
ManetLoc
A location based approach to distributed world-knowledge

in mobile ad-hoc networks

Master Thesis of:
Marcel van Velden
Student number: 9862097
Date: April 2005

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Department Mediamatica / Man-Machine-Interaction

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 2

In memory of my grandfather

Graduation committee:

Drs. Dr. L.J.M. Rothkrantz

Dr. A.H.J. Oomes
Dr. K. van der Meer

Ir. F. Ververs

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 3

Abstract

In every aspect of our lives people are becoming more and more dependent on the
availability of (information) systems. To have access to such systems often an
infrastructure of wired and/or wireless networks is required. In case of a crisis such
networks are likely to become overloaded, as more than the regular amount of
service request will occur. Systems might even completely go down because of
overload, incidents (such as an explosion) or sabotage. Also the environment an
individual in is likely to be (partially) unknown.

In this thesis a concept of a system for making multi-agent systems in mobile ad-hoc
networks aware of their environment without the need of any infrastructure is
provided. The main focus is on automatically building a map of the world by using
observations from individuals in such an infrastructureless network. We have
designed and implemented this proof of concept, ManetLoc, in the form of a
simulation. No specific agent platform was used in developing the simulation, but
the future use of the JADE platform was always kept in mind. The system was built
upon a preexisting ad-hoc network simulation environment, Ad-hoc Simulator
[Boel04].

ManetLoc simulates a building like environment where individuals are exploring an
unknown world. It is assumed that each individual in the field is equipped with a
Personal Digital Assistant (PDA) and can communicate with other PDAs in the
vicinity. Together the PDAs dynamically form ad-hoc networks. Users can enter their
own observations to the PDA. Agents on these PDA’s work together, to supply the
users an as complete view on the world as possible (a topological map). An agent
will also provide guidance to the user if requested.

Keywords: mobile ad-hoc network, agent, communication, topological map,
infrastructureless, location, emergency, awareness, crisis

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 4

Preface

This thesis is the result of my graduation project at the Man Machine Interaction
(MMI) group of the faculty Electrical Engineering, Mathematics and Computer
Science at the Delft University of Technology.

The research is done as a part of the project ‘Crisis management using mobile ad-hoc
networks’. The crisis management project is related to the Combined Project [Comb]
at DECIS LAB, a collaboration of Delft University of Technology, University of
Amsterdam, THALES Nederland, and TNO. The collaboration focuses on the
research of decision support systems, seeking to order information in complex and
chaotic situations.

Acknowledgements

First of all I would like to express my gratitude to my supervisor Leon Rothkrantz for
enabling me to do this research assignment. Next I would like to thank my fellow
project members for giving me useful input and assistance. They are, in no particular
order: Paul Schooneman, Paul Klapwijk, Stefan Strijdhaftig, Jan Chau, Joost Boehlé
and Bogdan Tatomir. Needles to say I would also like to thank my family, friends,
neighbors and especially my girlfriend Welmoed, for their support, advice and in
helping me test the system.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 5

Table of Contents

PREFACE... 4

ACKNOWLEDGEMENTS... 4

TABLE OF CONTENTS... 5

TABLE OF FIGURES... 7

CHAPTER 1: INTRODUCTION... 9
1.1 PROJECT OVERVIEW... 9
1.2 PROBLEM FORMULATION... 12

CHAPTER 2: RELATED WORK.. 13

2.1 MULTI-AGENT SYSTEMS .. 13
2.1.1 FIPA .. 13
2.1.2 JADE ... 14
2.1.3 Cougaar... 15
2.1.4 Swarm intelligence .. 16

2.2 AD-HOC WIRELESS NETWORKS .. 16
2.2.1 IEEE 802.11B.. 17
2.2.2 The Ant-colony-based routing algorithm for MANETs... 18

2.3 AGENTS ON SMALL DEVICES.. 19
2.3.1 JADE on small devices: LEAP.. 20

2.4 AGENTS IN MOBILE AD-HOC NETWORKS .. 20
2.4.1 FIPA and agents in mobile ad-hoc networks .. 21
2.4.2 Jade in mobile ad-hoc networks.. 21

2.5 LOCATION AWARENESS ... 22
2.5.1 Satellite-based localization ... 23
2.5.2 Infrastructure-free localization ... 23

CHAPTER 3: ARCHITECTURE .. 25
3.1 LOCATION ... 27
3.1.1 USER INPUT MAPPING ... 28
3.1.2 COMBINING MAP INFORMATION.. 29
3.2 REQUIREMENTS AND CONSTRAINTS... 30

CHAPTER 4: GLOBAL DESIGN.. 33

4.1 OVERVIEW... 34
4.2 GATHERING DATA ... 35
4.3 BUILDING TOPOLOGICAL MAPS FROM USER AND SENSORY INPUT 36

4.3.1 Closing the loop .. 39
4.4 SHARING AND MERGING LOCATION CONTEXT INFORMATION... 41

4.4.1 Matching.. 43
4.4.2 Merging ... 45
4.4.2 Incremental updating .. 46

4.5 USER GUIDANCE .. 47

CHAPTER 5: IMPLEMENTATION... 49

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 6

5.1 EXISTING SOFTWARE AND DATA STRUCTURES... 49
5.1.1 AHS.. 49

5.1.1.1 AHS modifications... 52
5.1.2 AHV ... 54

5.1.2.1 AHV modifications .. 55
5.1.3 CityNetwork map files ... 55
5.1.4 Network Generator.. 56

5.1.4.1 Network Generator Modifications ... 57
5.2 MANETLOC ... 58

5.2.1 Class Diagram... 58
5.2.2 Use Case Diagram .. 59
5.2.3 Implemented GUI .. 61
5.2.4 Implemented Algorithms ... 64

5.2.4.1 Exploration ... 64
5.2.4.2 Map distribution, matching and merging ... 65
5.2.4.3 Restoring from and preventing errors .. 67

CHAPTER 6: SYSTEM TESTS ... 69

6.1 USABILITY... 72
6.2 CORRECTNESS ... 72
6.3 COMPLETENESS ... 73
6.4 PERFORMANCE .. 74

CHAPTER 7: CONCLUSIONS AND FUTURE WORK .. 77
7.1 CONCLUSIONS ... 77
7.2 FUTURE WORK .. 79

7.2.1 Data distribution, Planning and execution ... 79

BIBLIOGRAPHY .. 83

APPENDIX A: USER MANUAL ... 89

APPENDIX B: MAP, DATASET AND ROAD FILES .. 91

APPENDIX C: MANETLOC PAPER ... 99

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 7

TABLE OF FIGURES

FIGURE 1 PROJECT LAYERS 10
FIGURE 2 PROJECT OVERVIEW 11
FIGURE 3 JADE REMOTE AGENT MANAGEMENT GUI 14
FIGURE 4 COUGAAR COMPONENTS SCHEMATIC 15
FIGURE 5 EXAMPLES OF SMALL DEVICES 19
FIGURE 6 LACK OF WORLD KNOWLEDGE HINDERS USERS 25
FIGURE 7 DIFFERENT WORLD MODELS OF THE SAME WORLD 26
FIGURE 8 USER WORLD MODEL 28
FIGURE 9 USERS HAVE DISTINCT WORLD MODELS 29
FIGURE 10 COMBINED WORLD MODEL 29
FIGURE 11 SHARP ZAURUS SL-C760 30
FIGURE 12 SYSTEM MODULES AND THE PDA INTERFACES 35
FIGURE 13 POTENTIAL SOURCES OF DATA 36
FIGURE 14 USER INPUT AND SYSTEM FEEDBACK 37
FIGURE 15 USER IN A SIMPLE WORLD 38
FIGURE 16 EXAMPLE LIST OF USER INPUT 38
FIGURE 17 TRANSLATION OF USER INPUT TO A CITYNETWORK MAP 39
FIGURE 18 EXAMPLE SYSTEM OUTPUT 39
FIGURE 19 EXAMPLE SQUARE WORLD 40
FIGURE 20 OPEN LOOP 40
FIGURE 21 POSSIBLE CLOSED-LOOP HYPOTHESIS 41
FIGURE 22 AGENTS IN MOBILE AD-HOC NETWORKS SHARE MAPS WHEN IN RANGE 42
FIGURE 23 EXAMPLE MAP INFORMATION SHARED BETWEEN AGENTS 43
FIGURE 24 MAP A 43
FIGURE 25 MAP B 43
FIGURE 26 MATCHING VERTEXES 44
FIGURE 27 SUCCESSFUL HYPOTHESIS GROWTH 45
FIGURE 28 UNSUCCESSFUL HYPOTHESIS GROWTH 45
FIGURE 29 MAP MERGING PROCESS 46
FIGURE 30 GUIDING USER 47
FIGURE 31 AHS MAIN INTERFACE 49
FIGURE 32 PDA STATISTICS 50
FIGURE 33 AHS OPTIONS DIALOG 50
FIGURE 34 DATASET EXAMPLE 51
FIGURE 35 NODE OPERATIONS 52
FIGURE 36 AHS CLASS DIAGRAM 52
FIGURE 37 MODIFIED DATASET EXAMPLE 53
FIGURE 38 AHV MAIN INTERFACE 54
FIGURE 39 AHV OPTIONS DIALOG 54
FIGURE 40 AHV CLASS DIAGRAM 55
FIGURE 41 CITYNETWORK MAP, DESCRIBING A SQUARE 56
FIGURE 42 NETWORK GENERATOR 56
FIGURE 43 MODIFIED SENDNODE FOR CREATE RECTILINEAR NETWORKS 57
FIGURE 44 MODIFIED NETWORK GENERATOR FOR RECTILINEAR WORLDS 58
FIGURE 45 MANETLOC CLASS DIAGRAM 59
FIGURE 46 MANETLOC USE CASE DIAGRAM FOR USER 60
FIGURE 47 MANETLOC USE CASE DIAGRAM FOR AGENT 60
FIGURE 48 MANETLOC MAIN-INTERFACE 61
FIGURE 49 MANETLOC OPTIONS DIALOG 62
FIGURE 50 PDA WORLD VIEW DIALOG 62
FIGURE 51 MANETLOC WORLD VISUALIZATION 63
FIGURE 52 OVERVIEW OF EXPLORATION PROGRAM LOOP 64

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 8

FIGURE 53 OVERVIEW OF DISTRIBUTION, MATCHING AND MERGING PROGRAM LOOP 65
FIGURE 54 MAP DISTRIBUTION 66
FIGURE 55 MATCHING PROCESS 66
FIGURE 56 MERGING PROCESS 66
FIGURE 57 INCONSISTENCY 67
FIGURE 58 OVERVIEW OF CONSISTENCY PROGRAM LOOP 67
FIGURE 59 THE 10 INTERSECTIONS WORLD 69
FIGURE 60 THE 30 INTERSECTIONS WORLD 69
FIGURE 61 THE 100 INTERSECTIONS WORLD 69
FIGURE 62 MAP TOTAL PATH LENGTH SIZES 70
FIGURE 63 TEST RUN ON 10.MAP 71
FIGURE 64 NON CRITICAL UI BUGS FOUND 72
FIGURE 65 MAP 30 FOUND, SINGLE AGENT SETUP 73
FIGURE 66 MAP 30 FOUND , MULTI-AGENT SETUP 73
FIGURE 67 MAP 30 FOUND WITH 1 AGENT, AFTER 7501 UNITS 75
FIGURE 68 MAP 30 FOUND WITH 5 AGENT, AFTER 4399 UNITS 75
FIGURE 69 TEST RESULTS, FINDING COMPLETE MAP 75
FIGURE 70 TEST RESULTS, FINDING COMPLETE MAP 76
FIGURE 71 MOST GAIN WHEN ARRIVING IN PRE-EXPLORED WORLD 76
FIGURE 72 DIRECTION OF MOVEMENT MATTERS IN DISTRIBUTION OF DATA 81

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 9

Chapter 1: Introduction

In every aspect of our lives we are becoming more and more dependent on the
availability of (information) systems. These systems by themselves depend on other
systems to be available, i.e. an infrastructure. In times of crisis not all of these systems
might always be readily available. This could be caused by power cuts for instance or
simply because there is no physical infrastructure at all.

If a telecommunications infrastructure is not available at a certain area, it should still
be possible to set up an infrastructureless network or mobile ad-hoc network
(MANET) under most conditions. Setting up such a network enables us to share
information concerning the state of the world and coordinate actions. These ad-hoc
networking technologies are making it possible to exchange information anywhere,
anytime without prior network infrastructure. Using handheld devices that operate
in a wireless environment, communication is still possible when major infrastructural
communication links have been damaged, destroyed or overloaded. So in case of a
major disaster within a city, emergency services can communicate without the need
for preset-up access points or other such infrastructural requirements.

Our multi-modal interfaces (MMI) department is doing extensive research on multi-
agent systems using wireless ad-hoc networks. This research is part of the project
‘Crisis management using mobile ad-hoc networks’, which focuses on intelligent
crisis management using mobile ad-hoc networks. The crisis management project is
closely associated with the Combined project (Chaotic Open world Multi-agent
Based Intelligently NEtworked Decision support systems) of DECIS LAB our group
participates in. Roughly the aim of the project is to develop an environment wherein
rescue services can communicate using handheld devices dynamically forming
MANETs. Users of such networks should be able to exchange observations through
agent technology and intuitive GUI’s located on a handheld set. Agents aid the user
in finding, storing and retrieving information from the network. Our specific interest
in this thesis is the distribution of world knowledge in these ad-hoc communication
networking environments.

1.1 Project overview

In order to be able to find the answers we are looking for and to limit the scope of
this thesis, we will look into three main topics: multi-agent systems, mobile ad-hoc
networks and location awareness. We will attempt to combine the three in such a way
that we are able to develop a location aware multi-agent system which is able to run
in a mobile ad-hoc network.

Storing and making available knowledge in agent enabled MANETs is a challenging
problem that still needs to be tackled on many fronts. This particularly is the case

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 10

when there is no secondary infrastructure available at all, no special hardware on the
portable devices and the network is highly dynamic. Apart from the major
difficulties, the possible uses of this kind of technology seem to be countless and
contain – but are not limited to - crisis situations and military use. Related to this
there is a demand for mobile devices to become more aware of their environment.
Again this is a challenging problem on its own as well but if there is no infrastructure
available at the relevant location this is an even more complex issue. All this seems to
make research in the area more than worthwhile.

Figure 1 Project layers

A useful way of looking at our project is by splitting it up in the following three
layers [Figure 1]: World layer, Network layer and Application layer. The world layer
symbolizes the actual world a user finds itself in. As the user is carrying network
enabled devices, there is a network which can be used to communicate, i.e. the
network layer. In the application or agent layer knowledge about the world is shared
and services are offered by agents in the network (i.e. applications). All three layers
play an important role in our system concept, but we tried to focus on the application
layer, where the other two serve as an essential basis for the later.

The goal of this research was to provide a concept - and a proof of this concept - of a
potential solution for making multi-agent systems operating in mobile ad-hoc
networks aware of their environment. From the multi agent-nature of such a system
almost naturally follows the approach of distributed construction of world models by
the agent software. The fact that the system is intended for use in highly dynamic
ad-hoc network environments makes that no central and/or permanent services can
be depended upon, thus the concept should be decentralized. Another aspect of the

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 11

concept is that no knowledge of the world will be available beforehand and during
the lifetime of a system component the knowledge available will incrementally grow
but at most times will be incomplete and fuzzy. Therefore a non-deterministic
probabilistic approach seems logical.

Figure 2 Project Overview

In [Figure 2] a visual overview is provided of what we have tried to achieve in this
project: People observe the world and interact with their PDAs. A PDA running
agent software can also sense the world and interact with other agents in a wireless
ad-hoc network. From the information an agent gathers by communicating with the
user of the PDA, sensors and other agents, it assembles and continually updates a
world model. This world model can then be provided to the user and other (agent)
software running on the PDA.

To summarize this section the three main areas of interest mentioned (multi-agent
systems, mobile ad-hoc networks and location awareness) can be further specified into key
facets of the system architecture concept. Thus the system will involve the
combination of:

• Emergent data structures
• Multi-Agent collaboration
• Distributed data
• Decentralized systems
• Probabilistic, fuzzy information
• Mobile ad-hoc networking applications
• Location awareness
• Human-agent collaboration

observe use

Real World

Agent/PDA

interact

World Model

supply

interact

sense

Other Agents/PDA’s

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 12

1.2 Problem formulation

Our ideal system would be one that is always operational regardless of the
availability of any infrastructure, that (at any location) is aware of any (relevant)
information – which means a correct and up to date world model - at any time, and
performs intelligent distributed planning and execution based on this information.
Furthermore as the real world is a highly dynamic place it should be able to easily
adapt to changes in the environment it operates in. Finally, as with almost any
system, in some cases it would have to interact with human users, so the system
should be able to do this in a user-friendly way.

Taking into account that all this cannot be handled in a single thesis work (or in 10
for that matter), this work focuses on location awareness in infrastructureless
environments. Our problem formulation is defined as follows:

In chapter 3 we will elaborate on the architecture we have setup in answer to this
problem description. First relevant and related work studied during the course of
this research will be discussed.

Design and implement a multi-agent-system that can operate in environments
without a pre-setup infrastructure (only a mobile adhoc network) and without any
pre-knowledge of the world, which is able to process and fuse location information
from different users and sensors remote in space and time and distributes location
information and location based services (such as guidance) to its users.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 13

Chapter 2: Related work

In this chapter some related work will be described which was studied before
starting and also during the design of the system. We will look at the topics of multi
agent systems, ad-hoc wireless LAN, agents on small devices, agents in ad-hoc
networks and location awareness. As many different topics are discussed, it goes too
far too go in to much detail. Therefore the information provided is mostly global, for
more details on a specific topic we advice to follow the references.

2.1 Multi-agent systems

The first topic that is important for our work is that of agent systems, and more
specific, multi-agent-systems (MAS) [Aaai]. The study of agent based systems
evolved from the field of Distributed Artificial Intelligence in the early to mid 1980's.
In contrast to classical applications in artificial intelligence, often viewed as
dedicated, centralized and standalone, the specific ideas underlying agents in so
called agent based systems globally are the following:

• Autonomous to a degree
• Exhibit goal directed behavior
• Interact with and negotiate with other (possibly human) agents to achieve their goals
• React ‘intelligently’ to a dynamic and unpredictable environment

An important ‘application’ of agent based systems is building them in a way so they
can perform tasks that would normally require human intervention, with much of
their intelligent behavior being emergent rather than preprogrammed. The study of
multi-agent systems is about systems in which many intelligent agents interact with
each other and possibly the user. Solving the problems associated with, and taking
advantage of the opportunities offered by, distributed and unstructured
environments are a major application area for intelligent and Multi-Agent systems.
In the next paragraphs we will talk about FIPA [Fipa], an important organization in
the standardization of agent software, two agent platforms – JADE [Jade] and
Cougar [Coug] - and the concept of swarm intelligence [Swar1] [Swar2].

2.1.1 FIPA
In the world of agents the Foundation for Intelligent Physical Agents (FIPA) plays a
major role. FIPA is a non-profit organization aimed at producing standards for the
interoperation of heterogeneous software agents and started its activities in 1995 with
the aspiration to standardize different aspects related to agent technology and multi-
agent-systems. FIPA’s model for agent systems is build around the concept of agent
communication. Which means agents can pass semantically meaningful messages to
one another in order to accomplish the tasks required by the application. The

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 14

standards do not constrain the low-level implementation of agents to any great
extent, nor, except for defining agent platform services, does it constrain the
infrastructure a great deal. There are many agent platforms available which (partly)
implement the FIPA standards, some major platforms are: Agent Development Kit,
April Agent Platform, Comtec Agent Platform, FIPA-OS, Grasshopper, JACK
Intelligent Agents, JADE, JAS, LEAP and ZEUS.

2.1.2 JADE
JADE (Java Agent DEvelopment Framework) is a open source Java implementation
of FIPA-standards [Jfip] which is also used in some subprojects of the ‘Crisis
management using mobile ad-hoc networks’ project. JADE is still actively
maintained and supported. As it is implemented in Java a JADE agent platform can
be distributed across machines which not even need to share the same OS. The jade
framework supplies also a set of graphical tools that supports the debugging and
deployment phases.

Figure 3 JADE Remote Agent Management GUI

Some important JADE specifics are [Hels04]:

• Inter-agent communication messages are formatted in ACL or XML
• Pluggable transport protocols, which include RMI, IIOP, and HTTP
• Java utility classes simplify the construction and handling of FIPA-compliant ACL

messages
• Security is supported through SSL and socket-based proxy agents
• Helpful GUIs are provided to debug agent communications and registries
• Each agent has its individual thread
• Suited to developers of relatively simple agent applications

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 15

Although JADE attempt to be FIPA-compliant it has also implemented some features
for mobile devices of its own. We will discuss the possibilities, problems and
solutions for using jade in ad-hoc environments on small devices later on.

2.1.3 Cougaar
Another important agent platform within the project is Cougaar (Cognitive Agent
Architecture). Cougaar also is a Java-based architecture for the construction of large-
scale distributed agent-based applications. It is the product of a multi-year DARPA
research project into large scale agent systems and includes not only the core
architecture but also a variety of demonstration, visualization and management
components to simplify the development of complex, distributed applications

Figure 4 Cougaar components schematic

Some important Cougaar specifics are [Hels04]:

• A focus on scalability and modularity
• Pluggable transport protocols, including RMI, IIOP, SMTP, and UDP
• Not standards compliant
• Messages are encoded using Java object serialization
• Security is pluggable and flexible, SSL, X.509, role-based authentication
• Uses a thread pool with resource monitoring
• Suited to developers that want to create complex, large-scale, robust, or highly secure

agent-based applications

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 16

2.1.4 Swarm intelligence
Agents in a mobile ad-hoc network, can only directly be aware of a small part of the
environment, a concept for dealing with this issue in such environments is Swarm
Intelligence [Fern05]:

“Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of
(unsophisticated) agents interacting locally with their environment cause coherent functional
global patterns to emerge. SI provides a basis with which it is possible to explore collective (or
distributed) problem solving without centralized control or the provision of a global model.”

I.e. as agents in such systems have very limited capabilities of itself, thus has to
cooperate with its neighboring agents without always being aware of the global
picture. In our case there are for example limited communication possibilities. A very
successful swarm intelligence technique is so called ant colony optimization [Dori91],
which is a probabilistic technique for solving computational problems. In this
concept problem are reduced to finding good paths through graphs and is inspired
by the behavior of ants in finding paths from the colony to food. The ant colony
optimization concept is extensively researched in our department and also applied in
mobile ad-hoc networks [Rado03] [Tato04]. In the concept explained in chapter 3, a
single agent will likely not always be able to observe the whole situation on its own,
but by acting on its local environment and sharing relevant information about it to its
neighbors, it should be possible to create a global ‘swarm intelligence’ of single
mobile ad-hoc nodes in some way.

2.2 Ad-hoc wireless networks

Mobile ad-hoc computing is possible because of new technologies for short-range
wireless data communication such as Wireless LAN and Bluetooth. Devices with the
same type of technology make the communication and collaboration between them
possible, as soon as the devices come into communication range. Mobile Ad-hoc
Networks (MANETs) are wireless networks consisting entirely of mobile nodes that
communicate on the move without base stations. Nodes in these networks will both
generate user and application traffic and carry out network control and routing
protocols. MANETs are very flexible because of the dynamic topology where nodes
are free to move arbitrarily and it allows a Peer-To-Peer (P2P) communication in an
asynchronous manner.

These networks have problems like rapidly changing connectivity, network
partitions, higher error rates, collision interference, and bandwidth and power
constraints together. These problems are particularly in the design of higher-level
protocols such as routing and in implementing applications with Quality of Service
requirements. As our system concept is supposed to operate in a simulated ad-hoc
wireless network [Kant03], some specifics of the network protocols used in our
simulation environment will be given below.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 17

2.2.1 IEEE 802.11B
IEEE 802.11B [IEEE99a, IEEE99b] is a popular standard and implementation of
wireless LAN technology. The Adhoc Simulator (AHS) developed by J. Boehlé
[Boel04] simulates an IEEE 802.11B network. As our system is built on this
simulation, the implementation of this protocol is also used in our system.
Information is taken from [Boe04] and slightly adapted, for more details see this
thesis. Below we will give a global overview some of the ad-hoc 802.11B specifics,
which were implemented in AHS.

The IEEE 802.11B Medium Access Control (MAC) Layer consists of a series of
agreements concerning the sending and receiving of data. Before nodes, operating in
an ad-hoc wireless environment can start to transmit data to each other they must
first find each other. In order for a node to discover its neighbor nodes, which are
within its communication range, the node sends out a probe. In order to realize
communication between two wireless IEEE 802.11B compatible nodes a set of delay
timers and packets is needed. Nodes operating in the wireless ad-hoc mode cannot
start sending data immediately. The transmission of a data packet to a node starts when
the sending has found the receiver to be idle. The sending node broadcasts a Request
To Send (RTS) packet to the intended destination then waits a certain amount of time
for a Clear to Send (CTS) packet. If the CTS packet is not received within the waiting
time the RTS packet is transmitted again, if the destination node is still idle. The CTS
packet is send back using the broadcast method to notify other nodes of the pending
transmission.

Nodes that receive either the broadcasted RTS or CTS message set an NAV timer
specifying the length time in which the sending and receiving nodes are not available
for transmissions. The time period for the NAV timer is taken form the duration field
of the RTS or CTS packet. If no transmission is detected after the exchange of RTS or
CTS a node may reset its NAV timer after a period. After receiving the CTS packet
and waiting for a certain amount of time the node can transmit the data packet to the
destination. Once transmitted the node waits a specified time for the
Acknowledgement (ACK) packet to arrive confirming a good transmission.

To minimize the bit error rate the 802.11B specification has limited the payload to
2312 bytes. Data that exceeds this size needs to be fragmented by the sender before
transmission can take place. Once the sending node finds the destination node to be
idle it sends out an RTS packet. The node that overhears this RTS packet sets it NAV
timer for sender and destination using the duration field of the RTS packet, the
destination node sends back a CTS. The sending node can now start to transmit its
first fragment, nodes that overhear the fragment update their NAV timer for sender
and destination, and the sender confirms the successful reception of the data packet
using the ACK packet, which also may be overheard by other nodes. This process is
repeated until the last fragment specifies zero for the more fragments field of the data
packet. If the ACK period expires on the sending node signaling a missed ACK
packet the data transmission stops. The nodes that overheard the last fragment will

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 18

have their NAV timer still running for the duration specified by the last fragment.
The sending node may try to rebuild the communication with the destination node, if
this does not happen the destination node will be available to all other nodes as soon
as their NAV timers expire.

2.2.2 The Ant-colony-based routing algorithm for MANETs
As the Adhoc Simulator uses the Ant-colony-based routing algorithm (ARA) for
routing and our system is built on this simulation an overview of the phases of this
routing algorithm is provided here. Text is taken from [Boe04] and slightly adapted,
for more details see this thesis. ARA is a multi-agent system in which ants form the
individual agents. ARA is based on the behavior that ants exhibit when searching for
food. Ant based routing algorithm uses the notion of ant based optimization, see
[2.1.4]. As stated in [Boel04], the ARA routing algorithm globally consists of three
distinct phases: route discovery, route maintenance and route failure handling

Route Discovery
In order to communicate with other nodes the ARA protocol sends out a uniquely
identifiable forward ant (FANT) that tries to establish a route to node somewhere in
the network. At each node (hop) that it encounters on the way to the destination
node it updates the route tables. If there is no address entry for the route taken by the
FANT, the FANT senders address is noted is the ‘destination address’ field, the hop
that relayed the packet is noted in the ‘Next hop’ field and the pheromone value is
set to default. Otherwise only the pheromone value is updated. As soon as the FANT
finds/arrives at the destination node a uniquely identifiable backward ant is
launched (BANT). The BA NT traces back the route to originating FANT node by
making use of the routing table entries previously made by the FANT. While tracing
back the route to the BANT updates the routing tables at each hop in the same
fashion the FANT did. Once the FANT originator node is reached communication
between the nodes can be established.

Route maintenance
Individual nodes perform route maintenance by analyzing received packets. Each
packet received by the node either for processing or relaying is used to update the
routing table and the pheromone value. A timer determines when to decrease the
pheromone value. Once the pheromone value for a certain route has reached zero,
the route can safely be discarded.

Route failure
The MAC layer implemented notifies the ARA protocol in case of route failure by
returning a ROUTE_ERROR message. Once notified by the MAC layer the ARA
protocol searches the routing table for an alternative route. If no alternative route is
found the packet is relayed to all the neighbors of the node who will check their
routing tables for a route to the destination. If the packet cannot be relayed to the
destination node the packet is send back to the destination node, each receiving hop
tries to find an alternative route as described above before sending the packet back.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 19

2.3 Agents on small devices

Small devices are portable computing devices with networking capabilities, such as a
mobile phone or a PDA. Apart from the great advantage of being small and
lightweight and therefore portable, small devices have some issues that need to be
mentioned:

• Reduced processing power
• Memory limitations
• Limited permanent storage with no file system generally available in phones.
• Limited battery life
• Intermittent connectivity due to areas not covered, shielded environments and the

need of turning the device off to save battery
• High network latency and low bandwidth
• Small screen size
• Restricted input mechanism such as numeric keyboard

Figure 5 Examples of small devices

Limited battery life and connectivity are the current most relevant issues in our
project. As we are not depending on infrastructure but on ad-hoc network
technologies the latter is this most constraining issue. We will discuss this in the next
chapter. Though the processing power and related specifics of small devices are
nothing compared to that of current desktop computers it is currently possible to
execute relatively complex software applications such as route planners on small
devices and it is to be expected that these devices will become more and more
powerful in the near future. The device we will base us on is the Sharp Zaurus SL-
C760. On the SL-C760 a version of Linux is installed running Qtopia, X and Java. It
has a maximum resolution of 640x480 pixels, a 400 MHz Intel XScale PXA255
processor, and 62 MB of RAM. This is sufficient for running JADE.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 20

2.3.1 JADE on small devices: LEAP
Though it is probably possible to get the standard version of JADE running on some
small devices by making much effort, the fact is that the current release of JADE is to
‘heavy’ for use on mobile devices. Luckily there is a special version of JADE
available, called LEAP [Leap][Lawr02]. The most important goal of the LEAP project
was to make JADE lightweight and executable on small devices.

LEAP, when combined with JADE, replaces some parts of the JADE kernel forming a
modified runtime environment that can be deployed on a wide range of devices
varying from servers to Java enabled cell phones. In order to achieve the possibility
of running jade on different small devices, running different versions of Java, LEAP
can be shaped in three different ways corresponding to three types of Java
environments that can be found on devices, j2se, pjava and midp:

• j2se: to execute JADE-LEAP on PC and servers in the fixed network running
JDK1.2 or later

• pjava: to execute JADE-LEAP on handheld devices supporting PersonalJava
such as most of today PDA’s

• midp: to execute JADE-LEAP on handheld devices supporting MIDP1.0 only
such as the great majority of Java enabled cell phones

Though different internally, the three versions of JADE-LEAP provide the same set of
API’s to developers thus offering a homogeneous layer over a diversity of devices
and types of networks. Please note: that only a few features that are available in
JADE-LEAP for j2se and pjava are not supported in JADE-LEAP for midp as they are
related to Java classes that are not supported in MIDP. Our intended device, the
Sharp Zaurus SL-C760, runs pjava by default, so we should be able to use JADE-
LEAP for an actual implementation of the concept.

2.4 Agents in mobile ad-hoc networks

In this chapter we will not concentrate on the problems with ad-hoc networking
technologies mentioned in chapter 2.3, but on the possibilities of using existing agent
technology and the modifications necessary to use it in combination with this kind
network technology to build real-life applications.

Though developers of multi-agent systems often do not try to solve the problems in
mobile ad-hoc networks, they will still have to live with them to be able to build real
applications. Therefore an agent platform used cannot depend too much on network
availability and has too anticipated ahead for it to change or even go down at any
moment in time. After an event like this the platform should be able to recover and
continue working.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 21

In mobile ad-hoc environments each of the devices may host agents offering specific
services to the surrounding which can directly be used or may be combined to more
complex services. Based on the traditional Directory Facilitator (DF) definition, the
search of remote services is accomplished by using the concept of DF federations:
DFs, besides registering services offered by local agents, may also register other local
or remote DFs. This allows them to extend the search for services to remote
platforms. This mechanism is not efficient, even less for mobile ad-hoc environments,
e.g. because the searcher first has to find the remote DF and afterwards has to look if
the services he s searching for are registered there.

Allowing registering and discovering agent services using existing ad-hoc / P2P
discovery technologies, which are specifically developed for these environments, can
enable a more efficient management of service descriptions and directories, as well as
an efficient search and result filtering. Furthermore, once working in mobile ad-hoc
environments, ad-hoc and P2P technologies can also be used as mechanisms for
agent (platform) societies in the fixed network.

The development of dynamic service discovery technologies is still an ongoing
research topic. It is not yet presumable which technology will finally be widely
adopted and be the leading one. All of them have specific advantages and
disadvantages and do not completely fit all requirements. E.g., some are not dealing
well with the spontaneity of the peer communication and fast changing service
provisioning, while others are not dealing well with the scalability for a huge amount
of services and users. Some existing discovery mechanisms and technologies which
are worth noticing are: JINI, PDP, UPNP, BT-SDP, JXTA, Gnutella, Chord,
DEAPspace, SLP and Salutation.

2.4.1 FIPA and agents in mobile ad-hoc networks
At the time of writing FIPA specifications currently do not specify any explicit
support for agents in ad-hoc environments [Sanc03], but FIPA recognized the
potential of ad-hoc computing and decided to adopt current dynamic service
discovering technologies. In February 2002 FIPA has created an ad-hoc technical
committee with the mission to develop solutions enabling agents to interoperate in
mobile ad-hoc environments [Fadh1]. In [Fadh2][Finf][Berg03] possible answers are
given to the question of which extensions and changes to the FIPA architecture are
needed to better support agents in ad-hoc environments In these propositions the
central idea for change is that each agent platform periodically broadcasts an agent
platform announcement message of itself. If at least two mobile devices are in range
for ad-hoc communication, both agent platforms receive the agent platform
announcement messages and become aware of each other.

2.4.2 Jade in mobile ad-hoc networks
Using the current version of JADE, application developers can build mobile agents,
which are able to migrate or copy themselves across multiple network hosts. In this

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 22

version of JADE, only intra-platform mobility is supported, that is a JADE mobile
agent can navigate across different agent containers but it is confined to a single
JADE platform. Though using the functionality to replicate Main-Containers it is
possible to create a fault-tolerant platform [Jadm]. This implies creating a platform
consisting of multiple main-containers replicating each other and could possibly be
used in an ad-hoc network, but not without problems and massive overhead.

As explained above there are still a lot of issues for getting JADE agents to behave as
we like in ad-hoc networks. Most likely the best option is to go for JADE-LEAP as
there seem to be some efforts to prepare it for combination of small devices and
mobile ad-hoc networks. At the moment though, LEAP also isn’t fully capable of
being used in these kinds of networks. In [Lawr02] the following modifications to the
JADE-LEAP platform and current FIPA standards are proposed:

• Adding a Discovery Agent (DA) to handle peer-to-peer platform and agent discovery
• Removing the distributed container concepts currently present in JADE-LEAP to

allow an ad-hoc node to be a fully contained platform
• Removing the Discovery Facilitator (DF) and Agent Management System (AMS) as

mandatory components of a platform. But allowing their activation should a device be
capable and an environment require them

• Leasing directory entries within the DF and AMS
• Providing a notification mechanism to allow the propagation of directory changes

2.5 Location awareness

Let alone running agents in mobile ad-hoc networks is already difficult enough, the
goal of this research is to find out how to make agents in these networks context
aware and able coordinate actions in an operating environment like a building on
fire. Physical context information can be very diverse, and include local system
information such as battery level or signal-noise ratio, or environmental information
such as light intensity, temperature, or ambient noise. Among all, location is possibly
the most relevant context element for our application area, in that it often qualifies
the values of the others. For example, a temperature reading becomes more
meaningful when accompanied by the identity of the room where it was sensed. The
point, however, is that the actions of an application component in a mobile
environment may depend on one or more of these context information values and
modeling physical context becomes a necessity.

As stated above location awareness plays a crucial role for context aware agents.
From this point we will focus on the possibilities for the determination of the position
of nodes in mobile ad-hoc networks. If a system like GPS is available, each node can
be easily aware of its own location, but if GPS is not available (for some or all nodes)
relative positions have to be determined using other methods. There are systems and
system concepts available, which use network readings such as time of arrival to
calculate positions. First we will give some information about GPS and why we can

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 23

not always depend on its availability. Then we describe and give reference to a non-
exhaustive list of possible GPS-less algorithms.

2.5.1 Satellite-based localization
Global Positioning Systems (GPS) is a technology that utilizes satellite data to
provide highly accurate location, navigation, and timing information. Most systems,
which have anything to do with localization, make use of GPS or a similar system,
such as GLONASS

The GPS system consists of 24 satellites that circle the earth in controlled orbits, while
continually broadcasting their position to locations worldwide. A GPS device
receives data from these satellites and can calculate its distance from each visible
satellite. When at least three satellites are visible, it can use triangulation to calculate
latitude and longitude location coordinates. With fourth satellite signal, the GPS
device can also calculate its altitude [Murp97]. Although highly unlikely at present
time – in the future anything can happen – it would be possible that GPS isn’t
available at a certain time, for example because the US government decided to
disallow access. A probably more important and convincing argument for not
depending on GPS is that inside buildings, GPS cannot provide location information
with satisfactory accuracy for most tasks [Kita03].

2.5.2 Infrastructure-free localization
There are a variety of ways in which position can be derived from the measurement
of wireless network signals. The most important measurements are the angle of arrival
(AOA), the time of arrival (TOA) and time difference of arrival (TDOA), received signal
strength indicator (RSSI).

T(D)OA and RSSI methods use range measurements from the mobile device to
several base stations and/or other mobile devices to obtain its position. This means
that the accuracy of the estimated position depends on the accuracy of the range
measurements. An example of such a system is the Self-Positioning Algorithm (SPA)
[Srda01]. SPA is an infrastructure-free positioning algorithm, which uses range
measurements between the nodes to build a network coordinate system. The Time of
Arrival (TOA) method is used to obtain the range between two mobile devices. The
algorithm provides relative positions of the nodes in respect to the network topology.

Another system is the Ad-hoc Localization System (AHLoS) [Ahlos]. AHLoS uses
TDOA. Like TOA technology, TDOA also relies on extensive hardware that is
expensive and energy consuming. Another approach is that of Angle of Arrival. Such
a system is proposed in [Nicu01]. Their system allows nodes to estimate and map
relative angles between neighbors Similar to TOA and TDOA, AOA estimates
require additional hardware which is in most cases too expensive to be used. RSSI
methods use theoretical or empirical models to translate signal strength into distance
estimates. An example RSSI technology is a system called RADAR [Bahl00]. The

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 24

advantage of RSSI systems is that they can more easily be used on hardware-
constrained systems such as sensor nodes, but also PDA’s.

In all the systems mentioned above, problems such as background interference and
irregular signal propagation make range estimates inaccurate. There is some work
done which tries to limit such errors take advantage of averaging, smoothing, and
alternate hybrid techniques to reduce error to within some acceptable limit. [Gane02]
[Giro01] The conclusion though is that it is still questionable if distance can be
determined based on signal strength, propagation patterns alone. Therefore many
other types of are proposed, such as centroid and DV-HOP based systems.

In the centroid scheme [Bulu00] for example, anchors beacon their position to
neighbors that keep an account of all received beacons. Using this proximity
information, a simple centroid model is applied to estimate the listening nodes’
location. Another possible system is DV-HOP [Nicu03] which assumes a
heterogeneous network consisting of sensing nodes and anchors. In DV-HOP,
anchors flood their location throughout the network maintaining a hop-count at each
node along the way. Nodes can calculate their position based on the received anchor
locations, the hop-count from the corresponding anchor, and the average distance
per hop.

We conclude this chapter by mentioning a lot of work is done on this subject of
infrastructure free localization in MANETs, though at the time of writing there is no
ready to use system which suits our need so we needs to go for a different approach,
which will be based on user and local sensor input only.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 25

Chapter 3: Architecture

This chapter discusses the implemented system architecture concept set out in the
introduction more elaborative. Also, the requirements and constraints set for
implementing our system will be discussed. The results of this chapter will form the
basis for a system that will function as for a proof of concept (chapters 4, 5 and 6). It
functions as an answer to the formulated problem description. The main element in
the solution is the idea of maintaining a partially shared concept of relative locations
as a mean of context awareness and distributing context information.

As an anticipated setting for the system, consider a building on fire, covered with
smoke where people are trying to leave the building and firemen are performing
tasks such as trying to rescue these people and exterminating the fire. We make the
reasonable assumption that both the firemen and the people inside have no map of
the building and therefore are hindered in their goals by their lack of world
knowledge [Figure 6].

Figure 6 Lack of world knowledge hinders users

For people (including firemen) to be able to effectively reason about their
environment without any pre-knowledge, as a first step a model of the world needs
to be constructed in some manner. Although they have limited visibility because of
the smoke, people should still be able to build a world model for themselves in their
minds or on paper by only keeping a record of every hall and crossing they
encounter. This includes providing information about the direction of edges and
making distance estimations.

The basis for our world model is intentionally kept simple for our proof of concept
and will and globally consists of the following components which will be discussed
throughout this thesis:

• Edges
• Intersections
• Exits
• Directions

?

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 26

• Distances
• Users
• Paths
• Maps

By connecting edges and intersections together it is possible to construct a map. This
does not sound as a reasonable task for people to do when they are in the situation
described. They probably have something else on their minds and also even if they
are carrying pen and paper, solving such a problem is not something the average
person is able to do on the fly when faced with a complex world. One can imagine
though that this process could also be left to a computer. All a person would have to
do is indicate when he encounters a hall or a crossing. Assuming they are all carrying
a portable computing device capable of wireless communication, it even is possible
for them to communicate about their world models with each other [Figure 7] and
make attempts to build a more or less shared world model.

Figure 7 Different world models of the same world

If we are able to get world knowledge from the users mind into the computing
device they are carrying, it is possible for the software - which we will refer to as
agents from now on - on these devices to start communicating about the world with
each other autonomously. We presume these agents operate in an infrastructureless
environment and want to get information about their relative position to other
mobile ad-hoc nodes in the world by constructing a shared world map. This so they
can then again provide this information to the user of the mobile device it is running
on. To expand their knowledge, agents who are within each other range will attempt
to exchange context information and make efforts to match it with their current
knowledge.

As mentioned before, it is very important to notice the fact that this entire concept is
not dependant of any infrastructure, accept from the possibility to communicate via
ad-hoc networking technology such as the widely accepted WiFi and Bluetooth
standards. Please also note that this also means that the availability of satellite
location systems such as GPS cannot be assumed. If such systems are available
logically recommend it to be used as it can help refining the world model to greater
detail. Reasons for not depending on the availability of GPS-like systems are
mentioned are mentioned in [2.5.1]. Of course it is not guaranteed mobile ad-hoc

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 27

communication will always work either. It could for instance happen there is too
much radio frequency (RF) interference in the area where the system is deployed.
Therefore our system is not suggested as a replacement to any system, but merely as
an addition to other localization methods. Agents living in a mobile ad-hoc network
will not likely be able to reach all other agents at all times. Therefore a particular
agent will not have all and the same information available as all the other agents in
the network, thus forcing them to form their individual opinion about the outside
world.

The concept has three main areas of interest: Location, Data distribution, Planning and
Execution, where the former is required for the latter. Only the location component
and a large portion of the data distribution component will be discussed as part of
our architect, the rest is future work and discussed in chapter 7.

3.1 Location

The problem of enabling agents to be able to communicate about events at certain
locations without a common world map and a ‘global positioning system’ is far from
trivial, even more in an infrastructureless environment. After all it is required that
there is a well-defined mutual concept of location first, only then constructing a
shared concept of the world can be attempted. We have chosen to approach this by
building and sharing local partial maps first. These maps will primarily be based on
user input. In practice this means the user indicates when there is an intersection etc.
From this data only a map will then be built. When agents meet for the first time they
will exchange their maps (or partial maps of their current area) and try to merge
them, this to prevent each user has to explore the entire environment. If this succeeds
the agents should have a shared concept of location. If a shared concept is in place,
because the two agents met before, they can suffice by exchanging incremental
updates of their maps. Not sharing already known knowledge will save precious
processing power and most importantly network traffic.

There is a sufficient amount of literature available on exploring environments and
building maps using sensing limited robots, which in fact is similar to our situation.
In our case a person replaces the robot. Even though people have different sensing
capabilities than robots, it is still possible to use many ideas of robot mapping in our
system. As soon we have a collection of consistent partial maps, that have enough
data in common, we can match these maps with each other. If a match is found they
can be merged, resulting in more complete maps of the world. Such a matching and
merging process can in essence be seen as a form of the maximum common sub
graph problem [Bunk00]. Realizing the above is the first and main part of the proof
of concept, which will be discussed in chapter 4. Below we will treat different
approaches to this problem and the reasons for choosing an approach based upon
user input only.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 28

3.1.1 User input mapping
As noted in chapter 2 a lot of work going on in the field of determining positions in
an infrastructureless manner. A reason for not choosing this approach is that we
found no ready-to-use implementation, which suited all our needs, was available. In
addition we prefer to focus on applications of agent technology in mobile ad-hoc
networks, rather than indulging in electro-technical issues. Therefore we will use a
positioning system, which processes user input to build maps and keep track of
positions. Many systems are available using a single robot to map the world. There
also has been much interest in map-making with multiple robots; see
[Butl01][Dede00][Rike94].

In some of these multiple mobile robot systems, the robots must be able to
cooperatively explore and map an environment to be able to perform tasks such as
cleaning a building. Many different approaches have been proposed for such
problems. Some systems use occupancy maps, some topological mapping, some use
robots with many sensory capabilities and some with almost none. Our approach
though is that the robot is ‘replaced’ by a human user. This means there will be
different forms of environmental input than when using a robot. Many of the robot-
mapping systems depend on the sensors to be very accurate. A human can never be
as accurate in measuring distances, angles etc, as most combinations of sensors used
in these systems.

Figure 8 User world model

What a user is able to be accurate enough in (better than the average robot) is
mentioning when encounters an intersections, meaning indicating there is a corridor
to the left and one to the right etc. A user is also able to give a rough estimation of
distances, which means he indicates one corridor is for example twice as long as the
other. The idea that this input alone should be enough to build a world map [Figure
8]. More on this in chapter 4, where the system design of the proof of concept is
explained.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 29

3.1.2 Combining map information
A single human user is only able to explore so much of a particular world in a certain
period. Therefore it looks promising to make attempts to combining the knowledge
collected by different users [Figure 9], to be able to form more complete maps of the
world [Figure 10].

Figure 9 Users have distinct world models

Combining maps can be a difficult problem when the agents do not have a common
reference frame. But finding such a common reference frame is greatly simplified
when topological maps are used, as they provide a concise description of the world.
By topological maps we mean graph-like representations of a world with ordinal
distances between graph nodes. Another constraint - which could be released in
future work - is that our world model will only use angles of exactly 90°, i.e. we will
only create and merge rectilinear topological maps. In the proof of concept we will
formulate an algorithm for merging two or more topological maps and prove our
algorithm using simulation tests.

Figure 10 Combined world model

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 30

Each topological-map matching problem can be viewed as an instance of the
maximal common sub graph problem and is related to the problem of sub graph
isomorphism. Therefore ideas for our algorithms are partially based upon ideas from
the graph matching literature [Vali01][Bunk00]. It is important to note that to be able
to write an algorithm for merging topological maps the maps are assumed consistent.
Meaning no two vertices may represent the same place. Not having this constraint
would make merging maps virtually impossible and would require different
techniques for solving the merging problem.

3.2 Requirements and constraints

When designing any system, there are requirements and constraints that need to be
taken in mind. The fact that we have a concept of an infrastructureless system implies
there are not that many requirements. There still are some worth mentioning though.
Although the proof of concept will be based on a simulation, an actual system based
on our concept would have to run on handheld computers. We will base us on the
PDA commonly used in our project group, the Sharp Zaurus SL-C760 [Figure 11]. It
has a maximum resolution of 640x480 pixels, a 400 MHz Intel XScale PXA255
processor, and 62 MB of RAM. The main constraint, following from this, is the
limited processing power and memory of a node.

Figure 11 Sharp Zaurus SL-C760

Another constraint is that the system will be designed for wireless ad-hoc
communication – the SL-C760 is ‘wireless ready’. Because in such networks response
times and data transfer speeds are much slower than a wired network, we need to
make sure we keep the data traffic to an absolute minimum. At the time of writing no
suitable ready-to-use ‘MANET-agent-platform’ was available to build the system on.
Hence it was decided to build a simulation. Although not building an actual system,
it is required the demonstrator takes into account the constraints which come with

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 31

the future anticipated operating environment. Also to be able to focus on the
problem, the virtual world will have the constraint of being a labyrinth-like
environment. Summarizing, the requirement and constraints for our proof of concept
are:

Requirements

• The system should be designed to be able to run on handheld computers
• A node should have ways of providing local info on intersections and edges to the

system; i.e. user input, GPS if available and pedometer for increased accuracy
• A node should be able to communicate with neighboring nodes (if they are close

enough) via ad-hoc communication

Constraints

• From the requirement of using PDA’s as nodes, there are limits on processing power
requirements and memory usage

• Data traffic has to be kept to an absolute minimum
• Only a simulation will be implemented for this thesis
• It will be assumed everything takes place in a rectilinear labyrinth-like environment

such as the floor of certain building, i.e. a rectilinear world. The main elements of this
environment which are observed are:

o Intersections and their directions
o Edges .and relative distances
o Exits

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 32

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 33

Chapter 4: Global design

This chapter will explain how the system was built from different components, what
the responsibilities of these components are, and how they are designed. First of all
the system designed operates as a multi-agent system within simulation of a mobile
ad-hoc network. As a basis for the simulation of a mobile ad-hoc network a system
called ‘Ad-hoc Simulator’ (AHS) was used. Together with AHS a visualization
system called Ad-hoc Visualization (AHV) was developed, which was also partially
used in ManetLoc.

AHS simulates the behavior of PDAs and mobile communication in a mobile ad-hoc
environment, which is visualized by AHV. The movement of mobile nodes in AHS is
based upon a traffic simulation program [Kroo02], simulating cars driving in a city
street-network. CityNetwork is also important for our system as the data-format of
maps from the CityNetwork is used. More details on the design and implementation
of these programs are provided in the next chapter. We mainly use the part of AHS
that simulates wireless adhoc connectivity between nodes when they are close
together in an environment, i.e. the ad-hoc WiFi component based on the ARA
protocol. Also parts of AHV are used to visualize the global world state, i.e. nodes
moving in the world.

The approach of building a simulation was chosen because building a real system
didn’t seem feasible because of time limits, availability of hardware (PDA’s with ad-
hoc network capabilities) and lack of a suitable ready to use platform to build the
application on. The reasons for choosing AHS as a basis of our system and not other
simulation software [Ns2] [Glom] [Swan] are:

• AHS provides a simulation of an ad-hoc network, which is the environment our
architecture is anticipated to operate in

• AHS was developed internally in our department, making the source-code freely
available

• AHS is closely related to work currently in progress in our project group.
• The original system developer was still partially available for support
• The system was written in C#, which is very similar to Java, thus being relatively

easy to port

In the proof of concept AHS first is modified, including the visualization, in such a
way that we are able to simulate user input and make node movement user
controllable. A single node represents a PDA carried by a human user. Thereafter
multi-agent functionality is added to the PDA nodes. Software agents will exchange
partial world models over the mobile ad-hoc network. Agents receiving a world
model from another agent will attempt to incorporate this new knowledge into its
own and distribute it further into the network.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 34

4.1 Overview

As a proof of concept for the main part of the architecture, described in chapter 3,
and as a possible basis for further work a simulation system will was built. This
involves storing and distributing location-context information based on user
observation. In the simulation maps of an environment are constructed and
distributed. The processes involved are primarily based on the positions different
virtual people visit and any context information they might gather, such as where
exits are and determining the shortest route to one.

In our program each node does will never know its exact world coordinates and
initially does not have any knowledge of the world it’s in at all. I.e. there is no
knowledge of absolute position and no initial map of the world. The goal for each
agent-node is to construct this internal map of the world by using its own
observations and sharing information with other nodes. Knowledge nodes poses, is
distributed to nearby nodes. In practice this will mean nodes that are within
communication range. In our case the data shared is information about halls and
crossings, but can be extended to suit the usage needs.

The main goal is to be able to regenerate the map - or one that is very similar - of the
virtual world the simulated users are in. The system will load a predefined
CityNetwork map and will allow simulated ad-hoc nodes to travel through this map.
Please note that the nodes at the same time represent simulated human users and
agents. As they have no preset knowledge of this virtual world and are only able to
observe information like halls, crossings and exits at their current location, i.e. nodes
can only observe what human users would be able to observe, or actually a lot less.

Using a system able to build a map of an environment by only having people report
what they see, and without requiring any infrastructure, human users will be able to
do their tasks (such as firemen) and help build a context map of an unknown
environment at the same time. By doing this jointly and requiring no extra effort
from a user an unknown area can be explored and mapped with less hassle, in less
time and most importantly without requiring any network infrastructure. In an
overview the basic modules of this system will be:

1. Gathering data
2. Building topological maps from user and sensory input
3. Sharing and merging location context information between agents
4. Providing services based on location context information

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 35

Figure 12 System modules and the PDA interfaces

[Figure 12] shows how these four overlapping modules fit into the internal and
external interfaces of our PDA system (represented by the largest box). The next
chapters will attempt shedding more light on these four modules.

4.2 Gathering data

Before anything else methods for gathering data on location must be in place. The
collected data can then be transformed into knowledge and used for constructing
and maintaining a world model. In our system data about the world is gathered in 3
ways [Figure 13]:

• Sensory data: the most trivial is that the system keeps track of the distances the
user travels. For this it could counts the number steps the user takes and
based on that (and possibly other data) make estimates of distances covered

• User input: preferably by voice recognition users supply information to the
system, but other methods such as a point and click system could be used as
an alternative or addition to the projected use of voice recognition

• Other agents: information provided by other agents within communication
range can be merged with the agent’s own world model

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 36

Figure 13 Potential sources of data

With the gathering of this data, certain difficulties emerge related to converting data
to workable knowledge, some that are worth mentioning are:

• As the real world is dynamic one should be able to determining if data is duplicate,
new and still valid

• Input data will be fuzzy, this needs to be handled in some way
• Combining (different types of) data in one world model
• Combining world models from multiple sources

Although the first two topics are also worth studying, most research for this thesis
went into combining location data. This to be able to create world maps, and thus
will be discussed more thoroughly in the next sections.

4.3 Building topological maps from user and sensory input

The first goal for our agent-system is to be able to construct a local word model from
data the user and sensors provide about the world. For the form of the world model
we chose to construct a topological map. Considering the fact that our focus is on
indoor environments and road networks and as these worlds can be relatively easily
translated into a graph-like representation, the choice of generating topological maps
seems to be appropriate [Remo02].

The most trivial input a user can provide for building a map of a building is to
indicate that at a certain time he encounters an intersection and possibly indicating
the number of paths and their directions. Although it would be helpful if the user
could provide more specific information such as the wind direction (i.e. ‘I can go east

user agent

sensors

agents

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 37

and west here’) it is not necessary. This specific example would require user
knowledge of his global orientation, which cannot be depended upon. Firstly this is
because we cannot assume user caries a compass. Secondly the user is not likely to be
able to orientate very well because of the crisis situation he is in. Therefore, as the
user is exploring a rectilinear labyrinth, just left, right, forward and backward
indications will be sufficient input.

To be able to build a map from user input only it is trivial the user provides correct
information. So when he has changed direction the system should always be
informed of this event. It is possible to allow the user to make errors in his
observations but this is beyond the scope of this research. The only provided backup
for the user making mistakes is checking for inconsistencies in the stored graph(s). If
one is found in the users own observations, all his observations that occurred after
the inconsistency are rendered incorrect. Summarizing, the information gathering
process globally consists of two components:

1. Observations: i.e. at time t1, when the user reports arriving at an intersection,
where one can go left and right, according to his observations. In most cases it
can be assumed a user can also go back, providing this isn’t the first
observation.

2. Actions: i.e. at time t2 the user report he walks into a certain direction.

From all observations and actions the user reports, a graph can be constructed. This
graph will represent a topological map of the world, which should be able to be
displayed on the screen of the PDA and by this visualizing it to the user [Figure 14].
To be able to generate such a map it is important to be able to estimate (relative)
distances traveled. These distances can be calculated from the time between two
observations, combined with the type of movement (running, walking, etc) and can
be refined by using pedometer [Ches01] input. There are more possibilities but we
prefer to use as little specialized hardware as possible. In our system we will make
the assumption the user provides relatively accurate indications of distances traveled
(+/- 10%).

Figure 14 User input and system feedback

observations

actions

current world
 knowledge

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 38

The main problem in a graph generated from the scarce input provided by the user
detecting a loop in a path and closing it to keep the map consistent. Keeping the map
consistent is critical, as we need to be able to match and merge the map with the
maps of other agents. Closing loops and merging maps will be described in depth
later on, but first we will provide an example.

Figure 15 User in a simple world

Please imagine a user walking around in the world of [Figure 15] for this purpose. In
this figure the lines indicate corridors. The user is visualized with the two dots,
where the smaller indicates his orientation. The user starts at the marked location
and starts exploring the world. Whenever he performs any relevant actions or does
an observation the user will report it. In an actual system, providing this information
should be possible via multiple ways, to allow operating under many different
conditions for instance. Examples of such input methods are voice recognition, text
input, pointing/clicking on a device and possibly even pointing a sensor (like a)
camera at a certain object or location. Regardless of the input method used we will
assume all user input is ‘perfect’, so the user will never forget to mention a fact like
arriving at an intersection.

Time Observation State
1 In a hallway Walking
5 Can go left, right, straight Took left and walking
8 Can go, left, straight Stopped
15 Took left, walking
17 Cant go any further Turned 180, running
19 Can go left right Go left, running
23 Can go right Turned 180, walking

Figure 16 Example list of user input

The table in [Figure 16] lists information the input process could provide. The agent
can then translate such information into vertex and edge knowledge. In
CityNetwork-like format this would look similar to [Figure 17]:

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 39

intersections
{ //{number, x-pos, y-pos}
 {1, 0, 0}
 {2, -3, 0}
 {3, -3, -2}
 {4, -9, 0}
}

roads
{ //{number, from, to}
 {1, 1, -1}
 {2, 1, -2}
 {3, 1, -3}
 {4, 1, 2}
 {5, 2, 3}
 {6, 2, 4}
 {7, 4, -1}
}

Figure 17 Translation of user input to a CityNetwork map

Figure 18 Example system output

Please note that a ‘negative’ intersection in the roads section of the map indicates an
unexplored road (-1=up; -2=right; -3=down; -4=left). In the actual system the data
format is a bit little different. This format is used to ease explaining the workings.
Also, contrary to CityNetwork maps all roads are bi-directional in the format. Finally
on a screen such a map could be visualized as [Figure 18].

4.3.1 Closing the loop
If a user would travel long enough in a building he will eventually always return to a
location that was visited before from a different direction. The process described
above will then result in loop in the graph, which should be detected and closed. A
correctly detected closed loop is very valuable information, as it is required to make a
map consistent. Consistent maps are required by our system to be able to match and
merge one map with another [4.4]. The question is how to detect such a closed loop
[Save04]. As an example of closing loops we take an even simpler square shaped
world [Figure 19]:

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 40

Figure 19 Example square world

Applied to the square world the process described in the previous chapter might
result in the following ‘map’, where the two upper-left intersections, should be
recognized as one and the same, but at the moment we still have 5 vertices in the
graph where there are only 4 intersections in the world [Figure 20].

Figure 20 Open loop

Before being able to close a loop we should be able to detect and build hypotheses
concerning possible loops. For this we roughly follow a procedure in which is
checked for each new vertex if there is a vertex nearby that might be closing a loop. If
we can find two matching vertexes a loop hypothesis is started. For our algorithm it
is also important to note that a loop always has a minimum of 4 vertices and an even
number of turns.

To make the graph consistent when two matching vertexes are found, small
adjustments can be made to the endpoints of edges [Figure 21]. Whenever a loop
hypothesis has been formed we can start testing it by comparing edge lengths of the
supposed loop with new measurements. These measurements will result in accepting
or rejecting the loop. It is impossible to check with 100% certainty if a hypothesis is
correct, but we just use a fair amount of measurements. If inconsistencies are found
later on the hypothesis and changes made based on this will be rejected.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 41

Figure 21 Possible closed-loop hypothesis

A danger is that incorrect hypotheses may be accepted as correct or vice versa. A
way to deal with this is to keep multiple hypotheses and never commit to any one of
them, i.e. retain the hypothesis that the loop has not been closed. Hypotheses can
then be accepted or rejected later on when new observations have been added and
map data was received from other agents. If other agents confirm the conclusions
about a specific part of the world the more likely it is to be correct. On the other
hand, agents have different opinions about this particular part of the world,
decreases the likelihood of the hypothesis being correct.

It is also preferred to be able to deal with mapping errors such as incorrect
hypotheses, input errors and dynamic worlds. In a dynamic world more recent
information will intuitively have more meaning than older. Dealing with this is
incorporated into our system by decaying the influence of individual readings over
time [Thru97]. New information inconsistent with the old information could cause
the old to be discarded. Though our system will not work in a dynamic world, still
newer information is preferred over older. In our simulation we will only use time
stamped data for repairing incorrect hypotheses and input errors, but in future work
it could be adapted to be used in dynamic worlds.

4.4 Sharing and merging location context information

Our agents are operating in a mobile ad-hoc networking environment in which it is
likely they encounter other agents every now and then. When an agent detects one or
more (compatible) agent(s) within its communication range, they can share the
knowledge they have about the world and possibly are able to merge this [Figure 22].
Each agent will attempt to merge information from other agents for themselves.
Consequently it is possible for two agents to come to different conclusions. This
makes it possible for PDA’s to have different agent software (versions) running or to
be in a different processing mode. The only requirement is that the messages they
send out are compatible.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 42

Figure 22 Agents in mobile ad-hoc networks share maps when in range

As stated above we can build a consistent topological map at any time from the user
and sensory input the agent gathers in time. It is very important this graph is
consistent, as we want to share and merge this knowledge with other agents.

Similar to the internally stored world models, maps are shared in the form of graphs
(topological maps). They are assumed to be consistent, but not exact and do not
always have a common reference frame. To prevent errors consistency is checked
prior to making a merge attempt. Inconsistent maps could be repaired in some cases.
Starting with consistent maps makes merging the information a lot easier and
reliable.

The data format used when distributing also is similar to the format used in
CityNetwork maps, but slightly adapted to fit our needs [Figure 23]. In this format,
vertices correspond to intersections and edges to roads in the city network format.
Exits, will be discussed later on, they denote possibilities for leaving the area.
Location refers to the current location relative to a vertex of the user sending the
data. If two or more users have explored overlapping regions of an environment
their agents should have topological maps that have common sub graphs with
identical structure. Since having a common sub graph it is possible to find a reference
frame and merge the two maps into one. We will use the maps from [Figure 24] and
[Figure 25] for illustrating the algorithms to accomplish this. Solving the map-
merging problem is thus analogous to identifying a matching between the graphs of
map A and map B. This will be discussed more in detail in the sections below.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 43

Figure 23 Example map information shared between agents

Figure 24 Map A

Figure 25 Map B

4.4.1 Matching
In order to be able to merge two maps, we first need to match the maps together,
building hypothesis and choosing the correct one (i.e. the best match). A hypothesis
is a possibly rotated sub graph that the two maps have in common. There is a chance

vertices
{

 //{x-pos, y-pos}
 {0, 0}
 {0, 200}
 {200, 200}
}
edges
{
 //{direction, vertex number 1, vertex number 2}
 {3, 2, 1}
 {4, 3, 2}
 {3, 4, 3}
 {2, 4, 0}
}
exits
{
 //{direction, vertexnumber}
 {4, 2}
}
location
{
 //{direction, vertexnumber, edgeposition}
 {3, 4, 56}
}

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 44

the process described below does not supply a (large enough) hypothesis. If this is
the case and not enough vertices can be matched to make a good hypothesis yet, the
map received is stored internally. In that case we can try the matching process later
on when a more complete world model is available. The used algorithm for matching
two maps consists of three phases:

1. Vertex matching
2. Growing hypotheses
3. Combining hypotheses

Vertex matching
The first step taken in matching is building a list of all vertices that match each other
in the two maps. Two vertices only match if they have the same edge directions. This
is also the case if a vertex needs to be rotated to match, which is also stored. We
expect exactly known attributes vertices, such as the type of the vertices to match
perfectly. However, attributes that are subject to measurement error can be
compared with a similarity test. In the case of our simulation we don’t have any
fuzzy variables of a vertex, but in a real environment or an extension of our
simulation some could occur.

Figure 26 Matching vertexes

Growing hypotheses
After having built lists of matching vertices we grow matches by testing
corresponding pairs of edges leaving the paired vertices. If the edges are compatible
and the vertices at the ends are also compatible, they are added to the hypothesis. If
the edges or vertices are incompatible, the entire hypothesis is rejected. The vertices
are tested with the same type of criteria and similarity tests used to form the initial
pair. Edges may also have both exactly and inexactly known attributes. In our
system, they have their path length compared with a similarity test.

Match, rotation 90°

No Match

Match, no rotation

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 45

Figure 27 Successful hypothesis
growth

Figure 28 Unsuccessful hypothesis
growth

Our hypotheses are the unique matches surviving the growing process. Duplicate
hypotheses are avoided by keeping a table of vertex pairings. When vertices are
paired during the growth phase, the corresponding entry is marked in the table. This
entry is then ineligible as an initial pairing of vertices.

A sub graph in one map can be matched to multiple sub graphs in the other under
separate hypotheses, but a pair of matched vertices with a given edge
correspondence can appear in only one hypothesis. The matching and growing
process is repeated until all valid vertex pairings are examined. Please note that if we
would be working with imperfect user input - which is not the case in this concept - a
procedure filtering noise should be added. When able to match enough common
vertices and edges, and if there are a minimal amount of conflicting vertices and
edges, the conflicts can be discarded and the hypothesis accepted.

Combining hypotheses
If successful the hypothesis growing process described above results in list of
possibly multiple hypotheses within the same rotation. From these hypotheses one
has to be selected. Before this takes place it is possible that if such a list contains more
than one hypothesis, some of these entries are consistent with each other. These
hypotheses are then combined with each other into one larger hypothesis cluster.

4.4.2 Merging
After the system has chosen a hypothesis cluster, the next step is to merge (or flatten)
the two maps into one single map. Estimates of path lengths can be updated by
combining the measurements from the two maps for corresponding edges. The edge
orientations at the corresponding vertices can be similarly merged. Parts of one map
not present in the other should be added. The merging process is globally performed
in four steps [Figure 29]:

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 46

Figure 29 Map merging process

1. Rotate the received map so its orientation matches the local node’s map
2. Shift the rotated map so its coordinates match the local agent’s map
3. Add any new vertexes from the rotated and shifted map to the local node’s map
4. Connect everything together (update edge lengths, check for inconsistency’s etc.)

Please note that the choices made, may later turn out to be incorrect. For example,
early in the process of exploring a self-similar environment, a user might seem to be
exploring the same area when in fact they are exploring similar but distinct areas. To
protect against such situations, it is remembered from whom and when the new
parts of the map are received. This makes it possible for discovered inconsistencies to
be removed or corrected later on without discarding the whole map. This is possible
as data is marked with time stamps and the id of the agent the data was received
from.

4.4.2 Incremental updating
After agents have merged their maps once two nodes may later exchange maps
information again. This is also the case if they weren’t able to merge their knowledge,
but just exchanged their knowledge before. An incremental update can save a
substantial amount of computation and bandwidth. This is possible with minimal
bookkeeping effort. Each agent must maintain timestamps so that only new and
modified vertices and edges since the last update are exchanged. If a successful
merge took place before and if it still appears to be correct we already have a
hypothesis and can computationally easy merge the new information. If the agents
were not able to merge their maps before the previously received map is merely be
updated with the new information, and another merge attempt can be made
including the new world information. The computational and network traffic savings
of incremental updating can be significant if implemented correctly. The former
highly depends on the amount of information retained from the original map
merging.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 47

4.5 User guidance

When an agent running on a user’s PDA gathers knowledge about the world, the
knowledge can be used to provide services such as advice to the user. One of the
possibilities is guidance of the user. Here one can think of the possibility of guiding
the user to a certain location such as the nearest exit or an unexplored area of the
map. Both options are implemented in our proof of concept.

Nearest exit
When a user indicates he wants to leave the area as soon as possible the system can
instruct the user how to walk, calculated using a shortest path algorithm (i.e.
Dijkstra, A*, Ant based, etc.) . The result of a request for guidance to our system is
indicated, by giving the path to the nearest exit a specific color [Figure 30]. Green
dots are exits; the red line is for guidance.

Figure 30 Guiding user

Unexplored area
When the goal of the user is to (help) explore the world the system can instruct the
user where the user should go to help optimize the process. As this is very similar to
instructing the user to a nearest exit the same type of shortest path algorithms can be
used.

It is trivial there are many more services that can provided to the users by agents
with knowledge such as in our system (although thinking of and implementing
useful services is not). In the context of the crisis management project, knowledge
could be gathered about crisis indicators (fire, smoke, etc) and translated into some
sort of scenario (e.g. the building is on fire, south side is still clear to pass). It is not
unthinkable that having this type of knowledge available in an agent network could
even be used to coordinate the actions of individuals and groups.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 48

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 49

Chapter 5: Implementation

In this chapter the implementation of the system that was built – ManetLoc - will be
discussed in detail. ManetLoc was built in the form of a simulation and has been
implemented in the C# language. For this the Microsoft Visual Studio .NET
development environment was used. At the hand of diagrams we will show the
workings of the different parts of the system. The most important classes, functions
and algorithms will be discussed. As ManetLoc was built on top of the AHV and
AHS systems the design and modifications of these systems will be discussed first.

5.1 Existing software and data structures

The three main software components used are the Adhoc Simulation (AHS), Adhoc
Visualization (AHV) and Network generator. The most important data structure,
which was reused are the so-called CityNetwork files. These files bind these three
applications and ManetLoc together. In the next subchapters these essential elements
of ManetLoc will be discussed.

5.1.1 AHS
AHS is a multi-threaded application, simulating a mobile ad-hoc network. The
program reads node information from a dataset, calculates nearest neighbors and
maintains a collection of PDA’s, MAC layers and ARA protocols. It provides PDA
network statistics and a minimal user interface [Figure 31].

Figure 31 AHS main interface

On the left side of the AHS main interface one can see the list PDA’s that are
currently in the network. Double clicking a PDA, will show the PDA statistics [Figure
32], providing information such as the number of packets sent during the simulation
by this specific PDA.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 50

Figure 32 PDA Statistics

On the right side of the AHS main interface the state of the simulation is shown , i.e. :

• The dataset currently loaded,
• The current tick: a counter for the ‘line number’ the simulation has read

from the dataset
• If AHV is connected
• If the simulation is running
• The number of active PDA’s

To start a simulation, one has to load a dataset using the options dialog (Simulation
→ Options) [Figure 33]. Besides loading a dataset some simulation parameters can be
modified in the options dialog, such as MAC layers settings.

Figure 33 AHS options dialog

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 51

A main element in AHS is the dataset (in [Figure 33] ‘Testnet.New.Mod.ds’ is
loaded). This system is partially replaced by a different system in ManetLoc. To
understand the modified system the original will be explained first. A dataset [Figure
34] in AHS and AHV contains coordinate information output from a modified
version of the traffic simulation program. A dataset comprises header, multiple ticks
and node location information.

H|test3.map|2506|36|120|120|0|0|80
T|0|1
0|0|99.7301472860233|39.2363011519124
T|1|3
0|1|99.359357297353|39.2363011519124
1|1|58.0224533937584|63.2164449818621
0|1|93.5503141415182|39.2363011519124
T|2|0
T|3|2
1|1|58.0224533937584|63.5219245210971
0|1|93.1795241528479|39.2363011519124
T|4|3
2|0|20.3934493768668|41.0691783873225
1|1|58.0224533937584|63.8274040603322
0|-1|92.8087341641776|39.2363011519124

Figure 34 Dataset example

The dataset header consists out of eight parameters that are stored on the first line,
prefixed by the letter ‘H’. The parameters are defined as follows:

1. Name of the traffic simulation map file on which the simulation was run
2. Number of ticks present in the file
3. Maximum number of nodes active at any given time during the entire simulation
4. Largest value for the x-axis as found in the traffic map file on which the simulation was

run
5. Largest value for the y-axis as found in the traffic map file
6. Smallest value for the x-axis as found in the traffic map file
7. Smallest value for the y-axis as found in the traffic map file
8. Number of meters that one traffic map file unit represents

Lines prefixed with the letter ‘T’ represent ticks. These ticks represent the time when
the traffic simulation program started a new rendering sequence and updated the
coordinates for the different nodes. A tick consists of two parameters:

1. Current tick number, starting from zero
2. Number of node mutations present in this tick

Data stored in the dataset (lines below a tick line) consists out of four parameters and
is not prefixed.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 52

1. A node’s unique number
2. Operation that needs to be carried out on the node
3. New coordinate for the x-axis
4. New coordinate for the y-axis

There are three different types of node operations:

0 Indicates that the node is new and needs to be created in memory
before processing coordinate information

1 Indicates that only the new coordinates need to be processed by the
simulation value

-1 Indicates that the node trajectory is completed and that it can be
removed from memory

Figure 35 Node operations

We conclude this chapter by supplying the global AHS class diagram. For more
detailed information on AHS see [Boe04].

Figure 36 AHS class diagram

5.1.1.1 AHS modifications
Initially there were many problems and bugs in the AHS source-code which
prevented us from building our ManetLoc system on top of it. Only the most

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 53

important problems we encountered are mentioned. Please note though that AHS is
currently still not free from mugs and don’t recommend using it any future system.

First of all there was as a code page problem, which prevented the system to run at
all on our machine, as input data would not be interpreted correctly. To fix this,
changes were made to make AHS code page independent. Furthermore, there were
many problems in the network simulation, which in most of the cases caused the
system to hang when actually trying to transfer data between nodes. Another
encountered problem relates to the multi-treading nature of the application. As these
threads were not correctly implemented, often issues such as deadlocks would occur.
As it was not feasible to change the entire structure of AHS only changes were made
to the parts of the code critical to our requirements. Apart from the many bug fixes,
much was removed from AHS. Whether it was because the functionality was not
completely implemented, did not work at all (sending files for example), it was in the
way or our goals (the ‘tick system’) or because it was replaced by something better
(GUI changes).

As mentioned above the dataset format was modified, leaving only header
information. As most header parameters were unnecessary, they were removed,
leaving only two parameters [Figure 37]:

• Name of the traffic simulation map file on which the simulation was run
• Number of meters that one traffic map file unit represents

H|test3.map|80

Figure 37 Modified dataset example

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 54

5.1.2 AHV
The Ad-hoc Visualization environment [Figure 38] merely visualizes the process of
AHS by actually running the simulation on its own. AHV uses a network connection
to stay synchronized with AHS.

Figure 38 AHV main interface

AHV has an options dialog [Figure 39] similar to AHS allowing loading a dataset,
modifying network settings and connecting to AHS.

Figure 39 AHV options dialog

The AHV class diagram is specified as follows:

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 55

Figure 40 AHV class diagram

For detailed information on AHV we refer to [Boe04].

5.1.2.1 AHV modifications
As AHV actually is almost an exact copy of AHS, but with a visualization part
added, many of the same problems that were encountered with AHS were also
found and fixed in AHV. A main AHV specific issue was getting the statistic graphs
to run, which requires specific libraries to be loaded (not mentioned anywhere in
documentation), available (as shareware) by installing the MS Visual Basic .NET
Resource Kit [Vbre]. Other notable changes in AHV are the removal of the option to
start the simulation from the visualization, removal of the statistical charts and
flipping the coordinate system of the drawing in such a way that the origin of the
coordinate system is in the lower left corner of the screen. The main change in the
AHV code base is the removal of AHS functionality, leaving only a highly modified
visualization program.

5.1.3 CityNetwork map files
CityNetwork map files are the files defining the worlds used in our application.
Maps in the CityNetwork format consist of roads and intersections and can be
described as in [Figure 41]:

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 56

// First enumerate the intersections
// Then connect the intersections with roads
intersections
{ //{number, x-pos, y-pos}

{1, 50, 0}
{2, 100, 50}
{3, 50, 100}
{4, 0, 50}

}

roads
{ //{number, from, to}

{1, 1, 2}
{2, 2, 3}
{3, 3, 4}
{4, 4, 1}
{5, 1, 4}

}

Figure 41 CityNetwork map, describing a square

The intersections segment provides the coordinates of any intersection in the
topological map and the roads segment connects the intersections together. Please
note that roads are directional. In our example [4.4.1] indicates a road from
intersection 4 to intersection 1 and [5.1.4] a road from intersection 1 to intersection 4.

5.1.4 Network Generator
To be able to generate city network maps, a program called the network generator
was created. The user can create the graph by placing place the nodes on desired
position. We have used the network for this exact task but had to modify it slightly to
suit our needs.

Figure 42 Network Generator

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 57

5.1.4.1 Network Generator Modifications
As our system requires rectilinear graphs, the program has been modified in such a
way that it is easier to create that type of maps [Figure 44]. The most important
change is the modification of the sendnode procedure, which is used when ‘Link
Node’ is active to connect two nodes together.

The modification compares the absolute x and y differences of the two nodes. Then
the smallest difference is reduced to zero by moving the x or y coordinate of node 2
to that of node 1. Another change is that it was made possible to delete nodes.

Figure 43 Modified sendnode for create rectilinear networks

procedure TNetwork.sendnode(Button: TMouseButton; xx, yy: Integer);
var
 index: Integer;
begin
 if button_link.Enabled = false then
 if button = mbleft then
 begin
 for index:=1 to node_id do
 if (Sqr(xx-orig_x[index]) + Sqr(yy-orig_y[index])) <= Sqr(10) then
 begin
 nodeNumber := nodeNumber + 1;
 if nodeNumber = 1 then
 begin
 node1 := index;
 end;
 if nodeNumber = 2 then
 begin
 node2 := index;
 if Abs(orig_x[node2] - orig_x[node1]) < Abs(orig_y[node2] - orig_y[node1]) then
 begin
 orig_x[node2] := orig_x[node1];
 end else
 begin
 orig_y[node2] := orig_y[node1];
 end;
 connected[node1,node2] := 1;
 connected[node2,node1] := 1;
 paintbox1.Repaint;
 nodeNumber := 0;
 node1 := 0;
 node2 := 0;
 end;
 end;
 end;
 paintbox1.Repaint;

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 58

Figure 44 Modified network generator for rectilinear worlds

5.2 ManetLoc

ManetLoc serves as the proof of concept for the proposed architecture. The system is
implemented as integration into the AHS and AHV code bases and fully implements
the ideas stated in chapters 3 and 4.

5.2.1 Class Diagram
As ManetLoc was implemented as an integrated module into AHS and AHS much of
its class structure was reused. Even though the original class structure is a ‘mess’ to
be honest we were able to hook our program in. It seems irrelevant to explain the
complete class diagram; instead a global class diagram is provided showing how
ManetLoc uses parts of AHS by connecting to the communication layer. Using
network socket communication ManetLoc is connected to the modified visualization
program, allowing it to run the on a different machine.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 59

Figure 45 ManetLoc Class diagram

As one can see, the PDAContainer contains PDA’s. PDA’s are running agent
software. And agent uses the PDA’s communication layer to exchange map data
(consisting of edges and vertexes) with other agents. The agent also supplies the PDA
with a view of the world, which is visualized in the MapPanel.

5.2.2 Use Case Diagram
The use case diagram of [Figure 46] describes how a user can use the ManetLoc
software. Users can control the simulation, which they first have to supply with a
world map. After loading the map it is possible to start the simulation. When the
simulation has initialized one can add, remove and control PDA’s. The ManetLoc
system also contains agents (running on the simulated PDA’s) which possibilities are
described by [Figure 47]. This use case diagram shows the options an agent has. It
can decide to share data about the world with other agents in the mobile ad-hoc
network. If new data is received, it can be combined with what already is knows. A
user wanting advice (or the agent itself) can query the agent. If possible the agent
supplies an answer based on what it currently knows about the state of the world.

PDA Communication
Layer

Map

Agent

PDA Container Network ManetLoc
Visualisation

VertexEdge

Mappanel

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 60

Figure 46 ManetLoc use case diagram for user

Figure 47 ManetLoc use case diagram for agent

Send Data

Give advice

Agent From Sensor

From User

Process Data

From Other Agent

Load World

Start

Stop

View Log

Delete

Add

PDA's

Automatic

Explore

Manual

Receive guidance

As text

As Image

View World Visualization

View Log
View

View Map
Simulation

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 61

5.2.3 Implemented GUI
The graphical user interface of ManetLoc has been intentionally been kept very basic,
and close to that of the original AHS system. This makes it easier to port to different
systems (possibly real PDA’s) and easier to explain. The screens discussed, are: main
interface, options dialog, PDA world view and world visualization.

Main interface
Like AHS the main interface [Figure 48] consists of a left side where all the PDA’s
currently in the simulation can be selected. In ManetLoc, only minimal dataset’s are
used, which don’t provide simulation data like in AHS, but only the header data.
These datasets mainly tells the program which map to load and the relation between
map distance units and actual metric distances.

Figure 48 ManetLoc main-interface

Instead of loading from pre-simulated data, PDA’s can be added and removed
manually from the main interface. In a real world this would be analogous to turning
on a PDA. Double clicking on a PDA in the list opens up its world-view.

On the right side is the Simulation state, which shows:

• The dataset loaded
• Whether the visualization program is connected.
• Whether the simulation is active or not
• The number of PDA’s currently active.

There are three menus in this screen: file, view and simulation:

• File: allows exiting the program,
• View: allows showing or hiding the log
• Simulation: Allow setting simulation options and state (start, stop)

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 62

Options dialog
The options dialog is also very similar to that of AHS. It allows setting network
parameters and supplying the dataset that has to be loaded [Figure 49].

Figure 49 ManetLoc options dialog

PDA world-view
All PDA’s are separately controllable, but also can be set to automatic exploration
using the world-view screen. An instance of this screen represents a PDA. Using
arrows on keyboard a user can navigate through the world. All that is known by the
agent on this virtual PDA is visualized at the same time. Using the guidance combo
box a user can ask advice from the agent and if set to automatic navigation, this
advice is always followed if possible. Colors in the map give supply information to
the user [Figure 50].

Figure 50 PDA world view dialog

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 63

• Black dots indicate intersections
• Green dots indicate exits
• Lines indicate edges.
• Red lines indicate that they are part of the path to the nearest exit
• Green lines indicate that they are part of the path to the nearest unexplored

area
• Blue lines and dots indicate that data about this data was supplied by another

agent
• Dotted lines indicate that this edge has not been visited before

Note: by selecting log from the view menu one can see a log of events since the birth
of this PDA concerning itself.

World visualization
ManetLoc World Visualization merely visualizes the map provided by the dataset
and at the same time shows the location of all of the simulated PDA’s in currently
active. Green circles indicate the WiFi communication radius of these nodes. And
bold lines if two nodes are able to communicate.

Figure 51 ManetLoc World Visualization

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 64

5.2.4 Implemented Algorithms
The basics of implemented algorithms have been explained into some extent in
chapter 4, which allows us to refer to them and explain how these were actually
implemented and used in the next few pages.

5.2.4.1 Exploration
The parts of ManetLoc that was implemented first, were the elements that allow a
user to navigate trough a world defined by the loaded CityNetwork-based map.

Figure 52 Overview of exploration program loop

Go direction
Go direction is a group of complex bookkeeping procedures, which keeps track of
the user’s location in the simulated global map and in the user’s local map. If allowed
it first performs an action step in the world updates the global orientation and
location of the user. Then if successful the local location, orientation map of the
world is updated. Which means, updating edge lengths, vertex locations, checking
for inconsistencies, closed loops, etcetera. If inconsistencies are found they are
restored. If closed loops are found the vertexes and edges should be connected
correctly.

Nearest Exit
‘Nearest Exit’ is a group of iterative procedures, which perform a search for the
nearest exit from the user’s location and report back the path to this near exit if one
exists. The search algorithm used is based on Dijkstra’s shortest path algorithm.

Nearest Unexplored
Similar to ‘Nearest Exit’, ‘Nearest Unexplored’ is a group of Dijkstra-based iterative
procedures, performing a search for the nearest unexplored area from the users
location and report back the path to this area.

Automatic Exploration
Automatic exploration was implemented to simulate a user making exploration
decisions. This is because - as we want to simulate an environment with many PDA’s
- it would be impossible to control the entire simulated group of PDA’s manually. If
automatic exploration is on – by default it is – a timer will trigger a procedure that

Guidance Take step(s)

Observe & report Update world
model

User Agent

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 65

makes the decision what movement to make. This also depends on the guidance
choice that is been selected:

• None – meaning random movement
• Local – meaning that the agent make a ‘smart’ decision based only on what the

user can see at its current location
• Nearest exit – the agent uses the nearest exit calculation to make its decisions
• Nearest unexplored – the agent uses the nearest unexplored calculation to make

its decision

5.2.4.2 Map distribution, matching and merging
The second part of ManetLoc mainly concerns sharing and using map data received
from other agents, were the elements which allow a user to navigate trough a world
defined by the loaded CityNetwork-based map. The three main steps in this process
are distribution, matching and merging of maps.

Figure 53 Overview of distribution, matching and merging program loop

Distribution
The group of procedures concerned with distribution of maps to other agents, first
checks if it useful to send this data (for they may not be enough data or the map is
currently inconsistent). Then it checks if there is anyone to send the data to in its
range. If so, the map is converted to a string that the agent(s) on the other end can
interpret. Then finally it is attempted to send the map string [Figure 49]. An agent
that receives a map string from another agent converts it back to a map and stores it
in a queue and processes the matching algorithm on it when requested, which is
handled by a timer. If more than one map from the same agent is received, the older
one will be discarded.

Send Receive & store

Match

Agent 2Agent 1

Merge

Delete
Hyp?

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 66

Figure 54 Map distribution

Matching
Matching maps - described in [4.4.1 Matching] - also involves a group op (partially)
iterative procedures and is performed when there are one or more map from other
agents are available and we don’t already have the complete map. The newest map is
always tried first, and is discarded after 3 attempts.

Figure 55 Matching process

Merging
Immediately after a matching process succeeded - resulting a list of hypotheses - a
merge attempt [4.4.2 Merging] is executed with the best hypothesis. The process of
selecting the best hypothesis globally looks at their size, but also how well the edge
lengths match. After selecting the best hypothesis, the map is rotated, shifted and
integrated in the original map. A record of ‘changes made’ is kept so it will be
possible to restore from this process if the hypothesis later appears to be false.

Figure 56 Merging process

+ +

Map A Map B Selected Hypothesis Merged Map

?

Map A

Map B

Possible Hypotheses

.

...

..

A

B

C

B

A

C

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 67

5.2.4.3 Restoring from and preventing errors
As it is crucial a local map is consistent, this is checked each time a change is made.
This means: when a new observation is made [Figure 57], when a loop hypothesis
was accepted and closed and each time two maps have been merged. Also to prevent
errors, this is checked again before sending any data to other agents.

Figure 57 Inconsistency

Merging two maps can lead to inconsistencies, as the selected hypothesis might not
have been correct or the map received wasn’t entirely correct. Encountering such an
inconstancy will in most cases only lead to merely discarding the changes made for
this hypothesis which have not been verified by local observations or other agents
thus far.

Figure 58 Overview of consistency program loop

Map
Repair inconsistency

Observation

Change world model

Check consistency

Repair

OK?

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 68

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 69

Chapter 6: System Tests

Even though our system is a simulation and no one is likely to depend on it in a real
life situation, testing a system is always important. It is very important to test if the
system GUI is useable, if the simulation works correct and if it lives up to the goals
we set beforehand. This chapter will discuss the tests the system has undergone, after
it was marked final. Only if critical bugs are found they will be fixed, otherwise they
are merely listed as future work. Globally the usability, correctness, completeness and
performance of the system will be tested.

For performing the tests 3 world maps have been designed, one with only 10
intersections and one with 30 intersections. Also limited – due to hardware
constraints - testing was performed with a 100 intersections world. This setup allows
us to analyze the systems performance in small and in a larger world and see how it
scales up. Needless to say is that during system implementation ManetLoc was used
with many other maps of wide variety.

Figure 59 The 10 intersections world

Figure 60 The 30 intersections world

Figure 61 The 100 intersections world

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 70

The definitions of these maps can be found in [Appendix B]. An important detail is
though, the virtual sizes of the entire path length of these three maps [Figure 55]. The
number of meters per unit is important for the simulated ad-hoc wireless network, as
communication over such networks is bound to certain range limits.

Map # units # meters per
unit

10.map 948 4
30.map 4800 4
100.map 9180 4

Figure 62 Map total path length sizes

Because of time the fact that larger maps take longer to test, most test were
performed on the 10 intersections map. During test with very large maps (100 or
more) and many agents (5 or more) it was found that depending on the hardware
configuration used there are limits to the size of the simulation one can run on a pc.

As a first test and demonstration of the system a test run on ’10.map’ with 3 agents is
visualized below.

Initial setup showing the stating locations of the three agents. Each agent has its own local orientation
visualized as up in the world view. All agents are connected in this setup and thus are able to
communicate. They have nothing to talk about though as their only initial world knowledge is that of
the intersection they started at.

After some time the users have explored parts of the world. The user of PDA 1 encountered a dead end.
As his guidance combobox is set to ‘Nearest unexplored’ the green line indicates the path to the nearest

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 71

unexplored area. In this setup none of the agents are able to communicate as they are not close enough
together.

User 0 and 2 move into each others range (and pre-explored area), and are both able to match and merge
their maps. User 0 also encountered a dead-end and now also receives guidance from the system. User is
moving towards the unexplored area.

User 0 and 1 decided not to receive any guidance from now on. As user 2 is thinking about leaving the
environment he set his guidance to show the path to the nearest exit, indicated by the red line.

User 0 and 1 explore some of the environment and together are able to find the complete map. User 2
leaves the area.

Figure 63 Test Run on 10.map

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 72

6.1 Usability

In the usability test, we look for UI bugs and performance issues. This was be done
by having a number of users test the system. The test users, 5 in total, were instructed
by me personally, they did not have a user manual as it wasn’t finished at the time.
They were first demonstrated the system usage and then asked to try for themselves,
reporting anything they believed not to be correct. The problems they encountered
were:

ManetLoc world visualization does not show directly when simulation
has started, zoom button has to be clicked first
Some buttons are and menu enabled in certain situation when the should
(Add PDA, Remove PDA, stop, start)
 Simulation can become slow on very large maps
 Simulation can become slow with many active agents
 Simulation can become slow with many world views open
 After stopping the simulation it is not possible to start it again with
different options
 Closing ManetLoc visualization when simulation is still running will
result in errors

Figure 64 Non critical UI bugs found

6.2 Correctness

For this test we will test if the system processes data correctly and eventually comes
with the correct output. Many single and multi-agent runs were performed on the 10,
30 and also the 100 intersections map, and in (most of the times) the correct complete
map was found. In one or two case where the system load was too high and other
less clear causes problems occurred with the AHS (threading) code base, resulting in
problems such as deadlocks or the program crashing. We have extensively looked
into the cause of this, and although we have found some hints to the issue, it seemed
not feasible or required to completely solve these problems as it is still possible to do
normal testing of the ManetLoc part, although it makes it more difficult to test the
correctness of the system on large maps and setups with many agents

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 73

Figure 65 Map 30 found, single agent
setup

Figure 66 Map 30 found , multi-agent

setup

6.3 Completeness

In this test the realized system is compared to the goals defined by the problem
description and any missing features are reported. There are five distinct main goals
defined in our problem description:

1. Multi-agent
As each simulated PDA runs its personal semi-intelligent agent, which exchanges
knowledge running on other, simulated PDA’s and can thus be considered a multi-
agent system. No standard agent platform is used for implementing this though and
can be considered as future work when implemented in an actual system instead of a
simulation.

2. Operate in environments without a pre-setup infrastructure
This goal is not entirely met, as the environments in which the agents run are merely
a simulation of the envisioned infrastructureless environment. Put that aside, it
seems to be a realistic assumption that this setup would also work in a similar non-

Design and implement a (1) multi-agent-system that can (2) operate in environments
without a pre-setup infrastructure (only a mobile adhoc network) and (3) without
any pre-knowledge of the world, which is able to (4) process and (5) fuse location
information from different users and sensors remote in space and time and (6)
distributes location information and location based services (such as guidance) to
its users.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 74

simulated environment without having to change too much in the design and
implementation.

3. Operate without any pre-knowledge of the world
As each agent does not have any preset knowledge of the world and is not able to
cheat in any way this goal is met. The only input an agent in our system receives,
which It can use to form an opinion about the world is that of simulated user input
and other agents.

4. Process location information from user and sensory input
Each agent receives data from its (simulated) user and sensors The data received is
converted in to knowledge and merged with existing knowledge. This goal is met.

5. Fuse location information from different users remote in space and time
Each agent receives data from its agents representing other users at different
locations throughout time. The data received is converted into workable knowledge
and merged with the agents own world model. This goal can be considered met.

6. Distribute location information and location based services
The system provides guidance in exploring the environment and in finding the
nearest, so the goal can be considered met. Though many more service can be
imagined which weren’t implemented, including distributed planning and execution
mentioned in the architecture concept. This can be considered future work.

6.4 Performance

For this test the simulation was first run on the 10 and 30 nodes maps, first with just
one agent exploring the world automatically using nearest unexplored area
navigation, and later with more agents who were simultaneously started. The time it
took an agent to find the complete map was measured and also was always checked
if the output was correct (see [6.2]) The results are presented in a table [Figure 69]
and a chart [Figure 70].

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 75

Figure 67 Map 30 found with 1 agent,
after 7501 units

Figure 68 Map 30 found with 5 agent,
after 4399 units

Map #agents #runs Min units Max units Avg. units
10.map 1 10 1248 2351 1721
10.map 2 5 943 1248 1125
10.map 3 5 847 1248 1100
10.map 4 5 953 1219 1112
10.map 5 5 868 1176 1060
30.map 1 5 9104 11205 9701
30.map 2 5 7405 10101 8569
30.map 3 5 5046 7014 6227
30.map 4 5 4399 6412 5301
30.map 5 5 4007 8701 6017

Figure 69 Test results, finding complete map

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 76

Figure 70 Test results, finding complete map

It can be clearly concluded that the process of sharing and merging maps has an
effect, the larger the map the larger the effect and also the more agents the more
gained. Agents starting in a map that was already explored by others logically have
the most gain; after they have explored a small part of the world they can simply
merge the large map parts with their own. Please note that the test result would
probably be significantly lower if the AHS network code wouldn’t suffer from
deadlock issues.

This is illustrated in [Figure 71] with the 30 intersections map. This world was pre-
explored completely by 5 agents after whom a fresh agent was added. The new agent
received the complete map from multiple agents and was able to find the complete
correct map within 536 distance units traveled. Considering it takes 9701 units on
average for an agent to explore this world on its own this is a considerable gain (in
this specific case 18 times faster).

Figure 71 Most gain when arriving in pre-explored world

0

5000

10000

15000

1 2 3 4 5

10.map
30.map

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 77

Chapter 7: Conclusions and future work

In this chapter the results of the ManetLoc project are discussed. After that we will
evaluate to what extend the projects goals are reached. Finally we will discuss some
possibilities for further research and development of the system.

7.1 Conclusions

As anticipated, it seems very well possible to distribute, and merge world knowledge
in a mobile ad-hoc multi-agent environment. Even in such an environment with
limited communication possibilities our test results showed there is a significant gain
found when solving a mapping problem with multiple distributed agents. As
expected, the larger the map the better results on how useful distributing and
merging partial maps is. Although with the fact that simulation runs on a single
machine comes that there are limits because of processing power. This is an
important issue still encountered in our simulation system. Though when
calculations would not be performed on one machine anymore, but on one for each
agent, it should not be a problem anymore. So we anticipate scalability will not be a
direct problem, should the simulation be translated into a real life distributed system.

In the tests, ManetLoc was compared to our problem description from which can be
concluded is the system meets the goals set in the problem description. As it was
constructed with a system in mind containing the 8 facets summarizing the project
goals, these will be discussed now.

Emergent data structures
In comparison to systems with a static data or world model, we consider system able
to build and adapt their model on the fly to be superior in highly dynamic situations
such as a crisis. It is imaginable that such a situation renders large parts of any
knowledge available prior to a (series of) crisis event. Therefore ManetLoc was
designed with the possibility of not having any preset knowledge. Thus the data
structure is built from bottom-up as soon as observations are coming in. Each
simulated user will build its own personal model of the world from scratch.

Multi-agent collaboration
The combination of many agents systems which are able to in some way, are often
able to solve a problem collaboratively with less effort than when an individual agent
would have to tackle the issue. As our system tests showed, this is also the case with
ManetLoc. Building a world model together saves users from having to explore
certain parts of the world, as knowledge of unvisited parts we shared by others in the
environment and merged with the personal world model.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 78

Distributed data
In ManetLoc partial data about the world is distributedly available to each agent in
the environment. Though it is never certain if one agent has the ‘complete’ picture
available, distributed data makes it highly unlikely for all data to get lost. Our setup
makes it possible to store information only in the area(s) where it is required, thus
not needing long distance communication lines to be able to operate.

Decentralized systems
Related to distributed data is that as ManetLoc is a fully decentralized it is unlikely to
ever completely be unavailable. One system going down in a (partially) centralized
setup could prevent it from functioning at all. In our system each agent is fully
autonomous and running on its own (simulated) PDA and only makes use of the
services of others only when availably.

Probabilistic, fuzzy information
Human observations about the world can be considered subjective and inexact. The
input agents in ManetLoc receive is thus fuzzy, local and probabilistic. Fuzziness in
our system mean although a corridor has been measured as 100 units a time t1 it can
be measured 90 units at t2. Locality of information can be seen in the concept
orientation of distance units each agent has. For example, where for one agent a
corridor is 10 distance units for another it can be 100 different units. The
probabilistic nature of our system can be clearly seen in the closing of loops. As
information is inexact, the correctness of the decision the a loop has been found can
at a later time seem incorrect and thus undone.

Mobile ad-hoc networking applications
Most likely caused by the fact that there is still a lot of work in progress basis of
MANET’s (such as routing algorithms)a lack of applications and application
platforms was found. An important goal in our research looking into the possibilities
and advantages of new and existing applications made possible by using MANETs
as a basis. Thus ManetLoc was also designed a proof of concept of a MANET specific
system.

Location awareness
The main task of agents in ManetLoc is to gather environment data and from this
incrementally construct a model of the world, a map. Thus becoming aware and
being able to reason about locations in the world, such as where other users, exits
and potentially any object or event is located.

Human-agent collaboration
An important aspect of our concept is creating a fluent collaboration between our
system (i.e. agents) and humans carrying PDAs. Simulated user input is the main
information channel in our system. Though in ManetLoc individuals are simulated,
the architecture is ready for actual humans in a real life when an input method such
as speech synthesis would be used.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 79

Concluding we can say that all the goals - as stated in the problem description and
the project overview - are met. However, there are still many things we would like to
see done in a different or more elaborate way. We will discuss ideas for possible
future work in the next section.

7.2 Future Work

The first imaginable aspect of future work is converting the simulation into an real
life system. As most work in our group is done using the Java programming
language another wish is to convert from C# to Java. This also because of the
portability to mobile devices, where Java is currently more supported. This is also the
case for the Sharp Zaurus, which doesn’t run C# code (at the moment) but does run
Java code.

An issue was encountered in our simulation which was caused by the fact each agent
has the same behavior by default. This resulted in the agent clogging
together/following each other whenever they meet and exchange world knowledge.
This might some situations be the behavior actual users would sometimes perform. It
is not intelligent behavior though when trying to explore the world in as less time as
possible. Therefore more research could go into better guidance and preventing
agents following each other when this not wanted behavior.

An important part of anticipated work is improving data distribution and realizing
possibilities for distributed planning and execution in mobile adhoc agent networks.

7.2.1 Data distribution, Planning and execution
Having a shared concept of location enables agents to talk about events at certain
locations. This chapter will present thoughts on storing location-related knowledge
in mobile ad-hoc networks. Knowledge one could think of is for example that there is
a fire somewhere, or that a certain hall is no longer passable because of debris from
the roof collapsing, also more abstract knowledge such as crisis scenarios

The idea of crisis scenarios also is part of the ‘Crisis management using mobile ad-
hoc networks’ project and discussed more in-depth in [Scho05]. When they have
enough information about an area, let the agents form an opinion about the scenario
that might be at hand. A scenario may change the behavior of agents, i.e. the way it
spreads and gathers information.

The following issues in the context of handling world knowledge in mobile ad-hoc
networks will be discussed below:

• Preventing network clogging
• Storing and making available data

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 80

• Making data available at a certain location
• Keeping data available
• Working with knowledge in different levels of detail
• Security
• Planning and execution

It is important to notice when thinking about storing data in mobile ad-hoc nodes, is
that you should no be too overenthusiastic about sharing as it has its costs. Sending
too much data could clog the network, which should be avoided at all times
[Chen04] [Desi04].

Also, as there is a high possibility of an ad-hoc node not being reachable by some
other nodes at a certain time it would seem to be appropriate that (in most cases)
information would not be transferred to specific nodes but to locations or areas.
Supporting this is the fact that we are storing context information and we don’t have
a central data storage unit available. Most knowledge is highly related to its location
and more or less useless if not available at its originating location.

As stated above the storage of information in our proposed architecture concept is
primarily related to the location to where it originated and/or to where it is relevant.
This is also the case for preventing of data loss or unavailability. To prevent from
losing data when a node goes down or becomes unreachable, if possible it seems
wise to keep multiple copies of the knowledge. We would prefer to do this in the
region where it is most relevant. In most cases this would mean in the neighborhood
where it originated and for high-level information at locations where decisions are
made about this information (i.e. the ‘command center’).

As it is unlikely that many ad-hoc nodes will go down at exactly the same time the
above will make sure that if a node would goes down the information is very likely
still available at other nodes. Providing that the information was sufficiently
important and there were other nodes in its neighborhood, it should have been
distributed to others. After initial storage at a certain location keeping information at
the ‘correct’ location(s) is also an issue. An idea for this is that if an agent would
leave the area in which certain information is relevant it should make an effort to
redistribute its knowledge to be sure it doesn’t get lost. Due to the ad-hoc nature of
MANETs information cannot always directly be transferred to all relevant locations.
As direct transfer will often not be possible attempts should be made to eventually
get the information at the specified location. An idea for this is basically moving the
information in the right direction, i.e. closer to its target location. Combined with
other tactics this should in often enable accomplish the goal.

Another advantage of this location-based approach is that as most communication
will be single-hop. As mentioned earlier in this chapter network bandwidth is
relatively scarce in ad-hoc networks, so it is very important to limit data being

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 81

transferred. Single hop communication greatly reduces the network load, compared
to multi hop communication and therefore helps preventing network overload.

An important aspect of storing context information mentioned before is that it has
differing relevancy (its weight) at different location. Also though global information
of a ‘situation’ can still be important somewhere, its details are possibly not. This
would imply that it is possible and useful to store information with different levels of
detail (possibly using quad tree decomposition). So for example, the more important
information is, the more widely it will be distributed over the nodes in the network,
but the further we get from the ‘source’ the less detail is sent.

As in most information systems security is also an issue here. Most likely not all
information should be available to everyone, as information could be private or
sensitive in some way. There are two issues here, as data will most likely travel
trough air in our network (ad-hoc WiFi) anyone is able to pick up the data stream.
Also some nodes we don’t want to have access to certain information might be
required to transfer the information to the right nodes. While not the focus of our
research there are some security problems, which would probably require some or all
data should be encrypted at the cost of processing power etc.

The direction of movement of an ad-hoc node could possibly matter in what
information to share with other nodes. This could mean to push information that is
‘better off’ at other node – as information should stay near its original location - and
pull info you will need about the environment you are in and/or will encounter.
Direction of movement might also be used in determining the level of detail to be
sent. One could for example send higher detail of the area, which lies in current
direction of movement, and less detail of the area a node is coming from.

Figure 72 Direction of movement matters in distribution of data

Another idea is that knowledge gathered from own sensors or user input has higher
priority of being shared than knowledge gathered from other nodes. Most often
knowledge will be a combination of the two but the more it comes from the node
itself the more it should be pushed. This to promote distribution of new knowledge
instead of already distributed data.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 82

When able to build a model of the current state of the world, planning and execution
of tasks based on this dynamic knowledge will also become possible. If for instance
someone needs help at a certain location as he has just encountered finds an
emergency, such as a fire spreading.

As the network topology of mobile ad-hoc networks often highly dynamic, we must
always keep in mind that requests for information at and/or about a certain location
are not guaranteed to ever return. This is also an issue when coordinating actions.
When communication lines between the parties that ordered a task can break up at
any moment being sure if a task is being executed is a problem. Therefore it seems
logical not to try not to give orders to a specific node and implicitly a specific person,
but to a relative region. And leave monitoring of execution the task mostly to this
region itself. In the emergency scenario mentioned, the fact that help is required can
be spread across the network. When the emergency is over or when enough help has
arrived this again can be distributed.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 83

Bibliography

[Comb] Combined Systems group, http://combined.decis.nl

[Boel04] A Communication Layer for Distributed Decision Making, J.L.Boehlé, 2004,

Delft University of Technology, Erasmus University Rotterdam

[Aaai] Agents, The American Association for Artificial Intelligence, 2000 - 2005

http://www.aaai.org/AITopics/html/agents.html

[Fipa] The Foundation for Intelligent Physical Agents, http://www.fipa.org

[Berg03] Towards a FIPA Approach for Mobile Ad-hoc Environments, M. Berger1, M.

Watzke1, H. Helin, 2003, FIPA, http://www.fipa.org/docs/input/f-in-
00091/f-in-00091.pdf

[Fiaa] FIPA Abstract Architecture Specification, 2003, FIPA,

http://www.fipa.org/specs/fipa00001/SC00001L.pdf

[Sanc03] Design of a FIPA compliant agent platform for limited devices, G. Sancho, R.

Rioja, C.Vazquez, 2003, University Carlos III de Madrid,
http://www.it.uc3m.es/~celeste/papers/mata2003_uc3m_def.pdf

[Jade] Java Agent Development Framework, http://jade.tilab.com/

[Coug] Cognitive Agent Architecture, http://www.cougaar.org/

[Swar1] Swarm Intelligence, http://en.wikipedia.org/wiki/Swarm_intelligence

[Swar2] Swarm Intelligence Recourses,

http://dsp.jpl.nasa.gov/members/payman/swarm/

[Dori91] Positive Feedback as a Search Strategy, Dorigo M., V. Maniezzo & A.

Colorni, 1991, Politecnico di Milano,
ftp://iridia.ulb.ac.be/pub/mdorigo/tec.reps/TR.01-ANTS-91-
016.ps.gz

[Rado03] Ant Routing for Mobile Ad-Hoc Networks, Radovan Miloševic, 2003, Delft

University of Technology

[Fern05] Varying the Population Size of Artificial Foraging Swarms on Time Varying

Landscapes, Carlos Fernandes, Vitorino Ramos, Agostinho C. Rosa1,
2005, Technical Univ. of Lisbon,
http://alfa.ist.utl.pt/~cvrm/staff/vramos/Vramos-ICANN05.pdf

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 84

[Hels04] Cougaar: A scalable, Distributed Muti-Agent Architecture, Aaron

Helsinger, Michael Thome, Todd Wright, 2004, BBN Technologies,
 http://cougaar.org/docman/view.php/17/136/cougaar-bbn-0617-

submitted.pdf

[IEEE99A] LAN MAN Standards Committee. Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications, 1999, IEEE

[IEEE99B] LAN MAN Standards Committee. Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed
Physical Layer Extension in the 2.4 GHz Band, 1999, IEEE

[Kant03] Modeling and Simulation of Adhoc/P2P Resource Sharing Networks, Krishna

Kant, Ravi Iyer, 2003, Intel Labs,
http://kkant.ccwebhost.com/papers/simpra.pdf

[Leap] Lightweight Extensible Agent Platform, http://leap.crm-paris.com

[Lawr02] LEAP into Ad-Hoc Networks, Jamie Lawrence, 2002, Media Lab Europe,

http://autonomousagents.org/ubiquitousagents/2002/papers/papers
/10.pdf

[Fadh1] FIPA Ad-hoc Technical Comitee,

http://www.fipa.org/activities/ad_hoc.html

[Fadh2] Agents in Ad-hoc Environments, a Whitepaper, Version: 0.C, 2002, FIPA
Technical Committee “Adhoc”, http://www.fipa.org/docs/input/f-in-
00068/f-in-00068A.htm

[Finf] FIPA Inform! Volume 3 Issue 3,

http://www.fipa.org/docs/output/f-out-00128/f-out-00128.pdf

[Jadm] JADE Administrator’s guide, chapter 4, Fabio Bellifemine, Giovanni Caire,

Tiziana Trucco, Giovanni Rimassa, Roland Mungenast, 2005, JADE
Board, http://jade.tilab.com/doc/administratorsguide.pdf

[Jfip] JADE- A FIPA compliant agent framework, Fabio Bellifemine, Agostino

Poggi, Giovanni Rimassa, JADE Board,
http://sharon.cselt.it/projects/jade/papers/PAAM.pdf

[Murp97] Global Positioning Systems, A Technical Assessment Paper,Lotta

Danielsson-Murphy, Thaddeus Murphy , 1997
 http://www.lottaworld.com/worksample/gps.html

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 85

[Kita03] Design of WiPS: WLAN-Based Indoor Positioning System, Teruaki Kitasuka
Tsuneo Nakanishi, and Akira Fukuda, 2003, Kyushu University,
http://www.f.csce.kyushu-
u.ac.jp/~kitasuka/papers/2003/kmms_kitasuka_v7n4.pdf

[Srda01] GPS-free positioning in mobile Ad-Hoc networks, Srdan Capkun, Maher

Hamdi, Jean-Pierre Hubaux, 2001, Ecole Polytechnique Federale de
Lausanne,
http://lcawww.epfl.ch/Publications/Capkun/CapkunHH01a.pdf

[Ahlos] The Ad-hoc Localization System,

http://nesl.ee.ucla.edu/projects/ahlos/

[Nicu01] Ad-hoc Positioning System (APS) Using AOA, D. Niculescu, B. Nath,

Rutgers University,
http://paul.rutgers.edu/~dnicules/research/aps/aoa-infocom.pdf

[Bahl00] Radar: An in-building user location and tracking system, P. Bahl, V. N.

Padmanabhan, 2000, Microsoft Research,
http://research.microsoft.com/~padmanab/papers/infocom2000.pdf

[Giro01] Robust Range Estimation Using Acoustic and Multimodal Sensing, Lewis
Girod and Deborah Estrin, 2001, UCLA,
http://lecs.cs.ucla.edu/~girod/papers/IROS-2001.pdf

[Gane02] Complex Behavior at Scale: An Experimental Study of Low-Power Wireless

Sensor Networks, D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D.
Estrin and S. Wicker, 2002,
http://lecs.cs.ucla.edu/Publications/papers/Deepak-Empirical.pdf

[Bulu00] GPS-less Low Cost Outdoor Localization for Very Small Devices, N. Bulusu,

J. Heidemann and D. Estrin, 2000, University of Southern California,
http://lecs.cs.ucla.edu/~bulusu/papers/Bulusu00a.pdf

[Nicu03] DV-based positioning in adhoc networks in Telecommunication Systems, D.

Niculescu, B. Nath, 2003, The State University of New Jersey,
http://paul.rutgers.edu/~dnicules/research/aps/aps-jrn.pdf

[Butl01] Distributed coverage of rectilinear environments, Z.Butler, A Rizzi, R.

Hollis, 2001, Carnegie Mellon University,
http://www.ri.cmu.edu/pub_files/pub2/butler_zack_2000_1/butler_
zack_2000_1.pdf

 [Dede00] Landmark-based matching algorithm for cooperative mapping by autonomous

robots, G. Dedeoglu,G. Sukhatme, 2000, University of Southern
California, http://www-robotics.usc.edu/~dedeoglu/dars00.pdf

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 86

[Rike94] Autonomous agent map construction in unknown enclosed environments, K.

Doty, S. Seed, 1994, University of Florida,
http://citeseer.ist.psu.edu/rd/665606%2C505179%2C1%2C0.25%2CDo
wnload/http://citeseer.ist.psu.edu/cache/papers/cs/25819/http:zSzz
Szwww.mil.ufl.eduzSzpublicationszSz..zSzpeoplezSzdotyzSzpaperszS
zautonomouszSzriker.pdf/doty94autonomous.pdf

[Vali01] Subgraph Isomorphism and Related Problems, G. Valiente, 2001, Technical

University of Catalonia, http://www.lsi.upc.es/~valiente/graph-00-
01-a.pdf

[Bunk00] Mean and maximum common subgraph of two graphs, H. Bunke, A. Kandel,

2000, University of Bern, University of South Florida,
http://www.iam.unibe.ch/~fki/publications/papersOnGraphMatchin
g/meanAndMaximum.ps.gz

[Scho05] Icon based System for Managing Emergencies, P. Schooneman, 2005, Delft

University of Technology

[Ches01] Pedometer Accuracy, T. Chester, 2001,

http://sd.znet.com/~schester/grand_canyon/pedometer_accuracy.ht
ml

[Save04] Loop-Closing and Planarity in Topological Map-Building, F. Savelli, B.

Kuipers, 2004, Universit`a di Roma “La Sapienza”, University of Texas
at Austin, ftp://ftp.cs.utexas.edu/pub/qsim/papers/Savelli-iros-
04.pdf

[Remo02] Towards a General Theory of Topological Maps, E. Remolina, B. Kuipers,

2002, University of Texas at Austin,
ftp://ftp.cs.utexas.edu/pub/qsim/papers/Remolina+Kuipers-TR-
02.pdf

[Vbre] Microsoft Visual Basic .NET Resource Kit,

http://msdn.microsoft.com/vbasic/vbrkit/default.aspx

[Tato04] Dynamic traffic routing using Ant Based Control , B. Tatomir, L. Rothkrantz,

2004, Delft University of Technology

[Chen04] TCP Performance over Mobile Ad-hoc Networks, X. Chen, H. Zhai, J. Wang,

Y. Fang, 2004, University of Florida,
http://www.ecel.ufl.edu/~jwang/publications_files/tcp_cjece.pdf

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 87

[Desi04] Sustaining Performance Under Traffic Overload, S. DeSilva, R. Boppana,
2004, University of Texas,
http://www.cs.utsa.edu/faculty/boppana/papers/Mwan04.pdf

[Thru97] Learning metric-topological maps for indoor mobile robot navigation, S.

Thrun, 1997, Carnegie Mellon University,
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6TY
F-3T0XP9D-2-
2&_cdi=5617&_user=499885&_orig=search&_coverDate=02%2F28%2F1
998&_qd=1&_sk=999009998&view=c&wchp=dGLbVzz-
zSkzV&md5=b554820964dc89aa46a65fd9f207ad80&ie=/sdarticle.pdf

[Ns2] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/

[Glom] GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/

[Swan] SWAN, http://www.comet.columbia.edu/swan/index.html

[Kroo02] Dynamic vehicle routing using ant based control, R. Kroon, 2002, Delft

University of Technology,
http://www.kbs.twi.tudelft.nl/docs/MSc/2002/Kroon_Ronald/thesis
.pdf

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 88

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 89

Appendix A: User Manual

This Appendix will provide short non-technical instructions on what ManetLoc is
and how to use it.

What is ManetLoc

This application is a demonstration of how users in an unknown building-like
environment carrying mobile devices can explore the world, share the gathered data
and merge with their current world model (in the case of ManetLoc a topological
map) by using a mobile ad-hoc network as a platform.

The application is a simulation and proof of concept, and could be converted into an
actual system by another developer when a agent-platform which is suitable for use
in mobile ad-hoc networks is available.

Using ManetLoc

ManetLoc can be started by executing ‘manetloc.exe’. This will result in the main
interface to be loaded.

 Main interface Options Dialog

The next step is to load a dataset - which are files ending with *.ds -, defining the
world for the simulation. To do this, select ‘Options’ from the ‘Simulation’ menu. The
options dialog will be loaded. On the left side a dataset can be selected by clicking on
‘Browse’. On the right side the network parameters can be modified if required.
When ready click done and the dataset will be loaded, plus the world visualization
environment will be automatically started.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 90

 World visualization PDA world view

Now select ‘Start’ in the ‘Simulation menu to actually start the simulation. If the map
is not visible in the visualization environment, you can click on the zoom buttons in
the upper left corner. If you select ‘Log’ in the ‘View’ menu the log will be shown,
indicating the simulation has started. Now PDA’s can be added (and removed) from
the simulation. Click ‘Add PDA’ to add one. The new PDA will now appear in the
list box on the main interface and in world visualization. Double clicking on the PDA
in the listbox will open its world view interface. Using this dialog a specific PDA can
be monitored and controlled. The main part consists of a drawing of the current
world model the agent running on the PDA has in memory. In the ‘View’ menu the
log for this PDA can be shown or hidden. By checking ‘Automatic Navigation’ the
world if automatically explored, using the guidance option selected. If not checked,
the movement of the virtual user can be manually controlled by using the arrow keys
on the keyboard. By clicking on the ‘Show map as string’ the current world model is
show as a string. This last option is manly available for debugging purposes.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 91

Appendix B: Map, Dataset and Road files

<10.ds>

H|10.map|9999|0|500|500|0|0|4

<10.map>

// Use this file to construct the map
// First enumerate the intersections
// Then connect the intersections with roads
// Then define the exits
intersections
{ //{number, x-pos, y-pos}
 {1,0,100}
 {2,100,100}
 {3,299,100}
 {4,299,0}
 {5,0,231}
 {6,100,231}
 {7,173,231}
 {8,173,280}
 {9,150,280}
 {10,150,322}
}

roads
{ //{number, from, to}
 {1, 1, 2}
 {2, 2, 1}
 {3, 2, 3}
 {4, 3, 2}
 {5, 3, 4}
 {6, 4, 3}
 {7, 1, 5}
 {8, 5, 1}
 {9, 5, 6}
 {10, 6, 5}
 {11, 6, 7}
 {12, 7, 6}
 {13, 7, 8}
 {14, 8, 7}
 {15, 8, 9}
 {16, 9, 8}
 {17, 9, 10}
 {18, 10, 9}
 {19, 2, 6}
 {20, 6, 2}

}

exits
{ //{number, vertexnum, direction}
 {1, 1, 4}
}

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 92

<30.ds>

H|30.map|9999|0|1000|500|0|0|4

<30.map>

// Use this file to construct the map
// First enumerate the intersections
// Then connect the intersections
// with roads
// Then define the exits
intersections
{ //{number, x-pos, y-pos}
 {1,0,0}
 {2,0,200}
 {3,200,200}
 {4,200,400}
 {5,100,400}
 {6,100,500}
 {7,300,500}
 {8,100,700}
 {9,300,600}
 {10,300,700}
 {11,300,900}
 {12,400,400}
 {13,400,200}
 {14,500,400}
 {15,500,600}
 {16,500,700}
 {17,400,800}
 {18,400,900}
 {19,500,200}
 {20,500,100}
 {21,600,200}
 {22,600,400}
 {23,700,500}
 {24,700,600}
 {25,800,600}
 {26,800,800}
 {27,800,500}
 {28,800,400}
 {29,600,700}
 {30,600,600}
}
roads
{ //{number, from, to}
 {1, 1, 2}
 {2, 2, 1}
 {3, 2, 3}
 {4, 3, 2}
 {49, 24, 25}
 {50, 25, 24}
 {51, 25, 26}

 {5, 3, 4}
 {6, 4, 3}
 {7, 4, 5}
 {8, 5, 4}
 {9, 5, 6}
 {10, 6, 5}
 {11, 6, 7}
 {12, 7, 6}
 {13, 6, 8}
 {14, 8, 6}
 {15, 7, 9}
 {16, 9, 7}
 {17, 8, 10}
 {18, 10, 8}
 {19, 10, 11}
 {20, 11, 10}
 {21, 10, 16}
 {22, 16, 10}
 {23, 16, 15}
 {24, 15, 16}
 {25, 15, 14}
 {26, 14, 15}
 {27, 14, 12}
 {28, 12, 14}
 {29, 4, 12}
 {30, 12, 4}
 {31, 13, 12}
 {32, 12, 13}
 {33, 14, 22}
 {34, 22, 14}
 {35, 22, 21}
 {36, 21, 22}
 {37, 19, 21}
 {38, 21, 19}
 {39, 19, 20}
 {40, 20, 19}
 {41, 22, 28}
 {42, 28, 22}
 {43, 28, 27}
 {44, 27, 28}
 {45, 23, 27}
 {46, 27, 23}
 {47, 23, 24}
 {48, 24, 23}

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 93

 {52, 26, 25}
 {53, 26, 17}
 {54, 17, 26}
 {55, 17, 18}
 {56, 18, 17}
 {57, 15, 30}
 {58, 30, 15}
 {59, 24, 30}
 {60, 30, 24}
 {61, 30, 29}
 {62, 29, 30}
}

exits
{ //{number, vertexnum, direction}
 {1, 2, 4}
 {2, 18, 1}
 {3, 20, 3}
 {4, 25, 2}
}

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 94

<100.ds>

H|100.map|9999|0|800|500|0|0|4

<100.map>

// Use this file to construct the map
// First enumerate the intersections
// Then connect the intersections with roads
// Then define the exits
intersections
{ //{number, x-pos, y-pos}
 {1, 159, 81}
 {2, 271, 59}
 {3, 429, 251}
 {4, 229, 241}
 {5, 429, 141}
 {6, 297, 371}
 {7, 333, 251}
 {8, 333, 328}
 {9, 568, 334}
 {10, 506, 251}
 {11, 436, 456}
 {12, 227, 433}
 {13, 162, 263}
 {14, 72, 364}
 {15, 229, 328}
 {16, 568, 103}
 {17, 706, 192}
 {18, 700, 371}
 {19, 525, 456}
 {20, 657, 103}
 {21, 706, 103}
 {22, 778, 192}
 {23, 568, 59}
 {24, 368, 59}
 {25, 368, 141}
 {26, 159, 140}
 {27, 137, 241}
 {28, 88, 81}
 {29, 72, 241}
 {30, 271, 140}
 {31, 568, 192}
 {32, 429, 340}
 {33, 700, 456}

{34, 436, 509}
 {35, 297, 433}
 {36, 227, 509}
 {37, 72, 433}
 {38, 700, 334}
 {83, 618, 478}
 {84, 562, 478}
 {85, 562, 548}
 {86, 212, 120}

 {39, 762, 456}
 {40, 778, 334}
 {41, 525, 433}
 {42, 361, 433}
 {43, 160, 509}
 {44, 162, 364}
 {45, 137, 185}
 {46, 72, 185}
 {47, 137, 263}
 {48, 271, 241}
 {49, 306, 185}
 {50, 657, 19}
 {51, 778, 104}
 {52, 700, 521}
 {53, 618, 521}
 {54, 361, 393}
 {55, 72, 540}
 {56, 160, 540}
 {57, 506, 141}
 {58, 368, 16}
 {59, 159, 25}
 {60, 88, 150}
 {61, 306, 140}
 {62, 510, 340}
 {63, 625, 230}
 {64, 625, 279}
 {65, 700, 279}
 {66, 700, 230}
 {67, 756, 279}
 {68, 580, 230}
 {69, 227, 371}
 {70, 160, 449}
 {71, 104, 449}
 {72, 104, 509}
 {73, 361, 470}
 {74, 297, 470}
 {75, 510, 289}
 {76, 568, 143}
 {77, 711, 19}
 {78, 777, 19}
 {79, 762, 416}
 {80, 525, 389}
 {81, 640, 389}
 {82, 640, 428}
 { 31, 5, 57}
 {32, 57, 5}
 {33, 5, 98}
 {34, 98, 5}

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 95

 {87, 212, 59}
 {88, 23, 25}
 {89, 23, 364}
 {90, 568, 18}
 {91, 711, 61}
 {92, 525, 547}
 {93, 476, 547}
 {94, 476, 509}
 {95, 229, 161}
 {96, 201, 185}
 {97, 402, 185}
 {98, 429, 75}
 {99, 471, 16}
 {100, 321, 25}
}

roads
{ //{number, from, to}
 {1, 1, 26}
 {2, 26, 1}
 {3, 1, 28}
 {4, 28, 1}
 {5, 1, 59}
 {6, 59, 1}
 {7, 2, 24}
 {8, 24, 2}
 {9, 2, 30}
 {10, 30, 2}
 {11, 2, 87}
 {12, 87, 2}

{13, 3, 5}
 {14, 5, 3}
 {15, 3, 7}

{16, 7, 3}
 {17, 3, 10}
 {18, 10, 3}
 {19, 3, 32}
 {20, 32, 3}
 {21, 4, 15}
 {22, 15, 4}
 {23, 4, 27}
 {24, 27, 4}
 {25, 4, 48}
 {26, 48, 4}
 {27, 4, 95}
 {28, 95, 4}
 {29, 5, 25}
 {30, 25, 5}
 {31, 5, 57}
 {84, 31, 17}
 {85, 18, 33}
 {86, 33, 18}
 {87, 18, 38}
 {88, 38, 18}
 {89, 19, 33}

 {35, 6, 18}
 {36, 18, 6}
 {37, 6, 35}
 {38, 35, 6}
 {39, 6, 69}
 {40, 69, 6}
 {41, 7, 8}
 {42, 8, 7}
 {43, 8, 15}
 {44, 15, 8}
 {45, 9, 31}
 {46, 31, 9}
 {47, 9, 38}
 {48, 38, 9}
 {49, 10, 57}
 {50, 57, 10}
 {51, 11, 19}
 {52, 19, 11}
 {53, 11, 34}
 {54, 34, 11}
 {55, 12, 35}
 {56, 35, 12}
 {57, 12, 36}

{58, 36, 12}
 {59, 12, 37}
 {60, 37, 12}
 {61, 12, 69}
 {62, 69, 12}
 {63, 13, 44}
 {64, 44, 13}
 {65, 13, 47}
 {66, 47, 13}
 {67, 14, 29}
 {68, 29, 14}
 {69, 14, 37}
 {70, 37, 14}
 {71, 14, 44}
 {72, 44, 14}
 {73, 14, 89}
 {74, 89, 14}
 {75, 16, 20}
 {76, 20, 16}
 {77, 16, 23}
 {78, 23, 16}
 {79, 17, 21}
 {80, 21, 17}
 {81, 17, 22}
 {82, 22, 17}
 {83, 17, 31}
 {136, 94, 34}
 {137, 35, 42}
 {138, 42, 35}
 {139, 35, 74}
 {140, 74, 35}
 {141, 36, 43}

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 96

 {90, 33, 19}
 {91, 19, 41}
 {92, 41, 19}
 {93, 19, 92}
 {94, 92, 19}
 {95, 20, 21}
 {96, 21, 20}
 {97, 20, 50}
 {98, 50, 20}
 {99, 22, 40}
 {100, 40, 22}
 {101, 22, 51}
 {102, 51, 22}
 {103, 23, 24}
 {104, 24, 23}
 {105, 23, 90}
 {106, 90, 23}
 {107, 24, 25}
 {108, 25, 24}
 {109, 24, 58}
 {110, 58, 24}
 {111, 26, 30}
 {112, 30, 26}
 {113, 27, 29}
 {114, 29, 27}
 {115, 27, 45}
 {116, 45, 27}
 {117, 27, 47}
 {118, 47, 27}
 {119, 28, 60}
 {120, 60, 28}
 {121, 29, 46}
 {122, 46, 29}
 {123, 30, 48}
 {124, 48, 30}
 {125, 30, 61}
 {126, 61, 30}
 {127, 32, 62}
 {128, 62, 32}
 {129, 33, 39}
 {130, 39, 33}
 {131, 33, 52}
 {132, 52, 33}
 {133, 34, 36}
 {134, 36, 34}
 {135, 34, 94}
 {188, 75, 62}
 {189, 63, 64}
 {190, 64, 63}
 {191, 63, 66}
 {192, 66, 63}
 {193, 63, 68}
 {194, 68, 63}
 {195, 64, 65}
 {196, 65, 64}

 {142, 43, 36}
 {143, 37, 55}
 {144, 55, 37}
 {145, 38, 40}
 {146, 40, 38}
 {147, 38, 65}
 {148, 65, 38}
 {149, 39, 79}
 {150, 79, 39}
 {151, 41, 42}
 {152, 42, 41}
 {153, 41, 80}
 {154, 80, 41}
 {155, 42, 54}

{156, 54, 42}
 {157, 42, 73}
 {158, 73, 42}
 {159, 43, 56}
 {160, 56, 43}
 {161, 43, 70}
 {162, 70, 43}
 {163, 43, 72}
 {164, 72, 43}
 {165, 45, 46}
 {166, 46, 45}
 {167, 45, 96}
 {168, 96, 45}
 {169, 49, 61}
 {170, 61, 49}
 {171, 49, 97}
 {172, 97, 49}
 {173, 50, 77}
 {174, 77, 50}
 {175, 52, 53}
 {176, 53, 52}
 {177, 53, 83}
 {178, 83, 53}
 {179, 55, 56}
 {180, 56, 55}
 {181, 58, 99}
 {182, 99, 58}
 {183, 59, 88}
 {184, 88, 59}
 {185, 59, 100}
 {186, 100, 59}
 {187, 62, 75}
 {10, 93, 4}
 {11, 11, 4}
}

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 97

 {197, 65, 66}
 {198, 66, 65}
 {199, 65, 67}
 {200, 67, 65}
 {201, 70, 71}

{202, 71, 70}
 {203, 71, 72}
 {204, 72, 71}
 {205, 73, 74}
 {206, 74, 73}
 {207, 77, 78}
 {208, 78, 77}
 {209, 77, 91}
 {210, 91, 77}
 {211, 80, 81}
 {212, 81, 80}
 {213, 81, 82}
 {214, 82, 81}
 {215, 83, 84}
 {216, 84, 83}
 {217, 84, 85}
 {218, 85, 84}
 {219, 86, 87}
 {220, 87, 86}
 {221, 88, 89}
 {222, 89, 88}
 {223, 92, 93}
 {224, 93, 92}
 {225, 93, 94}

{226, 94, 93}
}

exits
{ //{number, vertexnum, direction}
 {1, 15, 1}
 {2, 22, 2}
 {3, 26, 4}
 {4, 62, 2}
 {5, 46, 3}
 {6, 85, 4}
 {7, 100, 1}
 {8, 11, 3}
 {9, 66, 3}

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 98

< *.road>

// Use this file to assign the road properties
// the properties are:
// a number of lanes
// a length (in m)
// a speed (in km/h)
// a priority (HIGH or LOW)
road_properties
{
 //{road number, number of lanes, length, speed, priority}
}

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 99

Appendix C: ManetLoc paper

Marcel van Velden
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft

M.C.vanVelden@student.tudelft.nl

Abstract
ManetLoc simulates a building like
environment where individuals are exploring
an unknown world. It is assumed that each
individual in the field is equipped with a
Personal Digital Assistant (PDA) and can
communicate with other PDAs in the vicinity.
Together the PDAs dynamically form ad-hoc
networks. Users can enter their own
observations to the PDA. Agents on these
PDA’s work together, to supply the users an as
complete view on the world as possible (a
topological map). An agent will also provide
guidance to the user if requested.

A concept of a system for making multi-agent
systems in mobile ad-hoc networks aware of
their environment without the need of any
infrastructure is described. The main focus is
on automatically building a map of the world
by using observations from individuals in such
an infrastructureless network. We have
designed and implemented this proof of
concept, ManetLoc, in the form of a simulation.
No specific agent platform was used in
developing the simulation, but the future use
of JADE [Jade] was always kept in mind. The
system was built upon a preexisting ad-hoc
network simulation environment, Ad-hoc
Simulator [Boel04].

Keywords: mobile ad-hoc network, agent,
communication, topological map,
infrastructureless, location, emergency,
awareness, crisis

1 Introduction
In every aspect of our lives we are becoming
more and more dependent on the availability
of (information) systems. These systems by
themselves depend on other systems to be

available, i.e. an infrastructure. In times of
crisis not all of these systems might always be
readily available. This could be caused by
power cuts for instance or simply because
there is no physical infrastructure at all.

If a telecommunications infrastructure is not
available at a certain area, it should still be
possible to set up an infrastructureless
network or mobile ad-hoc network (MANET)
under most conditions. Setting up such a
network enables us to share information
concerning the state of the world and
coordinate actions. These ad-hoc networking
technologies are making it possible to
exchange information anywhere, anytime
without prior network infrastructure. Using
handheld devices that operate in a wireless
environment, communication is still possible
when major infrastructural communication
links have been damaged, destroyed or
overloaded. So in case of a major disaster
within a city, emergency services can
communicate without the need for preset-up
access points or other such infrastructural
requirements.

Our multi-modal interfaces (MMI) department
is doing extensive research on multi-agent
systems using wireless ad-hoc networks. This
research is part of the project ‘Crisis
management using mobile ad-hoc networks’,
which focuses on intelligent crisis management
using mobile ad-hoc networks. The crisis
management project is closely associated with
the Combined project of DECIS LAB [Comb]
our group participates in. Roughly the aim of
the project is to develop an environment
wherein rescue services can communicate
using handheld devices dynamically forming
MANETs. Users of such networks should be
able to exchange observations through agent
technology and intuitive GUI’s located on a

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 100

handheld set. Agents aid the user in finding,
storing and retrieving information from the
network. Our specific interest is the
distribution of world knowledge in these ad-
hoc communication networking environments.

Project overview
Storing and making available knowledge in
agent enabled MANETs is a challenging
problem that still needs to be tackled on many
fronts. This particularly is the case when there
is no secondary infrastructure available at all,
no special hardware on the portable devices
and the network is highly dynamic. Apart
from the major difficulties, the possible uses of
this kind of technology seem to be countless
and contain – but are not limited to - crisis
situations and military use. Related to this
there is a demand for mobile devices to
become more aware of their environment.
Again this is a challenging problem on its own
as well but if there is no infrastructure
available at the relevant location this is an even
more complex issue. All this seems to make
research in the area more than worthwhile.

Figure 1 Project layers

A useful way of looking at our project is by
splitting it up in the following three layers
[Figure 1]: World layer, Network layer and
Application layer. The world layer symbolizes
the actual world a user finds itself in. As the
user is carrying network enabled devices, there
is a network which can be used to
communicate, i.e. the network layer. In the
application or agent layer knowledge about
the world is shared and services are offered by
agents in the network (i.e. applications). All
three layers play an important role in our
system concept, but we tried to focus on the
application layer, where the other two serve as
an essential basis for the later.

The goal of this research was to provide a
concept - and a proof of this concept - of a
potential solution for making multi-agent
systems operating in mobile ad-hoc networks
aware of their environment. From the multi
agent-nature of such a system almost naturally
follows the approach of distributed
construction of world models by the agent
software. The fact that the system is intended
for use in highly dynamic ad-hoc network
environments makes that no central and/or
permanent services can be depended upon,
thus the concept should be decentralized.
Another aspect of the concept is that no
knowledge of the world will be available
beforehand and during the lifetime of a system
component the knowledge available will
incrementally grow but at most times will be
incomplete and fuzzy. Therefore a non-
deterministic probabilistic approach seems
logical.

People observe the world and interact with
their PDAs. A PDA running agent software
can also sense the world and interact with
other agents in a wireless ad-hoc network.
From the information an agent gathers by
communicating with the user of the PDA,
sensors and other agents, it assembles and
continually updates a world model. This world
model can then be provided to the user and
other (agent) software running on the PDA. To
summarize this section the three main areas of
interest mentioned (multi-agent systems, mobile
ad-hoc networks and location awareness) can be
further specified into key facets of the system
architecture concept. Thus the system will
involve the combination of:

• Emergent data structures
• Multi-Agent collaboration
• Distributed data
• Decentralized systems
• Probabilistic, fuzzy information
• Mobile ad-hoc networking applications
• Location awareness
• Human-agent collaboration

Problem formulation
Taking into account not all can be handled in
our work, we focused on location awareness in
infrastructureless environments where the
problem formulation is defined as follows:

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 101

Design and implement a multi-agent-system that
can operate in environments without a pre-setup
infrastructure (only a mobile adhoc network) and
without any pre-knowledge of the world, which is
able to process and fuse location information from
different users and sensors remote in space and
time and distributes location information and
location based services (such as guidance) to its
users.

In the next sections we will elaborate on the
architecture we have setup in answer to this
problem description. First relevant and related
work studied during the course of this
research will be discussed.

2 Related work
In this section some related topics will be
described. We will look at the areas of multi
agent systems, ad-hoc wireless networks,
agents on small devices, agents in ad-hoc
networks and location awareness.

Multi-agent systems
The first topic that is important for our work is
that of agent systems, and more specific, multi-
agent-systems (MAS) [Aaai]. The study of
agent based systems evolved from the field of
Distributed Artificial Intelligence in the early
to mid 1980's. In contrast to classical
applications in artificial intelligence, often
viewed as dedicated, centralized and
standalone, the specific ideas underlying
agents in so called agent based systems
globally are the following:

• Autonomous to a degree
• Exhibit goal directed behavior
• Interact with and negotiate with other

(possibly human) agents to achieve their
goals

• React ‘intelligently’ to a dynamic and
unpredictable environment

An important ‘application’ of agent based
systems is building them in a way so they can
perform tasks that would normally require
human intervention, with much of their
intelligent behavior being emergent rather
than preprogrammed. The study of multi-
agent systems is about systems in which many
intelligent agents interact with each other and
possibly the user. Solving the problems
associated with, and taking advantage of the

opportunities offered by, distributed and
unstructured environments are a major
application area for intelligent and Multi-
Agent systems.

Ad-hoc wireless networks
Mobile ad-hoc computing is possible because
of new technologies for short-range wireless
data communication such as Wireless LAN
and Bluetooth. Devices with the same type of
technology make the communication and
collaboration between them possible, as soon
as the devices come into communication range.
Mobile Ad-hoc Networks (MANETs) are
wireless networks consisting entirely of mobile
nodes that communicate on the move without
base stations. Nodes in these networks will
both generate user and application traffic and
carry out network control and routing
protocols. MANETs are very flexible because
of the dynamic topology where nodes are free
to move arbitrarily and it allows a Peer-To-
Peer (P2P) communication in an asynchronous
manner. These networks have problems like
rapidly changing connectivity, network
partitions, higher error rates, collision
interference, and bandwidth and power
constraints together. These problems are
particularly in the design of higher-level
protocols such as routing and in implementing
applications with Quality of Service
requirements.

Agents on small devices
Small devices are portable computing devices
with networking capabilities, such as a mobile
phone or a PDA. Apart from the great
advantage of being small and lightweight and
therefore portable, small devices have some
issues that need to be mentioned:

• Reduced processing power
• Memory limitations
• Limited permanent storage with no file

system generally available in phones.
• Limited battery life
• Intermittent connectivity due to areas not

covered, shielded environments and the
need of turning the device off to save
battery

• High network latency and low bandwidth
• Small screen size
• Restricted input mechanism such as

numeric keyboard

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 102

Limited battery life and connectivity are the
current most relevant issues in our project. As
we are not depending on infrastructure but on
ad-hoc network technologies the latter is this
most constraining issue. Although the
processing power and related specifics of small
devices are nothing compared to that of
current desktop computers it is currently
possible to execute relatively complex software
applications such as route planners on small
devices and it is to be expected that these
devices will become more and more powerful
in the near future. The device we will base us
on is the Sharp Zaurus SL-C760. On the SL-
C760 a version of Linux is installed running
Qtopia, X and Java. It has a maximum
resolution of 640x480 pixels, a 400 MHz Intel
XScale PXA255 processor, and 62 MB of RAM.
This is sufficient for running JADE.

Agents in mobile ad-hoc networks
Although developers of multi-agent systems
often do not try to solve the problems in
mobile ad-hoc networks, they will still have to
live with them to be able to build real
applications. Therefore an agent platform used
cannot depend too much on network
availability and has too anticipated ahead for it
to change or even go down at any moment in
time. After an event like this the platform
should be able to recover and continue
working.

In mobile ad-hoc environments each of the
devices may host agents offering specific
services to the surrounding which can directly
be used or may be combined to more complex
services. Based on the traditional Directory
Facilitator (DF) definition, the search of remote
services is accomplished by using the concept
of DF federations: DFs, besides registering
services offered by local agents, may also
register other local or remote DFs. This allows
them to extend the search for services to
remote platforms. This mechanism is not
efficient, even less for mobile ad-hoc
environments, e.g. because the searcher first
has to find the remote DF and afterwards has
to look if the services he s searching for are
registered there.

Allowing registering and discovering agent
services using existing ad-hoc / P2P discovery
technologies, which are specifically developed

for these environments, can enable a more
efficient management of service descriptions
and directories, as well as an efficient search
and result filtering. Furthermore, once
working in mobile ad-hoc environments, ad-
hoc and P2P technologies can also be used as
mechanisms for agent (platform) societies in
the fixed network.

The development of dynamic service discovery
technologies is still an ongoing research topic.
It is not yet presumable which technology will
finally be widely adopted and be the leading
one. All of them have specific advantages and
disadvantages and do not completely fit all
requirements. E.g., some are not dealing well
with the spontaneity of the peer
communication and fast changing service
provisioning, while others are not dealing well
with the scalability for a huge amount of
services and users.

Location awareness
Let alone running agents in mobile ad-hoc
networks is already difficult enough, the goal
of this research is to find out how to make
agents in these networks context aware and
able coordinate actions in an operating
environment like a building on fire. Physical
context information can be very diverse, and
include local system information such as
battery level or signal-noise ratio, or
environmental information such as light
intensity, temperature, or ambient noise.
Among all, location is possibly the most
relevant context element for our application
area, in that it often qualifies the values of the
others. For example, a temperature reading
becomes more meaningful when accompanied
by the identity of the room where it was
sensed. The point, however, is that the actions
of an application component in a mobile
environment may depend on one or more of
these context information values and modeling
physical context becomes a necessity.

As stated above location awareness plays a
crucial role for context aware agents. From this
point we will focus on the possibilities for the
determination of the position of nodes in
mobile ad-hoc networks. If a system like GPS
[Murp97] is available, each node can be easily
aware of its own location, but if GPS is not
available (for some or all nodes) relative
positions have to be determined using other

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 103

methods. There are systems and system
concepts available, which use network
readings such as time of arrival to calculate
positions [Kita03] [Srda01] [Nicu01].

3 Model and Implementation
This section will explain how the system was
built from different components, what the
responsibilities of these components are, and
how they are designed. First of all the system
designed operates as a multi-agent system
within simulation of a mobile ad-hoc network.
As a basis for the simulation of a mobile ad-
hoc network a system called ‘Ad-hoc
Simulator’ (AHS) was used. Together with
AHS a visualization system called Ad-hoc
Visualization (AHV) was developed, which
was also partially used in ManetLoc.

AHS simulates the behavior of PDAs and
mobile communication in a mobile ad-hoc
environment, which is visualized by AHV. The
movement of mobile nodes in AHS is based
upon a traffic simulation program [Kroo02],
simulating cars driving in a city street-
network. CityNetwork is also important for
our system as the data-format of maps from
the CityNetwork is used. We mainly use the
part of AHS that simulates wireless adhoc
connectivity between nodes when they are
close together in an environment, i.e. the ad-
hoc WiFi component. Also parts of AHV are
used to visualize the global world state, i.e.
nodes moving in the world.

The approach of building a simulation was
chosen because building a real system didn’t
seem feasible because of time limits,
availability of hardware (PDA’s with ad-hoc
network capabilities) and lack of a suitable
ready to use platform to build the application
on.

Overview
As a proof of concept for the main part of the
architecture and as a possible basis for further
work a simulation system will was built. This
involves storing and distributing location-
context information based on user observation.
In the simulation maps of an environment are
constructed and distributed. The processes
involved are primarily based on the positions
different virtual people visit and any context
information they might gather, such as where

exits are and determining the shortest route to
one.

In our program each node does will never
know its exact world coordinates and initially
does not have any knowledge of the world it’s
in at all. I.e. there is no knowledge of absolute
position and no initial map of the world. The
goal for each agent-node is to construct this
internal map of the world by using its own
observations and sharing information with
other nodes. Knowledge nodes poses, is
distributed to nearby nodes. In practice this
will mean nodes that are within
communication range. In our case the data
shared is information about halls and
crossings, but can be extended to suit the
usage needs.

The main goal is to be able to regenerate the
map - or one that is very similar - of the virtual
world the simulated users are in. The system
will load a predefined CityNetwork map and
will allow simulated ad-hoc nodes to travel
through this map. Please note that the nodes
at the same time represent simulated human
users and agents. As they have no preset
knowledge of this virtual world and are only
able to observe information like halls,
crossings and exits at their current location, i.e.
nodes can only observe what human users
would be able to observe, or actually a lot less.

Using a system able to build a map of an
environment by only having people report
what they see, and without requiring any
infrastructure, human users will be able to do
their tasks (such as firemen) and help build a
context map of an unknown environment at
the same time. By doing this jointly and
requiring no extra effort from a user an
unknown area can be explored and mapped
with less hassle, in less time and most
importantly without requiring any network
infrastructure. In an overview the basic
modules of this system will be:

• Gathering data
• Building topological maps from user and

sensory input
• Sharing and merging location context

information between agents
• Providing services based on location

context information

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 104

Gathering data
Before anything else methods for gathering
data on location must be in place. The collected
data can then be transformed into knowledge
and used for constructing and maintaining a
world model. In our system data about the
world is gathered in 3 ways:

• Sensory data: the most trivial is that the
system keeps track of the distances the
user travels. For this it could counts
the number steps the user takes and
based on that (and possibly other data)
make estimates of distances covered

• User input: preferably by voice
recognition users supply information
to the system, but other methods such
as a point and click system could be
used as an alternative or addition to
the projected use of voice recognition

• Other agents: information provided by
other agents within communication
range can be merged with the agent’s
own world model

Building topological maps from user and
sensory input
The first goal for our agent-system is to be able
to construct a local word model from data the
user and sensors provide about the world. For
the form of the world model we chose to
construct a topological map. Considering the
fact that our focus is on indoor environments
and road networks and as these worlds can be
relatively easily translated into a graph-like
representation, the choice of generating
topological maps seems to be appropriate
[Remo02].

The most trivial input a user can provide for
building a map of a building is to indicate that
at a certain time he encounters an intersection
and possibly indicating the number of paths
and their directions. Although it would be
helpful if the user could provide more specific
information such as the wind direction (i.e. ‘I
can go east and west here’) it is not necessary.
This specific example would require user
knowledge of his global orientation, which
cannot be depended upon. Firstly this is
because we cannot assume user caries a
compass. Secondly the user is not likely to be
able to orientate very well because of the crisis
situation he is in. Therefore, as the user is

exploring a rectilinear labyrinth, just left, right,
forward and backward indications will be
sufficient input.

To be able to build a map from user input only
it is trivial the user provides correct
information. So when he has changed direction
the system should always be informed of this
event. It is possible to allow the user to make
errors in his observations but this is beyond
the scope of this research. The only provided
backup for the user making mistakes is
checking for inconsistencies in the stored
graph(s). If one is found in the users own
observations, all his observations that occurred
after the inconsistency are rendered incorrect.
Summarizing, the information gathering
process globally consists of two components:

• Observations: i.e. at time t1, when the
user reports arriving at an intersection,
where one can go left and right,
according to his observations. In most
cases it can be assumed a user can also
go back, providing this isn’t the first
observation.

• Actions: i.e. at time t2 the user report
he walks into a certain direction.

From all observations and actions the user
reports, a graph can be constructed. This graph
will represent a topological map of the world,
which should be able to be displayed on the
screen of the PDA and by this visualizing it to
the user. To be able to generate such a map it is
important to be able to estimate (relative)
distances traveled. These distances can be
calculated from the time between two
observations, combined with the type of
movement (running, walking, etc) and can be
refined by using pedometer input. There are
more possibilities but we prefer to use as little
specialized hardware as possible. In our
system we will make the assumption the user
provides relatively accurate indications of
distances traveled (+/- 10%).

The main problem in a graph generated from
the scarce input provided by the user detecting
a loop in a path and closing it to keep the map
consistent. Keeping the map consistent is
critical, as we need to be able to match and
merge the map with the maps of other agents.
Closing loops and merging maps will be

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 105

described later on, first we will provide an
example.

Figure 2 User in a simple world

Please imagine a user walking around in the
world of [Figure 2] for this purpose. In this
figure the lines indicate corridors. The user is
visualized with the two dots, where the
smaller indicates his orientation. The user
starts at the marked location and starts
exploring the world. Whenever he performs
any relevant actions or does an observation the
user will report it. In an actual system,
providing this information should be possible
via multiple ways, to allow operating under
many different conditions for instance.
Examples of such input methods are voice
recognition, text input, pointing/clicking on a
device and possibly even pointing a sensor
(like a) camera at a certain object or location.
Regardless of the input method used we will
assume all user input is ‘perfect’, so the user
will never forget to mention a fact like arriving
at an intersection. The agent can translate
information provided by the user into vertex
and edge knowledge.

Closing the loop
If a user would travel long enough in a
building he will eventually always return to a
location that was visited before from a
different direction. The process described in
the example will then result in loop in the
graph, which should be detected and closed. A
correctly detected closed loop is very valuable
information, as it is required to make a map
consistent. Consistent maps are required by
our system to be able to match and merge one
map with another. The question is how to
detect such a closed loop [Save04]. As an
example of closing loops we take an even
simpler square shaped world. Applied to this
square world the process described above
might result in the following ‘map’, where the
two upper-left intersections, should be

recognized as one and the same, but at the
moment we still have 5 vertices in the graph
where there are only 4 intersections in the
world [Figure 3].

Figure 3 Open loop

Before being able to close a loop we should be
able to detect and build hypotheses concerning
possible loops. For this we roughly follow a
procedure in which is checked for each new
vertex if there is a vertex nearby that might be
closing a loop. If we can find two matching
vertexes a loop hypothesis is started.

To make the graph consistent when two
matching vertexes are found, small
adjustments can be made to the endpoints of
edges. Whenever a loop hypothesis has been
formed we can start testing it by comparing
edge lengths of the supposed loop with new
measurements. These measurements will
result in accepting or rejecting the loop.

A danger is that incorrect hypotheses may be
accepted as correct or vice versa. A way to deal
with this is to keep multiple hypotheses and
never commit to any one of them, i.e. retain the
hypothesis that the loop has not been closed.
Hypotheses can then be accepted or rejected
later on when new observations have been
added and map data was received from other
agents. If other agents confirm the conclusions
about a specific part of the world the more
likely it is to be correct. On the other hand,
agents have different opinions about this
particular part of the world, decreases the
likelihood of the hypothesis being correct.

It is also preferred to be able to deal with
mapping errors such as incorrect hypotheses,
input errors and dynamic worlds. In a
dynamic world more recent information will
intuitively have more meaning than older.
Dealing with this is incorporated into our

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 106

system by decaying the influence of individual
readings over time [Thru97]. New information
inconsistent with the old information could
cause the old to be discarded. Though our
system will not work in a dynamic world, still
newer information is preferred over older. In
our simulation we will only use time stamped
data for repairing incorrect hypotheses and
input errors, but in future work it could be
adapted to be used in dynamic worlds.

Sharing and merging location context
information
Our agents are operating in a mobile ad-hoc
networking environment in which it is likely
they encounter other agents every now and
then. When an agent detects one or more
(compatible) agent(s) within its
communication range, they can share the
knowledge they have about the world and
possibly are able to merge this [Figure 4]
[Butl01] [Dede00] [Rike94]. Each agent will
attempt to merge information from other
agents for themselves. Consequently it is
possible for two agents to come to different
conclusions. This makes it possible for PDA’s
to have different agent software (versions)
running or to be in a different processing
mode. The only requirement is that the
messages they send out are compatible.

Figure 4 Agents in MANETs sharing maps

Similar to the internally stored world models,
maps are shared in the form of graphs. They
are assumed to be consistent, but not exact and
do not always have a common reference frame.
If two or more users have explored
overlapping regions of an environment their
agents should have topological maps that have
common sub graphs [Vali01][Bunk00] with
identical structure. Since having a common

sub graph it is possible to find a reference
frame and merge the two maps into one.

In order to be able to merge two maps, we first
need to match the maps together, building
hypothesis and choosing the correct one (i.e.
the best match). A hypothesis is a possibly
rotated sub graph that the two maps have in
common. There is a chance the process
described below does not supply a (large
enough) hypothesis. If this is the case and not
enough vertices can be matched to make a
good hypothesis yet, the map received is
stored internally. In that case we can try the
matching process later on when a more
complete world model is available. The used
algorithm for matching two maps consists of
three phases:

• Vertex matching
• Growing hypotheses
• Combining hypotheses

Vertex matching
The first step taken in matching is building a
list of all vertices that match each other in the
two maps. Two vertices only match if they
have the same edge directions. This is also the
case if a vertex needs to be rotated to match,
which is also stored. We expect exactly known
attributes vertices, such as the type of the
vertices to match perfectly. However,
attributes that are subject to measurement
error can be compared with a similarity test. In
the case of our simulation we don’t have any
fuzzy variables of a vertex, but in a real
environment or an extension of our simulation
some could occur.

Growing hypotheses
After having built lists of matching vertices we
grow matches by testing corresponding pairs
of edges leaving the paired vertices. If the
edges are compatible and the vertices at the
ends are also compatible, they are added to the
hypothesis. If the edges or vertices are
incompatible, the entire hypothesis is rejected.
The vertices are tested with the same type of
criteria and similarity tests used to form the
initial pair. Edges may also have both exactly
and inexactly known attributes. In our system,
they have their path length compared with a
similarity test.

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 107

Our hypotheses are the unique matches
surviving the growing process. Duplicate
hypotheses are avoided by keeping a table of
vertex pairings. When vertices are paired
during the growth phase, the corresponding
entry is marked in the table. This entry is then
ineligible as an initial pairing of vertices.

A sub graph in one map can be matched to
multiple sub graphs in the other under
separate hypotheses, but a pair of matched
vertices with a given edge correspondence can
appear in only one hypothesis. The matching
and growing process is repeated until all valid
vertex pairings are examined. Please note that
if we would be working with imperfect user
input - which is not the case in this concept - a
procedure filtering noise should be added.
When able to match enough common vertices
and edges, and if there are a minimal amount
of conflicting vertices and edges, the conflicts
can be discarded and the hypothesis accepted.

Combining hypotheses
If successful the hypothesis growing process
described above results in list of possibly
multiple hypotheses within the same rotation.
From these hypotheses one has to be selected.
Before this takes place it is possible that if such
a list contains more than one hypothesis, some
of these entries are consistent with each other.
These hypotheses are then combined with each
other into one larger hypothesis cluster.

After the system has chosen a hypothesis
cluster, the next step is to merge (or flatten) the
two maps into one single map. Estimates of
path lengths can be updated by combining the
measurements from the two maps for
corresponding edges. The edge orientations at
the corresponding vertices can be similarly
merged. Parts of one map not present in the
other should be added. The merging process is
globally performed in four steps [Figure 5]:

Figure 5 Map merging process

• Rotate the received map so its orientation
matches the local node’s map

• Shift the rotated map so its coordinates
match the local agent’s map

• Add any new vertexes from the rotated
and shifted map to the local node’s map

• Connect everything together (update edge
lengths, check for inconsistency’s etc.)

Please note that the choices made, may later
turn out to be incorrect. For example, early in
the process of exploring a self-similar
environment, a user might seem to be
exploring the same area when in fact they are
exploring similar but distinct areas. To protect
against such situations, it is remembered from
whom and when the new parts of the map are
received. This makes it possible for discovered
inconsistencies to be removed or corrected
later on without discarding the whole map.

After agents have merged their maps once two
nodes may later exchange maps information
again. This is also the case if they weren’t able
to merge their knowledge, but just exchanged
their knowledge before. An incremental
update can save a substantial amount of
computation and bandwidth. This is possible
with minimal bookkeeping effort. Each agent
must maintain timestamps so that only new
and modified vertices and edges since the last
update are exchanged. If a successful merge
took place before and if it still appears to be
correct we already have a hypothesis and can
computationally easy merge the new
information. If the agents were not able to
merge their maps before the previously
received map is merely be updated with the
new information, and another merge attempt
can be made including the new world
information. The computational and network
traffic savings of incremental updating can be
significant if implemented correctly. The
former highly depends on the amount of
information retained from the original map
merging.

User guidance
When an agent running on a user’s PDA
gathers knowledge about the world, the
knowledge can be used to provide services
such as advice to the user. One of the
possibilities is guidance of the user. Here one
can think of the possibility of guiding the user

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 108

to a certain location such as the nearest exit or
an unexplored area of the map. Both options
are implemented in our proof of concept.

Nearest exit
When a user indicates he wants to leave the
area as soon as possible the system can instruct
the user how to walk, calculated using a
shortest path algorithm (i.e. Dijkstra, A*, Ant
based, etc.) . The result of a request for
guidance to our system is indicated, by giving
the path to the nearest exit a specific color.

Unexplored area
When the goal of the user is to (help) explore
the world the system can instruct the user
where the user should go to help optimize the
process. As this is very similar to instructing
the user to a nearest exit the same type of
shortest path algorithms can be used.

It is trivial there are many more services that
can provided to the users by agents with
knowledge such as in our system (although
thinking of and implementing useful services
is not). In the context of the crisis management
project, knowledge could be gathered about
crisis indicators (fire, smoke, etc) and
translated into some sort of scenario (e.g. the
building is on fire, south side is still clear to
pass). It is not unthinkable that having this
type of knowledge available in an agent
network could even be used to coordinate the
actions of individuals and groups.

4 System Tests
The simulation was first run on a 10 and 30
nodes map, first with just one agent exploring
the world automatically using nearest
unexplored area navigation, and later with
more agents who were simultaneously started.
The time it took an agent to find the complete
map was measured and also was always
checked if the output was correct

Map #agents Avg. units
10.map 1 1721
10.map 2 1125
10.map 3 1100
10.map 4 1112
10.map 5 1060
30.map 1 9701
30.map 2 8569

30.map 3 6227
30.map 4 5301

30.map 5 6017

Figure 6 Test results, finding complete map

The results clearly show that the process of
sharing and merging maps has an effect, the
larger the map the larger the effect and also the
more agents the more gained. Agents starting
in a map that was already explored by others
logically have the most gain; after they have
explored a small part of the world they can
simply merge the large map parts with their
own. Please note that the test result would
probably be significantly lower if the AHS
network code wouldn’t suffer from deadlock
issues.

In another test the 30 intersections world was
pre-explored completely by 5 agents after
whom a fresh agent was added. The new agent
received the complete map from multiple
agents and was able to find the complete
correct map within 536 distance units traveled.
Considering it takes 9701 units on average for
an agent to explore this world on its own this
is a considerable gain (in this specific case 18
times faster).

5 Conclusions
Our experiments in a simulated world show
that it is very well possible to distribute, and
merge world knowledge in a mobile ad-hoc
multi-agent environment. Even in such an
environment with limited communication
possibilities our test results showed there is a
significant gain found when solving a
mapping problem with multiple distributed
agents. As expected, the larger the map the
better results on how useful distributing and
merging partial maps is. Although with the
fact that simulation runs on a single machine
comes that there are limits because of

0

5000

10000

15000

1 2 3 4 5

10.map
30.map

ManetLoc - A location based approach to distributed world-knowledge in mobile ad-hoc networks

 109

processing power. This is an important issue
still encountered in our simulation system.
Though when calculations would not be
performed on one machine anymore, but on
one for each agent, it should not be a problem
anymore. So we anticipate scalability will not
be a direct problem, should the simulation be
translated into a real life distributed system.

Bibliography
[Comb] Combined Systems group,
http://combined.decis.nl

[Boel04] A Communication Layer for Distributed
Decision Making, J.L.Boehlé, 2004, Delft
University of Technology, Erasmus University
Rotterdam

[Aaai] Agents, The American Association for
Artificial Intelligence, 2000 - 2005

[Jade] Java Agent Development Framework,
http://jade.tilab.com/

[Remo02] Towards a General Theory of
Topological Maps, E. Remolina, B. Kuipers, 2002,
University of Texas at Austin

[Thru97] Learning metric-topological maps for
indoor mobile robot navigation, S. Thrun, 1997,
Carnegie Mellon University

[Murp97] Global Positioning Systems, A
TechnicalAssessment Paper,Lotta Danielsson-
Murphy, Thaddeus Murphy , 1997

[Kita03] Design of WiPS: WLAN-Based Indoor
Positioning System, Teruaki Kitasuka Tsuneo
Nakanishi, and Akira Fukuda, 2003, Kyushu
University

[Srda01] GPS-free positioning in mobile Ad-Hoc
networks, Srdan Capkun, Maher Hamdi, Jean
Pierre Hubaux, 2001, Ecole Polytechnique
Federale de Lausanne

[Nicu01] Ad-hoc Positioning System (APS) Using
AOA, D. Niculescu, B. Nath, Rutgers
University

[Save04] Loop-Closing and Planarity in
Topological Map-Building, F. Savelli, B. Kuipers,
2004, Universit`a di Roma “La Sapienza”,
University of Texas at Austin

[Butl01] Distributed coverage of rectilinear
environments, Z.Butler, A Rizzi, R. Hollis, 2001,
Carnegie Mellon University

[Dede00] Landmark-based matching algorithm for
cooperative mapping by autonomous robots, G.
Dedeoglu,G. Sukhatme, 2000, University of
Southern California

[Rike94] Autonomous agent map construction in
unknown enclosed environments, K. Doty, S.
Seed, 1994, University of Florida

[Vali01] Subgraph Isomorphism and Related
Problems, G. Valiente, 2001, Technical
University of Catalonia

[Bunk00] Mean and maximum common subgraph
of two graphs, H. Bunke, A. Kandel, 2000,
University of Bern, University of South Florida

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 Preface
	Acknowledgements
	 Table of Contents
	 Chapter 1: Introduction
	1.1 Project overview
	1.2 Problem formulation
	 Chapter 2: Related work
	2.1 Multi-agent systems
	2.1.1 FIPA
	2.1.2 JADE
	2.1.3 Cougaar
	2.1.4 Swarm intelligence

	2.2 Ad-hoc wireless networks
	2.2.1 IEEE 802.11B
	2.2.2 The Ant-colony-based routing algorithm for MANETs

	2.3 Agents on small devices
	2.3.1 JADE on small devices: LEAP

	2.4 Agents in mobile ad-hoc networks
	2.4.1 FIPA and agents in mobile ad-hoc networks
	2.4.2 Jade in mobile ad-hoc networks

	2.5 Location awareness
	2.5.1 Satellite-based localization
	2.5.2 Infrastructure-free localization

	 Chapter 3: Architecture
	3.1 Location
	3.1.1 User input mapping
	3.1.2 Combining map information
	3.2 Requirements and constraints

	 Chapter 4: Global design
	4.1 Overview
	4.2 Gathering data
	4.3 Building topological maps from user and sensory input
	4.3.1 Closing the loop

	4.4 Sharing and merging location context information
	4.4.1 Matching
	4.4.2 Merging
	4.4.2 Incremental updating

	 4.5 User guidance

	 Chapter 5: Implementation
	5.1 Existing software and data structures
	5.1.1 AHS
	5.1.1.1 AHS modifications

	 5.1.2 AHV
	5.1.2.1 AHV modifications

	5.1.3 CityNetwork map files
	5.1.4 Network Generator
	5.1.4.1 Network Generator Modifications

	
	5.2 ManetLoc
	5.2.1 Class Diagram
	5.2.2 Use Case Diagram
	 5.2.3 Implemented GUI
	 5.2.4 Implemented Algorithms
	5.2.4.1 Exploration
	5.2.4.2 Map distribution, matching and merging
	5.2.4.3 Restoring from and preventing errors

	 Chapter 6: System Tests
	 6.1 Usability
	6.2 Correctness
	6.3 Completeness
	6.4 Performance

	Chapter 7: Conclusions and future work
	7.1 Conclusions
	7.2 Future Work
	7.2.1 Data distribution, Planning and execution

	 Bibliography
	 Appendix A: User Manual
	 Appendix B: Map, Dataset and Road files
	 Appendix C: ManetLoc paper
	Abstract
	1 Introduction

	Project overview
	Problem formulation
	2 Related work

	Multi-agent systems
	Ad-hoc wireless networks
	Agents on small devices
	Agents in mobile ad-hoc networks
	Location awareness
	3 Model and Implementation

	Overview
	Gathering data
	Building topological maps from user and sensory input
	Closing the loop

	Sharing and merging location context information
	User guidance
	4 System Tests
	5 Conclusions
	Bibliography

