
Abstract

Bayesian networks are a successful modeling tool that have become very pop-
ular in the last 20 years. Software for constructing models is widely available,
but software that combines data and expert knowledge in a principled way to
construct networks is rare. We aim on solving this problem by extending GeNIe
and SMILE to give the users the possibility to use this feature. To accomplish
this we divided the problem into three different parts.

Firstly, we created a case management system in both GeNIe and SMILE
that manages the data of the user, we will call this cases. Managing cases
involves editing evidence and target nodes in the network, and more. We take a
novel approach of storing the cases in the same file the network is stored (usually
data is stored in separate files), to easy the user and to keep the cases consistent
with the network.

Secondly, we will use these cases to refine a network created by an expert
by applying the Expectation-Maximization (EM) learning algorithm. EM is
capable of combining expert knowledge and data by using prior probabilities
and the possiblility to express how confident the expert is in the priors. Since
experts might be more confident in some parts of the network than others, we
introduce the concept of hierarchical confidence that experts can use to express
how important the data is compared to their constructed networks, on different
levels of granularity, e.g., on the network level or CPT level. High confidence
will not change the local probability distributions much, but if the confidence
is low, the data will change the local probability distributions a lot. Instead
of learning complete networks from data, we chose refinement, because usually
only limited data is available. And if you realize that the number of parameters
that has to be specified in a CPT exponential is in the number of parents, we
have to conclude that learning complete networks is only feasible when a lot of
data is available.

This leads to the third part of the work that has been done. We will introduce
new canonical gates that, based on some assumptions, require a lower number of
parameters to be specified and, consequently, less data is needed to learn these
gates than was needed in case of CPTs. Another advantage of these gates is
that they have the property that inference algorithms can exploit them. Since
learning requires a lot of inference, these gates are also suitable for learning from
very large datasets.
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Chapter 1

Background

In this chapter we will see in what area the research took place and what the
current problems are. We will take a look at Bayesian networks, how to learn
them, and the software the Decision Systems Laboratory (DSL) has developed.

1.1 Bayesian Networks

Bayesian networks (BNs) [25] [26] are a successful modeling tool that facilitates
a convenient combination of expert knowledge and data. BNs have become
a prominent modeling tool for problems involving uncertainty in the last 20
years. Among a wide range of their practical applications are medical diagnosis,
hardware troubleshooting, user modeling, intrusion detection, disease outbreak
detection, etc.

The BN framework combines strong formal foundations of probability the-
ory with a graphical representation of interactions among variables, providing
a formalism that is theoretically sound, yet readily understandable for human
knowledge engineers and fairly easy to apply in practice. BNs allow for con-
venient and flexible fusion of information from various sources, in particular
combining expert knowledge with available data. This has proved to be critical
in practical applications, where data is typically limited. Elicitation of proba-
bilities from experts is usually not easy, see [8], and we will try to make that
easier.

1.2 Learning

Learning is a very useful property of Bayesian networks [13]. Especially the
combination of expert knowledge and data is a powerful one: the expert builds
a network and that network is refined by learning from the data. Learning from
a dataset only is possible when there is a lot of data, but that is usually not the
case. [14] is about combining expert knowledge with statistical data, but treats
only complete data and does not use hierarchical confidence.
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In this thesis we look at the situation where the data is limited. Limited
data is a problem in learning, and will always be a problem for learning Bayesian
networks. A lot of work has been done to learn Bayesian network from data
[13], but usually it is assumed that there is a sufficient amount of data available.
This research is different, in the sense that we do not assume that there is a
sufficient amount of data, but we do assume that there is a network created by
experts. The focus will be more on the combination of expert knowledge and
data, where usually only data is used to learn the networks. Networks will be
refined by data that comes available. We will use the Expectation-Maximization
(EM) algorithm [5] to combine expert knowledge, by making use of hierarchical
confidence, with data.

1.3 Canonical Gates

In the line of learning from a few cases, we take a look at a way to replace
CPTs with canonical gates that use fewer parameters and are, because of that,
capable to learn from a smaller number of cases. An example of a canonical gate
is the noisy-OR gate [15], and these gates also have the advantage that they are
faster when inference is concerned [12], and this makes them also very suitable
for learning from large datasets. We introduce new gates that release some
assumptions of causal independence (compared to, for example, noisy-OR), so
that they are more flexible and better learners.

1.4 GeNIe and SMILE

The work I did for this thesis has been done in the Decision Systems Laboratory
(DSL) at Pittsburgh. The people of DSL created a software package called
GeNIe to create Bayesian networks and a lot more. The first version of the
GeNIe software, developed by DSL, was released in 1998 and has been steadily
developed from then on. Underneath GeNIe there is the SMILE engine, a fully
platform independent library of C++ classes. My task was to extend GeNIe and
SMILE with features that make it possible to refine Bayesian networks, based
on expert knowledge, with data.
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Chapter 2

The problem

In this chapter, we state four research questions we are trying to anwser in this
thesis. Also, we give our hypotheses about the given questions and we will verify
them in chapter 19, the conclusion.

2.1 Research Questions

Although Bayesian network are popular and successful, there are also some
limitations and problems:

• The number of parameters to specify a Bayesian network can be very high.
CPTs grow exponentially in the number of parents. This complicates
knowledge elicitation and learning requires a lot of data.

• Inference in BNs is NP-hard [4]. Learning needs a lot of inference, so this
is problematic.

Based on these problems we state the following research questions for which we
will try to find an anwser in this thesis:

1. How to learn BNs from a limited amount of data?

2. How can we combine expert knowledge with data in a principled way in
SMILE?

3. How can we combine expert knowledge with data in a principled way in
GeNIe?

4. How can we speed-up inference?

2.2 Hypotheses

Corresponding to the research questions, here are my hypotheses:
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1. We think it is impossible to learn complete BNs (structure and parame-
ters) in a reasonable way, when there are only a few cases available. There-
fore, my guess is that only network refinement will lead to sufficiently good
results in this situation. To do this we will use EM as learning algorithm
and hierarchical confidence to express the confidence of the expert.

2. We will have to implement an algorithm that is capable of combining
expert knowledge with data. My bet is that the EM algorithm in combi-
nation with priors will lead to good results.

3. To combine expert knowledge with data in GeNIe, two things are needed.
After the expert has build a network, he should express his confidence. For
this we think hierarchical confidence will work and is convenient, since it is
possible to express confidence on different levels of granularity. The second
thing needed, is a way to manage the data that has to be combined with
the network, and for this we introduce a case management system. By
trying to make it intuitive and in the GeNIe style, it should be intuitive
for the users. The cases that are stored in the case management system
will be used to refine the network.

4. We think that canonical gates will improve the accuracy and speed of
learning. Because they require fewer parameters than CPTs, they also
require less data to learn. Also, because they can be exploited by infer-
ence algorithms, they can improve the speed of learning. We will present
benchmarks that show this.

It is not reasonable to expect that based on, for example, 10 cases, complete
networks are learned. We will focus on networks where the structure is fixed
and a prior distribution and the confidence in the prior is assigned by an expert,
for all of the local probability distributions (CPTs). Cases can change the CPTs
more or less depending on the confidence of the expert. To improve learning
with a few cases, we will introduce new gates, that require fewer parameters
instead of CPTs, for better learning.

2.3 How is this thesis organized?

In chronological order, the topics this thesis is concerned with, are the following:

• Case Management.

• Learning Bayesian Networks.

• Refinement of BNs Using Cases.

• Exploiting Decomposable Causal Independence.

• Conclusion and Future Work.
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The case management system is a system for managing data in a integrated
way in GeNIe. Firstly, we will talk about the current status of case management
support in available software. Then we will explain how the case management
is implemented in SMILE, and the last chapter is about the user interface of
the case management in GeNIe.

The following part is completely about the theory of learning Bayesian net-
works. We will see that we can distinguish four different learning problems. The
possible solutions are the subject matter.

In the part about refinement of Bayesian networks using cases, the approach
to learning from a low number of cases will become visible. Firstly, we will talk
about my selected method for learning, i.e., the EM algorithm. A chapter about
priors and hierarchical confidence will emphasize the importance of the use of
priors, and the possibility to express confidence in them.

Exploiting Decomposable Causal Independence is about alternatives for CPTs
that learn better from small amounts of data. We will explore different ways to
make use of the decomposable property.

The last part contains a conclusion and future work.
Before going to the part about the case management system, two chapters

that are an introduction to Bayesian networks, and GeNIe and SMILE, will
follow now.
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Chapter 3

Bayesian networks

This chapter will introduce Bayesian networks, and related concepts like condi-
tional independence and inference.

3.1 Definition

Let X = {X1, . . . , Xn} be a set of random variables. A Bayesian network
is an annotated directed acyclic graph (DAG) that encodes a joint probability
distribution over X, see for an example Figure 3.1. Formally, a Bayesian network
for X is a pair B =< G, Θ >. In this pair, G is a directed acyclic pair whose
vertices (nodes) correspond to the random variables X1, . . . , Xn. G encodes
the following set of conditional independence assumptions: each variable Xi

is independent of its non-descendents given his parents in G. Θ represents
the set of parameters that quantifies the network. It contains a parameter
θxi|Πxi

= P (xi|Πxi) for each possible value xi of Xi, and Πxi of ΠXi , where ΠXi

denotes the set of parents of Xi in G. So a Bayesian network defines a complete
joint probability distribution over X given by:

P (X1, . . . , Xn) = Πn
i=1P (Xi|ΠXi)

BNs are a combination of a sound mathematical foundation in the form of
probability theory and an intuitive graphical representation of nodes (variables)
and arcs. In probability theory the joint probability distribution of variables

Table 3.1: A CPT that represents the probabilistic part of a Bayesian network.
The table should be read like this: P (Child = State2|Parent = State1) = 0.9,
and the other three probabilities can be interpreted in the same way.

Child\Parent State 1 State 2
State 1 0.1 0.7
State 2 0.9 0.3
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Figure 3.1: Example of the graphical part of a Bayesian network.

X1, . . . , Xn is given by P (X1, . . . , Xn). This can be calculated using the chain-
rule of probability:

P (X1, . . . , Xn) = P (X1)P (X2|X1) · · ·P (Xn|X1, X2, . . . , Xn−1) .

Based on the structure of the network it is sometimes possible to remove vari-
ables in the equation on the right hand side. If a variable A is conditioned
on a variable B and C, so P (A|B, C), and A is conditionally independent of
B, P (A|B, C) can be reduced to P (A|C). This lowers the number of parame-
ters required to specify the JPD by exploiting independencies among domain
variables.

So a BN is basically a compact representation of a joint probability distri-
bution (JPD). The JPD is specified by means of local probability distributions
associated with nodes (variables). In case of discrete variables (this is what
we will focus on in this thesis), the local probability distributions are encoded
in the form of prior probabilities over those nodes that have no parents in the
graph, and conditional probability tables (CPTs) for all other nodes, see for an
example Figure 3.1. A CPT is a set of conditional probability distributions that
define a probability distribution over the child variable given all combinations
of values of the parents nodes.

3.2 Conditional independence

Conditional independence is an important concept in Bayesian networks and it
can be specified by:

• A node is conditionally independent of its non-descendants, given its par-
ents.
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Figure 3.2: Serial connections in both directions.

Figure 3.3: A diverging connection.

Figure 3.4: A converging connection.

• A node is conditionally independent of all other nodes in the network,
given its parents, children, and children’s parents. This is called the
Markov blanket.

These two specifications are equivalent. A more general topological criterion is
d-separation. It can be used to decide whether a set of nodes X is independent
of another set Y, given a third set Z. It is more complicated than the two
previously mentioned methods and it works as follows.

Two nodes, X and Y are d-separated if and only if for every path between
them, there is an intermediate variable Z such that:

• The connection is serial or diverging and Z is known. A connection is serial
if there is a path from X to Y or Y to X through Z, see also Figure 3.2.
A connection is diverging if node Z has an arc to X and an arc to Y , see

19



also Figure 3.3.

• The connection is converging and neither Z nor any descendant of Z is
known. A connection is converging if there is an arc from X and an arc
from Y to Z, see also Figure 3.4.

Node X and Y are d-connected by node Z, if they are not d-separated. If two
nodes are d-separated they are independent. This is very useful for inference at
which we will take a look in the next section.

3.3 Inference

Inference [23] is a basic task in BNs and is used to compute the posterior prob-
ability distribution for a query variable Q ∈ Q, given the set of evidence (ob-
served) variables E. There is a possible third set of (hidden) variables H that
are neither query variables nor observed variables. The complete set of variables
of a query is X ={Q}∪E ∪H. The posterior probability can be calculated in
this way:

P (Q|E) =
P (Q,E)
P (E)

= αP (Q,E) = α
∑

H

P (Q,E,H) ,

where α is a normalizing constant equal to 1
P (E) . Informally, the equation says

that a query can be answered using a Bayesian network by summing out the
variables in H and dividing that by the probability of the evidence.

Speeding up inference is achieved by manipulating the sum in the equation
in a clever way. One easy improvement is to move the constant terms out of the
sum. A second improvement is to compute repeating values only once. There
are values that do not even need to be computed: every variable that is not
an ancestor of a query variable or evidence variable is irrelevant to the query.
Clustering algorithms (also known as joint tree algorithms) [18] are very useful
when someone is not interested in only one query variable, but if, for example,
the values of all the variables in the network have to be computed. The idea
is to join individual nodes of the network to form cluster nodes in such a way
that the resulting network is a polytree. When this network is in polytree form,
a special purpose inference algorithm is applied that can compute the values
of all the nodes in the network in O(n) time. But the NP-hardness does not
disappear: the construction of the polytree requires exponential time and space
if the network is difficult enough.

Since inference in BNs is NP-hard, approximate algorithms have been de-
veloped to handle large multiply connected networks. There is a variety of
approximate algorithms:

• Direct sampling methods.

• Rejection sampling.
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• Likelihood weighting [3].

• Markov Chain Monte Carlo (MCMC) [24].

The idea with direct sampling methods is to generate evidence for each variable
following a partial order defined by the structure of the graph. The probability
distribution from which the value is sampled is conditioned on the evidence of
the parents of the node.

Rejection sampling can be used to compute conditional probabilities. Sam-
ples are generated by using the prior distribution of the network and samples
are removed that are not consistent with the network. Finally, we count the
occurences of the state of the query variable to estimate the probability.

Likelihood weighting is an improvement over rejection sampling in the sense
that it only generates samples that are consistent with the network.

MCMC does not generate each event from scratch, but jumps from state to
state. The next state is generated by randomly sampling a value for one of the
non-evidence variables Xi, conditioned on the current values of the variables in
the Markov blanket of Xi. The idea is that in the long run the number of visits
to each state is exactly proportional to its posterior probability.

3.4 Relevance Reasoning

Relevance reasoning is a method used in inference that computes only the poste-
rior probability of the nodes that are really needed. Before performing inference,
all the nodes that are irrelevant for the query are removed. We will not go into
technical details, but we are introducing this concept here, because in GeNIe
and SMILE there exists the notion of target nodes. If there are target nodes
in a network, only the posteriors of those nodes, and the nodes of which the
posteriors are needed to compute the posteriors of the target nodes, will be
computed. For more information, see [7] and [19].

3.5 Canonical Distributions

The number of parameters that needs to be specified in a BN grows exponen-
tially in the number of parents. If a node has n parents and all the nodes are
binary, there are 2n parameters required to specify the CPT of the child. One
way to reduce the number of parameters is to use canonical distributions to de-
scribe the child-parents relationship instead of a CPT. A canonical distribution
fits some standard pattern that is selected by assuming some characteristics of
the relationship between child and parents.

3.5.1 Deterministic Nodes

Deterministic nodes are one of the simplest canonical gates that are available.
The value of a deterministic node is exactly specified if the values of his parents
are known. Example of deterministic nodes are logical gates like AND and OR.

21



3.5.2 Noisy-OR and Noisy-MAX Gates

Uncertain relationships can often be characterized by the so-called ‘noisy’ rela-
tionship. The noisy-OR relationship [15] is a generalization of the logical OR.
To explain the difference, take a look at the following example. Suppose we
have a node that has three causes (parents) that can make the node true. In
case of the logical OR the child is true if one of the causes is true. In case of
the noisy-OR the probability that the child is true raises, but it does not have
to be 1. Noisy-MAX is again a generalization, but then of the noisy-OR gate.
See the part V about exploiting decomposable causal independence for more
information about noisy-OR and noisy-MAX.

3.6 Bayesian Networks in Practice: Diagnosis

Diagnosis is probably one of the most succesful applications of Bayesian net-
work. Based on symptoms, a BN tries to identify the underlying cause of the
symptoms. In medical diagnosis this means that based upon symptoms of the
patient, the underlying disease or condition has to be found. GeNIe has a spe-
cial diagnosis extension that can be turned on. The DSL lab has also developed
software to automatically generate diagnostic models, see, for example, [17].
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Chapter 4

GeNIe and SMILE

The GeNIe and SMILE software has been developed by the Decision Systems
Laboratory (DSL) of the University of Pittsburgh. SMILE is the engine and
GeNIe is the graphical user interface on top of SMILE. Both can be downloaded
from the GeNIe and SMILE website at http://www.sis.pitt.edu/∼genie.

4.1 GeNIe

The GeNIe (Graphical Network Interface) software package can be used to create
decision theoretic models intuitively using the graphical click-and-drop interface.
It is the graphical interface to SMILE, a fully portable Bayesian inference engine
developed by the Decision Systems Laboratory and thoroughly tested in the field
since 1998. GeNIe 2.0 is the latest version of GeNIe. GeNIe 1.0, released to
the community in 1998, has received a wide acceptance within both academia
and industry. Users of the programs have shared with us their experiences and
their suggestions have led to the development of GeNIe 2.0. GeNIe 2.0 has a
refreshingly new modern interface, and is even more intuitive and easier to use
than GeNIe 1.0. In addition to aesthetics, GeNIe 2.0 has many features to offer.

Primary features:

• Graphical editor to create and modify network models.

• Uses the SMILE engine. You may develop models in GeNIe and create a
custom interface for them using SMILE.

• Supports chance nodes with General, Noisy-OR/MAX and Noisy-AND
distribution.

• Open multiple networks and cut and paste sections of models between
them.

• Complete integration with MS. Excel, cut and paste data into internal
spreadsheet view of GeNIe.
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• Cross compatibility with other software. Supports all major file types
(e.g., Hugin, Netica, Ergo).

• Support for handling observation costs of nodes.

• Support for diagnostic case management.

4.2 SMILE

SMILE (Structural Modeling, Inference, and Learning Engine) is a fully plat-
form independent library of C++ classes implementing graphical probabilistic
and decision-theoretic models, such as Bayesian networks, influence diagrams,
and structural equation models. Its individual classes, defined in SMILE API
(Application Programming Interface), allows to create, edit, save, and load
graphical models, and use them for probabilistic reasoning and decision making
under uncertainty.

SMILE supports directly the object-oriented methodology. SMILE is imple-
mented in C++ in a platform independent fashion. Individual classes of SMILE
are accessible from C++ or (as functions) from the C programming language.
Since most implementations of programming languages define a C interface, this
makes SMILE accessible from practically any language on any system. SMILE
can be embedded in programs that use graphical probabilistic models as their
reasoning engines. Models developed in GeNIe can be equipped with a user
interface which utilizes SMILE as the backend engine. SMILE is released as a
dynamic link library (DLL). There are also several SMILE wrappers, such as
SMILE.NET (.NET interface), SMILEX (Active X), jSMILE (Java interface),
etc.

Primary features:

• Graphical editor to create and modify network models.

• Platform independent, versions available for Windows, Unix (Solaris),
Linux, Mac, Pocket PC, etc.

• SMILE.NET available for use with .NET framework. Compatible with
all .NET languages, including C# and VB.NET. May be used to create
web-based applications of Bayesian networks.

• Thorough and complete documentation.

• Robust and running successfully in the field since 1997.

• Responsive development team support that will compile SMILE for any
platform on demand.
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Figure 4.1: The different layers of SMILE.

4.3 Design of SMILE

SMILE is build modularly with the SMILE C++ library as core. SMILE con-
tains only the basic functions like for example to build a network and to perform
inference. For persistence, the SMILEXML library is available. This library con-
tains methods to read and write XML files. A module that will be introduced in
the future is SMILEARN. This module is a learning API and is in development
for the last few months and is not publicly available yet. I designed the new
API together with Adam Zagorecki and Tomasz Sowinski, and more details will
follow in part IV.

On top of the SMILE modules we have the SMILE wrappers and GeNIe.
They just ‘talk’ to the SMILE modules we just mentioned to perform the re-
quests made. See Figure 4.1 for an overview of all the layers.
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Part II

Case Management
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Chapter 5

Management of Cases in
Existing Systems

This chapter will give an overview of existing case management systems. A case
management system is, in our context, a tool to manage data that belongs to a
network. When a user sets evidence and targets nodes in a network, he might
want to save this. When he saves it, this is considered to be one case, but he
can save as many cases as he wants. It is useful to store cases for later use, but
it is even more useful to use the cases to refine the network. This is what we
will do in part IV.

5.1 What are Cases?

Cases have different meanings in different contexts. In a hospital, for example,
a case can be a patient where doctors are trying to diagnose a disease. If a
doctor talks about a case, he means the patient and the file that contains the
medical history of the patient.

When we talk about a case, it is in the context of Bayesian networks. A case
in a Bayesian network consists of the the states of the variables in the model (the
state can also be unknown), plus some additional data. Examples of additional
data are, for example, unique case names and target nodes in the network.

5.2 Current State of Case Support in Software

Before we are going to talk about the new case management system, lets take
a look at the current state of the available software. We also investigated if the
cases can be used for learning, something we will do in part IV. An overview of
the findings are in Table 5.1. We will go through this table step by step.

For this comparison we focused on four different features:
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Table 5.1: Comparison between the different software products.
Import data Edit cases Param. learn. Struct. learn.

Bayesia Yes No Yes Yes
GeNIe No No No No
Hugin Yes No Yes Yes
Netica Yes No Yes No
SamIam Yes No Yes No

• Import data: this means that data can be imported to the program and
can be used for learning.

• Edit cases: this means that there are built-in features to edit cases (data),
comparable to our case management system.

• Parameter learning.

• Structure learning.

There are some remarkable observations that can be derived from the compari-
son. One is that GeNIe does not have even one of the features stated and this
can be explained by the fact that DSL is not a company and they have only
limited resources. But in the short future GeNIe will also support almost all
features, because currently there is a lot of development in all the four areas in
DSL. Besides this work on the case management and refinement, work is also
done to build a learning interface for importing data from different data sources.
Some features are already implemented in SMILE, but do not have an interface
in GeNIe yet.

Another interesting point is that editing cases is not supported by any soft-
ware package. Our approach, however, will keep the cases tightly integrated
to the network and it is this point what will be the biggest difference with the
other software. We will take a look at the advantages and disadvantages of
this approach in the next chapter. Most of the software has the capability of
learning parameters, and sometimes structure from data, but refinement of the
network using cases is usually not supported.
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Chapter 6

Design of Case
Management in SMILE

In the previous chapter we already explained what cases are, and compared
existing facilities to manage cases. The conclusion was that there are usually
no built-in facilities to edit cases, but that importing cases (data) to learn
a BN is possible. In our approach the case management system is separate of
learning. Case management is a stand-alone GeNIe and SMILE feature and case
refinement is an extension on this, i.e., it uses the cases in the case management
system to refine a network. This chapter will explain the design of the case
management system in SMILE.

6.1 Attributes of a Case

The current design of the case management system stores the following at-
tributes of a case (more attributes could be stored in the future):

• The unique case name.

• The description.

• The category.

• The creation date of the case.

• The last modification data of the case.

• The evidence set in the network.

• The target nodes set in the network.

Case management in SMILE basically exists of two classes, i.e., DSL caseManager
and DSL simpleCase (this name is because there already was a class named
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Figure 6.1: UML diagram of the case management system. Unimportant details
have been left out.

DSL case in SMILE that is used for diagnosis), and as you can see in Fig-
ure 6.1. DSL caseManager holds a collection of DSL simpleCases. One other
important task is that it forwards method calls that indicates a change in the
network, to all the cases that are currently hold in DSL caseManager.

The main case management logic is implemented in DSL simpleCase. Most
of the methods are for manipulating and quering the evidence and targets in a
case. The two key methods are CaseToNetwork and NetworkToCase, where the
former method copies all the evidence and targets in a case to the network, and
the latter does it the other way around.

The DSL caseManager is being kept in DSL network. When a network is
created, the DSL caseManager is also automatically created. If the network
and cases are loaded from file, they are of course automatically initialized.
DSL network works as a facade for the DSL caseManager, because DSL network
contains the same methods as DSL caseManager, but just forwards the calls to
DSL caseManager. In this way, it is not necessary for people that are using the
SMILE API to know about the DSL caseManager, it is encapsulated.

6.2 Hooking into the Network

Obviously, cases are very tightly related to a certain network, because most, or
all, variables match. Cases should be consistent with the network. If evidence
in a case cannot be set in the network this will lead to problems. To force
that cases are consistent, we update the cases when changes in the network
occur. When a node or state is removed, or a statename has been changed in
the network, we have to update the cases. Nodes or states that are added are
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not anywhere in the cases yet, so nothing has to be changed. Summarizing, we
have the following actions:

• Removal of a node. If this node contained evidence, this node will be
removed from the evidence list. The same holds for a target node.

• Removal of a state. If there are nodes that have this state as evidence,
this will be removed from the evidence list.

• Change of a statename. When this happens we have to update the state-
name of the corresponding node in the cases too.

Everything we just mentioned is implemented in the SMILE core, since it is
closely related to the core SMILE features.

6.3 Storage

Usualy data is stored in separate data files, but we chose the novel approach of
storing the cases in the same file as the network is stored. This is basically a
consequence of the tight integration of cases with the network. Cases ‘belong’
to a network, so they can just as well be stored in the same file. In this way,
we enforce that the user can not use cases that are inconsistent with the net-
work. Also, it is very convenient to have only one file that contains everything.
Exchange of networks including cases becomes a lot easier.

Here is an example of an XDSL file, containing a network and cases, where
irrelevant details have been left out:

<?xml version="1.0" encoding="ISO-8859-1"?>
<smile version="1.0" id="Aa" numsamples="1000">

<nodes>
...

</nodes>
<cases>

<case name="case1" category="Mark">
<description>The first case</description>
<evidence node="node_7" state="value1" />
<evidence node="node_32" state="value1" />
<evidence node="node_34" state="value2" />
<evidence node="node_10" state="value0" />
<evidence node="node_15" state="value0" />
<evidence node="node_21" state="value2" />
<evidence node="node_36" state="value1" />

</case>
<case name="case2" category="Mark">
<description>The second case</description>
<evidence node="node_7" state="value1" />
<evidence node="node_13" state="value0" />
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Figure 6.2: Overview of the saving to and loading from the XDSL file.

<evidence node="node_18" state="value0" />
<evidence node="node_24" state="value1" />
<evidence node="node_28" state="value1" />
<evidence node="node_31" state="value3" />
<evidence node="node_10" state="value1" />

</case>
<case name="case3" category="Mark">

<evidence node="node_5" state="value0" />
<evidence node="node_0" state="value1" />
<evidence node="node_13" state="value0" />
<evidence node="node_26" state="value1" />
<evidence node="node_32" state="value1" />
<evidence node="node_36" state="value0" />

</case>
</cases>
<extensions>

...
</extensions>

</smile>

Of course there should be a possibility to import and export cases from the
main XDSL file. This is done by using XML files where the same tags are used
as in the XDSL file. When imported, the cases are checked for consistency with
the network. All of this is implemented in SMILEXML.

One problem is that the XDSL file can become very large, and that it can
take a long time to load. Storing the network and cases in separate files does
not really solve this problem, since you have to load both files then. The only
advantage would be if a user only wants to edit the network and does not want
to do something with the cases. This is, however, not a very likeli scenario and
another thing is, that we think that users of GeNIe usually do not have a really
big dataset. In the future, we might decide to store both network and cases
in a database, because it offers the big advantage that cases are individually
accessible. The main problem is that a database has to be delivered with GeNIe
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Table 6.1: Overview of the differences between the cases.
Diagnostic cases General cases

Loosely coupled with a network. Tightly coupled with a network.
Does not keep cases synchronized Keeps cases synchronized

with the network. with the network.
Separate file for the cases. Stored in the XDSL file.

and SMILE, or the user has to install one himself, and that makes things more
complicated.

To make use of the case management in SMILE we need an user interface
for users to work with. We will describe this in the next chapter.

6.4 Comparison with Existing Diagnostic Cases

In SMILE and GeNIe there are already diagnostic cases available. They are not
as powerful as general cases, e.g., diagnostic cases can only be used in GeNIe
when diagnosis is turned on, where general cases can be used always. It is likely
that the diagnostic cases will be replaced by the general cases in the future.
It will take time since GeNIe and SMILE have to be backwards compatible,
because the diagnostic cases are already used by GeNIe and SMILE users. An
overview of the differences between the two types of cases can be found in
Table 6.1
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Chapter 7

Case Management in GeNIe

This chapter is about the graphical design of the case management system in
GeNIe. GeNIe forwards all the user requests in the interface to SMILE, that
executes them.

7.1 Case Management

By default the case management system in GeNIe is deactivated. It can be
activated in several different ways: using the menu, using a button on the panel
or a key combination. Once activated, the case management consists of the basic
functions of adding, editing, saving, deleting, selecting and searching cases. We
will discuss the features one by one in this chapter.

Tomasz Sowinski implemented the part of the case management system in
GeNIe. I implemented the SMILE part and made the designs for the GeNIe
interface. The screenshots in this chapter are from the latest case management
prototype. Improvements in the near future can be expected, for example, the
icons will be replaced by somewhat more profesional ones when they become
available.

The main user view is shown in Figure 7.1 where the case management is
fixed in the main GeNIe view. It is also possible to have it in a separate panel
as you can see in Figure 7.2. One important design decision was to show by
default only the columns where for at least one of the cases evidence is available.
Typically, evidence is only available for certain variables, and that justifies this
approach. This makes the interface for the user a lot easier to manage, certainly
in combination with the search functionalities. It is possible switch between
showing all the columns or only the columns with evidence by using a button.

7.2 Adding Cases

The use of cases is integrated in the main model view. If the user sets evidence
and targets in the network model, he can save it by pressing the save case button.
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Figure 7.1: The GeNIe interface with the case management system. The text
may not be readable, but it shows the different panels. The case management
is between the buttons on the top and the network.

Figure 7.2: Case management in a separate window.

In Figure 7.3 you can see a pop-up displays that asks for a required unique case
name, an optional category, and an optional description. After saving a new
case the case is still active in the network and can be edited.

7.3 Editing and Saving Cases

Cases can be edited in the same way as adding a case, with the difference that
the case already exists. However, there are two places where cases can be edited:
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Figure 7.3: The window to add a case.

Figure 7.4: Changing a value in the case management screen.

• In the network view of GeNIe in the same way as adding a case. The case
that is instantiated in the network can be edited.

• In the case management screen, see Figure 7.4. All the cases can be edited
at the same time in the table view.

If the case that is edited is an already saved case, a * sign is appended to
the visible case name. When the user is finished, there are two ways to save a
case:

- Save. This saves the current case under the same name.

- Save as. A pop-up displays that ask for a required unique case name, an
optional category, and an optional description. ‘Save as’ adds a new case
to the case database.

In this situation, by saving we mean saving in memory. The cases are written to
file only when the whole network is saved. This is a consequence of the fact that
everything is stored in one file. For more information, see the previous chapter.
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Figure 7.5: Applying a case to the network.

7.4 Selecting Cases

Selecting cases happens by selecting the case and applying it in the network.
There is an apply button and also right clicking and selecting ‘Apply case’ is
possible as can be seen in Figure 7.5. The apply button looks like the ‘play’
sign on video recorders. When a case is applied, the evidence and targets in the
case are copied to the network.

7.5 Deleting Cases

A case can be deleted by the delete button. It will delete the currently active
case, but first the user will be asked for a confirmation.

7.6 Search

It is possible to search through the cases by entering keywords in the search
field and pressing the enter key or search button. The system will search in case
names, case categories and case descriptions, see also Figure 7.6. It is possible
to switch back and forth between all the cases and the cases that are the result
of a search query. Additionally, it is possible to sort all the columns in the
case management by clicking on the header. Clicking again reverses the sorting
order.

7.7 Importing and Exporting Cases

For importing and exporting cases we use a prescribed XML file format as was
mentioned in the previous chapter. A dialog window opens to select or create a
file.
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Figure 7.6: A simple search example, the upper one is before and the lower one
after searching.

7.8 Case Management and Learning

There will be a button ‘learn’ that uses the cases to update the parameters in
the network. No feedback is required, because the priors in the network and the
hierarchical confidence contains all the information needed. How this exactly
works will be described in Part IV about refinement of BNs using cases.

41



42



Part III

Learning Bayesian
Networks
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Chapter 8

Statistical and Bayesian
Learning

Learning is the process of fitting a Bayesian network to the knowledge of an
expert, and/or a dataset. The better the network fits, the better the network
will perform, as long as it does not overfit the data. Learning a Bayesian
network involves learning the structure of a network (graph) and learning the
probabilities in a network (CPTs). There are four cases in learning:

1 Known structure, complete data.

2 Known structure, incomplete data.

3 Unknown structure, complete data.

4 Unknown structure, incomplete data.

In the next chapters we will take a look at these four cases, but first we will
say something about the difference between statistical learning and Bayesian
learning.

8.1 Statistical Learning vs Bayesian Learning

In learning with Bayesian networks there are essentially two fundamentally dif-
ferent approaches that can be used. One is statistical learning (the classical
approach), usually in the form of Maximum Likelihood Estimation (MLE), the
other is Bayesian learning. Lets take the example of a coin toss sequence and
try to estimate the parameter θ, i.e., the probability of heads. In the classical
approach θ is fixed, and unknown, and each dataset D will occur with a certain
probability, i.e., P (D|θ). Eventually, we choose the parameters that most likely
generated the actually observed data.

In contrast, in the Bayesian approach D is fixed and we imagine all possible
values of θ from which the set could have been generated. θ is treated as a
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Table 8.1: An overview of the differences and similarities of statistical and
Bayesian learning.

Statistical Bayesian
Fixed parameters Fixed dataset

No priors Priors
Bad with small dataset Can handle small datasets

Asymptotically consistent Asymptotically consistent

random variable, so when we want to compute the exact expectation we have
to average over all possible values of θ:

EP (θ|D)(θ) =
∫

θP (θ|D)dθ .

The question which approach is better has lead to endless debates. It is not
possible to say which one is best, the approaches are just different, but self-
consistent, and they should be applied in the right situation. An overview of
the differences and similarities are given in Table 8.1.
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Chapter 9

Learning Parameters of a
Known Structure with
Complete Data

The first of the four different cases in learning, and the easiest, is learning para-
meters of a structure that is known, and the data is complete. We will explain
how to the two different types of learning, maximum likelihood estimation and
Bayesian learning, in this scenario.

9.1 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is the principle of finding values of pa-
rameters that fit the data best. It is one of the most commonly used estimators
in statistics. To be more formal, MLE finds parameters in such a way that they
maximize the likelihood function, given by:

L(θ : D) = P (D|θ) =
∑
m

P (x[m]|θ) ,

where x[m] denotes sample (or case) m. A basic assumption of this approach
is that we assume the samples to be independently and identically distributed
(i.i.d. for short).

Suppose we have data of a coin toss: HTHHT (H=heads, T=tails). We can
give the likelihood function as (where θ is the probability of heads):

L(θ : D) = θ · (1− θ) · θ · θ · (1− θ) .

To compute the likelihood of this coin toss, we only need the number of heads
NH and tails NT in the experiment. The likelihood function becomes:

L(θ : D) = θNH · (1− θ)NT
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Figure 9.1: Bayesian network used as a more complex example for maximum
likelihood learning.

where NH and NT are said to be sufficient statistics for this binomial distribu-
tion, because only these numbers are needed to compute the likelihood function.
In general, sufficient statistics can be obtained by counting occurences in the
dataset.

To compute the optimal likelihood parameters, we take the derivative and
set it equal to 0. Usually the log likelihood is used, because it is more convenient
to take the derivative.

log L(θ : D) = `(θ : D) = NH ln θ + NT ln(1− θ) .

Taking the derivative (we replaced θ by θ̂ to indicate that we are calculating
the optimal θ), we obtain:

`′(θ : D) = 0 =
NH

θ̂
+

NT

1− θ̂
,

which leads to:

θ̂ =
NH

NH + NT
.

Lets apply this principle to a more complex dataset based on the Bayesian
network in Figure 9.1:

D =




A[1] B[1] C[1] D[1] E[1]
· · · · ·
· · · · ·

A[M ] B[M ] C[M ] D[M ] E[M ]


 .

All the parameters are binomially distributed, just like in the coin toss example.
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For the likelihood function we get:

L(θ : D) =
∏
m

P (A[m], B[m], C[m], D[m], E[m] : θ)

=
∏
m

P (A[m]|θA) · P (B[m]|A[m] : θB|A) · P (C[m]|A[m] : θC|A) ·

P (D[m]|B[m], C[m] : θD|B,C) · P (E[m]|D[m] : θE|D)

=
∏
m

P (A[m]|θA) ·
∏
m

P (B[m]|A[m] : θB|A) ·
∏
m

P (C[m]|A[m] : θC|A) ·
∏
m

P (D[m]|B[m], C[m] : θD|B,C) ·
∏
m

P (E[m]|D[m] : θE|D) .

The first rewrite is because of the network layout. It introduces the conditional
dependencies of the variables. The second rewrite is because the terms are
independent. What we are left with are 4 independent estimation problems.
Lets generalize our findings to all Bayesian networks with binomial variables:

L(θ : D) =
∏
m

P (x1[m], . . . , xn[m] : θ)

=
∏
m

∏

i

P (xi[m]|Pai[m] : θi)

=
∏

i

∏
m

P (xi[m]|Pai[m] : θi)

=
∏

i

Li(θi : D) .

In the rewrite above we see that the likelihood function can be decomposed into
seperate likelihood functions, according to the structure of the network. This
is a very desirable property, because it makes the likelihood function locally
computable.

We can also generalize the likelihood function to multinomial variables:

L(θ : D) =
K∏

k=1

θNk

k .

Again, the optimal parameters can be computed in closed form:

θ̂k =
Nh∑
l Nl

.

9.2 Learning Parameters by Bayesian Inference

The Bayesian approach to parameter learning needs only one tool: inference.
Parameters are treated as random variables themselves. In this section we take
a look at an example that uses this approach.
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Bayesian learning starts with making hypotheses about the data that is
given. These hypotheses are expressed by the prior distributions of the para-
meters that are in the dataset. Examples of frequently used prior distributions
are the Beta distribution and the Dirichlet family. They have the wonderful
property that the posteriori distribution is of the same type of distribution as
the apriori distribution.

This is the beta distribution, used for binomial distributions:

beta[a, b](θ) = αθa−1(1− θ)b−1 .

The Dirichlet distribution is used for multinomial distributions. The Dirichlet
prior is given by:

P (Θ) ∝
K∏

k=1

θαk−1
k ,

for legal θ1, . . . , θK .
The posterior has the same form, with hyperparameters α1+N1, . . . , αk+Nk:

P (Θ|D) ∝ P (Θ)P (D|Θ) ∝
K∏

k=1

θαk−1
k

K∏

k=1

θNk

k =
K∏

k=1

θαk+Nk−1
k .

The hyperparameters α1, . . . , αk can be thought of as imaginary counts from
our prior experience. The sample size is equal to α1 + · · ·+ αk. The larger the
sample size is, the more confident we are in our prior.

It is possible to compute the prediction of a new event in closed form:

P (X[1] = k) =
∫

θk · P (Θ)dΘ =
αk∑
l αl

.

Since the posterior is also Dirichlet, we get

P (X[M + 1] = k|D) =
∫

θk · P (Θ|D)dΘ =
αk + Nk∑
l(αl + Nl)

.

The Dirichlet prior is said to be a conjugate family for the multinomial
likelihood. This is because of the property that the posterior follows the same
parametric form as the prior distribution.
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Chapter 10

Learning Parameters of a
Known Structure with
Incomplete Data

This chapter is similar to the previous chapter, but with the difference that we
have to learn from incomplete data now.

10.1 Missing Values and Hidden Variables

Data can be incomplete in two different ways:

- There are missing values.

- There are hidden variables.

The difference is that missing values can occur everywhere in the dataset. In
case of hidden variables, all their values are missing.

In case of missing values we usually make the assumption that the values
are missing at random (MAR): The probability that the value of Xi is missing
is independent of its actual value given other observed values.

10.2 Problems with Incomplete Data

Incomplete data introduces problems that we did not have with complete data.
Where learning with complete data resulted in independent posteriors, they can
be inderdependent when learning from incomplete data. The consequences are
that the maximum likelihood parameters can not be computed separately for
each multinomial.
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10.3 Maximum Likelihood Estimation

With incomplete data, the likelihood function can have multiple global maxima.
Finding the MLE parameters becomes a nonlinear optimization problem. One
option to find the optimal parameters is to use the method of the Gradient
Ascent (GA), where the idea is to follow the gradient of the likelihood with
reference to the parameters:

∂ log P (D|Θ)
∂θxi,pai

=
1

θxi,pai

∑
m

P (xi, pai|o[m], Θ) .

This requires the computation of P (xi, pai|o[m], Θ) for all i,m. The advantages
of gradient ascent are:

- Flexible.

- Closely related to methods in neural network training.

And the disadvantage:

- To get reasonable convergence we need to combine it with ‘smart’ opti-
mization techniques.

- We have to specify a step size.

The second possibility to find the optimal parameters is the Expectation-
Maximization algorithm (EM). EM is a general method to learn from incomplete
data and is much simpler than gradient ascent, it uses inference as a subroutine.
The idea is the following: If we had access to sufficient statistics, then we
can estimate the parameters. However, the missing values prevent us from
computing the sufficient statistics. Hence, we complete the sufficient statistics
using the current parameter assignment. Then we compute the new parameters
and iterate again. More about EM in part IV.

10.4 Bayesian Inference

Remember that with complete data there is a closed form solution for the inte-
gral:

P (x[M + 1]|D) =
∫

P (x[M + 1]|θ) · P (θ|D)dθ

In case of incomplete data there is no such solution. Incomplete data means:

- No sufficient statistics.

- Posterior does not compose.

- No closed form.
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We need to use approximations. The simplest approximation method is using
MAP parameters. MAP stands for Maximum A Posteriori assignment:

P (x[M + 1]|D) ≈ P (x[M + 1]|θ̃) ,

where θ̃ = arg maxθ P (θ|D). We make the assumption that the posterior mass
is dominated by MAP parameters.

We can use the same techniques to find the MAP parameters as finding the
maximum likelihood (ML) parameters. But instead of maximizing L(θ : D), we
have to maximize P (θ|D).

Another type of approximation is the stochastic approximation. First sample
θ1, . . . , θk from P (Θ|D), then:

P (x[M + 1]|D) ≈ 1
k

∑

i

P (x[M + 1]|θi) .

The question that remains is how we sample from P (Θ|D). For this, we can
use Markov Chain Monte Carlo (MCMC) methods. We will not go into more
detail, since this method is not of our main interest.

53



54



Chapter 11

Learning Parameters and
Structure with Complete
Data

There are essentially two forms of learning a structure from data:

1. Constraint based. Try to find a graph that satisfies all the constraints
implied by the empirical conditional dependencies measured in the data.

2. Score based (Bayesian). Search through the space of graphs and use some
scoring metric to evaluate them, and return the graph with the highest
scoring function.

Both are consistent: with a sufficient amount of data and computation, they
learn the correct structure.

11.1 Constraint Based

Constraint based learning aims at finding independencies between variables in a
dataset. These independencies are used to infer causal links, and the target is to
find the set of structures that is consistent with the found independencies. The
constraint based approach is older than the score based approach, and is not
used as much anymore. An example of an algorithm is the PC algorithm [26]. It
takes as input a set of conditional independencies and outputs a ‘pattern’ that
represents a Markov equivalence class of causally sufficient models.

11.2 Score Based

The score based approach is the more Bayesian approach of the two. It searches
over the space of models and scores each model using the posterior probability
of the model given the data.
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11.2.1 Maximum Likelihood Estimation

To score the structures we use the log likelihood score for structures:

`(G : D) = log L(G : D)

= M
∑

i

(I(Xi; PaG
i )−H(Xi)) ,

where M is the number of samples (or cases), H(X) is the entropy of X and
I(Xi; PaG

i ) is the mutual information between Xi and PaG
i . The mutual infor-

mation tells how much information the parents PaG
i give about child Xi. Some

properties of mutual information:

- I(X; Y ) ≥ 0.

- I(X; Y ) = 0 iff X and Y are independent.

- I(X; Y ) = H(X) iff X is totally predictable given Y .

So, the higher the score of `(G : D), the larger the dependency of each
variable is on its parents. But when you add extra arcs, the score always gets
higher: I(X;Y ) ≤ I(X;Y, Z). The maximum score is attained by a fully con-
nected network. We need to do something to prevent this, and thus penalize
complexity (more arcs).

Minimum Description Length (MDL) is a method of assigning scores to
networks that penalize complexity. The description length is given by:

DL(D : G) = DL(G) +
log M

2
dim(G)− `(G : D) ,

where DL(G) is the number of bits needed to encode G, log M
2 dim(G) the num-

ber of bits needed to encode ΘG, and `(G : D) the number of bits needed to
encode D using (G, ΘG). Minimizing the description length, is equivalent to
maximizing

MDL(G : D) = `(G : D)− log M

2
dim(G)−DL(G) .

The likelihood is roughly linear in M . The penalty is logarithmic in M . As
we get more data, the penalty for a complex structure is less.

The MDL score is consistent, that is:

- As M →∞ the true structure G∗ maximizes the score.

- For sufficiently large M , the maximal scoring structures are equivalent to
G∗.
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11.2.2 Bayesian Inference

For Bayesian learning, we have to compute the expectation over the unknown
G:

P (x[M + 1]|D) =
∑

G

P (x[M + 1]|D, G)P (G|D) ,

where
P (G|D) ∝ P (D|G)P (G) =

∫
P (D|G, θ)P (θ|G)dθP (G) .

We made the assumption that the Gs are mutually exclusive and exhaustive.
P (G|D) is the posterior score, P (D|G) the marginal likelihood, P (D|G, θ) the
likelihood, P (θ|G) the prior over the parameters, and P (G) the prior over the
structures.

Now, assume we have observed a sequence of coin tosses and we want to
predict the next one. The chain rule gives us:

P (x[1], . . . , x[M ]) = P (x[1])P (x[2]|x[1]) · · ·P (x[M ]|x[1], . . . , x[M − 1]) .

Recall that

P (x[m + 1] = H|x[1], . . . , x[m]) =
Nm

G + αH

m + αH + αT
,

where Nm
H is the number of heads in the first m samples. The marginal likelihood

is given by:

P (x[1], . . . , x[M ]) =
αH

αH + αT
· · · NH − 1 + αH

NH − 1 + αH + αT
·

αT

NH + αH + αT
· · · NT − 1 + αT

NH + NT − 1 + αH + αT
.

We simplify this by using the Gamma function: (α)(1 + α) . . . (N − 1 + α) =
Γ(N+α)

Γ(α) .

P (x[1], . . . , x[M ]) =
Γ(αH + αT )

Γ(αH + αT + NH + NT )
Γ(αH + NH)

Γ(αH)
Γ(αT + NT )

Γ(αT )

We generalize this for multinomials, where we have P (Θ) as a Dirichlet prior
and α1, . . . , αK as hyperparameters. D is a dataset with sufficient statistics
N1, . . . , NK .

P (D) =
Γ(

∑
l αl)

Γ(
∑

l +Nl)

∏

l

Γ(αl + Nl)
Γ(αl)

We get the following marginal likelihood:

P (D|G) =
∏

i

∏

PaG
i

Γ(α(paG
i ))

Γ(α(paG
i ) + N(paG

i ))

∏
xi

Γ(α(xi, paG
i ) + N(xi, paG

i ))
Γ(α(xi, paG

i ))
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where N(..) are the counts from the data and α(..) are the hyperparameters for
each family given G.

To compute the given formula we need the prior counts α(..) for each network
structure G. Since there are exponentially many structures, this is a difficult
task.

MDL and the Bayesian score are both consistent and asymptotically equiv-
alent. They also are score-equivalent: they assign the same score to equivalent
networks.
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Chapter 12

Learning parameters and an
unknown structure with
incomplete data

This chapter is similar to the previous chapter, but with the difference that now
we have to learn the structure and parameters from incomplete data. This one
is the hardest of the four learning problems.

12.1 MDL

To use the MDL score in case of incomplete data we need to find the maximum
likelihood parameters in order to compute the mutual information and entropy.
These maximum likelihood parameters have to be found, for each structure,
using the methods mentioned in chapter 10, since the data is incomplete.

12.2 Bayesian score

In case of the Bayesian score it is not possible to evaluate the marginal likelihood,
so we have to resort to approximations. We can use different approximations:

• Asymptotic approximations. This evaluates the score around MAP para-
meters that you can find using, for example, the EM algorithm.

• Stochastic approximations. These methods are usually much slower.

Usually a greedy search algorithm is used to make small changes in an initial
structure to improve it. The search procedure adds and removes arcs to find a
better structure. Why we do not evaluate all possible structures is explained in
the next section.
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12.3 The problem

The problem of these two approaches, MDL and Bayesian score is that they
require to compute the optimal parameters for each structure candidate. Even
when it turns out that the candidate is a low scoring one, we spend non-
neglegible computation time calculating the optimal parameters. So in prac-
tice, such learning procedures are only feasible when we consider small sets of
candidate structures.
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Part IV

Refinement of BNs Using
Cases
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Chapter 13

The
Expectation-Maximization
Algorithm

We use the Expectation-Maximization (EM) algorithm [5] to refine a Bayesian
network with cases. We will see how EM is capable of combining expert knowl-
edge, in the form of a Bayesian network, and cases, in a principled way. We also
take a look at SMILEARN and see how EM is implemented.

13.1 Definition

The Expectation-Maximization (EM) algorithm is actually a class of algorithms
that can learn from datasets with missing data. In our context, the EM algo-
rithm searches for maximum likelihood and MAP estimates of parameters in
BNs, where the BN depends on unobserved latent variables. MAP estimates
are much like maximum likelihood estimates, but the parameters have a prior
distribution. EM alternates between two steps:

• Expectation: The expected values of the latent variables are calculated.

• Maximization: Computes the new maximum likelihood estimates of the
parameters given the data and setting the latent variables to their expec-
tation.

Let E be the known variables and H the unobserved latent variables. Together,
E and H form the complete data. Assume that P is a joint model of the
complete data with parameters θ: P (E,H|θ). EM will then iteratively improve
the initial parameter setting θ0 to θ1 through θn until convergence. For the
discrete case we get the following formulas for re-estimating θ:

θn+1 = arg max
θ

∑

h

P (H|E, θn) log P (E,H|θ) .
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And maximizing:

Q(θ) =
∑

h

P (H|E, θn) log P (E,H|θ) .

Informally, the idea of EM is this. With complete data we were able to
compute the optimal parameters, so what we try to do is complete the data
by using inference. We have to take the following steps. First, we choose the
initial parameters. We can initialize them randomly, or assign prior probabili-
ties and assign confidence in those priors. In the next chapter we will explain
how to use priors in EM. After initialization, inference is used to complete the
data and compute the expected sufficient statistics. For every local probability
distribution of a node the parents are initialized, and if the parent configuration
consistent with the evidence in the network, the counts are updated by the pos-
terior probability of the node multiplied by the probability of the instantiation
of the parents. Based on the expected sufficient statistics we can update the
parameters like we did in the case of complete data. We repeat this process
until convergence.

EM will always lead to a local or global maximum, except for one case.
The parameters will not converge if the initial parameters are exactly a local or
global minimum, which is very unlikeli.

13.2 Structural EM

It is possible to make EM suitable to learn structure too, this is called Structural
EM [10] [9]. The idea is that is each loop is either a normal parametric EM step
or a structural EM step. So the Structural EM algorithm performs a search in
the joint space of parameters and structure.

13.3 Learning Noisy-MAX

Noisy-MAX gates are not directly learnable using the EM algorithm. One ap-
proach to make them learnable is to decompose them to only CPTs, learn those
CPTs, and convert back to noisy-MAX. More about this approach in part V.

13.4 Design of SMILEARN

In Figure 13.1 an important part of the design of the SMILEARN API is shown.
The idea is that DSL dataset contains all the data, and that all learning algo-
rithms that are used, will take a DSL dataset object as input. DSL dataSource
is an interface that defines all the methods that are needed to construct a
DSL dataset. DSL casesDataSource implements the DSL dataSource interface
and in this way it is possible to build a DSL dataset object that is based on
cases. The cases are loaded directly from the network. Note that it is easy
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Figure 13.1: Class design in the SMILEARN API.

to create a DSL fileDataSource or DSL databaseDataSource if needed, just by
implementing the DSL dataSource interface.

13.5 SMILEARN and EM

Figure 13.2 sketches the design of EM in SMILEARN. We can distinguish four
classes organized in an hierarchy: DSL em, DSL suffStats, DSL suffStatsOfVar
and DSL configuration. At the top of the hierarchy is DSL em and the method
Learn can be called to execute the learning process. DSL suffStats is nothing
more then a container of DSL suffStatsOfVar instances. DSL suffStatsOfVar
maintains the sufficient statistics of all the local probability distributions that
are stored in DSL configuration. So DSL configuration is one local probability
distribution and DSL variable contains the local probability distributions of one
variable. DSL suffStatsOfVar updates the parameters in the network after one
EM loop.
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Figure 13.2: Overview of the classes and methods used to implement the EM
algorithm.
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Chapter 14

Priors and Hierarchical
Confidence

There are different approaches of refining Bayesian networks with data [11]. Our
approach, MAP parameters and hierarchical confidence are both subject matter
of this chapter.

14.1 MAP Parameters

Priors in EM can be realized by using MAP parameters. Instead of calculating
maximum likelihood parameters, we initialize all the local probability distribu-
tion by consulting an expert and assigning the confidence in each of the local
probability distributions by a positive number. Note that this is not a Bayesian
approach, because the parameters themselves are point-estimates and not ran-
dom variables. The use of priors, however, is Bayesian like.

If we take the coin toss example again, the MAP parameters can be computed
in this way:

P (X = h|αh, αt, Nh, Nt) =
αh + Nh

αh + Nh + αt + nt
,

with αh and αt as virtual count of heads and tails. Nh and Nt are the counts
that can be extracted from the dataset. Now lets take a look at an example.
Suppose an expert estimated the prior probability on α′h = 0.5 and α′t = 0.5,
and the expert is not very confident, so say the expert based his estimate on
N ′ = 4 virtual counts. In the dataset we observe the counts Nh = 3 and Nt = 7.
We can compute the posterior like this:

P (X = h|αh = 2, αt = 2, Nh = 3, Nt = 7) =
3 + 2

3 + 2 + 7 + 2
=

5
14
≈ 0.36 .

If we take N ′ = 40, the posterior prediction will be:
3 + 20

3 + 20 + 7 + 20
=

23
50

= 0.46 .
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The data has a lot less influence here, because the expert is a lot more confident
about his prediction. But if there is enough data, it washes away the prior. If
we take as prior counts Nh = 3000 and Nt = 7000, the posterior predictions
become:

3000 + 2
3000 + 2 + 7000 + 2

≈ 0.3 ,

and
3000 + 20

3000 + 20 + 7000 + 20
≈ 0.3 .

When the data is incomplete we have to do more computations. This ex-
ample is not feasible, because we have only one variable. Suppose we have two
magic coins that are causally related: if the first one lands heads, the prob-
ability that the other one lands heads increases. If we want to compute the
count of Nhh with an incomplete dataset, we have to use inference to ‘complete’
the dataset. If of only one of the coins the value is known, we use inference
to compute the expected value of the other coin. In this way we compute the
expected sufficient statistics for the whole dataset and we can resort to updating
the parameters like we did with complete data. Then we start the process again
and continue until convergence, i.e., the parameters do not change anymore.

14.2 Hierarchical Confidence

The idea of hierarchical confidence is that experts can assign their confidence
about each estimate on a high level and, if necessary, re-assign it on a lower
level. This assignment on a lower level overwrites the assignment on the higher
level. There are multiple levels in the hierarchy ranging from confidence in
the network to confidence in a local probability distribution in a CPT. The
virtual count given in the previous section is a simple example of an hierarchical
confidence specification, and shows how the the hierarchical confidence can be
used in EM.

Hierarchical confidence is nothing more than specifying for each distribution,
in an organized manner, how fast the distributions will change when the network
is updated with cases. High confidence means that the prior distributions change
slowly when new data arrives. Low confidence means that the cases are relatively
important, so they will change the prior distribution a lot, if necessary. When a
lot of data is available, the confidence of the expert can be low, since the learning
algorithm should be capable of estimating the parameters quite accurately. The
other way around is also true: if not much data is available, the expert should be
confident about a prior. Otherwise a few cases will change the local distributions
in a way that is not desired.

In GeNIe it is possible to set the confidence by right clicking on an item
and selecting ‘Set confidence’. A popup appears where positive number can be
entered. This information will be used in SMILEARN as confidence. There are
three possible location to specify the confidence:

• On the network level.
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Figure 14.1: Different layers of hierchical confidence.

• On the node level.

• On the level of a local probability distribution.

See also Figure 14.1. If the confidence on a lower level is not specified, the
confidence of the level above is taken. This means that the confidence of the
network always has to be specified. Specifying is convenient for the expert: if
the confidence on the network level is not good enough for a node, the expert
only has to change the confidence in that node.

14.3 Implementation in SMILE

The incorperation of priors confidence in SMILE is easy, because it is a small
extension to the EM algorithm. Instead of randomizing the initial parameters,
we use the prior parameters given by the expert. It works exactly like the
coin toss example of MAP learning in section 14.1, but then for more than one
variable.
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Part V

Exploiting Decomposable
Causal Independence
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Chapter 15

Introduction to
Decomposable Causal
Independence

As we said before, specifying CPTs requires a lot of parameters. This is either
overwhelming for an expert or leads to inferior quality of parameters learned
from small data sets [21]. The most popular proposal that addresses this prob-
lem is the noisy-OR model (and its extension to multi-valued nodes, the noisy-
MAX model) [15] for local probability distributions. The noisy-OR model, suc-
cessfully adopted in numerous practical applications, reduces number of para-
meters required to specify the CPT from exponential to linear in number of
parents, achieving it at the expense of making some assumptions about influ-
ences of the parent variables on the child variable. The noisy-OR model is not
only capable of reducing the number of parameters in the model, but by exploit-
ing its decomposability property it has been proven to improve the efficiency of
belief updating, making some intractable models tractable [12].

15.1 Related Work

In the past, some researchers tried to exploit models for local probability distri-
butions in BN. Meek and Heckerman [20] experimented with learning various
causal independence models for both parameter and structure learning, but they
did not explicitly exploited the decomposability property. Dagum and Galper
[22] attempted to introduce linear models for modeling local probability distri-
butions. However, their approach differs from the average model that will be
proposed here. Our decompositions preserve independence of parameters and
allow for the use of the EM algorithm.
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15.2 New Models

We propose new models for local probability distributions that exploit decom-
posable causal independence. The new models release some assumptions of
causal independence to achieve greater flexibility at the cost of clarity of pa-
rameters interpretation. We present the results of an empirical study based
on Bayesian networks used in practice that show that the new models can be
suitable for learning Bayesian networks from small data sets.

15.3 Fewer Parameters

We propose models for local probability distributions that require fewer para-
meters than CPTs (especially for nodes with a large number of parents) and
are flexible to sufficiently approximate arbitrary patterns of interactions among
causes in producing the effect. We believe that such models can be especially
useful in cases when there is an insufficient amount of data to reliably learn local
probability distributions in BNs, which is one of the bottlenecks in learning BN
models from data. Also, we introduce alternatives to the noisy-OR model that
allow for capturing a wider range of interactions between parent variables than
noisy-OR. It is achieved at the expense of clarity of parameters in our model —
unlike the noisy-OR model, the models proposed here do not have parameters
expressed by means of conditional probabilities of variables explicitly included
in the model (the amechanistic property [12]).

15.4 Emperical Study

We present an empirical study that shows the performance of learning para-
meters of our models using the EM algorithm [5]. We will not use priors and
hierarchical confidence like we did in the case management system, but we will
compute the maximum likelihood parameters. The results indicate that the
proposed models can provide better approximations of local probability distrib-
utions than CPTs for cases when the number of data records is relatively small
compared to the number of parameters in the CPT. We conclude that the mod-
els presented here can be a practical alternative to learning full CPTs, and they
are especially suitable for situations where variables have many parents in the
model, as both learning from data and inference can be improved.
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Chapter 16

Local Distributions in
Bayesian Networks

In this chapter, we briefly introduce the noisy-OR model and subsequently use it
to explain the foundations of causal independence (CI) models. Let us consider
a variable in a BN model and its parents. We will denote the child variable
as Y and its n parents, typically referred to as causes, by X = {X1, . . . , Xn}.
We assume that a parent Xi takes mi states and the child variable Y takes
my states. The CPT for node Y specifies a conditional probability distribution
P (Y |X), and it consists of

∏n
i=1 mi distributions.

16.1 Noisy-OR

One of the approaches to address the problem of a large number of parame-
ters required to specify a CPT is the noisy-OR model. It requires a number of
parameters that is linear in the number of parents. It is achieved by the as-
sumption that the causes X1, . . . , Xn act independently in producing the effect
on Y . This assumption can be represented explicitly by the BN presented in
Figure 16.1(a). This is the decomposed noisy-OR that also used by the EM al-
gorithm for learning. When the EM algorithm is done, the decomposed version
is transformed back to noisy-OR (the same holds for noisy-MAX). The vari-
ables Xi and Y represent the parent and effect variable in the model, while the
variables Mi are hidden and represent the influence of each parent on the effect
variable considered separately. In this representation, variable Y is a deter-
ministic variable (denoted by double circle). This means that its CPT consists
of only 0s and 1s. We will refer to the function defined by Y as combination
function — it combines individual influences of each parent defined by hidden
mechanism variables. In case of noisy-OR, the combination function is simply
the deterministic OR relation. For noisy-MAX it is the MAX relation defined
over the states of Y .
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Figure 16.1: Decomposition of the causal independence models: (a) decompo-
sition into mechanisms and deterministic combination function, (b) decomposi-
tion into mechanism and decomposable combination function.

16.2 Decomposable Independence Models

If the combination function can be decomposed into a series of functions, the
causal independence model is said to be decomposable. It basically says that the
combination function can be decomposed into series of binary functions. For
example, the logical OR relation of n inputs can be decomposed into series of
pairwise OR relations:

OR(X1, X2, . . . , Xn) = OR(Xn, OR(Xn−1, OR(. . . OR(X2, X1) . . .)) .

The general decomposable CI model is shown in Figure 16.1(b). The decom-
posable property can lead to significant improvements of inference performance
for the CI models [12] by reducing clique sizes in the join tree algorithm. This
property has been exploited in more sophisticated algorithms for inference with
CI models [6, 27].

Although the causal independence is capable of defining multiple potentially
interesting models, in the literature only models that have OR, AND, XOR,
MAX, and MIN as the combination function are discussed.

16.3 Alternative Models

In this thesis we propose other models that do not strictly belong to this family,
but draw ideas from it. In general, our models are less restrictive in terms of
made assumptions, but it comes mainly at the expense of knowledge elicitation.
The models mentioned earlier have parameterizations that are convenient for
asking experts (in terms of conditional probabilities of variables in the models,
without the need of explicit mentioning the hidden mechanisms variables). Our
models are parameterized in term of hidden variables, making them more dif-
ficult to work with for human experts. Since the parameters of CI models are
represented as parameters of regular, but hidden, variables, the EM algorithm
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can learn the parameters of the decomposition nodes in the same manner as it
would learn parameters for any other hidden variable or missing value.
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Chapter 17

Ladder Decompositions and
the Average Model

In this section we introduce new models for local probability distributions. We
propose new models that are related to the decomposable CI models. The main
difference is that we release the assumption that the combination function is a
deterministic function and allows CPTs of nodes Yi to take values different from
0 or 1. We propose 3 different decompositions.

17.1 The Compositions

The first decomposition, ladder with mechanisms (LM), presented in Figure 17.1(a)
is basically a generalization of the decomposable CI defined by Heckerman and
Breese [12]. The difference is that we do not impose any constraints on the
combination function — the parameters in CPTs of nodes Mi and Yi can take
arbitrary values. The second model, a simple ladder (SL), presented in Fig-
ure 17.1, differs from the previous in that that it does not have mechanism
nodes, only nodes Yi that define pairwise interactions between parent i and
cumulative influence of previous parents.

Finally, the third decomposition is a model where CPTs of mechanism nodes
can take arbitrary values, but CPTs of nodes Yi have predefined values, such
that the probability of node Y is defined as

P (Y = y|M1, . . . , Mn) =
1
n

n∑

i=1

I(Mi = y) ,

where I is the identity function that takes 1 when the condition in the brackets
is true, and 0 otherwise. This can be achieved when each parameter of CPT of
node Yi (i = 2, . . . , n) is defined as:

P (Yi = y|Mi−1 = a,Mi = b) =
1
i
I(y = a) +

i− 1
i

I(y = a) .
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Figure 17.1: Models used in experiments: (a) ladder with mechanisms, (b)
simple ladder, and (c) the average model.

Table 17.1: Number of parameters for different decompositions.

Decomposition Number of parameters

CPT
∏n

i=1 mi

LM my

∑n
i=1 mi + (n− 1)m3

y

SL mym1 + m2
y

∑n
i=2 mi

Average my

∑n
i=1 mi

Noisy-MAX my

∑n
i=1 (mi − 1)

17.2 Characteristics

These three decompositions have different characteristics. The number of pa-
rameters required to specify relations between causes and effect in the first two
models are shown in Table 17.1. LM should be more suitable for situations
where the child has a small number of states (as m3

y is the dominating fac-
tor), and SL in situations where some parents have a small number of states
(the sum of parents states is multiplied by m2

y). Finally, the average model is
a step toward more meaningful parameters, which can be utilized by human
knowledge engineers. The parameters of this model are expressed in terms of
mechanisms — separate influences of a parent on the effect, and therefore they
have meaning in the modeled domain. The combination function is the average
number of instantiations of mechanism variables. Such a setting has one impor-
tant advantage over models like noisy-MAX — it does not require additional
semantic knowledge about the values (noisy-MAX assumes an ordering relation)
and therefore can be easily applied to learning algorithms, as well as it is more
flexible in terms of modeling. But most of all, it preserves the decomposability
property, which can be exploited by inference algorithms.
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17.3 Noisy-MAX Learning

In order to do noisy-MAX learning, we need to determine what the distinguished
states are. For this, we used a simple approximate algorithm to find both the
distinguished states of the parents and the child. The selection of distinguished
states is based on counting the occurrences of parent-child combinations Nij ,
where i is the child state and j is the parent state. The next step is to normalize
the child states for each parent: N∗

ij = NijP
i Nij

.
Child state i and parent state j are good distinguished state candidates if

N∗
ij has a relatively high value. But we have to account for the fact that one

child can have multiple parents, so we have to combine the results for each of
the parents to determine the distinguished state of the child. For each parent,
we select the maximum value of the state of a parent given the child state.
We take the average of one of the child states over all the parents. The child
state corresponding to the highest value of the average child states values is
considered to be the child’s distinguished state. Now that we have the child’s
distinguished state it is possible to find the parents’ distinguished states in a
similar way.
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Chapter 18

Empirical Results

To test our models we performed series of empirical studies. We decided to use
existing BN models to generate data and then re-learn the parameters of these
models using the new models.

18.1 Experimental setting

For our experiments we used three networks available to the general public
at http://www.sis.pitt.edu/∼genie: Alarm [1], Hailfinder [2] and Hepar II
[21]. From each of these networks, we selected the nodes whose total number of
parameters in CPT exceeded the number of parameters for each of the decom-
positions or the number of parameters in CPTs was more than 100. Table 18.1
shows a summary of the most important characteristics of these models. We
applied the three decompositions and obtained models that had similar struc-
ture to the original model, but that had nodes with large CPTs decomposed.
To evaluate the learning performance we generated c data records from the
original model (used as the gold standard) using probabilistic logic sampling.
We applied the EM algorithm on the models using the generated cases. As a
measure of the quality of fit we used the Hellinger distance [16] between the
two posterior probabilities for a decomposed node and the corresponding node
in the gold standard model. The Hellinger distance between two probability
distributions F and G: DH(F, G) =

[∑
(
√

fi −√gi)2
]1/2. We decided to use

the Hellinger distance because, unlike the Euclidean distance, it is more sensi-
tive to differences in small probabilities and it does not poses difficulties for 0
probabilities as it is the case for Kullback-Leibler divergence.

18.2 Results

We repeated the procedure described above to all three decompositions, and in
addition to this noisy-MAX and CPT without decomposition, 25 times. This
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Table 18.1: Characteristics of nodes used in the empirical study
Model Node Number of Parameters
Alarm node33 108 22 40 46 14
Hepar bilirubin 288 48 168 304 28
Hepar phosphatase 108 30 78 111 18
Hepar inr 108 30 72 111 18
Hepar bleeding 24 14 20 22 10
Hepar alt 288 48 156 304 28
Hepar ast 288 48 156 304 28
Hepar ggtp 384 52 184 372 28

Hailfinder CombVerMo 256 48 144 176 36
Hailfinder CldShadeOth 144 33 75 87 24
Hailfinder Boundaries 108 30 72 84 21
Hailfinder CompPlFcst 324 39 99 120 27
Hailfinder AMInsWliScen 216 39 81 93 30
Hailfinder PlainsFcst 1188 63 165 144 51

helped us to ensure that initial randomization of parameters for EM does not
affect our results significantly. We varied the number of data records c between
50 and 500 for each of the three networks. The results are reported in Table 18.3.

The results of our experiments show that the decompositions perform com-
paratively similar and in some cases better than learning CPTs. We find this
result significant, because decompositions can be exploited in other manners,
for example in knowledge elicitation and inference. The results of our experi-
ments suggest that none of the decompositions itself is the best. However, it is
apparent that the proposed models together with noisy-MAX can outperform
CPTs. Interestingly, the results for the largest CPT under our study (Plains-
Fcst) show the trend that the decompositions can provide a better accuracy
when the number of cases is small. One possible explanation is that the CPT
with its large number of parameters can easily overfit data, while models with
smaller number of parameters can reasonably well approximate the real un-
derlying distribution. Obviously, one should expect that when the number of
data records is sufficiently large, CPTs should ultimately outperform the more
restrictive models.

1Results for Hepar with 500 data records are based on the average of 12 iterations.
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Table 18.2: Results of the empirical study
Node Records CPT Average LM SL Noisy-MAX

50 0.0460 0.0578 0.0384 0.0374 0.0398
node33 100 0.0311 0.0708 0.0273 0.0278 0.0302

200 0.0195 0.0533 0.0209 0.0211 0.0233
500 0.0117 0.0452 0.0117 0.0119 0.0138
50 0.0537 0.0655 0.0618 0.0628 0.0637

bilirubin 1 100 0.0446 0.0469 0.0468 0.0464 0.0455
200 0.0263 0.0289 0.0264 0.0270 0.0269
500 0.0189 0.0190 0.0171 0.0172 0.0174
50 0.0512 0.0539 0.0558 0.0541 0.0530

phosphatase 1 100 0.0366 0.0385 0.0383 0.0380 0.0373
200 0.0274 0.0275 0.0281 0.0274 0.0275
500 0.0147 0.0154 0.0151 0.0154 0.0156
50 0.0480 0.0587 0.0585 0.0568 0.0555

inr 1 100 0.0342 0.0369 0.0355 0.0365 0.0370
200 0.0242 0.0260 0.0249 0.0242 0.0240
500 0.0164 0.0148 0.0148 0.0149 0.0149
50 0.0644 0.0738 0.0723 0.0695 0.0687

ggtp 1 100 0.0466 0.0456 0.0476 0.0460 0.0478
200 0.0299 0.0321 0.0298 0.0310 0.0308
500 0.0204 0.0204 0.0201 0.0200 0.0202
50 0.0457 0.0508 0.0502 0.0491 0.0499

alt 1 100 0.0361 0.0387 0.0379 0.0379 0.0383
200 0.0317 0.0303 0.0308 0.0308 0.0308
500 0.0196 0.0205 0.0206 0.0207 0.0207
50 0.0537 0.0615 0.0649 0.0589 0.0597

ast 1 100 0.0372 0.0465 0.0477 0.0472 0.0454
200 0.0294 0.0283 0.0283 0.0281 0.0283
500 0.0182 0.0184 0.0186 0.0186 0.0186
50 0.0534 0.0645 0.0712 0.0685 0.0534

CombVerMo 100 0.0402 0.0440 0.0411 0.0443 0.0426
200 0.0333 0.0415 0.0353 0.0358 0.0372
500 0.0153 0.0277 0.0163 0.0162 0.0219
50 0.0512 0.0798 0.0638 0.0655 0.0553

CldShadeOth 100 0.0370 0.0609 0.0348 0.0373 0.0399
200 0.0284 0.0610 0.0266 0.0280 0.0291
500 0.0185 0.0510 0.0186 0.0189 0.0177

50 0.0604 0.0666 0.0619 0.0636 0.0583
Boundaries 100 0.0448 0.0502 0.0455 0.0444 0.0432

200 0.0236 0.0297 0.0243 0.0237 0.0248
500 0.0170 0.0266 0.0166 0.0160 0.0218

50 0.0438 0.0544 0.0531 0.0557 0.0421
CompPlFcst 100 0.0332 0.0408 0.0396 0.0415 0.0384

200 0.0260 0.0258 0.0257 0.0231 0.0239
500 0.0212 0.0207 0.0203 0.0207 0.0208
50 0.0479 0.0579 0.0571 0.0574 0.0479

AMInsWliScen 100 0.0312 0.0364 0.0328 0.0316 0.0320
200 0.0292 0.0302 0.0301 0.0307 0.0295
500 0.0192 0.0190 0.0173 0.0172 0.0176
50 0.1404 0.0562 0.0578 0.0563 0.1205

PlainsFcst 100 0.1165 0.0333 0.0392 0.0329 0.0882
200 0.0874 0.0227 0.0239 0.0224 0.0223
500 0.0403 0.0167 0.0165 0.0174 0.0178

Table 18.3: Results of the empirical study
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Conclusions and Future
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Chapter 19

Conclusions and Summary

In this chapter we will conclude and summarize the work that has been done.

19.1 Case Management

The case management system has been developed to make maintaining cases
for users possible, and on top of that, use the cases for learning. However,
other applications of the case management can be thought of. We saw that
case management systems are not available in comparable software. The case
management system consists of two parts, one part is implemented in GeNIe,
and one part is implemented in SMILE. Methods in SMILE are available to add
and remove cases, and it is also possible to edit the attributes, for example, the
evidence and target nodes. The cases are tightly connected to a network in the
sense that the variables match, and if changes occur in a the network, the cases
are updated. Because of this we store the cases in the same XDSL file where
the network is also stored. The GeNIe part is the graphical user interface layer
build upon the SMILE part. It forwards all the user request made in the case
management screens to SMILE.

19.2 EM and Hierarchical Confidence

After giving an overview of the learning theory, we explained our approach to
refining Bayesian networks. By acquiring prior probabilities and the confidence
of the expert in those priors, we used the EM algorithm to refine a network using
the MAP approach. To get the confidence from the experts we introduced the
so-called hierchical confidence. Basically this is a way for domain expert to
express their confidence in the network they developed, by assigning confidence
on different levels of granularity. It expresses how certain the knowledge engineer
is about the network he constructed. The cases serve as data that is used to
refine the network, and taken as input for the EM algorithm. By learning the
MAP parameters, we were able to combine expert knowledge and data. All
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of this is implemented in SMILEARN, the new learning API, and EM and
hierarchical confidence are part of that API.

The case management system and EM algorithm with hierarchical confidence
are not released yet. We hope to do this in the short future to get feedback
from the users. However, we gave a demonstration of a prototype of the case
management system at Intel, and they were enthousiastic. They have some
models designed by domain experts, but they usually have only a few cases
available to change the probability distibutions.

19.3 Exploiting Decomposable Causal Indepen-
dence

We introduced three decompositions of conditional probability tables. The Av-
erage decomposition drew ideas from both the linear models and causal indepen-
dence models. The two remaining decompositions were basically generalizations
of the decomposable CI models with some constraints removed. We showed that
these decompositions can be exploited in learning large conditional probability
distributions for BNs, especially when the number of data records is small.
Additional known benefits of CI models with the decomposability property is
improvement in performance of inference algorithms, and the proposed models
can be exploited in the same manner. The advantages of the decompositions
should be more apparent in nodes with a large number of parents.

We believe that our work has significant potential applications in practice.
It is often the case that nodes in practical models may have more than 10
parents. Learning parameters of such large CPTs requires volumes of data.
Models containing nodes with large in-degrees pose a challenge to inference
algorithms. The decompositions proposed here can address two problems at the
same time, while providing a reasonably good approximation of the underlying
distributions.

In our empirical study, we used three sizeable real-life models and tried to
approximate selected large CPTs from these networks using the new models
and CPT and the noisy-MAX. In general, we found that none of the methods
is superior to others, and particular characteristics of distributions in the CPT
are an important factor. However, the decompositions seem to perform better
when the number of data records is small.
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Chapter 20

Future work

In this chapter we shortly discuss the future work.

20.1 Case Management

The most important future work is to release the new software. In this way we
hope to receive a lot feedback and make changes if necessary. Since the case
management system is designed very generic, it is extendable and in the future
more applications can be implemented using the case management. It was quite
easy to use the cases as input for the EM algorithm.

20.2 SMILEARN and EM

The new SMILEARN API will be released when we think it is ready. The
SMILEARN API adds a lot of new possibilities on the learning part. It has
been designed with extensibility in mind, and in the future we want to extent
it with alternative learning methods. Users of the API can select the learning
method that is appropriate for the task at hand. One obvious extension is
structural EM, but a problem is how to limit the structure candidates to a
number that can be run in reasonable time. An interesting feature for users
would be the possibility to compare two networks with the same data collection,
but with different structures. In this way, a domain expert can experiment with
improvements of an existing network, and see if the changes in the network
increase the performace.

20.3 Exploiting Decomposable Causal Indepen-
dence

Based on the current results, we envision the following application of this work.
For each (large) CPT in a model one can try to learn parameters of different
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models and use the likelihood of the data for the decomposed node to see which
decomposition is most promising (preferably using learning and testing data
sets to avoid over-fitting). We performed a pilot study on this method and the
results in terms of the likelihood function were similar to the goodness of fit
measure used to compare the gold standard models.
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Appendix A

Exploiting Decomposable
Causal Independence for
Parameter Learning in
Bayesian Networks

This appendix contains the original paper (but not in the original layout) I
made together with Adam Zagorecki and Marek J. Druzdzel.

Abstract

Bayesian networks are a successful modeling tool that facilitates a convenient
combination of expert knowledge and data. One of their major bottlenecks is
the number of parameters required to specify local probability distributions,
which grows exponentially in the number of parents of a node in the underlying
graph. One widely used solution to this problem is assuming independence of
causal interactions that reduces the number of parameters to linear in node’s in-
degree. In this paper we propose new models for local probability distributions
that exploit decomposable causal independence. The new models release some
assumptions of causal independence to achieve greater flexibility at the cost
of clarity of parameters interpretation. We present the results of an empirical
study based on Bayesian networks used in practice that show that the new
models can be suitable for learning Bayesian networks from small data sets.

A.1 Introduction

Bayesian networks (BNs) [25] have become a prominent modeling tool for prob-
lems involving uncertainty in the last 20 years. Among a wide range of their
practical applications are medical diagnosis, hardware troubleshooting, user
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modeling, intrusion detection, disease outbreak detection, etc. The BN frame-
work combines strong formal foundations of probability theory with a graphical
representation of interactions among variables, providing a formalism that is
theoretically sound, yet readily understandable for human knowledge engineers
and fairly easy to apply in practice. BNs allow for convenient and flexible fusion
of information from various sources, in particular combining expert knowledge
with available data. This has proved to be critical in practical applications,
where data typically is limited.

A BN is basically a compact representation of a joint probability distribu-
tion (JPD). It reduces the number of parameters required to specify the JPD
by exploiting independencies among domain variables. These independencies
are encoded in the graphical part, and the JPD is specified by means of local
probability distributions associated with vertices (variables). In case of discrete
variables (this is what we will focus on in this paper), the local probability
distributions are encoded in the form of prior probabilities over those vertices
that have no parents in the graph, and conditional probability tables (CPTs)
for all other nodes. The conditional probability table is a set of conditional
probability distributions that define a probability distribution over the child
variable given all combinations of values of the parents nodes. This leads to one
of the major bottlenecks in building BN models — exponential growth of the
size of CPTs in the number of parent variables. For example, assuming that all
variables are binary, a CPT of variable with ten parents requires specification
of 210 = 1, 024 parameters. Adding one more parent doubles this size to 2,048.
This is either overwhelming for an expert or leads to inferior quality of parame-
ters learned from small data sets [21]. The most popular proposal that addresses
this problem is the noisy-OR model (and its extension to multi-valued nodes,
the noisy-MAX model) [15] for local probability distributions. The noisy-OR
model, successfully adopted in numerous practical applications, reduces number
of parameters required to specify the CPT from exponential to linear in num-
ber of parents, achieving it at the expense of making some assumptions about
influences of the parent variables on the child variable. The noisy-OR model
is not only capable of reducing the number of parameters in the model, but
by exploiting its decomposability property it has been proven to improve the
efficiency of belief updating, making some intractable models tractable [12].

In this paper we propose models for local probability distributions that re-
quire fewer parameters than CPTs (especially for nodes with a large number
of parents) and are flexible to sufficiently approximate arbitrary patterns of in-
teractions among causes in producing the effect. We believe that such models
can especially useful in cases when there is an insufficient amount of data to
reliably learn local probability distributions in BNs, which is one of the bottle-
necks in learning BN models from data. In this paper, we introduce alternatives
to the noisy-OR model that allow for capturing a wider range of interactions
between parent variables than noisy-OR. It is achieved at the expense of clarity
of parameters in our model — unlike the noisy-OR model, the models proposed
here do not have parameters expressed by means of conditional probabilities of
variables explicitly included in the model (the amechanistic property [12]). We
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Figure A.1: Decomposition of the causal independence models: (a) decomposi-
tion into mechanisms and deterministic combination function, (b) decomposi-
tion into mechanism and decomposable combination function.

present an empirical study that shows the performance of learning parameters
of our models using the standard EM algorithm [5]. The results indicate that
the proposed models can provide better approximations of local probability dis-
tributions than CPT for cases when number of data records is relatively small
compared to the number of parameters in the CPT. We conclude that the mod-
els presented here can be a practical alternative to learning full CPTs, and they
are especially suitable for situations where variables have many parents in the
model, as both learning from data and inference can be improved.

The remainder of the paper is structured as follows. In Section A.2, we
discuss the noisy-OR model and the causal independence family of models. In
Section A.3, we formally introduce the new models. We present empirical results
in Section A.4 and our conclusions along with future work in Section A.5.

A.2 Local Distributions in Bayesian Networks

In this section, we briefly introduce the noisy-OR model and subsequently use it
to explain the foundations of causal independence (CI) models. Let us consider
a variable in a BN model and its parents. We will denote the child variable
as Y and its n parents, typically referred to as causes, by X = {X1, . . . , Xn}.
We assume that a parent Xi takes mi states and the child variable Y takes
my states. The CPT for node Y specifies a conditional probability distribution
P (Y |X), and it consists of

∏n
i=1 mi distributions.

One of the approaches to address the problem of a large number of para-
meters required to specify a CPT is the noisy-OR model. It requires only a
linear number of parameters in the number of parents. It is achieved by the as-
sumption that the causes X1, . . . , Xn act independently in producing the effect
on Y . This assumption can be represented explicitly by the BN presented in
Figure A.1(a). The variables Xi and Y represent the parent and effect variable
in the model, while the variables Mi are hidden and represent the influence of
each parent on the effect variable considered separately. In this representation
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variable Y is a deterministic variable (denoted by double circle). This means
that its CPT consists of only 0s and 1s. We will refer to the function defined by
Y as combination function — it combines individual influences of each parent
defined by hidden mechanism variables. In case of noisy-OR, the combination
function is simply the deterministic OR relation. For noisy-MAX it is the MAX
relation defined over the states of Y .

If the combination function can be decomposed into a series of functions, the
causal independence model is said to be decomposable. It basically says that the
combination function can be decomposed into series of binary functions. For
example, the logical OR relation of n inputs can be decomposed into series of
pairwise OR relations:

OR(X1, X2, . . . , Xn) = OR(Xn, OR(Xn−1, OR(. . . OR(X2, X1) . . .)).

The general decomposable CI model is shown in Figure A.1(b). The decom-
posable property can lead to significant improvements of inference performance
for the CI models [12] by reducing clique sizes in the join tree algorithm. This
property has been exploited in more sophisticated algorithms for inference with
CI models [6, 27].

In this paper we propose other models that do not strictly belong to this
family, but draw ideas from it. In general, our models are less restrictive in
terms of made assumptions, but it comes mainly at the expense of knowledge
elicitation. The models mentioned earlier have parameterizations that are con-
venient for asking experts (in terms of conditional probabilities of variables in
the models, without the need of explicit mentioning the hidden mechanisms
variables). Our models are parameterized in term of hidden variables, making
them more difficult to work with for human experts. Since the parameters of
CI models are represented as parameters of regular, but hidden, variables, the
EM algorithm can learn the parameters of the decomposition nodes in the same
manner as it would learn parameters for any other hidden variable or missing
value.

A.3 Ladder Decompositions and the Average
Model

In this section we introduce new models for local probability distributions. We
propose new models that are related to the decomposable CI models. The main
difference is that we release the assumption that the combination function is a
deterministic function and allows CPTs of nodes Yi to take values different from
0 or 1. We propose 3 different decompositions. The first decomposition, ladder
with mechanisms (LM), presented in Figure A.2(a) is basically a generalization
of the decomposable CI defined by Heckerman and Breese [12]. The difference
is that we do not impose any constraints on the combination function — the
parameters in CPTs of nodes Mi and Yi can take arbitrary values. The second
model, a simple ladder (SL), presented in Figure A.2, differs from the previous in
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Figure A.2: Models used in experiments: (a) ladder with mechanisms, (b) simple
ladder, and (c) the average model.

that that it does not have mechanism nodes, only nodes Yi that define pairwise
interactions between parent i and cumulative influence of previous parents.

Finally, the third decomposition is a model where CPTs of mechanism nodes
can take arbitrary values, but CPTs of nodes Yi have predefined values, such
that the probability of node Y is defined as

P (Y = y|M1, . . . , Mn) =
1
n

n∑

i=1

I(Mi = y) ,

where I is the identity function that takes 1 when the condition in the brackets
is true, and 0 otherwise. This can be achieved when each parameter of CPT of
node Yi (i = 2, . . . , n) is defined as:

P (Yi = y|Mi−1 = a,Mi = b) =
1
i
I(y = a) +

i− 1
i

I(y = a) .

These three decompositions have different characteristics. The number of pa-
rameters required to specify relations between causes and effect in the first two
models are shown in Table A.1. LM should be more suitable for situations
where the child has a small number of states (as m3

y is the dominating fac-
tor), and SL in situations where some parents have a small number of states
(the sum of parents states is multiplied by m2

y). Finally, the average model is
a step toward more meaningful parameters, which can be utilized by human
knowledge engineers. The parameters of this model are expressed in terms of
mechanisms — separate influences of a parent on the effect, and therefore they
have meaning in the modeled domain. The combination function is the average
number of instantiations of mechanism variables. Such a setting has one impor-
tant advantage over models like noisy-MAX — it does not require additional
semantic knowledge about the values (noisy-MAX assumes an ordering relation)
and therefore can be easily applied to learning algorithms, as well as it is more
flexible in terms of modeling. But most of all, it preserves the decomposability
property, which can be exploited by inference algorithms.

In order to do noisy-MAX learning we need to determine what the distin-
guished states are. For this, we used a simple approximate algorithm to find
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Decomposition Number of parameters

CPT
∏n

i=1 mi

LM my

∑n
i=1 mi + (n− 1)m3

y

SL mym1 + m2
y

∑n
i=2 mi

Average my

∑n
i=1 mi

Noisy-MAX my

∑n
i=1 (mi − 1)

Table A.1: Number of parameters for different decompositions.

Model Node Number of Parameters
Alarm node33 108 22 40 46 14
Hepar bilirubin 288 48 168 304 28
Hepar phosphatase 108 30 78 111 18
Hepar inr 108 30 72 111 18
Hepar bleeding 24 14 20 22 10
Hepar alt 288 48 156 304 28
Hepar ast 288 48 156 304 28
Hepar ggtp 384 52 184 372 28

Hailfinder CombVerMo 256 48 144 176 36
Hailfinder CldShadeOth 144 33 75 87 24
Hailfinder Boundaries 108 30 72 84 21
Hailfinder CompPlFcst 324 39 99 120 27
Hailfinder AMInsWliScen 216 39 81 93 30
Hailfinder PlainsFcst 1188 63 165 144 51

Table A.2: Characteristics of nodes used in the empirical study

both the distinguished states of the parents and the child. The selection of
distinguished states is based on counting the occurrences of parent-child combi-
nations Nij , where i is the child state and j is the parent state. The next step
is to normalize the child states for each parent: N∗

ij = NijP
i Nij

.

Child state i and parent state j are good distinguished state candidates if
N∗

ij has a relatively high value. But we have to account for the fact that one
child can have multiple parents, so we have to combine the results for each of
the parents to determine the distinguished state of the child. For each parent,
we select the maximum value of the state of a parent given the child state.
We take the average of one of the child states over all the parents. The child
state corresponding to the highest value of the average child states values is
considered to be the child’s distinguished state. Now that we have the child’s
distinguished state it is possible to find the parents’ distinguished states in a
similar way.
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A.4 Empirical Results

To test our models we performed series of empirical studies. We decided to use
existing BN models to generate data and then re-learn the parameters of these
models using the new models. For our experiments we used three networks
available to the general public at http://www.sis.pitt.edu/∼genie: Alarm
[1], Hailfinder [2] and Hepar II [21]. From each of these networks we selected
the nodes whose total number of parameters in CPT exceeded the number of
parameters for each of the decompositions or the number of parameters in CPTs
was more than 100. Table A.2 shows a summary of the most important char-
acteristics of these models. We applied the three decompositions and obtained
models that had similar structure to the original model, but that had nodes
with large CPTs decomposed. To evaluate the learning performance we gener-
ated c data records from the original model (used as the gold standard) using
probabilistic logic sampling. We applied the EM algorithm on the models using
the generated cases. As a measure of the quality of fit we used the Hellinger
distance between the two posterior probabilities for a decomposed node and the
corresponding node in the gold standard model. The Hellinger distance between
two probability distributions F and G: DH(F,G) =

[∑
(
√

fi −√gi)2
]1/2. We

decided to use the Hellinger distance because, unlike the Euclidean distance,
it is more sensitive to differences in small probabilities and it does not poses
difficulties for 0 probabilities as it is the case for Kullback-Leibler divergence.

We repeated the procedure described above to all three decompositions, and
in addition to this noisy-MAX and CPT without decomposition, 25 times. This
helped us to ensure that initial randomization of parameters for EM does not
affect our results significantly. We varied the number of data records c between
50 and 500 for each of three networks. The results are reported in Table A.3.

The results of our experiments show that the decompositions perform com-
paratively similar and in some cases better than learning CPTs. We find this
result significant, because decompositions can be exploited in other manners, for
example in knowledge elicitation and inference. The results of our experiments
suggest that none of the decompositions itself is the best. However, it is appar-
ent that the proposed models together with noisy-MAX can outperform CPTs.
Interestingly, the results for the largest CPT under our study (PlainsFcst) show
the trend that the decompositions can provide a better accuracy when the num-
ber of cases is small. One possible explanation is that the CPT with its large
number of parameters can easily overfit data, while models with smaller number
of parameters can reasonably well approximate the real underlying distribution.
Obviously, one should expect that when number of data records is sufficiently
large, CPTs should ultimately outperform the more restrictive models.

1Results for Hepar with 500 data records are based on the average of 12 iterations.
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Node Records CPT Average LM SL Noisy-MAX
50 0.0460 0.0578 0.0384 0.0374 0.0398

node33 100 0.0311 0.0708 0.0273 0.0278 0.0302
200 0.0195 0.0533 0.0209 0.0211 0.0233
500 0.0117 0.0452 0.0117 0.0119 0.0138
50 0.0537 0.0655 0.0618 0.0628 0.0637

bilirubin 1 100 0.0446 0.0469 0.0468 0.0464 0.0455
200 0.0263 0.0289 0.0264 0.0270 0.0269
500 0.0189 0.0190 0.0171 0.0172 0.0174
50 0.0512 0.0539 0.0558 0.0541 0.0530

phosphatase 1 100 0.0366 0.0385 0.0383 0.0380 0.0373
200 0.0274 0.0275 0.0281 0.0274 0.0275
500 0.0147 0.0154 0.0151 0.0154 0.0156
50 0.0480 0.0587 0.0585 0.0568 0.0555

inr 1 100 0.0342 0.0369 0.0355 0.0365 0.0370
200 0.0242 0.0260 0.0249 0.0242 0.0240
500 0.0164 0.0148 0.0148 0.0149 0.0149
50 0.0644 0.0738 0.0723 0.0695 0.0687

ggtp 1 100 0.0466 0.0456 0.0476 0.0460 0.0478
200 0.0299 0.0321 0.0298 0.0310 0.0308
500 0.0204 0.0204 0.0201 0.0200 0.0202
50 0.0457 0.0508 0.0502 0.0491 0.0499

alt 1 100 0.0361 0.0387 0.0379 0.0379 0.0383
200 0.0317 0.0303 0.0308 0.0308 0.0308
500 0.0196 0.0205 0.0206 0.0207 0.0207
50 0.0537 0.0615 0.0649 0.0589 0.0597

ast 1 100 0.0372 0.0465 0.0477 0.0472 0.0454
200 0.0294 0.0283 0.0283 0.0281 0.0283
500 0.0182 0.0184 0.0186 0.0186 0.0186
50 0.0534 0.0645 0.0712 0.0685 0.0534

CombVerMo 100 0.0402 0.0440 0.0411 0.0443 0.0426
200 0.0333 0.0415 0.0353 0.0358 0.0372
500 0.0153 0.0277 0.0163 0.0162 0.0219
50 0.0512 0.0798 0.0638 0.0655 0.0553

CldShadeOth 100 0.0370 0.0609 0.0348 0.0373 0.0399
200 0.0284 0.0610 0.0266 0.0280 0.0291
500 0.0185 0.0510 0.0186 0.0189 0.0177

50 0.0604 0.0666 0.0619 0.0636 0.0583
Boundaries 100 0.0448 0.0502 0.0455 0.0444 0.0432

200 0.0236 0.0297 0.0243 0.0237 0.0248
500 0.0170 0.0266 0.0166 0.0160 0.0218

50 0.0438 0.0544 0.0531 0.0557 0.0421
CompPlFcst 100 0.0332 0.0408 0.0396 0.0415 0.0384

200 0.0260 0.0258 0.0257 0.0231 0.0239
500 0.0212 0.0207 0.0203 0.0207 0.0208
50 0.0479 0.0579 0.0571 0.0574 0.0479

AMInsWliScen 100 0.0312 0.0364 0.0328 0.0316 0.0320
200 0.0292 0.0302 0.0301 0.0307 0.0295
500 0.0192 0.0190 0.0173 0.0172 0.0176
50 0.1404 0.0562 0.0578 0.0563 0.1205

PlainsFcst 100 0.1165 0.0333 0.0392 0.0329 0.0882
200 0.0874 0.0227 0.0239 0.0224 0.0223
500 0.0403 0.0167 0.0165 0.0174 0.0178

Table A.3: Results of the empirical study

A.5 Conclusions and Related Work

In this paper we introduced three decompositions of conditional probability ta-
bles. The Average decomposition drew ideas from both the linear models and
causal independence models. The two remaining decompositions were basically
generalizations of the decomposable CI models with some constraints removed.
We showed that these decompositions can be exploited in learning large con-
ditional probability distributions for BNs, especially when the number of data
records is small. Additional known benefits of CI models with the decompos-
ability property is improvement in performance of inference algorithms, and
the proposed models can be exploited in the same manner. The advantages of
the decompositions should be more apparent in nodes with a large number of
parents.

We believe that our work has significant potential applications in practice.
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It is often the case that nodes in practical models may have more than 10
parents. Learning parameters of such large CPTs requires volumes of data.
Models containing nodes with large in-degrees pose a challenge for inference
algorithms. The decompositions proposed here can address two problems at the
same time, while providing a reasonably good approximation of the underlying
distributions.

In our empirical study we used three sizeable real-life models and tried to
approximate selected large CPTs from these networks using the new models
and CPT and the noisy-MAX. In general, we found that none of the methods is
superior to others, and particular characteristics of distributions in the CPT are
an important factor. However, the decompositions seem to perform better when
the number of data records is small. Based on the current results, we envision
the following application of this work. For each (large) CPT in a model one can
try to learn parameters of different models and use the likelihood of the data for
the decomposed node to see which decomposition is most promising (preferably
using learning and testing data sets to avoid over-fitting). We performed a pilot
study on this method and the results in terms of the likelihood function were
similar to the goodness of fit measure used to compare the gold standard models.

In the past, some researchers tried to exploit models for local probability
distributions in BN. Meek and Heckerman [20] experimented with learning var-
ious causal independence models for both parameter and structure learning,
but they did not explicitly exploited the decomposability property. Dagum and
Galper [22] attempted to introduce linear models for modeling local probability
distributions. However, their approach differs from the average model proposed
here. Our decompositions preserve independence of parameters and allow for
using the EM algorithm.
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