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Abstract

The challenge set by T. R. Addis et al. is if we can construct computing
based upon family resemblance rather than sets, paradigms rather than
concepts, and metaphor rather than deduction? Can we devise systems that
have judgement rather than decisions? To meet the challenge we need to
change our approach towards computer science and start thinking with the
notion of so-called Irrational sets, knowing that not everything is potentially
unambiguously describable.

In this thesis we will present a model for an adaptive intelligent system
that is able to handle the irrational sets and with it takes on the challenge.

The model will show how we can have a set of hypotheses to which we
assign certain beliefs to create a belief profile and with it predict the state of
the world. For the belief profile we can intelligently create new hypotheses
to predict even better or to compensate for the irrational behavior of the
world. The world changes under time and context, so the system needs to
keep track of it by modeling the irrational sets and provide a mechanism for
handling them.

The model is implemented to create a system for cocktail evaluation. By
modeling the irrational taste of the user, the system can predict the user’s
taste for any cocktail combination. Hypotheses will represent possible evalu-
ation functions that represent the user’s personal evaluation. By generating
new hypotheses and adjusting the belief in the old and new ones, the system
keeps on searching for the best taste approximation and is able to keep track
of shifts in the taste of the user. The system adapts to the feedback of the
user, which are cocktail ratings.

Tests will show that the system indeed searches for the best approxima-
tion and adapts to changes made by the user.
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Chapter 1

Introduction

At this moment we see Artificial Intelligent systems around us which can
help us decide on practical issues (Management, planning, stating medical
diagnoses, etc). Most of the current AI research focuses on these practical
engineering tasks. Designing systems that perform intelligent human tasks,
where the system doesn’t have to be intelligent, but only needs to show
intelligent behavior. This approach maybe called ‘Weak AI’, a concept in-
troduced by John R. Searle (see [12]) which states that:

“According to weak AI, the principal value of the computer in
the study of the mind is that it gives us a very powerful tool.”

Software is a powerful tool to explore the notion of intelligence, but that
doesn’t mean that it has to be intelligent.

With weak AI numerous human tasks requiring intelligence can and have
been automated, but there are tasks that make automation quite difficult,
complex and seemingly impossible. While an expert system for Car Engine
Fault detection can work very good (see [8]), a system that composes music
is rather difficult. Problems like fault detection are often well defined and
characterize themselves to be deterministic. Implementing a set of well
defined rules is not too difficult.

Non-deterministic problems on the other hand are more difficult. Espe-
cially when we need the system to perform a creative act as in composing
music. Creative solutions ask for a creative system actually being intelli-
gent. That creativity is closely linked to intelligence is shown by T. R. Addis
(see [1]) as he defines intelligence as the component of thinking that involves
insight and reason. Insight entails the creative act, to find out which con-
cepts are at work, and the insights are used through the process of reason
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to come up with an answer.
The claim for a system actually being intelligent moves us from ‘Weak’

towards ‘Strong’ AI.

“according to strong AI, the computer is not merely a tool in the
study of the mind; rather, the appropriately programmed com-
puter really is a mind”

Aiming for a system with human-like intelligence has been the goal of
the first AI researchers(see [9]). For decades researchers have tried to come
up with such a system, but never succeeded.

What is the problem here? Why can’t AI researchers create a system
being intelligent that can truly reason? Why is it that every time when we
seem to be making progress we hit a wall again? According to T. R. Ad-
dis et al. (see [4]) the problem lies in the current paradigm of Computer
Science. More computational power is not the solution, we need to change
our view about the nature of the world. We need to make a paradigm leap,
switching from the Rational view towards the Irrational view, assuming that
not everything is potentially unambiguously describable. What we mean by
the Irrational view will be explained in Chapter 2.

I will continue to explain the need for the paradigm leap and how to
make that leap. For this I use the paper by T. R. Addis et al. (see [4])
which is summarized in the next paragraph. The shift in paradigms opposes
a challenge which I will take on.

This thesis is meant to be a step towards the ultimate goal of strong AI,
creating a system which truly is intelligent.

1.1 A Paradigm leap

The current state of Computer science as a paradigm could be described
by taking Wittgenstein’s Tractatus. Where the Tractatus represented a
formal and logical representational schema into a descriptive form, based
upon referential (denotational) semantics. It follows from the Tractatus
propositions that everything is potentially unambiguously describable and
all sets are rational. Where set membership is always specifiable and context
independent or has an explicit context.

Definition of a ‘Rational’ set: A set where there is a finite set
of rules that can include unambiguously any member of that set
and unambiguously excludes any non-member of that set.
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The Tractatus gives us an extensive model of computer languages, where
names in propositions do not always refer to primitive objects but are them-
selves referencing propositions. These propositions are complexes that fi-
nally end up as compound statements whose ultimate referent is the bit,
where the bit is the mechanical equivalent of Wittgensteins referent objects.

Computer programs are based on formal descriptions and are in fact
program structures of bits, where it is at the bit that the program links to
the world and has meaning.

The consequence of such a formal model is that any set of names can be
used in a program to represent a proposition. All that is necessary is that
there is a formal definition that gives the name meaning within the program
in terms of the proposition it represents.

In practice this means there is an infinite but bounded set of possible
organizations of a program, where a program can only have one interpreta-
tion.

The social consequences are that rules can be constructed that can de-
scribe unambiguously any situation, so rules can bypass human judgement.
In other words, there is only one correct way to see the world. Having stated
that programs can have only one interpretation raises the problem of dual se-
mantics (See figure 1.1), because programs have at least two interpretations,
namely the Computer State and the Problem Domain.

Figure 1.1: Problem of Dual semantics

Wittgenstein himself noted the flaws in his early work, that everything
is not potentially unambiguously describable. An example is an attempt to
define a chair, see figure 1.2). It is impossible to find a definition that will
either exclude all examples that are not chairs or include all examples that
are. There are also irrational sets and some sets depend upon human usage
and context.
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Definition of an ‘Irrational’ set: A set where no finite set
of rules can be constructed that can include unambiguously any
member of that set and, at the same time, unambiguously exclude
any non-member of that set.

Figure 1.2: The problem of defining a chair

So Inferential semantics was brought to life to account for the exceptions.
What’s important to notice here is that having ambiguous rules means that
there will always be a need for human judgement. The semantics of irrational
sets for Wittgenstein lies in the use of family resemblance instead of sets
and word usage (and structures) instead of reference. An alternative to
Wittgenstein is Lakoff’s use of prototypes (paradigms) and metaphor instead
of reference. The challenge set by T. R. Addis et al.(see [4]) is:
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“can we construct computing based upon family resemblance
rather than sets, paradigms rather than concepts, and metaphor
rather than deduction? Can we devise systems that have judge-
ment rather than decisions?”

They do not yet give us a solution to the problem, but clearly state the
nature of the problem. They didn’t invent something completely new as it
was always there, but now it is defined. Having the problem defined we can
change our approach towards computer science and start thinking with the
introduced notion of Irrational sets.

1.2 The Challenge

I’m going to take on the challenge to construct an adaptive intelligent system
knowing that not everything is potentially unambiguously describable. To
meet the challenge requires a system that:

1. handles Irrational sets. Using family resemblance, paradigms and
metaphors instead of referential semantics. We are going to use ir-
rational sets to replace referential semantics.

2. makes sensible judgements. Instead of deductive and deterministic rea-
soning it needs a creative intelligence to be applied with an emphasis
on abduction (See 2.5).

To create such a system we firstly need to find a way how to handle
irrational sets as computers can only handle directly rational sets.

With irrational sets we can have ambiguous rules and this means that
there will always be a need for human like judgement. What is acceptable
behavior or performance is a time sensitive and socially dependent notion
and therefore could change over time and context. If we want to track these
changes we need to handle user feedback. The system needs to provide an
interface to the user to set up a conversation. The system should be able to
adapt in response to the user feedback.

Secondly in order to make sensible judgements, some form of artificial in-
telligence is needed, suitable in handling the irrational nature of the problem
domain.

So what we want is to create an adaptive intelligent irrational system
within a problem domain that requires the use of irrational sets.
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1.3 Problem domain

We had to find a suitable problem domain that would ask for the kind of
system supposed by the challenge. The problem domain we considered had
to do with the invention of new cocktail mixes. We had in mind a system
that could evaluate cocktails and make suggestions to the user what to drink.
These suggestions would also include new invented unknown cocktails and
should fit the user’s taste. We want the system to know what the user likes
and based on that act creatively recognized by inventing new cocktails.

In the creative process of invention we can distinguish two phases:

1. Idea or concept generation.

2. Evaluation.

Firstly there is the part of coming up with new concepts or ideas. For
inventing cocktails it means coming up with a new combination of cocktail
ingredients.

Secondly we need to evaluate the concepts or ideas. We need to see
whether they are any good or not. For this there needs to be a measure of
success. In case for cocktails we can measure how well they taste.

The system’s key feature is to evaluate cocktails in a way that represents
the user’s taste to predict taste for unknown cocktails.

The reason why we considered this problem domain is that evaluating
and inventing cocktails requires the kind of system supposed by the chal-
lenge, which becomes clear when we look at the system requirements for the
challenge:

1. Handle irrational sets: The system needs to handle taste, where taste
itself is a good example of an irrational set. It seems difficult to define
a person’s taste rational. And even if we can define taste, it seems to
change over time and context, making the choice for an irrational set
inevitable.

2. Make sensible judgements: In order to select cocktails favorable to
the user, the system needs to asses the user’s taste. Having acquired
the user’s taste, the system should be able to predict the taste for
unknown cocktails. Hence new cocktail inventions can be evaluated.
With sensible judgements we mean in fact an acceptable (to the user)
prediction mechanism for cocktail evaluations.
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1.4 Objectives and assignment

The main objective of this thesis it to take on the challenge by constructing
an adaptive intelligent irrational system, which is able to assess the user’s
cocktail taste and predict the taste for cocktails. Therefore the system needs
to:

1. Handle taste as an irrational set.

2. Make sensible judgements (evaluations).

We will focuss on the second phase of the creative process of invention:
‘Evaluation’. We want a system that can make sensible judgements or in
other words acceptable predictions for cocktail evaluations. The reason why
is that at first we invested a lot of work on the generation of new cocktail
combinations (see appendix A), but it appeared later to us that no matter
what kind of sophisticated cocktail creation mechanism you design, for a
creative system you will always need to have a mechanism to evaluate the
creations. And as the user’s taste changes under time and context, we
need an evaluation system capable in tracking changes for which we need to
handle irrational sets.

Therefor we ‘skip’ the idea or concept generation and first design and
implement a system that can predict the taste for a bounded set of cocktails.
As soon as we have the appropriate mechanism for the evaluation of ideas
(cocktails), we may take the next step and introduce a mechanism for the
generation of ideas, new cocktail combinations. A mechanism for generating
new cocktails could then be as simple as creating random ingredient combi-
nations with which we can create an infinite number of cocktails. With the
evaluation system we could then choose the ones for which a nice taste is
predicted.

To meet the main objective we formulated an assignment. The assign-
ment of this thesis is to:

• design a model for the irrational set of taste, knowing that taste may
change under time and context. Also as people cannot express their
feeling of tastefulness in absolute statements we need to find a way to
get the internal reference model of the user.

• design a model for evaluation providing a mechanism in order to make
predictions for the evaluation of cocktails. The model needs to be able
to handle the irrational nature of taste and therefore keep track of
changes in the taste of the user.
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• implement a prototype application, based on the taste and evaluation
model, to create a test environment. With the application we can test
whether the proposed models work or not.

• test the system for a bounded set of cocktails. See if the system can
assess the taste of an a priori set of cocktails. Also test how it adapts
to changes in the cocktail taste of the user.

1.5 Overview of the Thesis

Chapter two goes further on the irrational sets by explaining Irrational sets
from different view points. Then the Irrational system characteristics and a
model for handling irrational sets are discussed to give an indication of the
sort of system we are trying to create and which mechanisms are required.
Also several types of machine learning are explored to see which ones are
either useful or completely inadequate in handling irrational sets.

Chapter three shows how to model the irrational set of taste, which may
change under time and context. Also as people cannot express their feeling
of tastefulness in absolute statements, a model is presented to get the in-
ternal reference model of the user and providing a mechanism for updating.
This all is needed in order for us to keep track of the user’s taste.

Chapter four presents the new genetic model for hypotheses generation
and evaluation. Hypotheses represent possible evaluation functions that
represent the user’s personal evaluation. The model will show how we can
have a set of hypotheses to which we assign certain beliefs to create a belief
profile. The hypotheses are then used to predict the taste of any cocktail.
For the belief profile we can intelligently create new hypotheses to predict
even better and to keep track of shifts in the taste of the user. The genetic
generation of hypotheses is based on ∆Logic, which will be explained, in
combination with the Belief System.

The System Design for the implementation of the genetic model is pre-
sented in Chapter five, including a work flow diagram showing how the
system works all together.

Chapter six presents test results of a test case showing how the system
approximates the a priori ratings and how well it handles changes. The
conclusion and future work are part of the final chapter, chapter seven.



Chapter 2

Irrational Sets

The definition of an Irrational set was given as a set where no finite set of
rules can be constructed that can include unambiguously any member of
that set and, at the same time, unambiguously exclude any non-member of
that set (see [4]).

Which means that an irrational set is a type of set where memberships
may change in an unpredictable way. This could create conflicts or ambiguity
resulting in irrationalities and uncertainty. We need to use the irrational
set to model the changes in the problem domain which in our case means
modeling the user’s cocktail taste.

B. Visscher (see [17]) presents a new approach to software engineering
to handle irrational sets. I’ll use one of his suggested mechanisms for the
continuing updating of irrational sets in the problem domain, using the
rational sets in the programming domain.

Irrational sets can be explained from different view points, so first I
want to make clear how we should see irrational sets (§ 2.1). Then we can
move on with the actual characteristics of mechanisms for dealing with these
irrational sets (§ 2.3). Based on the needed mechanism an architecture for
an irrational system is proposed (§ 2.4). The introduction of irrational sets
in our model has some severe consequences for inference mechanisms for
which we need a solution (§ 2.5).

The system characteristics for handling irrational sets will show that not
every type of Machine learning is suitable for handling irrational sets. I’ll
discuss a list of most commonly known AI techniques to see which ones are
either useful or completely inadequate (§ 2.6).
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2.1 The Irrational view

There are two optional views that can be taken about the nature of the
world from which irrational sets are explained:

• The Rational view, assumes that everything can be described in terms
of rational sets, which is currently adopted by many scientists who
adopted require formal models in their field, statistics economics...
and represents the current paradigm of Computer Science. Ratio-
nal sets would only appear irrational merely because at the moment
we are dealing with incomplete and therefore imprecise information.
This viewpoint represents the essence of Wittgenstein’s Tractatus. Ir-
rationality is considered subordinate to rationality and considered a
temporary state of affairs that will be solved.

• The Irrational view, assumes that not everything can ever by poten-
tially unambiguously describable. Sets within the world are not always
rational. They could be, but there are irrational sets as well. We do
not need to force a rational or irrational set onto the world.

The rational point of view is consistent and seems to give a complete
explanation of the irrational sets, but there still are some limitations. If we
would have an algorithm that couldn’t explain a certain event due to the
irrationality of a set, then it can always be said that we just didn’t have
enough data for a valid solution, our input wasn’t complete. The problem
is that this kind of argument can always be given. In this way we can avoid
criticism by saying that we just need more data. The question how much
data is enough? can never be answered. This could in fact lead to very
expensive algorithms for simple problems.

A second limitation is the difficulty in dealing with human views and
conceptualizations. Given the rational view the whole world consists of ra-
tional sets, but people are limited in the amount of data they can collect.
People just can’t see the world completely rationally as we can’t know ev-
erything. For people the world appears to be irrational and they just try
to deal with the irrationalities they encounter. Human communalization,
understanding and conceptualizations are based on irrational sets.

So if we want a system to deal with human views and conceptualizations,
then we also need to be able to handle irrationality and not force a rational
set onto it. For this we need mechanisms to deal with irrationality as the
behavior of irrational sets is distinctly different from that of rational sets.
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Having a world that is completely rational according to the rational view
doesn’t mean that we can always create a model that gives a completely ra-
tional description of the world. Working with irrational concepts might be
more practical.

To overcome the limitations of the rational view, we need to adopt the
irrational view, but this has some other consequences as well.

With the irrational view we can now have irrational sets to describe the
world, which means that some sets can’t be described perfectly. The conse-
quence of this is that we can’t predict the world perfectly. Instead of ’true’
facts we can have in some cases only mere ‘believed’ facts about the state
of the world. Beliefs may change over time and context and because of this
rules that depend on true facts cannot replace human judgement. Fixed
rules are unable to follow the changes of the irrational sets, while a person
seems to possess the ability to track these shifts.

Still it’s not always the case that we should work with irrational sets.
Some area’s like mathematics and physics that deal with mostly rational
sets are often better of with the rational view, while Psychology and history
are with irrational sets. A system acquiring the taste of a person certainly
would benefit from the Irrational view as it contains sources for irrationality
(§ 2.2) and needs to track the irrational belief of the user for which fixed
rules are impossible.

A final important note when adopting the irrational view are the follow-
ing differences. With the rational view any set boundary is static and could
be arbitrarily closely approached by refining the input, assuming that addi-
tional input is available and that it contains useful information with which
the boundary could be defined. These assumptions are contrary to what the
irrational view assumes, where input is limited and that we could come to a
point where the input can no longer be refined. For the irrational view this
means that we can no longer rely on more data means better approxima-
tions. We can no longer make the excuses that we need more data as it could
just be that due to the irrational nature of the set a better approximation is
impossible. Within the irrational view the set boundaries aren’t static but
dynamic.
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2.2 Sources for Irrationality

B. Visscher (see [17]) speaks of 7 sources that show why a set may appear
as irrational, which gives us an indication of the kind of problems we need
to solve:

• Noise; Imprecise input results in imprecise membership for the set.
We can’t overlook wrong cocktail ratings given by a user.

• Ambiguity; It is impossible to make all set classifications. What if I
like a cocktail as much as I dislike it?

• Generalization; If I like a cocktail with coke does it mean that I like
every cocktail containing coke?

• Specialization; If I like a cocktail with coke, does it mean that I like
coke?

• Shifts; What I like today doesn’t mean I’ll still like it tomorrow morn-
ing.

• Disunity; Introducing new sets when shifting.

• Unity; I can’t choose a cocktail, I like them all.

If we provide a mechanism for each source to handle the irrationality, we
can truly create an irrational system (§ 2.4), but first let us see the kind of
characteristics of the mechanisms for handling irrational sets.
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2.3 Characteristics of Mechanisms Handling Irra-
tional Sets

As computers can only handle rational sets, how should we then handle irra-
tional sets? A summery of the rational-set and irrational-set characteristics
shows that we need a radically different mechanism. See Table 2.1 for some
of these characteristics.

Table 2.1: Summary of rational-set and irrational-set characteristics

.

Set features rational set irrational set
Boundary Static Dynamic
Number of boundaries Single Multiple
Constraints for Algorithm Consistent Consistent / Contradictory
Learning Always Converges Does not converge,

either stabilizes or diverges
Learning period Finite Never ending
Decision making Deterministic Non-deterministic
Mechanism Contextualisation Adjustment / Insight

Based on these characteristics creating a system that is able to handle
shifting (irrational) sets, would need to have the following three character-
istics:

1. Dependent on time. As shifts occur over time and cannot be predicted,
the shifts would be reflected in the order.

2. The learning period never ends. The system must continue evaluating
and learning when presented with new ideas and situations.

3. Showing some form of randomness. While in a rational system, every
decision can be made completely deterministic to get the optimum
response, within an irrational system, no such optimum can be found
as the sets change.

With the characteristics of mechanisms handling irrational sets presented
and knowing the irrational sources that need to be handled (§ 2.2) we can
present the architecture for an irrational system.
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2.4 Irrational system

An architecture for an irrational system is given by B.Visscher (see [17])
in a general overview of the different components (See Figure 2.1) and the
information flow from one process to another. It shows how an irrational
system could work and interact with its environment.

Figure 2.1: The Irrational system

Some of the components provide a mechanism for handling the different
sources of irrationalities. The next four components handle the following
sources:

• Interpretation; A mechanism to handle ambiguity. A set of contexts
is chosen that create a consistent meaning.

• Contextualization; A mechanism to handle conflicts. Conflicts can
be handled to create a new context allowing a consistent interpretation.
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• Adjustment; Handling Generalization, Specialization, Unity and Shifts.
As set membership is not static we need to be able to adjust the bound-
ary of a set.

• Insight; Forcing Set Unity or Shifts. Needs to clean up disconnected
conceptualizations.

So contextualization creates new contexts which solve a conflict at hand
allowing a consistent interpretation, but when we are having multiple con-
texts of the same set, then we also need to know which set to use in a given
situation. For this we need the system to evaluate the contexts against the
data in the given situation and choose the appropriate context.

An example of a system that uses multiple contexts to make predictions
about the result of experiments is the Belief System by T. R. Addis and
D. C. Gooding (see [2]). Hypotheses represent the contexts, where belief
in them can be adjusted based on the outcome of the experiments. The
Belief System incorporates the Abductive model to reason with irrational
sets (see § 2.5). The abductive model also represents the mechanism of
Insight, (belief) Adjustment and Interpretation (deduction).

The Belief system may look like the ultimate irrational system already,
but the thing missing is the ability to create new hypotheses, the system only
works with a priori contexts. Providing the Belief System with a mechanism
for hypotheses creation would make the Belief System truly an irrational sys-
tem.

After discussing the abduction model I’ll have a look at other AI tech-
niques to find out if there are besides the Belief System any other types of
machine learning suitable for handling irrational sets.
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2.5 Abduction model

The introduction of the irrational set has some consequences for the inference
mechanism. In case we would only work with rational sets, we can use the
deductive inference. Deduction is purely syntactic as long as the coherence
of the rational set is kept at all times. Irrational sets destroy the coherence
of the sets, which mean that we can no longer use the deductive mechanism.
Instead of deduction we may use the abductive inference loop modeled by
T. R. Addis et al. (see [4]) and shown in figure 2.2.

Figure 2.2: The Abductive Inference loop

In this model truth is only part of the deductive element. Outside de-
duction truth is replaced by belief. The system beliefs in a set of hypotheses
which make up the formal part of the system used for deductive reasoning.
In this way we can make predictions about the world. These predictions
can be validated by observations in the world. Validation provides a mech-
anism through which conclusions can be justified. The process of validation
adjusts the beliefs and this means we adjust the formal model.

What is important to notice here is the need for purpose. Without pur-
pose there is no criteria for success and therefore no mechanism for validation
(see [1]).
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2.6 Machine learning

For an intelligent system we need an AI technique capable of dealing with
irrational sets. The Irrational set characteristics in previous table 2.1 to-
gether with the three system characteristics (Time dependent, never ending
learning period and Randomness) demand certain requirements on the type
of machine learning. For the next five most commonly known AI techniques
is discussed which ones are either useful or completely inadequate:

1. Knowledge Based Systems (KBS), problem solving by a general-
purpose search mechanism trying to string together elementary rea-
soning steps with a reference to a database of knowledge on a partic-
ular subject to find complete solutions (see [14]). Expert systems and
Case-Based-Reasoning are good examples of Knowledge Based Sys-
tems. The typical expert system consisted of a set of facts, a set of
rules, and an inference engine. The inference engine applies a sequence
of rules to the set of facts, thereby producing new facts.

2. Neural networks. Artificial Neural Networks are distributed, adap-
tive, generally nonlinear learning machines built from many different
processing elements (see [11]).

3. Genetic algorithms (Machine Evolution). These are Global search
procedures, proposed by John Holland, that search the performance
surface, concentrating on the areas that provide better solutions. They
use generations of search points computed from the previous search
points using the operators of crossover and mutation (see [11]).

4. Bayesian Methods and Learning. Examples are Bayesian belief
networks, a directed acyclic graph of nodes representing variables and
arcs representing dependence relations among the variables(see [10])
nodes represent random variables, which are connected through edges
that represent causal relations. When new evidence is presented, prob-
abilities are propagated through the network in a consistent way. An-
other example is the Belief System (see [2]).

5. Fuzzy Systems. Fuzzy logic is an extension of Boolean logic dealing
with the concept of partial truth. Whereas classical logic holds that
everything can be expressed in binary terms (0 or 1, black or white,
yes or no), fuzzy logic replaces boolean truth values with degrees of
truth (see [10]).
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(1)Expert systems analyze information by a set of rational rules and
according to their given relations they fire other rules recommending a course
of user action. Knowledge Based Systems are in this way deductive systems.
Knowledge Based Systems work well when the problem domain is static and
well defined or in other words it works well with rational sets. As soon as
we need to work with a problem domain with irrational sets we get into
trouble. For instance when we try to model or imitate human inference as
done by the medical expert system MYCIN (see [13]). To compensate for the
irrational nature of human inference, E. H. Shortliffe introduced so called
certainty factors, which were intended both as an engineering solution and
as a model of human judgment under uncertainty. Although some expert
systems of this kind work quite well, the problem in other cases is that
certainty factors tend to produce contradictions. With certainty factors we
cannot handle irrational sets, because the assignment of values is arbitrary,
but ones it is set they will remain fixed. There is no introduction of new
possible concepts, or the option to assess a member to a new set. This makes
it unable to track shifts.

Further more we do NOT see any Non-deterministic decisions in an ex-
pert system, because this would make the whole process of reasoning invalid.
So besides the troubles when handling uncertainty, it also doesn’t show any
form of randomness.

Case-Based-Reasoning suffers from the same problem as with Neural
Networks, discussed next.

(2)While Neural Networks are most commonly used for adaptive learning
systems, they are not suitable handling irrational sets. This because they
fail on the second system characteristic that the learning period should never
end. Keeping track of irrational sets, by shifting a rational set, must continue
forever. The problem with a neural network is that it suffers from so called
overtraining of the network. If we want the Neural network to generalize
correctly, then there is a certain time after which we should stop training the
network, because the performance on the test set will otherwise deteriorate.

If we want to use a Neural Network to track changes, then we need
to keep on feeding the network with new training samples, which leads to
overtraining. The reason why the performance deteriorates can be explained
through the notion of irrational sets. The more samples we keep on using
for training, the more noise we introduce in the system. We can have more
shifts and as a consequence of that more variation in the boundaries. When
there is to much variation, then we can’t make any good predictions.
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The problem is that we keep the noise of every training sample we feed to
the network. The effect of the training sample when adjusting the network
will last forever. Every sample has just as much effect on the present state
of the network. This means that ‘old’ training samples keep on effecting the
present even when they are no longer valid due to a shift in the problem
domain.

It’s not only Neural Networks that have this problem, also Case-based-
reasoning and Baysian belief networks.

(3)Genetic Algorithms have the property that allows them to keep track
of irrational sets, as their solution may constantly evolve. The purpose of
the system is set by the ’world’ and can change at any time and under any
other context.

Time (order) dependence is present, where systems evolve in time. Ran-
domness is introduced with the breeding of genes where crossover and mu-
tation provide for the necessary variation.

(4)As described by T. R. Addis and D. C. Gooding (see [2]), the belief
system is an ideal learning system. It invokes Bayes Rule (this behaves like
a three layer neural net) but has the added advantage of being adaptive in a
way that reflects irrational sets. It doesn’t use Bayes rule for belief revision,
but instead it uses a different updating rule based on responsiveness to new
evidence (See § 4.18).

This in contrary to Baysian Belief Networks which use Bayes Rule for
learning. Bayes Rule assumes a constant and unchanging world and that
the order of the events is irrelevant, therefore we could not use it to handle
irrational sets as time order dependence is crucial. With the non-Basysion
belief-revision update rule in the Belief System it has the characteristic of
time (order) dependence.

Further more the Belief System has the ability to learn forever and shows
randomness by involving game theory for choosing experiments. The only
shortcoming of the system is that it is not yet able to act creatively. It still
needs some form of hypotheses generation where it now only works with an
a priori set of hypotheses. This means that it will eventually break down.

(5)For Fuzzy Systems the Fuzzy sets are often being mistaken for irra-
tional sets, but one should be reminded that fuzzy sets remain in the rational
domain.

”We can extend the classical set (Chair=1, not-Chair=0) by
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assigning an intermediate value to membership (e.g. 0.5) as an
attempt at providing a rational description for irrational sets.
Examples include fuzzy and probabilistic membership assign-
ments. However, fuzzy sets are rational in that members are
assigned a membership value that is unchanging. The value is
represented in any implementation by a finite number. Such as-
signments can therefore be expressed by a finite set of rules and
are therefore within the domain of rational sets.”(see [4])

The next table gives an overview of the different types of machine learn-
ing and their compatibility with Irrational sets.

Table 2.2: Machine learning Compatibility with Irrational sets
.

Machine Learning type Able? Comments
Knowledge Based Systems No Ambiguous rules are not allowed,

No form of randomness
Neural networks No Unable to learn forever,

due to overtraining
Genetic Algorithms Yes Constantly evolving and

randomness is present
Belief system Yes Time dependent, could learn forever,

uses Game Theory
Fuzzy systems No A Fuzzy set is not an irrational set

The best bet still seems to be on the belief system, but with the addition
of a genetic algorithm to create new hypotheses. Chapter 4 proposes a model
for this combination, but first we show a model for the irrational set of taste
in the next chapter.



Chapter 3

Initial model

A system that invents the kind of cocktails needs to have some sense of what
the person likes. The system should reflect the user’s taste in the way it
evaluates cocktails. To do this the user’s taste needs to be assessed. There
are two problems here. First taste tends to be irrational. In time and under
different contexts taste changes.

The second problem is that people cannot express their feeling of taste-
fulness in absolute statements. To like something is an emotional feeling
with only internal and private references. When two persons both rate a
cocktail with an 8, then it doesn’t mean that they both have the same taste
experience. Taste can only be put on a relative scale, where only greater or
less than comparisons can be made. I can’t exactly know what another per-
son feels when eating a banana as I don’t know his private reference scale,
but I can ask whether it tastes better or worse than apples.

The question is how we can model the internal references of a person
and account for irrational shifts. T. R. Addis and D. Billinge give a possible
solution (§ 3.1).

3.1 Abstract model

D. Billinge and T. R. Addis (see [15]) present an abstract model providing a
means of resolving cocktail taste into numeric measures and program labels
(see figure 3.1).
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Figure 3.1: Abstract model of internal reference

For one person we represent his taste, where the Cocktails are repre-
sented as P to S. The lines represent a simplified single-emotional reaction
to Cocktails P, Q, R and S, namely tastefulness. The extent to which Cock-
tail P person A likes is shown by the position of the bisecting vertical line
at *, the horizontal line representing the continuum between totally-dislike
on the left and fully-like to the right.

We create a functional model which implements the internal model of
continua to represent strength of taste. The strengths can be adjust in
conversations with the user.

3.2 Functional model

The continua of strength of taste is represented by a 7-part scale, splitting
the dimension into 7 different hypotheses. Each hypothesis is treated as a
value drawn from a set of competing hypotheses. The 7 hypotheses represent
an ordered set of values, where we use 0 to represent dislike and 6 to represent
absolutely liking it:

0 (dislike) < 1 < 2 < 3(neutral) < 4 < 5 < 6(like)

The amount of belief in each of the hypotheses represents the rating
distribution for a particular cocktail. Since belief in the hypotheses must
never exceed unity; the maximum value of 1 is distributed over a 7-part
scale. If the person hasn’t gained any knowledge about the taste of the
cocktail, then the maximum value of 1 is distributed evenly over the 7-part
scale:

[ 0.143 | 0.143 | 0.143 | 0.143 | 0.143 | 0.143 | 0.143 ]
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Choosing the number of hypotheses (values) is quite arbitrary, because
the values are relative values. This means that value 3 and 7 mean the same
in respectively a 3-part and 7-part scale. As long as we have more than one
hypothesis, which is necessary to discriminate, we can have any number of
hypotheses. The choice for an ordered set of 7 values is because we wanted
a set with a center value. A center value represents a neutral position saying
I like it as much as I don’t like it. While every odd number will give us our
center value, we chose 7 values, because it seems not too limited and not
too vast.

3.3 Updating

After experience of a single cocktail the person can only make 7 absolute
statements, while internally (inside the person’s mind) the cocktail will have
triggered a degree of likeliness, but which cannot be expressed. In our model
we will represent this personal experience as a belief of 1 for one of the seven
positions (hypotheses) on the continuum. For example rating 6 is:

[ 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 ]

By giving a cocktail one of the 7 absolute ratings, the user can update
the taste of the cocktail. The internal model is changed by adjusting the
belief in the 7 rating hypotheses. The given absolute rating is compared
with the predicted rating by the hypotheses, where the predicted rating is
calculated as follows:

E(Cocktail) =
∑
H

E(H) ∗H(V alue) (3.1)

Because the ratings are represented by a relative scale, only greater or
less than comparisons can be made between two rating scales. The belief
adjustment is made by comparing the predicted value with the given abso-
lute rating by the user and based on the result shifting the hypotheses belief
distribution to the left or the right.

Based on whether the absolute rating is greater or less than the predicted
value, its belief is equalized over respectively the hypotheses above and below
the rating. This is done because if for example rating 4 is greater than the
predicted value, then so are rating 5 and 6. Hypotheses 5 and 6 should
then get an increase in belief as well. Table 3.1 shows both examples for an
absolute rating of 4.
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Table 3.1: Greater or less than
.

Rating Greater than Result
4 TRUE [0|0|0|0|1|0|0] → [0.0|0.0|0.0|0.0|0.33|0.33|0.33]
4 FALSE [0|0|0|0|1|0|0] → [0.2|0.2|0.2|0.2|0.2|0.0|0.0]

The hypotheses belief distribution will be updated with the adjusted
absolute rating distribution using the following equation (See § 4.18 where
the same update rule is used to adjust beliefs):

E(H) =
(N − 1)En−1(H) + En−1(H/Re)

N
(3.2)

Here Flexibility is defined as 1
N and reflects responsiveness to new results.

So with a high flexibility, the belief modification ”listens” more to the given
rating.

Table 3.2 and 3.3 give two examples of updating the following belief
distribution with a predicted value of 3, with respectively a higher rating
(4) and a lower rating (1). The Flexibility is set at 0.35.

[ 0.107 | 0.107 | 0.107 | 0.357 | 0.107 | 0.107 | 0.107 ]

Table 3.2: More
.

Step Description Result
1 Create a 7-part scale 4 → [0|0|0|0|1|0|0]
2 Accumr [0|0|0|0|1|0|0] → [0|0|0|0|1|1|1]
3 Normalize the distribution [0|0|0|0|1|1|1] → [0|0|0|0|0.333|0.333|0.333]
4 Change belief value, [(1-F)*0.107 + F*0 |

given flexibility (1-F)*0.107 + F*0 |
(1-F)*0.107 + F*0 |
(1-F)*0.357 + F*0 |
(1-F)*0.107 + F*0.333 |
(1-F)*0.107 + F*0.333 |

The resulted distribution (1-F)*0.107 + F*0.333] →
is clearly shifted to the right [0.070|0.070|0.07|0.232|0.186|0.186|0.186]
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Table 3.3: Less
.

Step Description Result
1 Create a 7-part scale 1 → [0|1|0|0|0|0|0]
2 Reverse [0|1|0|0|0|0|0] → [0|0|0|0|0|1|0]
3 Accumr [0|0|0|0|0|1|0] → [0|0|0|0|0|1|1]
4 Reverse [0|0|0|0|0|1|1] → [1|1|0|0|0|0|0]
5 Normalize the distribution [1|1|0|0|0|0|0] → [0.5|0.5|0|0|0|0|0]
6 Change belief value, [(1-F)*0.107 + F*0.5 |

given flexibility (1-F)*0.107 + F*0.5 |
(1-F)*0.107 + F*0 |
(1-F)*0.357 + F*0 |
(1-F)*0.107 + F*0 |
(1-F)*0.107 + F*0 |

The resulted distribution (1-F)*0.107 + F*0] →
is clearly shifted to the left [0.245|0.245|0.070|0.232|0.070|0.070|0.070]

3.4 Creating new cocktails

We now have an internal model of the users taste, but there is no mechanism
yet to create a belief model for an unknown cocktail. There is no mechanism
for evaluation, no measure for success. We always need to ask the user for a
first evaluation, but we want the system to be able to evaluate for itself not
having to ask the user each time, avoiding an endless conversation with the
user. If the system has hypotheses how to predict, we need less information.

So besides getting the internal models of known cocktails, we need to
have a mechanism to generalize and predict models for unknown cocktails.
The system should learn the ever changing internal models of some cock-
tails in order to make predictions in the evaluation of new cocktails. Here
we should note the dynamical aspect of the learning set as taste tends to
be irrational. In time and under different context taste changes, meaning
different internal models.

As soon as we have a mechanism for evaluation we can design an algo-
rithm for creating cocktails and evaluate before hand whether the user will
like it or not.

The next chapter will discuss a model for cocktail evaluation based on a
combination of the Belief System and a genetic algorithm.





Chapter 4

Genetic Model

In this Chapter I will discuss the model I designed for an irrational cocktail
evaluation system.

The system needs a mechanism for evaluation in order to make predic-
tions in the evaluation of cocktails. In our case evaluation means that given
a list of cocktail features and ingredients a person’s internal taste model
is returned, a belief distribution over the 7-part scale of rating hypotheses.
What we are looking for is the relation between each combination of ingredi-
ents and its corresponding rating. If we can define a function that represents
this relation, then we could apply it onto any cocktail combination and we
have our needed evaluation function. An evaluation function given its input
parameters (cocktail features) returns the appropriate rating, where R is a
rating distribution over the 7 hypotheses:

F (f1, . . . , fn) → R

A system with evaluation functions doesn’t limit us to work only with
cocktails, but can be used in all sorts of cases where evaluation is needed.

Perhaps one or more evaluation functions can be found that predict the
user’s rating and thereby approximate his or her evaluation behavior. But
before we get to this point we need to answer two other questions first:

• How do we define a cocktail evaluation function?

• How can we get the optimal evaluation function?

The answer to the first question is related to the second one, so let me
first answer that one.
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To get the optimal evaluation function I came up with a completely new
model, the Genetic Belief System model presented in figure 4.1. A Genetic
system that creates evaluations functions in order to predict the user’s taste.

Figure 4.1: Genetic model

A set of evaluation functions will form the belief profile, where each
evaluation function is in fact an hypothesis for the Belief System. The
Belief System will figure out which evaluation functions predict the best.

The current Belief System works only with an a priori fixed set of hy-
potheses. The new model introduces the creation of new hypotheses by
generating new evaluation functions with a genetic algorithm.

It is important to notice that the hypotheses for the Belief System are
evaluation functions and not the hypotheses which represent the rating dis-
tribution for a particular cocktail which were discussed in previous para-
graph 3.2. The (seven) hypotheses for the rating scale represent the output
of an evaluation function, where the evaluation function is a hypothesis of
the Belief System.

I will show how I made a genetic algorithm for evaluation functions.
For this we need to define the cocktail evaluation functions with ∆Logic,
which answers the question how we define the evaluation functions. Evalua-
tion functions defined with ∆Logic make it possible to transform evaluation
functions into genes. ∆Logic is discussed in the next section.
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4.1 ∆Logic

4.1.1 Introduction

∆Logic is an alternative type of logic, introduced by B. Visscher(see [16]),
that works with detecting differences between input signals. B. Visscher tries
to increase the understanding of the brain by introducing a more natural
logic to model the excitation/inhibition behaviour of biological neurons with
than the traditional Boolean Logic. He introduces ∆neurons sharing some
resemblance with the behaviour of biological neurons. Using only these
∆neurons in a network it is possible to create any Boolean function of any
number of inputs. These networks of ∆neurons can be represented by so
called ∆programs.

It is with these ∆programs that I designed my genetic algorithm by map-
ping ∆programs onto genes. The idea is to build ∆neuron networks for our
cocktail evaluation functions and with their ∆program representation map
them onto genes (see figure 4.2). These genes could then be used by genetic
algorithm I designed to generate new genes, meaning new ∆programs, new
networks, new cocktail evaluation functions.
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Figure 4.2: Mapping Evaluation functions onto Genes

To explain how this all works in detail, let’s start at the beginning and
explore the basics of ∆Logic.
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4.1.2 Basics

∆Logic consists out of five basic components, an environment, ∆signals, con-
nections isolated from the environment to transport a ∆signal, the inhibitor
and the combiner that combine two ∆signals in a specific way.

For the ∆signals there are two signal elements. The reason for this is
that it is not possible to create a useful signal on its own, because a signal
can only be used if it is detectable and it is only detectable if it differs from
another signal. One of the two is called the environment signal, denoted by
θ. The second one is the ∆signal that can have either the value θ or 1, where
θ means the ∆signal is the same as the environment and can therefore not
be detected using only the environmental signal. 1 meaning it differs from
the environmental signal, which can be detected and used to send either θ
or 1 on the output.

The ∆Logic functions are made with the following three components:

• Connection. The connection element is used to connect the other two
elements together. A ∆In signal is always connected to one ∆Out
signal and a ∆Out signal is connected to 0 or more ∆In signals.

Table 4.1: Connection
.

∆In ∆Out
θ θ
1 1

• Combiner. Combines the inputs and puts out 1 when one of the inputs
is set to 1.

Table 4.2: Combiner
.

∆In1 ∆In2 ∆Out
θ θ θ
θ 1 1
1 θ 1
1 1 1
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• Inhibitor. The behaviour can best be described where a 1 on ln1
inhibits ln2 to be outputted.

Table 4.3: Inhibitor
.

∆In1 ∆In2 ∆Out
θ θ θ
θ 1 1
1 θ θ
1 1 θ

With the previous described components we can’t yet create all possible
Boolean functions. Within ∆Logic it is not possible to detect and react to
the θ state using only the environment. Because of this, it is never possible
to create the inverse of the θ state of a ∆signal within ∆Logic. It isn’t
possible to say, where NOT ∆In = θ:

IF NOT ∆In THEN . . .

There are two ways to overcome this problem:

1. Introducing a second constant to the system that has always the value
1 to be distinguishable from the environment.

2. Single concept representation

(1)The first option is more the traditional solution. Here we only need
the Inhibitor where the second input is connected to the 1 value. In this
way we have created an invert gate for the first input. (See figure 4.3)

Figure 4.3: Invert gate with Inhibitor and constant

(2)The second option is the use of single concept representation. Because
we only have the ability to detect and react to the 1 state and not to the θ
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state, there is an asymmetry between the θ and 1 state of a ∆signal. It has
one usable state and can therefore only represent one concept. This in con-
trary to Boolean logic where we assign two concepts to one signal, namely
True and False. So now to represent one Boolean signal, two ∆signals are
needed, one for True and the other for False. This approach makes inverting
a signal trivial as we only need to exchange the True signal with False and
visa versa.

Both solutions work and it comes down to the personnel choice of the
programmer. The second solution, single concept representation stays close
to the way in which biological neurons in the brain work. The Brain does
not appear to have any constant signal other than the environment. But the
problem is that with single concept representation the input space is huge,
it is a very inefficient solution as we need to double the number of input
concepts. So I will continue using the first solution, a constant value.
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4.1.3 Networks

The ∆neuron is an additional element that can replace both the Inhibitor
and Combiner. It is a more general element and simplifies the job of network
creation. In fact it is a combination of the Inhibitor and Stimulator shown
in figure 4.4.

Figure 4.4: ∆neuron with N stimulation and M inhibiting ∆Inputs

In the network a ∆neuron can be the Stimulator or Inhibitor of another
∆neuron (DN). These two relations are defined as follows:

• Stimulating, a DN can stimulate another DN. This means that when-
ever the first DN puts out a stimulation (put to 1), than it will stimu-
late the second DN (putting it to 1). This is a many-to-many relation-
ship. DN’s can stimulate multiple DN’s and DN’s can be stimulated
by multiple DN’s.

• Inhibiting, a DN can inhibit another DN. This means that whenever
the first DN puts out a stimulation (put to 1), than it will inhibit the
second DN (putting it to 0). This is a many-to-many relationship.
DN’s can inhibit multiple DN’s and DN’s can be inhibited by multiple
DN’s. There is only one inhibit necessary to inhibit the DN, no matter
how many stimulaters it may have.

An example of a network structure is displayed next. Its an example
referring to cocktails where we have a list of 6 input cocktail features (ingre-
dients), 2 intermediate states or concepts representing cocktail combinations,
and 7 outputs representing possible ratings.
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There are two different concept relation arrows to show whether a con-
cept stimulates or inhibits another concept. These are –> and –|, which
respectively stand for stimulates and inhibits.

Figure 4.5: Network build with ∆neurons (Concepts)

It is quite important to note the differences between this type of ∆neuron
network and an Artificial Neural Network (ANN) based on the McCulloch-
Pitts neurons. As to what seems to be quite similar, there are still two
major differences:

• First of all the ∆network is not learning anything. In contrary to the
ANN it has no weights to update, meaning that it will not adapt. Its
only there to represent a function, where the ANN can be trained to
adapt its function.

• Secondly the ANN is computed in a one way direction, having layers of
neurons only effecting the next layer, but to compute the output for a
given input on a ∆network we need to proceed differently. As there is
no sequential ordering in the stimulating and inhibiting of ∆neurons,
we need to compute in parallel. The ∆network may also contain loops
or ∆neurons stimulating/inhibiting previous ∆neurons. In this way
we can have a never ending progress through the network. One way
to overcome this problem is to set a time limit. When the time is up
we count the number of times each output concept has been activated,
which gives us a probability distribution over the output concepts.



4.1 ∆Logic 47

4.1.4 ∆Programs

Since every active concept (∆neuron) that comes from either an input
or from within the network can only stimulate or inhibit other concepts
(∆neurons), the whole network can therefore be described in the following
IF-THEN terms:

IF ‘concept’=1 THEN Stimulate OR Inhibit ‘concept’

This representation is shortened to two pattern influence rules or π’s, one
for stimulation and the other for inhibiting:

• π+ ‘concept A’ + ‘concept B’ ‘concept A’ stimulates ‘concept B’

• π- ‘concept A’ - ‘concept B’ ‘concept A’ inhibits ‘concept B’

We can now represent the entire network with these pattern influence
rules, resulting in what we call the ∆program. Take for example the ∆program
of the network displayed in the previously discussed figure 4.5:

‘Coke’+‘C1’ ‘Rum’+‘C1’ ‘Lemon’+‘C1’ ‘C1’+‘R3’ ‘Wodka’-‘C2’
‘Gin’+‘C2’ ‘Tonic’+‘C2’ ‘C2’+‘R5’ ‘R5’-‘C1’

The ∆program is now our evaluation program. As we can run the pro-
gram to evaluate a given input where it will return a probability distribution
over the outputs. At first it may seem strange how we can suddenly get a
probability distribution over the outputs as we can only stimulate or inhibit
an output concept. This will become clear as we take a look at the way in
which I designed the program to run.

Running the program will work as described in the following steps:

1. First a time limit is set, because loops might be present.

2. The given input concepts will be set active and they may stimulate or
inhibit other concepts (or themselves) defined by the pattern influence
rules. This provides us with a new list of active concepts, without the
previous active concepts that are not stimulated again.

3. The new active concepts will on their turn again stimulate or inhibit
other concepts (or themselves), creating again a new list of active
concepts. As long as the list with active concepts isn’t empty we will
repeat this step. In the mean time we keep counting the number of
times each output is activated.
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4. When there are no longer active concepts or when the time limit is
reached, then the program has come to an end. The probability dis-
tribution is then calculated by normalizing the number of activations
for each output.

The next table gives a simple example of running the previous ∆program
(represented by the network in figure 4.5). The program evaluates an input
of four features: Coke, Rum, Lemon and Tonic.

Table 4.4: ∆program running example
.

Step Active concepts Pattern influence rules
2 Coke, Rum, Lemon, Tonic Input
3 C1 and C2 ‘Coke’+‘C1’ ‘Rum’+‘C1’ ‘Lemon’+‘C1’ ‘Tonic’+‘C2’
3 R3 and R6 ‘C1’+‘R3’ ‘C2’+‘R6’
4 empty -

At the point where the program reaches an empty list of active concepts
only the R3 and R6 output have been activated once. So the resulting
probability distribution over the outputs (R0...R6) is after the normalization
of counts:

(0 0 0 0.5 0 0 0.5)

With the ∆program we now have a program in a formal language to
define our cocktail evaluation function. As the ∆Logic is complete it enables
us to create any function possible. Out of all possible functions we need to
find the best evaluation function, meaning we need to construct the best
fitting ∆program. One way to create the best ∆program is by using an
evolutionary genetic algorithm. The genetic algorithm should evolve better
and better solutions by breeding offspring and creating new populations of
evaluation functions. So we want to breed new ∆programs out of (initial)
existing ones, by using the biological inspired methods of crossover and
mutation. In order to employ a genetic algorithm we first need to create its
building blocks, Genes.



4.2 Genes 49

4.2 Genes

With the use of ∆Logic I’m able to design genes to construct my genetic
algorithm, by mapping ∆Programs onto genes. I’ll show how the genes are
designed and coded.

4.2.1 Gene Design

To create the necessary genes for the genetic algorithm the first step is to
somehow map the ∆program onto genes, meaning we need to get the pattern
influence rules onto genetic strands. One way to do this is presented in the
next figure 4.6.

Figure 4.6: Example of a ∆program mapped onto genes

Genes are in this way composed with valid π’s and Junk, where Junk
is what fills up the genes with sequences for which no function has been
identified. The reason for introducing Junk is inspired by what can be seen
in nature, referred to by ”Junk DNA”(see [7]). Having junk should give the
following advantages:

• Much junk gives point mutation a smaller change to have any effect.
In this way junk acts as a protective buffer against genetic damage
(errors) and negative point mutations.

• Junk could provide a reservoir of sequences from which potentially
advantageous new π’s and concepts can emerge.

• Functions switched off by mutation, remain present in the genes and
could be switched on again by future mutations. In this way we can
have dormant gene parts.
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The concept of junk in combination with a genetic algorithm is quite
novel and the use of junk raises some questions as well. For instance:

1. How big is the junk proportion of a gene?

2. Does junk DNA really exist or does it just have a function that we
can’t detect?

(1)A possible answer to the first question is to take the example of junk
DNA presented by nature, where 97% of the human genome has been des-
ignated as junk (see [7]).

(2)The second question seems to be very important, because if it would
turn out that even junk DNA has a function, then the whole concept of junk
is useless. We are stuck with an empirical problem, because we can’t prove
(yet) that junk DNA has no function. If we can’t detect a function doesn’t
mean it isn’t there. So for now we can’t give a solid answer to the question
whether junk really exist or not, but acknowledging the presents of junk is
in line with what has been seen and explored by present science. Also the
given advantages seem to make junk very plausible.

To map a ∆program onto genes by composing genes with valid π’s and
Junk will be explored further, discussing one way to implement this.

4.2.2 Gene Coding

One way to implement the genes is to create genetic strands of bit strings.
In this way a gene is represented by a string filled with zeros and ones. The
bit string can be read from left to right in order to find the encoded π’s
between the junk. To explain how this works let us start with the following
example presented in figure 4.7.

Figure 4.7: Gene Example

If we want to identify valid π’s along the bit string, then we need the
use of bit code Identifiers. Take for example identifier ‘00000’, whenever we
find bit string ‘00000’ inside the gene it means that it is followed by a valid
π. In our example this means that the two π’s in the string are preceded by
‘00000’.

‘00000’ ‘Coke’+‘C1’ and ‘00000’ ‘Wokda’-‘C2’
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The next step is where we need each concept to be represented by a
unique bit code. When we build the genes for the first time, then we
start with the list of known concepts which are present in the network and
∆program (input ,output and intermediate concepts). But in time we want
new concepts to emerge from junk or by concept mutation. These emerged
concepts should have their own unique bit code. Paragraph 4.2.3 describes
the mechanism for the needed progressive bit state coding. For the example
we could have the following unique bit codes:

‘00000’ ‘0101’+‘1000’ and ‘00000’ ‘1100’-‘1110’

Because there are only two types of π’s (+ and -) we can replace the +
(stimulator) by a 1 and the - (inhibitor) by a 0.

‘00000’ ‘0101’ 1 ‘1000‘ and ‘00000’ ‘1100’ 0 ‘1110’

With all this every part of the Delta-Program can now be mapped onto a
string of bits. The only thing missing now is Junk. Junk will be represented
by a sequence of random numbers of zeros and ones. Junk cannot contain
the ‘00000’ sequence, because this infers that we have found an identifier
after which follows a valid π. Adding some junk to our example results
in the following possible sequence of bits for Gene 1. (The | is added at
some places to increase readability, where they separate junk, identifiers
and patterns)

0100110101|00000|0101|1|1000|11010101010|00000|1100|0|1110|0110

It is not necessary for a ∆program to be mapped onto only one gene, the
valid π’s may be spread over multiple genes. For now there are no guidelines
or rules of thumb for the number of genes, but the genes themselves should
consist for about 97 percent out of junk. Genes don’t have a fixed length as
the amount of junk and the number and length of π’s may vary. The fact
that also the length of concepts may vary is due to the used concept coding
which is discussed in the next paragraph.
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4.2.3 Flexible bit state coding

As stated earlier, each concept needs to be represented by a unique bit
code to distinguish between concepts. This would have been easy if the
list with concepts was a fixed set, but in time we want new concepts to
emerge from junk or by concept mutation. The reason why we want new
concepts is because they could be potentially advantageous in forming the
best evaluation function. Only there isn’t really an ultimate everlasting
evaluation function to be found (or approximated), due to the irrational
nature of it. People will change their opinion on taste in time and context.
So we need to be able to form new concepts to track the user’s taste.

Another point is being dynamical. For instance when we would like to
add new concepts (ingredients) to our input space we don’t want to encode
the genes all over again. Introducing new concepts asks for flexible coding.

What we don’t want is to start by stating a fixed number of bits to rep-
resent the concepts, say for example a number of 8, because then we always
have a limit to the number of concepts, in this case 8bits = 256 states. We
don’t want this fixed limit, when we reach the limit we want to expand the
number of bits representing states. If we would state a fixed number of bits,
then we are limited in our flexibility. Flexible bit state coding means that
the length of concepts may vary. This makes it a bit more difficult when we
start reading the gene bit string from left to right decoding the concepts.

Reading the gene bit string from left to right we should be able to find
the π’s not knowing before hand which concepts we will find. The only thing
we can find in the first place is the π identifier. We start looking for the first
identifier sequence, which is ”00000” in the next gene bit string example.

0100110101|00000|0010100010101110101010000010

Once we have found the identifier sequence we know that a valid π will
follow, defining one concept that will inhibit or stimulate another concept.
Because we don’t know the length (number of bits) of the concepts following
the identifier, this needs to become clear from the bit pattern.

One way to do this is to define the length of the concept by the number
of zeros at the beginning of the bit pattern. In practise it works as follows.
When we start reading the gene bit string after the identifier, we count the
number of following up zeros. As long as the length of the zero bit pattern
is less than the Z-Pattern the length is defined by the Depth, where the
Z-Pattern and Depth are arbitrary initialized at 2 and 4 respectively. When
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the zero bit pattern equals the Z-Pattern, both the Z-Pattern and Depth are
doubled. The concept length (Depth) is thereby defined with the following
rules:

Z-Pattern = 2
Depth = 4
IF number of zeros < Z-Pattern THEN Depth
ELSE Z-Pattern = 2 * Z-Pattern AND Depth = 2 * Depth

Using these rules will result in what is shown by table 4.5, the Concept
lengths for some of the Zero bit pattern lengths.

Table 4.5: Zero bit pattern length and Concept length relation
.

Zero bit pattern length Concept length
0-1 4
2-3 8
4-7 16
8-15 32
16-31 64
. . . . . .

The previous rules are not the one and only way to implement this
flexible behaviour. Both the initialization of the Z-Pattern and Depth is
arbitrary and could have been any positive value as long as the Depth > Z-
Pattern. Also doubling the Z-Pattern and Depth is not the only possibility
to increase the limits.

But in any case flexible coding in this way means that not all the possible
bit combinations are used. For instance out of the 16 possible states with 4
bits, only 12 states are valid as shown in figure 4.8.

Figure 4.8: Bit codes length 4
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The states ‘0011’, ‘0010’, ‘0001’ and ‘0000’ aren’t valid as their zero bit
pattern defines a different length.

What goes for the length of 4 bits goes for the other lengths as well. The
next figure gives an illustration of the part of the bit pattern tree that will
be used.

Figure 4.9: Flexible bit coding

Using only these parts of the tree results in the following number of
possible valid states presented in table 4.6.

Table 4.6: Number of States
.

Number of bits Number of states
4 12
8 48
16 3.840
32 16.711.680
64 > 1015

. . . . . .
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Looking back at the gene bit string example we should now be able
to read out the π’s. After the ‘00000’ identifier we remain with the next
sequence of bits.

0010100010101110101010000010

Before we find the first 1 in the string, we already count 2 zeros which
define a length of 8 bits (See table 4.5). So the first concept bit code will be
‘00101000’. The next bit defines the relation, which is in this case a 1 for
stimulating. The final step is to read out the second concept and because
its head is only one zero we know it will have length 4 given us a sequence
of ‘0101’.

00101000|1|0101|110101010000010−→ 00101000 stimulates 0101

In the remaining string of bits we can find another identifier. When we
start reading after this identifier we run out of bits.

11010101|00000|10. . .

In this case we break off and consider the end of the gene to be junk.
For the next gene we start all over again by searching for an identifier.

As we now fully understand how to design and code the genes we can
move on to find out how to manage the process of breeding new genes.

4.3 Breeding

In order to create new and potentially better evaluation functions I want
to use the ∆program genes to breed new genes, meaning new ∆programs,
new cocktail evaluation functions. To do so I need to start from a popu-
lation of ∆programs mapped onto genes. The evolution of the ∆programs
will then happen in generations, where in each generation we want to take
the genes from the two ‘best’ ∆programs to create new offspring for the
next population. For breeding we always need the genes from two differ-
ent ∆programs (parents) and create two new ∆programs (children). To
select the optimal ∆program parents we need to evaluate ∆programs and
assign to each of them a Probability representing its fitness. This part will
be handled by the Belief System discussed later. First let us have a closer
look at the mechanism for manipulating the genes to generate new offspring.
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The breeding of new genes involves two techniques inspired by evolu-
tionary biology: Crossover and Mutation. In addition to these techniques
I suppose a crossover variation, gene breaking and disappearing as extra
means to control the number of genes and their length.

4.3.1 Crossover

After having picked two evaluation functions for breeding we take their
genes and randomly select a number of crossovers. This is limited by the
evaluation function with the smallest amount of genes, because a gene can
only function as a parent once during each breeding cycle. So we can’t have
more crossovers than there are genes.

For each crossover we randomly take a gene from each parent function,
like for instance in figure 4.10, where we take gene 1 from the first function
and gene 3 from the second function. The parent selection for Crossover is
not restricted to parents with the same gene number. There are two reasons
for this:

• First because there is no underlying gene structure. The location of
the genes are insignificant.

• Secondly because there is not a fixed number of genes, meaning that
otherwise for functions with relatively a lot of genes some of the (high
numbered) genes could never be selected for Crossovers.

Figure 4.10: Evaluation function Genes
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What we do with crossover is splitting each parent gene at a random
point and swap strings beyond that point as illustrated in the next figure.

Figure 4.11: Crossover

We end up with two children, one for each new evaluation function. After
a random number of crossovers we end up with two new evaluation functions
based on the unaffected genes and the used parent genes are replaced by
their children. Figure 4.12 gives an example of a potential result after one
crossover.

Figure 4.12: After Crossover

To provide even more variation both the children of a crossover action
may end up in the same new evaluation function. This asymmetric type of
crossover may occur occasionally based on a set Probability. An example of
an asymmetric crossover result is shown in figure 4.13, where both children
are placed in evaluation function 1.
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Figure 4.13: Asymmetric Crossover variation

4.3.2 Mutation

A mutation involves a probability that an arbitrary bit in the gene bit se-
quence will be changed from its original state. A 0 becomes a 1 and a 1
turns into a 0. Figure 4.14 shows an example of two mutations within one
gene bit sequence.

Figure 4.14: Mutation

The probability to which mutation occurs is usually set to 0.01.

4.3.3 Breaking and Disappearing

One way to control the length of the genes is to introduce gene breaking.
Breaking involves a probability that a gene will split at a random point into
two genes as shown in figure 4.15. The chance whether a gene should break
or not is based on the length of the gene.

(1− P (break))length

The longer the gene the bigger the chance that a break will occur.
P (break) is usually set very small to allow long genes.
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Figure 4.15: Breaking genes

Breaking genes increases the number of genes, but if we want to control
the number of genes we also need a mechanism for decreasing the number
as well. One way is to reverse breaking and combine genes, another way is
to make genes disappear. Disappearing remains to be done with care, where
if you would remove to much you might end up with an empty gene pool.
Once all genes have disappeared we can’t breed anymore.

4.3.4 Valid networks

It is important to notice that no matter what kind of crossover or mutation
we always end up with genes that represent a valid ∆program. This is truly
the power of ∆logic in combination with flexible bit coding. Each genetically
generated evaluation function is valid and now only needs to be tested and
evaluated, in order for us to pick the optimal evaluation functions. For
this we are going to use the Belief System, which is discussed in the next
section. The Belief System will figure out which evaluation functions predict
the best.
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4.4 Belief System Evaluation

Every initial or generated evaluation function needs to be tested to see if
it is any good. This to know which evaluation functions would make the
future a less surprising place for us and to select the optimal evaluation
functions for the breeding process. The evaluation of the functions will be
performed by the Belief System. The reason for using the Belief System was
already explained in § 2.4 as the Belief System incorporates the Abductive
model to reason with irrational sets (see § 2.5) and has the three system
characteristics for handling irrational sets:

• The Belief System is dependent on time.

• The learning period never ends

• It shows a form of randomness.

The Belief System will be an altered version of the system presented by
T. R. Addis and D. C. Gooding(see [2]). We want to model the belief profile
for only one actor (the user) instead of creating a number of interacting
agents. The Belief System originally is used for a simulation that represents
learning as a social process of belief revision by a number of interacting
agents, but I will use and modify it to fit it to an evaluation system. Be-
sides combining it with my designed evaluation functions I introduce the
additional feature of generating and using new hypotheses (evaluation func-
tions).

The model defines a range of beliefs about cocktail evaluation functions.
The beliefs are represented by a combination of an evaluation function and
belief values between 0 and 1. The evaluation functions will be the system’s
hypotheses. The set of these hypotheses is mutually exclusive and the sum
of the beliefs will be taken as 1.

The Belief profile states the belief (also called confidence) in each of a
range of hypotheses (Evaluation functions), like in figure 4.16.

To evaluate the hypotheses we need to run the evaluation functions on
cocktail test samples. Knowing the rating distributions for the test samples
we can compare it with the results of the evaluation function. According to
how well each hypothesis predicts the outcome in comparison with the other
evaluation functions, we can adjust the beliefs by changing the probability of
each hypothesis. The test samples will be referred to as experiments. What
the Belief System will do is constantly running experiments to update the
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Figure 4.16: Belief profile

beliefs. In order to do so we need an experiment setup with several cocktails
and a priori probabilities of each rating result. An example is given in table
4.7.

Table 4.7: Example of Experiments with their Probability of each result
.

Experiment R1 R2 R3 R4 R5 R6 R7
Martini 0.0 0.1 0.9 0.0 0.0 0.0 0.0
Adonis 0.0 0.0 0.0 0.5 0.4 0.1 0.0
Bloody Mary 0.0 0.1 0.9 0.0 0.0 0.0 0.0
Manhattan 0.0 0.3 0.0 0.0 0.0 0.7 0.0

The ultimate evaluation function would correctly return the right rating
distribution for each of the experiments. So what we are doing with the
system is searching for a belief profile of evaluation functions which approx-
imates the a priori experiment probabilities. In a way these experiments
are what the system perceives as the real world. For the real world we
can’t model a person’s taste once and that’s it, because the user’s taste may
change under time and context. So the a priori probabilities my change in
time, whenever the user decides that an experiment result (cocktail rating)
is incorrect and adjusts it. This feedback from the user is necessary to keep
track of his or her taste.

Running my Genetic Belief System means going through an infinite num-
ber of cycles of the following three steps to find the best predicting evaluation
functions:

1. Select an experiment (See §4.4.4)

2. Do experiment and adjust beliefs (See §4.4.1)
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3. Introduce new hypotheses (See §4.4.5)

As the system runs continuously, the user may give feedback by rating
the cocktails (experiments) and we can ask the system to evaluate known
and unknown cocktails (See §4.4.6).

4.4.1 Belief adjustment

Performing an experiment returns a result. The result happens according to
the a priori probability distribution over the results. If we take for instance
experiment example ”Manhattan” from table 4.7, then we see that in 3 out
of 10 cases it will probably return Rating 2 (P (R2) = 0.3) and for the other
7 cases Result 6 (P (R6) = 0.7). There is no way that this experiment could
result in Result 1, 3, 4, 5 or 7.

Say we run the ”Manhattan” experiment and it returns Rating 6. Given
this result we can determine the expected hypothesis with the following
equation:

En−1(H/Re) =
En−1(Re/H)

En−1(Re)
(4.1)

Here Re is the result of an experiment e and H is an hypothesis. The
expected result En−1(Re/H) for any experiment will depend upon the belief
of each evaluation function and the probability of a result for the evaluation
function supposing it is true. To get the probability of a result for an
evaluation function means evaluating the experiment.

En−1(Re) is the expected result for all hypotheses. Defined by:

En−1(Re) = ΣHEn−1(H) ∗ En−1(Re/H) (4.2)

As Rating 6 resulted from our ”Manhattan” experiment e then the belief
probabilities (confidences)for each hypothesis, can be modified to En(H) by
adapting the above equation to the following:

En(H) =
(N − 1)En−1(H) + En−1(H/Re)

N
(4.3)

Flexibility is defined as 1
N and reflects responsiveness to new results.

The Flexibility value creates a time window for belief in previous evidence.
Figure 4.17 shows how long the influence of a result is held on to previous
evidence for three different Flexibility values. For example with a Flexibility
of 1

3 the impact of evidence after 6 updates is less than 10%.
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Figure 4.17: Flexibility time window

When we start to adapt the confidences for each hypothesis in response
to the result Rating 6 of the ‘Manhattan’ experiment, we need to calculate
the expected result for the experiment of each hypotheses, En−1(Re/H),
and therefor we needed to see how each of the evaluation functions predicts
the results for the ‘Manhattan’ experiment. Table 4.8 gives an example of
the results from each evaluation function for the ‘Manhattan’ experiment.

Table 4.8: Evaluation functions with their Probability of each result
.

Hypothesis Belief R1 R2 R3 R4 R5 R6 R7 Sum
H1 0.6 0.0 0.0 0.6 0.0 0.0 0.4 0.0 1.0
H2 0.3 0.0 0.0 0.9 0.0 0.0 0.1 0.0 1.0
H3 0.1 0.0 0.0 0.0 0.4 0.0 0.0 0.6 1.0

Sum 1.0

Based on these evaluation function results we can now calculate the the
expected result for the experiment, applying equation 4.2:

E(R6) = (0.6 ∗ 0.4) + (0.3 ∗ 0.1) + (0.1 ∗ 0.0) = 0.27

With equation 4.1 we calculate the probability for each hypotheses that
is to be expected:

E(H1/R6) = 0.6∗0.4
0.27 = 0.89



4.4 Belief System Evaluation 64

E(H2/R6) = 0.3∗0.1
0.27 = 0.11

E(H3/R6) = 0.1∗0.0
0.27 = 0.0

Finally we can apply equation 4.3 to adjust the beliefs. For the Flexibility
we took the arbitrary value of 1

3 :

E(H1) = 2∗0.6+0.89
3 = 0.69

E(H2) = 2∗0.3+0.06
3 = 0.24

E(H3) = 2∗0.1+0.0
3 = 0.07

So in the end the ‘Manhattan’ experiment resulted in an increase of
belief in hypothesis 1 (0.6 → 0.69) and a decrease in both hypothesis 2
(0.3 → 0.24) and 3 (0.1 → 0.07).

Figure 4.18 gives a nice overview of the process of belief adjustment.

Figure 4.18: Belief adjustment



4.4 Belief System Evaluation 65

4.4.2 NULL-hypothesis

Say we would again run the ‘Manhattan’ experiment and this time it returns
Rating 2 instead of Rating 6. If we again take a look at the evaluation
function results for the ‘Manhattan’ experiment (see table 4.8), then we see
that none of the hypotheses predicts Rating 2: E(H1/R2) = E(H2/R2) =
E(H3/R2) = 0.0

Actually they are not even 0.0, in fact they are undetermined. This
because each of them results in a 0

0 fraction.
If we would again apply equation 4.3, with a Flexibility of 1

3 and deter-
mine 0

0 to be 0.0, to modify the beliefs, then we get the following:

E(1) = 2∗0.6+0.0
3 = 0.4

E(2) = 2∗0.3+0.0
3 = 0.2

E(3) = 2∗0.1+0.0
3 = 0.07

We now have a problem that the sum of all confidences is no longer
one: ΣHE(H) = 0.4 + 0.2 + 0.07 = 0.67. To solve this problems we could
normalize the confidences to 1 resulting in the same beliefs as before we
started the experiment. Apparently it makes now difference whether we do
the experiment or not. So why bother to do the experiment at all? This
feels unsatisfied, because knowing that each hypothesis fails to predict then
it makes sense to loose a bit of faith in all of them.

To overcome this problem of the Belief System I chose for another more
satisfying option where I introduce what will be the NULL-hypothesis, re-
sembling the ‘it could be anything’-hypothesis. The NULL-hypothesis is an
indicator for the system’s ability to predict. When the NULL-hypothesis
enjoys a high confidence, then we know we are heading towards a random
system, where every result is equally probable. It is not always a bad thing
believing a lot in the NULL-hypothesis, where in some cases the world in-
deed behaves at random. Sometimes there is no possible evaluation function
to be found.

The NULL-hypothesis is presented in the next table in addition to ta-
ble 4.8 with the results from each evaluation function for the ‘Manhattan’
experiment.

What is characteristic for the NULL-hypothesis evaluation function is
that each probability for each result of any experiment is equal. Another
point is that the belief in the NULL-hypothesis is not allowed to drop to
zero. When this happens the hypothesis’s confidence is reintroduced at a
very small insignificant probability ε > 0, like 0.00001 in the example.
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Table 4.9: NULL Hypothesis
.

Hypothesis Belief R1 R2 R3 R4 R5 R6 R7 Sum
NULL 0.00001 0.143 0.143 0.143 0.143 0.143 0.143 0.143 1.0

H1 0.6 0.0 0.0 0.6 0.0 0.0 0.4 0.0 1.0
H2 0.3 0.0 0.0 0.9 0.0 0.0 0.1 0.0 1.0
H3 0.1 0.0 0.0 0.0 0.4 0.0 0.0 0.6 1.0

Sum 1.00001

The reason for this lies in the fact that while in theory beliefs will never
become exactly zero, in practise we can’t represent beliefs that small. And
once any hypothesis’s belief has reached zero, then it will always remain
zero. This is an implication of using belief adjustment equation 4.3, where
En−1(H/Re) will always stay zero once En−1(H) is zero. In the original
Belief System this was not a problem as belief could be increased through a
method of consultation with other actors, but the Genetic Belief System no
longer provides consultation.

If the confidence in the NULL-hypothesis would reach zero and stay
zero, then we keep having the problem the NULL-hypothesis is trying to
solve in the first place. We could get a decrease in belief in all hypotheses
meaning that their beliefs will no longer sum up to 1. Therefor we need to
keep the NULL-hypothesis in to play by reintroducing it (as an alternative
to consultation). When other hypotheses then the NULL-hypothesis reach
zero, then they are not reintroduced at the ε probability. Instead they will
be replaced by a new generated hypothesis which will be explained later in
§ 4.4.5.

The introduction of the NULL-hypothesis seems like too much of extra
work just to feel more satisfied and so there is even more to it. The NULL-
hypothesis has some other additional features which will come in handy for
gene initialization and breeding, which will be discussed later § 4.5.2.

4.4.3 Indifference threshold

Having a set of hypotheses we want the system to have a general confidence
in his evaluation functions and its ability to predict. Entropy is an expected
measure of the log of a certainty. We use this as a general measure calculated
by the following equation.
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Entropyn = −a
∑
H

En(H) ∗ Log2(En(H)) (4.4)

From this we can obtain an inverse of the entropy which gives an expected
value for En(H). This is denoted by In(H) and is called the Indifference
Threshold.

IndifferenceThreshold = log−1
2 (Entropyn) = In(H) (4.5)

The indifference threshold sets the confidence level. Only hypotheses
with a higher probability than the confidence level are believed or in other
words under consideration. The higher the confidence level, the higher the
confidence of the system that it is able to predict correctly.

4.4.4 Selecting Experiments

Having stated the confidence level of the system, the system tries to increase
this level to gain greater overall confidence. So instead of selecting exper-
iments randomly, we want to select the experiment that would make the
future a less surprising place one that would increase the overall confidence.
To increase the overall confidence we need an experiment that discriminates
between hypotheses. So the choice of experiment is derived from its effec-
tiveness in discriminating between hypotheses and its stability of a result
given a hypothesis. To make the choice we use an Entropy measure for
each experiment to describe the confidence of an hypothesis, the expected
certainty of a result given a hypothesis:

Entropye(Experimente) =
∑
R

∑
H

En−1(H/Re)∗Log2(En−1(H/Re)) (4.6)

The experiment with the minimum entropy will give the most decisive
results for supporting or turning down each of the hypotheses in the Belief
system. As the experiment with the minimum entropy seems like the best
option to take, it will not always be chosen.

We will use a mixed strategy approach suggested by Game Theory to se-
lect an experiment. The experiment’s entropy represents the expected prob-
ability of the experiment, so for all experiments we can set up a probability
distribution on which we can base our decision. The decision mechanism
deploys expected confidence as a probability to select.
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Because we are dealing with the case that a hypothesis is either True
or False we can take pairs of expected losses (say En, En+1) that are equal
(with experiments En, En+1 with indifference values of Pn, Pn+1):

(1− P1) ∗ f1 = (1− P2) ∗ f2

(1− P1) ∗ f1 − (1− P2) ∗ f2 = 0

In matrix form for solving equations we have:

Table 4.10: Four equations for four unknowns
.

f1 for E1 f2 for E2 f3 for E3 f4 for E4
Sum of fn = 1 1 1 1 1 -1
E1 - E2 (1-P1) -(1-P2) 0 0 0
E2 - E3 0 (1-P2) -(1-P3) 0 0
E3 - E4 0 0 (1-P3) -(1-P4) 0

The payoff should invoke a maximum security level from the entropy
pairings. In this way the experiment can be selected which will gain greater
overall confidence.

The big advantage of using the approach suggested by Game Theory is
that we can really cut down on the number of experiments we need to run.
We can pick experiments that really make a difference.

4.4.5 Generation of new Hypotheses

Sofar we have seen how to select and do experiments to update the beliefs
in the evaluation functions. With running the experiments we can find one
or more favorable hypotheses in the belief profile, where the belief profile
is setup a priori with a fixed number of hypotheses (See §4.5). As these
hypotheses start of with a certain approximation of the result probabilities
of the experiments we want to improve the approximation by introducing
new hypotheses which are potentially better in predicting each experiment’s
outcome.

This Chapter already provided us with the genetic mechanism for hy-
pothesis generation. We now only have to decide on the following:

1. With which two hypotheses do we want to breed?

2. Which hypotheses do we want to replace?
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3. When should we start breeding?

(1)So first we need to select two hypotheses, which need to be two differ-
ent ones. The selection is based on the belief probability, where the highest
belief has the biggest chance of being chosen. The reason for not always
picking the ones with the highest belief is that it not guarantees to get the
best offspring.

(2) Next because we have a fixed number of hypotheses we need to select
two of them to be replaced by two children, the offspring of the two selected
hypotheses for breeding.

• First of all the hypotheses to be replaced ought to be different then
the ones already used as parents.

• Secondly the NULL-hypothesis can never be replaced.

• Thirdly if there are any two hypotheses with zero confidence they will
be selected immediately as they will always remain zero (See §4.4.2).
Otherwise the selection is again based on the belief probability P (H),
but only with the difference that we now want the lowest belief to
have the biggest chance of being chosen. To do so we first modify the
probability P (H) to (1− P (H)).

To put the new hypothesis under consideration we introduce them both
at the indifference level. Because this means the beliefs will no longer sum
to 1 anymore (except for the case where all the hypotheses were already at
the indifference level), we need to normalize.

(3) Every time we perform an experiment we will check afterwards to
see if there are any two hypothesis with zero confidence. If so we generate
two new ones.

Every x-number of cycles (say 50) we will perform a generation any way.
After the introduction of new hypotheses we need a couple of cycles for the
belief system to settle down again.
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4.4.6 Cocktail Evaluation

Because I introduce a system for the evaluation of cocktails I need to explain
how to use the system to evaluate a cocktail. The evaluation of known and
unknown cocktail combinations is based on all evaluation functions. Each
hypothesis (evaluation function) evaluates the ingredients of the cocktail and
based on all their predictions we calculate the cocktail rating distribution:

E(Cocktailc) =
∑
R

∑
H

E(Rc/H) (4.7)

Take for example the possible evaluation results of each hypothesis for a
particular cocktail presented in Table 4.11.

Table 4.11: Evaluating cocktail
.

Hypothesis Belief R1 R2 R3 R4 R5 R6 R7 Sum
NULL 0.05 0.143 0.143 0.143 0.143 0.143 0.143 0.143 1.0

1 0.4 0.0 0.0 0.6 0.0 0.0 0.4 0.0 1.0
2 0.3 0.0 0.0 0.9 0.0 0.0 0.1 0.0 1.0
3 0.25 0.0 0.0 0.0 0.4 0.0 0.0 0.6 1.0

Sum 1.0

For each result of each hypothesis we calculate E(Rc/H), meaning that
each result probability of each hypothesis is multiplied by its belief in it (for
example E(R1/NULL) = 0.05 ∗ 0.007). This results in the following table:

Table 4.12: Evaluating cocktail
.

Hypothesis Belief R1 R2 R3 R4 R5 R6 R7 Sum
NULL 0.05 0.007 0.007 0.007 0.007 0.007 0.007 0.007 1.0

1 0.4 0.0 0.0 0.24 0.0 0.0 0.16 0.0 1.0
2 0.3 0.0 0.0 0.27 0.0 0.0 0.03 0.0 1.0
3 0.25 0.0 0.0 0.0 0.1 0.0 0.0 0.15 1.0

Sum 1.0 0.007 0.007 0.517 0.107 0.007 0.197 0.157 1.0

As shown in the table, adding up E(Rc/H) for each result of each hy-
pothesis results in the following probability distribution:

(0.007 | 0.007 | 0.517 | 0.107 | 0.007 | 0.197 | 0.157)
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4.4.7 Performance

Now we know how to evaluate cocktails we can evaluate the experiments to
find out how well the system performs, by comparing the a priori experiment
probability distributions with the evaluated probability distributions. In
this way we have another measure next to the confidence level, where the
confidence level only states how firm the system beliefs in its hypotheses,
but shows no indication of how well it predicts cocktail ratings. This was
not a feature of the original Belief System.

To calculate the distance between two probability distributions, let us
consider the following. When P and Q represent two probability distribu-
tions, and pR and qR represent the places (Ratings) in those distributions
respectively, and D represents the distance between the two probability dis-
tributions, then D can be calculated with the Euclidian distance:

D =
√∑

R

(pR − qR)2) (4.8)

We can now calculate the euclidian distance for each experiment prob-
ability distribution and its predicted probability distribution. Taking the
mean of all these distances returns the system performance as a value be-
tween 0 and

√
2:

Performance =
∑

e De

e
(4.9)

Performance is the euclidian distance between the predicted results and
the optimal results set by the a priori experiments.
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4.5 Initialization

To initialize the Genetic Belief System I had to think of how to create the
concepts (bit codes), set up experiments and initialize the hypotheses.

4.5.1 Concepts

For the system we need to create the initial input, output and possible
intermediate concepts. For the output concepts, the number of output states
needs to be selected and a concept is added for each output. The input
concepts are created by the user as he or she defines a list of ingredients
representing the input concepts. Besides the input and output concepts the
user may also add an arbitrary number of intermediate concepts. The reason
for letting the user construct the input, output and intermediate concepts by
him or herself was to give the user total freedom. The advanced user could
now create any ∆network possible for the initial creation of the hypotheses
(see § 4.5.2).

The concept bit codes are generated by the system depending on the
number of concepts. All the initial concepts (input, output and intermedi-
ates) will start with bit codes of equal lengths. In this way each concept has
the same probabilities of emerging and disappearing during breeding and on
the effect of crossover and mutation.

With the defined ingredient input concepts the user can construct cock-
tail combinations. In this way each cocktail represents a list of input con-
cepts. These cocktails are used to set up experiments. For this the user
only needs to give an a priori rating to each of the cocktails. With the ex-
periments set up it is time to initialize the hypotheses with which we try to
approximate the rating distributions of the experiments.

4.5.2 Hypotheses

For the Genetic Belief System we need to create the initial hypotheses.
First we select the number of hypotheses for the belief profile. The number
of hypotheses is fixed and we can only replace hypotheses. The reason for
having a fixed number is that we would otherwise run into computational
problems, we just can’t have an unlimited number of hypotheses due to the
belief calculations. One other option is to start with a small number of
hypotheses and increase the number of hypotheses to a certain limit, but
we like to start off with the maximum number of hypotheses to have more
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variation.
There are two options for creating the fixed number of initial hypotheses,

either the user creates them manually or we let the system create random
hypotheses.

The first option gives the user the opportunity to built in some of his a
priori knowledge about the ratings as he or she can construct any possible
∆network. In this way the user can bias the system and perhaps give it a
head start in searching for the hypotheses giving the ‘optimal’ approxima-
tion. The only problem is that we cannot say that the bias is always a good
thing. Further more it could also be a lot of work defining multiple complex
∆networks. The system should eventually come with a solution out of a
completely randomly created genes as well. So if the initial time is not an
issue, then we just let the system run a bit longer.

Instead of creating hypotheses with completely random genes of random
bit sequences we suggest to create the initial hypotheses out of the NULL-
hypothesis, where we take the NULL-hypothesis to be a fully connected
network. There are several possible fully connected NULL-hypotheses, take
for example the two in figure 4.19.

Figure 4.19: Fully connected NULL-hypotheses

That a fully connected network indeed functions as the NULL-hypothesis
is because for each combination of inputs it activates each output equally.
This results in an evenly distributed output saying that each output is
equally probable.

An important feature of the fully connected network of the NULL-
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hypothesis is that it preserves the input and output concepts. During breed-
ing also the NULL-hypothesis genes can be used and this could help us re-
introduce the input and output concepts whenever they are lost in the other
hypotheses’s genes. Of course they could also emerge from junk by mutation
and crossover, but this could take time.

The fully connected network is create out of a list of stimulator patterns.
To create other hypotheses we take a random number of the stimulator
patterns and create a new network in this way, which results in a part of
the NULL-hypothesis network. An example is given in figure 4.20 where
we took the NULL-hypothesis from figure 4.19 without the intermediates to
select from.

Figure 4.20: Part of the NULL-hypothesis

The advantage of using parts of the NULL-hypothesis would be that
we are sure of starting of with a number of stimulator patterns and input
concepts, instead of being completely random.

With the list of stimulator patterns and the network they represent we
still need to create genes as we want bit string sequences containing the
stimulator patterns and junk. For this we need to define the following pa-
rameters:

• The pattern identifier length

• The percentage of junk

• Insert probability; P(insert)
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• Break probability; P(break)

Based on the parameters we will create one big string in which we insert
the stimulator patterns, junk and bits with the letter ’b’. The string will be
broken on the places assigned with the letter ’b’, resulting in multiple bit
sequences, genes. How this is done exactly is discussed next.

First we calculate the number of bits which will be signed as junk. The
calculation is based on the number of bits required to represent the stim-
ulator patterns and the percentage of junk. Say we have for example only
the following three stimulator patterns with their bit code sequence and we
want 97% of junk:

Coke stimulates Result1 → 0101|1|1000
Coke stimulates Result2 → 0101|1|0100
Rum stimulates Result2 → 0111|1|0100

We have 3 ∗ 9 = 27 bits representing the stimulator patterns. 97% of
junk means that the 27 bits are only 3%, so we need 27∗0.97

0.03 = 873 bits of
junk.

The next step is to start a loop wherein we build a sequence of bits which
includes the 873 bits of junk and the 3 stimulator patterns preceded by an
identifier. The loop is repeat for the number of junk bits and every step we
add either a junk bit or one of the stimulator patterns based on P(insert).
Each stimulator pattern can only be added once. Based on P(break) we
may add ’b’ as well:

For(int i = 0; i<bits of junk; ++i){

if(P(break)> random value ) insert ’b’;

if(P(insert)> random value & Number of patterns > 0 ) {
insert stimulator pattern;
Number of patterns-1;
}
else insert random junk value;
}

When the loop is finished and we still have remaining stimulator pat-
terns, then they are added at the end of the sequence. Afterwards we split
the sequence at the ’b’-points and we have our genes.
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4.5.3 System parameters

When the experiments are set and the hypotheses are initialized, then before
we can start running the Genetic Belief System, we first need to set the
following parameters for the breeding process and belief adjustment:

• Breeding probability; P(breed). The probability that the system starts
breeding with two hypotheses during a cycle. (default=0.02)

• Mutation probability; P(mutation). The probability to which muta-
tion occurs. (default=0.01)

• Flexibility. The responsiveness to new results.(default=0.30)

• Asymmetric breeding probability; P(asym). The probability to which
asymmetric crossover occurs. (default=0.2)

• Gene break probability; P(gene break). The chance whether a gene
should break or not. (default=0.0)

• Gene disappear probability; P(disappear). The chance whether a gene
should disappear or not. (default=0.00)

Now with all that is needed initialized, the system model is ready to run.
In order to run and test our model we implemented an application based on
the model, which is presented in the next chapter.





Chapter 5

Implementation

The Genetic model presented in the previous Chapter is embedded in an ap-
plication providing an easy tool with which we could create the ingredients,
cocktails, experiments and the hypotheses needed to run and test the irra-
tional adaptive system. The Belief System by is modified and extended with
the additional feature of hypotheses generation which will be performed by
a Dynamic Link Library or DLL (see § 5.2.2).

Because the tool used for implementing the Belief System, Clarity1(see
appendix B), doesn’t provide a suitable option for building a graphical user
interface (GUI), we also needed to build a C++ MFC interface on top of
that (see § 5.2.3).

Section 5.1 provides the systems functionality from a users perspective.
Section 5.2 presents the system design describing the structure of the system.

Finally in section 5.3 we show the flow chart of the process of running
the Genetic Belief System.

1Clarity is developed by T.R. Addis, J.J. Townsend Addis and D.C. Gooding at the
University of Portsmouth and the University of Bath
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5.1 UML

UML stands for Unified Modeling Language and is a system of diagrams
that can specify how systems work. The systems functionality from a users
perspective is specified in the next functional model by a use-case-diagram.

Use cases focus on an external view of the system. A use case describes
a function provided by the system that yields visible results for an actor.
An actor describes any entity that interacts with the system (e.g. a user,
another system, the systems physical environment) (See [3]). In the use-
case-diagram in figure 5.1 the use case for the system user is shown. The
system provides all the functionality to setup and initialize a test case for
the Genetic model. Therefor the user is able to:

• Add ingredients by specifying a name and type.

• Add Cocktails as combinations of the added ingredients.

• Besides the input concepts represented by the ingredients, the user can
add intermediate and output concepts, which are used in constructing
the ∆Networks for the evaluation functions.

• Add experiments based on the cocktails. The user can select which
cocktails are going to function as experiments and are given an initial
rating distribution. These ratings are the a priori experiment results.

• In order to run the Genetic Belief System the user needs to generate
the initial hypotheses. Several parameters can be set to influence the
hypothesis generation (see § 4.5.2).

• After the hypothesis generation the user may initialize the Genetic
Belief System with another set of parameters (see § 4.5.3)

• After the initialization of the Genetic Belief System the user can start
(and stop) running the system in order to find a belief profile which
predicts a right approximation of the a priori experiment results.

• The user may check up on how well the system approximates the a
priori experiment results. The system returns a list with the predicted
results for each experiment cocktail. Also the performance level is
showed to the user.

• Finally the user can save hypotheses.

The System design in the next paragraph describes the structure of the
system.
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Figure 5.1: Use Case diagram
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5.2 System design

The System is based on the Belief System which is written in a functional
language called ‘Faith’ which is generated by and designed in Clarity (see ap-
pendix B). I modified and extended it with the additional feature of hy-
potheses generation which is performed by my designed Dynamic Link Li-
brary (DLL), which I named GIBS (Genetic Irrational Belief System). The
DLL performs the generation, evaluation and breeding of genes. On top of
the Belief System I designed a Graphical User Interface in C++ to control
the Genetic Belief System by providing all the functionalities presented in
the previous UML Use Case Diagram (figure 5.1).

So the system basically consists of three main components:

• The Clarity Belief System (see § 5.2.1)

• GIBS DLL (see § 5.2.2)

• C++ MFC Interface (see § 5.2.3)

Figure 5.2 illustrates how these three parts are related to one another.

Figure 5.2: System

The same system overview is presented in figure 5.3 on the next page,
only now showing the components in more detail.

In the next three subsections each main component is described in further
detail.
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Figure 5.3: System overview
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5.2.1 Clarity Belief System

The Belief System can be described by the following two abstract compo-
nents, which are also illustrated in Figure 5.4:

• The Belief profile, which states the belief in each of the hypotheses.
(Evaluation functions).

• The Experiments, which are test samples with an a priori rating dis-
tribution.

Figure 5.4: Belief System components

The system is searching for a belief profile of evaluation functions which
approximates the a priori experiment result probabilities. The evaluation
functions are predicting the results.

Every time when the system performs an experiment the beliefs in the
Belief profile are adjusted according to experiment results.
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5.2.2 GIBS-Dll

I implemented a Dynamic Link Library (DLL) called GIBS to perform all
the gene manipulation in the system. The DLL is used for:

• the breeding of new genes.

• the evaluation of genes.

• the creation of new genes.

The GIBS-DLL is implemented in C and contains a number of functions
which can be called from within Clarity. In order to make this work the
created DLL is based on the following C file template:

#include <windows.h>
#define EXPORT declspec(dllexport)
EXPORT char* CALLBACK function name(char* values[],int count);

int WINAPI DllMain (HINSTANCE hInstance, DWORD fdwReason,
PVOID pvReserved)
{
return TRUE;
}

EXPORT char* CALLBACK function name(char* values[],int count)
{
function code which returns a string . . .
}

There are five EXPORT functions in GIBS-DLL, namely:

• eval; Given an hypothesis and a list of ingredients the function returns
a string with a probability distribution over the outputs.

• hypogeneration; Given two parent and two child hypotheses the func-
tion will breed new genes to replace the genes of the two child hy-
potheses. Returns a string stating “TRUE” or “FALSE”.

• init; Initializes the genes. Returns a string stating “TRUE” or “FALSE”.
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• set globals breed; Sets the parameters for the breeding process. Re-
turns a string stating “TRUE” or “FALSE”.

• set globals create; Sets the parameters for the gene creation process.
Returns a string stating “TRUE” or “FALSE”.

• genes creation; Creates new genes. Returns a string stating “TRUE”
or “FALSE”.

Figure 5.5 gives an example of the use of the GIBS-DLL by illustrating
how we can call for the function ‘eval’ in the GIBS-DLL by using the built-in
function ‘user’.

Figure 5.5: Use of DLL

To manipulate genes the DLL needs to read and write gene bit strings
from and to a text file. Every hypotheses has its own text file with genes.
All files use the following template:
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Line 0: Number of genes
Line 1: gene 1 length
Line 2: gene 1 string
Line 3: gene 2 length
Line 4: gene 2 string
Line 5: gene 3 . . .
etc.

Take for example the following small gene file:

3
23
10001010011010101000110
5
10010
46
1000101001101010100011010001010011010101000110

When the genes are initialized, the system stores the strings in memory
in a char array. The functions ‘eval’ and ‘hypogeneration’ manipulate these
arrays.
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5.2.3 C++ MFC interface and Faith-DLL

On top of the Belief System we designed a Graphical User Interface (GUI)
in C++ to control the Belief System by providing all the functionalities
presented in the previous UML Use Case Diagram (Section 5.1).

The reason why we didn’t builded the GUI with Clarity was because it
cannot be used to create a windows (dialogs) based interface. So instead
we chose for the C++ Microsoft Foundation Class Library. We picked a
C++ based interface, because there was already a DLL available that could
provide the communication between C++ and Clarity, called faith.dll.

The next piece of C++ code for the Dialog frame in Figure 5.6 shows
an example on how to use the faith.dll. The interface allows the user to
evaluate a Clarity query, returning the answer in the Reply window.

extern ”C” declspec(dllexport)
void ask query(char *query, char *reply, HWND hMsge);
void CQueryDlg::OnEvaluate() {

static HWND hwnd = NULL;
char query[1000];
char reply[5000];

UpdateData(TRUE);
if(hwnd == NULL)
GetDlgItem(IDC MESSAGES, &hwnd);

strcpy(query, (LPCTSTR)m strQuery);
ask query(query, reply, hwnd);

m strReply = T(reply);

UpdateData(FALSE);
}
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Figure 5.6: Clarity queries
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The application is dialog based and the main dialog frame gives the user
an overview of all the different dialogs as shown in Figure 5.7.

Figure 5.7: Dialog based application

The user could press for instance the ‘Hypo gen’ button to open the
dialog shown in the following Figure, where the user can set the parameters
for gene creation and generate the initial genes.

Figure 5.8: Dialog for Generating Hypotheses
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5.3 Running Thread

If we want to track an irrational set we need to run the system forever.
When we run the Genetic Belief System we start a thread which will keep on
running until the user stops it or the application is terminated. The Thread
is a looping cycle wherein it performs experiments to update the beliefs and
breeds new hypotheses. The flow chart of this process is presented in the
next figure.

Figure 5.9: Thread





Chapter 6

System evaluation

In this chapter we will try to find out whether the system indeed behaves
like an irrational system. For this we are going to test the performance of
the system on two things:

1. Approximation of a priori experiment results

2. Tracking changes

The system should continuously search for potentially better predicting
hypotheses. We will see if the performance of evaluation indeed increases
over time, where performance is the euclidian distance between the predicted
results and the optimal results set by the a priori experiments (see § 4.4.7).
The shorter the distance, the better the approximation and performance.

So we will look at how well the belief profile with evaluation functions
approximates the a priori experiment results. These results, which represent
the users taste could change in time. So when the a priori experiment results
are changed, the system should start approximating the new results. In other
words it needs to track the changes of the user.

Section 6.1 presents the test case for which we are going to determine
the systems performance of evaluation. Section 6.2 shows the results for the
test case.

6.1 Test Case Highballs

For the test set we took nine Highball cocktails. When the Highball drink
rose to prominence in the 1920s many people claimed authorship. It took a
special investigation by the New York Times to establish beyond reasonable
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doubt that it was created around 1895 by Mr Patrick Duffy. He used one
liquor, one mixer (soda or ginger ale) and no more than one garnish, usually
a twist of lemon, or none at all. Up to two mixers can be used, one of
which should be sparkling, the inclusion of more than one base liquor is
to be avoided (See [6]). Table 6.1 presents the nine Highballs with their
ingredients.

Table 6.1: Cocktails ingredients
.

Cocktail Ingredients
Brandy H brandy, ginger ale, muddler, twist of lemon
Apple Brandy H apple brandy, ginger ale, muddler, twist of lemon
Bourbon H bourbon, ginger ale, muddler, twist of lemon
Gin H gin, ginger ale, muddler, twist of lemon
Scotch H ginger ale, muddler, scotch, twist of lemon
Carpano H lemonade, punt e mes, twist of orange
Mile H kirsch, midori, sparkling bitter lemon, twist of lemon
Sky H blue curacao, pineapple juice, scotch, twist of lemon
Seville H mandarine napoleon, pernod, sparkling bitter lemon,

twist of orange

The first five Highballs are known as Brandy Highballs. According to
Robert Cross are the Brandy Highballs less tasteful than the rest of the
Highballs. Based on this we set up the Highball experiments with the rating
results presented in table 6.2.

Table 6.2: Highball ratings
.

Cocktail Res. 0 Res. 1 Res. 2 Res. 3 Res. 4 Res. 5 Res. 6
Brandy H 1.0 0.0 0.0 0.0 0.0 0.0 0.0
Apple Brandy H 0.0 1.0 0.0 0.0 0.0 0.0 0.0
Bourbon H 0.0 0.0 1.0 0.0 0.0 0.0 0.0
Gin H 0.0 0.0 0.0 1.0 0.0 0.0 0.0
Scotch H 0.0 0.0 1.0 0.0 0.0 0.0 0.0
Carpano H 0.0 0.0 0.0 0.0 1.0 0.0 0.0
Mile H 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Sky H 0.0 0.0 0.0 0.0 0.0 0.0 1.0
Seville H 0.0 0.0 0.0 0.0 0.0 1.0 0.0

The system should approximate these a priori experiment results.
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6.2 Results and Discussion

In order to run the system we need to generate initial hypotheses given the
generation parameters (see § 4.5.2). The parameter values for the generation
of hypotheses are set with the values from Table 6.3.

Table 6.3: Generation Parameters
.

Parameter Value
Hypotheses 10
Identifier length 10
Junk percentage 97
P(insert) 0.03
P(break) 0.001

We like to start with a small number of hypotheses (10) as this is good
enough to illustrate whether it works or not. The other parameters are
default values, meaning we get 97% of junk and genes have on average a
length of 1000 bits.

The initial genes are created out of the NULL-hypothesis without inter-
mediate concepts. All input concepts are connected with all output concepts
(see § 4.5.2).

With the hypotheses created we are ready to initialize the Belief System
(see § 4.5.3). The parameter values used for initialization are shown in
Table 6.4.

Table 6.4: Initialization Parameters
.

Parameter Value
P(breed) 0.02
P(mutation) 0.01
Flexibility 0.30
P(asym) 0.0
P(gene break) 0.0
P(disappear) 0.0

These are all the default values, only the asymmetric breeding is switched
off. First we like to get the picture of the simple case.

When we run the genetic Belief system for 30000 cycles, we get the
performance level presented in Figure 6.1.
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Figure 6.1: Results 30000 cycles and 10 hypotheses

The result is promising as the graph shows just the kind of behavior we
would expect, namely a stepwise increase in performance. When a hypoth-
esis is generated and as always introduced with a belief at the indifference
level (meaning a relatively strong belief, see § 4.4.3, then there are three
possibilities:

• The hypothesis predicts far more worse than the other ones, which
results in a decrease in performance, a peak in the graph (increase in
Euclidian distance).

• The hypothesis predicts on average the same as the others. Then there
won’t be a significant change.

• The hypothesis predicts a lot better than the other ones, suddenly
it can approximate the result of an experiment closely for which the
previous hypotheses didn’t have a clue. At these points in the graph
we will see a relatively large decrease in euclidian distance, meaning
an increase in performance.

We would expect to see a lot of hypothesis creations which predict worse
due to the random factor in breeding. Picking two good hypotheses to breed
with is no guarantee for generating good hypotheses. It’s simply waiting for
the moment to get lucky.
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Table 6.5 gives an overview of the cocktail predictions after the 30000
cycles. The bold values are the ones that should in the ideal situation be 1
(see Table 6.2).

Table 6.5: Estimation, 30000 cycles and 10 hypotheses
.

Cocktail Res. 0 Res. 1 Res. 2 Res. 3 Res. 4 Res. 5 Res. 6
Brandy H 0.822 0.018 0.018 0.018 0.018 0.018 0.086
Apple Brandy H 0.143 0.143 0.143 0.143 0.143 0.143 0.143
Bourbon H 0.143 0.143 0.143 0.143 0.143 0.143 0.143
Gin H 0.016 0.016 0.016 0.904 0.016 0.016 0.016
Scotch H 0.143 0.143 0.143 0.143 0.143 0.143 0.143
Carpano H 0.143 0.143 0.143 0.143 0.143 0.143 0.143
Mile H 0.043 0.043 0.043 0.043 0.043 0.743 0.043
Sky H 0.022 0.022 0.022 0.022 0.022 0.022 0.775
Seville H 0.043 0.043 0.043 0.043 0.043 0.743 0.043

In the next run we put in a bit more variation during breeding, by
setting the probability for asymmetric crossover to 0.2. The performance
level during 15000 cycles is shown in Figure 6.2.

Figure 6.2: Results 15000 cycles, 10 hypotheses, asymmetric crossover

The graph shows the same kind of behavior as before, only now we see
that we get to a higher performance much quicker and at the end of the
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15000 cycles we already have a better predicting system (see Table 6.6)
An interesting point in the graph is around cycle 12000, here we notice

a significant decrease in performance (increase in the graph). We seem to
have lost better predicting hypotheses and got worse ones in return. This
problem could occur because every hypothesis has a chance of being replaced
during a breeding cycle, so also the best hypothesis with a relatively small
chance. If we increase the number of hypotheses, then this problem would
occur less often. We also preserve more variation with more hypotheses.

Table 6.6: Estimation 15000 cycles, 10 hypotheses, asymmetric crossover
.

Cocktail Res. 0 Res. 1 Res. 2 Res. 3 Res. 4 Res. 5 Res. 6
Brandy H 0.140 0.140 0.140 0.140 0.140 0.140 0.160
Apple Brandy H 0.000 0.862 0.000 0.000 0.000 0.000 0.138
Bourbon H 0.140 0.140 0.140 0.140 0.140 0.140 0.160
Gin H 0.027 0.139 0.027 0.708 0.027 0.027 0.047
Scotch H 0.132 0.132 0.132 0.132 0.132 0.132 0.211
Carpano H 0.000 0.000 0.000 0.000 0.929 0.000 0.071
Mile H 0.032 0.032 0.032 0.032 0.032 0.601 0.238
Sky H 0.002 0.002 0.002 0.002 0.002 0.002 0.986
Seville H 0.026 0.026 0.026 0.026 0.026 0.661 0.211

Next we continue running the belief system with twice as much hypothe-
ses, namely 20. Figure 6.3 shows the level of performance over 65000 cycles.

Figure 6.3: Results 65000 cycles, 20 hypotheses, asymmetric crossover
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Again the result is in line with our expectations. Increasing the number
of hypotheses seems to have an effect on the time it takes to increase the
performance.

Table 6.7 shows that the system isn’t sure about the Gin Highball and
for the Scotch and Sky Highball only in approximately 50% of the cases.

Table 6.7: Estimation 65000 cycles, 20 hypotheses, asymmetric crossover
.

Cocktail Res. 0 Res. 1 Res. 2 Res. 3 Res. 4 Res. 5 Res. 6
Brandy H 0.986 0.006 0.004 0.000 0.000 0.000 0.004
Apple Brandy H 0.000 0.997 0.001 0.001 0.000 0.000 0.000
Bourbon H 0.000 0.000 0.962 0.000 0.038 0.000 0.000
Gin H 0.143 0.143 0.143 0.143 0.143 0.143 0.143
Scotch H 0.000 0.000 0.533 0.000 0.000 0.000 0.467
Carpano H 0.001 0.001 0.001 0.001 0.996 0.001 0.001
Mile H 0.001 0.000 0.000 0.000 0.001 0.998 0.000
Sky H 0.001 0.000 0.531 0.000 0.000 0.000 0.467
Seville H 0.000 0.000 0.000 0.000 0.000 1.000 0.000

The system seems to approximate the a priori experiment results quite
reasonable in the previous case, but now we want to see what happens when
we adjust the a priori results after cycle 65000. The test is to see whether
the system indeed is able to track changes. Instead of the experiment results
from Table 6.2 we have shifted the rating distribution for Apple Brandy H
to the right and for Mile H to left as shown in Table 6.8.

Table 6.8: Cocktails ratings
.

Cocktail Res. 0 Res. 1 Res. 2 Res. 3 Res. 4 Res. 5 Res. 6
Brandy H 1.0 0.0 0.0 0.0 0.0 0.0 0.0
Apple Brandy H 0.0 0.1 0.0 0.0 0.0 0.45 0.45
Bourbon H 0.0 0.0 1.0 0.0 0.0 0.0 0.0
Gin H 0.0 0.0 0.0 1.0 0.0 0.0 0.0
Scotch H 0.0 0.0 1.0 0.0 0.0 0.0 0.0
Carpano H 0.0 0.0 0.0 0.0 1.0 0.0 0.0
Mile H 0.9 0.0 0.0 0.0 0.0 0.1 0.0
Sky H 0.0 0.0 0.0 0.0 0.0 0.0 1.0
Seville H 0.0 0.0 0.0 0.0 0.0 1.0 0.0
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When we continue running with the new experiment results we get the
graph of performance presented in Figure 6.4.

Figure 6.4: Results 20000 cycles after change

The beginning of the 20000 cycles after the previous 65000 cycles starts
with a decrease in performance as the system is now more off with its pre-
dictions for Apple Brandy H and Mile H.

While its not going fast, the system indeed seems to adapt itself to the
new ratings. Table 6.9 shows the predictions for the new experiment results.

Table 6.9: Estimation after change
.

Cocktail Res. 0 Res. 1 Res. 2 Res. 3 Res. 4 Res. 5 Res. 6
Brandy H 0.742 0.043 0.043 0.043 0.043 0.043 0.043
Apple Brandy H 0.143 0.143 0.143 0.143 0.143 0.143 0.143
Bourbon H 0.001 0.001 0.996 0.001 0.001 0.001 0.001
Gin H 0.143 0.143 0.143 0.143 0.143 0.143 0.143
Scotch H 0.007 0.007 0.484 0.007 0.007 0.007 0.481
Carpano H 0.086 0.001 0.001 0.001 0.910 0.001 0.001
Mile H 0.451 0.021 0.021 0.021 0.044 0.423 0.021
Sky H 0.000 0.000 0.239 0.000 0.000 0.000 0.761
Seville H 0.021 0.021 0.021 0.021 0.021 0.876 0.021

Apparently it found out that the rating for Mile H is now more towards
rating 0, but for Apple Brandy H it doesn’t have a clue.



Chapter 7

Conclusion and Future
Research

7.1 Conclusion

With this thesis we have taken on the challenge set by T. R. Addis et al.
(see [4]):

”can we construct computing based upon family resemblance rather than
sets, paradigms rather than concepts, and metaphor rather than deduction?
Can we devise systems that have judgement rather than decisions?”

The thesis presents a model for an adaptive intelligent irrational system,
which is able to assess the users cocktail taste and predict the user’s taste
for cocktails. For this we needed a system that could:

1. handle taste as an irrational set.

2. make sensible judgements (evaluations).

In order to achieve the main objective to create such an adaptive intelli-
gent irrational system, we set the following assignment in our introduction
(Chapter 1) which is repeated below:

1. design a model for the irrational set of taste, knowing that taste may
change under time and context. Also as people cannot express their
feeling of tastefulness in absolute statements we need to find a way to
get the internal reference model of the user.
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2. design a model for evaluation providing a mechanism in order to make
predictions for the evaluation of cocktails. The model needs to be able
to handle the irrational nature of taste and therefore keep track of
changes in the taste of the user.

3. implement a prototype application, based on the taste and evaluation
model, to create a test environment. With the application we can test
whether the proposed models work or not.

4. test the system for a bounded set of cocktails. See if the system can
assess the taste of an a priori set of cocktails. Also test how it adapts
to changes in the cocktail taste of the user.

The model to handle with the irrational nature of taste and to get the
internal references of a person was presented in Chapter 3. By modeling
taste with a set of seven rating hypotheses and a belief distribution, we can
approximate the internal reference model of the user.

With only the internal reference model of the users taste, there was no
mechanism yet to create a belief model for an unknown cocktail. There was
no mechanism for evaluation, no measure for success. Chapter 4 presented
the Genetic model which I designed and implemented for the evaluation of
cocktails providing a mechanism for prediction. A set of evaluation func-
tions forms the belief profile, where each evaluation function is in fact an
hypothesis for the Genetic Belief System. By adjusting beliefs we find out
which evaluation functions predict the best.

The mechanism I designed for generating new hypotheses for the mod-
ified Belief System, enables us to handle the irrational nature of taste and
thereby keep track of changes in the taste of the user. The generation of
new hypotheses is made possible by using ∆Logic to describe cocktail eval-
uation functions in terms of genes. I designed and implemented genes which
with we can breed new genes and thereby new evaluation functions. The
model truly represents an Irrational system as it has the following three
characteristics, stated in Chapter 2, needed to handle irrational sets:

1. It is dependent on time. As shifts occur over time and cannot be
predicted, the shifts would be reflected in the order.

2. The learning period never ends. The system must continue evaluating
and learning when presented with new ideas and situations.
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3. Shows some form of randomness. While in a rational system, every
decision can be made completely deterministic to get the optimum
response, within an irrational system, no such optimum can be found
as the sets change.

Chapter 5 presents the system design and my implementation for an ap-
plication based on the Genetic model. I modified the Belief System which
was written with Clarity, to make it suitable for handling evaluation func-
tions. The Belief System can be seen as the evaluation part of my genetic
algorithm.

Besides modifications I wrote a Dynamic Link Library (dll) written in C
to perform the Genetic part. It does all the heavy computational breeding
tasks, gene evaluation and gene creation.

I also builded a GUI written in C++ (MFC) on top of the Genetic Belief
System

In Chapter 6 the model was tested with the implemented application
and the results were promising. With the bounded set of cocktails from the
Highball test case we showed that the system in time indeed would increase
its performance on predicting the taste of the a priori experiments. The
approximation of the experiment results is relatively poor, but still better
than random.

When we adjust the a priori results, the system adapts to the new rating
results, so it also seems to be able to track changes. In general we can say
that the Genetic model works, but we have to point out that it is very
impractical for two reasons:

• Firstly of all it takes a lot of cycles for the system to increase perfor-
mance. In practise we need the system to adapt a whole lot faster to
changes.

• Secondly, which relates to the first point, we need better performance,
even after a long while the approximation of the experiment results is
poor.

We can conclude by saying that with this thesis we made the first step
towards a practical irrational system. The Genetic model presented in the
thesis has all the features you would need to handle irrational sets, but the
model and implementation need to be optimized if we want to make it useful
in practise.
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If this can be done then we really are on our way in creating intelligent
creative systems, which can truly make sensible human-like judgments and
thereby fulfilling the Challenge.

With this thesis I can conclude that it is possible to design and implement
a working irrational system, which has the great advantage over the rational
system that it is (forever) continuously adapting to its environment. In a
rational system every case would have to be pre-designed or pre-determined,
something which is impossible to do as the rational system should therefor
account for all the possible future situations. Concepts will change under
time and social context and we now have a system that can deal with it.

7.2 Future Research

For future research the following items must be recommended:

• Exploring the use of multiple populations for breeding. Instead of
having only one belief profile with hypotheses, we should have multiple
profiles and exchange and breed with genes of hypotheses between
different profiles. In this way we can have more variation.

• Another field that needs to be explored is the use of parallel computing.
With this we should be able to make some optimizations in the time
it takes to find good predicting hypotheses. Especially if it is possible
to compute for multiple belief profiles in parallel. This is certainly an
important point as we need to improve a lot on speed to get a practical
system. As soon as we have improved on the relatively small bounded
test case, we can start testing for larger sets with more hypotheses and
experiments.

• Optimizing the breeding process by finding better ways to select genes
to breed with. Picking two good hypotheses to breed with is no guar-
antee for generating good hypotheses. There is no underlying gene
structure for the genes of a hypothesis and therefor the location of the
genes are insignificant. For crossover we now pick genes randomly as
there is no information available on how ‘good’ or ‘useful’ a single gene
(bit string) is. From an engineering point of view we should design a
mechanism to assess genes. One could think of some kind of fitness
function like we see in standard Genetic algorithms. If we can evaluate
the genes themselves we could select the optimal ones. Or perhaps it
is not a case of selecting optimal genes, but optimal gene matches.
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Perhaps for this we should call upon nature and have a look at sexual
attraction. If we could somehow calculate the sexual attraction be-
tween genes, then we could see which gene pairs are more suitable for
crossover.

• Do more extensive testing to find out the optimal setting for the sys-
tem’s parameters. Or perhaps even find a mechanism for the system
to change the parameters by itself dynamically.
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Appendix A

Inventing Cocktails

I discuss two ways to create new cocktail combinations besides random cock-
tail generation:

1. Invention based on single replacements

2. Invention based on genetics

A.1 Invention based on single replacements

Inventing cocktails isn’t something that has never been done before. It is
not that new cocktails suddenly fall from the sky in order for us to decipher
its components. We people create them by mixing known combinations of
ingredients together based up on our previous experience with the ingredi-
ents, or based up on the experience of someone else. So to come up with
an algorithm for inventing cocktails, we just looked at the way we solve the
problem in the real world by asking our selves the question: ”How should
I invent a new cocktail?” The idea is basically that we take a cocktail we
already like and then try to substitute one or more ingredients. It seems not
the smartest thing to do by just plunge in all ingredients we like to make it
great. For instance when I really like coca cola, strawberries, honey, choco-
late and gin, then a mix of all this doesn’t seem so tasteful anymore. We like
to base the substitutions we make on our previous experience and general
usage. So we will try to substitute one or more ingredients with ingredients
that are used in similar combinations. Besides combinations also flavour
seems quite useful. Flavour can help us ruling out certain combinations. If
an ingredient is found in a cocktail with similar flavours, then this substi-
tute should be in favor instead of the ones that are not. Finally we should
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probably pick ingredients we like. We are not saying you should never mix
with ingredients you don’t like, because the combination with other ingre-
dients may turn out to be quite nice. But in general it seems wise to favor
ingredients you already like.

The idea of combinations is when we have for instance an ingredient ”dry
vermouth” that is often mixed with ”gin”. In other cases ”dry vermouth” is
sometimes mixed with ”Canadian whisky”. Knowing that both ”gin” and
”Canadian whisky” are mixable with ”dry vermouth”, perhaps then we can
say that ”gin” can be substituted for ”Canadian whisky” and ”Canadian
whisky” substituted for ”gin”.

A.2 Breeding cocktails

Create paradigms of cocktails, cocktails that seem to be related showing
some family resemblance.

Ingredients, additions and garnishes themselves can be grouped into the
following 9 groups: Spirits (S), Liqueurs (L), Wines (W) Flavourings (F),
Juices (J), Mixers (M), Syrups (R), Garnishes (G) and Cream (C).

Each paradigm is represented by a cocktail template, which can be seen
as the genetic structure of the paradigm. The structure for a group could
be: S S L L F J M C G G G G. This means that this paradigm could con-
tain two spirits, two liqueurs, one juice, one cream and three types of garnish.

Genes can be filled or left empty. The value of a gene represents the part
of the cocktail. For instance if S = 0.2, then it means that 20 percent of the
cocktail consists of this Spirit. These ratio values aren’t used for Garnish,
they have value 0 or 1 (Present or absent). The total volume of a cocktail
in calculated in advance.

For instance Rum Sour (where x represents empty):
Structure: S S x x x J x C G x x x
Ingredients: white rum, golden rum, x, x, x, lemon juice, x, syrup, spiral of
lemon, x, x, x
Values: 0.4 0.15 0 0 0 0.3 0 0.15 1 0 0
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Or Scotch Melon Sour:
Structure: S x L x x J x C G G G x
Ingredients: scotch, x, midori, x, x, lemon juice, syrup, lemon twist, slice of
orange, cherry, x
Values: 0.25 0 0.25 0 0 0.25 0 0.25 1 1 1 0

Breeding involves two structures and crossing over a random number of
ingredients:

Example:
Locations: 1 2 3 4 5 6 7 8 9 10 11 12
Rum Sour: S S x x x J x C G x x x
Scotch Melon Sour: S x L x x J x C G G G x

It is only possible to swap between the same gene types, so it’s aloud
to swap an S for an S ingredient. Take for instance swapping Rum sour
ingredient 2 with Scotch Melon Sour ingredient 1, resulting in:

Rum sour2: white rum, scotch, x, x, x, lemon juice, x, syrup, spiral of
lemon, x, x,x
Values 0.4 0.25 0 0 0 0.3 0 0.15 1 0 0

Scotch Melon Sour2: golden rum, x, midori, x, x, lemon juice, syrup,
lemon twist, slice of orange, cherry, x
Values 0.15 0 0.25 0 0 0.25 0 0.25 1 1 1 0

Both list of gene values need to be normalized:
Rum sour2: 0.35 0.21 0 0 0 0.22 0 0 0.12 1 0 0
Scotch m s2: 0.19 0 0.27 0 0 0.27 0 0.27 1 1 1 0

So now we have two new cocktails.



Appendix B

Clarity

The tool used for implementing the Belief System is Clarity. Clarity is a
program environment that allows you to draw your programs and then run
them. Behind the scenes it converts your design drawing into a functional
language (called Faith) that is then interpreted(see [5]). An example of a
design drawing is presented in figure B.1, where it illustrates the implemen-
tation of the following function:

Example?0 ::= ∗(∗(3)(2))(+(/(∗(6)(+(2)?0))(4))(7))

Figure B.1: Clarity function example

It takes some effort to find out what is being calculated, when we only
look at the function declaration in the faith code. By drawing the same



111

function instead of declaring the function in the functional language, makes
it a lot easier as we maintain a good overview.

Clarity is easy to work with and can be learned quickly. Programming
in a functional language has never been this easy. The controls are quite
intuitive and the schematics give you a good overview of the code, helping
to manage the complexity. Errors you make are easily spotted or pointed
out by Clarity, decreasing the time for debugging tremendously. With good
error handling, the power of a functional language and pattern matching it’s
possible to write quite complex programs in a short amount of time.

The only problems were the lack of building interfaces, a bit too slow in
heavy computational problems and difficulties in handling very large data
sets. The first two problems can be solved by combining Clarity with for
instance C++, C or any other language. A DLL is available to provide the
necessary interface between the different programming languages. The op-
tion for parallel computation is an answer to the second problem, handling
very large data sets, where parts can be distributed over a network of PC’s.

Functional programming is a style that is tremendously powerful and
capable of programming very complex ideas simply. The simplicity of func-
tional programming is that there is really only one idea and that is the func-
tion. Programs are functions. So are data, procedures and sub-routines. In
a pure functional language there are no global variables and places for stor-
ing data. So how do we store data for the Belief System, knowing that the
Belief System is only defined by functions? For this we use the function defi-
nitions. Take for instance the case where we want to store the beliefs (E(H))
in each of the hypotheses. The system has a function called ‘confidence’, for
which its schematic is presented in Figure B.2.

Figure B.2: Confidence
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The schematic declares and defines the function respectively as:

confidence ::= int→int→real;
confidence ?0 ?1 ::= #r0.000000 ;

The two inputs of the function are the population number and the hy-
pothesis number and for any input it returns the real number 0.000000. We
can assert ‘confidence’ function definitions and thereby storing beliefs for
hypotheses. Take for instance the assertion of the following definition:

confidence #0 #0 ::= #r0.250000 ;

Clarity uses pattern matching and is therefor able to return 0.25 when
we evaluate function ‘confidence’ with an input of two zeros (H0 from
Population0). Thus a function can be used as a dynamical array with the
benefit that sparse arrays are only kept to only those components of the array
that have significant results. These arrays are now accessible through pat-
terns instead of simple integer indexes. Or Access them according through
structures.


