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Creating a fully autonomousggent that can
play in a dogfight (1-on-1 battle) in Microsoft
Combat Flight Simulator (MSCFS)
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Background

In 100 years:

 More airplanes

 More capabillities

 High information load for pilots

» Intelligent Cockpit Environment (ICE) project
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ICE project

Situation recognition

Mission or flight plan monitoring
Attack management

Pilot workload monitoring

» Combine in one fully autonomous agent
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Project goal

Create an agent that can play a dogfight in MSCFS

Research:

e Literature study
« Model & design
 Prototype
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Requirements

Fully autonomous

No cheating

Real-time working

Possiblilities for change and extensions
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Literature study

Areas:

 |ICE project

e Al In aviation

Al In computer games

Introduction — design — results — conclusions




Flight parameters
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Control parameters

g TN

elevator alleron
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Maneuvers

Straight flight
Turn (left, right)

Extreme turn (left, rightt &
Looping

Split-S turn

Immelmann turn
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environment

Aircraft environment:
ground altitude

Enemy aircraft:
altitude, longitude,
latitude, heading, pitch,

| bank, speed

Own aircraft:
altitude, longitude,
latitude, heading, pitch,
bank, speed

\V4

Current situation:
distance

positioning angles
attack/defend situation

agent

Strategy:

best maneuver to
execute in current
situation

Execution:

Try to execute the
current strategy as
optimal as possible
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System design

Computer 1 Computer 2

Wil il
A1 asics Data exchange . asics

Player 1 TCP/IP Player 2

network

Microsoft Combat : Microsoft Combat
Multiplayer game

Flight Simulator ' Flight Simulator
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System design

Computer 1 Computer 2

I A1 asics Data exchange asics

Player 1 TCP/IP Player 2

network

Microsoft Combat : Microsoft Combat
Multiplayer game
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Abstraction layers

—— AT

Agent
Basics

15t External layer External
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Objects

Controller

FSUIPC Connnunmauw

Opponent

Intelligence
layer

External
layer

Input/output
layer

External
layer
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A.l. objects

Situation recognition (maneuver, position)
Decision-making
Maneuver execution
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Maneuver Recognition
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Position Recognition
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Decision-making

“IF angle off > 0 THEN turn right”

Acquisition of rules:

 From domain expert (pilot)

 Learn from observing domain expert
 Learn from experience
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State-based decisions

For each ‘position’ a separate set of rules

State: Small distance - defend

Altitude

Ground Altitude

Speed

Bank

Pitch \ _ |Maximal turn left
Enemy bank A\ |Maximal turn right
Enemy pitch ) jLooping

Range / |split-S

Aspect angel ' 3 " |Immelmann turn
Angel off ;

Enemy angle off

Altitude difference

Speed difference
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Maneuver execution

Find values for control parameters
Approach of each maneuver is different
Learn by observing experts (pilots)

Introduction— design — results — conclusions




Observing experts
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Observing experts
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Observing experts
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Regression

New value for ‘aileron’:

f(x = desired change ‘bank’) =
1.115x3 + 6.236x% - 1153x — 2745
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Regression

Functions with 2 parameters:
e + Smoother maneuver execution
e - Undesired behavior
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Example: step 1

Retrieve data:
 Data from MSCFS and oppone

 Undependable and continuous
process
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Example: step 2

Situation recognition:
 Opponent maneuver: ‘turn right
 Position: ‘small distance attack’
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Example: step 3

Decision-making:

 ‘angle off’ (ao =-12)

e ‘aspect angle’ (aa = 15)

« maneuver ( om = ‘turn right’)

IF (ao < -5) AND (aa > 0) AND
(om == turn right) THEN ‘start a turn right’
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Example: step 4

Maneuver execution:
 aileron: 16000
e elevator: 12000

Introduction— design — results — conclusions




Example: step 5

Further:

« Walit

e Start reasoning again
« 3times a second
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Implementation

Prototype in C++:

o Compute the ail from the difference in deszired bnk and current bnk
if (dir > 0

data—:ai1l = (short)i{ma=xz{-16000 min{le000.{1.115 * pow(diff.3) + 6.236 * pow
] ==

data—:al (zhort)i{ma=z(—-16000 min{le000, (1. 748 * pow(diff. 3d) —12. 269 * pow
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Implementation

Limitations of the implementation:
« 1 type of airplane (Spitfire)

e Always ‘full throttle’

 No shooting
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Results
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Scenario 1

Straight flight

Introduction— design -fesults — conclusions




Scenario 2

Simple turns

)
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Scenario 3

Dogfight
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Scenario 3

Dogfight
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Scenario 3: positions

short-range-attack
short-range-higher
short-range-neutral
middle-range-approach
short-range-approach
short-range-defend
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Scenario 4

Agent - agent
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Conclusions
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Project goal

Create an agent that can play a dogfight inyMSCFS
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Conclusions

Agent reacts faster than human
Agent Is less creative as human
All tasks are important

Agent works succesfully!

Introduction— design — results eonclusions




Future work

Extends and improve decision-making rules
Add prediction

Decision-making different per position
Adaptive flight behavior

Probabilistische approach
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Game Over




