Dynamic Weighting A* Search-based M AP Algorithm for Bayesian
Networks

Xiaoxun Sun*& Marek J. Druzdzel & Changhe Yuan
Decision Systems Laboratory
School of Information Sciences & Intelligent Systems Program
University of Pittsburgh, Pittsburgh, PA 15260
{sxun,marek,cyuan}@sis.pitt.edu

Abstract

Maximum a Posteriori assignment (MAP)
is the most probable instantiation of a set
of variables given a partial evidence on the
remaining variables in a Bayesian network.
Finding MAP has been proved to be an NP-
hard problem [15], and it is not only exponen-
tial in the network treewidth, but also in the
constrained treewidth [10]. Exact approaches
often fail to yield any results for MAP prob-
lems in very large Bayesian networks, and
even approximate approaches may not yield
efficient solutions.

We introduce the Dynamic Weighting A*
(DW A*) search algorithm for solving MAP.
By exploiting asymmetries in the distribution
of MAP variables, the algorithm is able to
greatly reduce the search space yielding very
good quality MAP solutions. Experimental
results demonstrate that our algorithm finds
solutions generally faster and with a lower
variance in search time than existing algo-
rithms.

1 Introduction

The Maximum a Posteriori assignment (MAP) is the
problem of finding the most probable instantiation of a
set of variables given partial evidence on the remaining
variables in a Bayesian networks. One specialization
of the MAP that has been paid much attention is the
Most Probable Explanation (MPE) problem. MPE
is the problem of finding the most probable assign-
ment of a set of variables given full evidence of the
remaining variables. MAP turns out to be a very dif-

*On leave from the Department of Media & Knowl-
edge Engineering, Delft University of Technology, The
Netherlands

ficult problem even when compared to MPE or com-
puting the probability of evidence. Particularly, the
decision problem for MPE is NP-complete while the
corresponding MAP problem is N PP¥-complete [10].
MAP is more useful than MPE for providing expla-
nations. For instance, in diagnosis, generally we are
only interested in the configuration of fault variables
given some observations. There may be many other
variables that have not been observed and are outside
the scope of our interest.

Several researchers have proposed algorithms for solv-
ing the MAP problem. A very efficient approximate
search-based algorithm based on local search, pro-
posed by Park and Darwiche [10], is capable of solv-
ing MAP efficiently which is based on local search. An
exact method, based on branch-and-bound depth-first
search, proposed by Park and Darwiche [12], performs
quite well when the search space is not too large. An-
other approximate proposed more recently by Yuan et
al. [16] is a Reheated Annealing MAP algorithm. It is
somewhat slower on simple networks but it is able to
handle very hard cases on which the exact algorithm
can not solve.

In this paper, we introduce the Dynamic Weighting
A* (DW A*) Search algorithm for solving MAP that
is faster than any of the existing algorithms. The algo-
rithm explores the asymmetries among all possible as-
signments in the joint probability distributions. Typi-
cally, a small fraction of assignments can be expected
to cover a large portion of the total probability space
with the remaining assembles having practically neg-
ligible probability [5].

Previous research and simulation results have shown
that the greedy guess [11, 16], which is represented as
follows:

n
pM|E)=1]] max P(My| M1y .- M1, E) (1)
i=1
is quite close to the optimal solution of the MAP prob-
lems. In other words, it offers a very tight lower bound

on the optimal solution. While it is theoretically not
admissible (admissible heuristic should offer an upper
bound on the MAP), with a simple extension it offers
e-admissibility and excellent performance.

The remainder of this paper is structured as follows.
Section 2 defines the MAP problem and summarizes
the main results on its complexity. It also outlines sev-
eral methods for solving MAP. Section 3 describes the
Dynamic Weighting A* Search algorithm. Section 4
presents the results of applying the algorithm to sev-
eral real complex Bayesian networks.

2 MAP and Previous Research

Conceptually, the MAP problem is defined as follows.
Let M be the set of MAP variables, the configuration
of which is what we are interested in; E is the set of
evidence, namely the variables whose states we have
known; The remainder of the variables, denoted by
S, are variables that we neither know their states nor
care about their configuration. Given an assignment
e of variables E, the MAP problem is that of finding
the assignment m of variables M which maximizes the
probability of P(m | e), while the MPE problem is the
special case of MAP, when S is empty.

map = mj\;}pr(M,S | E) . (2)
s

In general, in Bayesian networks, we use the Condi-
tional Probability Table (CPT) ¢ as the potential over
a variable and its parent nodes. A potential over all
the states of one variable after updating beliefs is called
marginal. The notation ¢, stands for the potential in
which we have fixed the value of e € E.

Then the probability of MAP with ® as its CPTs turns
out to be a real number:

map = mj\;}xz H Ge - (3)

S ¢ed

We will introduce the algorithm of Variable Elimina-
tion [12] here in order to compute MAP. The name
of the algorithm is just because it sums or maxi-
mizes out variables from a list of variables one by one,
and this order is named the elimination order. The
size of the largest clique minus 1 in a jointree con-
structed based on an elimination order is called the
induced width. The induced width of the best elimi-
nation order is called the treewidth. However, for the
MAP problems which neither the set S nor the M is
empty, the order is constrained. Then the constrained
variable order is known as the constrained treewidth.
Generally, the constrained treewidth is much higher
than treewidth, leading the problem beyond the limit

of feasibility. Specifically, for some MAP problems,
the variables elimination on polytrees is subject to
the constrained treewidth, which requires exponential
time, while MPE problems can be computed in linear
time [12].

Consider Equation 3. When eliminating variables in
MAP problems, summation commutes with summa-
tion, and maximization commutes with maximization.
However, summation never commutes with maximiza-
tion and vise versa. What is more strict, the order are
obligatory to do summation before any maximization.

There are several proposed algorithms for solving the
MAP problems in Bayesian networks. Park and Dar-
wiche [10] proposed an approach using local search for
solving the MAP problems. This algorithm starts from
an initial guess and then iteratively improves the so-
lution by moving to a better neighbor. More recently,
Park and Darwiche [12] proposed a branch-and-bound
depth-first search algorithm which provided the guar-
antee on the optimality of the obtained solution. All of
these algorithms could provide very efficient solutions
for most of the MAP problems when the networks are
not too large or complex. Another approximate al-
gorithm proposed by Yuan et al. [16] is a Reheated
Annealing MAP algorithm. It uses Markov Chain
Monte Carlo methods to sample from the target dis-
tribution, and applies the reheated simulated anneal-
ing technique to simulate a nonhomogeneous Markov
chain. It is somewhat slower on simple networks but
it is able to handle very hard cases that the exact al-
gorithm can not solve.

3 Solving MAP using Dynamic
Weighting A* Search

We present in this section an algorithm for solving
MAP using Dynamic Weighting A* search, which in-
corporates the dynamic weighting [13] in the heuristic
function, relevance reasoning [6] and dynamic ordering
in the search tree.

The remainder of this section is organized as follows.
First, we introduce the A* Search. Second, we com-
pare the A* search algorithm with the branch-and-
bound algorithm which is also suitable for solving the
MAP problem, and show why it is superior. Third,
we introduce our method of composing the heuristic
function h(n). Forth, we analyze the efficiency and ac-
curacy of the dynamic weighting A* search algorithm
and the situation when over-estimate happened. Fi-
nally, we discuss two techniques for improving the ef-
ficiency of the algorithm.

3.1 A* search

The MAP problems can be solved by A* search in the
probability tree that is composed of all the variables
in the MAP set. The nodes in the search tree rep-
resent partial assignments of the MAP variables M.
The root node represents an empty assignment. Each
MAP variable will be instantiated in a certain order.
If a variable x in the set of the set of MAP variables
M is intantiated at the ith place using its jth state,
it will be denoted as M,;;. Leaves of the search tree
correspond to the last MAP variable that has been in-
stantiated. The vector of instantiated states of each
MAP variable is called an assignments or a scenario.

We compute the probability of assignments while
searching the whole probability tree using chain rule.
For each inner node, the newly instantiated node will
be added into the evidence set, i.e., the evidence set
will be extended to M;; U E.

Then the probability of the MAP problem which con-
sists of n MAP variables can be presented as follows:

PM|E) = P(Mp;| My, Mog,... Mn_1y, E)

...P(Msy, | My, E)P(My; | E) .
Suppose we are in the xth layer of the search tree and

preparing for instantiating the x th MAP variables.
Then the function above can be rewritten as follows:

P(M | E) =

b

A

Ve

P(an | Mlj "'M(n—l)taE)---
P(Macy | Mlj,MQk .. -M(ac—l)

~~

P(M(ac-‘rl)z | Mfﬂy e E)
E)...P(My; | E)

v

q»

a

The general idea of the Dynamic Weighting A* Search
algorithm is that during the search, in each inner node
of the probability tree, we can compute the value
of item (a) in the function above ezactly. We can
estimate the heuristic value of the item (b) for the
MAP variables that have not been instantiated given
the initial evidence set and the MAP variables that
have been intantiated as the new evidence. In or-
der to fit the typical format of the cost function of
A* Search, we just take the logarithm of the equation
above, which will not change its monotonicity. Then
we get f(n) = g(n) + h(n) , where g(n) and h(n) are
obtained from the logarithmic transformation of items
(a) and (b) respectively. g(n) gives the exact cost from
the start node to node in the nth layer of the search
tree, and h(n) is the estimated cost of the best search
path from the nth layer to the leaf nodes of the search
tree. In order to guarantee the optimality of the so-
lution, h(n) should be admissible, which in this case

means that it should be an upper-bound on the value
of any assignment with the currently intantiated MAP
variables as its elements.

3.2 Efficiency Comparison between A* and
Branch-Bound Search for MAP Problems

A* Search is closely related to the branch-and-bound
techniques. For the MAP problems, the efficiency of
the search algorithm is dominated by the number of
nodes in the probability tree that are instantiated. In
order to compare the efficiency of the two search algo-
rithms for the MAP Problems,we will first introduce
some definitions.

Definition 1 : An algorithm A, is said to dominate
an algorithm As if every node expanded by Ay is also
expanded by As. We will also use the phrase more
efficient than interchangeably with dominates [13].

Let Sy be the most probable assignment and its
probability be Pq.- Let Pgestsorar denote the prob-
ability of the best assignment that we have found so
far, which is less or equal to the P,,qz.

Theorem 1 Given the same cost function f(x), A*
dominates branch and bound on MAP problems.

Proof: The condition for cutting the current search
path in “branch and bound” search is f(z) <
PBestsorar- S0 the whole search space can be denoted
by:

Sl - {11? : f(ilf) Z PBestSoFar

U x € optimal assignment} .

With the admissibility of the f(y), which guarantees
that f(y) an upper-bound on the probability of the op-
timal solution, we have f(y) > Ppa.. For all nodes x
that on the search path other than the optimal assign-
ment, we have f(z) > f(y). The whole search space
can be denoted by:

{z:f(x) = fy)

Uz € optimal assignment}

S, =

Given that PBestSoFar S Pmaz and f(y) Z Pmazv we
have f(y) > PgestSorar, which implies Sy C S, i.e.,
that the A* search dominates the branch-and-bound
search. 0

3.3 Heuristic Function with Dynamic
Weighting

The A* Search is known for its completeness and opti-
mality. For each search step, we only expand the node
in the frontier with the largest value of f(n).

Definition 2 A heuristic function ho is said to be
more informed than hy if both are admissible and hs is
closer to the optimal cost. For the MAP problem, the
probability of the optimal assignment P,p: < ho < hy.

Theorem 2 If hy is more informed than hy then A}
dominates A} (Nilsson). [13]

The power of the heuristic function is measured by
the amount of pruning induced by h(n) and depends
on the accuracy of this estimate. If h(n) estimates
the completion cost precisely (h(n) = P,p), then A*
will only expand nodes on the optimal path. On the
other hand, if no heuristic at all is used,(for the MAP
problem this amounts to h(n) = 1), then a uniform-
cost search ensues, which is far less efficient. So it is
critical for us to find an admissble and tight h(n) to
get both accurate and efficient solutions for MAP.

3.3.1 Greedy Guess

If each variable in the MAP set M is conditionally
independent of all the rest of MAP variables (this is
called ezhaustive independence), then the MAP prob-
lem amounts to a simple computation based on the
greedy chain rule. We instantiate the MAP variable in
the current search layer to the state with the largest
probability and repeat this for each of the remaining
MAP variables one by one. The probability of MAP
is then

n
pMIE) =] mjaxP(MmM(i,l)k .My, E). (4)

i=1

The requirement of exhaustive independence is too
strict for most of the MAP problem to be calculated
by using the function above. Simulation results show
that in practice, when this requirement is Violated,
the product is still extremely close to the MAP prob-
ability [16]. This suggests using it as an e-admissible
heuristic function [13].

The curve Greedy Guess Estimate in Figure 1 shows
that with the increase of the MAP variables, the ratio
between the greedy guess and the accurate estimate of
the optimal probability diverges from the ideal ratio
1.0 although not always monotonically.

3.3.2 Dynamic Weighting

Since the greedy guess is a tight lower bound on the op-
timal probability of MAP, it is possible to compensate
for the error between the greedy guess and the optimal
probability. We can do this by adding a weight to the
greedy guess such that the product of them is equal or
larger than the optimal probability for each inner node

in the search tree. This yields an e-admissible heuris-
tic function that we need in order to find the optimal
solutions. This assumption can be represented as fol-
lows:

EIC{v-PGr'eedyGuess * (1 +€) Z Popt /\VPGreedyGuess * (1 +
€)>Pp=>e<e}

where € is the minimum weight that can guarantee
the heuristic function to be admissible. Figure 1
shows that if we just keep e constant, neglecting the
changes of the estimate accuracy with the increase
of the MAP variables, the estimate function and the
optimal probability can be represented by the curve
Constant Weighting Heuristic. QObviously, the prob-
lem with this idea is that it is less informed when the
search progresses, as there are fewer MAP variables to
estimate.

Dynamic Weighting (Pohl, 1973) is an efficient tool
for improving the efficiency of A* Search. If applied
properly, it will keep the heuristic function admissi-
ble while remaining tight on the optimal probability.
For MAP, in the shallow layer of the search tree, we
get more MAP variables than the deeper layer for esti-
mate. Hence the greedy estimate will be more likely to
diverge from the optimal probability. We propose the
following Dynamic Weighting Heuristic Function for
the xth layer of the Search tree of n MAP variables:

n—(zr+1)

h(z) =)

PGreedyGuess : (1 +a
(a>e€).

Rather than keeping the weight constant throughout
the search, we dynamically change it so as to make it
less heavy as the search goes deeper. In the last step
of the search (z = n—1), the weight will be zero, since
the Greedy Guess for only one MAP variable is exact
and then the cost function f(n-1) is equal to the prob-
ability of the assignment. Figure 1 shows an empirical
comparison of greedy guess, constant, and dynamic
weighting heuristics against accurate estimate of the
probability. We see that the dynamic weighting heuris-
tic becomes more informed than constant weighting.
In our experiments, we set « to be 1.0.

3.4 Searching with Nonadmissible Heuristics

for MAP Problem

Let us give a closer look and analyze the conditions
when the algorithm fails to achieve optimality. Sup-
pose there are two candidate assignments: s; and sg
with probability p; and ps respectively, among which
s9 is the optimal assignment that the algorithm fails
to find. And s; is now in the last step of search which

—— Greedy Guess Estimate —s— Arcurate Heuristic

—&— Constant Weighting Heuristic —— Dynarnic Weighting Heuristic

514
12y - e =
& 1 i a
b ——J——W
g 0a
k3
W
204
w
£02
20 : : : :
] 20 40 &0 a0 100

Nuber of MAP variables

Figure 1: Constant Weighting Heuristic and Dynamic
Weighting Heuristic based on Greedy Guess.

will lead to a suboptimal solution. We skip the loga-
rithm in the function for the sake of clarity here (then
the cost function f is a product of transformed g and
h instead of their sum).

flzgl‘hl andf2292'h2

The error introduced by a non-admissible hs is f1 > fo.
The algorithm will then find s; instead of ss, i.e.,

fi>fo=g1-h1> g2 ho.

Since s; is now in the last step of search, f; = p;
(Section 3.3.2). Now suppose that we have an ideal
heuristic function h,, which leads to p» = g2-h,. Then

we have:
-h -h -h h
91 1>92 12:>l£>g2 12:>1£>_12
b2 g2 - h2 D2 92 hQ D2 hQ

It is clear that only when the ratio between the prob-
ability of suboptimal assignment and the optimal one
is larger than the ratio between the nonadmissible
heuristic function and the ideal one may the algorithm
find a suboptimal solution.

Because of large asymmetries among probabilities that
are further amplified by their multiplicative combina-
tion [5], we can expect that for most of cases, the ratios
between p; and p, are far less than 1. Even though
the heuristic function will sometimes break the rule of
admissibility, if only the greedy guess is not too diver-
gent from the ideal estimate, the algorithm will still
not diverge from the optimal probability. Our simula-
tion results also proved the robustness of the algorithm
in finding optimal solutions.

3.5 Improvements to the Algorithm

There are two main techniques that we used to improve
the efficiency of the basic A* algorithm.

3.5.1 Relevance Reasoning

The main problem faced by the decision-theoretic
approach is the complexity of probabilistic reason-
ing. The critical factor in exact inference schemes
for Bayesian networks is the topology of the under-
lying graph and, more specifically, its connectivity.
The framework of relevance reasoning ([6] is an ac-
cessible summary of the relevant techniques) is based
on d-separation and other simple and computational
efficient techniques for pruning irrelevant parts of a
Bayesian networks and can yield sub-networks that
are smaller and less densely connected than the orig-
inal network. Relevance reasoning is an integral part
of the SMILE library on which the implementation of
our algorithm is based.

For MAP, our focus is the set of variables M and the
evidence set E. Parts of the model that are probabilis-
tically independent from the nodes in M given the
observed evidence E are computationally irrelevant to
reasoning about the MAP problem.

3.5.2 Dynamic Ordering

As the search tree is constructed dynamically, we have
the freedom to order the variables in a way that will
improve the efficiency of the DW A* search. Expand-
ing nodes with the largest asymmetries in marginal
probability distribution leads to early cut-off of less
promising branches of the search tree. We use the
entropy of the marginal probability distributions as a
measure of asymmetry.

4 Experimental Results

To test the DW A* algorithm, we studied its perfor-
mance on many MAP problems in real Bayesian net-
works. We compare our results against these of cur-
rent state of the art MAP algorithms: the P-Loc [11],
P-Sys [12] and ANNEALEDMAP [16] algorithms re-
spectively. We implemented the DW A* algorithm in
C++ and performed our tests on a 2.4 GHz Pentium
IV Windows XP computer with 750MB memory.

4.1 Experimental Design

The Bayesian networks that we used include Alarm [4],
Barley [9], CPCS179 and CPCS360 [14], Diabetes [2],
Hailfinder [1], Munin [3], Pathfinder [7], P223layout,
and Win95pts [8], some of which are constructed for
diagnosis. We also tested the algorithms on two very
large proprietary diagnostic networks built at the HRL
Laboratories (HRL1 and HRL2). The statistics for
these networks are summarized in Table 1. We divided
the networks into three groups: (1) small and middle-

sized, (2) large but tractable, and (3) hard networks.

Group Network #Nodes | #Arcs
Alarm 37 46
CPCS179 179 239
CPCS360 360 729
1 Hailfinder 56 66
Pathfinder 135 195
P223layout 223 338
Win95pts 76 112

2 Munin 1,041 1,397

HRL1 1,999 3,112

HRL2 1,528 2,492
3 Barley 48 84
Diabetes 413 602

Table 1: Statistics for the Bayesian networks that we
are using.

For each network, we randomly generated 20 cases.
For each case, we randomly chose 20 MAP variables
among the root nodes or all the them if root nodes were
less than 20. We chose the same number of evidence
nodes from among the leaf nodes. To set evidence, we
sampled from the prior probability distribution of a
Bayesian network in its topological order and cast the
states of the sample to the evidence nodes. Following
previous tests of MAP algorithms, we set the search
time limit to be 3,000 seconds (50 minutes).

4.2 Results for the First and Second Group

In the first experiment, we ran the P-Loc, P-Svs,
ANNEALEDMAP and DW A* on all the networks in
the first and second group, and all of the four algo-
rithms generate results within the time limit. The
P-Sys algorithm reported that it found all the op-
timal solutions. Table 3 reports the number of MAP
problems that are solved correctly by the P-Loc AN-
NEALEDMAP and DW A* algorithms. They all per-
formed well on these networks. The DW A* was able
to find all the optimal solutions. The P-Loc algorithm
missed only one case on the P223layout network and
the ANNEALEDM AP missed one on Haifinder and two
cases on P223layout.

Since both ANNEALEDMAP and P-Loc failed to find
all the optimal solution in P223layout, in each of the 20
cases we studied the performance of the 4 algorithms
as a function of the number of MAP variables (we
randomly generated 20 cases for each number of MAP
variables).

Because the search time of P-SYs increased very fast
with the number of MAP variables, and it failed to
generate any result when the number of MAP vari-
ables reached 40, while the DW A* Search found all

P-Loc | A-MAP | A*
Alarm 20 20 20
CPCS179 20 20 20
CPCS360 20 20 20
Hailfinder 20 19 20
Pathfinder 20 20 20
P223layout 19 18 20
Win95pts 20 20 20
Munin 20 20 20
HRL1 20 20 20
HRL2 20 20 20

Table 2: The number of cases that are solved correctly
out of 20 random cases for the first and second group
of networks.

No. of MAP P-Svs P-Loc | A-MAP
10 0 0 0
20 0 1 2
30 0 1 0
40 TimeOut 4 4
50 TimeOut 6 2
60 TimeOut 5 2
70 TimeOut 6 5
80 TimeOut 6 1

Table 3: The number of cases that the other 3 algo-
rithms found smaller probabilitis than A* Search in
network P223layout.

the largest probabilities, we compared all the other
3 algorithms with DW A* Search. With the increase
of the number of MAP variables, both the P-Loc
and ANNEALEDMAP turned to be less accurate for
P223layout. When the number of MAP variables was
above 40, there were about 25% cases of P-Loc and
15% cases in which ANNEALEDMAP found smaller
probabilities than DW A*.

In addition to the precision of the results, we also
compared the efficiency of the algorithms. Table 4 re-
ports the average running time of the four algorithms
on the first and the second groups of networks. For
the first group, the ANNEALEDMAP, P-Loc and P-
Sys algorithms showed similar efficiency on all except
the CPCS360 and P223layout networks. The DW A*
search generated solutions within the shortest time on
average. The small variance of the search time indi-
cates that DW A* is more stable across different net-
works.

For the second group, which consists of large Bayesian
networks, P-Sys, ANNEALEDMAP and DW A* are all
efficient. DW A* search still spent shortest search time
on average, while the P-LOoC was much slower on the
HRL1 network.

P-Sys | P-Loc | A-MAP A*
Alarm 0.011 0.019 0.076 0.006
CPCS179 0.030 0.134 0.250 0.019
CPCS360 0.057 | 90.202 0.820 0.123
Hailfinder 3.910 0.118 0.452 0.239
Pathfinder 0.054 0.061 0.050 0.001
P223layout | 32.370 1.376 12.166 | 2.507
Win95pts 0.031 0.041 0.292 0.030
Munin 3.382 5.353 19.620 | 2.996
HRL1 1.287 | 224.968 7.157 0.418
HRIL2 0.087 5.45 4.071 0.384

Table 4: Average running time in seconds of the P-
Sys, P-Loc, ANNEALEDMAP and DW A* algorithms
on the first and second group of networks.

4.3 Results for the Third Group

The third group consists of two complex Bayesian net-
works: Barley and Diabetes, many nodes of which
have more then 10 different states. As the P-Sys al-
gorithm did not produce any results within the time
limit, the only available measure of accuracy was a
relative one: which of the algorithms found an assign-
ment with higher probability. Table 5 lists the number
of cases that were solved differently between P-Loc,
ANNEALEDMAP, and the DW A* algorithm and the
number of cases that the DW A* algorithm found a
more probable assignment. Pj, P4 and P, stand for
the probability of MAP solutions found by P-Loc,
ANNEALEDMAP and DW A* respectively.

P.> PL/P. <P | P, > PA/P. < P4
Barley 3/2 5/3
Diabetes 5/0 4/0

Table 5: The numbe of cases that are solved differently
from P-Loc, ANNEALEDMAP and DWW A*.

For Barley, the accuracy of the three algorithms is
quite similar. However, for Diabetes DW A* is more
accurate: it found solutions with largest probabilities
for all 20 cases, while P-Loc failed to find 5 and AN-
NEALEDM AP failed to find 4 of them.

P-Svys P-Loc | A-MAP A*
Barley TimeOut | 101.47 34.67 199.16
Diabetes | TimeOut | 369.35 315.79 185.89

Table 6: Average running time in seconds of the P-
Sys, P-Loc, ANNEALEDMAP and DW A* algorithms
on the third groups of Bayesian networks.

DW A* turned out to be slower than P-Loc and AN-
NEALEDMAP on Barley but more efficient on Diabetes
(see Table 6).

4.4 Results for Incremental Evidence Test

Out last experiment focused on the robustness of the
four algorithms to the number of nodes in the MAP set
and the evidence set. In this experiment, we generated
MAP problems with an increasing number of MAP
and evidence nodes and ran four algorithms on these
cases . We chose the Munin network, as it looks as the
hardest network among the group 1 & 2 . The P-Svs
was able to solve only cases with fewer than 140 MAP
and evidence variables. The times for each of the cases
are shown in Figure 2.

m
=

—+—P-Sys
—s—P-Loc n

—a— Annealingh AP /

—se— DVWAT

N
S i

\

F

q\

Running Time (m)
B

Number of MAP and Evidence Nodes

Figure 2: Plot of the running time of the P-Svs, P-
Loc, ANNEALEDMAP and DW A* algorithms when
increasing the number of evidence nodes on the Munin
network.

5 Discussion

Finding MAP in Bayesian networks is hard. By ex-
ploiting asymmetries among the probabilities of possi-
ble assignments properties of Joint Probability Distri-
butions among all the possible assignments, the Dy-
namic Weighting A* Search is able to greatly reduce
the search space and lead to efficient and accurate so-
lution of the MAP problem. Our experimental result
also show that generally, the Dynamic Weighting A*
Search is more efficient than the existent algorithms.
Especially for large and complex Bayesian networks,
when the exact algorithm fails to generate any result
within a reasonable time, the Dynamic Weighting A*
Search can still provide accurate solutions efficiently.

Further extension of this research is to apply the Dy-
namic Weighting A* Search algorithm to the K-MAP
problem, which is to find k most probable assignments
for MAP variables. It is very convenient for the DWW A*
algorithm to achieve that, since after finding the most
probable assignment the algorithm keeps all the candi-
date assignments in the search frontier. We can expect

that the additional search time will be linear in k.

In sum, the Dynamic Weighting A* Search algorithm
enriches the approaches for solving MAP problem and
extends the scope of MAP problems that can be solved.

Acknowledgements

This research was supported by the Air Force Office
of Scientific Research grant F49620-03-1-0187. We
thank Adam Zagorecki and Tomek Sowinski for in-
sightful comments that led to improvements in the
paper. We thank James D. Park for answering the
question regarding his systematic search algorithm
and we thank Adnan Darwiche and Keith Cascio
for providing us with the latest version of the P-
Sys and P-Loc algorithms within the Samlam soft-
ware. All experimental data have been obtained us-
ing SMILE, a Bayesian inference engine developed
at the Decision Systems Laboratory and available at
http://www.sis.pitt.edu/~genie.

References

[1] B. Abramson, J. Brown, W. Edwards, A. Mur-
phy, and R. Winkler. Hailfinder: A Bayesian sys-
tem for forecasting severe weather. International
Journal of Forecasting, 12(1):57-72, 1996.

[2] S. Andreassen, R. Hovorka, J. Benn, K. G. Ole-
sen, and E. R. Carson. A model-based approach
to insulin adjustment. In M. Stefanelli, A. Has-
man, M. Fieschi, and J. Talmon, editors, Pro-
ceedings of the Third Conference on Artificial In-
telligence in Medicine, pages 239—248. Springer-
Verlag, 1991.

[3] S. Andreassen, F. V. Jensen, S. K. Ander-
sen, B. Falck, U. Kjerulff, M. Woldbye, A. R.
Sgrensen, A. Rosenfalck, and F. Jensen. MUNIN
— an expert EMG assistant. In John E. Desmedt,
editor, Computer-Aided FElectromyography and
Ezpert Systems, chapter 21. Elsevier Science Pub-
lishers, Amsterdam, 1989.

[4] 1. Beinlich, G. Suermondt, R. Chavez, and
G. Cooper. The ALARM monitoring system: A
case study with two probabilistic inference tech-
niques for belief networks. In In Proc. 2’nd FEu-
ropean Conf. on Al and Medicine, pages 38:247—
256, Springer-Verlag, Berlin, 1989.

[5] M. J. Druzdzel. Some properties of joint prob-
ability distributions. In Proceedings of the 10th
Conference on Uncertainty in Artificial Intelli-
gence (UAI-94), pages 187-194, Morgan Kauf-
mann Publishers San Francisco, California, 1994.

[6] Marek J. Druzdzel and Henri J. Suermondt. Rel-
evance in probabilistic models: “Backyards” in a
“small world”. In Working notes of the AAAI-
1994 Fall Symposium Series: Relevance, pages
60-63, New Orleans, LA (An extended version
of this paper is in preparation.), 4-6 November
1994.

[7] D. Heckerman. Probabilistic similarity networks.
Networks, 20(5):607-636, August 1990.

[8] D. Heckerman, J. Breese, and K. Rommelse.
Decision-theoretic troubleshooting. Communica-
tions of the ACM, 38:49-57, 1995.

[9] K. Kristensen and I.A. Rasmussen. The use of a
Bayesian network in the design of a decision sup-
port system for growing malting barley without
use of pesticides. Computers and FElectronics in
Agriculture, 33:197-217, 2002.

[10] J. D. Park. MAP complexity results and ap-
proximation methods. In Proceedings of the 18th
Conference on Uncertainty in Artificial Intelli-
gence (UAI-02), pages 388-396, Morgan Kauf-
mann Publishers San Francisco, California, 2002.

[11] J.D. Park and A. Darwiche. Approximating MAP
using local search. In Proceedings of the 17th
Conference on Uncertainty in Artificial Intelli-
gence (UAI-01), pages 403-410, Morgan Kauf-
mann Publishers San Francisco, California, 2001.

[12] J. D. Park and A. Darwiche. Solving MAP ex-
actly using systematic search. In Proceedings of
the 19th Conference on Uncertainty in Artificial
Intelligence (UAI-03), pages 459-468, Morgan
Kaufmann Publishers San Francisco, California,
2003.

[13] J. Pearl. Heuristics : intelligent search strategies
for computer problem solving. Addison-Wesley
Publishing Company, Inc., 1988.

[14] M. Pradhan, G. Provan, B. Middleton, and
M. Henrion. Knowledge engineering for large be-
lief networks. In Proceedings of the Tenth An-
nual Conference on Uncertainty in Artificial In-
telligence (UAI-9/4), pages 484-490, San Mateo,
CA, 1994. Morgan Kaufmann Publishers, Inc.

[15] S. E. Shimony. Finding MAPs for belief networks
is NP-hard. Artificial Intelligence, 68:399-410,
1994.

[16] C. Yuan, T. Lu, and M. J. Druzdzel. Annealed
MAP. In Proceedings of the 20th Annual Con-
ference on Uncertainty in Artificial Intelligence
(UAI-04), pages 628635, AUAI Press, Arling-
ton, Virginia, 2004.

