class

The DW A* algorithm was implemented in the new Class named “DWAstar”.
The introduction to this class will be given in terms of two subsections: Data
member and Member function.

. XE6 — NMicrosoft ¥isual C++ — [Astar function.h =]

D File Edit ¥iew Insert Froject Euild Tools Hindow Help

S 2EH@ mE D

o EE Bpes

) |DWAstar::inner_nmL”[AII class memhers]L“' lo members - Create CJ(

alx

.1 smilexml - the project file v
= EH xx files

=3 Source Files
~[#] Astar_function.cpp
-] lognorm_distrib_esti
- [2 mapentry.cpp
-] maphandler.cpp
] mapquerywriter.cpp
] mapresultreader.cpp
-~ [#] Search01_main.cpp
-] stdafx.cpp
=3 Header Files

- [ElAstar_function.h]
ognorm_distrib_esti
mapentry.h
maphandler.h
mapquerywriter.h
mapresultreader.h

-1 Resource Files
53 SMILE
72 smilexml
-] External Dependencies
v

¢ | >

B2 ClassView | =] FileView

using namespace std;
class Difastar

{

private:

DSL_network =net;

int num_HAP;
int nEvidence;

int HAP_layer;

double best_sofar;

double greedy_threshold;
int evidence_node_id[581];
int evidence_state[581];

int HAP_array[581];

int HAP_best_array[581];

int HMAP_best_scenario[561];
double HMAP_current_prob_inst[561];

/7 = new DSL_netuor

/4 The number of Hf
£/=28; set 28 ewvic

f/=0;
ff =8 53 /f/bound :

/4= 8;
fi={0}y; /7 array

£7={0}; rf
L tH

I
£ ={-1}; /f(Be

//={1,0,0,0,8,0};

double MAP_brother_prob_inst[581][1688]; ff Store
int HAP_current_config_array[581]; /7/={-1}; /# (Be

int flag_end ;

int flag_cut_all_no_result;
int map_node_id[581];

fle] |

Figure 5.1: DWAstar Class.

5.2.1 Data member

In Figure 5.2, I listed main data member of the Class “DWAstar”:

e DSL_network x net
The Bayesian networks in which the MAP problem is.

e num_MAP

The number of variables in MAP set.

34

nEvidences
The number of variables in Evidences set.

MAP _layer
The current search layer in the probability tree.

evidence_node_id[501]
The handle of each Evidence variable.

evidence_state[501]
The state of each Evidence variable.

MAP _array[501]
The handle of each MAP variable.

MAP best_array[501]

The handle of each MAP variable in the final scenario that the algorithm
returns. Since the sequence of MAP variables will be dynamically or-
dered, the sequence of MAP variables in MAP _best_array[501] is generally
different from that in MAP _array[501].

MAP _current_config_array[501]
The handle of each MAP variable in the current search path.

flag_end
The variable to testify whether the algorithm should be terminated.

map_node_id[501]
The handle of the MAP variables that have been randomly generated for
testing the algorithm.

largest_product_index
The index of the search path with the largest value of cost function in the
search frontier.

Final_Joint_Probability
The probability of the scenario that the algorithm returns.

greedy_threshold
The probability that the greedy guess generated before the search. It is a
tight lower bound on the MAP problem.

inner_node
The struct that records each node in the search tree.

inne_points
The vector that records the search frontier.

35

5.2.2 Member function

Here listed in Figure 5.3 are the main member functions of the Class “DWAstar”,
among which I will show Greedy_guess, Estimate_inner_node, and A_Star_Search
in detail which are key components of the DW A* algorithm:

¢ DWAstar (DSL_network * theNet, intnumber_Evidence, intnumber MAP)
Constructor of the Class.

e void Set_evidence(int a)
Randomly generate a evidence variable, and randomly select one of all its
possible states as its state.

¢ void Set_map(int b)
Randomly generate b MAP variable.

¢ double Entropy(int node_id)
Compute and return the Entropy of the MAP variable.

e void Order_single M AP _variables_entropy (int MAP layer)
Order the MAP variables in terms of Entropy of them, and shift the
variable with the least Entropy to the first position to be instantiated.

e double Get_greedy_threshold()
Return the lower bound on the MAP problem.

e void Show_MAP _array()
Print out the handle of each MAP variable.

e void Set_One_Evi_Node(int Evi_id, int Evi_state, int Squence)
Set only one Evidence node.

e void Set_One_M AP _Node(int MAP_id, int Squence)
Set only one MAP node.

¢ void Show_all_initial_variables()
Show all the handles of MAP variables and Evidence variables.

e void Show _all_evidence_and_state()
Show all evidence variables and their states correspondingly.

e void Change_num_of_Evidence(int num_evidence)
Assign the value of the number of evidence variables.

¢ void Change num_of MAP(int num_map)
Assign the value of the number of MAP variables.

¢ double Compute PRE(int num_of_evidences)
Compute the joint probability of all evidence variables.

36

void Set_greedy_threashold(double a)
Set the value of the greedy_threashold, it is a lower bound on the MAP
problem.

void Show_greedy_threashold()
Print out the value of the greedy_threashold.

void Extend_node(int M AP layer)
Expand the current search path to the next layer in the probability tree.

double Greedy_guess(int M AP layer)

Return the posteriori probability of the MAP variables that have not been
instantiated, given the evidences and the MAP variables that have been
instantiated. Readers can resort to the codes shown in figure 5.4 for detail.

double Estimate_inner_node(int M AP _layer)

Return the value of the heuristic function h(xz = M AP _layer). The com-
putation is fulfilled by using Dynamic Weighting Techniques, which is the
critical part of the DW A* search algorithm. Readers can resort to the
codes shown in figure 5.5 for detail.

double A _Star_Search(int num_of MAP)
Search the probability tree. Readers can resort to the codes shown in
figure 5.6 for detail.

37

Figure 5.2: Data member of the DWAstar Class.

38

Figure 5.3: Member function of the DWAstar Class.

39

Figure 5.4: double Greedy_guess(int M AP layer).

Figure 5.5: double Estimate_inner_node(int M AP layer).

41

Figure 5.6: double A_Star_Search(int num_of _M AP).

Chapter 6

Experimental Results

6.1 Experimental Environment

To test the DW A* algorithm, I studied its performance on many MAP problems
in real Bayesian networks. I compare our results against those of current state
of the art MAP algorithms: the P-Loc [14], P-Sys [15] and ANNEALEDMAP
[21] algorithms respectively. I implemented the DW A* algorithm in C++ and
performed our tests on a 2.4 GHz Pentium IV Windows XP computer with
750MB memory.

The DW A* algorithm is supported by the Structural Modeling, Inference,
and Learning Engine (SMILE) which is developed by Decision Systems Labo-

ratory (DSL).

6.2 Experimental Design

In order to exam the performance of the DW A* algorithm comprehensively, I
compared the efficiency and accuracy of the DW A* algorithm with the other
three existent algorithms P-Loc, P-Sys, ANNEALEDMARP in terms of running
time and probability of the assignment. I used the same set of Bayesian networks
that have been used for testing the performance of the MAP-solving algorithms
at the Decision Systems Laboratory, University of Pittsburgh, and the Auto-
mated Reasoning Group, University of California, Los Angeles, which include
Alarm [4], Barley [11], CPCS179 and CPCS360 [19], Diabetes [2], Hailfinder [1]

Munin [3], Pathfinder [9], P223layout, and Win95pts [10], some of which are
constructed for diagnosis. I also tested the algorithms on two very large pro-
prietary diagnostic networks built at the HRL Laboratories (HRL1 and HRL2).
The statistics for these networks are summarized in Table 6.1. T divided the
networks into three groups: (1) small and middle-sized, (2) large but tractable,

and (3) hard networks.

43

Table 6.1: Statistics for the Bayesian networks that I am using.

Group Network #Nodes | #Arcs
Alarm 37 46
CPCS179 179 239
CPCS360 360 729
1 Hailfinder 56 66
Pathfinder 135 195
P223layout 223 338
Win95pts 76 112

2 Munin 1,041 1,397

HRL1 1,999 3,112

HRL2 1,528 2,492
3 Barley 48 84
Diabetes 413 602

For each network, I randomly generated 20 cases, and ran the above four
algorithms on them. For each case, I randomly chose 20 MAP variables among
the root nodes or all the them if root nodes were less than 20. I chose the same
number of evidence nodes from among the leaf nodes. To set evidence, I sampled
from the prior probability distribution of a Bayesian network in its topological
order and cast the states of the sample to the evidence nodes. Following previous
tests of MAP algorithms, I set the search time limit to be 3,000 seconds (50
minutes). In all of our experiments, I used the default settings and parameters
of P-Loc, P-Sys, ANNEALEDMAP unless mentioned specifically.

6.3 Results for the First and Second Group

In the first experiment, I ran the P-Loc, P-Sys, ANNEALEDMAP and DW A*
on all the networks in the first and second group, and all of the four algorithms
generate results within the time limit. The P-Sys algorithm reported that it
found all the optimal solutions. Table 6.2 reports the number of MAP problems
that are solved correctly by the P-LLoc ANNEALEDMAP and DW A* algorithms.
They all performed well on these networks. The DW A* was able to find all the
optimal solutions. The P-Loc algorithm missed only one case on the P223layout
network and the ANNEALEDMAP missed one on Haifinder and two cases on
P223layout.

Since both ANNEALEDMAP and P-Loc failed to find all the optimal solu-
tion in P223layout, in each of the 20 cases I studied the performance of the 4
algorithms as a function of the number of MAP variables (I randomly generated
20 cases for each number of MAP variables).

Because the search time of P-Svs increased very fast with the number of
MAP variables, and it failed to generate any result when the number of MAP

44

Table 6.2: The number of cases that are solved correctly out of 20 random cases
for the first and second group of networks.

P-Loc | A-MAP | DW A*
Alarm 20 20 20
CPCS179 20 20 20
CPCS360 20 20 20
Hailfinder 20 19 20
Pathfinder 20 20 20
P223layout 19 18 20
Win95pts 20 20 20
Munin 20 20 20
HRL1 20 20 20
HRL2 20 20 20

Table 6.3: The running time (in seconds) and the number of cases that the
other 3 algorithms found smaller probabilities than DWW A* Search in network
P223layout using their default settings.

MAP P-Svys P-Loc A-MAP DWW A*
Runtime | Smaller | Runtime | Smaller | Runtime | Smaller | Runtime
10 0.265 0 0.361 0 1.575 0 0.221
20 23.236 0 1.179 1 12.089 2 2.385
30 68.829 0 2.563 1 32.579 0 9.923
40 TimeOut - 3.305 4 10.601 4 5.906
50 TimeOut - 4.219 6 12.168 2 10.578
60 TimeOut - 5.031 5 15.481 2 10.112
70 TimeOut - 5.906 6 15.981 5 10.312
80 TimeOut - 6.828 6 11.171 1 11.093

variables reached 40, while the DWW A* Search found all the largest probabilities,
I compared all the other 3 algorithms with DWW A* Search. With the increase
of the number of MAP variables, both the P-Loc and ANNEALEDMAP turned
to be less accurate for P223layout. When the number of MAP variables was
above 40, there were about 25% cases of P-Loc and 15% cases in which AN-
NEALEDMAP found smaller probabilities than DW A*.

Since only P-Loc spent less time than DW A* when using its default set-
tings, I am interested in the result when increasing the search steps of P-Loc
such that it spends the same time as DW A*. However, in practice the search
time is not continuous in the number of search steps, so I just tried to find
the parameters for P-LOC such that it spent only a little bit more time than
DW A*. Table. 6.4 shows the comparison between P-Loc and DW A* in terms
of run time and the number of cases that the two algorithms found different

45

result. We can see that after increasing the search steps of P-Loc, DW A* still
kept better accuracy when compared with P-Loc.

Table 6.4: The running time(in seconds) and the number of cases that the
P-Loc found larger/smaller probabilities than DW A* in network P223layout
when spending a little bit more time than DWW A*.

MAP P-Loc DW A*
RunTime | P-Loc < DWA* | RunTime | P-Loc > DW A*

10 0.262 0 0.181 0
20 3.685 0 3.531 0
30 8.134 0 7.150 0
40 8.140 1 6.635 0
50 8.221 2 6.792 0
60 8.215 2 7.248 1
70 9.968 3 8.599 2
80 11.609 5 9.520 0

In addition to the precision of the results, I also compared the efficiency of
the algorithms. Table 6.5 reports the average running time of the four algo-
rithms on the first and the second groups of networks. For the first group, the

Table 6.5: Average running time in seconds of the P-Svys, P-Loc, AN-
NEALEDMAP and DW A* algorithms on the first and second group of networks.
P-Sys | P-Loc | A-MAP | A*

Alarm 0.011 0.019 0.076 0.006
CPCS179 0.030 0.134 0.250 0.019
CPCS360 0.057 | 90.202 0.820 0.123
Hailfinder 3.910 0.118 0.452 0.239
Pathfinder | 0.054 0.061 0.050 0.001
P223layout | 32.370 | 1.376 12.166 | 2.507
Win95pts 0.031 0.041 0.292 0.030

Munin 3.382 9.353 19.620 | 2.996
HRL1 1.287 | 224.968 7.157 0.418
HRL2 0.087 5.45 4.071 0.384

ANNEALEDMAP, P-Loc and P-Sys algorithms showed similar efficiency on all
except the CPCS360 and P223layout networks. The DW A* search generated
solutions within the shortest time on average. The small variance of the search
time indicates that DW A* is more stable across different networks.

For the second group, which consists of large Bayesian networks, P-Svs,
ANNEALEDMAP and DW A* are all efficient. DW A* search still spent shortest
search time on average, while the P-L.OC was much slower on the HRL1 network.

46

6.4 Results for the Third Group

The third group consisted of two complex Bayesian networks: Barley and Dia-
betes, many nodes of which have more then 10 different states. As the P-Sys
algorithm did not produce any results within the time limit, the only available
measure of accuracy was a relative one: which of the algorithms found an as-
signment with higher probability. Table 6.6 lists the number of cases that were
solved differently between P-L.oc, ANNEALEDMAP, and the DW A* algorithm
and the number of cases that the DW A* algorithm found a more probable as-
signment. Pr, P4 and P, stand for the probability of MAP solutions found by
P-Loc, ANNEALEDMAP and DW A* respectively.

Table 6.6: The number of cases that were solved differently from P-Loc, AN-
NEALEDMAP and DW A*.

P, > Py /P, <P, | Py, >Ps/P. <Py
Barley 3/2 5/3
Diabetes 5/0 4/0

For Barley, the accuracy of the three algorithms is quite similar. However, for
Diabetes DW A* is more accurate: it found solutions with largest probabilities
for all 20 cases, while P-Loc failed to find 5 and ANNEALEDMAP failed to find
4 of them.

Table 6.7: Average running time in seconds of the P-Sys, P-Loc, AN-
NEALEDMAP and DW A* algorithms on the third groups of Bayesian networks.
P-Sys | P-Loc | A-MAP A*

Barley TimeOut | 101.47 34.67 199.16
Diabetes | TimeOut | 369.35 | 315.79 | 185.89

DW A* turned out to be slower than P-Loc and ANNEALEDMAP on Barley
but more efficient on Diabetes (see Table 6.7).

6.5 Results for Incremental Evidence and M AP
Variables Test

In order to give a more comprehensive comparison of the P-Sys, P-L.oc, AN-
NEALEDMAP and DW A* algorithms, T run the four algorithms on Munin net-
work in different number of evidence variables or different MAP variables. I
chose the Munin network for this experiment because only this network has
suitable number of root nodes and leaf nodes, 183 and 259 respectively, and I
was able to run all four algorithms on it.

47

For the first step, I generated MAP problem with an increasing number of
evidences nodes and keep the number of MAP nodes to be 50. The running times
for each of the four algorithms are shown in Figure 6.1. We can see that the
ANNEALEDMARP spent much longer time in generating the search result. The
P-Sys, P-Loc, and DW A* spent similar time when the number of evidence
nodes is less than 100. But when the number of evidence nodes is beyond
100, the DW A* is more efficient than P-Sys and P-Loc. The only exception
happened when the number of evidences nodes was between 140 and 150.

10
1 ——P-Sys
9 —&—F-Loc
_— 8 1 AnnealingMAP
_E, _ DAY
o
E 67
L
o 2
s 47
o
c 3+
=
€ 2+
1+
0

0 50 100 150 200
Number of Evidences (50 MAP Variables)

Figure 6.1: Plot of the running time of the P-Sys, P-Loc, ANNEALEDMAP
and DW A* algorithms when increasing the number of evidence nodes on the
Munin network.

For the second step, I generated MAP problem with an increasing number of
MAP nodes and keep the number of Evidence nodes to be 50. The running times
for each of the four algorithms are shown in Figure 6.2. It indicates that the
P-Svs, P-Loc, and DW A* algorithms were all very efficient when the number
of MAP variables was not too large. However, when there were more MAP
nodes which leads the MAP problem to be much harder, the ANNEALEDMAP
and DW A* were more efficient.

My last experiment focused on the robustness of the four algorithms to the
number of nodes in the MAP set and the evidence set. In this experiment,
I generated MAP problems with an increasing number of MAP and evidence
nodes at the same time and ran four algorithms on these cases. The P-Sys was
able to solve only cases with fewer than 140 MAP and evidence variables. The
times for each of the cases are shown in Figure 6.3.

48

1 _rI_ 4 —a—P-Sys
—#—P-loc
1 3 AnnealingMAP

12 T DWA*
: *J/\.\\//j

—F v‘*biﬁ- +

Running TIme(m)

—
OHMNDWRUII~I0WOO

0 50 100 150 200 250 300
Number of MAP Nodes (50 Evidences Variables)
Figure 6.2: Plot of the running time of the P-Svs, P-Loc, ANNEALEDM AP and

DW A* algorithms when increasing the number of MAP nodes on the Munin
network.

49

45 —+— P-Sys
—=—P-Loc

40 4 —— AnnealinghAP
—u— DWWAT
35
30
25

204

Running Time (m)

10 50 an 120 170 210 250
Number of MAP and Evidence Nodes

Figure 6.3: Plot of the running time of the P-Sys, P-Loc, ANNEALEDMAP
and DW A* algorithms when increasing the number of MAP nodes and evidence
nodes at the same time on the Munin network.

a0

Chapter 7

Conclusion

MAP problems in Bayesian networks are hard because they are not only subject
to the complexity of the models (treewidth), but also subject to the complexity
introduced by specific problems (constrained width).

My research on MAP problems at the Decision Systems Laboratory is mainly
based on the theory of asymmetries among joint probability distributions. Al-
though for the first three months, my tentative research of exploiting the estima-
tion of the probability density functions was proved to be unsuccessful, and yet
it drove me to realize that the accuracy of the upper bound on the MAP problem
is the most influential element for the algorithm, which is quite sensitive to the
error of the estimated mean and variance of the lognormal distribution function.
Temporarily trapped in the darkness, I got new inspiration from the theory of
asymmetries. That is to use greedy guess instead of estimating the lognormal
probability density function in order to get a tight and accurate upper bound
on MAP problem. The instructions from my supervisor Professor Druzdzel and
positive comments on this idea from my colleague Changhe Yuan greatly en-
couraged me to embark on the implementation of the DW A* algorithm, and
lead to the accomplishment of this new efficient solution for MAP problems.

Another point that T would like to address is that the search algorithm that
I chose. When I implemented the branch-and-bound search algorithm combined
with the estimation of the lognormal probability density function, I found that
the branch-and-bound was always turned to be a futile one: on one hand, when
the upper bound is far larger than the probability of scenario, take 1.0 for
example, the algorithm was far less efficient since there was not any “cut” in
the probability tree; one the other hand, when the error of the estimation led the
bound to be a lower bound instead of an upper one, the search path that could
lead to the right solution would be cut by mistake. Then the branch-and-bound
search would not generate the right scenario as the solution.

Compared with the branch-and-bound search, the Dynamic Weighting A*
Search is more robust for the MAP problems. Because of large asymmetries

o1

among probabilities that are further amplified by their multiplicative combina-
tion, it is testified that for most of cases, the DW A* can lead to the optimal
solution, even though the heuristic function will sometimes break the rule of ad-
missibility, if only the greedy guess is not too divergent from the ideal estimate,
the algorithm will still not diverge from the optimal probability. Our simulation
results also proved the robustness of the algorithm in finding optimal solutions.

The programming work of implementing the DW A* search algorithm was
accomplished by using C++ in the Windows programming environment with
strong support of the SMILE library. The join tree algorithm and the relevance
reasoning is an integral part of the SMILE library on which the implementation
of my algorithm is based. I am very pleased that the DWW A* search algorithm
will be included in the new version of SMILE released later.

Finding MAP in Bayesian networks is hard. By exploiting asymmetries
among the probabilities of possible assignments properties of joint probability
distributions among all the possible assignments, the Dynamic Weighting A*
Search is able to greatly reduce the search space and lead to efficient and ac-
curate solution of the MAP problem. Our experimental result also show that
generally, the Dynamic Weighting A* Search is more efficient than the existent
algorithms. Especially for large and complex Bayesian networks, when the exact
algorithm fails to generate any result within a reasonable time, the Dynamic
Weighting A* Search can still provide accurate solutions efficiently.

Further extension of this research is to apply the Dynamic Weighting A*
Search algorithm to the K-MAP problem, which is to find k most probable
assignments for MAP variables. It is very convenient for the DW A* algorithm
to achieve that, since after finding the most probable assignment the algorithm
keeps all the candidate assignments in the search frontier. I can expect that the
additional search time will be linear in k.

In sum, the Dynamic Weighting A* Search algorithm enriches the approaches
for solving MAP problem and extends the scope of MAP problems that can be
solved.

92

Bibliography

[1]

2]

B. Abramson, J. Brown, W. Edwards, A. Murphy, and R. Winkler. Hail-
finder: A Bayesian system for forecasting severe weather. International
Journal of Forecasting, 12(1):57-72, 1996.

S. Andreassen, R. Hovorka, J. Benn, K. G. Olesen, and E. R. Carson. A
model-based approach to insulin adjustment. In M. Stefanelli, A. Hasman,
M. Fieschi, and J. Talmon, editors, Proceedings of the Third Conference on
Artificial Intelligence in Medicine, pages 239-248. Springer-Verlag, 1991.

S. Andreassen, F. V. Jensen, S. K. Andersen, B. Falck, U. Kjeerulff,
M. Woldbye, A. R. Sgrensen, A. Rosenfalck, and F. Jensen. MUNIN — an
expert EMG assistant. In John E. Desmedt, editor, Computer-Aided FElec-
tromyography and Ezpert Systems, chapter 21. Elsevier Science Publishers,
Amsterdam, 1989.

I. Beinlich, G. Suermondt, R. Chavez, and G. Cooper. The ALARM mon-
itoring system: A case study with two probabilistic inference techniques
for belief networks. In In Proc. 2’nd European Conf. on Al and Medicine,
pages 38:247-256, Springer-Verlag, Berlin, 1989.

L. de Campos, J. Gamez, and S. Moral. Partial abductive inference in
Bayesian belief networks using a genetic algorithm. Pattern Recognition
Letters, 20(11-13):1211-1217, 1999.

R. Dechter and I. Rish. Mini-buckets: A general scheme for approximating
inference. Journal of ACM, 50(2):1-61, 2003.

M. J. Druzdzel. Some properties of joint probability distributions. In
Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence
(UAI-94), pages 187-194, Morgan Kaufmann Publishers San Francisco,
California, 1994.

M. J. Druzdzel and H. J. Suermondt. Relevance in probabilistic models:
“Backyards” in a “small world”. In Working notes of the AAAI-199/ Fall
Symposium Series: Relevance, pages 60-63, New Orleans, LA (An extended
version of this paper is in preparation.), 4-6 November 1994.

33

[9]
[10]

[11]

[12]

[14]

D. Heckerman. Probabilistic similarity networks. Networks, 20(5):607-636,
August 1990.

D. Heckerman, J. Breese, and K. Rommelse. Decision-theoretic trou-
bleshooting. Communications of the ACM, 38:49-57, 1995.

K. Kristensen and I.A. Rasmussen. The use of a Bayesian network in the
design of a decision support system for growing malting barley without use
of pesticides. Computers and FElectronics in Agriculture, 33:197-217, 2002.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabili-
ties on graphical structures and their application to expert systems. Journal
of the Royal Statistical Society, Series B (Methodological), 50(2):157-224,
1988.

J. D. Park. MAP complexity results and approximation methods. In Pro-
ceedings of the 18th Conference on Uncertainty in Artificial Intelligence
(UAI-02), pages 388-396, Morgan Kaufmann Publishers San Francisco,
California, 2002.

J. D. Park and A. Darwiche. Approximating MAP using local search. In
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence
(UAI-01), pages 403-410, Morgan Kaufmann Publishers San Francisco,
California, 2001.

J. D. Park and A. Darwiche. Solving MAP exactly using systematic search.
In Proceedings of the 19th Conference on Uncertainty in Artificial Intelli-
gence (UAI-03), pages 459-468, Morgan Kaufmann Publishers San Fran-
cisco, California, 2003.

J. Pearl. Heuristics : intelligent search strategies for computer problem
solving. Addison-Wesley Publishing Company, Inc., 1988.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1988.

S.Russell P.Norvig. Artificial Intelligence A Modern Approach. Pearson
Education, Inc., Upper Saddle River, New Jersey 07458, 1995.

M. Pradhan, G. Provan, B. Middleton, and M. Henrion. Knowledge en-
gineering for large belief networks. In Proceedings of the Tenth Annual
Conference on Uncertainty in Artificial Intelligence (UAI-94), pages 484—
490, San Mateo, CA, 1994. Morgan Kaufmann Publishers, Inc.

S. E. Shimony. Finding MAPs for belief networks is NP-hard. Artificial
Intelligence, 68:399-410, 1994.

54

[21] C. Yuan, T. Lu, and M. J. Druzdzel. Annealed MAP. In Proceedings of the
20th Annual Conference on Uncertainty in Artificial Intelligence (UAI-04),
pages 628-635, AUAI Press, Arlington, Virginia, 2004.

35

