Creating a Dogfight Agent

Mediamatics / Data and Knowledge Systems group

I U D e I ft Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology, The Netherlands

Technische Universiteit Delft

Creating a fully autonomousggent that can
play in a dogfight (1-on-1 battle) in Microsoft
Combat Flight Simulator (MSCFS)

| ‘ Y
.. ‘ !
llt- m"—ll:: ‘, Ei‘.
¥ l : % ¢!
AN A %
A :

Contents

. Introduction
. Design

. Results

. Conclusions

Introduction

Introduction — design — results — conclusions

Background

In 100 years:

 More airplanes

 More capabillities

 High information load for pilots

» Intelligent Cockpit Environment (ICE) project

Introduction — design — results — conclusions

ICE project

Situation recognition

Mission or flight plan monitoring
Attack management

Pilot workload monitoring

» Combine in one fully autonomous agent

Introduction — design — results — conclusions

Project goal

Create an agent that can play a dogfight in MSCFS

Research:

e Literature study
« Model & design
 Prototype

Introduction — design — results — conclusions

Requirements

Fully autonomous

No cheating

Real-time working

Possiblilities for change and extensions

Introduction — design — results — conclusions

Literature study

Areas:

 |ICE project

e Al In aviation

Al In computer games

Introduction — design — results — conclusions

Flight parameters

Introduction — design — results — conclusions

Control parameters

g TN

elevator alleron

Introduction — design — results — conclusions

Maneuvers

Straight flight
Turn (left, right)

Extreme turn (left, rightt &
Looping

Split-S turn

Immelmann turn

Introduction — design — results — conclusions

Introduction— design — results — conclusions

environment

Aircraft environment:
ground altitude

Enemy aircraft:
altitude, longitude,
latitude, heading, pitch,

| bank, speed

Own aircraft:
altitude, longitude,
latitude, heading, pitch,
bank, speed

\V4

Current situation:
distance

positioning angles
attack/defend situation

agent

Strategy:

best maneuver to
execute in current
situation

Execution:

Try to execute the
current strategy as
optimal as possible

Introduction— design — results — conclusions

System design

Computer 1 Computer 2

Wil il
A1 asics Data exchange . asics

Player 1 TCP/IP Player 2

network

Microsoft Combat : Microsoft Combat
Multiplayer game

Flight Simulator ' Flight Simulator

Introduction— design — results — conclusions

System design

Computer 1 Computer 2

I A1 asics Data exchange asics

Player 1 TCP/IP Player 2

network

Microsoft Combat : Microsoft Combat
Multiplayer game

Flight Simulator ' Flight Simulator

Introduction— design — results — conclusions

Abstraction layers

—— AT

Agent
Basics

15t External layer External

Introduction— design — results — conclusions

Objects

Controller

FSUIPC Connnunmauw

Opponent

Intelligence
layer

External
layer

Input/output
layer

External
layer

Introduction— design — results — conclusions

A.l. objects

Situation recognition (maneuver, position)
Decision-making
Maneuver execution

Introduction— design — results — conclusions

Maneuver Recognition

AN
, 4
/
K
\

P g . - .
/ N / N\ e N / \ / . . N\
| Maximal turn left | Turn left o | Maximal turn right |
\ Y, / \ / \ /

-
y ~

i) A
[Straight flight upwards J [Straight flight) (Straight flight downwards)
N , \ \ /

Introduction— design — results — conclusions

Position Recognition

-

" altitude
difference
>

Small distance

(Small distance -
lower

higher

Long distance

<90 or 90 <-120 or >120

\

\
<60 & >-60
<-90 or >90

{/ Small distance -
{ approach
—— Middle distance -

[Small distance - | Small distance - Small distance - \‘ higher

attack) tral defend

<-90 or >90
¥

I ™

Middle distance - ‘

attack <60 & >-60

/

vy

(Middle distance - J
approach

J

P
[Middle distance - -

eutral Middle distance -
~ split

Middle distance
{ defend

Introduction— design — results — conclusions

Decision-making

“IF angle off > 0 THEN turn right”

Acquisition of rules:

 From domain expert (pilot)

 Learn from observing domain expert
 Learn from experience

Introduction— design — results — conclusions

State-based decisions

For each ‘position’ a separate set of rules

State: Small distance - defend

Altitude

Ground Altitude

Speed

Bank

Pitch \ _ |Maximal turn left
Enemy bank A\ |Maximal turn right
Enemy pitch) jLooping

Range / |split-S

Aspect angel ' 3 " |Immelmann turn
Angel off ;

Enemy angle off

Altitude difference

Speed difference

Introduction— design — results — conclusions

Maneuver execution

Find values for control parameters
Approach of each maneuver is different
Learn by observing experts (pilots)

Introduction— design — results — conclusions

Observing experts

Introduction— design — results — conclusions

Observing experts

Introduction— design — results — conclusions

Observing experts

Introduction— design — results — conclusions

Regression

New value for ‘aileron’:

f(x = desired change ‘bank’) =
1.115x3 + 6.236x% - 1153x — 2745

Introduction— design — results — conclusions

Regression

Functions with 2 parameters:
e + Smoother maneuver execution
e - Undesired behavior

Introduction— design — results — conclusions

Example: step 1

Retrieve data:
 Data from MSCFS and oppone

 Undependable and continuous
process

Introduction— design — results — conclusions

Example: step 2

Situation recognition:
 Opponent maneuver: ‘turn right
 Position: ‘small distance attack’

Introduction— design — results — conclusions

Example: step 3

Decision-making:

 ‘angle off’ (ao =-12)

e ‘aspect angle’ (aa = 15)

« maneuver (om = ‘turn right’)

IF (ao < -5) AND (aa > 0) AND
(om == turn right) THEN ‘start a turn right’

Introduction— design — results — conclusions

Example: step 4

Maneuver execution:
 aileron: 16000
e elevator: 12000

Introduction— design — results — conclusions

Example: step 5

Further:

« Walit

e Start reasoning again
« 3times a second

Introduction— design — results — conclusions

Implementation

Prototype in C++:

o Compute the ail from the difference in deszired bnk and current bnk
if (dir > 0

data—:ai1l = (short)i{ma=xz{-16000 min{le000.{1.115 * pow(diff.3) + 6.236 * pow
] ==

data—:al (zhort)i{ma=z(—-16000 min{le000, (1. 748 * pow(diff. 3d) —12. 269 * pow

Introduction— design — results — conclusions

Implementation

Limitations of the implementation:
« 1 type of airplane (Spitfire)

e Always ‘full throttle’

 No shooting

Introduction— design — results — conclusions

Results

Introduction— design -fesults — conclusions

Scenario 1

Straight flight

Introduction— design -fesults — conclusions

Scenario 2

Simple turns

)

Introduction— design -fesults — conclusions

Scenario 3

Dogfight

Introduction— design -fesults — conclusions

Scenario 3

Dogfight

Introduction— design -fesults — conclusions

Scenario 3: positions

short-range-attack
short-range-higher
short-range-neutral
middle-range-approach
short-range-approach
short-range-defend

Introduction— design -fesults — conclusions

Scenario 4

Agent - agent

Introduction— design -fesults — conclusions

Introduction— design -fesults — conclusions

Conclusions

Introduction— design — results eonclusions

Project goal

Create an agent that can play a dogfight inyMSCFS

Introduction— design — results eonclusions

Conclusions

Agent reacts faster than human
Agent Is less creative as human
All tasks are important

Agent works succesfully!

Introduction— design — results eonclusions

Future work

Extends and improve decision-making rules
Add prediction

Decision-making different per position
Adaptive flight behavior

Probabilistische approach

Introduction— design — results eonclusions

Game Over

